Linear motor coil assembly and linear motor
2009-01-01
An ironless linear motor (5) comprising a magnet track (53) and a coil assembly (50) operating in cooperation with said magnet track (53) and having a plurality of concentrated multi-turn coils (31 a-f, 41 a-d, 51 a-k), wherein the end windings (31E) of the coils (31 a-f, 41 a-e) are substantially
Modeling of ironless permanent magnet planar motor structures
Boeij, de J.; Lomonova, E.A.; Vandenput, A.J.A.
2006-01-01
This paper describes an analytical model that includes end effects for ironless synchronous permanent-magnet planar actuators. Because of its flexibility, the model can be used to predict the performance of various permanent-magnet array and coil array topologies and commutation schemes. Moreover,
Advanced single permanent magnet axipolar ironless stator ac motor for electric passenger vehicles
Beauchamp, E. D.; Hadfield, J. R.; Wuertz, K. L.
1983-01-01
A program was conducted to design and develop an advanced-concept motor specifically created for propulsion of electric vehicles with increased range, reduced energy consumption, and reduced life-cycle costs in comparison with conventional systems. The motor developed is a brushless, dc, rare-earth cobalt, permanent magnet, axial air gap inductor machine that uses an ironless stator. Air cooling is inherent provided by the centrifugal-fan action of the rotor poles. An extensive design phase was conducted, which included analysis of the system performance versus the SAE J227a(D) driving cycle. A proof-of-principle model was developed and tested, and a functional model was developed and tested. Full generator-level testing was conducted on the functional model, recording electromagnetic, thermal, aerodynamic, and acoustic noise data. The machine demonstrated 20.3 kW output at 1466 rad/s and 160 dc. The novel ironless stator demonstated the capability to continuously operate at peak current. The projected system performance based on the use of a transistor inverter is 23.6 kW output power at 1466 rad/s and 83.3 percent efficiency. Design areas of concern regarding electric vehicle applications include the inherently high windage loss and rotor inertia.
Duffy, Kirsten P.
2016-01-01
NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. This effort aims to identify design parameters that affect power density and efficiency for a double-Halbach array permanent-magnet ironless axial flux motor configuration. These parameters include both geometrical and higher-order parameters, including pole count, rotor speed, current density, and geometries of the magnets, windings, and air gap.
Handbook on linear motor application
International Nuclear Information System (INIS)
1988-10-01
This book guides the application for Linear motor. It lists classification and speciality of Linear Motor, terms of linear-induction motor, principle of the Motor, types on one-side linear-induction motor, bilateral linear-induction motor, linear-DC Motor on basic of the motor, linear-DC Motor for moving-coil type, linear-DC motor for permanent-magnet moving type, linear-DC motor for electricity non-utility type, linear-pulse motor for variable motor, linear-pulse motor for permanent magneto type, linear-vibration actuator, linear-vibration actuator for moving-coil type, linear synchronous motor, linear electromagnetic motor, linear electromagnetic solenoid, technical organization and magnetic levitation and linear motor and sensor.
International Nuclear Information System (INIS)
Barkman, W.E.; Adams, W.Q.; Berrier, B.R.
1978-01-01
A linear induction motor has been operated on a test bed with a feedback pulse resolution of 5 nm (0.2 μin). Slewing tests with this slide drive have shown positioning errors less than or equal to 33 nm (1.3 μin) at feedrates between 0 and 25.4 mm/min (0-1 ipm). A 0.86-m (34-in)-stroke linear motor is being investigated, using the SPACO machine as a test bed. Initial results were encouraging, and work is continuing to optimize the servosystem compensation
Energy Technology Data Exchange (ETDEWEB)
Munehiro, H
1980-05-29
When driving the carriage of a printer through a rotating motor, there are problems regarding the limited accuracy of the carriage position due to rotation or contraction and ageing of the cable. In order to solve the problem, a direct drive system was proposed, in which the printer carriage is driven by a linear motor. If one wants to keep the motor circuit of such a motor compact, then the magnetic flux density in the air gap must be reduced or the motor travel must be reduced. It is the purpose of this invention to create an electrodynamic linear motor, which on the one hand is compact and light and on the other hand has a relatively high constant force over a large travel. The invention is characterised by the fact that magnetic fields of alternating polarity are generated at equal intervals in the magnetic field, and that the coil arrangement has 2 adjacent coils, whose size corresponds to half the length of each magnetic pole. A logic circuit is provided to select one of the two coils and to determine the direction of the current depending on the signals of a magnetic field sensor on the coil arrangement.
Goldowsky, Michael P. (Inventor)
1987-01-01
A reciprocating linear motor is formed with a pair of ring-shaped permanent magnets having opposite radial polarizations, held axially apart by a nonmagnetic yoke, which serves as an axially displaceable armature assembly. A pair of annularly wound coils having axial lengths which differ from the axial lengths of the permanent magnets are serially coupled together in mutual opposition and positioned with an outer cylindrical core in axial symmetry about the armature assembly. One embodiment includes a second pair of annularly wound coils serially coupled together in mutual opposition and an inner cylindrical core positioned in axial symmetry inside the armature radially opposite to the first pair of coils. Application of a potential difference across a serial connection of the two pairs of coils creates a current flow perpendicular to the magnetic field created by the armature magnets, thereby causing limited linear displacement of the magnets relative to the coils.
Reciprocating Linear Electric Motor
Goldowsky, M. P.
1984-01-01
Features include structural simplicity and good force/displacement characteristics. Reciprocating motor has simple, rugged construction, relatively low reciprocating weight, improved power delivery, and improved force control. Wear reduced by use of magnetic bearings. Intended to provide drivers for long-lived Stirling-cycle cryogenic refrigerators, concept has less exotic applications, such as fuel pumps.
Johnson, Bruce G.; Gerver, Michael J.; Hawkey, Timothy J.; Fenn, Ralph C.
1993-01-01
Improved linear actuator comprises air slide and linear electric motor. Unit exhibits low friction, low backlash, and more nearly even acceleration. Used in machinery in which positions, velocities, and accelerations must be carefully controlled and/or vibrations must be suppressed.
Segmented rail linear induction motor
Cowan, Jr., Maynard; Marder, Barry M.
1996-01-01
A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.
Linear Synchronous Motor Repeatability Tests
International Nuclear Information System (INIS)
Ward, C.R.
2002-01-01
A cart system using linear synchronous motors was being considered for the Plutonium Immobilization Plant (PIP). One of the applications in the PIP was the movement of a stack of furnace trays, filled with the waste form (pucks) from a stacking/unstacking station to several bottom loaded furnaces. A system was ordered to perform this function in the PIP Ceramic Prototype Test Facility (CPTF). This system was installed and started up in SRTC prior to being installed in the CPTF. The PIP was suspended and then canceled after the linear synchronous motor system was started up. This system was used to determine repeatability of a linear synchronous motor cart system for the Modern Pit Facility
Ultrasonic Linear Motor with Two Independent Vibrations
Muneishi, Takeshi; Tomikawa, Yoshiro
2004-09-01
We propose a new structure of an ultrasonic linear motor in order to solve the problems of high-power ultrasonic linear motors that drive the XY-stage for electron beam equipment and to expand the application fields of the motor. We pay special attention to the following three points: (1) the vibration in two directions of the ultrasonic linear motor should not influence mutually each other, (2) the vibration in two directions should be divided into the stage traveling direction and the pressing direction of the ultrasonic linear motor, and (3) the rigidity of the stage traveling direction of the ultrasonic linear motor should be increased. As a result, the supporting method of ultrasonic linear motors is simplified. The efficiency of the motor is improved and temperature rise is reduced. The stage position drift is also improved.
Simulation of linear Switched Reluctance Motor drives
Garcia Amoros, Jordi; Blanqué Molina, Balduino; Andrada Gascón, Pedro
2011-01-01
This paper presents a simulation model of linear switched reluctance motor drives. A Matlab-Simulink environment coupled with finite element analysis is used to perform the simulations. Experimental and simulation results for a double sided linear switched motor drive prototype are reported and compared to verify the simulation model.
A linear motor as seismic horizontal vibrator
Drijkoningen, G.; Veltman, A.; Hendrix, W.H.A.; Brouwer, J.; Hemstede, A.
2006-01-01
In this paper we propose to use the concept of linear synchronous motors to act as a seismic shear-wave vibratory source. We show that a linear motor, even with a design that is not focussed on application of seismic surveying, gives seismic records that are convincing and comparable with an
Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd
2018-04-01
The magnetism attraction between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator is often known as cogging. Cogging requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator to see its performance characteristic. In the maximum power point tracking test, the fabricated ironless coreless electricity generator was tested by applying the load on the ironless coreless electricity generator optimization to maximize the power generated, voltage and the current produced by the ironless coreless electricity generator when the rotational speed of the rotor increased throughout the test. The rotational torque and power output are measured, and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 200VAC at rotational speed of 318 RPM. Torque required to rotate the generator was at 10.8Nm. The generator had working efficiency of 77.73% and the power generated was at 280W.
Linear Motor for Drive of Belt Conveyor
Directory of Open Access Journals (Sweden)
Milan Krasl
2006-01-01
Full Text Available This paper introduces a novel approach on the design of a linear motor for drive of belt conveyor (LMBC. The motor is a simple combination of asynchronous motor in plane. The electromagnetic forces is one of the most important parameters of electrical machines. This parameter is necessary for the checking of the design. This paper describes several variants: linear motor with slots in platens, slots in one half of platens and optimization of slots. The electromagnetic force can be found with the help of a Finite Elements Method – based program. For solution was used QuickField program.
Comparison of linear synchronous and induction motors
2004-06-01
A propulsion prade study was conducted as part of the Colorado Maglev Project of FTA's Urban Maglev Technology Development Program to identify and evaluate prospective linear motor designs that could potentially meet the system performance requiremen...
Linear motor with contactless energy transfer
2014-01-01
An integrated electromagnetic energy conversions device is provided that includes a synchronous or brushless linear (SoBL) motor, and a transformer, where the transformer is integrated electromagnetically and topologically with the SoBL motor, where an electromagnetic field orientation of the
A linear magnetic motor and generator
Studer, P. A.
1980-01-01
In linear magnetic motor and generator suitable for remote and hostile environments, magnetic forces drive reciprocating shaft along its axis. Actuator shaft is located in center of cylindrical body and may be supported by either contacting or noncontacting bearings. When device operates as bidirectional motor, drive coil selectively adds and subtracts magnetic flux to and from flux paths, producing forces that drive actuator along axis. When actuator is driven by external reciprocating engine, device becomes ac generator.
Linear ultrasonic motor for absolute gravimeter.
Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V
2017-05-01
Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters. Copyright © 2017 Elsevier B.V. All rights reserved.
Linear Parameter Varying Control of Induction Motors
DEFF Research Database (Denmark)
Trangbæk, Klaus
The subject of this thesis is the development of linear parameter varying (LPV) controllers and observers for control of induction motors. The induction motor is one of the most common machines in industrial applications. Being a highly nonlinear system, it poses challenging control problems...... for high performance applications. This thesis demonstrates how LPV control theory provides a systematic way to achieve good performance for these problems. The main contributions of this thesis are the application of the LPV control theory to induction motor control as well as various contributions...
A beam scraper using a linear motor
International Nuclear Information System (INIS)
Beadle, E.R.; Rodger, E.S.; Thern, R.E.
1989-01-01
A beam scraper using a linear motor drive has been developed for use in the AGS at Brookhaven National Laboratory. The device is used to measure beam size by moving a target to a predetermined location and measuring the intercepted beam with nearby loss monitors or by noting the decrease in the circulating beam current. This device has excellent vacuum characteristics, as the motor and sensor coils are outside the vacuum, coupled magnetically to the moving parts which, are inside. There are no bellows or dynamic seals required. The position-time profile is controlled by a closed-loop servo system which uses position feedback. 2 refs., 4 figs
Comparison of Linear Induction Motor Theories for the LIMRV and TLRV Motors
1978-01-01
The Oberretl, Yamamura, and Mosebach theories of the linear induction motor are described and also applied to predict performance characteristics of the TLRV & LIMRV linear induction motors. The effect of finite motor width and length on performance ...
Linear pneumatic motors – a comparative study
Directory of Open Access Journals (Sweden)
Deaconescu Tudor
2017-01-01
Full Text Available The paper presents a comparative study of the performance of single-acting cylinders, diaphragm cylinders and pneumatic muscles, and offers users information that allows the selection of an optimum technical solution. Such a study was necessary, in view of the numerous papers on pneumatic muscle applications found in literature, that assert the superiority of pneumatic muscles over other pneumatic linear motors in relation to quantities like dimensions, mass, developed force or energy-to-mass ratios, however without offering concrete data.
A seismic vertical vibrator driven by linear synchronous motors
Noorlandt, R.P.; Drijkoningen, G.G.; Dams, J.; Jenneskens, R.
2015-01-01
A linear synchronous motor (LSM) is an electric motor that can produce large controllable forces and is therefore suitable as a driving engine for a seismic vibrator. This motor consists of two independent elements, a magnet track and a coil track, allowing practically unlimited motor displacements.
International program on linear electric motors
Energy Technology Data Exchange (ETDEWEB)
Dawson, G.E.; Eastham, A.R.; Parker, J.H.
1992-05-01
The International Program on Linear Electric Motors (LEM) was initiated for the purposes of commumication and coordination between various centers of expertise in LEM technology in Germany, Japan and Canada. Furthermore, it was intended to provide assessment and support of the planning of technological developments and for dissemination of information to researchers, service operators and policy makers, and to ensure that full advantage can be taken if opportunities for technology transfer occur. In the process, the program was able to provide closer contacts between researchers, to enhance and encourage collaborative research and development, and to facilitate joint ventures in advanced transportation technologies. Work done under the program is documented, and seminar materials presented by Canadian researchers in Italy, and by Italian researchers at Queen's University in Canada are presented. Five separate abstracts have been prepared for the main body of the report and the seminar materials.
Study of linear induction motor characteristics : the Mosebach model
1976-05-31
This report covers the Mosebach theory of the double-sided linear induction motor, starting with the ideallized model and accompanying assumptions, and ending with relations for thrust, airgap power, and motor efficiency. Solutions of the magnetic in...
Study of linear induction motor characteristics : the Oberretl model
1975-05-30
The Oberretl theory of the double-sided linear induction motor (LIM) is examined, starting with the idealized model and accompanying assumptions, and ending with relations for predicted thrust, airgap power, and motor efficiency. The effect of varyin...
Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps
Directory of Open Access Journals (Sweden)
Deep Parikh
2015-08-01
Full Text Available This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current motors used in quad-copter UAV (Unmanned Aerial Vehicles. The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM. Traditionally, quad-copter BLDC motor speed control uses simple linear motor-control map defined by the motor-constant specification. However, practical BLDC motors show non-linear characteristic, particularly when operated across wide operating speed-range as is commonly required in quad-copter UAV flight operations. In this paper, our investigations to compare performance of linear versus non-linear motor-control maps are presented. The investigations cover simulation-based and experimental study of BLDC motor speed control systems for quad-copter vehicle available. First the non-linear map relating rotor RPM to motor voltage for quad-copter BLDC motor is obtained experimentally using an optical speed encoder. The performance of the linear versus non-linear motor-control-maps for the speed control are studied. The investigations also cover study of time-responses for various standard test input-signals e.g. step, ramp and pulse inputs, applied as the reference speed-commands. Also, simple 2-degree of freedom test-bed is developed in our laboratory to help test the open-loop and closed-loop experimental investigations. The non-linear motor-control map is found to perform better in BLDC motor speed tracking control performance and thereby helping achieve better quad-copter roll-angle attitude control.
Lithographic linear motor, lithographic apparatus, and device manufacturing method
2006-01-01
A linear motor having a high driving force, high efficiency and low normal force comprises two opposed magnet tracks and an armature comprising three open coil sets. The linear motor may be used to drive a stage, such as, for example, a mask or wafer stage, in a lithographic apparatus.
Impact self-excited vibrations of linear motor
Zhuravlev, V. Ph.
2010-08-01
Impact self-exciting vibration modes in a linear motor of a monorail car are studied. Existence and stability conditions of self-exciting vibrations are found. Ways of avoiding the vibrations are discussed.
Experimental development of an ultrasonic linear motor
CSIR Research Space (South Africa)
M'Boungui, G
2010-01-01
Full Text Available the stator structure. In contrast to traditional travelling wave ultrasonic motors, which require two modes to be driven 90° out of phase, only one amplifier is required to drive the proposed device. A prototype device was characterised experimentally...
Linear stability analysis in a solid-propellant rocket motor
Energy Technology Data Exchange (ETDEWEB)
Kim, K.M.; Kang, K.T.; Yoon, J.K. [Agency for Defense Development, Taejon (Korea, Republic of)
1995-10-01
Combustion instability in solid-propellant rocket motors depends on the balance between acoustic energy gains and losses of the system. The objective of this paper is to demonstrate the capability of the program which predicts the standard longitudinal stability using acoustic modes based on linear stability analysis and T-burner test results of propellants. Commercial ANSYS 5.0A program can be used to calculate the acoustic characteristic of a rocket motor. The linear stability prediction was compared with the static firing test results of rocket motors. (author). 11 refs., 17 figs.
Modelling a linear PM motor including magnetic saturation
Polinder, H.; Slootweg, J.G.; Compter, J.C.; Hoeijmakers, M.J.
2002-01-01
The use of linear permanent-magnet (PM) actuators increases in a wide variety of applications because of the high force density, robustness and accuracy. The paper describes the modelling of a linear PM motor applied in, for example, wafer steppers, including magnetic saturation. This is important
Danisi, Alessandro; Losito, Roberto
2015-01-01
The Ironless Inductive Position Sensor (I2PS) has been introduced as a valid alternative to Linear Variable Differential Transformers (LVDTs) when external magnetic fields are present. Potential applications of this linear position sensor can be found in critical systems such as nuclear plants, tokamaks, satellites and particle accelerators. This paper analyzes the performance of the I2PS in the harsh environment of the collimators of the Large Hadron Collider (LHC), where position uncertainties of less than 20 μm are demanded in the presence of nuclear radiation and external magnetic fields. The I2PS has been targeted for installation for LHC Run 2, in order to solve the magnetic interference problem which standard LVDTs are experiencing. The paper describes in detail the chain of systems which belong to the new I2PS measurement task, their impact on the sensor performance and their possible further optimization. The I2PS performance is analyzed evaluating the position uncertainty (on 30 s), the magnetic im...
Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor
Coffey, Howard T.
1993-01-01
A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.
Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor
Coffey, H.T.
1993-10-19
A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.
Comparative analysis of linear motor geometries for Stirling coolers
R, Rajesh V.; Kuzhiveli, Biju T.
2017-12-01
Compared to rotary motor driven Stirling coolers, linear motor coolers are characterized by small volume and long life, making them more suitable for space and military applications. The motor design and operational characteristics have a direct effect on the operation of the cooler. In this perspective, ample scope exists in understanding the behavioural description of linear motor systems. In the present work, the authors compare and analyze different moving magnet linear motor geometries to finalize the most favourable one for Stirling coolers. The required axial force in the linear motors is generated by the interaction of magnetic fields of a current carrying coil and that of a permanent magnet. The compact size, commercial availability of permanent magnets and low weight requirement of the system are quite a few constraints for the design. The finite element analysis performed using Maxwell software serves as the basic tool to analyze the magnet movement, flux distribution in the air gap and the magnetic saturation levels on the core. A number of material combinations are investigated for core before finalizing the design. The effect of varying the core geometry on the flux produced in the air gap is also analyzed. The electromagnetic analysis of the motor indicates that the permanent magnet height ought to be taken in such a way that it is under the influence of electromagnetic field of current carrying coil as well as the outer core in the balanced position. This is necessary so that sufficient amount of thrust force is developed by efficient utilisation of the air gap flux density. Also, the outer core ends need to be designed to facilitate enough room for the magnet movement under the operating conditions.
Contact analysis and experimental investigation of a linear ultrasonic motor.
Lv, Qibao; Yao, Zhiyuan; Li, Xiang
2017-11-01
The effects of surface roughness are not considered in the traditional motor model which fails to reflect the actual contact mechanism between the stator and slider. An analytical model for calculating the tangential force of linear ultrasonic motor is proposed in this article. The presented model differs from the previous spring contact model, the asperities in contact between stator and slider are considered. The influences of preload and exciting voltage on tangential force in moving direction are analyzed. An experiment is performed to verify the feasibility of this proposed model by comparing the simulation results with the measured data. Moreover, the proposed model and spring model are compared. The results reveal that the proposed model is more accurate than spring model. The discussion is helpful for designing and modeling of linear ultrasonic motors. Copyright © 2017 Elsevier B.V. All rights reserved.
Force analysis of linear induction motor for magnetic levitation system
Kuijpers, A.A.; Nemlioglu, C.; Sahin, F.; Verdel, A.J.D.; Compter, J.C.; Lomonova, E.
2010-01-01
This paper presents the analyses of thrust and normal forces of linear induction motor (LIM) segments which are implemented in a rotating ring system. To obtain magnetic levitation in a cost effective and sustainable way, decoupled control of thrust and normal forces is required. This study includes
Thermally driven molecular linear motors - A molecular dynamics study
DEFF Research Database (Denmark)
Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard Lawrence
2009-01-01
We conduct molecular dynamics simulations of a molecular linear motor consisting of coaxial carbon nanotubes with a long outer carbon nanotube confining and guiding the motion of an inner short, capsule-like nanotube. The simulations indicate that the motion of the capsule can be controlled by th...
CONTRIBUTIONS TO THE FINITE ELEMENT MODELING OF LINEAR ULTRASONIC MOTORS
Directory of Open Access Journals (Sweden)
Oana CHIVU
2013-05-01
Full Text Available The present paper is concerned with the main modeling elements as produced by means of thefinite element method of linear ultrasonic motors. Hence, first the model is designed and then a modaland harmonic analysis are carried out in view of outlining the main outcomes
Resettable binary latch mechanism for use with paraffin linear motors
Maus, Daryl; Tibbitts, Scott
1991-01-01
A new resettable Binary Latch Mechanism was developed utilizing a paraffin actuator as the motor. This linear actuator alternately latches between extended and retracted positions, maintaining either position with zero power consumption. The design evolution and kinematics of the latch mechanism are presented, as well as the development problems and lessons that were learned.
Evaluation of linear induction motor characteristics : the Yamamura model
1975-04-30
The Yamamura theory of the double-sided linear induction motor (LIM) excited by a constant current source is discussed in some detail. The report begins with a derivation of thrust and airgap power using the method of vector potentials and theorem of...
Position sensor for linear synchronous motors employing halbach arrays
Post, Richard Freeman
2014-12-23
A position sensor suitable for use in linear synchronous motor (LSM) drive systems employing Halbach arrays to create their magnetic fields is described. The system has several advantages over previously employed ones, especially in its simplicity and its freedom from being affected by weather conditions, accumulated dirt, or electrical interference from the LSM system itself.
Force measurements on a shielded coreless linear permanent magnet motor
Pluk, K.J.W.; Jansen, J.W.; Lomonova, E.A.
2014-01-01
This paper compares force measurements on a shielded coreless linear permanent magnet motor with 2-D models. A 2-D semianalytical modeling method is applied, which is based on Fourier modeling and includes force calculations. The semianalytical modeling correctly predicts the behavior found in the
Bidirectional electrostatic linear shuffle motor with two degrees of freedom
Sarajlic, Edin; Berenschot, Johan W.; Fujita, H.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt
2005-01-01
We report on an electrostatic linear inchworm micromotor with two translational degrees-of-freedom. The motor employs built-in mechanical leverage to convert normal deflection of a flexible cross-plate into a small in-plane step and four electrostatic clamps to enable bidirectional inchworm motion
Magnetic shielding for coreless linear permanent magnet motors
Pluk, K.J.W.; Jansen, J.W.; Lomonova, E.
2013-01-01
This paper concerns the local reduction of the magnetic flux density by means of magnetic shielding. Using a spatial frequency description, a 2-D semi-analytical periodic model is obtained for a coreless single-sided linear permanent magnet motor. The magnetic shield is included in the modeling
Direct Torque Control With Feedback Linearization for Induction Motor Drives
DEFF Research Database (Denmark)
Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.
2017-01-01
This paper describes a direct-torque-controlled (DTC) induction motor (IM) drive that employs feedback linearization and sliding-mode control (SMC). A new feedback linearization approach is proposed, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC-type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using SMC with proportional control in the vicinity of the sliding surface. SMC assures...... in simulations. The sliding controller is compared with a linear DTC scheme with and without feedback linearization. Extensive experimental results for a sensorless IM drive validate the proposed solution....
Advanced analysis technique for the evaluation of linear alternators and linear motors
Holliday, Jeffrey C.
1995-01-01
A method for the mathematical analysis of linear alternator and linear motor devices and designs is described, and an example of its use is included. The technique seeks to surpass other methods of analysis by including more rigorous treatment of phenomena normally omitted or coarsely approximated such as eddy braking, non-linear material properties, and power losses generated within structures surrounding the device. The technique is broadly applicable to linear alternators and linear motors involving iron yoke structures and moving permanent magnets. The technique involves the application of Amperian current equivalents to the modeling of the moving permanent magnet components within a finite element formulation. The resulting steady state and transient mode field solutions can simultaneously account for the moving and static field sources within and around the device.
Analysis of the linear induction motor in transient operation
Energy Technology Data Exchange (ETDEWEB)
Gentile, G; Rotondale, N; Scarano, M
1987-05-01
The paper deals with the analysis of a bilateral linear induction motor in transient operation. We have considered an impressed voltage one-dimensional model which takes into account end effects. The real winding distribution of the armature has been represented as a lumped parameters system. By using the space vectors methodology, the partial differential equation of the sheet is solved bythe variable separation method. Therefore it's possible to arrange a system of ordinary differential equations where the unknown quantities are the space vectors of the air-gap flux density and sheet currents. Finally, we have analyzed the characteristic quantities for a no-load starting of small power motors.
A novel linear switched reluctance motor for railway transportation systems
International Nuclear Information System (INIS)
Daldaban, Ferhat; Ustkoyuncu, Nurettin
2010-01-01
This paper presents the design and realization of a new linear switched reluctance motor (LSRM) structure, especially suitable for high-speed railway systems. The new model has a double active stator configuration and provides high force for many applications with low cost. The characteristics of the LSRM are obtained by using finite element analysis (FEA) and analytical calculations. The results of the FEA and analytical calculations are presented, and compared with experimental results. In addition, a classical double-sided LSRM (DSLSRM) is modeled with the same specifications of the new motor structure and the results are compared.
Development of a linear induction motor based artificial muscle system.
Gruber, A; Arguello, E; Silva, R
2013-01-01
We present the design of a linear induction motor based on electromagnetic interactions. The engine is capable of producing a linear movement from electricity. The design consists of stators arranged in parallel, which produce a magnetic field sufficient to displace a plunger along its axial axis. Furthermore, the winding has a shell and cap of ferromagnetic material that amplifies the magnetic field. This produces a force along the length of the motor that is similar to that of skeletal muscle. In principle, the objective is to use the engine in the development of an artificial muscle system for prosthetic applications, but it could have multiple applications, not only in the medical field, but in other industries.
Linear motor driven Stirling coolers for military and commercial applications
International Nuclear Information System (INIS)
Berry, R.
1992-01-01
This paper discusses the design and performance of a miniature, closed cycle, split stirling, cryogenic cooler that provides 1 watt of cooling at 80 K. The compressor uses two opposed linear motors to drive opposed pistons and the expander uses a pneumatically driven displacer. A single electronics module and compressor has been developed to drive three different expanders that have nominal cold cylinder diameters of 5, 8 and 13 mm
Generate stepper motor linear speed profile in real time
Stoychitch, M. Y.
2018-01-01
In this paper we consider the problem of realization of linear speed profile of stepper motors in real time. We considered the general case when changes of speed in the phases of acceleration and deceleration are different. The new and practical algorithm of the trajectory planning is given. The algorithms of the real time speed control which are suitable for realization to the microcontroller and FPGA circuits are proposed. The practical realization one of these algorithms, using Arduino platform, is given also.
Electromagnetic Energy Converters - Rotating Motors and Linear Generators
Energy Technology Data Exchange (ETDEWEB)
Ekergaard, Boel
2011-07-01
This licentiate thesis presents a study of the electromagnetic properties of linear synchronous permanent magnet generators, utilized in wave energy converters, and a two pole permanent magnet motor for an electrical vehicle. Both machine topologies are presented, designed with a numerical simulation tool, based on a model derived from Maxwell's equations. Full scale prototypes of both the machines are under construction. A continued study about the impact on the magnetic circuit caused by the longitudinal ends of a linear generator is performed. The results present significant core losses in the translator and an increased cogging force caused by the longitudinal ends. Further, a new electric conversion circuit based on the electric resonance phenomena is presented. Experimental results indicate that a successful electric resonance between the generator and external circuit has been achieved. Finally, detailed analytical and numerical methods are utilized to investigate the losses in the two pole permanent magnet motor over a wide frequency interval. The results indicate that the efficiency of electrical motors in electrical vehicle system can be increased relative existing designs and argue for limiting of the gearbox. The system total efficiency and mechanical stability can thereby be increased. The work concerning the wave energy converter is a part of a larger project, the so called Lysekil Wave Power Project, whereas the work concerning the electric motor so far has been carried out as an individual project. However, a future goal is to integrate the research on the electric motor for electrical vehicle with closely related ongoing research regarding a flywheel based electric driveline for an All Electric Propulsion System
Design and optimization of a modal- independent linear ultrasonic motor.
Zhou, Shengli; Yao, Zhiyuan
2014-03-01
To simplify the design of the linear ultrasonic motor (LUSM) and improve its output performance, a method of modal decoupling for LUSMs is proposed in this paper. The specific embodiment of this method is decoupling of the traditional LUSM stator's complex vibration into two simple vibrations, with each vibration implemented by one vibrator. Because the two vibrators are designed independently, their frequencies can be tuned independently and frequency consistency is easy to achieve. Thus, the method can simplify the design of the LUSM. Based on this method, a prototype modal- independent LUSM is designed and fabricated. The motor reaches its maximum thrust force of 47 N, maximum unloaded speed of 0.43 m/s, and maximum power of 7.85 W at applied voltage of 200 Vpp. The motor's structure is then optimized by controlling the difference between the two vibrators' resonance frequencies to reach larger output speed, thrust, and power. The optimized results show that when the frequency difference is 73 Hz, the output force, speed, and power reach their maximum values. At the input voltage of 200 Vpp, the motor reaches its maximum thrust force of 64.2 N, maximum unloaded speed of 0.76 m/s, maximum power of 17.4 W, maximum thrust-weight ratio of 23.7, and maximum efficiency of 39.6%.
Improvement of the thermal behavior of linear motors through insulation layer
International Nuclear Information System (INIS)
Eun, I. U.; Lee, C. M.; Chung, W. J.; Choi, Y. H.
2001-01-01
Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools, because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, heat sources of a synchronous linear motor with high velocity and force are measured and analyzed. To improve the thermal stiffness of the linear motor, an insulation layer with low thermal conductivity is inserted between cooler and machine table. Some effects of the insulation layer are presented
Dynamic Response Analysis of Linear Pulse Motor with Closed Loop Control
山本, 行雄; 山田, 一
1989-01-01
A linear pulse motor can translate digital signals into linear positions without a gear system. It is important to predict a dynamic response in order to the motor that has the good performance. In this report the maximum pulse rate and the maximum speed on the linear pulse motor are obtained by using the sampling theory.
NASTRAN buckling study of a linear induction motor reaction rail
Williams, J. G.
1973-01-01
NASTRAN was used to study problems associated with the installation of a linear induction motor reaction rail test track. Specific problems studied include determination of the critical axial compressive buckling stress and establishment of the lateral stiffness of the reaction rail under combined loads. NASTRAN results were compared with experimentally obtained values and satisfactory agreement was obtained. The reaction rail was found to buckle at an axial compressive stress of 11,400 pounds per square inch. The results of this investigation were used to select procedures for installation of the reaction rail.
König Ignasiak, Niklas; Habermacher, Lars; Taylor, William R; Singh, Navrag B
2017-01-01
Motor variability is an inherent feature of all human movements and reflects the quality of functional task performance. Depending on the requirements of the motor task, the human sensory-motor system is thought to be able to flexibly govern the appropriate level of variability. However, it remains unclear which neurophysiological structures are responsible for the control of motor variability. In this study, we tested the contribution of cortical cognitive resources on the control of motor variability (in this case postural sway) using a dual-task paradigm and furthermore observed potential changes in control strategy by evaluating Ia-afferent integration (H-reflex). Twenty healthy subjects were instructed to stand relaxed on a force plate with eyes open and closed, as well as while trying to minimize sway magnitude and performing a "subtracting-sevens" cognitive task. In total 25 linear and non-linear parameters were used to evaluate postural sway, which were combined using a Principal Components procedure. Neurophysiological response of Ia-afferent reflex loop was quantified using the Hoffman reflex. In order to assess the contribution of the H-reflex on the sway outcome in the different standing conditions multiple mixed-model ANCOVAs were performed. The results suggest that subjects were unable to further minimize their sway, despite actively focusing to do so. The dual-task had a destabilizing effect on PS, which could partly (by 4%) be counter-balanced by increasing reliance on Ia-afferent information. The effect of the dual-task was larger than the protective mechanism of increasing Ia-afferent information. We, therefore, conclude that cortical structures, as compared to peripheral reflex loops, play a dominant role in the control of motor variability.
Analysis of Nonlinear Dynamics in Linear Compressors Driven by Linear Motors
Chen, Liangyuan
2018-03-01
The analysis of dynamic characteristics of the mechatronics system is of great significance for the linear motor design and control. Steady-state nonlinear response characteristics of a linear compressor are investigated theoretically based on the linearized and nonlinear models. First, the influence factors considering the nonlinear gas force load were analyzed. Then, a simple linearized model was set up to analyze the influence on the stroke and resonance frequency. Finally, the nonlinear model was set up to analyze the effects of piston mass, spring stiffness, driving force as an example of design parameter variation. The simulating results show that the stroke can be obtained by adjusting the excitation amplitude, frequency and other adjustments, the equilibrium position can be adjusted by adjusting the DC input, and to make the more efficient operation, the operating frequency must always equal to the resonance frequency.
Commercializing a U.S. piezoceramic linear motor
Diehl, Rick W.
2000-06-01
A small low-cost piezoceramic linear motor has been developed in the US and is being commercialized by EDO Corporation, working with a leading motion control OEM and with a prominent US corporate research laboratory. First generation motor design has emphasized high displacement at up to 200mm per second velocity with 3.5 Newtons force with high resolution, short time constant and a 15 volt power supply at a cost of less than 100 dollars. Motor dimensions of 30 by 50 by 4 mm allow broad configuration choices, al hidden within the motion control slide. The EDO approach was to build on its core competence in high reliability electroceramic material engineering and production, and to use a strategy of back-integrating, or outsourcing of recent advances outside Edo in piezoceramics, while forward- integrating into specific emerging applications known intimately by the OEM in the market. The strategy provided design focus that has led to a cost-effective advance in 'solid-state actuation and control'. This is considered a classic case of successful industrial integration of an enabling technology across organizations in order to access the needed mix of technology for development of an innovative and competitive solution.
Linear magnetic spring and spring/motor combination
Patt, Paul J. (Inventor); Stolfi, Fred R. (Inventor)
1991-01-01
A magnetic spring, or a spring and motor combination, providing a linear spring force characteristic in each direction from a neutral position, in which the spring action may occur for any desired coordinate of a typical orthogonal coordinate system. A set of magnets are disposed, preferably symmetrically about a coordinate axis, poled orthogonally to the desired force direction. A second set of magnets, respectively poled opposite the first set, are arranged on the sprung article. The magnets of one of the sets are spaced a greater distance apart than those of the other, such that an end magnet from each set forms a pair having preferably planar faces parallel to the direction of spring force, the faces being offset so that in a neutral position the outer edge of the closer spaced magnet set is aligned with the inner edge of the greater spaced magnet set. For use as a motor, a coil can be arranged with conductors orthogonal to both the magnet pole directions and the direction of desired spring force, located across from the magnets of one set and fixed with respect to the magnets of the other set. In a cylindrical coordinate system having axial spring force, the magnets are radially poled and motor coils are concentric with the cylinder axis.
The linear electric motor: Instability at 1,000 g's
International Nuclear Information System (INIS)
Hunter, S.
1997-01-01
When fluid of high density is supported against gravity by a less dense liquid, the system is unstable, and microscopic perturbations grow at the interface between the fluids. This phenomenon, called the Rayleigh-Taylor instability, also occurs when a bottle of oil-and-vinegar salad dressing is turned upside down. The instability causes spikes of the dense fluid to penetrate the light fluid, while bubbles of the lighter fluid rise into the dense fluid. The same phenomenon occurs when a light fluid is used to accelerate a dense fluid, causing the two fluids to mix at a very high rate. For example, during the implosion of an ICF capsule, this instability can cause enough mixing to contaminate, cool, and degrade the yield of the thermonuclear fuel. The LEM is an excellent tool for studying this instability, but what is it? Think of a miniature high-speed electric train (the container) hurtling down a track (the electrodes) while diagnostic equipment (optical and laser) photographs it. The LEM, consists of four linear electrodes, or rails, that carry an electrical current to a pair of sliding armatures on the container. A magnetic field is produced that works in concert with the rail-armature current to accelerate the container--just as in an electric motor, but in a linear fashion rather than in rotation. The magnetic field is augmented with elongated coils just as in a conventional electric motor. This configuration also helps hold the armatures against the electrodes to prevent arcing. The electrical energy (0.6 megajoules) is provided by 16 capacitor banks that can be triggered independently to produce different acceleration profiles (i.e., how the acceleration varies with time)
Energy Technology Data Exchange (ETDEWEB)
Lindegger, M.
2008-07-01
When an oscillating piston interacts with an electrical generator or motor, it is obvious that the electrical machine should also have linear motion, eliminating the disadvantage of a crankshaft. This work has two parts: construction of an efficient linear generator for a Stirling engine with a free piston and a theoretical study of the efficiency of linear motors for driving compressors. The Stirling engine and the linear generator have a continuous power of 1.3 kW{sub el}. With thermal peak power the planned 1.5 kW{sub el} are attained. The Project 'Stirling Free Piston Generator' for cogeneration will continue. Smaller linear motors with permanent magnets function without electronic control from single-phase AC net. The theoretical study shows how linear motors can be led out by linking the electric vector diagram with the pressure-volume diagram of the compressor. At a power level exceeding a few kW, a three-phase system with power electronics is more suitable. The frequency of oscillation is variable and lower than 50 Hz. The efficiency of the simulated linear motors lies in the range of efficiency class EFF1 of standard motors. The very high efficiencies of rotating motors with permanent magnets are not attained. The combination of the linear motor with an optimised thermal process leads to advantages regarding the efficiency. If a heat pump with linear drive system can operate with hot lubricating oil the losses in the heat exchangers are reduced. The Competence Center for Thermal Machines at Lucerne University of Applied Sciences and Arts shows great interest to pursue the project of a linear heat pump for small temperature differences. (author)
Low-Rank Linear Dynamical Systems for Motor Imagery EEG.
Zhang, Wenchang; Sun, Fuchun; Tan, Chuanqi; Liu, Shaobo
2016-01-01
The common spatial pattern (CSP) and other spatiospectral feature extraction methods have become the most effective and successful approaches to solve the problem of motor imagery electroencephalography (MI-EEG) pattern recognition from multichannel neural activity in recent years. However, these methods need a lot of preprocessing and postprocessing such as filtering, demean, and spatiospectral feature fusion, which influence the classification accuracy easily. In this paper, we utilize linear dynamical systems (LDSs) for EEG signals feature extraction and classification. LDSs model has lots of advantages such as simultaneous spatial and temporal feature matrix generation, free of preprocessing or postprocessing, and low cost. Furthermore, a low-rank matrix decomposition approach is introduced to get rid of noise and resting state component in order to improve the robustness of the system. Then, we propose a low-rank LDSs algorithm to decompose feature subspace of LDSs on finite Grassmannian and obtain a better performance. Extensive experiments are carried out on public dataset from "BCI Competition III Dataset IVa" and "BCI Competition IV Database 2a." The results show that our proposed three methods yield higher accuracies compared with prevailing approaches such as CSP and CSSP.
Optimization of a piezoelectric linear motor in terms of the contact parameters
International Nuclear Information System (INIS)
Ko, Hyun-Phill; Kim, Sangsig; Kang, Chong-Yun; Kim, Hyun-Jai; Yoon, Seok-Jin
2005-01-01
The contact kinetics of piezoelectric linear motors determines the operational characteristics like speed and torque or transmitted mechanical power and efficiency. Piezoelectric linear motors are driven by tangential stress in the interface between tip of shaking beam and slider. A good contact between the tip and slider is necessary for a reliable analysis of the motor, which is needed for the optimization of its performance. The piezoelectric linear motor was fabricated and the characteristics of the motor were investigated by external conditions such as tip shape with different curvatures and contact force between the tip and the slider. It was found in this investigation that the optimal curvature of the tip and the contact force are curvature of 1 and 10, respectively, for the high actuating speed, and curvature of 1 and 40 N, respectively, for the high actuating force. Finally, tip shape has an influence on the characteristics of linear motor
Analysis and Design of Double-sided Air core Linear Servo Motor with Trapezoidal Permanent Magnets
DEFF Research Database (Denmark)
Zhang, Yuqiu; Yang, Zilong; Yu, Minghu
2011-01-01
In order to reduce the thrust ripple of linear servo system, a double-sided air core permanent magnet linear servo motor with trapezoidal shape permanent magnets (TDAPMLSM) is proposed in this paper. An analytical model of the motor for predicting the magnetic field in the air-gap at no...
Design of linear pulse motor for control element drive mechanism of SMART
International Nuclear Information System (INIS)
Kim, J. H.; Huh, H.; Kim, J. I.; Jang, M. H.; Kang, D. H.
1999-01-01
49 Control Rod Drive Mechanisms(CEDMs) are densely installed on the reactor central head of SMART. The structural design should ensure the space for maintenance/repair, cable routing, and heat release from the motor. In this paper, an improved design is presented to enlarge the space between CEDMs by decreasing the diameter of linear pulse motor. The reduction of motor thrust force due to the decrease of the motor diameter is compensated by resizing the other structural components
Direct torque control via feedback linearization for permanent magnet synchronous motor drives
DEFF Research Database (Denmark)
Lascu, Cristian; Boldea, Ion; Blaabjerg, Frede
2012-01-01
The paper describes a direct torque controlled (DTC) permanent magnet synchronous motor (PMSM) drive that employs feedback linearization and uses sliding-mode and linear controllers. We introduce a new feedback linearization approach that yields a decoupled linear PMSM model with two state...
A Study on the Design of PM Exited Transverse Flux Linear Motor for Ropeless Elevator
Energy Technology Data Exchange (ETDEWEB)
Kang, Do Hyun; Bang, Deok Je; Kim, Jong Moo; Jeong, Yeon Ho [Korea Electrotechnology Research Institute (Korea); Kim, Moon Hwan [Silla University (Korea)
2000-03-01
The topological investigations regarding magnetic circuit geometry and winding form of the transverse flux machine have brought up a variety of constructable arrangements with different features for several types of application[1, 2]. Here with, a novel PM-exited linear motor with inner mover, based on the transverse flux configuration leads to a considerable increase in power density for moving part. In this study we designed PM-exited transverse flux linear motor for ropeless elevator, whose output power density is higher and weight is lighter than conventional linear synchronous motors, When the designed motor in this study is applied to ropeless elevator, it is possible to increase power density more than 400% comparing with PM exited linear synchronous motor. The result of this study can be utilized for ropeless elevator or gearless direct linear moving system with high output[3]. (author). 8 refs., 9 figs., 4 tabs.
A square-plate ultrasonic linear motor operating in two orthogonal first bending modes.
Chen, Zhijiang; Li, Xiaotian; Chen, Jianguo; Dong, Shuxiang
2013-01-01
A novel square-plate piezoelectric ultrasonic linear motor operated in two orthogonal first bending vibration modes (B₁) is proposed. The piezoelectric vibrator of the linear motor is simply made of a single PZT ceramic plate (sizes: 15 x 15 x 2 mm) and poled in its thickness direction. The top surface electrode of the square ceramic plate was divided into four active areas along its two diagonal lines for exciting two orthogonal B₁ modes. The achieved driving force and speed from the linear motor are 1.8 N and 230 mm/s, respectively, under one pair orthogonal voltage drive of 150 V(p-p) at the resonance frequency of 92 kHz. The proposed linear motor has advantages over conventional ultrasonic linear motors, such as relatively larger driving force, very simple working mode and structure, and low fabrication cost.
International Nuclear Information System (INIS)
Zhao, J.; Zheng, T.Q.; Zhang, W.; Fang, J.; Liu, Y.M.
2011-01-01
A new type high temperature superconductor linear induction motor is designed and analyzed as a prototype to ensure applicability aimed at industrial motors. Made of Bi-2223/Ag, primary windings are distributed with the double-layer concentrated structure. The motor is analyzed by 2D electromagnetic Finite Element Method to get magnetic field distribution, thrust force, vertical force and so on. The critical current of motor and the electromagnetic force are mostly decided by the leakage flux density of primary slot and by the main magnetic flux and eddy current respectively. The structural parameters of motor have a great influence on the distribution of magnetic field. Under constant currents, the properties of motor are analyzed with different slot widths, slot heights and winding turns. The properties of motor, such as the maximum slot leakage flux density, motor thrust and motor vertical force, are analyzed with different structural parameters.
Design and performance testing of an ultrasonic linear motor with dual piezoelectric actuators.
Smithmaitrie, Pruittikorn; Suybangdum, Panumas; Laoratanakul, Pitak; Muensit, Nantakan
2012-05-01
In this work, design and performance testing of an ultrasonic linear motor with dual piezoelectric actuator patches are studied. The motor system consists of a linear stator, a pre-load weight, and two piezoelectric actuator patches. The piezoelectric actuators are bonded with the linear elastic stator at specific locations. The stator generates propagating waves when the piezoelectric actuators are subjected to harmonic excitations. Vibration characteristics of the linear stator are analyzed and compared with finite element and experimental results. The analytical, finite element, and experimental results show agreement. In the experiments, performance of the ultrasonic linear motor is tested. Relationships between velocity and pre-load weight, velocity and applied voltage, driving force and applied voltage, and velocity and driving force are reported. The design of the dual piezoelectric actuators yields a simpler structure with a smaller number of actuators and lower stator stiffness compared with a conventional design of an ultrasonic linear motor with fully laminated piezoelectric actuators.
Traveling-wave piezoelectric linear motor part II: experiment and performance evaluation.
Ting, Yung; Li, Chun-Chung; Chen, Liang-Chiang; Yang, Chieh-Min
2007-04-01
This article continues the discussion of a traveling-wave piezoelectric linear motor. Part I of this article dealt with the design and analysis of the stator of a traveling-wave piezoelectric linear motor. In this part, the discussion focuses on the structure and modeling of the contact layer and the carriage. In addition, the performance analysis and evaluation of the linear motor also are dealt with in this study. The traveling wave is created by stator, which is constructed by a series of bimorph actuators arranged in a line and connected to form a meander-line structure. Analytical and experimental results of the performance are presented and shown to be almost in agreement. Power losses due to friction and transmission are studied and found to be significant. Compared with other types of linear motors, the motor in this study is capable of supporting heavier loads and provides a larger thrust force.
Linear summation of outputs in a balanced network model of motor cortex.
Capaday, Charles; van Vreeswijk, Carl
2015-01-01
Given the non-linearities of the neural circuitry's elements, we would expect cortical circuits to respond non-linearly when activated. Surprisingly, when two points in the motor cortex are activated simultaneously, the EMG responses are the linear sum of the responses evoked by each of the points activated separately. Additionally, the corticospinal transfer function is close to linear, implying that the synaptic interactions in motor cortex must be effectively linear. To account for this, here we develop a model of motor cortex composed of multiple interconnected points, each comprised of reciprocally connected excitatory and inhibitory neurons. We show how non-linearities in neuronal transfer functions are eschewed by strong synaptic interactions within each point. Consequently, the simultaneous activation of multiple points results in a linear summation of their respective outputs. We also consider the effects of reduction of inhibition at a cortical point when one or more surrounding points are active. The network response in this condition is linear over an approximately two- to three-fold decrease of inhibitory feedback strength. This result supports the idea that focal disinhibition allows linear coupling of motor cortical points to generate movement related muscle activation patterns; albeit with a limitation on gain control. The model also explains why neural activity does not spread as far out as the axonal connectivity allows, whilst also explaining why distant cortical points can be, nonetheless, functionally coupled by focal disinhibition. Finally, we discuss the advantages that linear interactions at the cortical level afford to motor command synthesis.
Mathematical models of flat linear induction motors used in mining drives
Energy Technology Data Exchange (ETDEWEB)
Tall, M
1984-01-01
Design parameters are calculated for electric flat linear induction motors, widely employed in the coal and ore mining industries in Poland. A mathematical model of this motor with a single-layer ferromagnetic secondary part is presented. A three-dimensional electromagnetic field analysis is carried out, taking relative magnetic permeability variation, discrete winding distribution, influence of armature grooving and pulsating field influence into account. A computer calculation algorithm is proposed for determining motor characteristics. 17 refs.
Effect of Frequency and Spatial-Harmonics on Rotary and Linear Induction Motor Characteristics
1972-03-01
A computer analysis is made of the effect of current and MMF airgap harmonics on the output characteristics of rotary and linear induction motors. The current harmonics accompanying thyristor-control operation are evaluated by Fourier analyzing the p...
A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes.
Chen, Zhijiang; Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang
2015-03-01
A novel standing wave linear ultrasonic motor operating in in-plane expanding and bending modes was proposed in this study. The stator (or actuator) of the linear motor was made of a simple single Lead Zirconate Titanate (PZT) ceramic square plate (15 × 15 × 2 mm(3)) with a circular hole (D = 6.7 mm) in the center. The geometric parameters of the stator were computed with the finite element analysis to produce in-plane bi-mode standing wave vibration. The calculated results predicted that a driving tip attached at midpoint of one edge of the stator can produce two orthogonal, approximate straight-line trajectories, which can be used to move a slider in linear motion via frictional forces in forward or reverse direction. The investigations showed that the proposed linear motor can produce a six times higher power density than that of a previously reported square plate motor.
Coreless Linear Induction Motor (LIM) for Space-borne Electro-magnetic Mass Driver Applications
National Aeronautics and Space Administration — Large scale linear induction motors use ferromagnetic cores, but at high speed these cores choke the system’s ability to transform electrical energy into mechanical...
Knosche, Thomas; Knosche, T.R.; Praamstra, Peter; Peters, M.J.; Stegeman, Dick; Stegeman, D.
1996-01-01
Spatiotemporal dipole modelling of the generators of the readiness potential (RP) prior to voluntary movements has yielded diverging results concerning the contributions of supplementary motor area (SMA) and primary motor cortex. We applied an alternative approach (i.e. linear estimation theory) to
MAGNETIC INDUCTION DISTRIBUTION IN A LINEAR SYNCHRONUS MOTOR WITH MAGNETIC SUSPENSION
Directory of Open Access Journals (Sweden)
D.I. Parkhomenko
2013-02-01
Full Text Available Results of computer simulation and experimental investigations of magnetic induction distribution in a coaxial linear synchronous motor with magnetic suspension are presented. The magnetic induction distribution has been studied both in the motor air gap and on the runner surface.
Study on a high thrust force bi-double-sided permanent magnet linear synchronous motor
Directory of Open Access Journals (Sweden)
Liang Tong
2016-03-01
Full Text Available A high thrust force bi-double-sided permanent magnet linear synchronous motor used in gantry-type five-axis machining center is designed and its performance was tested in this article. This motor is the subproject of Chinese National Science and Technology Major Project named as “development of domestic large thrust linear motor used in high-speed gantry-type five-axis machining center project” jointly participated by enterprises and universities. According to the requirement of the application environment and motor performance parameters, the linear motor’s basic dimensions, form of windings, and magnet arrangement are preliminarily specified through theoretical analysis and calculation. To verify the correctness of the result of the calculation, the finite element model of the motor is established. The static and dynamic characteristics of the motor are studied and analyzed through the finite element method, and the initial scheme is revised. The prototype of the motor is manufactured based on the final revised structure parameters, and the performance of the motor is fully tested using the evaluation platform for direct-drive motor component. Experimental test results meet the design requirements and show the effectiveness of design method and process.
Fluid powered linear piston motor with harmonic coupling
Raymond, David W.
2016-09-20
A motor is disclosed that includes a module assembly including a piston that is axially cycled. The piston axial motion is coupled to torque couplers that convert the axial motion into rotary motion. The torque couplers are coupled to a rotor to rotate the rotor.
A T-shape linear piezoelectric motor with single foot.
Liu, Yingxiang; Chen, Weishan; Yang, Xiaohui; Liu, Junkao
2015-02-01
A new T-shape piezoelectric motor using the hybrid of two orthogonal longitudinal vibrations is proposed in this work. Six pieces of PZT ceramic plates are bonded on the upside and downside surfaces of a T-shape duralumin alloy base respectively to form the proposed motor. Elliptical movement can be generated on the driving tip by applying sine and cosine voltages to the PZT elements. The horizontal displacement of the driving tip will push the runner while the vertical displacement can overcome the preload. Finite element method is used to accomplish the design and analysis process. The resonance frequencies of the two vibration modes are tuned to be close by modal analysis, while the motion trajectory of the driving tip is observed by transient analysis. After the fabrication of a prototype, the vibration characteristics and mechanical output ability are measured. The no-load speed and the maximum output thrust force of the proposed motor are tested to be 718 mm/s and 3.5 N under an exciting frequency of 53.1 kHz. The proposed T-shape piezoelectric motor exhibits merits of simple structure, easy to realize miniaturization, easy to be fabricated, and high power-to-weight ratio. Copyright © 2014 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Otsuka, J; Tanaka, T; Masuda, I
2010-01-01
A new type of linear motor described in this note has some advantages compared with conventional motors. The attractive magnetic force between the stator (permanent magnets) and mover (armature) is diminished almost to zero. The efficiency is better because the magnetic flux leakage is very small, the size of motor is smaller and detent (force ripple) is smaller than for conventional motors. Therefore, we think that this motor is greatly suitable for ultra-precision positioning as an actuator. An ultra-precision positioning device using this motor and linear motion ball guide ways is newly developed by making the device very rigid and using a suitable control method. Moreover, the positioning performance is evaluated by a positioning resolution, and deviation and dispersion errors. As a result of repeated step response tests, the positioning resolution is 0.3 nm, with the deviation error and dispersion error (3σ) being sub-nanometer. Consequently, the positioning device achieves sub-nanometer positioning. (technical design note)
Principle and analysis of a linear motor driving system for HTS levitation applications
International Nuclear Information System (INIS)
Jin, Jian X.; Guo, You G.; Zhu, Jian G.
2007-01-01
High temperature superconductor (HTS) high levitation force density with passive and self-stabilizing features allows a number of special applications to be developed. Linear motor driving systems are commonly required for those applications such as levitated transport systems. In this paper a prototype linear motor driving system with HTS is analyzed with calculation details including its magnetic fields and driving forces presented in the paper
Direct torque control with feedback linearization for induction motor drives
DEFF Research Database (Denmark)
Lascu, Cristian; Jafarzadeh, Saeed; Fadali, Sami M.
2015-01-01
This paper describes a Direct Torque Controlled (DTC) Induction Machine (IM) drive that employs feedback linearization and sliding-mode control. A feedback linearization approach is investigated, which yields a decoupled linear IM model with two state variables: torque and stator flux magnitude....... This intuitive linear model is used to implement a DTC type controller that preserves all DTC advantages and eliminates its main drawback, the flux and torque ripple. Robust, fast, and ripple-free control is achieved by using Variable Structure Control (VSC) with proportional control in the vicinity...... robust stability analysis are presented. The sliding controller is compared with a linear DTC scheme, and experimental results for a sensorless IM drive validate the proposed solution....
Ironless Inductive Position Sensor for Harsh Magnetic Environments
Danisi, Alessandro; Masi, Alessandro
Linear Variable Differential Transformers (LVDTs) are widely used for high-precision and high-accuracy linear position sensing in harsh environments, such as the LHC collimators at CERN. These sensors guarantee theoretically infinite resolution and long lifetimes thanks to contactless sensing. Furthermore, they offer very good robustness and ruggedness, as well as micrometer uncertainty over a range of centimeters when proper conditioning techniques are used (such as the three-parameter Sine-Fit algorithm). They can also be suitable for radioactive environments. Nevertheless, an external DC/slowly-varying magnetic field can seriously affect the LVDT reading, leading to position drifts of hundreds of micrometers, often unacceptable in high-accuracy applications. The effect is due to the presence of non-linear ferromagnetic materials in the sensor’s structure. A detailed Finite Element model of an LVDT is first proposed in order to study and characterize the phenomenon. The model itself becomes a powerful de...
A double B1-mode 4-layer laminated piezoelectric linear motor.
Li, Xiaotian; Chen, Zhijiang; Dong, Shuxiang
2012-12-01
We report a miniature piezoelectric ultrasonic linear motor that is made of four Pb(Zr,Ti)O(3) (PZT) piezoelectric ceramic layers for low-voltage work. The 4-layer piezoelectric laminate works in two orthogonal first-bending modes for producing elliptical oscillations, which are then used to drive a contacting slider into continuous linear motion. Experimental results show that the miniature linear motor (size: 4 × 4 × 12 mm, weight: 1.7 g) can generate a large driving force of 0.48 N and a linear motion speed of up to 160 mm/s, using a 40 V(pp)/mm voltage drive at its resonance frequency of 64.5 kHz. The maximum efficiency of the linear motor is 30%.
Evaluation of synthetic linear motor-molecule actuation energetics
Brough, Branden; Northrop, Brian H.; Schmidt, Jacob J.; Tseng, Hsian-Rong; Houk, Kendall N.; Stoddart, J. Fraser; Ho, Chih-Ming
2006-01-01
By applying atomic force microscope (AFM)-based force spectroscopy together with computational modeling in the form of molecular force-field simulations, we have determined quantitatively the actuation energetics of a synthetic motor-molecule. This multidisciplinary approach was performed on specifically designed, bistable, redox-controllable [2]rotaxanes to probe the steric and electrostatic interactions that dictate their mechanical switching at the single-molecule level. The fusion of expe...
Stepping motor adaptor actuator for a commercial uhv linear motion feedthrough
International Nuclear Information System (INIS)
Iarocci, M.; Oversluizen, T.
1989-01-01
An adaptor coupling has been developed that will allow the attachment of a standard stepping motor to a precision commercial (Varian) uhv linear motion feedthrough. The assembly, consisting of the motor, motor adaptor, limit switches, etc. is clamped to the feedthrough body which can be done under vacuum conditions if necessary. With a 500 step/rev. stepping motor the resolution is 1.27 μm per step. We presently use this assembly in a remote location for the precise positioning of a beam sensing monitor. 2 refs., 3 figs
Shuffle motor: a high force, high precision linear electrostatic stepper motor
Tas, Niels Roelof; Wissink, Jeroen; Sander, A.F.M.; Sander, Louis; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt
1997-01-01
The shuffle motor is a electrostatic stepper motor that employs a mechanical transformation to obtain high forces and small steps. A model has been made to calculate the driving voltage, step size and maximum load to pull as well as the optimal geometry. Tests results are an effective step size of
Design optimization of a linear permanent magnet synchronous motor for extra low force pulsations
International Nuclear Information System (INIS)
Isfahani, Aarsh Hassanpour; Vaez-Zadeh, Sadegh
2007-01-01
Air cored linear permanent magnet synchronous motors have essentially low force pulsations due to the lack of the primary iron core and teeth. However, a motor design with much lower force pulsations is required for many precise positioning systems, as in fabrication of microelectronic chips. This paper presents the design optimization of an air cored linear permanent magnet synchronous motor with extra low force pulsations for such applications. In order to achieve the goal, an analytical layer model of the machine is developed. A very effective objective function regarding force pulsations is then proposed; while the selected motor dimensions are regarded as the design variables. A genetic algorithm is used to find the optimal motor dimensions. This results in a substantial ninety percent reduction in the force pulsations. The design optimization is verified by a finite element method
Energy Technology Data Exchange (ETDEWEB)
Kagischke, W; Steffen, U
1977-12-08
The purpose of the invention is to avoid the disadvantages of asynchronous linear motors, for example for need for reactive current for excitation, where driving on a normal section and driving on a branch line should be possible without losing the saving in weight on the inductor. According to the invention, the common inductor on a synchronous linear motor consists of 2 parallel packets of laminations surrounded by DC excitation windings and the secondary systems consists of unwound and spaced magnetic sections covering the two packets of laminations on the normal section. In the direction of thrust, their length extends nearly over the pole pitch of the multi-phase AC winding. According to the invetnion, this drive therefore consists of a synchronous linear motor combined into a double motor, with an external, rail shaped fixed secondary system, which has a multi-phase AC winding opposite it.
Computation of magnetic field in DC brushless linear motors built with NdFeB magnets
International Nuclear Information System (INIS)
Basak, A.; Shirkoohi, G.H.
1990-01-01
A software package based on finite element technique has been used to compute three-dimensional magnetic fields and static forces developed in brushless d.c. linear motors. As the field flux-source two different types of permanent magnets, one of them being the high energy neodymium- iron-boron type, has been used in computer models. Motors with the same specifications as the computer models were built and experimental results obtained from them are compared with the computed results
Dynamic diagnostics of moving ferromagnetic material with the linear induction motor
Szewczyk Krzysztof; Walasek Tomasz
2017-01-01
The paper presents the application of a three-phase induction motor as a sensor measuring the force of the electromagnetic field connection between the engine and produced sheet steel. The force interaction between the engine and the manufactured sheet metal treated as a treadmill for a linear motor may be an indicator of damage to the material. Detection of places where the sheet does not meet the quality requirements may be very useful in the production process. FEM calculations were perfor...
Efficiency Improvement of a High Dynamic BLDC Linear Motor by Multiphase Control
Lemmens, Joris; Vanvlasselaer, Kris; Mulier, Kristof; Goossens, Stijn; Symens, Wim; Driesen, Johan
2013-01-01
This paper proposes a multiphase control strategy for a high dynamic brushless DC linear motor as an alternative for conventional three-phase field-oriented control. Analysis of the magnetic field waveforms shows that three-phase control is not optimal for the 6-slot 7-pole motor topology. Therefore, a multiphase control strategy is elaborated which injects currents proportional to the electromotive force into each of the nine stator coil groups. This results in a maximal alignment force ...
Linear switched reluctance motor control with PIC18F452 microcontroller
DURSUN, Mahir; KOÇ, Fatmagül
2014-01-01
This paper presents the simulation, control, and experimental results of the velocity of a double-sided, 6/4-poled, 3-phased, 8 A, 24 V, 250 W, and 250 N pull force linear switched reluctance motor (LSRM). In the simulation and experimental study, the reference velocity is constant depending on the position and time. The velocity versus the position of the translator was controlled with fuzzy logic control (FLC) and proportional-integral (PI) control techniques. The motor was control...
A novel tubular linear motor equipped with radially anisotropic NdFeB ring magnets
International Nuclear Information System (INIS)
Hor, P.J.
1998-01-01
The paper describes the design synthesis and optimisation of a novel tubular linear motor employing radially magnetised anisotropic ring magnets. Design issues, related to optimising the dimensions for maximum acceleration capability, minimum cogging force and low harmonic distortion in the emf waveform, are discussed. The influence of inhomogeneities in the magnets on the performance of a prototype motor is discussed, and its dynamic performance is validated experimentally against a typical target specification for automated high-speed manufacturing applications. (orig.)
The dynamic response of a linear brushless D.C. motor
Energy Technology Data Exchange (ETDEWEB)
Moghani, J.S.; Eastham, J.F. [Univ. of Bath (United Kingdom). School of Electrical and Electronic Engineering
1995-12-31
The paper describes the use of the Matlab Analogue Simulation Toolbox SIMULINK for the closed loop dynamic modeling of a linear brushless dc motor which is supplied from a delta-modulated inverter. The work is validated by experimental results taken from a large test rig. Linear version of all rotating machines are possible; a rotating machine can be notionally cut along a radial plane and unrolled to yield a linear version. The most popular form of linear machine, as judged by the quantities that have been produced is the linear induction motor. This has the advantage of first an inexpensive secondary that is often a simple iron backed conducting plate, and secondly the possibility of simple voltage control. The linear brushless synchronous motor is potentially more expensive to produce than its induction counterpart because of the permanent magnets which provide the excitation mmf and the necessity of an inverter supply. However the machine has a power factor efficiency product which can be double that of an induction motor together with about twice the tractive force per pole area.
A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet.
Liu, Yingxiang; Liu, Junkao; Chen, Weishan; Shi, Shengjun
2012-05-01
A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet was proposed in this paper. The proposed motor contains a horizontal transducer and two vertical transducers. The horizontal transducer includes two exponential shape horns located at the leading ends, and each vertical transducer contains one exponential shape horn. The horns of the horizontal transducer and the vertical transducer intersect at the tip ends where the driving feet are located. Longitudinal vibrations are superimposed in the motor and generate elliptical motions at the driving feet. The two vibration modes of the motor are discussed, and the motion trajectories of driving feet are deduced. By adjusting the structural parameters, the resonance frequencies of two vibration modes were degenerated. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 854 mm/s and maximum thrust force of 40 N at a voltage of 200 V(rms).
Directory of Open Access Journals (Sweden)
M. S. MANNA
2011-12-01
Full Text Available The development of electromagnetic devices as machines, transformers, heating devices confronts the engineers with several problems. For the design of an optimized geometry and the prediction of the operational behaviour an accurate knowledge of the dependencies of the field quantities inside the magnetic circuits is necessary. This paper provides the eddy current and core flux density distribution analysis in linear induction motor. Magnetic flux in the air gap of the Linear Induction Motor (LIM is reduced to various losses such as end effects, fringes, effect, skin effects etc. The finite element based software package COMSOL Multiphysics Inc. USA is used to get the reliable and accurate computational results for optimization the performance of Linear Induction Motor (LIM. The geometrical characteristics of LIM are varied to find the optimal point of thrust and minimum flux leakage during static and dynamic conditions.
Tang, Junjie; Li, Jing; Li, Xiang; Han, Le
2018-03-01
High temperature superconductor (HTS) bulks have significant potential use in linear motor application act as quasi-permanent magnet to replace traditional magnets. Force characteristic between HTS bulk magnet and traveling magnetic field was investigated with numerical simulation and experimental measurement in this paper. Influences of bulk height and number on the force characteristic were studied by the finite element model considering the nonlinear E-J relationship. Study was also made on addition of a back iron plate to the bulk magnet. Besides, force characteristic of bulk was compared with the permanent magnet results. The small initial decrease of the thrust could be explained by inside superconducting current redistribution. It was found that efficiency of linear motor did not increase by adding more bulk magnets. The bulk magnet will be remagnetized instead of erasing trapped field with the increase of the traveling magnetic field strength. The conclusions are helpful in prediction and design the linear motor with HTS bulk magnet.
Force Profiles of a Linear Switched Reluctance Motor Having Special Pole Face Shapes
Directory of Open Access Journals (Sweden)
CHADRESEKAR, V.
2010-11-01
Full Text Available In this paper, the results of a finite element analysis are carried out on an new stator geometry of a three phase longitudinal flux Linear Switched Reluctance Motor (LSRM. In the new geometry, pole shoes are affixed to the stator poles. Static and dynamic characteristics for the proposed structure have been highlighted. Motor performance for variable load conditions is discussed. Frequency spectrum analyses of force profile using the fast Fourier transform (FFT are described to predict the vibration frequencies. The 2-Dimensional (2-D finite element analysis (FEA and the experimental results of this paper prove that LSRMs are one of the strong candidates for linear propulsion drives.
Apparatus and method to pulverize rock using a superconducting electromagnetic linear motor
Ignatiev, Alex (Inventor)
2009-01-01
A rock pulverizer device based on a superconducting linear motor. The superconducting electromagnetic rock pulverizer accelerates a projectile via a superconducting linear motor and directs the projectile at high speed toward a rock structure that is to be pulverized by collision of the speeding projectile with the rock structure. The rock pulverizer is comprised of a trapped field superconducting secondary magnet mounted on a movable car following a track, a wire wound series of primary magnets mounted on the track, and the complete magnet/track system mounted on a vehicle used for movement of the pulverizer through a mine as well as for momentum transfer during launch of the rock breaking projectile.
Investigation and Calculation of Magnetic Field in Tubular Linear Reluctance Motor Using FEM
Directory of Open Access Journals (Sweden)
MOSALLANEJAD, A.
2010-11-01
Full Text Available In this paper the magnetic flux density of tubular linear reluctance motor (TLRM in open type magnetic circuit is studied. Also, all magnetic flux density calculation methods in winding of tubular linear reluctance motor are described. The effect of structure parameters on magnetic flux density is also discussed. Electromagnetic finite-element analysis is used for simulation of magnetic field, and simulation results of the magnetic field analysis with DC voltage excitation are compared with results obtained from calculation methods. The comparison yields a good agreement.
International program on linear electric motors. CIGGT report No. 92-1
Energy Technology Data Exchange (ETDEWEB)
Dawson, G.E.; Eastham, A.R.; Parker, J.H.
1992-12-31
The International Program for Linear Electric Motors (LEM) was begun in April 1989 to communicate and coordinate activities with centers of expertise in Germany, Canada, and Japan; to provide for the assessment and support of the planning of technological developments and for dissemination of information to researchers, service operators, and policy makers; and to ensure that full advantage can be taken if opportunities for technology transfer occur. This report documents the work done under the program, including standardizing linear induction motor (LIM) design characteristics; test procedures and measurement methods; rating; database for design data; criteria for evaluation of designs; computer programs for modelling performance; and a design study for an agreed application.
Modeling and analysis of mover gaps in tubular moving-magnet linear oscillating motors
Directory of Open Access Journals (Sweden)
Xuesong LUO
2018-05-01
Full Text Available A tubular moving-magnet linear oscillating motor (TMMLOM has merits of high efficiency and excellent dynamic capability. To enhance the thrust performance, quasi-Halbach permanent magnet (PM arrays are arranged on its mover in the application of a linear electro-hydrostatic actuator in more electric aircraft. The arrays are assembled by several individual segments, which lead to gaps between them inevitably. To investigate the effects of the gaps on the radial magnetic flux density and the machine thrust in this paper, an analytical model is built considering both axial and radial gaps. The model is validated by finite element simulations and experimental results. Distributions of the magnetic flux are described in condition of different sizes of radial and axial gaps. Besides, the output force is also discussed in normal and end windings. Finally, the model has demonstrated that both kinds of gaps have a negative effect on the thrust, and the linear motor is more sensitive to radial ones. Keywords: Air-gap flux density, Linear motor, Mover gaps, Quasi-Halbach array, Thrust output, Tubular moving-magnet linear oscillating motor (TMMLOM
Force prediction in permanent magnet flat linear motors (abstract)
International Nuclear Information System (INIS)
Eastham, J.F.; Akmese, R.
1991-01-01
The advent of neodymium iron boron rare-earth permanent magnet material has afforded the opportunity to construct linear machines of high force to weight ratio. The paper describes the design and construction of an axial flux machine and rotating drum test rig. The machine occupies an arc of 45 degree on a drum 1.22 m in diameter. The excitation is provided by blocks of NdFeB material which are skewed in order to minimize the force variations due to slotting. The stator carries a three-phase short-chorded double-layer winding of four poles. The machine is supplied by a PWM inverter the fundamental component of which is phase locked to the rotor position so that a ''dc brushless'' drive system is produced. Electromagnetic forces including ripple forces are measured at supply frequencies up to 100 Hz. They are compared with finite-element analysis which calculates the force variation over the time period. The paper then considers some of the causes of ripple torque. In particular, the force production due solely to the permanent magnet excitation is considered. This has two important components each acting along the line of motion of the machine, one is due to slotting and the other is due to the finite length of the primary. In the practical machine the excitation poles are skewed to minimize the slotting force and the effectiveness of this is confirmed by both results from the experiments and the finite-element analysis. The end effect force is shown to have a space period of twice that of the excitation. The amplitude of this force and its period are again confirmed by practical results
Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki
2017-05-01
The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Linear Motor Motion Control Experiment System Design Based on LabVIEW
Directory of Open Access Journals (Sweden)
Cuixian He
2018-01-01
Full Text Available In order to meet the needs of experimental training of electrical information industry, a linear motor motion experiment system based on LabVIEW was developed. This system is based on the STM32F103ZET6 system processor controller, a state signal when the motor moves through the grating encoder feedback controller to form a closed loop, through the RS232 serial port communication with the host computer, the host computer is designed in the LabVIEW interactive environment monitoring software. Combined with the modular design concept proposed overall program, given the detailed hardware circuit, targeted for the software function design, to achieve man-machine interface. The system control of high accuracy, good stability, meet the training requirements for laboratory equipment, but also as a reference embodiment of the linear motor monitoring system.
A speed estimation unit for induction motors based on adaptive linear combiner
International Nuclear Information System (INIS)
Marei, Mostafa I.; Shaaban, Mostafa F.; El-Sattar, Ahmed A.
2009-01-01
This paper presents a new induction motor speed estimation technique, which can estimate the rotor resistance as well, from the measured voltage and current signals. Moreover, the paper utilizes a novel adaptive linear combiner (ADALINE) structure for speed and rotor resistance estimations. This structure can deal with the multi-output systems and it is called MO-ADALINE. The model of the induction motor is arranged in a linear form, in the stationary reference frame, to cope with the proposed speed estimator. There are many advantages of the proposed unit such as wide speed range capability, immunity against harmonics of measured waveforms, and precise estimation of the speed and the rotor resistance at different dynamic changes. Different types of induction motor drive systems are used to evaluate the dynamic performance and to examine the accuracy of the proposed unit for speed and rotor resistance estimation.
Thrust Reduction of Magnetic Levitation Vehicle Driven by Long Stator Linear Synchronous Motor
Directory of Open Access Journals (Sweden)
Wan-Tsun Tseng
2013-01-01
Full Text Available The propulsion technology of long stator linear synchronous motors is used to drive high-speed maglev trains. The linear synchronous motor stator is divided into sections placed on guideway. The electric power supplies to stator sections in which the train just passes in change-step mode for long-distance operation. However, a thrust drop will be caused by change-step machinery for driving magnetic vehicle. According to the train speed and vehicle data, the change-step mode has three types of operation, namely premature commutation, simultaneous commutation, and late commutation. Each type of operation has a different thrust drop which can be affected by several parameters such as jerk, running speed, motor section length, and vehicle data. This paper focuses on determining the thrust drop of the change-step mode. The study results of this paper can be used to improve the operation system of high-speed maglev trains.
International Nuclear Information System (INIS)
Soltani, J.; Fath Abadi, A.M.
2003-01-01
This paper describes the application of static var compensators, on an electrical distribution network containing two large synchronous motors, one of which is excited via a three-phase thyristor bridge rectifier. The second machine is excited via a diode bridge rectifier. Based on linear optimization control, the measurable feedback signals are applied to the control system loops of static var compensators and the excitation control loop of the first synchronous motor. The phase equations method was used to develop a computer program to model the distribution network. Computer results were obtained to demonstrate the system performance for some abnormal modes of operation. These results show that employing static var compensators based on the linear optimization control design for electrical distribution networks containing large synchronous motors is beneficial and may be considered a first stage of the system design
Thermal analysis of linear pulse motor for SMART control element drive mechanism
International Nuclear Information System (INIS)
Hur, H.; Kim, J. H.; Kim, J. I.; Jang, K. C.; Kang, D. H.
1999-01-01
It is important that the temperature of the motor windings be maintained within the allowable limit of the insulation, since the linear pulse motor of CEDM is always supplied with current during the reactor operation. In this study three motor windings were fabricated with three different diameters of coil wires, and the temperatures inside the windings were measured with different current values. As the insulation of the windings is composed of teflon, glass fiber, and air, it is not an easy task to determine experimentally the thermal properties of the complex insulation. In this study, the thermal properties of the insulation were obtained by comparing the results of finite element thermal analyses and those of experiment. The thermal properties obtained here will be used as input for the optimization analysis of the motor
Speed Sensorless mixed sensitivity linear parameter variant H_inf control of the induction motor
Toth, R.; Fodor, D.
2004-01-01
The paper shows the design of a robust control structure for the speed sensorless vector control of the IM, based on the mixed sensitivity (MS) linear parameter variant (LPV) H8 control theory. The controller makes possible the direct control of the flux and speed of the motor with torque adaptation
Spectral element model for 2-D electrostatic fields in a linear synchronous motor
van Beek, T.A.; Curti, M.; Jansen, J.W.; Gysen, B.L.J.; Paulides, J.J.H.; Lomonova, E.A.
2017-01-01
This paper presents a fast and accurate 2-D spectral element model for analyzing electric field distributions in linear synchronous motors. The electric field distribution is derived using the electric scalar potential for static cases. The spatial potential and electric field distributions obtained
Torque decomposition and control in an iron core linear permanent magnet motor.
Overboom, T.T.; Smeets, J.P.C.; Stassen, J.M.; Jansen, J.W.; Lomonova, E.
2012-01-01
Abstract—This paper concerns the decomposition and control of the torque produced by an iron core linear permanent magnet motor. The proposed method is based on the dq0-decomposition of the three-phase currents using Park’s transformation. The torque is decomposed into a reluctance component and two
Power-optimal force decoupling in a hybrid linear reluctance motor
Overboom, T.T.; Smeets, J.P.C.; Jansen, J.W.; Lomonova, E.A.; Mavrudieva, D.
2015-01-01
This paper concerns the power-optimal decoupling of the propulsion and normal force created by a hybrid linear reluctance motor. The intrinsic limitations to the decoupling is addressed by the visualizing each force component with a quadric surface in the Euclidean space which is spanned by the
Nakaiwa, K; Yamada, A; Tashiro, K; Wakiwaka, H
2009-01-01
From a strong demand on the miniaturization of a chip mounter or a semiconductor device, the thrust improvement considering the magnets arrangement is studied. We accept a core stator with a Halbach type magnet array for a current linear motor. The thrust characteristics are compared with two kinds of mover, a NS magnet array and a Halbach magnet array.
Overview of analytical models for the design of linear and planar motors
Jansen, J.W.; Smeets, J.P.C.; Overboom, T.T.; Rovers, J.M.M.; Lomonova, E.A.
2014-01-01
In this paper, an overview of analytical techniques for the modeling of linear and planar permanent-magnet motors is given. These models can be used complementary to finite element analyses for fast evaluations of topologies, but they are indispensable for the design of magnetically levitated planar
Motor properties from persistence: a linear molecular walker lacking spatial and temporal asymmetry
International Nuclear Information System (INIS)
Zuckermann, Martin J; Forde, Nancy R; Angstmann, Christopher N; Schmitt, Regina; Linke, Heiner; Blab, Gerhard A; Bromley, Elizabeth HC; Curmi, Paul MG
2015-01-01
The stepping direction of linear molecular motors is usually defined by a spatial asymmetry of the motor, its track, or both. Here we present a model for a molecular walker that undergoes biased directional motion along a symmetric track in the presence of a temporally symmetric chemical cycle. Instead of using asymmetry, directionality is achieved by persistence. At small load force the walker can take on average thousands of steps in a given direction until it stochastically reverses direction. We discuss a specific experimental implementation of a synthetic motor based on this design and find, using Langevin and Monte Carlo simulations, that a realistic walker can work against load forces on the order of picoNewtons with an efficiency of ∼18%, comparable to that of kinesin. In principle, the walker can be turned into a permanent motor by externally monitoring the walker’s momentary direction of motion, and using feedback to adjust the direction of a load force. We calculate the thermodynamic cost of using feedback to enhance motor performance in terms of the Shannon entropy, and find that it reduces the efficiency of a realistic motor only marginally. We discuss the implications for natural protein motor performance in the context of the strong performance of this design based only on a thermal ratchet. (paper)
Dynamic modeling and characteristics analysis of a modal-independent linear ultrasonic motor.
Li, Xiang; Yao, Zhiyuan; Zhou, Shengli; Lv, Qibao; Liu, Zhen
2016-12-01
In this paper, an integrated model is developed to analyze the fundamental characteristics of a modal-independent linear ultrasonic motor with double piezoelectric vibrators. The energy method is used to model the dynamics of the two piezoelectric vibrators. The interface forces are coupled into the dynamic equations of the two vibrators and the moving platform, forming a whole machine model of the motor. The behavior of the force transmission of the motor is analyzed via the resulting model to understand the drive mechanism. In particular, the relative contact length is proposed to describe the intermittent contact characteristic between the stator and the mover, and its role in evaluating motor performance is discussed. The relations between the output speed and various inputs to the motor and the start-stop transients of the motor are analyzed by numerical simulations, which are validated by experiments. Furthermore, the dead-zone behavior is predicted and clarified analytically using the proposed model, which is also observed in experiments. These results are useful for designing servo control scheme for the motor. Copyright © 2016 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Hong Junjie, E-mail: hongjjie@mail.sysu.edu.cn [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China); Li Liyi, E-mail: liliyi@hit.edu.cn [Dept. Electrical Engineering, Harbin Institute of Technology, Harbin 150000 (China); Zong Zhijian; Liu Zhongtu [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China)
2011-10-15
Highlights: {yields} The structure of the permanent magnet linear synchronous motor (SW-PMLSM) is new. {yields} A new current control method CEVPC is employed in this motor. {yields} The sectional power supply method is different to the others and effective. {yields} The performance gets worse with voltage and current limitations. - Abstract: To include features such as greater thrust density, higher efficiency without reducing the thrust stability, this paper proposes a section winding permanent magnet linear synchronous motor (SW-PMLSM), whose iron core is continuous, whereas winding is divided. The discrete system model of the motor is derived. With the definition of the current error vector and selection of the value function, the theory of the current error vector based prediction control (CEVPC) for the motor currents is explained clearly. According to the winding section feature, the motion region of the mover is divided into five zones, in which the implementation of the current predictive control method is proposed. Finally, the experimental platform is constructed and experiments are carried out. The results show: the current control effect has good dynamic response, and the thrust on the mover remains constant basically.
Unmasking the linear behaviour of slow motor adaptation to prolonged convergence.
Erkelens, Ian M; Thompson, Benjamin; Bobier, William R
2016-06-01
Adaptation to changing environmental demands is central to maintaining optimal motor system function. Current theories suggest that adaptation in both the skeletal-motor and oculomotor systems involves a combination of fast (reflexive) and slow (recalibration) mechanisms. Here we used the oculomotor vergence system as a model to investigate the mechanisms underlying slow motor adaptation. Unlike reaching with the upper limbs, vergence is less susceptible to changes in cognitive strategy that can affect the behaviour of motor adaptation. We tested the hypothesis that mechanisms of slow motor adaptation reflect early neural processing by assessing the linearity of adaptive responses over a large range of stimuli. Using varied disparity stimuli in conflict with accommodation, the slow adaptation of tonic vergence was found to exhibit a linear response whereby the rate (R(2) = 0.85, P < 0.0001) and amplitude (R(2) = 0.65, P < 0.0001) of the adaptive effects increased proportionally with stimulus amplitude. These results suggest that this slow adaptive mechanism is an early neural process, implying a fundamental physiological nature that is potentially dominated by subcortical and cerebellar substrates. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Patt, P. J.
1985-01-01
The design of a coaxial linear magnetic spring which incorporates a linear motor to control axial motion and overcome system damping is presented, and the results of static and dynamic tests are reported. The system has nominal stiffness 25,000 N/m and is designed to oscillate a 900-g component over a 4.6-mm stroke in a Stirling-cycle cryogenic refrigerator being developed for long-service (5-10-yr) space applications (Stolfi et al., 1983). Mosaics of 10 radially magnetized high-coercivity SmCO5 segments enclosed in Ti cans are employed, and the device is found to have quality factor 70-100, corresponding to energy-storage efficiency 91-94 percent. Drawings, diagrams, and graphs are provided.
International Nuclear Information System (INIS)
Green, M.A.
1994-10-01
Forced two-phase cooling of indirectly cooled magnets requires circulation of liquid helium through the magnet cooling channel. A bellows helium pump is one possible way of providing helium flow to a magnet cooling system. Since the bellows type of helium pump is immersed in liquid helium, a superconducting linear motor drive appears to be an attractive option. This report describes a linear motor drive that employs oriented permanent magnet materials such as samarium-cobalt as the stator magnet system and a superconducting loud speaker voice coil type of drive as the armature of the linear motor. This report examines drive motor requirements for a helium pump
Universal Linear Motor Driven Leg Press Dynamometer and Concept of Serial Stretch Loading.
Hamar, Dušan
2015-08-24
Paper deals with backgrounds and principles of universal linear motor driven leg press dynamometer and concept of serial stretch loading. The device is based on two computer controlled linear motors mounted to the horizontal rails. As the motors can keep either constant resistance force in selected position or velocity in both directions, the system allows simulation of any mode of muscle contraction. In addition, it also can generate defined serial stretch stimuli in a form of repeated force peaks. This is achieved by short segments of reversed velocity (in concentric phase) or acceleration (in eccentric phase). Such stimuli, generated at the rate of 10 Hz, have proven to be a more efficient means for the improvement of rate of the force development. This capability not only affects performance in many sports, but also plays a substantial role in prevention of falls and their consequences. Universal linear motor driven and computer controlled dynamometer with its unique feature to generate serial stretch stimuli seems to be an efficient and useful tool for enhancing strength training effects on neuromuscular function not only in athletes, but as well as in senior population and rehabilitation patients.
Krop, D.C.J.; Lomonova, E.A.; Jansen, J.W.; Paulides, J.J.H.
2009-01-01
Linear motors find their utilization in an increasing number of industrial applications. Permanent magnet linear synchronous motors (PMLSMs) are favorable in many applications due to their servo characteristics, robustness, and high force density. The major disadvantage of moving coil type PMLSMs is
Application of an imperialist competitive algorithm to the design of a linear induction motor
International Nuclear Information System (INIS)
Lucas, Caro; Nasiri-Gheidari, Zahra; Tootoonchian, Farid
2010-01-01
In this paper a novel optimization algorithm based on imperialist competitive algorithm (ICA) is used for the design of a low speed single sided linear induction motor (LIM). This type of motors is used increasingly in industrial process specially in transportation systems. In these applications having high efficiency with high power factor is very important. So in this paper the objective function of design is presented considering both efficiency and power factor. Finally the results of ICA are compared with the ones of genetic algorithm and conventional design. Comparison shows the success of ICA for design of LIMs.
Energy Technology Data Exchange (ETDEWEB)
Kono, K; Yoshimura, H; Yufu, H [Yuasa Corp., Osaka (Japan)
1993-10-29
Development was made of a linear motor car use battery which is strong in repetition of quick charging/discharging and characterized as follows: Its volumetric energy density is 42Wh/kg which is 1.3 times as high as the conventional one. It excels in high efficiency charging/discharging characteristics. High tension steel sheet is used for it, which is incombustible. To lighten the weight, paste type electrodes and high yield point materials were used for the positive and negative electrodes, and jar materials, respectively. To heighten the charging/discharging characteristics, used were electrodes heightened in current collecting effect. To lengthening the life, unwoven nylon cloth was used as a separator. Also to heighten the thermal discharge characteristics, the electrodes were made metallic with a fitting of cooling fins. The battery characteristics as tested gave the following result: At a capacity ratio of 100%, the discharging factor cleared its target value of development also with a high discharging voltage. The charging/discharging characteristics hardly fall in the high temperature region. The charging characteristics include quick charging made possible. As a result of cyclic simulation presuming the linear motor car, the fall in capacity per cycle was as good as 1.5%. 11 figs., 2 tabs.
He, Liangguo; Chu, Yuheng; Hao, Sai; Zhao, Xiaoyong; Dong, Yuge; Wang, Yong
2018-05-01
A novel, single-phase, harmonic-driven, inertial piezoelectric linear motor using an automatic clamping mechanism was designed, fabricated, and tested to reduce the sliding friction and simplify the drive mechanism and power supply control of the inertial motor. A piezoelectric bimorph and a flexible hinge were connected in series to form the automatic clamping mechanism. The automatic clamping mechanism was used as the driving and clamping elements. A dynamic simulation by Simulink was performed to prove the feasibility of the motor. The finite element method software COMSOL was used to design the structure of the motor. An experimental setup was built to validate the working principle and evaluate the performance of the motor. The prototype motor outputted a no-load velocity of 3.178 mm/s at a voltage of 220 Vp-p and a maximum traction force of 4.25 N under a preload force of 8 N. The minimum resolution of 1.14 μm was achieved at a driving frequency of 74 Hz, a driving voltage of 50 Vp-p, and a preload force of 0 N.
Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun
2013-04-01
To make full use of the vibrational energy of a longitudinal transducer, a rectangle-type linear ultrasonic motor with four driving feet is proposed in this paper. This new motor consists of four longitudinal vibration transducers which are arranged in a rectangle and form an enclosed construction. Lead zirconate titanate ceramics are embedded into the middle of the transducer and fastened by a wedge-caulking mechanism. Each transducer includes an exponentially shaped horn located on each end. The horns of the vertical transducers intersect at the base of the horizontal transducers' horns; the tip ends of the horizontal transducers' horns are used as the driving feet. Longitudinal vibrations are superimposed in the motor and generate elliptical movements at the tip ends of the horns. The working principle of the proposed motor is analyzed. The resonance frequencies of two working modes are tuned to be close to each other by adjusting the structural parameters. Transient analysis is developed to gain the vibration characteristics of the motor. A prototype motor is fabricated and measured. The vibration test results verify the feasibility of the proposed design. Typical output of the prototype is a no-load speed of 928 mm/s and maximum thrust force of 60 N at a voltage of 200 Vrms.
Development of an ultrasonic linear motor with ultra-positioning capability and four driving feet.
Zhu, Cong; Chu, Xiangcheng; Yuan, Songmei; Zhong, Zuojin; Zhao, Yanqiang; Gao, Shuning
2016-12-01
This paper presents a novel linear piezoelectric motor which is suitable for rapid ultra-precision positioning. The finite element analysis (FEA) was applied for optimal design and further analysis, then experiments were conducted to investigate its performance. By changing the input signal, the proposed motor was found capable of working in the fast driving mode as well as in the precision positioning mode. When working in the fast driving mode, the motor acts as an ultrasonic motor with maximum no-load speed up to 181.2mm/s and maximum thrust of 1.7N at 200Vp-p. Also, when working in precision positioning mode, the motor can be regarded as a flexible hinge piezoelectric actuator with arbitrary motion in the range of 8μm. The measurable minimum output displacement was found to be 0.08μm, but theoretically, can be even smaller. More importantly, the motor can be quickly and accurately positioned in a large stroke. Copyright © 2016 Elsevier B.V. All rights reserved.
Driving performance of a two-dimensional homopolar linear DC motor
Energy Technology Data Exchange (ETDEWEB)
Wang, Y.; Yamaguchi, M.; Kano, Y. [Tokyo University of Agriculture and Technology, Tokyo (Japan)
1998-05-01
This paper presents a novel two-dimensional homopolar linear de motor (LDM) which can realize two-dimensional (2-D) motion. For position control purposes, two kinds of position detecting methods are proposed. The position in one position is detected by means of a capacitive sensor which makes the output of the sensor partially immune to the variation of the gap between electrodes. The position in the other direction is achieved by exploiting the position dependent property of the driving coil inductance, instead of using an independent sensor. The position control is implemented on the motor and 2-D tracking performance is analyzed. Experiments show that the motor demonstrates satisfactory driving performance, 2-D tracking error being within 5.5% when the angular frequency of reference signal is 3.14 rad./s. 7 refs., 17 figs., 2 tabs.
Innervation zones of fasciculating motor units: observations by a linear electrode array.
Jahanmiri-Nezhad, Faezeh; Barkhaus, Paul E; Rymer, William Z; Zhou, Ping
2015-01-01
This study examines the innervation zone (IZ) in the biceps brachii muscle in healthy subjects and those with amyotrophic lateral sclerosis (ALS) using a 20-channel linear electromyogram (EMG) electrode array. Raster plots of individual waveform potentials were studied to estimate the motor unit IZ. While this work mainly focused on fasciculation potentials (FPs), a limited number of motor unit potentials (MUPs) from voluntary activity of 12 healthy and seven ALS subjects were also examined. Abnormal propagation of MUPs and scattered IZs were observed in fasciculating units, compared with voluntarily activated MUPs in healthy and ALS subjects. These findings can be related to muscle fiber reinnervation following motor neuron degeneration in ALS and the different origin sites of FPs compared with voluntary MUPs.
Torque ripple reduction of brushless DC motor based on adaptive input-output feedback linearization.
Shirvani Boroujeni, M; Markadeh, G R Arab; Soltani, J
2017-09-01
Torque ripple reduction of Brushless DC Motors (BLDCs) is an interesting subject in variable speed AC drives. In this paper at first, a mathematical expression for torque ripple harmonics is obtained. Then for a non-ideal BLDC motor with known harmonic contents of back-EMF, calculation of desired reference current amplitudes, which are required to eliminate some selected harmonics of torque ripple, are reviewed. In order to inject the reference harmonic currents to the motor windings, an Adaptive Input-Output Feedback Linearization (AIOFBL) control is proposed, which generates the reference voltages for three phases voltage source inverter in stationary reference frame. Experimental results are presented to show the capability and validity of the proposed control method and are compared with the vector control in Multi-Reference Frame (MRF) and Pseudo-Vector Control (P-VC) method results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum
Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.
1995-01-01
The Jet Propulsion Laboratory evaluated the use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto-Fast-Flyby (PFF) mission. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers. Using a control package, the mirror system provides image motion compensation and mosaicking capabilities. While this device offers unique advantages, there were concerns pertaining to its operational capabilities for the PFF mission. The issues include irradiation effects and thermal concerns. A literature study indicated that irradiation effects will not significantly impact the linear motor's operational characteristics. On the other hand, thermal concerns necessitated an in depth study.
Studer, P. A. (Inventor)
1982-01-01
A linear magnetic motor/generator is disclosed which uses magnetic flux to provide mechanical motion or electrical energy. The linear magnetic motor/generator includes an axially movable actuator mechanism. A permament magnet mechanism defines a first magnetic flux path which passes through a first end portion of the actuator mechanism. Another permament magnet mechanism defines a second magnetic flux path which passes through a second end portion of the actuator mechanism. A drive coil defines a third magnetic flux path passing through a third central portion of the actuator mechanism. A drive coil selectively adds magnetic flux to and subtracts magnetic flux from magnetic flux flowing in the first and second magnetic flux path.
Design and experiments of a linear piezoelectric motor driven by a single mode.
Liu, Zhen; Yao, Zhiyuan; Li, Xiang; Fu, Qianwei
2016-11-01
In this contribution, we propose a novel linear piezoelectric motor with a compact stator that is driven by a single mode. The linear piezoelectric motor can realize bidirectional motion by changing the vibration modes of the stator. Finite element analysis is performed to determine the required vibration mode of the stator and obtain the optimal stator structure and dimensions. Furthermore, the trajectories of the driving foot are analyzed with and without consideration of the mechanical contact with the slider. It is shown that the trajectory of the driving foot is an oblique line when disregarding the contact, and the trajectory becomes an oblique ellipse while taking into account the contact. Finally, a prototype of the motor is fabricated based on the results of finite element analysis. The optimization results show that the motor reaches its maximum thrust force of 4.0 kg, maximum thrust-weight ratio of 33.3, maximum unloaded velocity of 385 mm/s under the excitation of Mode-B, and maximum unloaded velocity of 315 mm/s under the excitation of Mode-L.
Evaluation of linear DC motor actuators for control of large space structures
Ide, Eric Nelson
1988-01-01
This thesis examines the use of a linear DC motor as a proof mass actuator for the control of large space structures. A model for the actuator, including the current and force compensation used, is derived. Because of the force compensation, the actuator is unstable when placed on a structure. Relative position feedback is used for actuator stabilization. This method of compensation couples the actuator to the mast in a feedback configuration. Three compensator designs are prop...
Computer-aided design studies of the homopolar linear synchronous motor
Dawson, G. E.; Eastham, A. R.; Ong, R.
1984-09-01
The linear induction motor (LIM), as an urban transit drive, can provide good grade-climbing capabilities and propulsion/braking performance that is independent of steel wheel-rail adhesion. In view of its 10-12 mm airgap, the LIM is characterized by a low power factor-efficiency product of order 0.4. A synchronous machine offers high efficiency and controllable power factor. An assessment of the linear homopolar configuration of this machine is presented as an alternative to the LIM. Computer-aided design studies using the finite element technique have been conducted to identify a suitable machine design for urban transit propulsion.
Directory of Open Access Journals (Sweden)
Jan Vittek
2004-01-01
Full Text Available Closed-loop position control of mechanisms directly driven by linear synchronous motors with permanent magnets is presented. The control strategy is based on forced dynamic control, which is a form of feedback linearisation, yielding a non-liner multivariable control law to obtain a prescribed linear speed dynamics together with the vector control condition of mutal orthogonality between the stator current and magnetic flux vectors (assuming perfect estimates of the plant parameters. Outer position control loop is closed via simple feedback with proportional gain. Simulations of the design control sysstem, including the drive with power electronic switching, predict the intended drive performance.
Electrohydraulic linear actuator with two stepping motors controlled by overshoot-free algorithm
Milecki, Andrzej; Ortmann, Jarosław
2017-11-01
The paper describes electrohydraulic spool valves with stepping motors used as electromechanical transducers. A new concept of a proportional valve in which two stepping motors are working differentially is introduced. Such valve changes the fluid flow proportionally to the sum or difference of the motors' steps numbers. The valve design and principle of its operation is described. Theoretical equations and simulation models are proposed for all elements of the drive, i.e., the stepping motor units, hydraulic valve and cylinder. The main features of the valve and drive operation are described; some specific problem areas covering the nature of stepping motors and their differential work in the valve are also considered. The whole servo drive non-linear model is proposed and used further for simulation investigations. The initial simulation investigations of the drive with a new valve have shown that there is a significant overshoot in the drive step response, which is not allowed in positioning process. Therefore additional effort is spent to reduce the overshoot and in consequence reduce the settling time. A special predictive algorithm is proposed to this end. Then the proposed control method is tested and further improved in simulations. Further on, the model is implemented in reality and the whole servo drive system is tested. The investigation results presented in this paper, are showing an overshoot-free positioning process which enables high positioning accuracy.
Driver electronics design and control for a total artificial heart linear motor.
Unthan, Kristin; Cuenca-Navalon, Elena; Pelletier, Benedikt; Finocchiaro, Thomas; Steinseifer, Ulrich
2018-01-27
For any implantable device size and efficiency are critical properties. Thus, a linear motor for a Total Artificial Heart was optimized with focus on driver electronics and control strategies. Hardware requirements were defined from power supply and motor setup. Four full bridges were chosen for the power electronics. Shunt resistors were set up for current measurement. Unipolar and bipolar switching for power electronics control were compared regarding current ripple and power losses. Here, unipolar switching showed smaller current ripple and required less power to create the necessary motor forces. Based on calculations for minimal power losses Lorentz force was distributed to the actor's four coils. The distribution was determined as ratio of effective magnetic flux through each coil, which was captured by a force test rig. Static and dynamic measurements under physiological conditions analyzed interaction of control and hardware and all efficiencies were over 89%. In conclusion, the designed electronics, optimized control strategy and applied current distribution create the required motor force and perform optimal under physiological conditions. The developed driver electronics and control offer optimized size and efficiency for any implantable or portable device with multiple independent motor coils. Graphical Abstract ᅟ.
Influence of a high vacuum on the precise positioning using an ultrasonic linear motor.
Kim, Wan-Soo; Lee, Dong-Jin; Lee, Sun-Kyu
2011-01-01
This paper presents an investigation of the ultrasonic linear motor stage for use in a high vacuum environment. The slider table is driven by the hybrid bolt-clamped Langevin-type ultrasonic linear motor, which is excited with its different modes of natural frequencies in both lateral and longitudinal directions. In general, the friction behavior in a vacuum environment becomes different from that in an environment of atmospheric pressure and this difference significantly affects the performance of the ultrasonic linear motor. In this paper, to consistently provide stable and high power of output in a high vacuum, frequency matching was conducted. Moreover, to achieve the fine control performance in the vacuum environment, a modified nominal characteristic trajectory following control method was adopted. Finally, the stage was operated under high vacuum condition, and the operating performances were investigated compared with that of a conventional PI compensator. As a result, robustness of positioning was accomplished in a high vacuum condition with nanometer-level accuracy.
Influence of a high vacuum on the precise positioning using an ultrasonic linear motor
International Nuclear Information System (INIS)
Kim, Wan-Soo; Lee, Dong-Jin; Lee, Sun-Kyu
2011-01-01
This paper presents an investigation of the ultrasonic linear motor stage for use in a high vacuum environment. The slider table is driven by the hybrid bolt-clamped Langevin-type ultrasonic linear motor, which is excited with its different modes of natural frequencies in both lateral and longitudinal directions. In general, the friction behavior in a vacuum environment becomes different from that in an environment of atmospheric pressure and this difference significantly affects the performance of the ultrasonic linear motor. In this paper, to consistently provide stable and high power of output in a high vacuum, frequency matching was conducted. Moreover, to achieve the fine control performance in the vacuum environment, a modified nominal characteristic trajectory following control method was adopted. Finally, the stage was operated under high vacuum condition, and the operating performances were investigated compared with that of a conventional PI compensator. As a result, robustness of positioning was accomplished in a high vacuum condition with nanometer-level accuracy.
CONFIRMATION OF THE MATHEMATICAL MODEL ADEQUACY OF A LINEAR SYNCHRONOUS MOTOR
Directory of Open Access Journals (Sweden)
V. F. Novikov
2015-06-01
Full Text Available Purpose.To reduce labor costs and the amount of computer time in the design of linear synchronous motors with excitation from a source of a constant magnetic field of high-speed ground transportation it is necessary to use engineering methods. The purpose of this study is to confirm the adequacy of the previously proposed mathematical model of this engine and assumptions. It is also intended to confirm the possibility of applying the method of calculation of traction that occurs in the engine in the interaction of the permanent magnetic field of the excitation system of a vehicle with a coil track structure.Methodology. As for empirical theories the positive result of the experiment is not absolute proof of the truth, for an unambiguous conclusion about the adequacy of the developed model and the effectiveness of the developed methods need to be tested for falsification. In accordance with this criterion, it is necessary to conduct an experiment, the results of which will coincide with the calculation but you also need to avoid errors caused by random coincidences. For this purpose the experiments with varying parameters are conducted. Findings. In a critical experiment configuration changes of the excitation system were held so that the shape dependence of traction from displacement is differed significantly. The comparison of the results of the calculated and experimental values of traction for different configurations showed that the differences are minor and easily explained by measurement error and uneven gaps between the poles and excitation coils of the track structure. Originality. The adequacy of the mathematical model of a linear synchronous motor without a ferromagnetic magnetic circuit and the assumptions and applicability of the calculation method of traction forces involved in it, at the interaction of a permanent magnetic field of the excitation system of a vehicle with a coil track structure were proved. This proof is built on
Magnetically Suspended Linear Pulse Motor for Semiconductor Wafer Transfer in Vacuum Chamber
Moriyama, Shin-Ichi; Hiraki, Naoji; Watanabe, Katsuhide; Kanemitsu, Yoichi
1996-01-01
This paper describes a magnetically suspended linear pulse motor for a semiconductor wafer transfer robot in a vacuum chamber. The motor can drive a wafer transfer arm horizontally without mechanical contact. In the construction of the magnetic suspension system, four pairs of linear magnetic bearings for the lift control are used for the guidance control as well. This approach allows us to make the whole motor compact in size and light in weight. The tested motor consists of a double-sided stator and a transfer arm with a width of 50 mm and a total length of 700 mm. The arm, like a ladder in shape, is designed as the floating element with a tooth width of 4 mm (a tooth pitch of 8 mm). The mover mass is limited to about 1.6 kg by adopting such an arm structure, and the ratio of thrust to mover mass reaches to 3.2 N/kg under a broad air gap (1 mm) between the stator teeth and the mover teeth. The performance testing was carried out with a transfer distance less than 450 mm and a transfer speed less than 560 mm/s. The attitude of the arm was well controlled by the linear magnetic bearings with a combined use, and consequently the repeatability on the positioning of the arm reached to about 2 micron. In addition, the positioning accuracy was improved up to about 30 micron through a compensation of the 128-step wave current which was used for the micro-step drive with a step increment of 62.5 micron.
Yan, Liang; Peng, Juanjuan; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming
2014-10-01
This paper proposes a novel permanent magnet linear motor possessing two movers and one stator. The two movers are isolated and can interact with the stator poles to generate independent forces and motions. Compared with conventional multiple motor driving system, it helps to increase the system compactness, and thus improve the power density and working efficiency. The magnetic field distribution is obtained by using equivalent magnetic circuit method. Following that, the formulation of force output considering armature reaction is carried out. Then inductances are analyzed with finite element method to investigate the relationships of the two movers. It is found that the mutual-inductances are nearly equal to zero, and thus the interaction between the two movers is negligible. A research prototype of the linear motor and a measurement apparatus on thrust force have been developed. Both numerical computation and experiment measurement are conducted to validate the analytical model of thrust force. Comparison shows that the analytical model matches the numerical and experimental results well.
Bond Graph Modelling for Fault Detection and Isolation of an Ultrasonic Linear Motor
Directory of Open Access Journals (Sweden)
Mabrouk KHEMLICHE
2010-12-01
Full Text Available In this paper Bond Graph modeling, simulation and monitoring of ultrasonic linear motors are presented. Only the vibration of piezoelectric ceramics and stator will be taken into account. Contact problems between stator and rotor are not treated here. So, standing and travelling waves will be briefly presented since the majority of the motors use another wave type to generate the stator vibration and thus obtain the elliptic trajectory of the points on the surface of the stator in the first time. Then, electric equivalent circuit will be presented with the aim for giving a general idea of another way of graphical modelling of the vibrator introduced and developed. The simulations of an ultrasonic linear motor are then performed and experimental results on a prototype built at the laboratory are presented. Finally, validation of the Bond Graph method for modelling is carried out, comparing both simulation and experiment results. This paper describes the application of the FDI approach to an electrical system. We demonstrate the FDI effectiveness with real data collected from our automotive test. We introduce the analysis of the problem involved in the faults localization in this process. We propose a method of fault detection applied to the diagnosis and to determine the gravity of a detected fault. We show the possibilities of application of the new approaches to the complex system control.
Yu, Hongpeng; Quan, Qiquan; Tian, Xinqi; Li, He
2018-03-07
A novel U-shaped piezoelectric ultrasonic motor that mainly focused on miniaturization and high power density was proposed, fabricated, and tested in this work. The longitudinal vibrations of the transducers were excited to form the elliptical movements on the driving feet. Finite element method (FEM) was used for design and analysis. The resonance frequencies of the selected vibration modes were tuned to be very close to each other with modal analysis and the movement trajectories of the driving feet were gained with transient simulation. The vibration modes and the mechanical output abilities were tested to evaluate the proposed motor further by a prototype. The maximum output speed was tested to be 416 mm/s, the maximum thrust force was 21 N, and the maximum output power was 5.453 W under frequency of 29.52 kHz and voltage of 100 V rms . The maximum output power density of the prototype reached 7.59 W/kg, which was even greater than a previous similar motor under the exciting voltage of 200 V rms . The proposed motor showed great potential for linear driving of large thrust force and high power density.
Population decoding of motor cortical activity using a generalized linear model with hidden states.
Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas; Paninski, Liam
2010-06-15
Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (reducing the mean square error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Population Decoding of Motor Cortical Activity using a Generalized Linear Model with Hidden States
Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas G.; Paninski, Liam
2010-01-01
Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (lowering the Mean Square Error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. PMID:20359500
Heverly, Matthew; Dougherty, Sean; Toon, Geoffrey; Soto, Alejandro; Blavier, Jean-Francois
2004-01-01
One of the key components of a Fourier Transform Infrared Spectrometer (FTIR) is the linear translation stage used to vary the optical path length between the two arms of the interferometer. This translation mechanism must produce extremely constant velocity motion across its entire range of travel to allow the instrument to attain high signal-to-noise ratio and spectral resolving power. A new spectrometer is being developed at the Jet Propulsion Laboratory under NASA s Planetary Instrument Definition and Development Program (PIDDP). The goal of this project is to build upon existing spaceborne FTIR spectrometer technology to produce a new instrument prototype that has drastically superior spectral resolution and substantially lower mass, making it feasible for planetary exploration. In order to achieve these goals, Alliance Spacesystems, Inc. (ASI) has developed a linear translation mechanism using a novel ultrasonic piezo linear motor in conjunction with a fully kinematic, fault tolerant linear rail system. The piezo motor provides extremely smooth motion, is inherently redundant, and is capable of producing unlimited travel. The kinematic rail uses spherical Vespel(R). rollers and bushings, which eliminates the need for wet lubrication, while providing a fault tolerant platform for smooth linear motion that will not bind under misalignment or structural deformation. This system can produce velocities from 10 - 100 mm/s with less than 1% velocity error over the entire 100-mm length of travel for a total mechanism mass of less than 850 grams. This system has performed over half a million strokes under vacuum without excessive wear or degradation in performance. This paper covers the design, development, and testing of this linear translation mechanism as part of the Planetary Atmosphere Occultation Spectrometer (PAOS) instrument prototype development program.
International Nuclear Information System (INIS)
Abootorabi Zarchi, H.; Arab Markadeh, Gh.R.; Soltani, J.
2010-01-01
In this paper, a nonlinear speed tracking controller is introduced for three-phase synchronous reluctance motor (SynRM) on the basis of input-output feedback linearization (IOFL), considering the different control strategies (maximum torque per Ampere, high efficiency and minimum KVA rating for the inverter) related to this motor. The proposed control approach is capable of decoupling control of stator flux and motor generated torque. The validity and effectiveness of the method is verified by simulation and experimental results.
Conception, construction, and test of ironless quadrupoles for the resonance extraction from ELSA
International Nuclear Information System (INIS)
Ebeling, H.
1987-09-01
The extraction from the new stretcher ring ELSA of the Physical Institute of Bonn University results as resonance extraction of third-numbered working points. Because the main aim of the construction of ELSA is the assembly of an extracted beam with timely constant intensity, which corresponds to a touch ratio of 100% first the slope of the approach to the resonance must be optimized with high accuracy and second the working-point shift existing at the end of an extraction cycle must be removed before the beginning of a new injection in order to constrain not the touch ratio. The extraction quadrupoles developed for the working-point shift and presented in this thesis from which four are installed in the ELSA ring were especially because of the second topic designed as ironless magnets. Theoretical calculations showed that for a circular-cylindrical conductor arrangement already a concept with only one conductor per octant yields at the choice of the azimutal conductor width yields to 30 0 an excellent quadrupole field with only small contributions of higher multipoles. Although the disturbing fields are larger than calculated the field quality is yet within the aperture used by the beam completely sufficient. Because of the small conductor number moreover the inductivity of the magnets is extremely small so that from the extraction quadrupoles and their power supplies a touch ratio of above 99% would be possible. As all ELSA components also the extraction quadrupoles are included in the computer concept of the ELSA control system and by this remotely operable - thereby especially during the machine operation the current slope at one extraction cycle and by this the precise slope of the approach to the resonance can be optimized. (orig./HSI) [de
Pole-shape optimization of permanent-magnet linear synchronous motor for reduction of thrust ripple
Energy Technology Data Exchange (ETDEWEB)
Tavana, Nariman Roshandel, E-mail: nroshandel@ee.iust.ac.i [Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Shoulaie, Abbas, E-mail: shoulaie@iust.ac.i [Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of)
2011-01-15
In this paper, we have used magnet arc shaping technique in order to improve the performance of permanent-magnet linear synchronous motor (PMLSM). At first, a detailed analytical modeling based on Maxwell equations is presented for the analysis and design of PMLSM with the arc-shaped magnetic poles (ASMPs). Then the accuracy of presented method is verified by finite-element method. Very close agreement between the analytical and finite-element results shows the effectiveness of the proposed method. Finally, a magnet shape design is carried out based on the analytical method to enhance the motor developed thrust. Pertinent evaluations on the optimal design performance demonstrate that shape optimization leads to a design with extra low thrust ripple.
Dynamic diagnostics of moving ferromagnetic material with the linear induction motor
Directory of Open Access Journals (Sweden)
Szewczyk Krzysztof
2017-01-01
Full Text Available The paper presents the application of a three-phase induction motor as a sensor measuring the force of the electromagnetic field connection between the engine and produced sheet steel. The force interaction between the engine and the manufactured sheet metal treated as a treadmill for a linear motor may be an indicator of damage to the material. Detection of places where the sheet does not meet the quality requirements may be very useful in the production process. FEM calculations were performed in the ANSYS MAXWELL environment. The results suggest the possibility of using this type of construction to test the quality of produced materials. The computational results and their analysis are presented in this article.
Adaptive H∞ nonlinear velocity tracking using RBFNN for linear DC brushless motor
Tsai, Ching-Chih; Chan, Cheng-Kain; Li, Yi Yu
2012-01-01
This article presents an adaptive H ∞ nonlinear velocity control for a linear DC brushless motor. A simplified model of this motor with friction is briefly recalled. The friction dynamics is described by the Lu Gre model and the online tuning radial basis function neural network (RBFNN) is used to parameterise the nonlinear friction function and un-modelled errors. An adaptive nonlinear H ∞ control method is then proposed to achieve velocity tracking, by assuming that the upper bounds of the ripple force, the changeable load and the nonlinear friction can be learned by the RBFNN. The closed-loop system is proven to be uniformly bounded using the Lyapunov stability theory. The feasibility and the efficacy of the proposed control are exemplified by conducting two velocity tracking experiments.
An electrostatic 3-phase linear stepper motor fabricated by vertical trench isolation technology
International Nuclear Information System (INIS)
Sarajlic, Edin; Yamahata, Christophe; Cordero, Mauricio; Fujita, Hiroyuki
2009-01-01
We present the design, microfabrication and characterization of an electrostatic 3-phase linear stepper micromotor constructed with vertical trench isolation technology. This suitable technology was used to create a monolithic stepper motor with high-aspect-ratio poles and an integrated 3-phase electrical network in the bulk of a standard single-crystal silicon wafer. The shuttle of the stepper motor is suspended by a flexure to avoid any mechanical contact during operation, enhancing the precision, repeatability and reliability of the stepping motion. The prototype is capable of a maximum travel of +/−26 µm (52 µm) at an actuation voltage of 30 V and a step size of 1.4 µm during a half-stepping sequence
An electrostatic 3-phase linear stepper motor fabricated by vertical trench isolation technology
Sarajlic, Edin; Yamahata, Christophe; Cordero, Mauricio; Fujita, Hiroyuki
2009-07-01
We present the design, microfabrication and characterization of an electrostatic 3-phase linear stepper micromotor constructed with vertical trench isolation technology. This suitable technology was used to create a monolithic stepper motor with high-aspect-ratio poles and an integrated 3-phase electrical network in the bulk of a standard single-crystal silicon wafer. The shuttle of the stepper motor is suspended by a flexure to avoid any mechanical contact during operation, enhancing the precision, repeatability and reliability of the stepping motion. The prototype is capable of a maximum travel of +/-26 µm (52 µm) at an actuation voltage of 30 V and a step size of 1.4 µm during a half-stepping sequence. This work was presented in part at the 19th MicroMechanics Europe Workshop (MME), 28-30 September 2008, Aachen, Germany.
A linear motor and compact cylinder-piston driver for left ventricular bypass.
Qian, K X
1990-01-01
A simple, portable, reliable and noise-free pneumatic driver has been developed. It consists of a linear motor attached to a cylinder piston, in one unit. The motor coil is directly wound on the cylinder, and the permanent magnet is fixed to the piston. As a continuous voltage square wave is applied to the coil, the cylinder reciprocates on the piston periodically, producing air pressure and vacuum alternately. In conjunction with a locally made diaphragm pump, the driver was tested in vitro and in vivo. Results demonstrated that the device could drive the diaphragm pump and so support the circulation of an experimental animal. The driver weighs 12 kg. For 200 mmHg air pressure and -80 mmHg vacuum the power consumed is 30 W. Its noise is about 30 dB, less than that of an artificial valve and pump.
Pole-shape optimization of permanent-magnet linear synchronous motor for reduction of thrust ripple
International Nuclear Information System (INIS)
Tavana, Nariman Roshandel; Shoulaie, Abbas
2011-01-01
In this paper, we have used magnet arc shaping technique in order to improve the performance of permanent-magnet linear synchronous motor (PMLSM). At first, a detailed analytical modeling based on Maxwell equations is presented for the analysis and design of PMLSM with the arc-shaped magnetic poles (ASMPs). Then the accuracy of presented method is verified by finite-element method. Very close agreement between the analytical and finite-element results shows the effectiveness of the proposed method. Finally, a magnet shape design is carried out based on the analytical method to enhance the motor developed thrust. Pertinent evaluations on the optimal design performance demonstrate that shape optimization leads to a design with extra low thrust ripple.
Energy Technology Data Exchange (ETDEWEB)
Friedrich, R
1977-04-07
The invention concerns a magnetically levitated railway with common reaction rail for the linear motor drive and the electrical side guidance arrangement. While the electro-dynamic hovering process requires a high electrical conductivity of the reaction rails in order to reduce eddy current losses, these should show a relatively high resistance for the asynchronous linear motor to reduce losses of propelling force. These contradictory requirements can be fulfilled for a common reaction rail made of homogeneous material of high electrical conductivity according to the invention, by providing slits at right angles to the driving axis in the part of the reaction rail allocated to the linear motor. Thus the guidance system retains a low ohmic resistance, while the part of the reaction rail allocated to the windings of the linear motor has a relatively low ohmic secondary resistance, by which the border and end effects which reduce the propelling force can be appreciably reduced.
Directory of Open Access Journals (Sweden)
G.M. Golenkov
2014-03-01
Full Text Available The paper presents results of computer simulation and experimental study of magnetic induction distribution in a coaxial linear motor air gap throughout the length of the runner active part at different heights of the air gap between the runner and the inductor magnetic core for motors with axial and radial direction of the permanent magnets magnetization.
Air-gap field, induced voltage and thrust in the short-stator linear induction motor
Energy Technology Data Exchange (ETDEWEB)
Deleroi, W
1980-07-15
The description of the magnetic field in the air-gap of a short-primary linear induction motor, and the subsequent calculation of the thrust developed and the voltages induced in the stator bars can be made by using balancing waves. These balancing waves are generated at any point where the field wave that would exist in a machine of infinite length is disturbed. In the linear motor these disturbances occur at the ends of the stator iron and at discontinuities in the distribution of the stator winding, which exist in machines having stepped windings. From the points where they are generated, free balancing waves travel in two directions and determine the performance of these machines to a large extent. The voltage they induce in a stator bar can be determined from the core flux and mapped on a phasor diagram. The resulting voltage phasor follows a logarithmic spiral. The resulting voltages induced in the three phase windings form a strongly asymmetrical system which can be split-up into positive-, negative- and zerosequence components depending on the slip. The tangential forces may be calculated as the product of the magnetic flux density in the air-gap and the linear current density in either the stator or the reaction rail. As the 'magnetic tail' outside the machine also gives rise to forces in the direction of motion, both methods yield quite different force distributions, though for the resulting force the same value is found.
Energy Technology Data Exchange (ETDEWEB)
Hiwaki, H [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan); Watada, M [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan); Torii, S [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan); Ebihara, D [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan)
1996-12-31
In the permanent magnet levitation system, it is impossible to stabilize the motion of the vehicle in both levitation and guidance directions only by permanent magnet. Therefore, the authors proposed the combined system of permanent magnet for levitation and coreless linear synchronous motor (coreless LSM). To design the coreless coils for LSM, the method to calculate the spring coefficient between coreless coil and permanent magnet for LSM is shown. By using this method, the spring coefficients of the three coil arrangements are compared and coreless coil is designed. Furthermore, the authors showed the possibility of stabilizing the motion of the levitation system with coreless LSM. (orig.)
A new double sided linear switched reluctance motor with low cost
International Nuclear Information System (INIS)
Daldaban, Ferhat; Ustkoyuncu, Nurettin
2006-01-01
This paper presents the realization and design of a new linear switched reluctance motor (LSRM) structure. The new model has double sided configuration and provides high force for many applications with low cost. The characteristics of the LSRM are obtained by using finite element analysis (FEA) and analytical calculations. The results of the FEA and analytical calculations are presented, and compared with experimental results. A high correlation between experimental and analytical results is obtained, which has been demonstrated in the form of inductance versus position versus current
Directory of Open Access Journals (Sweden)
Prasenjit D. Wakode
2016-07-01
Full Text Available This paper presents the complete analysis of Linear Induction Motor (LIM under VVVF. The complete variation of LIM air gap flux under ‘blocked Linor’ condition and starting force is analyzed and presented when LIM is given VVVF supply. The analysis of this data is important in further understanding of the equivalent circuit parameters of LIM and to study the magnetic circuit of LIM. The variation of these parameters is important to know the LIM response at different frequencies. The simulation and application of different control strategies such as vector control thus becomes quite easy to apply and understand motor’s response under such strategy of control.
Decentralized control of the COFS-I Mast using linear dc motors
Lindner, Douglas K.; Celano, Tom; Ide, Eric
1989-01-01
Consideration is given to a decentralized control design for vibration suppression in the COFS-I Mast using linear dc motors for actuators. The decentralized control design is based results from power systems using root locus techniques that are not well known. The approach is effective because the loop gain is low due to low actuator authority. The frequency-dependent nonlinearities of the actuator are taken into account. Because of the tendency of the transients to saturate the the stroke length of the actuator, its effectiveness is limited.
Lei, Meizhen; Wang, Liqiang
2018-01-01
The halbach-type linear oscillatory motor (HT-LOM) is multi-variable, highly coupled, nonlinear and uncertain, and difficult to get a satisfied result by conventional PID control. An incremental adaptive fuzzy controller (IAFC) for stroke tracking was presented, which combined the merits of PID control, the fuzzy inference mechanism and the adaptive algorithm. The integral-operation is added to the conventional fuzzy control algorithm. The fuzzy scale factor can be online tuned according to the load force and stroke command. The simulation results indicate that the proposed control scheme can achieve satisfied stroke tracking performance and is robust with respect to parameter variations and external disturbance.
Energy Technology Data Exchange (ETDEWEB)
Kikuma, T.; Tomita, M.; Ishiyama, A. [Waseda Univ., Tokyo (Japan)
1999-11-10
For the purpose of we examining the effect of characteristics and ac loss under real machine operating environment of the alternating current superconductivity winding for a realization of the superconductive AC machine vessel, cylindrical shortness first linear guiding motor which used NbTi/CuNi superconducting cable for the primary winding was produced experimentally. The coil number was increased from 6 in 14 this time, and the optimization of the primary current was done, and the improvement on characteristics was attempted. Here, starting torque characteristics, quenching detection protection control circuit are reported. (NEDO)
Particle Swarm Based Approach of a Real-Time Discrete Neural Identifier for Linear Induction Motors
Directory of Open Access Journals (Sweden)
Alma Y. Alanis
2013-01-01
Full Text Available This paper focusses on a discrete-time neural identifier applied to a linear induction motor (LIM model, whose model is assumed to be unknown. This neural identifier is robust in presence of external and internal uncertainties. The proposed scheme is based on a discrete-time recurrent high-order neural network (RHONN trained with a novel algorithm based on extended Kalman filter (EKF and particle swarm optimization (PSO, using an online series-parallel con figuration. Real-time results are included in order to illustrate the applicability of the proposed scheme.
de Souza Baptista, Roberto; Bo, Antonio P L; Hayashibe, Mitsuhiro
2017-06-01
Performance assessment of human movement is critical in diagnosis and motor-control rehabilitation. Recent developments in portable sensor technology enable clinicians to measure spatiotemporal aspects to aid in the neurological assessment. However, the extraction of quantitative information from such measurements is usually done manually through visual inspection. This paper presents a novel framework for automatic human movement assessment that executes segmentation and motor performance parameter extraction in time-series of measurements from a sequence of human movements. We use the elements of a Switching Linear Dynamic System model as building blocks to translate formal definitions and procedures from human movement analysis. Our approach provides a method for users with no expertise in signal processing to create models for movements using labeled dataset and later use it for automatic assessment. We validated our framework on preliminary tests involving six healthy adult subjects that executed common movements in functional tests and rehabilitation exercise sessions, such as sit-to-stand and lateral elevation of the arms and five elderly subjects, two of which with limited mobility, that executed the sit-to-stand movement. The proposed method worked on random motion sequences for the dual purpose of movement segmentation (accuracy of 72%-100%) and motor performance assessment (mean error of 0%-12%).
The Experimental Study of Rayleigh-Taylor Instability using a Linear Induction Motor Accelerator
Yamashita, Nicholas; Jacobs, Jeffrey
2009-11-01
The experiments to be presented utilize an incompressible system of two stratified miscible liquids of different densities that are accelerated in order to produce the Rayleigh-Taylor instability. Three liquid combinations are used: isopropyl alcohol with water, a calcium nitrate solution or a lithium polytungstate solution, giving Atwood numbers of 0.11, 0.22 and 0.57, respectively. The acceleration required to drive the instability is produced by two high-speed linear induction motors mounted to an 8 m tall drop tower. The motors are mounted in parallel and have an effective acceleration length of 1.7 m and are each capable of producing 15 kN of thrust. The liquid system is contained within a square acrylic tank with inside dimensions 76 x76x184 mm. The tank is mounted to an aluminum plate, which is driven by the motors to create constant accelerations in the range of 1-20 g's, though the potential exists for higher accelerations. Also attached to the plate are a high-speed camera and an LED backlight to provide continuous video of the instability. In addition, an accelerometer is used to provide acceleration measurements during each experiment. Experimental image sequences will be presented which show the development of a random three-dimensional instability from an unforced initial perturbation. Measurements of the mixing zone width will be compared with traditional growth models.
Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity.
Monte-Silva, Katia; Liebetanz, David; Grundey, Jessica; Paulus, Walter; Nitsche, Michael A
2010-09-15
The neuromodulator dopamine affects learning and memory formation and their likely physiological correlates, long-term depression and potentiation, in animals and humans. It is known from animal experiments that dopamine exerts a dosage-dependent, inverted U-shaped effect on these functions. However, this has not been explored in humans so far. In order to reveal a non-linear dose-dependent effect of dopamine on cortical plasticity in humans, we explored the impact of 25, 100 and 200 mg of L-dopa on transcranial direct current (tDCS)-induced plasticity in twelve healthy human subjects. The primary motor cortex served as a model system, and plasticity was monitored by motor evoked potential amplitudes elicited by transcranial magnetic stimulation. As compared to placebo medication, low and high dosages of L-dopa abolished facilitatory as well as inhibitory plasticity, whereas the medium dosage prolonged inhibitory plasticity, and turned facilitatory plasticity into inhibition. Thus the results show clear non-linear, dosage-dependent effects of dopamine on both facilitatory and inhibitory plasticity, and support the assumption of the importance of a specific dosage of dopamine optimally suited to improve plasticity. This might be important for the therapeutic application of dopaminergic agents, especially for rehabilitative purposes, and explain some opposing results in former studies.
CEDM Controller for a Linear Pulse Motor by using Pulse Width Modulation Method in Integral Reactor
International Nuclear Information System (INIS)
Lee, Joon-Koo; Keum, Jong-Yong; Park, Heui-Youn
2007-01-01
Integral Reactor SMART is under development at KAERI. The design characteristics of SMART are radically different from those employed in currently operating loop type PWR in Korea. The reliability and accuracy of Control Rod Drive Mechanism are very important to the reactor safety and the design of the Plant Protection System. The SMART CEDM designed for fine-step movement consists of a linear pulse motor, reed switch type sensor with top and bottom limit switches which also act as Control Element Assembly(CEA) Position indicator, The linear pulse motor is a four phase synchronous DC electric machine with inner stator and output stator in coolant medium inside a strong housing. The objective of this paper is to introduce and to explain the CEDM controller CEDM Controller is being developed with a new design concept and digital technology to reduce the Operating Error and improve the systems' reliability and availability. And Switched Mode Power Supply is also being developed with digital hardware technology. This paper involves the test details and result
Joiner, Wilsaan M; Ajayi, Obafunso; Sing, Gary C; Smith, Maurice A
2011-01-01
The ability to generalize learned motor actions to new contexts is a key feature of the motor system. For example, the ability to ride a bicycle or swing a racket is often first developed at lower speeds and later applied to faster velocities. A number of previous studies have examined the generalization of motor adaptation across movement directions and found that the learned adaptation decays in a pattern consistent with the existence of motor primitives that display narrow Gaussian tuning. However, few studies have examined the generalization of motor adaptation across movement speeds. Following adaptation to linear velocity-dependent dynamics during point-to-point reaching arm movements at one speed, we tested the ability of subjects to transfer this adaptation to short-duration higher-speed movements aimed at the same target. We found near-perfect linear extrapolation of the trained adaptation with respect to both the magnitude and the time course of the velocity profiles associated with the high-speed movements: a 69% increase in movement speed corresponded to a 74% extrapolation of the trained adaptation. The close match between the increase in movement speed and the corresponding increase in adaptation beyond what was trained indicates linear hypergeneralization. Computational modeling shows that this pattern of linear hypergeneralization across movement speeds is not compatible with previous models of adaptation in which motor primitives display isotropic Gaussian tuning of motor output around their preferred velocities. Instead, we show that this generalization pattern indicates that the primitives involved in the adaptation to viscous dynamics display anisotropic tuning in velocity space and encode the gain between motor output and motion state rather than motor output itself.
Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems
International Nuclear Information System (INIS)
Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long
2017-01-01
According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable. (paper)
Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems
Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long
2017-07-01
According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable.
Rail Brake System Using a Linear Induction Motor for Dynamic Braking
Sakamoto, Yasuaki; Kashiwagi, Takayuki; Tanaka, Minoru; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo
One type of braking system for railway vehicles is the eddy current brake. Because this type of brake has the problem of rail heating, it has not been used for practical applications in Japan. Therefore, we proposed the use of a linear induction motor (LIM) for dynamic braking in eddy current brake systems. The LIM reduces rail heating and uses an inverter for self excitation. In this paper, we estimated the performance of an LIM from experimental results of a fundamental test machine and confirmed that the LIM generates an approximately constant braking force under constant current excitation. At relatively low frequencies, this braking force remains unaffected by frequency changes. The reduction ratio of rail heating is also approximately proportional to the frequency. We also confirmed that dynamic braking resulting in no electrical output can be used for drive control of the LIM. These characteristics are convenient for the realization of the LIM rail brake system.
Analysis and measure of novel stereo-garage driven by linear induction motor
Directory of Open Access Journals (Sweden)
Lu Qinfen
2015-12-01
Full Text Available The car access time is a key parameter, especially in a huge stereo-garage, where this one should be decreased as much as possible. This paper proposes a novel stereo-garage. Adopting the linear induction motors (LIMs, the system has a simple structure and rapid response capability. In the stereo-garage, several LIMs are installed below the crossbeam on a lifting platform, and several LIMs are fixed on the top of a moving frame. During the operation of LIMs, the moving frame moves forward and backward to reach the required parking place, whereas the crossbeam moves horizontally in order to take or store the vehicle rapidly. All these LIMs are the same and should be designed at a low frequency. The influences of key structure parameters and dynamic performances are investigated, based on FEM. The predicted results are validated by a prototype. Finally, the designed LIMs are successfully applied in two 8-layer stereo-garages.
Recession in a linear stepper motor based on piezoelectric actuator and electrorheological clampers
International Nuclear Information System (INIS)
Li, Cuihong; Meng, Yonggang; Tian, Yu
2012-01-01
A linear inchworm-type stepper motor based on piezoelectric actuator and comb shape electrorheological (ER) clampers was developed and tested. A recession phenomenon in the movement of the motor was found and was significantly affected by the driving voltage of the piezoelectric actuator and ER fluids. A dynamic model to analyze the mechanism of the recession was established. The force ratio of the viscoelastic clamping force (applied high electric field) to the viscous damping force (zero field) of ER fluids is the critical factor which determines the recession. The ratio is also affected by the extension or contraction rate of the actuator during movement, which is affected by the charging and discharging processes. With a relatively large distance between the clamper electrodes and a small displacement activated by the extension of the piezoelectric actuator, the instantaneous shear rate might not be sufficiently high, preventing ER fluids from attaining a shear-thickened and high-strength state. The ratio of yield strength to the viscous strength of ER fluids during movement should be as large as possible to reduce the recession displacement. (paper)
A novel L-shaped linear ultrasonic motor operating in a single resonance mode
Zhang, Bailiang; Yao, Zhiyuan; Liu, Zhen; Li, Xiaoniu
2018-01-01
In this study, a large thrust linear ultrasonic motor using an L-shaped stator is described. The stator is constructed by two mutually perpendicular rectangular plate vibrators, one of which is mounted in parallel with the slider to make the motor structure to be more compact. The symmetric and antisymmetric modes of the stator based on the first order bending vibration of two vibrators are adopted, in which each resonance mode is assigned to drive the slider in one direction. The placement of piezoelectric ceramics in a stator could be determined by finite element analysis, and the influence of slots in the head block on the vibration amplitudes of driving foot was studied as well. Three types of prototypes (non-slotted, dual-slot, and single-slot) were fabricated and experimentally investigated. Experimental results demonstrated that the prototype with one slot exhibited the best mechanical output performance. The maximum loads under the excitation of symmetric mode and antisymmetric mode were 65 and 90 N, respectively.
International Nuclear Information System (INIS)
Sun, Dongming; Wang, Sheng; Sakurai, Junpei; Hata, Seiichi; Choi, Kee-Bong; Shimokohbe, Akira
2010-01-01
A piezoelectric linear ultrasonic motor is proposed, with a cylindrical stator and slider structure. The length and diameter of the motor are about 10 and 1.5 mm, respectively. The stator consists of two piezoelectric ceramic (PZT) tubes connected by a thin film metallic glass (TFMG) pipe. The stator is designed based on theoretical analyses and finite element method (FEM) simulation. The traveling wave propagation is obtained in the FEM simulation under the proper geometrical sizes, suitable boundary conditions and driving voltage signals. The trajectories of particles on the TFMG pipe are elliptical motion. In the experiment, a 25 µm thick TFMG pipe is fabricated using the rotating magnetron sputtering technique and the vibration characteristics of the stator are measured by a laser Doppler vibrometer (LDV) system. Bidirectional motion of the slider is observed around 600 kHz, the maximum velocity is near to 40 mm s −1 at 50 Vp–p for the loose slider and the maximum output force is 6 mN at 70 Vp–p for the tight slider
Development of linear pulse motor type control element drive mechanism for smart
International Nuclear Information System (INIS)
Je-Yong, Yu; Jong-in, Kim; Ji-ho, Kim; Hyung, Huh; Moon-Hee, Chang
2001-01-01
The system-integrated modular advanced reactor (SMART) currently under development at the Korea Atomic Energy Research Institute is being designed with soluble boron free operation and the use of nuclear heating for reactor start-up. These design features require a Control Element Drive Mechanism(CEDM) for SMART to have fine-step movement capability as well as high reliability for fine reactivity control. In this paper, the design characteristics of a new concept CEDM driven by a Linear Pulse Motor (LPM) which meets the design requirements of the integral reactor SMART are introduced. The primary dimensions of the linear pulse motor are determined by electro-magnetic analysis and the results are also presented. In parallel with the electro-magnetic analysis, the conceptual design of the CEDM is visualized and checked for interferences among parts by assembling three dimensional (3D) models on computer. A prototype of the LPM with double air-gaps for the CEDM sub-assemblies to lift 100 kg is designed, analysed, manufactured and tested to confirm the validity of the CEDM design concept. A converter and test facility are manufactured to verify the dynamic performance of the LPM. The mover of the LPM is welded with ferromagnetic material and non-ferromagnetic material to get the magnetic flux path between the inner stator and outer stator. The thrust forces of LPM predicted by the analytic model have shown good agreement with experimental results from the prototype LPM. It is found that the LPM type CEDM has high force density and a simple drive mechanism to reduce volume and satisfy reactor operating circumstances with high pressure and temperature. (authors)
Linear pulse motor type control element drive mechanism for the integral reactor
International Nuclear Information System (INIS)
Yu, J. Y.; Choi, S.; Kim, J. H.; Huh, H.; Park, K. B.
2007-01-01
The integral reactor SMART currently under development at Korea Atomic Energy Research Institute is designed with soluble boron free operation and use of nuclear heating for reactor startup. These design features require the Control Element Drive Mechanism (CEDM) for SMART to have fine-step movement capability as well as high reliability for the fine reactivity control. In this paper, design characteristics of a new concept CEDM driven by the Linear Pulse Motor (LPM) which meets the design requirements of the integral reactor SMART are introduced. The primary dimensions of the linear pulse motor are determined by the electro-magnetic analysis and the results are also presented. In parallel with the electro-magnetic analysis, the conceptual design of the CEDM is visualized and checked for interferences among parts by assembling three dimensional (3D) models on the computer. Prototype of LPM with double air-gaps for the CEDM sub-assemblies to lift 100 kg is designed, analysed, manufactured and tested to confirm the validity of the CEDM design concept. A converter and a test facility are manufactured to verify the dynamic performance of the LPM. The mover of the LPM is welded with ferromagnetic material and non-ferromagnetic material to get the magnetic flux path between inner stator and outer stator. The thrust forces of LPM predicted by analytic model have shown good agreement with experimental results from the prototype LPM. It is found that the LPM type CEDM has high force density and simple drive mechanism to reduce volume and satisfy the reactor operating circumstances with high pressure and temperature
Directory of Open Access Journals (Sweden)
Andreas WALDSCHIK
2008-12-01
Full Text Available In this work, we report on the development of several synchronous motors with rotatory or linear movements. The synchronous micro motors are brushless DC motors or stepper motors with electrically controlled commutation consisting of a stator and a rotor. The rotor is mounted onto the stator and is adjusted by an integrated guidance. Inside the stator different coil systems are realized, like double layer sector coils or special nested coils. The coil systems can be controlled by three or six phases depending on the operational mode. Furthermore, inorganic insulation layers were used in order to reduce the thickness of the system. By this means four layers of electrical conductors can be realized especially for the 2D devices. The smallest diameter of the rotatory motor is 1 mm and could be successfully driven.
Kim, Ki-Hyun; Choi, Young-Man; Gweon, Dae-Gab; Hong, Dong-Pyo; Kim, Koung-Suk; Lee, Suk-Won; Lee, Moon-Gu
2005-12-01
A decoupled dual servo (DDS) stage for ultra-precision scanning system is introduced in this paper. The proposed DDS consists of a 3 axis fine stage for handling and carrying workpieces and a XY coarse stage. Especially, the DDS uses three voice coil motors (VCM) as a planar actuation system of the fine stage to reduce the disturbances due to any mechanical connections with its coarse stage. VCMs are governed by Lorentz law. According to the law and its structure, there are no mechanical connections between coils and magnetic circuits. Moreover, the VCM doesn't have force ripples due to imperfections of commutation components of linear motor systems - currents and flux densities. However, due to the VCM's mechanical constraints the working range of the fine is about 5mm2. To break that hurdle, the coarse stage with linear motors is used for the fine stage to move about 200mm2. Because of the above reasons, the proposed DDS can achieve higher precision scanning than other stages with only one servo. Using MATLAB's Sequential Quadratic Programming (SQP), the VCMs are optimally designed for the highest force under conditions and constraints such as thermal dissipations due to its coil, its size, and so on. For linear motors, Halbach magnet linear motor is proposed and optimally designed in this paper. In addition, for their smooth movements without any frictions, guide systems of the DDS are composed of air bearings. And then, precisely to get their positions, linear scales with 0.1um resolution are used for the coarse's XY motions and plane mirror laser interferometers with 20nm for the fine's XYθz. On scanning, the two stages have same trajectories and are controlled. The control algorithm is Parallel method. The embodied ultra-precision scanning system has about 100nm tracking error and in-positioning stability.
Directory of Open Access Journals (Sweden)
Andrzej Rusek
2008-01-01
Full Text Available The mathematical model of cylindrical linear induction motor (C-LIM fed via frequency converter is presented in the paper. The model was developed in order to analyze numerically the transient states. Problems concerning dynamics of ac-machines especially linear induction motor are presented in [1 – 7]. Development of C-LIM mathematical model is based on circuit method and analogy to rotary induction motor. The analogy between both: (a stator and rotor windings of rotary induction motor and (b winding of primary part of C-LIM (inductor and closed current circuits in external secondary part of C-LIM (race is taken into consideration. The equations of C-LIM mathematical model are presented as matrix together with equations expressing each vector separately. A computational analysis of selected transient states of C-LIM fed via frequency converter is presented in the paper. Two typical examples of C-LIM operation are considered for the analysis: (a starting the motor at various static loads and various synchronous velocities and (b reverse of the motor at the same operation conditions. Results of simulation are presented as transient responses including transient electromagnetic force, transient linear velocity and transient phase current.
International Nuclear Information System (INIS)
Liu, C.-T.; Lin, S.-Y.; Yang, Y.-Y.
2005-01-01
A detailed mathematical approach for analyzing static/dynamic characteristics of a linear induction motor for steel mill non-contacting conveyance system application will be provided. The dependent reluctances among the motor secondary steel plate and primary poles have been systematically formulated; hence, the operational performance of the system can be derived conveniently. Results showed that not only the motor structure is suitable for the design objective, but also the proposed magnetic equivalent circuit can provide appropriate and convenient modeling for relative analytical investigations
Electronically commutated motors for vehicle applications
Echolds, E. F.
1980-02-01
Two permanent magnet electronically commutated motors for electric vehicle traction are discussed. One, based on existing technology, produces 23 kW (peak) at 26,000 rpm, and 11 kW continuous at 18,000 rpm. The motor has a conventional design: a four-pole permanent magnet rotor and a three-phase stator similar to those used on ordinary induction motors. The other, advanced technology motor, is rated at 27 kW (peak) at 14,000 rpm, and 11 kW continuous at 10,500 rpm. The machine employs a permanent magnet rotor and a novel ironless stator design in an axial air gap, homopolar configuration. Comparison of the new motors with conventional brush type machines indicates potential for substantial cost savings.
Application of the Hyper-Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes.
Khazraee, S Hadi; Sáez-Castillo, Antonio Jose; Geedipally, Srinivas Reddy; Lord, Dominique
2015-05-01
The hyper-Poisson distribution can handle both over- and underdispersion, and its generalized linear model formulation allows the dispersion of the distribution to be observation-specific and dependent on model covariates. This study's objective is to examine the potential applicability of a newly proposed generalized linear model framework for the hyper-Poisson distribution in analyzing motor vehicle crash count data. The hyper-Poisson generalized linear model was first fitted to intersection crash data from Toronto, characterized by overdispersion, and then to crash data from railway-highway crossings in Korea, characterized by underdispersion. The results of this study are promising. When fitted to the Toronto data set, the goodness-of-fit measures indicated that the hyper-Poisson model with a variable dispersion parameter provided a statistical fit as good as the traditional negative binomial model. The hyper-Poisson model was also successful in handling the underdispersed data from Korea; the model performed as well as the gamma probability model and the Conway-Maxwell-Poisson model previously developed for the same data set. The advantages of the hyper-Poisson model studied in this article are noteworthy. Unlike the negative binomial model, which has difficulties in handling underdispersed data, the hyper-Poisson model can handle both over- and underdispersed crash data. Although not a major issue for the Conway-Maxwell-Poisson model, the effect of each variable on the expected mean of crashes is easily interpretable in the case of this new model. © 2014 Society for Risk Analysis.
Linear methods for reducing EMG contamination in peripheral nerve motor decodes.
Kagan, Zachary B; Wendelken, Suzanne; Page, David M; Davis, Tyler; Hutchinson, Douglas T; Clark, Gregory A; Warren, David J
2016-08-01
Signals recorded from the peripheral nervous system (PNS) with high channel count penetrating microelectrode arrays, such as the Utah Slanted Electrode Array (USEA), often have electromyographic (EMG) signals contaminating the neural signal. This common-mode signal source may prevent single neural units from successfully being detected, thus hindering motor decode algorithms. Reducing this EMG contamination may lead to more accurate motor decode performance. A virtual reference (VR), created by a weighted linear combination of signals from a subset of all available channels, can be used to reduce this EMG contamination. Four methods of determining individual channel weights and six different methods of selecting subsets of channels were investigated (24 different VR types in total). The methods of determining individual channel weights were equal weighting, regression-based weighting, and two different proximity-based weightings. The subsets of channels were selected by a radius-based criteria, such that a channel was included if it was within a particular radius of inclusion from the target channel. These six radii of inclusion were 1.5, 2.9, 3.2, 5, 8.4, and 12.8 electrode-distances; the 12.8 electrode radius includes all USEA electrodes. We found that application of a VR improves the detectability of neural events via increasing the SNR, but we found no statistically meaningful difference amongst the VR types we examined. The computational complexity of implementation varies with respect to the method of determining channel weights and the number of channels in a subset, but does not correlate with VR performance. Hence, we examined the computational costs of calculating and applying the VR and based on these criteria, we recommend an equal weighting method of assigning weights with a 3.2 electrode-distance radius of inclusion. Further, we found empirically that application of the recommended VR will require less than 1 ms for 33.3 ms of data from one USEA.
Wan, Zhijian; Hu, Hong
2014-03-01
A novel linear ultrasonic motor based on in-plane longitudinal and bending mode vibration is presented in this paper. The stator of the motor is composed of a metal plate and eight piezoelectric ceramic patches. There are four long holes in the plate, designed for consideration of the longitudinal and bending mode coupling. The corresponding model is developed to optimize the mechanical and electrical coupling of the stator, which causes an ellipse motion at the contact tip of the stator when the composite vibrations with longitudinal and bending are excited. Its harmonic and transient responses are simulated and inspected. A prototype based on the model is fabricated and used to conduct experiments. Results show that the amplitude of the stator's contact tips is significantly increased, which helps to amplify the driving force and speed of the motor. It is therefore feasible to implement effective linear movement using the developed prototype. Copyright © 2013 Elsevier B.V. All rights reserved.
Hu, Tengjiang; Zhao, Yulong; Li, Xiuyuan; Zhao, You; Bai, Yingwei
2016-03-01
The design, fabrication, and testing of a novel electro-thermal linear motor for micro manipulators is presented in this paper. The V-shape electro-thermal actuator arrays, micro lever, micro spring, and slider are introduced. In moving operation, the linear motor can move nearly 1 mm displacement with 100 μm each step while keeping the applied voltage as low as 17 V. In holding operation, the motor can stay in one particular position without consuming energy and no creep deformation is found. Actuation force of 12.7 mN indicates the high force generation capability of the device. Experiments of lifetime show that the device can wear over two million cycles of operation. A silicon-on-insulator wafer is introduced to fabricate a high aspect ratio structure and the chip size is 8.5 mm × 8.5 mm × 0.5 mm.
Ci, Penghong; Chen, Zhijiang; Liu, Guoxi; Dong, Shuxiang
2014-01-01
We report a piezoelectric linear motor made of a single Pb(Zr,Ti)O3 square-plate, which operates in two orthogonal and isomorphic face-diagonal-bending modes to produce precision linear motion. A 15 × 15 × 2 mm prototype was fabricated, and the motor generated a driving force of up to 1.8 N and a speed of 170 mm/s under an applied voltage of 100 Vpp at the resonance frequency of 136.5 kHz. The motor shows such advantages as large driving force under relatively low driving voltage, simple structure, and stable motion because of its isomorphic face-diagonal-bending mode.
Analysis and testing of a double armature brushless dc linear motor with NdFeB permanent magnets
International Nuclear Information System (INIS)
Filho, A.F.F.
1998-01-01
The use of high-energy product NdFeB permanent magnets benefits the design and features of a double armature brushless dc linear motor. As the linear motor is also slotless, its 5 mm airgap requires a source of high flux to overcome the reluctance and produce an adequate amount of force. The linear motor employs a topology that makes use of five permanent magnets to provide excitation flux. The permanent magnets are arranged in such a way that maximises the force the linear motor can deliver. The actuator produces a force up to 86.2 N at an armature current of 4.5 A. However, the topology makes the actuator prone to saturation. It affects the operation point of the permanent magnets, reduces the airgap flux density and the force, and increases flux leakage. To avoid saturation, a flux compensation scheme was conceived. The results are presented and assessed by means of finite element simulation and by experimental results that presented a good agreement. (orig.)
Motor Behavior: From Telegraph Keys and Twins to Linear Slides and Stepping
Thomas, Jerry R.
2006-01-01
Motor behavior is a significant area of scholarship with 64 Fellows from the American Academy of Kinesiology and Physical Education engaged in that work since 1930. This paper provides a brief overview of the history of research in motor development and motor control/learning, particularly noting the contributions to scholarship of Academy…
Optimized linear motor and digital PID controller setup used in Mössbauer spectrometer
Kohout, Pavel; Kouřil, Lukáš; Navařík, Jakub; Novák, Petr; Pechoušek, Jiří
2014-10-01
Optimization of a linear motor and digital PID controller setup used in a Mössbauer spectrometer is presented. Velocity driving system with a digital PID feedback subsystem was developed in the LabVIEW graphical environment and deployed on the sbRIO real-time hardware device (National Instruments). The most important data acquisition processes are performed as real-time deterministic tasks on an FPGA chip. Velocity transducer of a double loudspeaker type with a power amplifier circuit is driven by the system. Series of calibration measurements were proceeded to find the optimal setup of the P, I, D parameters together with velocity error signal analysis. The shape and given signal characteristics of the velocity error signal are analyzed in details. Remote applications for controlling and monitoring the PID system from computer or smart phone, respectively, were also developed. The best setup and P, I, D parameters were set and calibration spectrum of α-Fe sample with an average nonlinearity of the velocity scale below 0.08% was collected. Furthermore, the width of the spectral line below 0.30 mm/s was observed. Powerful and complex velocity driving system was designed.
A study of thermal deformation in the carriage of a permanent magnet direct drive linear motor stage
International Nuclear Information System (INIS)
Chow, J.H.; Zhong, Z.W.; Lin, W.; Khoo, L.P.
2012-01-01
Carriage deformation due to temperature gradients within the materials of the carriage affects the accuracy of precision machines. This is largely due to the indeterminist temperature distribution in the carriage's material caused by the non-linearity of heat transfer. The joule heat from the motor coil forms the main heat source. When coupled with the heat loss through convection and radiation, the temperature variation in the motor's carriage also increases. In this study, the Finite Element Analysis was used together with a set of boundary conditions, which was obtained empirically, to analyze the distortion of the motor's carriage. The simulated results were compared with those obtained through experiments. The study shows that it is important to know, rather than to assume, the thermal boundary conditions of the motor's carriage of a precision machine in order to accurately estimate the thermal deformation of the carriage in precision machining. - Highlights: ► Deformation occurs in carriages which are mounted with linear motor. ► The convective coefficient, which is assumed to be 10 W mm −2 , is shown to be invalid. ► The perfect contact conductance is shown to be invalid too. ► To have an accurate thermal model, boundary conditions have to be realistic. ► Boundary conditions are the heat source, convective and conductance values.
Directory of Open Access Journals (Sweden)
Feng Xing
2018-03-01
Full Text Available The maglev linear motor has three degrees of motion freedom, which are respectively realized by the thrust force in the x-axis, the levitation force in the z-axis and the torque around the y-axis. Both the thrust force and levitation force can be seen as the sum of the forces on the three windings. The resultant thrust force and resultant levitation force are independently controlled by d-axis current and q-axis current respectively. Thus, the commonly used dq transformation control strategy is suitable for realizing the control of the resultant force, either thrust force and levitation force. However, the forces on the three windings also generate additional torque because they do not pass the mover mass center. To realize the maglev system high-precision control, a maglev linear motor with a new structure is proposed in this paper to decrease this torque. First, the electromagnetic model of the motor can be deduced through the Lorenz force formula. Second, the analytic method and finite element method are used to explore the reason of this additional torque and what factors affect its change trend. Furthermore, a maglev linear motor with a new structure is proposed, with two sets of 90 degrees shifted winding designed on the mover. Under such a structure, the mover position dependent periodic part of the additional torque can be offset. Finally, the theoretical analysis is validated by the simulation result that the additionally generated rotating torque can be offset with little fluctuation in the proposed new-structure maglev linear motor. Moreover, the control system is built in MATLAB/Simulink, which shows that it has small thrust ripple and high-precision performance.
Tiunov, V. V.
2018-02-01
The report provides results of the research related to the tubular linear induction motors’ application. The motors’ design features, a calculation model, a description of test specimens for mining and electric power industry are introduced. The most attention is given to the single-phase motors for high voltage switches drives with the usage of inexpensive standard single-phase transformers for motors’ power supply. The method of the motor’s parameters determination, when the motor is being fed from the transformer, working in the overload mode, was described, and the results of it practical usage were good enough for the engineering practice.
Stefano Filho, Carlos A; Attux, Romis; Castellano, Gabriela
2017-01-01
Hands motor imagery (MI) has been reported to alter synchronization patterns amongst neurons, yielding variations in the mu and beta bands' power spectral density (PSD) of the electroencephalography (EEG) signal. These alterations have been used in the field of brain-computer interfaces (BCI), in an attempt to assign distinct MI tasks to commands of such a system. Recent studies have highlighted that information may be missing if knowledge about brain functional connectivity is not considered. In this work, we modeled the brain as a graph in which each EEG electrode represents a node. Our goal was to understand if there exists any linear correlation between variations in the synchronization patterns-that is, variations in the PSD of mu and beta bands-induced by MI and alterations in the corresponding functional networks. Moreover, we (1) explored the feasibility of using functional connectivity parameters as features for a classifier in the context of an MI-BCI; (2) investigated three different types of feature selection (FS) techniques; and (3) compared our approach to a more traditional method using the signal PSD as classifier inputs. Ten healthy subjects participated in this study. We observed significant correlations ( p < 0.05) with values ranging from 0.4 to 0.9 between PSD variations and functional network alterations for some electrodes, prominently in the beta band. The PSD method performed better for data classification, with mean accuracies of (90 ± 8)% and (87 ± 7)% for the mu and beta band, respectively, versus (83 ± 8)% and (83 ± 7)% for the same bands for the graph method. Moreover, the number of features for the graph method was considerably larger. However, results for both methods were relatively close, and even overlapped when the uncertainties of the accuracy rates were considered. Further investigation regarding a careful exploration of other graph metrics may provide better alternatives.
Elliott, D. G.
1977-01-01
Measurements of reaction rail currents, reaction rail voltages, and airgap magnetic fields in tests of the Linear Induction Motor Research Vehicle (LIMRV) were compared with theoretical calculations from the mesh/matrix theory. It was found that the rail currents and magnetic fields predicted by the theory are within 20 percent of the measured currents and fields at most motor locations in most of the runs, but differ by as much as a factor of two in some cases. The most consistent difference is a higher experimental than theoretical magnetic field near the entrance of the motor and a lower experimental than theoretical magnetic field near the exit. The observed differences between the theoretical and experimental magnetic fields and currents do not account for the differences of as much as 26 percent between the theoretical and experimental thrusts.
International Nuclear Information System (INIS)
Khan, S.H.; Ivanov, A.A.
1995-01-01
An analytical method for calculating static characteristics of linear dc step motors (LSM) is described. These multiphase passive-armature motors are now being developed for control rod drives (CRD) in large nuclear reactors. The static characteristics of such LSM is defined by the variation of electromagnetic force with armature displacement and it determines motor performance in its standing and dynamic modes of operation. The proposed analytical technique for calculating this characteristic is based on the permeance analysis method applied to phase magnetic circuits of LSM. Reluctances of various parts of phase magnetic circuit is calculated analytically by assuming probable flux paths and by taking into account complex nature of magnetic field distribution in it. For given armature positions stator and armature iron saturations are taken into account by an efficient iterative algorithm which gives fast convergence. The method is validated by comparing theoretical results with experimental ones which shows satisfactory agreement for small stator currents and weak iron saturation
Directory of Open Access Journals (Sweden)
Jeong-Min Jo
2017-02-01
Full Text Available In the case of a long-stator linear drive, unlike rotative drives for which speed or position sensors are a single unit attached to the shaft, these sensors extend along the guideway. The position signals transmitted from a maglev vehicle cannot meet the need of the real-time propulsion control in the on-ground inverter power substations. In this paper the design of the propulsion inverter control system with a position estimator for driving a long-stator synchronous motor in a high-speed maglev train is proposed. The experiments have been carried out at the 150 m long guideway at the O-song test track. To investigate the performance of the position estimator, the propulsion control system with, and without, the position estimator are compared. The result confirms that the proposed strategy can meet the dynamic property needs of the propulsion inverter control system for driving long-stator linear synchronous motors.
Energy Technology Data Exchange (ETDEWEB)
Jeong, Sang Sub; Jang Seok Myeong [Chungnam National University(Korea)
2000-06-01
The 4-pole linear homopolar synchronous motor (LHSM), so called linear inductor motor, is composed of the figure-of-eight shaped 3-phase armature windings, DC field windings, and the segmented secondary with the transverse bar track. To reduce the calculation time, the simplified 3D finite element model with equivalent reluctance and/or permanent magnet is presented. To obtain a clear understanding, propriety and usefulness of the developed mode., we compare with the results of simplified 3D FEA and test. Consequently, the results of simplified and 3D FEM analysis are nearly identical, but much larger than that of static test at d-axis armature excitation. Therefore the improved FEA model, such as full model with half slot, is needed for the precise analysis. (author). refs., figs., tabs.
Lee, Dong-Jin; Lee, Sun-Kyu
2015-01-01
This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of a nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.
Directory of Open Access Journals (Sweden)
Caiyan Qin
2017-12-01
Full Text Available Due to its simple mechanical structure and high motion stability, the H-shaped platform has been increasingly widely used in precision measuring, numerical control machining and semiconductor packaging equipment, etc. The H-shaped platform is normally driven by multiple (three permanent magnet synchronous linear motors. The main challenges for H-shaped platform-control include synchronous control between the two linear motors in the Y direction as well as total positioning error of the platform mover, a combination of position deviation in X and Y directions. To deal with the above challenges, this paper proposes a control strategy based on the inverse system method through state feedback and dynamic decoupling of the thrust force. First, mechanical dynamics equations have been deduced through the analysis of system coupling based on the platform structure. Second, the mathematical model of the linear motors and the relevant coordinate transformation between dq-axis currents and ABC-phase currents are analyzed. Third, after the main concept of inverse system method being explained, the inverse system model of the platform control system has been designed after defining relevant system variables. Inverse system model compensates the original nonlinear coupled system into pseudo-linear decoupled linear system, for which typical linear control methods, like PID, can be adopted to control the system. The simulation model of the control system is built in MATLAB/Simulink and the simulation result shows that the designed control system has both small synchronous deviation and small total trajectory tracking error. Furthermore, the control program has been run on NI controller for both fixed-loop-time and free-loop-time modes, and the test result shows that the average loop computation time needed is rather small, which makes it suitable for real industrial applications. Overall, it proves that the proposed new control strategy can be used in
Directory of Open Access Journals (Sweden)
Ye-qing Huang
2016-01-01
Full Text Available Aiming at the existing problems of traditional water piston pump used in the naval ship, such as low efficiency, high noise, large vibration, and nonintelligent control, a new type of linear-motor-driven water piston pump is developed and its vibration characteristics are analyzed in this research. Based on the 3D model of the structure, the simulation analyses including static stress analysis, modal analysis, and harmonic response analysis are conducted. The simulation results reveal that the mode shape under low frequency stage is mainly associated with the eccentricity swing of the piston rod. The vibration experiment results show that the resonance frequency of linear-motor-driven water piston pump is concentrated upon 500 Hz and 800 Hz in the low frequency range. The dampers can change the resonance frequency of the system to a certain extent. The vibration under triangular motion curve is much better than that of S curve, which is consistent with the simulation conclusion. This research provides an effective method to detect the vibration characteristics and a reference for design and optimization of the linear-motor-driven water piston pump.
Liu, Yang; Song, Fazhi; Yang, Xiaofeng; Dong, Yue; Tan, Jiubin
2018-06-01
Due to their structural simplicity, linear motors are increasingly receiving attention for use in high velocity and high precision applications. The force ripple, as a space-periodic disturbance, however, would deteriorate the achievable dynamic performance. Conventional force ripple measurement approaches are time-consuming and have high requirements on the experimental conditions. In this paper, a novel learning identification algorithm is proposed for force ripple intelligent measurement and compensation. Existing identification schemes always use all the error signals to update the parameters in the force ripple. However, the error induced by noise is non-effective for force ripple identification, and even deteriorates the identification process. In this paper only the most pertinent information in the error signal is utilized for force ripple identification. Firstly, the effective error signals caused by the reference trajectory and the force ripple are extracted by projecting the overall error signals onto a subspace spanned by the physical model of the linear motor as well as the sinusoidal model of the force ripple. The time delay in the linear motor is compensated in the basis functions. Then, a data-driven approach is proposed to design the learning gain. It balances the trade-off between convergence speed and robustness against noise. Simulation and experimental results validate the proposed method and confirm its effectiveness and superiority.
Revill, Ann L; Fuglevand, Andrew J
2017-01-01
Motor neurons are the output neurons of the central nervous system and are responsible for controlling muscle contraction. When initially activated during voluntary contraction, firing rates of motor neurons increase steeply but then level out at modest rates. Activation of an intrinsic source of excitatory current at recruitment onset may underlie the initial steep increase in firing rate in motor neurons. We attempted to disable this intrinsic excitatory current by artificially activating an inhibitory reflex. When motor neuron activity was recorded while the inhibitory reflex was engaged, firing rates no longer increased steeply, suggesting that the intrinsic excitatory current was probably responsible for the initial sharp rise in motor neuron firing rate. During graded isometric contractions, motor unit (MU) firing rates increase steeply upon recruitment but then level off at modest rates even though muscle force continues to increase. The mechanisms underlying such firing behaviour are not known although activation of persistent inward currents (PICs) might be involved. PICs are intrinsic, voltage-dependent currents that activate strongly when motor neurons (MNs) are first recruited. Such activation might cause a sharp escalation in depolarizing current and underlie the steep initial rise in MU firing rate. Because PICs can be disabled with synaptic inhibition, we hypothesized that artificial activation of an inhibitory pathway might curb this initial steep rise in firing rate. To test this, human subjects performed slow triangular ramp contractions of the ankle dorsiflexors in the absence and presence of tonic synaptic inhibition delivered to tibialis anterior (TA) MNs by sural nerve stimulation. Firing rate profiles (expressed as a function of contraction force) of TA MUs recorded during these tasks were compared for control and stimulation conditions. Under control conditions, during the ascending phase of the triangular contractions, 93% of the firing
Sensor-Motor Maps for Describing Linear Reflex Composition in Hopping.
Schumacher, Christian; Seyfarth, André
2017-01-01
In human and animal motor control several sensory organs contribute to a network of sensory pathways modulating the motion depending on the task and the phase of execution to generate daily motor tasks such as locomotion. To better understand the individual and joint contribution of reflex pathways in locomotor tasks, we developed a neuromuscular model that describes hopping movements. In this model, we consider the influence of proprioceptive length (LFB), velocity (VFB) and force feedback (FFB) pathways of a leg extensor muscle on hopping stability, performance and efficiency (metabolic effort). Therefore, we explore the space describing the blending of the monosynaptic reflex pathway gains. We call this reflex parameter space a sensor-motor map . The sensor-motor maps are used to visualize the functional contribution of sensory pathways in multisensory integration. We further evaluate the robustness of these sensor-motor maps to changes in tendon elasticity, body mass, segment length and ground compliance. The model predicted that different reflex pathway compositions selectively optimize specific hopping characteristics (e.g., performance and efficiency). Both FFB and LFB were pathways that enable hopping. FFB resulted in the largest hopping heights, LFB enhanced hopping efficiency and VFB had the ability to disable hopping. For the tested case, the topology of the sensor-motor maps as well as the location of functionally optimal compositions were invariant to changes in system designs (tendon elasticity, body mass, segment length) or environmental parameters (ground compliance). Our results indicate that different feedback pathway compositions may serve different functional roles. The topology of the sensor-motor map was predicted to be robust against changes in the mechanical system design indicating that the reflex system can use different morphological designs, which does not apply for most robotic systems (for which the control often follows a specific
A novel large thrust-weight ratio V-shaped linear ultrasonic motor with a flexible joint.
Li, Xiaoniu; Yao, Zhiyuan; Yang, Mojian
2017-06-01
A novel large thrust-weight ratio V-shaped linear ultrasonic motor with a flexible joint is proposed in this paper. The motor is comprised of a V-shaped transducer, a slider, a clamp, and a base. The V-shaped transducer consists of two piezoelectric beams connected through a flexible joint to form an appropriate coupling angle. The V-shaped motor is operated in the coupled longitudinal-bending mode. Longitudinal and bending movements are transferred by the flexible joint between the two beams. Compared with the coupled longitudinal-bending mode of the single piezoelectric beam or the symmetrical and asymmetrical modes of the previous V-shaped transducer, the coupled longitudinal-bending mode of the V-shaped transducer with a flexible joint provides higher vibration efficiency and more convenient mode conformance adjustment. A finite element model of the V-shaped transducer is created to numerically study the influence of geometrical parameters and to determine the final geometrical parameters. In this paper, three prototypes were then fabricated and experimentally investigated. The modal test results match well with the finite element analysis. The motor mechanical output characteristics of three different coupling angles θ indicate that V-90 (θ = 90°) is the optimal angle. The mechanical output experiments conducted using the V-90 prototype (Size: 59.4 mm × 30.7 mm × 4 mm) demonstrate that the maximum unloaded speed is 1.2 m/s under a voltage of 350 Vpp, and the maximum output force is 15 N under a voltage of 300 Vpp. The proposed novel V-shaped linear ultrasonic motor has a compact size and a simple structure with a large thrust-weight ratio (0.75 N/g) and high speed.
Design of a Control System for a Maglev Planar Motor Based on Two-Dimension Linear Interpolation
Directory of Open Access Journals (Sweden)
Feng Xing
2017-08-01
Full Text Available In order to realize the high speed and high-precision control of a maglev planar motor, a high-precision electromagnetic model is needed in the first place, which can also contribute to meeting the real-time running requirements. Traditionally, the electromagnetic model is based on analytical calculations. However, this neglects the model simplification and the manufacturing errors, which may bring certain errors to the model. Aiming to handle this inaccuracy, this paper proposes a novel design method for a maglev planar motor control system based on two-dimensional linear interpolation. First, the magnetic field is divided into several regions according to the symmetry of the Halbach magnetic array, and the uniform grid method is adopted to partition one of these regions. Second, targeting this region, it is possible to sample the electromagnetic forces and torques on each node of the grid and obtain the complete electromagnetic model in this region through the two-dimensional linear interpolation method. Third, the whole electromagnetic model of the maglev planar motor can be derived according to the symmetry of the magnetic field. Finally, the decoupling method and controller are designed according to this electromagnetic model, and thereafter, the control model can be established. The designed control system is demonstrated through simulations and experiments to feature better accuracy and meet the requirements of real-time control.
Sensor-Motor Maps for Describing Linear Reflex Composition in Hopping
Directory of Open Access Journals (Sweden)
Christian Schumacher
2017-11-01
Full Text Available In human and animal motor control several sensory organs contribute to a network of sensory pathways modulating the motion depending on the task and the phase of execution to generate daily motor tasks such as locomotion. To better understand the individual and joint contribution of reflex pathways in locomotor tasks, we developed a neuromuscular model that describes hopping movements. In this model, we consider the influence of proprioceptive length (LFB, velocity (VFB and force feedback (FFB pathways of a leg extensor muscle on hopping stability, performance and efficiency (metabolic effort. Therefore, we explore the space describing the blending of the monosynaptic reflex pathway gains. We call this reflex parameter space a sensor-motor map. The sensor-motor maps are used to visualize the functional contribution of sensory pathways in multisensory integration. We further evaluate the robustness of these sensor-motor maps to changes in tendon elasticity, body mass, segment length and ground compliance. The model predicted that different reflex pathway compositions selectively optimize specific hopping characteristics (e.g., performance and efficiency. Both FFB and LFB were pathways that enable hopping. FFB resulted in the largest hopping heights, LFB enhanced hopping efficiency and VFB had the ability to disable hopping. For the tested case, the topology of the sensor-motor maps as well as the location of functionally optimal compositions were invariant to changes in system designs (tendon elasticity, body mass, segment length or environmental parameters (ground compliance. Our results indicate that different feedback pathway compositions may serve different functional roles. The topology of the sensor-motor map was predicted to be robust against changes in the mechanical system design indicating that the reflex system can use different morphological designs, which does not apply for most robotic systems (for which the control often follows a
Christman, Stephen D; Weaver, Ryan
2008-05-01
The nature of temporal variability during speeded finger tapping was examined using linear (standard deviation) and non-linear (Lyapunov exponent) measures. Experiment 1 found that right hand tapping was characterised by lower amounts of both linear and non-linear measures of variability than left hand tapping, and that linear and non-linear measures of variability were often negatively correlated with one another. Experiment 2 found that increased non-linear variability was associated with relatively enhanced performance on a closed-loop motor task (mirror tracing) and relatively impaired performance on an open-loop motor task (pointing in a dark room), especially for left hand performance. The potential uses and significance of measures of non-linear variability are discussed.
International Nuclear Information System (INIS)
Khan, S.H.; Ivanov, A.A.
1993-01-01
This paper describes an approximate method for calculating the static characteristics of linear step motors (LSM), being developed for control rod drives (CRD) in large nuclear reactors. The static characteristic of such an LSM which is given by the variation of electromagnetic force with armature displacement determines the motor performance in its standing and dynamic modes. The approximate method of calculation of these characteristics is based on the permeance analysis method applied to the phase magnetic circuit of LSM. This is a simple, fast and efficient analytical approach which gives satisfactory results for small stator currents and weak iron saturation, typical to the standing mode of operation of LSM. The method is validated by comparing theoretical results with experimental ones. (Author)
Directory of Open Access Journals (Sweden)
G.M. Golenkov
2014-12-01
Full Text Available Theoretical and experimental investigations of the amplitude, phase and inertia-power frequency characteristics of two types of coaxial-linear electric motors of back-and-forth motion with permanent magnets, which magnetization vector is directed axially and radially relative to the axis of the runner are carried out. The comparative analysis of characteristics of these motors is presented.
Non Linear, Time Variant Speed Control of a Single Phase Hybrid Switched Reluctance Motor
DEFF Research Database (Denmark)
Jakobsen, Uffe; Ahn, Jin Woo
2009-01-01
A high torque ripple in a given motor always presents a challenge for the speed control, since this ripple may lead to excessive actuation and ultimately may even lead to instability. The conventional solution is to low pass filter the measured speed, but this lowers dynamic control performance...
Energy Technology Data Exchange (ETDEWEB)
Hasanien, Hany M., E-mail: Hanyhasanien@ieee.or [Dept. of Elec. Power and Machines, Faculty of Eng., Ain-shams Univ. Cairo (Egypt); Muyeen, S.M. [Department of Electrical Engineering, Petroleum Institute, Abu Dhabi (United Arab Emirates); Tamura, Junji [Department of EEE, Kitami Institute of Technology, 165 Koen Cho, Kitami 090-8507, Hokkaido (Japan)
2010-12-15
This paper presents a novel adaptive neuro-fuzzy controller applies on transverse flux linear motor for controlling its speed. The proposed controller presents fuzzy logic controller with self tuning scaling factors based on artificial neural network structure. It has two input variables and one control output variable. Firstly the fuzzy logic control rules are described then NN architecture is represented to self tune the output scaling factors of the controller. The application of this control technique represents the novelty of work, where this algorithm has so far not been stated before for this type of drives. This methodology solves the problem of nonlinearities and load changes of TFLM drives. The dynamic response of the motor is studied under the rated load condition as well as load disturbances. The proposed controller ensures fast and accurate dynamic response with an excellent steady state performance. The dynamic response of the motor with the proposed controller is compared with PI and adaptive NN controllers. It is found that the proposed controller gives better and faster response from the viewpoint of overshoot and settling time. Matlab/Simulink tool is used for this dynamic simulation study.
Energy Technology Data Exchange (ETDEWEB)
Mnich, P; Huebner, K D
1980-07-15
In this paper the influence of the motor current on the magnetic force is investigated by an analytical method. With the integrated synchronous linear motor the reactions of the current sheet on the excitation field are depending on the pole angle and the amplitude of the current sheet. For an undisturbed operation - current sheet and induction wave in phase - the influence of the motor current on the magnetic force can be neglected. In case of a disturbed performance, i.e. when the pole angle is changing periodically, fluctuations of the magnetic force will be found. This effect has to be compensated by a reserve magnetic force in the levitation control. With the technical data for the new magnetic levitation pilots plants (International Traffic Fair 1979 at Hamburg and Transrapid - Pilot Plant Emsland) the stated relations are evaluated. Approximated relations for the levitation force are derived. For comparison, a finite-difference computer programme from the 'Institut fuer elektrische Maschinen, Antriebe und Bahnen, Technische Universitaet Braunschweig' is applied. The approximated relations developed in this paper are verified - with a sufficient precision - by the numerical calculations.
Pan, Qiaosheng; Miao, Enming; Wu, Bingxuan; Chen, Weikang; Lei, Xiujun; He, Liangguo
2017-07-01
A novel, bio-inspired, single-phase driven piezoelectric linear motor (PLM) using an asymmetric stator was designed, fabricated, and tested to avoid mode degeneracy and to simplify the drive mechanism of a piezoelectric motor. A piezoelectric transducer composed of two piezoelectric stacks and a displacement amplifier was used as the driving element of the PLM. Two simple and specially designed claws performed elliptical motion. A numerical simulation was performed to design the stator and determine the feasibility of the design mechanism of the PLM. Moreover, an experimental setup was built to validate the working principles, as well as to evaluate the performance, of the PLM. The prototype motor outputs a no-load speed of 233.7 mm/s at a voltage of 180 V p-p and a maximum thrust force of 2.3 N under a preload of 10 N. This study verified the feasibility of the proposed design and provided a method to simplify the driving harmonic signal and structure of PLMs.
International Nuclear Information System (INIS)
Lee, Moon G.; Gweon, Dae-Gab
2004-01-01
A comparative analysis is performed for linear motors adopting conventional and multi-segmented trapezoidal (MST) magnet arrays, respectively, for a high-precision positioning system. The proposed MST magnet array is a modified version of a Halbach magnet array. The MST array has trapezoidal magnets with variable shape and dimensions while the Halbach magnet array generally has a rectangular magnet with identical dimensions. We propose a new model that can describe the magnetic field resulting from the complex-shaped magnets. The model can be applied to both MST and conventional magnet arrays. Using the model, a design optimization of the two types of linear motors is performed and compared. The magnet array with trapezoidal magnets can produce more force than one with rectangular magnets when they are arrayed in a linear motor where there is a yoke with high permeability. After the optimization and comparison, we conclude that the linear motor with the MST magnet array can generate more actuating force per volume than the motor with the conventional array. In order to satisfy the requirements of next generation systems such as high resolution, high speed, and long stroke, the use of a linear motor with a MST array as an actuator in a high precision positioning system is recommended from the results obtained here
Directory of Open Access Journals (Sweden)
G.M. Golenkov
2015-12-01
Full Text Available Purpose. The research of the influence of value and direction of current on the equivalent spring magnetic force based on coaxial-linear motor (CLM – MS. Methodology. We carried out investigation of the equivalent harshness of magnetic spring with determination of electromechanical propulsion performance characteristics by the methods of computer modeling and experimental research of physical model of CLM – MS. The modeling of magnetic spring of CLM – MS is carried out by the finite-element method. The challenge is met as an axisymmetric challenge in cylindrical co-ordinates in magnetostatic approach. The experimental investigattion of the propulsion performance characteristics of magnetic spring is carried out on the test bench. Results. After the computer modeling and the experimental investigation of the electromechanical propulsion performance characteristics of magnetic spring the expressions of equivalent stiffness coefficient depending on the current in winding are obtained. The results of computer modeling are confirmed experimentally. Originality. The determination of equivalent stiffness coefficient of magnetic spring of vibration exciter based on coaxial-linear motor. Practical value. The obtained determination of equivalent stiffness coefficient of magnetic spring may be used in process of designing of vibration machines with devices for change of natural oscillation frequency.
Nondahl, T. A.; Richter, E.
1980-09-01
A design study of two types of single sided (with a passive rail) linear electric machine designs, namely homopolar linear synchronous machines (LSM's) and linear induction machines (LIM's), is described. It is assumed the machines provide tractive effort for several types of light rail vehicles and locomotives. These vehicles are wheel supported and require tractive powers ranging from 200 kW to 3735 kW and top speeds ranging from 112 km/hr to 400 km/hr. All designs are made according to specified magnetic and thermal criteria. The LSM advantages are a higher power factor, much greater restoring forces for track misalignments, and less track heating. The LIM advantages are no need to synchronize the excitation frequency precisely to vehicle speed, simpler machine construction, and a more easily anchored track structure. The relative weights of the two machine types vary with excitation frequency and speed; low frequencies and low speeds favor the LSM.
Alahmadi, Adnan A S; Samson, Rebecca S; Gasston, David; Pardini, Matteo; Friston, Karl J; D'Angelo, Egidio; Toosy, Ahmed T; Wheeler-Kingshott, Claudia A M
2016-06-01
Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF-neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.
Energy Technology Data Exchange (ETDEWEB)
Azusawa, T [Toshiba Corp., Tokyo (Japan)
1994-05-20
The simple analysis method of persistent current induced in on-board superconducting coils was proposed for the vehicle of a superconducting magnetically-suspended train which is running in the magnetic field generated by armature coil current of a linear synchronous motor installed along a guideway, and the performance of the method is discussed through calculation based on typical models. As fluctuation of persistent current due to running was calculated with various parameter values under a normal running condition, fluctuation of persistent current induced was less then 1% of an initial magnetomotive force, having no adverse effect on the stability and reliability of superconducting magnets. Electromagnetic forces under a normal running condition could be predicted accurately enough by relatively easy-to-calculate constant current mode analysis. Double-layered armature coils were preferred to single-layered ones to enhance the stability of superconducting magnets by reducing fluctuation of persistent current. 10 refs., 8 figs., 1 tab.
Body mass index and motor coordination: Non-linear relationships in children 6-10 years.
Lopes, V P; Malina, R M; Maia, J A R; Rodrigues, L P
2018-05-01
Given the concern for health-related consequences of an elevated body mass index (BMI; obesity), the potential consequences of a low BMI in children are often overlooked. The purpose was to evaluate the relationship between the BMI across its entire spectrum and motor coordination (MC) in children 6-10 years. Height, weight, and MC (Körperkoordinationstest für Kinder, KTK test battery) were measured in 1,912 boys and 1,826 girls of 6-10 years of age. BMI (kg/m 2 ) was calculated. KTK scores for each of the four tests were also converted to a motor quotient (MQ). One-way ANOVA was used to test differences in the BMI, individual test items, and MQ among boys and girls within age groups. Sex-specific quadratic regressions of individual KTK items and the MQ on the BMI were calculated. Girls and boys were also classified into four weight status groups using International Obesity Task Force criteria: thin, normal, overweight, and obese. Differences in specific test items and MQ between weight status groups were evaluated by age group in each sex. Thirty-one percent of the sample was overweight or obese, whereas 5% was thin. On average, normal weight children had the highest MQ in both sexes across the age range with few exceptions. Overweight/obese children had a lower MQ than normal weight and thin children. The quadratic regression lines generally presented an inverted parabolic relationship between the BMI and MC and suggested a decrease in MC with an increase in the BMI. In general, BMI shows a curvilinear, inverted parabolic relationship with MC in children 6-10 years. © 2018 John Wiley & Sons Ltd.
Eastham, A. R.; Katz, R. M.
1980-09-01
Two test programs have been conducted to evaluate the performance of a single-sided linear induction motor with a squirrel-cage reaction rail and with a solid steel reaction rail. A 1.73-m-long six-pole stator interacted with the rails mounted on the rim of a 7.6-m-diam wheel. A 64-channel data acquisition system allowed tests to be performed over a wide range of operating conditions at speeds up to 20 m/sec. Typical test results which compare and contrast the mechanical, electrical and magnetic behavior of the SLIMs are presented. The test data are being used to assess the SLIM as an integrated suspension/propulsion system and for other transportation applications.
Disc rotors with permanent magnets for brushless DC motor
Hawsey, Robert A.; Bailey, J. Milton
1992-01-01
A brushless dc permanent magnet motor drives an autonomous underwater vehe. In one embodiment, the motor comprises four substantially flat stators in stacked relationship, with pairs of the stators axially spaced, each of the stators comprising a tape-wound stator coil, and first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and a drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore in which the first shaft is disposed. Two different sets of bearings support the first and second shafts. In another embodiment, the motor comprises two ironless stators and pairs of rotors mounted on opposite sides of the stators and driven by counterrotating shafts.
Three dimensional force prediction in a model linear brushless dc motor
Energy Technology Data Exchange (ETDEWEB)
Moghani, J.S.; Eastham, J.F.; Akmese, R.; Hill-Cottingham, R.J. (Univ. of Bath (United Kingdom). School of Electronic and Electric Engineering)
1994-11-01
Practical results are presented for the three axes forces produced on the primary of a linear brushless dc machine which is supplied from a three-phase delta-modulated inverter. Conditions of both lateral alignment and lateral displacement are considered. Finite element analysis using both two and three dimensional modeling is compared with the practical results. It is shown that a modified two dimensional model is adequate, where it can be used, in the aligned position and that the full three dimensional method gives good results when the machine is axially misaligned.
Raksin, Jonathan N; Glaze, Christopher M; Smith, Sarah; Schmidt, Marc F
2012-04-01
Motor-related forebrain areas in higher vertebrates also show responses to passively presented sensory stimuli. However, sensory tuning properties in these areas, especially during wakefulness, and their relation to perception, are poorly understood. In the avian song system, HVC (proper name) is a vocal-motor structure with auditory responses well defined under anesthesia but poorly characterized during wakefulness. We used a large set of stimuli including the bird's own song (BOS) and many conspecific songs (CON) to characterize auditory tuning properties in putative interneurons (HVC(IN)) during wakefulness. Our findings suggest that HVC contains a diversity of responses that vary in overall excitability to auditory stimuli, as well as bias in spike rate increases to BOS over CON. We used statistical tests to classify cells in order to further probe auditory responses, yielding one-third of neurons that were either unresponsive or suppressed and two-thirds with excitatory responses to one or more stimuli. A subset of excitatory neurons were tuned exclusively to BOS and showed very low linearity as measured by spectrotemporal receptive field analysis (STRF). The remaining excitatory neurons responded well to CON stimuli, although many cells still expressed a bias toward BOS. These findings suggest the concurrent presence of a nonlinear and a linear component to responses in HVC, even within the same neuron. These characteristics are consistent with perceptual deficits in distinguishing BOS from CON stimuli following lesions of HVC and other song nuclei and suggest mirror neuronlike qualities in which "self" (here BOS) is used as a referent to judge "other" (here CON).
Caçola, Priscila M; Pant, Mohan D
2014-10-01
The purpose was to use a multi-level statistical technique to analyze how children's age, motor proficiency, and cognitive styles interact to affect accuracy on reach estimation tasks via Motor Imagery and Visual Imagery. Results from the Generalized Linear Mixed Model analysis (GLMM) indicated that only the 7-year-old age group had significant random intercepts for both tasks. Motor proficiency predicted accuracy in reach tasks, and cognitive styles (object scale) predicted accuracy in the motor imagery task. GLMM analysis is suitable to explore age and other parameters of development. In this case, it allowed an assessment of motor proficiency interacting with age to shape how children represent, plan, and act on the environment.
Bayesian integration and non-linear feedback control in a full-body motor task.
Stevenson, Ian H; Fernandes, Hugo L; Vilares, Iris; Wei, Kunlin; Körding, Konrad P
2009-12-01
A large number of experiments have asked to what degree human reaching movements can be understood as being close to optimal in a statistical sense. However, little is known about whether these principles are relevant for other classes of movements. Here we analyzed movement in a task that is similar to surfing or snowboarding. Human subjects stand on a force plate that measures their center of pressure. This center of pressure affects the acceleration of a cursor that is displayed in a noisy fashion (as a cloud of dots) on a projection screen while the subject is incentivized to keep the cursor close to a fixed position. We find that salient aspects of observed behavior are well-described by optimal control models where a Bayesian estimation model (Kalman filter) is combined with an optimal controller (either a Linear-Quadratic-Regulator or Bang-bang controller). We find evidence that subjects integrate information over time taking into account uncertainty. However, behavior in this continuous steering task appears to be a highly non-linear function of the visual feedback. While the nervous system appears to implement Bayes-like mechanisms for a full-body, dynamic task, it may additionally take into account the specific costs and constraints of the task.
Bayesian integration and non-linear feedback control in a full-body motor task.
Directory of Open Access Journals (Sweden)
Ian H Stevenson
2009-12-01
Full Text Available A large number of experiments have asked to what degree human reaching movements can be understood as being close to optimal in a statistical sense. However, little is known about whether these principles are relevant for other classes of movements. Here we analyzed movement in a task that is similar to surfing or snowboarding. Human subjects stand on a force plate that measures their center of pressure. This center of pressure affects the acceleration of a cursor that is displayed in a noisy fashion (as a cloud of dots on a projection screen while the subject is incentivized to keep the cursor close to a fixed position. We find that salient aspects of observed behavior are well-described by optimal control models where a Bayesian estimation model (Kalman filter is combined with an optimal controller (either a Linear-Quadratic-Regulator or Bang-bang controller. We find evidence that subjects integrate information over time taking into account uncertainty. However, behavior in this continuous steering task appears to be a highly non-linear function of the visual feedback. While the nervous system appears to implement Bayes-like mechanisms for a full-body, dynamic task, it may additionally take into account the specific costs and constraints of the task.
Woo, John H; Wang, Sumei; Melhem, Elias R; Gee, James C; Cucchiara, Andrew; McCluskey, Leo; Elman, Lauren
2014-01-01
To assess the relationship between clinically assessed Upper Motor Neuron (UMN) disease in Amyotrophic Lateral Sclerosis (ALS) and local diffusion alterations measured in the brain corticospinal tract (CST) by a tractography-driven template-space region-of-interest (ROI) analysis of Diffusion Tensor Imaging (DTI). This cross-sectional study included 34 patients with ALS, on whom DTI was performed. Clinical measures were separately obtained including the Penn UMN Score, a summary metric based upon standard clinical methods. After normalizing all DTI data to a population-specific template, tractography was performed to determine a region-of-interest (ROI) outlining the CST, in which average Mean Diffusivity (MD) and Fractional Anisotropy (FA) were estimated. Linear regression analyses were used to investigate associations of DTI metrics (MD, FA) with clinical measures (Penn UMN Score, ALSFRS-R, duration-of-disease), along with age, sex, handedness, and El Escorial category as covariates. For MD, the regression model was significant (p = 0.02), and the only significant predictors were the Penn UMN Score (p = 0.005) and age (p = 0.03). The FA regression model was also significant (p = 0.02); the only significant predictor was the Penn UMN Score (p = 0.003). Measured by the template-space ROI method, both MD and FA were linearly associated with the Penn UMN Score, supporting the hypothesis that DTI alterations reflect UMN pathology as assessed by the clinical examination.
Directory of Open Access Journals (Sweden)
Abbasian Mohsen
2013-02-01
Full Text Available Results of theoretical and experimental research on magnetic induction distribution in the air gap of a coaxially-linear synchronous motor with reciprocal motion within the pole pitch and axial and radial direction of the permanent magnets magnetization are presented.
Cohen-Krausz, Sara; Cabahug, Pamela C; Trachtenberg, Shlomo
2011-07-08
Spiroplasmas belong to the class Mollicutes, representing the minimal, free-living, and self-replicating forms of life. Spiroplasmas are helical wall-less bacteria and the only ones known to swim by means of a linear motor (rather than the near-universal rotary bacterial motor). The linear motor follows the shortest path along the cell's helical membranal tube. The motor is composed of a flat monolayered ribbon of seven parallel fibrils and is believed to function in controlling cell helicity and motility through dynamic, coordinated, differential length changes in the fibrils. The latter cause local perturbations of helical symmetry, which are essential for net directional displacement in environments with a low Reynolds number. The underlying fibrils' core building block is a circular tetramer of the 59-kDa protein Fib. The fibrils' differential length changes are believed to be driven by molecular switching of Fib, leading consequently to axial ratio and length changes in tetrameric rings. Using cryo electron microscopy, diffractometry, single-particle analysis of isolated ribbons, and sequence analyses of Fib, we determined the overall molecular organization of the Fib monomer, tetramer, fibril, and linear motor of Spiroplasma melliferum BC3 that underlies cell geometry and motility. Fib appears to be a bidomained molecule, of which the N-terminal half is apparently a globular phosphorylase. By a combination of reversible rotation and diagonal shift of Fib monomers, the tetramer adopts either a cross-like nonhanded conformation or a ring-like handed conformation. The sense of Fib rotation may determine the handedness of the linear motor and, eventually, of the cell. A further change in the axial ratio of the ring-like tetramers controls fibril lengths and the consequent helical geometry. Analysis of tetramer quadrants from adjacent fibrils clearly demonstrates local differential fibril lengths. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mass distribution and spatial organization of the linear bacterial motor of Spiroplasma citri R8A2.
Trachtenberg, Shlomo; Andrews, S Brian; Leapman, Richard D
2003-03-01
In the simple, helical, wall-less bacterial genus Spiroplasma, chemotaxis and motility are effected by a linear, contractile motor arranged as a flat cytoskeletal ribbon attached to the inner side of the membrane along the shortest helical line. With scanning transmission electron microscopy and diffraction analysis, we determined the hierarchical and spatial organization of the cytoskeleton of Spiroplasma citri R8A2. The structural unit appears to be a fibril, approximately 5 nm wide, composed of dimers of a 59-kDa protein; each ribbon is assembled from seven fibril pairs. The functional unit of the intact ribbon is a pair of aligned fibrils, along which pairs of dimers form tetrameric ring-like repeats. On average, isolated and purified ribbons contain 14 fibrils or seven well-aligned fibril pairs, which are the same structures observed in the intact cell. Scanning transmission electron microscopy mass analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified cytoskeletons indicate that the 59-kDa protein is the only constituent of the ribbons.
Energy Technology Data Exchange (ETDEWEB)
Kikuma, T.; Ishiyama, A. [Waseda Univ., Tokyo (Japan)
2000-05-29
For the purpose of examining the characteristics (effect of stability and ac loss by the higher harmonic wave etc.) of an alternating current superconductivity winding under a real machine operating environment of the super-conductive AC machine vessel, authors produced a cylindrical shortness first linear guiding motor (SCLIM) which used the NbTi/CuNi super-conducting cable for the first excitation winding experimentally. In this study, the evaluation of the start up thrust and operation confirmation of the quenching detection protection circuit were carried out using the produced SCLIM. In the quenching detection protection control circuit, the first excitation winding was divided into an internal layer and an outer layer, and both layers were excited in the 2 layer division and a quenching detection protection circuit was installed on the 2 layers respectively. The circuit of a part of fact by this of the phase in which the quench was generated and observed was cut off, and the operation would be able to be continued in part of the remainder of the phase and other two phases. Here, it is to cut off the quenched phase from the circuit, when the phase current becomes zero, and the other effect on the phase is held as small as possible. (NEDO)
Multilevel DC Link Inverter for Brushless Permanent Magnet Motors with Very Low Inductance
International Nuclear Information System (INIS)
Su, G.J.
2001-01-01
Due to their long effective air gaps, permanent magnet motors tend to have low inductance. The use of ironless stator structure in present high power PM motors (several tens of kWs) reduces the inductance even further ( and lt; 100(micro)H). This low inductance imposes stringent current regulation demands for the inverter to obtain acceptable current ripple. An analysis of the current ripple for these low inductance brushless PM motors shows that a standard inverter with the most commonly used IGBT switching devices cannot meet the current regulation demands and will produce unacceptable current ripples due to the IGBT's limited switching frequency. This paper introduces a new multilevel dc link inverter, which can dramatically reduce the current ripple for brushless PM motor drives. The operating principle and design guidelines are included
Free piston linear generator for low grid power generation
Directory of Open Access Journals (Sweden)
Abdalla Izzeldin
2017-01-01
Full Text Available Generating power is of great importance nowadays across the world. However, recently, the world became aware of the climatic changes due to the greenhouse effect caused by CO2 emissions and began seeking solutions to reduce the negative impact on the environment. Besides, the exhaustion of fossil fuels and their environmental impact, make it is crucial to develop clean energy sources, and efforts are focused on developing and improving the efficiency of all energy consuming systems. The tubular permanent magnet linear generators (TPMLGs are the best candidate for energy converters. Despite being suffering problem of attraction force between permanent magnets and stator teeth, to eliminate such attraction force, ironless-stator could be considered. Thus, they could waive the presence of any magnetic attraction between the moving and stator part. This paper presents the design and analysis of ironless -cored TPMLG for low grid power generation. The main advantages of this generator are the low cogging force and high efficiency. Therefore, the magnetic field computation of the proposed generator has been performed by applying a magnetic vector potential and utilizing a 2-D finite element analysis (FEA. Moreover, the experimental results for the current profile, pressure profile and velocity profile have been presented.
Doff, Adriano; Szmoski, Romeu M.
2016-01-01
Neste trabalho exploramos o potencial didático de um motor homopolar linear com o objetivo de ilustrar o princípio de funcionamento de um acelerador de partículas. A fim de estabelecer o mecanismo de funcionamento de um motor homopolar linear, consideramos uma analogia com a descrição de um motor homopolar rotatório, e partir deste apresentamos os princípios de funcionamento deste dispositivo e estabelecemos um limite teórico para a velocidade do motor linear. De posse dos dados gerados exper...
Amano, Ken-Ichi; Yoshidome, Takashi; Iwaki, Mitsuhiro; Suzuki, Makoto; Kinoshita, Masahiro
2010-07-28
We report a new progress in elucidating the mechanism of the unidirectional movement of a linear-motor protein (e.g., myosin) along a filament (e.g., F-actin). The basic concept emphasized here is that a potential field is entropically formed for the protein on the filament immersed in solvent due to the effect of the translational displacement of solvent molecules. The entropic potential field is strongly dependent on geometric features of the protein and the filament, their overall shapes as well as details of the polyatomic structures. The features and the corresponding field are judiciously adjusted by the binding of adenosine triphosphate (ATP) to the protein, hydrolysis of ATP into adenosine diphosphate (ADP)+Pi, and release of Pi and ADP. As the first step, we propose the following physical picture: The potential field formed along the filament for the protein without the binding of ATP or ADP+Pi to it is largely different from that for the protein with the binding, and the directed movement is realized by repeated switches from one of the fields to the other. To illustrate the picture, we analyze the spatial distribution of the entropic potential between a large solute and a large body using the three-dimensional integral equation theory. The solute is modeled as a large hard sphere. Two model filaments are considered as the body: model 1 is a set of one-dimensionally connected large hard spheres and model 2 is a double helical structure formed by two sets of connected large hard spheres. The solute and the filament are immersed in small hard spheres forming the solvent. The major findings are as follows. The solute is strongly confined within a narrow space in contact with the filament. Within the space there are locations with sharply deep local potential minima along the filament, and the distance between two adjacent locations is equal to the diameter of the large spheres constituting the filament. The potential minima form a ringlike domain in model 1
Directory of Open Access Journals (Sweden)
Jalalifar Mehran
2007-01-01
Full Text Available In this paper using adaptive backstepping approach an adaptive rotor flux observer which provides stator and rotor resistances estimation simultaneously for induction motor used in series hybrid electric vehicle is proposed. The controller of induction motor (IM is designed based on input-output feedback linearization technique. Combining this controller with adaptive backstepping observer the system is robust against rotor and stator resistances uncertainties. In additional, mechanical components of a hybrid electric vehicle are called from the Advanced Vehicle Simulator Software Library and then linked with the electric motor. Finally, a typical series hybrid electric vehicle is modeled and investigated. Various tests, such as acceleration traversing ramp, and fuel consumption and emission are performed on the proposed model of a series hybrid vehicle. Computer simulation results obtained, confirm the validity and performance of the proposed IM control approach using for series hybrid electric vehicle.
Rodriguez-Sabate, Clara; Morales, Ingrid; Sanchez, Alberto; Rodriguez, Manuel
2017-01-01
The complexity of basal ganglia (BG) interactions is often condensed into simple models mainly based on animal data and that present BG in closed-loop cortico-subcortical circuits of excitatory/inhibitory pathways which analyze the incoming cortical data and return the processed information to the cortex. This study was aimed at identifying functional relationships in the BG motor-loop of 24 healthy-subjects who provided written, informed consent and whose BOLD-activity was recorded by MRI methods. The analysis of the functional interaction between these centers by correlation techniques and multiple linear regression showed non-linear relationships which cannot be suitably addressed with these methods. The multiple correspondence analysis (MCA), an unsupervised multivariable procedure which can identify non-linear interactions, was used to study the functional connectivity of BG when subjects were at rest. Linear methods showed different functional interactions expected according to current BG models. MCA showed additional functional interactions which were not evident when using lineal methods. Seven functional configurations of BG were identified with MCA, two involving the primary motor and somatosensory cortex, one involving the deepest BG (external-internal globus pallidum, subthalamic nucleus and substantia nigral), one with the input-output BG centers (putamen and motor thalamus), two linking the input-output centers with other BG (external pallidum and subthalamic nucleus), and one linking the external pallidum and the substantia nigral. The results provide evidence that the non-linear MCA and linear methods are complementary and should be best used in conjunction to more fully understand the nature of functional connectivity of brain centers.
Energy Technology Data Exchange (ETDEWEB)
Fuerst, R [Industrieanlagen-Betriebsgesellschaft mbH, Magnetbahn-Versuchsanlage, Lathen/Ems (Germany)
1996-12-31
In German high-speed magnetic train technology, iron-clad synchronous long-stator linear motors of levitation stator design are used to propel and brake the vehicles. This paper uses the propulsion design of the Transrapid test facility in Emsland (TVE) to illustrate in practical terms the dimensioning parameters for thrust calculations and their interdependencies. The paper is based on description conventions common for rotating electrical machines and rail technology. (orig.)
International Nuclear Information System (INIS)
Baklanov, A.V.; Gavrish, Yu.N.; Klinov, A.P.; Krest'yaninov, A.S.; Nikolaev, V.M.; Fomin, L.P.; Linkenbach, H.A.; Geus, G.; Knospel, W.
2001-01-01
A new development of a small-sized linear accelerator of 2.5 MeV electrons with a local radiation protection is described. The accelerator is intended for movable facilities of radiation custom of the freight transported by motor transport. Main constructive solutions, mass and dimension characteristics and results of preliminary tests of the accelerator parameters and characteristics of radiation protection are presented [ru
Negro, Francesco; Holobar, Ales; Farina, Dario
2009-12-15
The aim of the study was to investigate the relation between linear transformations of motor unit discharge rates and muscle force. Intramuscular (wire electrodes) and high-density surface EMG (13 x 5 electrode grid) were recorded from the abductor digiti minimi muscle of eight healthy men during 60 s contractions at 5%, 7.5% and 10% of the maximal force. Spike trains of a total of 222 motor units were identified from the EMG recordings with decomposition algorithms. Principal component analysis of the smoothed motor unit discharge rates indicated that one component (first common component, FCC) described 44.2 +/- 7.5% of the total variability of the smoothed discharge rates when computed over the entire contraction interval and 64.3 +/- 10.2% of the variability when computed over 5 s intervals. When the FCC was computed from four or more motor units per contraction, it correlated with the force produced by the muscle (62.7 +/- 10.1%) by a greater degree (P FCC and the force signal increased up to 71.8 +/- 13.1% when the duration and the shape of the smoothing window for discharge rates were similar to the average motor unit twitch force. Moreover, the coefficients of variation (CoV) for the force and for the FCC signal were correlated in all subjects (R(2) range = 0.14-0.56; P measures on the tibialis anterior muscle of an additional eight subjects during contractions at forces up to 20% of the maximal force (e.g. FCC explained 59.8 +/- 11.0% of variability of the smoothed discharge rates). In conclusion, one signal captures most of the underlying variability of the low-frequency components of motor unit discharge rates and explains large part of the fluctuations in the motor output during isometric contractions.
Directory of Open Access Journals (Sweden)
Eduardo Giraldo Suárez
2009-01-01
Full Text Available Este documento presenta la aplicación de la técnica de control no lineal clásica llamada linealización por realimentación de variables de estado. Se hace una aplicación en el motor de inducción, la variable a controlar es la velocidad del eje del motor, el sistema emplea el esquema de control vectorial para máquinas de corriente alterna desarrollado en las últimas décadas; este método es análogo a la técnica de control del motor de corriente directa. El modelo del motor de inducción se describe en el sistema de coordenadas de campo orientado del flujo de rotor y se muestra una introducción al producto y la derivada de Lie, empleados en el diseño del controlador no lineal.This articles shows the application of a classic non-linear control technique called "linearization by feedback of status variables." An application on the induction engine is made. Variable to be controlled is speed of the engine shaft. The system employs a vectorial control scheme for AC engines developed during the last decades. This is a method analogous to the DC engine control technique. Induction engine model is described in the guided field coordinate system of rotor flow. Introduction to the product and Lie derivative used for designing the non-linear controller are shown.
Razali Hanipah, M.; Razul Razali, Akhtar
2017-10-01
Free-piston engine generator (FPEG) provides a novel method for electrical power generation in hybrid electric vehicle applications with scarcely reported prototype development and testing. This paper is looking into the motion control strategy for motoring the FPEG during starting. There are two motion profiles investigated namely, trapezoidal velocity and Scurve velocity. Both motion profiles were investigated numerically and the results have shown that the S-curve motion can only achieve 80% of the stroke when operated at the proposed motoring speed of 10Hz.
Holliday, Ezekiel S. (Inventor)
2014-01-01
Vibrations at harmonic frequencies are reduced by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a Stirling machine. The vibrations are sensed to provide a signal representing the mechanical vibrations. A harmonic balancing signal is generated for selected harmonics of the operating frequency by processing the sensed vibration signal with adaptive filter algorithms of adaptive filters for each harmonic. Reference inputs for each harmonic are applied to the adaptive filter algorithms at the frequency of the selected harmonic. The harmonic balancing signals for all of the harmonics are summed with a principal control signal. The harmonic balancing signals modify the principal electrical drive voltage and drive the motor/alternator with a drive voltage component in opposition to the vibration at each harmonic.
West, Timothy; Farmer, Simon; Berthouze, Luc; Jha, Ashwani; Beudel, Martijn; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter; Litvak, Vladimir
2016-01-01
In this paper we investigated the dopaminergic modulation of neuronal interactions occurring in the subthalamic nucleus (STN) during Parkinson's disease (PD). We utilized linear measures of local and long range synchrony such as power and coherence, as well as Detrended Fluctuation Analysis for Phase Synchrony (DFA-PS)- a recently developed non-linear method that computes the extent of long tailed autocorrelations present in the phase interactions between two coupled signals. Through analysis of local field potentials (LFPs) taken from the STN we seek to determine changes in the neurodynamics that may underpin the pathophysiology of PD in a group of 12 patients who had undergone surgery for deep brain stimulation. We demonstrate up modulation of alpha-theta (5-12 Hz) band power in response to L-DOPA treatment, whilst low beta band power (15-20 Hz) band-power is suppressed. We also find evidence for significant local connectivity within the region surrounding STN although there was evidence for its modulation via administration of L-DOPA. Further to this we present evidence for a positive correlation between the phase ordering of bilateral STN interactions and the severity of bradykinetic and rigidity symptoms in PD. Although, the ability of non-linear measures to predict clinical state did not exceed standard measures such as beta power, these measures may help identify the connections which play a role in pathological dynamics.
Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A.
2017-01-01
Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region. PMID:29249950
Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A
2017-01-01
Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region.
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-03-01
In relation to the drive system of machine tools widely used as production facilities for automobiles, home electric appliances, etc., the R and D were made of a high efficiency linear motor system of which attention was paid to energy rationalization and environmental loads, and the FY 2000 results were summed up. In the study of the development of the system, studies were made not only on the lowering of heating, cost reduction and heightening of speed, but on the mechanism and control by which machine natural vibration can relatively be cut off, technology of damping for cutting vibration, technology to meet the deformation, etc. by cutting loads, sliding loads, and acceleration of accelerating/decelerating, technology to reduce the machine weight, etc. In the study of the basic technology of linear motor, the finite element method analysis was conducted on the typical linear motor. Concerning the control system, specs were studied which can deal with natural vibration and cutting vibration of the machine system. As to the development of the steel scale type linear encoder, scale sample for evaluation of basic characteristics was designed/trially manufactured. In the study of the detection optical system, the design/trial manufacture of photodiode array were made. (NEDO)
Batsikadze, G; Moliadze, V; Paulus, W; Kuo, M-F; Nitsche, M A
2013-04-01
Transcranial direct current stimulation (tDCS) of the human motor cortex at an intensity of 1 mA with an electrode size of 35 cm(2) has been shown to induce shifts of cortical excitability during and after stimulation. These shifts are polarity-specific with cathodal tDCS resulting in a decrease and anodal stimulation in an increase of cortical excitability. In clinical and cognitive studies, stronger stimulation intensities are used frequently, but their physiological effects on cortical excitability have not yet been explored. Therefore, here we aimed to explore the effects of 2 mA tDCS on cortical excitability. We applied 2 mA anodal or cathodal tDCS for 20 min on the left primary motor cortex of 14 healthy subjects. Cathodal tDCS at 1 mA and sham tDCS for 20 min was administered as control session in nine and eight healthy subjects, respectively. Motor cortical excitability was monitored by transcranial magnetic stimulation (TMS)-elicited motor-evoked potentials (MEPs) from the right first dorsal interosseous muscle. Global corticospinal excitability was explored via single TMS pulse-elicited MEP amplitudes, and motor thresholds. Intracortical effects of stimulation were obtained by cortical silent period (CSP), short latency intracortical inhibition (SICI) and facilitation (ICF), and I wave facilitation. The above-mentioned protocols were recorded both before and immediately after tDCS in randomized order. Additionally, single-pulse MEPs, motor thresholds, SICI and ICF were recorded every 30 min up to 2 h after stimulation end, evening of the same day, next morning, next noon and next evening. Anodal as well as cathodal tDCS at 2 mA resulted in a significant increase of MEP amplitudes, whereas 1 mA cathodal tDCS decreased corticospinal excitability. A significant shift of SICI and ICF towards excitability enhancement after both 2 mA cathodal and anodal tDCS was observed. At 1 mA, cathodal tDCS reduced single-pulse TMS-elicited MEP amplitudes and shifted SICI
Directory of Open Access Journals (Sweden)
Bo Zhang
2016-01-01
Full Text Available This paper presents a model for analyzing a five-phase fractional-slot permanent magnet tubular linear motor (FSPMTLM with the modified winding function approach (MWFA. MWFA is a fast modeling method and it gives deep insight into the calculations of the following parameters: air-gap magnetic field, inductances, flux linkages, and detent force, which are essential in modeling the motor. First, using a magnetic circuit model, the air-gap magnetic density is computed from stator magnetomotive force (MMF, flux barrier, and mover geometry. Second, the inductances, flux linkages, and detent force are analytically calculated using modified winding function and the air-gap magnetic density. Finally, a model has been established with the five-phase Park transformation and simulated. The calculations of detent force reveal that the end-effect force is the main component of the detent force. This is also proven by finite element analysis on the motor. The accuracy of the model is validated by comparing with the results obtained using semianalytical method (SAM and measurements to analyze the motor’s transient characteristics. In addition, the proposed method requires less computation time.
Directory of Open Access Journals (Sweden)
Xiangdong Liu
2016-05-01
Full Text Available A novel modular arc-linear flux-switching permanent-magnet motor (MAL-FSPM used for scanning system instead of reduction gearboxes and kinematic mechanisms is proposed and researched in this paper by the finite element method (FEM. The MAL-FSPM combines characteristics of flux-switching permanent-magnet motor and linear motor and can realize the direct driving and limited angular movement. Structure and operation principle of the MAL-FSPM are analyzed. Cogging torque model of the MAL-FSPM is established. The characteristics of cogging torque and torque ripple are investigated for: (1 distance (dend between left end of rotor and left end of stator is more than two rotor tooth pitch (τp; and (2 dend is less than two rotor tooth pitch. Cogging torque is an important component of torque ripple and the period ratio of the cogging torque to the back electromotive force (EMF equals one for the MAL-FSPM before optimization. In order to reduce the torque ripple as much as possible and affect the back EMF as little as possible, influence of period ratio of cogging torque to back EMF on rotor step skewing is investigated. Rotor tooth width and stator slot open width are optimized to increase the period ratio of cogging torque to back EMF. After the optimization, torque ripple is decreased by 79.8% for dend > τp and torque ripple is decreased by 49.7% for dend < τp. Finally, 3D FEM model is established to verify the 2D results.
Razali, Akhtar; Rahman, Fadhlur; Azlan, Syaiful; Razali Hanipah, Mohd; Azri Hizami, Mohd
2018-04-01
Cogging is an attraction of magnetism between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator. The presence of cog in the generator is seen somehow restricted the application of the generator in an application where low rotational torque is required. Cog torque requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator. This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. The concept is then fabricated and experimentally validated to qualify its no-load characteristics. The rotational torque and power output are measured and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 416VAC at rotational speed of 1762 RPM. Torque required to rotate the generator was at 2Nm for various rotational speed. The generator has shown 30% lesser rotational torque compared to the conventional ironcore type generator due to the absent of cogging torque in the system. Lesser rotational torque required to rotate has made this type of generator has a potential to be used for low wind density wind turbine application.
Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd
2018-04-01
Cogging is an attraction of magnetism between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator. The presence of cog in the generator is seen somehow restricted the application of the generator in an application where low rotational torque is required. Cog torque requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator. This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. There were several parameters analysed using the JMAG Designer. Transient response analysis was used in the JMAG Designer. The parameters analysed were the number of coil turns per phase, gap distance between the magnet pairs as well as the magnet grade used. These few parameters were analysed under the open circuit condition. Results showed with the increasing of gap distance, output voltage produced decreased. The increment of number of turns in the coils and higher magnet grades used, these increased the output voltage of the generator. With the help of these results, a reference point is established to get optimum design parameter for fabrication of working prototype.
Liquid-Hydrogen-Cooled 450-hp Electric Motor Test Stand Being Developed
Kascak, Albert F.; Trudell, Jeffrey J.; Brown, Gerald V.
2005-01-01
With growing concerns about global warming, there is a need to develop pollution-free aircraft. One approach is to use hydrogen-fueled aircraft that use fuel cells or turbogenerators to produce electric power to drive the electric motors that turn the aircraft s propulsive fans. Hydrogen fuel would be carried as a liquid, stored at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are too heavy for aircraft propulsion. We need to develop high-power, lightweight electric motors (highpower- density motors). One approach is to increase the conductivity of the wires by cooling them with liquid hydrogen (LH2). This would allow superconducting rotors with an ironless core. In addition, the motor could use very pure aluminum or copper, substances that have low resistances at cryogenic temperatures. A preliminary design of a 450-hp LH2-cooled electric motor was completed and is being manufactured by a contractor. This motor will be tested at the NASA Glenn Research Center and will be used to test different superconducting materials such as magnesium diboride (MgB2). The motor will be able to operate at speeds of up to 6000 rpm.
Paul, Sarbajit; Chang, Junghwan
2017-07-01
This paper presents a design approach for a magnetic sensor module to detect mover position using the proper orthogonal decomposition-dynamic mode decomposition (POD-DMD)-based nonlinear parametric model order reduction (PMOR). The parameterization of the sensor module is achieved by using the multipolar moment matching method. Several geometric variables of the sensor module are considered while developing the parametric study. The operation of the sensor module is based on the principle of the airgap flux density distribution detection by the Hall Effect IC. Therefore, the design objective is to achieve a peak flux density (PFD) greater than 0.1 T and total harmonic distortion (THD) less than 3%. To fulfill the constraint conditions, the specifications for the sensor module is achieved by using POD-DMD based reduced model. The POD-DMD based reduced model provides a platform to analyze the high number of design models very fast, with less computational burden. Finally, with the final specifications, the experimental prototype is designed and tested. Two different modes, 90° and 120° modes respectively are used to obtain the position information of the linear motor mover. The position information thus obtained are compared with that of the linear scale data, used as a reference signal. The position information obtained using the 120° mode has a standard deviation of 0.10 mm from the reference linear scale signal, whereas the 90° mode position signal shows a deviation of 0.23 mm from the reference. The deviation in the output arises due to the mechanical tolerances introduced into the specification during the manufacturing process. This provides a scope for coupling the reliability based design optimization in the design process as a future extension.
K., Nakaiwa; A., Yamada; K., Tashiro; H., Wakiwaka; Tamagawa-Seiki Co., Ltd; Shinshu University; Shinshu University; Shinshu University
2009-01-01
From a strong demand on the miniaturization of a chip mounter or a semiconductor device, the thrust improvement considering the magnets arrangement is studied. We accept a core stator with a Halbach type magnet array for a current linear motor. The thrust characteristics are compared with two kinds of mover, a NS magnet array and a Halbach magnet array.
Lei, Meizhen; Wang, Liqiang
2018-01-01
To reduce the difficulty of manufacturing and increase the magnetic thrust density, a moving-magnet linear oscillatory motor (MMLOM) without inner-stators was Proposed. To get the optimal design of maximum electromagnetic thrust with minimal permanent magnetic material, firstly, the 3D finite element analysis (FEA) model of the MMLOM was built and verified by comparison with prototype experiment result. Then the influence of design parameters of permanent magnet (PM) on the electromagnetic thrust was systematically analyzed by the 3D FEA to get the design parameters. Secondly, response surface methodology (RSM) was employed to build the response surface model of the new MMLOM, which can obtain an analytical model of the PM volume and thrust. Then a multi-objective optimization methods for design parameters of PM, using response surface methodology (RSM) with a quantum-behaved PSO (QPSO) operator, was proposed. Then the way to choose the best design parameters of PM among the multi-objective optimization solution sets was proposed. Then the 3D FEA of the optimal design candidates was compared. The comparison results showed that the proposed method can obtain the best combination of the geometric parameters of reducing the PM volume and increasing the thrust.
Directory of Open Access Journals (Sweden)
Chouaib Labiod
2017-01-01
Full Text Available This paper presents torque ripple reduction with speed control of 8/6 Switched Reluctance Motor (SRM by the determination of the optimal parameters of the turn on, turn off angles Theta_(on, Theta_(off, and the supply voltage using Particle Swarm Optimization (PSO algorithm and steady state Genetic Algorithm (ssGA. With SRM model, there is difficulty in the control relapsed into highly non-linear static characteristics. For this, the Finite Elements Method (FEM has been used because it is a powerful tool to get a model closer to reality. The mechanism used in this kind of machine control consists of a speed controller in order to determine current reference which must be produced to get the desired speed, hence, hysteresis controller is used to compare current reference with current measured up to achieve switching signals needed in the inverter. Depending on this control, the intelligent routing algorithms get the fitness equation from torque ripple and speed response so as to give the optimal parameters for better results. Obtained results from the proposed strategy based on metaheuristic methods are compared with the basic case without considering the adjustment of specific parameters. Optimized results found clearly confirmed the ability and the efficiency of the proposed strategy based on metaheuristic methods in improving the performances of the SRM control considering different torque loads.
Bravin, E; Sosa, A
2014-01-01
This report summarizes the results of a series of tests performed on the prototype HIE-ISOLDE diagnostic box (HIE-DB) regarding the vibrations and drifts in the transverse position of the scanning blade while moving in and out of beam path in the HIE-ISOLDE short box prototype. To monitor the transverse position of the blade, a series of 0.1 mm diameter holes were drilled on it and their positions were tracked with an optical system. The linear motion actuator was acquired from UHV design (model LSM38-150-SS), and it was adapted to be driven by a brushless EC motor from MAXON. The speed of the scanning blade during the tests was 10 mm/s. The transverse movement of the slit in the direction perpendicular to the movement was lower than 40 m, and is dominated by the displacement of the contact point of the applied force on the lead-screw. An offset on the slit position was observed while changing the direction of movement of the blade, its amplitude being of the order of 30 m. The amplitudes of the displacements...
Piezoelectric Motors, an Overview
Karl Spanner; Burhanettin Koc
2016-01-01
Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ult...
Eduardo Giraldo Suárez; Santiago Sánchez Acevedo
2009-01-01
Este documento presenta la aplicación de la técnica de control no lineal clásica llamada linealización por realimentación de variables de estado. Se hace una aplicación en el motor de inducción, la variable a controlar es la velocidad del eje del motor, el sistema emplea el esquema de control vectorial para máquinas de corriente alterna desarrollado en las últimas décadas; este método es análogo a la técnica de control del motor de corriente directa. El modelo del motor de inducción se descri...
Piezoelectric Motors, an Overview
Directory of Open Access Journals (Sweden)
Karl Spanner
2016-02-01
Full Text Available Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ultrasonic motors, inertia-drive, and piezo-walk-drive. In this review, a comprehensive summary of piezoelectric motors, with their classification from initial idea to recent progress, is presented. This review also includes some of the industrial and commercial applications of piezoelectric motors that are presently available in the market as actuators.
Stepping Motor - Hydraulic Motor Servo Drives for an NC Milling ...
African Journals Online (AJOL)
In this paper the retrofit design of the control system of an NC milling machine with a stepping motor and stepping motor - actuated hydraulic motor servo mechanism on the machines X-axis is described. The servo designed in the course of this study was tested practically and shown to be linear - the velocity following errors ...
Directory of Open Access Journals (Sweden)
Avram Mihai
2017-01-01
Full Text Available The paper presents a linear pneumatic actuator with short working stroke. It consists of a pneumatic motor (a simple stroke cylinder or a membrane chamber, two 2/2 pneumatic distributors “all or nothing” electrically commanded for controlling the intake/outtake flow to/from the active chamber of the motor, a position transducer and a microcontroller. There is also presented the theoretical analysis (mathematical modelling and numerical simulation accomplished.
Avram Mihai; Niţu Constantin; Bucşan Constantin; Grămescu Bogdan
2017-01-01
The paper presents a linear pneumatic actuator with short working stroke. It consists of a pneumatic motor (a simple stroke cylinder or a membrane chamber), two 2/2 pneumatic distributors “all or nothing” electrically commanded for controlling the intake/outtake flow to/from the active chamber of the motor, a position transducer and a microcontroller. There is also presented the theoretical analysis (mathematical modelling and numerical simulation) accomplished.
Holakooie, Mohammad Hosein; Ojaghi, Mansour; Taheri, Asghar
2016-01-01
This paper investigates sensorless indirect field oriented control (IFOC) of SLIM with full-order Luenberger observer. The dynamic equations of SLIM are first elaborated to draw full-order Luenberger observer with some simplifying assumption. The observer gain matrix is derived from conventional procedure so that observer poles are proportional to SLIM poles to ensure the stability of system for wide range of linear speed. The operation of observer is significantly impressed by adaptive scheme. A fuzzy logic control (FLC) is proposed as adaptive scheme to estimate linear speed using speed tuning signal. The parameters of FLC are tuned using an off-line method through chaotic optimization algorithm (COA). The performance of the proposed observer is verified by both numerical simulation and real-time hardware-in-the-loop (HIL) implementation. Moreover, a detailed comparative study among proposed and other speed observers is obtained under different operation conditions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Hounsgaard, Jorn
2017-01-01
Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....
Directory of Open Access Journals (Sweden)
de Pontes B. R.
2012-07-01
Full Text Available In this paper, we deal with the research of a vibrating model of an energy harvester device, including the nonlinearities in the model of the piezoelectric coupling and the non-ideal excitation. We show, using numerical simulations, in the analysis of the dynamic responses, that the harvested power is influenced by non-linear vibrations of the structure. Chaotic behavior was also observed, causing of the loss of energy throughout the simulation time. Using a perturbation technique, we find an approximate analytical solution for the non-ideal system. Then, we apply both two control techniques, to keep the considered system, into a stable condition. Both the State Dependent Ricatti Equation (SDRE control as the feedback control by changing the energy of the oscillator, were efficient in controlling of the considered non-ideal system.
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, T [JR Railway Technical Research Inst., Tokyo (Japan); Nakamura, S [Ebara Corp., Tokyo (Japan)
1994-06-10
A power generator is developed to be used as the auxiliary power source for the first carriage at the levitation type railway Yamanashi linear experimental line. The gas turbine generator is installed to supply power to the electric equipment on the carriage, and the power generating conditions are transmitted to the ground commanding room via on-board central control system for centralized controlling. An aircraft diversion type ST6 gas turbine and a high frequency light weight generator are combined for the gas turbine generator developed this time. Single reduction planetary gear is employed for the reduction gear which connects the two units directly, the gas turbine being connected to one side and the generator to the other side with no coupling. The output of the generator is 350kW, AC 455V, and 400Hz, and power is supplied to the electric devices on the carriage after having been converted to DC 600V. Aluminium is used to reduce the weights of the soundproof enclosure and exhaust dust shell plate. 1 fig., 1 tab.
Hekmatmanesh, Amin; Jamaloo, Fatemeh; Wu, Huapeng; Handroos, Heikki; Kilpeläinen, Asko
2018-04-01
Brain Computer Interface (BCI) can be a challenge for developing of robotic, prosthesis and human-controlled systems. This work focuses on the implementation of a common spatial pattern (CSP) base algorithm to detect event related desynchronization patterns. Utilizing famous previous work in this area, features are extracted by filter bank with common spatial pattern (FBCSP) method, and then weighted by a sensitive learning vector quantization (SLVQ) algorithm. In the current work, application of the radial basis function (RBF) as a mapping kernel of linear discriminant analysis (KLDA) method on the weighted features, allows the transfer of data into a higher dimension for more discriminated data scattering by RBF kernel. Afterwards, support vector machine (SVM) with generalized radial basis function (GRBF) kernel is employed to improve the efficiency and robustness of the classification. Averagely, 89.60% accuracy and 74.19% robustness are achieved. BCI Competition III, Iva data set is used to evaluate the algorithm for detecting right hand and foot imagery movement patterns. Results show that combination of KLDA with SVM-GRBF classifier makes 8.9% and 14.19% improvements in accuracy and robustness, respectively. For all the subjects, it is concluded that mapping the CSP features into a higher dimension by RBF and utilization GRBF as a kernel of SVM, improve the accuracy and reliability of the proposed method.
Antonova, A A; Absatova, K A; Korneev, A A; Kurgansky, A V
2015-01-01
The production of drawing movements was studied in 29 right-handed children of 9-to-11 years old. The movements were the sequences of horizontal and vertical linear stokes conjoined at right angle (open polygonal chains) referred to throughout the paper as trajectories. The length of a trajectory varied from 4 to 6. The trajectories were presented visually to a subject in static (linedrawing) and dynamic (moving cursor that leaves no trace) modes. The subjects were asked to draw (copy) a trajectory in response to delayed go-signal (short click) as fast as possible without lifting the pen. The production latency time, the average movement duration along a trajectory segment, and overall number of errors committed by a subject during trajectory production were analyzed. A comparison of children's data with similar data in adults (16 subjects) shows the following. First, a substantial reduction in error rate is observed in the age range between 9 and 11 years old for both static and dynamic modes of trajectory presentation, with children of 11 still committing more error than adults. Second, the averaged movement duration shortens with age while the latency time tends to increase. Third, unlike the adults, the children of 9-11 do not show any difference in latency time between static and dynamic modes of visual presentation of trajectories. The difference in trajectory production between adult and children is attributed to the predominant involvement of on-line programming in children and pre-programming in adults.
Nguyen, Phuong H; Gonzalez-Casanova, Ines; Young, Melissa F; Truong, Truong Viet; Hoang, Hue; Nguyen, Huong; Nguyen, Son; DiGirolamo, Ann M; Martorell, Reynaldo; Ramakrishnan, Usha
2017-08-01
Background: Maternal health and nutrition play a crucial role in early child growth and development. However, little is known about the benefits of preconception micronutrient interventions beyond the role of folic acid (FA) and neural tube defects. Objective: We evaluated the impact of weekly preconception multiple micronutrient (MM) or iron and folic acid (IFA) supplementation on child growth and development through the age of 2 y compared with FA alone. Methods: We followed 1599 offspring born to women who participated in a randomized controlled trial of preconception supplementation in Vietnam. Women received weekly supplements that contained either 2800 μg FA, 60 mg Fe and 2800 μg FA, or 15 MMs including IFA, from baseline until conception followed by daily prenatal IFA supplements until delivery. Child anthropometry was measured at birth and at 3, 6, 12, 18, and 24 mo. Child development was measured with the use of the Bayley Scales for Infant Development III at 24 mo. Results: The groups were similar for baseline maternal and offspring birth characteristics. At 24 mo of age, the offspring in the IFA group had significantly higher length-for-age z scores (LAZs) (0.14; 95% CI: 0.03, 0.26), reduced risk of being stunted (0.87; 95% CI: 0.76, 0.99), and smaller yearly decline in LAZs (0.10; 95% CI: 0.04, 0.15) than the offspring in the FA group. Similar trends were found for the offspring in the MM group compared with the FA group for LAZs (0.10; 95% CI: -0.02, 0.22) and the risk of being stunted (0.88; 95% CI: 0.77, 1.01). Offspring in the IFA group had improved motor development ( P = 0.03), especially fine motor development (0.41; 95% CI: 0.05, 0.77), at the age of 24 mo, but there were no differences for measures of cognition or language. Conclusions: Preconception supplementation with IFA improved linear growth and fine motor development at 2 y of age compared with FA. Future studies should examine whether these effects persist and improve child health and
Control of non-conventional synchronous motors
Louis, Jean-Paul
2013-01-01
Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,
A Linear Electromagnetic Piston Pump
Hogan, Paul H.
Advancements in mobile hydraulics for human-scale applications have increased demand for a compact hydraulic power supply. Conventional designs couple a rotating electric motor to a hydraulic pump, which increases the package volume and requires several energy conversions. This thesis investigates the use of a free piston as the moving element in a linear motor to eliminate multiple energy conversions and decrease the overall package volume. A coupled model used a quasi-static magnetic equivalent circuit to calculate the motor inductance and the electromagnetic force acting on the piston. The force was an input to a time domain model to evaluate the mechanical and pressure dynamics. The magnetic circuit model was validated with finite element analysis and an experimental prototype linear motor. The coupled model was optimized using a multi-objective genetic algorithm to explore the parameter space and maximize power density and efficiency. An experimental prototype linear pump coupled pistons to an off-the-shelf linear motor to validate the mechanical and pressure dynamics models. The magnetic circuit force calculation agreed within 3% of finite element analysis, and within 8% of experimental data from the unoptimized prototype linear motor. The optimized motor geometry also had good agreement with FEA; at zero piston displacement, the magnetic circuit calculates optimized motor force within 10% of FEA in less than 1/1000 the computational time. This makes it well suited to genetic optimization algorithms. The mechanical model agrees very well with the experimental piston pump position data when tuned for additional unmodeled mechanical friction. Optimized results suggest that an improvement of 400% of the state of the art power density is attainable with as high as 85% net efficiency. This demonstrates that a linear electromagnetic piston pump has potential to serve as a more compact and efficient supply of fluid power for the human scale.
International Nuclear Information System (INIS)
Haniger, L.; Elger, R.; Kocandrle, L.; Zdebor, J.
1986-01-01
A linear step drive is described developed in Czechoslovak-Soviet cooperation and intended for driving WWER-1000 control rods. The functional principle is explained of the motor and the mechanical and electrical parts of the drive, power control, and the indicator of position are described. The motor has latches situated in the reactor at a distance of 3 m from magnetic armatures, it has a low structural height above the reactor cover, which suggests its suitability for seismic localities. Its magnetic circuits use counterpoles; the mechanical shocks at the completion of each step are damped using special design features. The position indicator is of a special design and evaluates motor position within ±1% of total travel. A drive diagram and the flow chart of both the control electronics and the position indicator are presented. (author) 4 figs
Shilov, Georgi E
1977-01-01
Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.
Energy Technology Data Exchange (ETDEWEB)
Hurst, R.W.; Feltham, P. (eds.)
2004-05-01
This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.
Energy Technology Data Exchange (ETDEWEB)
Kazmierkowski, M.P. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warszawa (Poland)
1997-12-31
In this paper a review of control methods for high performance PWM inverter-fed induction motor drives is presented. Starting from the description of an induction motor by the help of the space vectors, three basic control strategic are discussed. As first, the most popular Field Oriented Control (FOC) is described. Secondly, the Direct Torque and Flux vector Control (DTFC) method, which - in contrast to FOC - depart from idea of coordinate transformation and analogy with DC motor, is briefly characterized. The last group is based on Feedback Linearization Control (FLC) and can be easy combined with sliding mode control. The simulation and experimental oscillograms that illustrate the performance of the discussed control strategies are shown. (orig.) 35 refs.
A review of linear compressors for refrigeration
Liang, Kun
2017-01-01
Linear compressor has no crank mechanism compared with conventional reciprocating compressor. This allows higher efficiency, oil-free operation, lower cost and smaller size when linear compressors are used for vapour compression refrigeration (VCR) system. Typically, a linear compressor consists of a linear motor (connected to a piston) and suspension springs, operated at resonant frequency. This paper presents a review of linear compressors for refrigeration system. Different designs and mod...
Martín Muñoz, Agustín
2007-01-01
Mostramos la construcción de un modelo de motor homopolar, uno de los más antiguos tipos de motores eléctricos. Se caracterizan porque el campo magnético del imán mantiene siempre la misma polaridad (de ahí su nombre, del griego homos, igual), de modo que, cuando una corriente eléctrica atraviesa el campo magnético, aparece una fuerza que hace girar los elementos no fijados mecánicamente. En el sencillísimo motor homopolar colgado (Schlichting y Ucke 2004), el imán puede girar ...
International Nuclear Information System (INIS)
1980-10-01
This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.
International Nuclear Information System (INIS)
Suwono.
1978-01-01
A linear gate providing a variable gate duration from 0,40μsec to 4μsec was developed. The electronic circuity consists of a linear circuit and an enable circuit. The input signal can be either unipolar or bipolar. If the input signal is bipolar, the negative portion will be filtered. The operation of the linear gate is controlled by the application of a positive enable pulse. (author)
International Nuclear Information System (INIS)
Vretenar, M
2014-01-01
The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics
Linearization Method and Linear Complexity
Tanaka, Hidema
We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N(≅2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.
Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan
2013-10-01
The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls' physical activity behavior. A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh's Self-Description Questionnaire. Children's physical activity was assessed by the Physical Activity Questionnaire for Older Children. Multiple linear regression model was used to determine whether perceived motor competence or motor skill competence best predicts moderate-to-vigorous self-report physical activity. Multiple regression analysis indicated that motor skill competence and perceived motor competence predicted 21% variance in physical activity (R(2)=0.21, F=48.9, P=0.001), and motor skill competence (R(2)=0.15, ᵝ=0.33, P= 0.001) resulted in more variance than perceived motor competence (R(2)=0.06, ᵝ=0.25, P=0.001) in physical activity. Results revealed motor skill competence had more influence in comparison with perceived motor competence on physical activity level. We suggest interventional programs based on motor skill competence and perceived motor competence should be administered or implemented to promote physical activity in young girls.
Said-Houari, Belkacem
2017-01-01
This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...
Design, analysis and fabrication of a linear permanent magnet ...
Indian Academy of Sciences (India)
MONOJIT SEAL
Linear permanent magnet synchronous machine; LPMSM—fabrication; design optimisation; finite-element ... induction motor (LIM) prototype was patented in 1890 [1]. Since then, linear ..... Also, for manual winding, more slot area is allotted to ...
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Solow, Daniel
2014-01-01
This text covers the basic theory and computation for a first course in linear programming, including substantial material on mathematical proof techniques and sophisticated computation methods. Includes Appendix on using Excel. 1984 edition.
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Berberian, Sterling K
2014-01-01
Introductory treatment covers basic theory of vector spaces and linear maps - dimension, determinants, eigenvalues, and eigenvectors - plus more advanced topics such as the study of canonical forms for matrices. 1992 edition.
Searle, Shayle R
2012-01-01
This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
Shape memory alloy based motor
Indian Academy of Sciences (India)
1989a,b) that SMA spring or strip generates force as a non-linear function of its deformed length. ... magnetic property, smooth, jerk free operation and insensitivity to space radiations namely, electrons, protons ..... will be 1 Amp DC. The motor ...
Olive, David J
2017-01-01
This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...
International Nuclear Information System (INIS)
Alcaraz, J.
2001-01-01
After several years of study e''+ e''- linear colliders in the TeV range have emerged as the major and optimal high-energy physics projects for the post-LHC era. These notes summarize the present status form the main accelerator and detector features to their physics potential. The LHC era. These notes summarize the present status, from the main accelerator and detector features to their physics potential. The LHC is expected to provide first discoveries in the new energy domain, whereas an e''+ e''- linear collider in the 500 GeV-1 TeV will be able to complement it to an unprecedented level of precision in any possible areas: Higgs, signals beyond the SM and electroweak measurements. It is evident that the Linear Collider program will constitute a major step in the understanding of the nature of the new physics beyond the Standard Model. (Author) 22 refs
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
Shirakawa Okuma, Rosely; Calderón Orejuela, Javier
2016-01-01
La tesis narra la situación de una empresa concesionaria de vehículos nuevos, Jidosha's Motors, perteneciente a una corporación japonesa que cuenta con una cultura muy arraigada de ética y de cumplimiento. Se plantean respuestas, se identifican problemas y sus alternativas de solución para una toma adecuada de decisiones por parte de los directivos, siguiendo una estructura de análisis de situaciones de negocios (ASN). Tesis
Performance test of 100 W linear compressor
Energy Technology Data Exchange (ETDEWEB)
Ko, J; Ko, D. Y.; Park, S. J.; Kim, H. B.; Hong, Y. J.; Yeom, H. K. [Korea Institute of Machinery and Materials, Daejeon(Korea, Republic of)
2013-09-15
In this paper, we present test results of developed 100 W class linear compressor for Stirling-type pulse tube refrigerator. The fabricated linear compressor has dual-opposed configuration, free piston and moving magnet type linear motor. Power transfer, efficiency and required pressure waveform are predicted with designed and measured specifications. In experiments, room temperature test with flow impedance is conducted to evaluate performance of developed linear compressor. Flow impedance is loaded to compressor with metering valve for flow resistance, inertance tube for flow inertance and buffer volumes for flow compliance. Several operating parameters such as input voltage, current, piston displacement and pressure wave are measured for various operating frequency and fixed input current level. Behaviors of dynamics and performance of linear compressor as varying flow impedance are discussed with measured experimental results. The developed linear compressor shows 124 W of input power, 86 % of motor efficiency and 60 % of compressor efficiency at its resonant operating condition.
Karloff, Howard
1991-01-01
To this reviewer’s knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming from the Simplex Method…via the Ellipsoid algorithm to Karmarkar’s algorithm. Moreover, its point of view is algorithmic and thus it provides both a history and a case history of work in complexity theory. The presentation is admirable; Karloff's style is informal (even humorous at times) without sacrificing anything necessary for understanding. Diagrams (including horizontal brackets that group terms) aid in providing clarity. The end-of-chapter notes are helpful...Recommended highly for acquisition, since it is not only a textbook, but can also be used for independent reading and study. —Choice Reviews The reader will be well served by reading the monograph from cover to cover. The author succeeds in providing a concise, readable, understandable introduction to modern linear programming. —Mathematics of Computing This is a textbook intend...
Reduction of Linear Programming to Linear Approximation
Vaserstein, Leonid N.
2006-01-01
It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.
... gross (large, general) motor control. An example of gross motor control is waving an arm in greeting. Problems ... out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To ...
Direct linear driving systems; Les entrainements lineaires directs
Energy Technology Data Exchange (ETDEWEB)
Favre, E.; Brunner, C.; Piaget, D. [ETEL SA (France)
1999-11-01
The linear motor is one of the most important developments in electrical drive technology. However, it only, began to be adopted on a large scale at the beginning of the 1990's and will not be considered a mature technology until well into the next millennium. Actuators based on linear motor technology have a number of technical advantages including high speed, high positional accuracy and fine resolution. They also require fewer component parts. Some precautions are necessary when using linear motors. Care must be taken to avoid overheating and excessive vibration, and the magnetic components must be protected.
Directory of Open Access Journals (Sweden)
Tanwiwat Jaikuna
2017-02-01
Full Text Available Purpose: To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL model. Material and methods : The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR, and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD2 was calculated using biological effective dose (BED based on the LQL model. The software calculation and the manual calculation were compared for EQD2 verification with pair t-test statistical analysis using IBM SPSS Statistics version 22 (64-bit. Results: Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV determined by D90%, 0.56% in the bladder, 1.74% in the rectum when determined by D2cc, and less than 1% in Pinnacle. The difference in the EQD2 between the software calculation and the manual calculation was not significantly different with 0.00% at p-values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT and 0.240, 0.320, and 0.849 for brachytherapy (BT in HR-CTV, bladder, and rectum, respectively. Conclusions : The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.
Motor control for a brushless DC motor
Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)
1985-01-01
This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.
Non-linear dynamics in Parkinsonism
Directory of Open Access Journals (Sweden)
Olivier eDarbin
2013-12-01
Full Text Available Over the last 30 years, the functions (and dysfunctions of the sensory-motor circuitry have been mostly conceptualized using linear modelizations which have resulted in two main models: the "rate hypothesis" and the "oscillatory hypothesis". In these two models, the basal ganglia data stream is envisaged as a random temporal combination of independent simple patterns issued from its probability distribution of interval interspikes or its spectrum of frequencies respectively.More recently, non-linear analyses have been introduced in the modelization of motor circuitry activities, and they have provided evidences that complex temporal organizations exist in basal ganglia neuronal activities. Regarding movement disorders, these complex temporal organizations in the basal ganglia data stream differ between conditions (i.e. parkinsonism, dyskinesia, healthy control and are responsive to treatments (i.e. L-DOPA,DBS. A body of evidence has reported that basal ganglia neuronal entropy (a marker for complexity/irregularity in time series is higher in hypokinetic state. In line with these findings, an entropy-based model has been recently formulated to introduce basal ganglia entropy as a marker for the alteration of motor processing and a factor of motor inhibition. Importantly, non-linear features have also been identified as a marker of condition and/or treatment effects in brain global signals (EEG, muscular activities (EMG or kinetic of motor symptoms (tremor, gait of patients with movement disorders. It is therefore warranted that the non-linear dynamics of motor circuitry will contribute to a better understanding of the neuronal dysfunctions underlying the spectrum of parkinsonian motor symptoms including tremor, rigidity and hypokinesia.
Experimental device for measuring the dynamic properties of diaphragm motors
Fojtášek, Kamil; Dvořák, Lukáš; Mejzlík, Jan
The subject of this paper is to design and description of the experimental device for the determination dynamic properties of diaphragm pneumatic motors. These motors are structurally quite different from conventional pneumatic linear cylinders. The working fluid is typically compressed air, the piston of motor is replaced by an elastic part and during the working cycle there is a contact of two elastic environments. In the manufacturers catalogs of these motors are not given any working characteristics. Description of the dynamic behavior of diaphragm motor will be used for verification of mathematical models.
Features of Synchronous Electronically Commutated Motors in Servomotor Operation Modes
Directory of Open Access Journals (Sweden)
Dirba J.
2017-04-01
Full Text Available The authors consider the features and operation specifics of the synchronous permanent magnet motors and the synchronous reluctance motors with electronic commutation in servomotor operation modes. Calculation results show that mechanical and control characteristics of studied motors are close to a linear shape. The studied motor control is proposed to implement similar to phase control of induction servomotor; it means that angle θ (angle between vectors of the supply voltage and non-load electromotive force or angle ε (angle between rotor direct axis and armature magnetomotive force axis is changed. The analysis results show that synchronous electronically commutated motors could be used as servomotors.
Features of Synchronous Electronically Commutated Motors in Servomotor Operation Modes
Dirba, J.; Lavrinovicha, L.; Dobriyan, R.
2017-04-01
The authors consider the features and operation specifics of the synchronous permanent magnet motors and the synchronous reluctance motors with electronic commutation in servomotor operation modes. Calculation results show that mechanical and control characteristics of studied motors are close to a linear shape. The studied motor control is proposed to implement similar to phase control of induction servomotor; it means that angle θ (angle between vectors of the supply voltage and non-load electromotive force) or angle ɛ (angle between rotor direct axis and armature magnetomotive force axis) is changed. The analysis results show that synchronous electronically commutated motors could be used as servomotors.
High efficiency motors; Motores de alta eficiencia
Energy Technology Data Exchange (ETDEWEB)
Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)
1993-12-31
This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.
High efficiency motors; Motores de alta eficiencia
Energy Technology Data Exchange (ETDEWEB)
Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)
1992-12-31
This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.
Directory of Open Access Journals (Sweden)
Kyung-Hun Shin
2017-05-01
Full Text Available The shape of the magnet is essential to the performance of a slotless permanent magnet linear synchronous machine (PMLSM because it is directly related to desirable machine performance. This paper presents a reduction in the thrust ripple of a PMLSM through the use of arc-shaped magnets based on electromagnetic field theory. The magnetic field solutions were obtained by considering end effect using a magnetic vector potential and two-dimensional Cartesian coordinate system. The analytical solution of each subdomain (PM, air-gap, coil, and end region is derived, and the field solution is obtained by applying the boundary and interface conditions between the subdomains. In particular, an analytical method was derived for the instantaneous thrust and thrust ripple reduction of a PMLSM with arc-shaped magnets. In order to demonstrate the validity of the analytical results, the back electromotive force results of a finite element analysis and experiment on the manufactured prototype model were compared. The optimal point for thrust ripple minimization is suggested.
Speed controller for an alternating - current motor
International Nuclear Information System (INIS)
Bolie, V.W.
1984-01-01
A controller for a multi-phase ac motor that is subject to a large inertial load, e.g. an induction motor driving a heavy spinning rotor of a neutron chopper that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal Esub(L) having a meandering line frequency, includes a sensor which provides a feedback pulse train representative of the actual speed of the motor which is compared (by counting clock pulses between feedback pulses) with a reference clock signal in a computing unit to provide a motor control signal Esub(c). The motor control signal is a weighted linear sum of a speed error signal, a phase error signal, and a drift error signal, the magnitudes of which are recalculated and updated with each revolution of the motor shaft. The speed error signal is constant for large speed errors but highly sensitive to small speed errors. The stator windings of the motor are driven by variable-frequency power amplifiers which are controlled by the motor control signal Esub(c) via PROMs which store digital representations of sine and cosine waveforms in quadrature. (author)
AC Application of HTS Conductors in Highly Dynamic Electric Motors
International Nuclear Information System (INIS)
Oswald, B; Best, K-J; Setzer, M; Duffner, E; Soell, M; Gawalek, W; Kovalev, L K
2006-01-01
Based on recent investigations we design highly dynamic electric motors up to 400 kW and linear motors up to 120 kN linear force using HTS bulk material and HTS tapes. The introduction of HTS tapes into AC applications in electric motors needs fundamental studies on double pancake coils under transversal magnetic fields. First theoretical and experimental results on AC field distributions in double-pancake-coils and corresponding AC losses will be presented. Based on these results the simulation of the motor performance confirms extremely high power density and efficiency of both types of electric motors. Improved characteristics of rare earth permanent magnets used in our motors at low temperatures give an additional technological benefit
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...
Nonlinear Deadbeat Current Control of a Switched Reluctance Motor
Rudolph, Benjamin
2009-01-01
High performance current control is critical to the success of the switched reluctance motor (SRM). Yet high motor phase nonlinearities in the SRM place extra burden on the current controller, rendering it the weakest link in SRM control. In contrast to linear motor control techniques that respond to current error, the deadbeat controller calculates the control voltage by the current command, phase current, rotor position and applied phase voltage. The deadbeat controller has demonstrated sup...
Energetics and efficiency of a molecular motor model
DEFF Research Database (Denmark)
C. Fogedby, Hans; Svane, Axel
2013-01-01
The energetics and efficiency of a linear molecular motor model proposed by Mogilner et al. (Phys. Lett. 237, 297 (1998)) is analyzed from an analytical point of view. The model which is based on protein friction with a track is described by coupled Langevin equations for the motion in combination...... when incorporating the full motor dynamics, owing to the strong dissipation associated with the motor action....
Very Slow Speed Axial Motion Reluctance Motor | Agu | Nigerian ...
African Journals Online (AJOL)
Abstract. This paper presents the scheme for a very slow speed linear machine which uses conventional laminations and with which speeds of the same low order as that of the screw-thread motor can be obtained.
Chalmers, B J
2013-01-01
Electric Motor Handbook aims to give practical knowledge in a wide range of capacities such as plant design, equipment specification, commissioning, operation and maintenance. The book covers topics such as the modeling of steady-state motor performance; polyphase induction, synchronous, and a.c. commutator motors; ambient conditions, enclosures, cooling and loss dissipation; and electrical supply systems and motor drives. Also covered are topics such as variable-speed drives and motor control; materials and motor components; insulation types, systems, and techniques; and the installation, sit
Directory of Open Access Journals (Sweden)
Kassandra Nunes Amaro
2010-09-01
Full Text Available The objective of this study was to investigate the motor performance of school chil-dren aged 6 to 10 years without learning difficulties (n=101, and to analyze the reliability of the Motor Development Scale (MDS (Rosa Neto, 2002. Descriptive statistics with calculation of the mean, standard deviation, and range was used for data analysis. The internal consistency of the MDS was assessed using Cronbach’s alpha coefficient, and the correlation between variables was determined by Pearson’s linear correlation, with p<0.05. The results showed (1 that motor development was within normal limits in 96% of the children, and (2 a high correlation betwe-en chronological age and general motor age, indicating good internal consistency. These data demonstrate the logic and structured design of the MDS, confirming its reliability.
Imparting Motion to a Test Object Such as a Motor Vehicle in a Controlled Fashion
Southward, Stephen C. (Inventor); Reubush, Chandler (Inventor); Pittman, Bryan (Inventor); Roehrig, Kurt (Inventor); Gerard, Doug (Inventor)
2014-01-01
An apparatus imparts motion to a test object such as a motor vehicle in a controlled fashion. A base has mounted on it a linear electromagnetic motor having a first end and a second end, the first end being connected to the base. A pneumatic cylinder and piston combination have a first end and a second end, the first end connected to the base so that the pneumatic cylinder and piston combination is generally parallel with the linear electromagnetic motor. The second ends of the linear electromagnetic motor and pneumatic cylinder and piston combination being commonly linked to a mount for the test object. A control system for the linear electromagnetic motor and pneumatic cylinder and piston combination drives the pneumatic cylinder and piston combination to support a substantial static load of the test object and the linear electromagnetic motor to impart controlled motion to the test object.
Interacting adiabatic quantum motor
Bruch, Anton; Kusminskiy, Silvia Viola; Refael, Gil; von Oppen, Felix
2018-05-01
We present a field-theoretic treatment of an adiabatic quantum motor. We explicitly discuss a motor called the Thouless motor which is based on a Thouless pump operating in reverse. When a sliding periodic potential is considered to be the motor degree of freedom, a bias voltage applied to the electron channel sets the motor in motion. We investigate a Thouless motor whose electron channel is modeled as a Luttinger liquid. Interactions increase the gap opened by the periodic potential. For an infinite Luttinger liquid the coupling-induced friction is enhanced by electron-electron interactions. When the Luttinger liquid is ultimately coupled to Fermi liquid reservoirs, the dissipation reduces to its value for a noninteracting electron system for a constant motor velocity. Our results can also be applied to a motor based on a nanomagnet coupled to a quantum spin Hall edge.
Chronic vocal tic disorder; Tic - chronic motor tic disorder ... Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start ...
Fuzzy control of small servo motors
Maor, Ron; Jani, Yashvant
1993-01-01
To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.
Electric Motor Thermal Management
Energy Technology Data Exchange (ETDEWEB)
Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-09-01
Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.
Programmable dc motor controller
Hopwood, J. E.
1982-11-01
A portable programmable dc motor controller, with features not available on commercial instruments was developed for controlling fixtures during welding processes. The controller can be used to drive any dc motor having tachometer feedback and motor requirements not exceeding 30 volts, 3 amperes. Among the controller's features are delayed start time, upslope time, speed, and downslope time.
Motor Integrated Variable Speed Drives
DEFF Research Database (Denmark)
Singh, Yash Veer
rectifier at the front end is presented in this thesis and requirements of a buffer stage in the form of ESI is explained in detail. An equivalent circuit and linear model are developed to give the transfer function and control of the ESI based three-phase rectifier. In this thesis a power converter...... with ESI is designed and tested with standard induction motor to verify functionality of a working drive. One modified version of the ESI based converter has also been looked into to reduce losses of converter, but because of difficulties in reducing the bus-bar inductance in that design, further...
Linear viscoelastic characterization from filament stretching rheometry
DEFF Research Database (Denmark)
Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole
to measure both linear and nonlinear dynamics on a single apparatus. With a software modification to the FSR motor control, we show that linear viscoelasticity can be measured via small amplitude squeeze flow (SASF). Squeeze flow is a combination of both shear and extensional flow applied by axially......Traditionally, linear viscoelasticity is measured using small amplitude oscillatory shear flow. Due to experimental difficulties, shear flows are predominately confined to the linear and mildly nonlinear regime. On the other hand, extensional flows have proven more practical in measuring...... viscoelasticity well into the nonlinear regime. Therefore at present, complete rheological characterization of a material requires two apparatuses: a shear and an extensional rheometer. This work is focused on developing a linear viscoelastic protocol for the filament stretching rheometer (FSR) in order...
Nonlinear Decoupling of Torque and Field Amplitude in an Induction Motor
DEFF Research Database (Denmark)
Rasmussen, Henrik; Vadstrup, P.; Børsting, H.
1997-01-01
A novel approach to control of induction motors, based on nonlinear state feedback, is presented. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the field amplitude and the motor...... torque. The method is tested both by simulation and by experiments on a motor drive....
Proceedings of the international conference on maglev and linear drives
International Nuclear Information System (INIS)
Anon.
1986-01-01
This book contains papers presented at a conference on Maglev and linear drives. Topics covered include: Development of superconducting magnets for the Canadian electrodynamic Maglev vehicle; Power supply system to drive HSST - Expo '86; and Thrust and levitation force characteristics of linear synchronous motors
Hickam, Christopher Dale [Glasford, IL
2008-05-13
A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.
Implementation of feedback-linearization-modelled induction motor ...
Indian Academy of Sciences (India)
RABI NARAYAN MISHRA
2017-11-27
Nov 27, 2017 ... tional NFC and thus, can be easily applied to real-time industry ... scheme for overcoming these challenges in real world ..... MFs comprise more information than what a neural system .... Neuro-fuzzy controller: (a) proposed modified architecture and (b) input ...... automation and process industry control.
Design and Characteristic Analysis of the Linear Homopolar Synchronous Motor
Energy Technology Data Exchange (ETDEWEB)
Jang, Seok Myeong; Jeong, Sang Sub; Lee, Soung Ho [Chungnam National University (Korea, Republic of); Park, Young Tae [KRISS (Korea, Republic of)
1997-07-21
The LHSM is the combined electromagnetic propulsion and levitation, braking and guidance system for Maglev. In this paper, the LHSM has the figure-of-eight shaped 3 {phi} armature windings, the field winding, and segmented secondary having transverse bar track. we treat of the development - design, analysis - of a combined electromagnetic propulsion/levitation systems, LHSM. (author). 1 ref., 7 figs., 2 tabs.
Motor degradation prediction methods
Energy Technology Data Exchange (ETDEWEB)
Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.
1996-12-01
Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.
Neuroplasticity & Motor Learning
DEFF Research Database (Denmark)
Jensen, Jesper Lundbye
Practice of a new motor task is usually associated with an improvement in performance. Indeed, if we stop practicing and return the next day to the same task, we find that our performance has been maintained and may even be better than it was at the start of the first day. This improvement...... is a measure of our ability to form and store a motor memory of the task. However, the initial memory of the task is labile and may be subject to interference. During and following motor learning plastic changes occur within the central nervous system. On one hand these changes are driven by motor practice......, on the other hand the changes underlie the formation of motor memory and the retention of improved motor performance. During motor learning changes may occur at many different levels within the central nervous system dependent on the type of task and training. Here, we demonstrate different studies from our...
Linearly constrained minimax optimization
DEFF Research Database (Denmark)
Madsen, Kaj; Schjær-Jacobsen, Hans
1978-01-01
We present an algorithm for nonlinear minimax optimization subject to linear equality and inequality constraints which requires first order partial derivatives. The algorithm is based on successive linear approximations to the functions defining the problem. The resulting linear subproblems...
Robot Arm with Tendon Connector Plate and Linear Actuator
Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Bridgwater, Lyndon (Inventor); Nguyen, Vienny (Inventor); Millerman, Alexander (Inventor)
2014-01-01
A robotic system includes a tendon-driven end effector, a linear actuator, a flexible tendon, and a plate assembly. The linear actuator assembly has a servo motor and a drive mechanism, the latter of which translates linearly with respect to a drive axis of the servo motor in response to output torque from the servo motor. The tendon connects to the end effector and drive mechanism. The plate assembly is disposed between the linear actuator assembly and the tendon-driven end effector and includes first and second plates. The first plate has a first side that defines a boss with a center opening. The second plate defines an accurate through-slot having tendon guide channels. The first plate defines a through passage for the tendon between the center opening and a second side of the first plate. A looped end of the flexible tendon is received within the tendon guide channels.
Nonlinear analysis of field distribution in electric motor with periodicity conditions
Energy Technology Data Exchange (ETDEWEB)
Stabrowski, M M; Sikora, J
1981-01-01
Numerical analysis of electromagnetic field distribution in linear motion tubular electric motor has been performed with the aid of finite element method. Two Fortran programmes for the solution of DBBF and BF large linear symmetric equation systems have been developed for purposes of this analysis. A new iterative algorithm, taking into account iron nonlinearity and periodicity conditions, has been introduced. Final results of the analysis in the form of induction diagrammes and motor driving force are directly useful for motor designers.
Steady State Dynamic Operating Behavior of Universal Motor
Directory of Open Access Journals (Sweden)
Muhammad Khan Burdi
2015-01-01
Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known
Foundations of linear and generalized linear models
Agresti, Alan
2015-01-01
A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,
Young Athletes program: impact on motor development.
Favazza, Paddy C; Siperstein, Gary N; Zeisel, Susan A; Odom, Samuel L; Sideris, John H; Moskowitz, Andrew L
2013-07-01
This study examined the effectiveness of the Young Athletes program to promote motor development in preschool-aged children with disabilities. In the study, 233 children were randomly assigned to a control group or the Young Athletes (YA) intervention group which consisted of 24 motor skill lessons delivered 3 times per week for 8 weeks. Hierarchical Linear Modeling (HLM) showed that children who participated in the YA intervention exhibited mean gains of 7-9 months on the Peabody Developmental Motor Subscales (PDMS) compared with mean gains of 3-5 months for the control group. Children in the YA intervention also exhibited significant gains on the gross motor subscale of the Vineland Teacher Rating Form (VTRF). Teachers and parents reported benefits for children not only in specific motor skills, but also kindergarten readiness skills and social/play skills. The necessity for direct and intentional instruction of motor skills, as well as the challenges of involving families in the YA program, are discussed.
Piezoelectric/magnetostrictive resonant inchworm motor
Miesner, John E.; Teter, Joseph P.
1994-05-01
Magnetostrictive and piezoelectric materials were used to create a linear motor operating on the inchworm principle. This motor operates at an electrical resonance, switching power internally between inductive and capacitive components. Magnetic coils surrounding the two Terfenol-D rods which drive the inchworm's center expanding element form the inductive component. Piezoelectric stacks that control the end clamping action are the capacitive components. The normal electrical phase relationship between these components provides natural drive timing for the inchworm. The motor direction can be easily reversed by changing the magnetic bias on the Terfenol. A prototype motor was built that achieved a stall load of 26 lb and no-load speed of 1 inch/sec vs the design of 30 lb and 1.3 inch/sec. A new type of power supply that switches power from a dc source was built for the motor. This power supply uses a small number of components to exactly supply the energy used in each inchworm cycle. It tracks the motor circuit resonance and is not affected by frequency shifts.
Nonlinear control of permanent magnet synchronous motor driving a ...
African Journals Online (AJOL)
This paper presents a non-linear control of permanent magnet synchronous motor (PMSM) fed by a PWM voltage source inverter. To improve the performance of this control technique, the input-output linearization technique is proposed for a system driving a mechanical load with two masses. In order to ensure a steady ...
Motor degradation prediction methods
International Nuclear Information System (INIS)
Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.
1996-01-01
Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor's duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures
Cryogenic Electric Motor Tested
Brown, Gerald V.
2004-01-01
Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.
Hybrid vehicle motor alignment
Levin, Michael Benjamin
2001-07-03
A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.
Souza, Carolina T; Santos, Denise C C; Tolocka, Rute E; Baltieri, Letícia; Gibim, Nathália C; Habechian, Fernanda A P
2010-01-01
To analyze the global motor performance and the gross and fine motor skills of infants attending two public child care centers full-time. This was a longitudinal study that included 30 infants assessed at 12 and 17 months of age with the Motor Scale of the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). This scale allows the analysis of global motor performance, fine and gross motor performance, and the discrepancy between them. The Wilcoxon test and Spearman's correlation coefficient were used. Most of the participants showed global motor performance within the normal range, but below the reference mean at 12 and 17 months, with 30% classified as having "suspected delays" in at least one of the assessments. Gross motor development was poorer than fine motor development at 12 and at 17 months of age, with great discrepancy between these two subtests in the second assessment. A clear individual variability was observed in fine motor skills, with weak linear correlation between the first and the second assessment of this subtest. A lower individual variability was found in the gross motor skills and global motor performance with positive moderate correlation between assessments. Considering both performance measurements obtained at 12 and 17 months of age, four infants were identified as having a "possible delay in motor development". The study showed the need for closer attention to the motor development of children who attend day care centers during the first 17 months of life, with special attention to gross motor skills (which are considered an integral part of the child's overall development) and to children with suspected delays in two consecutive assessments.
Olfaction Is Related to Motor Function in Older Adults.
Tian, Qu; Resnick, Susan M; Studenski, Stephanie A
2017-08-01
Among older adults, both olfaction and motor function predict future cognitive decline and dementia, suggesting potential shared causal pathways. However, it is not known whether olfactory and motor function are independently related in late life. We assessed cross-sectional associations of olfaction with motor and cognitive function, using concurrent data on olfactory function, mobility, balance, fine motor function, manual dexterity, and cognition in 163 Baltimore Longitudinal Study of Aging participants aged 60 and older without common neurological diseases (n = 114 with available cognitive data). Using multiple linear regression, we adjusted for age, sex, race, smoking history, height, and weight for mobility and balance, and education for cognition. We used multiple linear regression to test whether olfaction-motor associations were independent of cognition and depressive symptoms. Olfactory scores were significantly associated with mobility (usual gait speed, rapid gait speed, 400-m walk time, and Health ABC Physical Performance Battery score), balance, fine motor function, and manual dexterity (all p function is associated with mobility, balance, fine motor function, and manual dexterity, and independent of cognitive function, with challenging upper and lower extremity motor function tasks. Longitudinal studies are needed to determine if olfactory performance predicts future mobility and functional decline. Published by Oxford University Press on behalf of The Gerontological Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Operations and maintenance manual for the linear accelerator (sled)
1981-01-01
The Linear Accelerator, a sliding chair which is pulled along a stationary platform in a horizontal axis is described. The driving force is a motor controlled by a velocity loop amplifier, and the mechanical link to the chair is a steel cable. The chair is moved in forward and reverse directions as indicated by the direction of motor rotation. The system operation is described with emphasis on the electronic control and monitoring functions. Line-by-line schematics and wire lists are included.
Modeling Induction Motor Imbalances
DEFF Research Database (Denmark)
Armah, Kabenla; Jouffroy, Jerome; Duggen, Lars
2016-01-01
This paper gives a study into the development of a generalized model for a three-phase induction motor that offers flexibility of simulating balanced and unbalanced parameter scenarios. By analyzing the interaction of forces within the motor, we achieve our main objective of deriving the system d...
Kassem, Salma; van Leeuwen, Thomas; Lubbe, Anouk S.; Wilson, Miriam R.; Feringa, Ben L.; Leigh, David A.
2017-01-01
Motor proteins are nature's solution for directing movement at the molecular level. The field of artificial molecular motors takes inspiration from these tiny but powerful machines. Although directional motion on the nanoscale performed by synthetic molecular machines is a relatively new
To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?
Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Prekoracka-Krawczyk, Anna; Jaskowski, Wojciech; van der Lubbe, Robert Henricus Johannes
2016-01-01
Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and
Energy Technology Data Exchange (ETDEWEB)
Flynn, Charles Joseph [QM Power, Inc., Kansas City, MO (United States)
2018-02-13
The objective of this project was to design and build a cost competitive, more efficient heating, ventilation, and air conditioning (HVAC) motor than what is currently available on the market. Though different potential motor architectures among QMP’s primary technology platforms were investigated and evaluated, including through the building of numerous prototypes, the project ultimately focused on scaling up QM Power, Inc.’s (QMP) Q-Sync permanent magnet synchronous motors from available sub-fractional horsepower (HP) sizes for commercial refrigeration fan applications to larger fractional horsepower sizes appropriate for HVAC applications, and to add multi-speed functionality. The more specific goal became the research, design, development, and testing of a prototype 1/2 HP Q-Sync motor that has at least two operating speeds and 87% peak efficiency compared to incumbent electronically commutated motors (EC or ECM, also known as brushless direct current (DC) motors), the heretofore highest efficiency HVACR fan motor solution, at approximately 82% peak efficiency. The resulting motor prototype built achieved these goals, hitting 90% efficiency and .95 power factor at full load and speed, and 80% efficiency and .7 power factor at half speed. Q-Sync, developed in part through a DOE SBIR grant (Award # DE-SC0006311), is a novel, patented motor technology that improves on electronically commutated permanent magnet motors through an advanced electronic circuit technology. It allows a motor to “sync” with the alternating current (AC) power flow. It does so by eliminating the constant, wasteful power conversions from AC to DC and back to AC through the synthetic creation of a new AC wave on the primary circuit board (PCB) by a process called pulse width modulation (PWM; aka electronic commutation) that is incessantly required to sustain motor operation in an EC permanent magnet motor. The Q-Sync circuit improves the power factor of the motor by removing all
A Recommended New Approach on Motorization Ratio Calculations of Stepper Motors
Nalbandian, Ruben; Blais, Thierry; Horth, Richard
2014-01-01
Stepper motors are widely used on most spacecraft mechanisms requiring repeatable and reliable performance. The unique detent torque characteristics of these type of motors makes them behave differently when subjected to low duty cycle excitations where the applied driving pulses are only energized for a fraction of the pulse duration. This phenomenon is even more pronounced in discrete permanent magnet stepper motors used in the space industry. While the inherent high detent properties of discrete permanent magnets provide desirable unpowered holding performance characteristics, it results in unique behavior especially in low duty cycles. Notably, the running torque reduces quickly to the unpowered holding torque when the duty cycle is reduced. The space industry's accepted methodology of calculating the Motorization Ratio (or Torque Margin) is more applicable to systems where the power is continuously applied to the motor coils like brushless DC motors where the cogging torques are low enough not to affect the linear performance of the motors as a function of applied current. This paper summarizes the theoretical and experimental studies performed on a number of space qualified motors under different pulse rates and duty cycles. It is the intention of this paper to introduce a new approach to calculate the Motorization Ratios for discrete permanent magnet steppers under all full and partial duty cycle regimes. The recommended approach defines two distinct relationships to calculate the Motorization Ratio for 100 percent duty cycle and partial duty cycle, when the motor detent (unpowered holding torque) is the main contributor to holding position. These two computations reflect accurately the stepper motor physical behavior as a function of the command phase (ON versus OFF times of the pulses), pointing out how the torque contributors combine. Important points highlighted under this study are the torque margin computations, in particular for well characterized
Spinal cord: motor neuron diseases.
Rezania, Kourosh; Roos, Raymond P
2013-02-01
Spinal cord motor neuron diseases affect lower motor neurons in the ventral horn. This article focuses on the most common spinal cord motor neuron disease, amyotrophic lateral sclerosis, which also affects upper motor neurons. Also discussed are other motor neuron diseases that only affect the lower motor neurons. Despite the identification of several genes associated with familial amyotrophic lateral sclerosis, the pathogenesis of this complex disease remains elusive. Copyright © 2013 Elsevier Inc. All rights reserved.
Tuey, R. C.
1972-01-01
Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.
Energy Technology Data Exchange (ETDEWEB)
Peterson, David; Stofleth, Jerome H.; Saul, Venner W.
2017-07-11
Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.
Classifying Linear Canonical Relations
Lorand, Jonathan
2015-01-01
In this Master's thesis, we consider the problem of classifying, up to conjugation by linear symplectomorphisms, linear canonical relations (lagrangian correspondences) from a finite-dimensional symplectic vector space to itself. We give an elementary introduction to the theory of linear canonical relations and present partial results toward the classification problem. This exposition should be accessible to undergraduate students with a basic familiarity with linear algebra.
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
[Children and motor competence].
Sigmundsson, H; Haga, M
2000-10-20
Recently, the topic of motor competence has figured prominently in the media. The claims made are many, but the research that support the statements is seldom cited. The aim of this review article is to address that deficiency by documenting what is really known about the motor competence of children. Motor competence not only allows children to carry out everyday practical tasks, but it is also an important determinant of their level of self-esteem and of their popularity and status in their peer group. While many studies have shown a significant correlation between motor problems and other problems in the social sphere, it has been difficult to establish causal relationships with any degree of confidence, as there appear to be several interactions which need to be taken into account. Research has shown that 6-10% of Norwegian children in the 7 to 10 year age group have a motor competence well below the norm. It is unusual for motor problems to simply disappear over time. In the absence of intervention the syndrome is likely to continue to manifest itself. More recent research points to some of the circularity in this causal network, children with motor problems having been shown to be less physically active than their peers. In a larger health perspective this in itself can have very serious consequences for the child.
Motor Unit Interpulse Intervals During High Force Contractions.
Stock, Matt S; Thompson, Brennan J
2016-01-01
We examined the means, medians, and variability for motor-unit interpulse intervals (IPIs) during voluntary, high force contractions. Eight men (mean age = 22 years) attempted to perform isometric contractions at 90% of their maximal voluntary contraction force while bipolar surface electromyographic (EMG) signals were detected from the vastus lateralis and vastus medialis muscles. Surface EMG signal decomposition was used to determine the recruitment thresholds and IPIs of motor units that demonstrated accuracy levels ≥ 96.0%. Motor units with high recruitment thresholds demonstrated longer mean IPIs, but the coefficients of variation were similar across all recruitment thresholds. Polynomial regression analyses indicated that for both muscles, the relationship between the means and standard deviations of the IPIs was linear. The majority of IPI histograms were positively skewed. Although low-threshold motor units were associated with shorter IPIs, the variability among motor units with differing recruitment thresholds was comparable.
Energetics and efficiency of a molecular motor model
International Nuclear Information System (INIS)
Fogedby, Hans C; Svane, Axel
2013-01-01
The energetics and efficiency of a linear molecular motor model proposed by Mogilner et al are analyzed from an analytical point of view. The model, which is based on protein friction with a track, is described by coupled Langevin equations for the motion in combination with coupled master equations for the ATP hydrolysis. Here the energetics and efficiency of the motor are addressed using a many body scheme with focus on the efficiency at maximum power (EMP). It is found that the EMP is reduced from about 10% in a heuristic description of the motor to about 1 per mille when incorporating the full motor dynamics, owing to the strong dissipation associated with the motor action. (paper)
A simplified tether model for molecular motor transporting cargo
International Nuclear Information System (INIS)
Fang-Zhen, Li; Li-Chun, Jiang
2010-01-01
Molecular motors are proteins or protein complexes which function as transporting engines in biological cells. This paper models the tether between motor and its cargo as a symmetric linear potential. Different from Elston and Peskin's work for which performance of the system was discussed only in some limiting cases, this study produces analytic solutions of the problem for general cases by simplifying the transport system into two physical states, which makes it possible to discuss the dynamics of the motor–cargo system in detail. It turns out that the tether strength between motor and cargo should be greater than a threshold or the motor will fail to transport the cargo, which was not discussed by former researchers yet. Value of the threshold depends on the diffusion coefficients of cargo and motor and also on the strength of the Brownian ratchets dragging the system. The threshold approaches a finite constant when the strength of the ratchet tends to infinity. (general)
Directory of Open Access Journals (Sweden)
arolina Panceri
2017-09-01
Full Text Available Introduction: Cognitive-motor tasks intervention is beneficial for the infant’s motor and cognitive development. These interventions in the hospital setting, have been widely studied in neonatal intensive care units, however, few studies evaluate child development within pediatric units. Objective: To evaluate the impact of cognitive-motor intervention in motor and cognitive development of infants hospitalized with respiratory diseases. Method: The research was characterized as quasi-experimental, 22 babies hospitalized in the pediatric unit for respiratory disease were divided into 2 groups (10 in the control group and 12 in the intervention group without significant differences in biological and socioeconomic data. The mean age was 5.50 months (SD ± 4.51, ranging between 1 and 16 months. Questionnaire was conducted with the infant’s parent/guardian for sample characterization. The Alberta Infant Motor Scale (AIMS and the Bayley Scales of Infant Development (BSID-III was used to evaluate motor e cognitive development. Data analysis was performed using descriptive statistics, Student’s t test, General Linear Model and One Way ANOVA. Results: The results show a significant interaction between group x time in motor and cognitive scores. When comparing the two times, the intervention group changed positively and significantly from pre- to post-intervention in motor and cognitive scores. The same was not observed for the control group. Conclusion: The results of this study suggest that the intervention during the hospital stay contributes positively to the motor and cognitive development.
Design, Modeling and Performance Optimization of a Novel Rotary Piezoelectric Motor
Duong, Khanh A.; Garcia, Ephrahim
1997-01-01
This work has demonstrated a proof of concept for a torsional inchworm type motor. The prototype motor has shown that piezoelectric stack actuators can be used for rotary inchworm motor. The discrete linear motion of piezoelectric stacks can be converted into rotary stepping motion. The stacks with its high force and displacement output are suitable actuators for use in piezoelectric motor. The designed motor is capable of delivering high torque and speed. Critical issues involving the design and operation of piezoelectric motors were studied. The tolerance between the contact shoes and the rotor has proved to be very critical to the performance of the motor. Based on the prototype motor, a waveform optimization scheme was proposed and implemented to improve the performance of the motor. The motor was successfully modeled in MATLAB. The model closely represents the behavior of the prototype motor. Using the motor model, the input waveforms were successfully optimized to improve the performance of the motor in term of speed, torque, power and precision. These optimized waveforms drastically improve the speed of the motor at different frequencies and loading conditions experimentally. The optimized waveforms also increase the level of precision of the motor. The use of the optimized waveform is a break-away from the traditional use of sinusoidal and square waves as the driving signals. This waveform optimization scheme can be applied to any inchworm motors to improve their performance. The prototype motor in this dissertation as a proof of concept was designed to be robust and large. Future motor can be designed much smaller and more efficient with lessons learned from the prototype motor.
Limited Angle Torque Motors Having High Torque Density, Used in Accurate Drive Systems
Directory of Open Access Journals (Sweden)
R. Obreja
2011-01-01
Full Text Available A torque motor is a special electric motor that is able to develop the highest possible torque in a certain volume. A torque motor usually has a pancake configuration, and is directly jointed to a drive system (without a gear box. A limited angle torque motor is a torque motor that has no rotary electromagnetic field — in certain papers it is referred to as a linear electromagnet. The main intention of the authors for this paper is to present a means for analyzing and designing a limited angle torque motor only through the finite element method. Users nowadays require very high-performance limited angle torque motors with high density torque. It is therefore necessary to develop the highest possible torque in a relatively small volume. A way to design such motors is by using numerical methods based on the finite element method.
... these crashes is one part of motor vehicle safety. Here are some things you can do to ... speed or drive aggressively Don't drive impaired Safety also involves being aware of others. Share the ...
Department of Transportation — Contains data on large trucks and buses involved in Federally reportable crashes as per Title 49 U.S.C. Part 390.5 (crashes involving a commercial motor vehicle, and...
A simple theory of motor protein kinetics and energetics. II.
Qian, H
2000-01-10
A three-state stochastic model of motor protein [Qian, Biophys. Chem. 67 (1997) pp. 263-267] is further developed to illustrate the relationship between the external load on an individual motor protein in aqueous solution with various ATP concentrations and its steady-state velocity. A wide variety of dynamic motor behavior are obtained from this simple model. For the particular case of free-load translocation being the most unfavorable step within the hydrolysis cycle, the load-velocity curve is quasi-linear, V/Vmax = (cF/Fmax-c)/(1-c), in contrast to the hyperbolic relationship proposed by A.V. Hill for macroscopic muscle. Significant deviation from the linearity is expected when the velocity is less than 10% of its maximal (free-load) value--a situation under which the processivity of motor diminishes and experimental observations are less certain. We then investigate the dependence of load-velocity curve on ATP (ADP) concentration. It is shown that the free load Vmax exhibits a Michaelis-Menten like behavior, and the isometric Fmax increases linearly with ln([ATP]/[ADP]). However, the quasi-linear region is independent of the ATP concentration, yielding an apparently ATP-independent maximal force below the true isometric force. Finally, the heat production as a function of ATP concentration and external load are calculated. In simple terms and solved with elementary algebra, the present model provides an integrated picture of biochemical kinetics and mechanical energetics of motor proteins.
Kascak, Daniel J.
2004-01-01
With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it
Split-phase motor running as capacitor starts motor and as capacitor run motor
Directory of Open Access Journals (Sweden)
Yahaya Asizehi ENESI
2016-07-01
Full Text Available In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The magnitude of capacitor that will develop maximum torque in capacitor start motor and capacitor run motor are investigated and determined by simulation. Each of these capacitors is connected to the auxiliary winding of split-phase motor thereby transforming it into capacitor start or capacitor run motor. The starting current and starting torque of the split-phase motor (SPM, capacitor run motor (CRM and capacitor star motor (CSM are compared for their suitability in their operational performance and applications.
Non linear system become linear system
Directory of Open Access Journals (Sweden)
Petre Bucur
2007-01-01
Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.
Imparting motion to a test object such as a motor vehicle in a controlled fashion
2011-01-01
An apparatus imparts motion to a test object such as a motor vehicle in a controlled fashion. A base has mounted on it a linear electromagnetic motor having a first end and a second end, the first end being connected to the base. A pneumatic cylinder and piston combination have a first end and a second end, the first end connected to the base so that the pneumatic cylinder and piston combination is generally parallel with the linear electromagnetic motor. The second ends of the linear electro...
Directory of Open Access Journals (Sweden)
Raquel Saccani
2013-09-01
Full Text Available OBJECTIVE: To compare the motor development of infants from three population samples (Brazil, Canada and Greece, to investigate differences in the percentile curves of motor development in these samples, and to investigate the prevalence of motor delays in Brazilian children. METHODS: Observational, descriptive and cross-sectional study with 795 Brazilian infants from zero to 18 months of age, assessed by the Alberta Infant Motor Scale (AIMS at day care centers, nurseries, basic health units and at home. The Brazilian infants' motor scores were compared to the results of two population samples from Greece (424 infants and Canada (2,400 infants. Descriptive statistics was used, with one-sample t-test and binomial tests, being significant p≤0.05. RESULTS: 65.4% of Brazilian children showed typical motor development, although with lower mean scores. In the beginning of the second year of life, the differences in the motor development among Brazilian, Canadian and Greek infants were milder; at 15 months of age, the motor development became similar in the three groups. A non-linear motor development trend was observed. CONCLUSIONS: The lowest motor percentiles of the Brazilian sample emphasized the need for national norms in order to correctly categorize the infant motor development. The different ways of motor development may be a consequence of cultural differences in infant care.
Research on linear driving of wave maker; Zoha sochi no linear drive ka kenkyu
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, I; Taniguchi, S; Nohara, T [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)
1997-10-01
The water tank test of marine structures or submarine structures uses a wave maker to generate waves. A typical flap wave maker uses the wave making flap penetrating a water surface whose bottom is fixed on a tank bottom through a hinge, and the top is connected with a rod driven by rotating servomotor for reciprocating motion of the flap. However, this driving gear using a rotating servomotor and a bowl- screw has some defects such as noise caused by bowl rotation, backlash due to wear and limited driving speed. A linear motor with less friction mechanisms was thus applied to the driving gear. The performance test result of the prototype driving gear using a linear motor showed the possibility of the linear driven wave maker. The linear driven wave maker could also achieve low noise and simple mechanism. The sufficient durability and applicability of the linear driven wave maker mechanism were confirmed through strength calculation necessary for improving the prototype wave maker. 1 ref., 5 figs., 2 tabs.
Markov process of muscle motors
International Nuclear Information System (INIS)
Kondratiev, Yu; Pechersky, E; Pirogov, S
2008-01-01
We study a Markov random process describing muscle molecular motor behaviour. Every motor is either bound up with a thin filament or unbound. In the bound state the motor creates a force proportional to its displacement from the neutral position. In both states the motor spends an exponential time depending on the state. The thin filament moves at a velocity proportional to the average of all displacements of all motors. We assume that the time which a motor stays in the bound state does not depend on its displacement. Then one can find an exact solution of a nonlinear equation appearing in the limit of an infinite number of motors
Electric vehicle motors and controllers
Secunde, R. R.
1981-01-01
Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.
Energy Technology Data Exchange (ETDEWEB)
Wiedemann, H.
1981-11-01
Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.
Blyth, T S
2002-01-01
Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...
International Nuclear Information System (INIS)
Wiedemann, H.
1981-11-01
Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center
Design and characterization of piezoelectric ultrasonic motors
Yener, Serra
This thesis presents modeling and prototype fabrication and characterization of new types of piezoelectric ultrasonic micromotors. Our approach in designing these piezoelectric motors was: (i) to simplify the structure including the poling configuration of piezoelectric elements used in the stator and (ii) to reduce the number of components in order to decrease the cost and enhance the driving reliability. There are two different types of piezoelectric motors designed throughout this research. The first of these designs consists of a metal tube, on which two piezoelectric ceramic plates poled in thickness direction, were bonded. Two orthogonal bending modes of the hollow cylinder were superimposed resulting in a rotational vibration. Since the structure and poling configuration of the active piezoelectric elements used in the stator are simple, this motor structure is very suitable for miniaturization. Moreover, a single driving source can excite two bending modes at the same time, thus generate a wobble motion. Three types of prototypes are included in this design. The piezoelectric stator structure is the same for all. However, the dimensions of the motors are reduced by almost 50 percent. Starting with a 10 mm long stator, we reached to 4 mm in the last prototype. The initial diameter was 2.4 mm, which was reduced to 1.6 mm. In the final design, the rotor part of the motor was changed resulting in the reduction in the number of components. In terms of driving circuit, a single driving source was enough to run the motors and a conventional switching power supply type resonant L-C circuit was used. A simple motor structure with a simple driving circuit were combined successfully and fabricated inexpensively. The second design is a shear type piezoelectric linear motor. The behavior of a single rectangular piezoelectric shear plate was analyzed and after optimizing the dimensions and the mode characteristics, a prototype was fabricated. The prototype consists of
Matrices and linear transformations
Cullen, Charles G
1990-01-01
""Comprehensive . . . an excellent introduction to the subject."" - Electronic Engineer's Design Magazine.This introductory textbook, aimed at sophomore- and junior-level undergraduates in mathematics, engineering, and the physical sciences, offers a smooth, in-depth treatment of linear algebra and matrix theory. The major objects of study are matrices over an arbitrary field. Contents include Matrices and Linear Systems; Vector Spaces; Determinants; Linear Transformations; Similarity: Part I and Part II; Polynomials and Polynomial Matrices; Matrix Analysis; and Numerical Methods. The first
Efficient Non Linear Loudspeakers
DEFF Research Database (Denmark)
Petersen, Bo R.; Agerkvist, Finn T.
2006-01-01
Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption....
Faraway, Julian J
2014-01-01
A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition.New to the Second EditionReorganiz
Carr, Joseph
1996-01-01
The linear IC market is large and growing, as is the demand for well trained technicians and engineers who understand how these devices work and how to apply them. Linear Integrated Circuits provides in-depth coverage of the devices and their operation, but not at the expense of practical applications in which linear devices figure prominently. This book is written for a wide readership from FE and first degree students, to hobbyists and professionals.Chapter 1 offers a general introduction that will provide students with the foundations of linear IC technology. From chapter 2 onwa
Fault tolerant linear actuator
Tesar, Delbert
2004-09-14
In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.
Superconducting linear accelerator cryostat
International Nuclear Information System (INIS)
Ben-Zvi, I.; Elkonin, B.V.; Sokolowski, J.S.
1984-01-01
A large vertical cryostat for a superconducting linear accelerator using quarter wave resonators has been developed. The essential technical details, operational experience and performance are described. (author)
Sensory-motor problems in Autism
Whyatt, Caroline; Craig, Cathy
2013-01-01
Despite being largely characterized as a social and cognitive disorder, strong evidence indicates the presence of significant sensory-motor problems in Autism Spectrum Disorder (ASD). This paper outlines our progression from initial, broad assessment using the Movement Assessment Battery for Children (M-ABC2) to subsequent targeted kinematic assessment. In particular, pronounced ASD impairment seen in the broad categories of manual dexterity and ball skills was found to be routed in specific difficulties on isolated tasks, which were translated into focused experimental assessment. Kinematic results from both subsequent studies highlight impaired use of perception-action coupling to guide, adapt and tailor movement to task demands, resulting in inflexible and rigid motor profiles. In particular difficulties with the use of temporal adaption are shown, with “hyperdexterity” witnessed in ballistic movement profiles, often at the cost of spatial accuracy and task performance. By linearly progressing from the use of a standardized assessment tool to targeted kinematic assessment, clear and defined links are drawn between measureable difficulties and underlying sensory-motor assessment. Results are specifically viewed in-light of perception-action coupling and its role in early infant development suggesting that rather than being “secondary” level impairment, sensory-motor problems may be fundamental in the progression of ASD. This logical and systematic process thus allows a further understanding into the potential root of observable motor problems in ASD; a vital step if underlying motor problems are to be considered a fundamental aspect of autism and allow a route of non-invasive preliminary diagnosis. PMID:23882194
Sensory-motor problems in Autism
Directory of Open Access Journals (Sweden)
Caroline eWhyatt
2013-07-01
Full Text Available Despite being largely characterised as a social and cognitive disorder, strong evidence indicates the presence of significant sensory-motor problems in Autism Spectrum Disorder (ASD. This paper outlines our progression from initial, broad assessment using the Movement Assessment Battery for Children (M-ABC2 to subsequent targeted kinematic assessment. In particular, pronounced ASD impairment seen in the broad categories of manual dexterity and ball skills was found to be routed in specific difficulties on isolated tasks, which were translated into focused experimental assessment. Kinematic results from both subsequent studies highlight impaired use of perception-action coupling to guide, adapt and tailor movement to task demands, resulting in inflexible and rigid motor profiles. In particular difficulties with the use of temporal adaption are shown, with hyperdexterity witnessed in ballistic movement profiles, often at the cost of spatial accuracy and task performance. By linearly progressing from the use of a standardised assessment tool to targeted kinematic assessment, clear and defined links are drawn between measureable difficulties and underlying sensory-motor assessment. Results are specifically viewed in-light of perception-action coupling and its role in early infant development suggesting that rather than being secondary level impairment, sensory-motor problems may be fundamental in the progression of ASD. This logical and systematic process thus allows a further understanding into the potential route of observable motor problems in ASD; a vital step if underlying motor problems are to be considered a fundamental aspect of autism and allow a route of non-invasive preliminary diagnosis.
Hierarchical control of motor units in voluntary contractions.
De Luca, Carlo J; Contessa, Paola
2012-01-01
For the past five decades there has been wide acceptance of a relationship between the firing rate of motor units and the afterhyperpolarization of motoneurons. It has been promulgated that the higher-threshold, larger-soma, motoneurons fire faster than the lower-threshold, smaller-soma, motor units. This relationship was based on studies on anesthetized cats with electrically stimulated motoneurons. We questioned its applicability to motor unit control during voluntary contractions in humans. We found that during linearly force-increasing contractions, firing rates increased as exponential functions. At any time and force level, including at recruitment, the firing rate values were inversely related to the recruitment threshold of the motor unit. The time constants of the exponential functions were directly related to the recruitment threshold. From the Henneman size principle it follows that the characteristics of the firing rates are also related to the size of the soma. The "firing rate spectrum" presents a beautifully simple control scheme in which, at any given time or force, the firing rate value of earlier-recruited motor units is greater than that of later-recruited motor units. This hierarchical control scheme describes a mechanism that provides an effective economy of force generation for the earlier-recruited lower force-twitch motor units, and reduces the fatigue of later-recruited higher force-twitch motor units-both characteristics being well suited for generating and sustaining force during the fight-or-flight response.
A catalytic oligomeric motor that walks along a filament track
Huang, Mu-Jie; Kapral, Raymond
2015-06-01
Most biological motors in the cell execute chemically powered conformational changes as they walk on biopolymer filaments in order to carry out directed transport functions. Synthetic motors that operate in a similar manner are being studied since they have the potential to perform similar tasks in a variety of applications. In this paper, a synthetic nanomotor that moves along a filament track, without invoking motor conformational changes, is constructed and its properties are studied in detail. The motor is an oligomer comprising three linked beads with specific binding properties. The filament track is a stiff polymer chain, also described by a linear chain of linked coarse-grained molecular groups modeled as beads. Reactions on the filament that are catalyzed by a motor bead and use fuel in the environment, in conjunction within the binding affinities of the motor beads to the filament beads, lead to directed motion. The system operates out of equilibrium due to the state of the filament and supply of fuel. The motor, filament, and surrounding medium are all described at microscopic level that permits a full analysis of the motor motion. A stochastic model that captures the main trends seen in the simulations is also presented. The results of this study point to some of the key features that could be used to construct nanomotors that undergo biased walks powered by chemical reactions on filaments.
A catalytic oligomeric motor that walks along a filament track
Energy Technology Data Exchange (ETDEWEB)
Huang, Mu-Jie, E-mail: mjhuang@chem.utoronto.ca; Kapral, Raymond, E-mail: rkapral@chem.utoronto.ca [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)
2015-06-28
Most biological motors in the cell execute chemically powered conformational changes as they walk on biopolymer filaments in order to carry out directed transport functions. Synthetic motors that operate in a similar manner are being studied since they have the potential to perform similar tasks in a variety of applications. In this paper, a synthetic nanomotor that moves along a filament track, without invoking motor conformational changes, is constructed and its properties are studied in detail. The motor is an oligomer comprising three linked beads with specific binding properties. The filament track is a stiff polymer chain, also described by a linear chain of linked coarse-grained molecular groups modeled as beads. Reactions on the filament that are catalyzed by a motor bead and use fuel in the environment, in conjunction within the binding affinities of the motor beads to the filament beads, lead to directed motion. The system operates out of equilibrium due to the state of the filament and supply of fuel. The motor, filament, and surrounding medium are all described at microscopic level that permits a full analysis of the motor motion. A stochastic model that captures the main trends seen in the simulations is also presented. The results of this study point to some of the key features that could be used to construct nanomotors that undergo biased walks powered by chemical reactions on filaments.
A catalytic oligomeric motor that walks along a filament track
International Nuclear Information System (INIS)
Huang, Mu-Jie; Kapral, Raymond
2015-01-01
Most biological motors in the cell execute chemically powered conformational changes as they walk on biopolymer filaments in order to carry out directed transport functions. Synthetic motors that operate in a similar manner are being studied since they have the potential to perform similar tasks in a variety of applications. In this paper, a synthetic nanomotor that moves along a filament track, without invoking motor conformational changes, is constructed and its properties are studied in detail. The motor is an oligomer comprising three linked beads with specific binding properties. The filament track is a stiff polymer chain, also described by a linear chain of linked coarse-grained molecular groups modeled as beads. Reactions on the filament that are catalyzed by a motor bead and use fuel in the environment, in conjunction within the binding affinities of the motor beads to the filament beads, lead to directed motion. The system operates out of equilibrium due to the state of the filament and supply of fuel. The motor, filament, and surrounding medium are all described at microscopic level that permits a full analysis of the motor motion. A stochastic model that captures the main trends seen in the simulations is also presented. The results of this study point to some of the key features that could be used to construct nanomotors that undergo biased walks powered by chemical reactions on filaments
Energy Technology Data Exchange (ETDEWEB)
Patten, B.C.
1983-04-01
Two issues concerning linearity or nonlinearity of natural systems are considered. Each is related to one of the two alternative defining properties of linear systems, superposition and decomposition. Superposition exists when a linear combination of inputs to a system results in the same linear combination of outputs that individually correspond to the original inputs. To demonstrate this property it is necessary that all initial states and inputs of the system which impinge on the output in question be included in the linear combination manipulation. As this is difficult or impossible to do with real systems of any complexity, nature appears nonlinear even though it may be linear. A linear system that displays nonlinear behavior for this reason is termed pseudononlinear. The decomposition property exists when the dynamic response of a system can be partitioned into an input-free portion due to state plus a state-free portion due to input. This is a characteristic of all linear systems, but not of nonlinear systems. Without the decomposition property, it is not possible to distinguish which portions of a system's behavior are due to innate characteristics (self) vs. outside conditions (environment), which is an important class of questions in biology and ecology. Some philosophical aspects of these findings are then considered. It is suggested that those ecologists who hold to the view that organisms and their environments are separate entities are in effect embracing a linear view of nature, even though their belief systems and mathematical models tend to be nonlinear. On the other hand, those who consider that organism-environment complex forms a single inseparable unit are implictly involved in non-linear thought, which may be in conflict with the linear modes and models that some of them use. The need to rectify these ambivalences on the part of both groups is indicated.
Linear colliders - prospects 1985
International Nuclear Information System (INIS)
Rees, J.
1985-06-01
We discuss the scaling laws of linear colliders and their consequences for accelerator design. We then report on the SLAC Linear Collider project and comment on experience gained on that project and its application to future colliders. 9 refs., 2 figs
International Nuclear Information System (INIS)
Richter, B.
1985-01-01
A report is given on the goals and progress of the SLAC Linear Collider. The author discusses the status of the machine and the detectors and give an overview of the physics which can be done at this new facility. He also gives some ideas on how (and why) large linear colliders of the future should be built
International Nuclear Information System (INIS)
Rogner, H.H.
1989-01-01
The submitted sections on linear programming are extracted from 'Theorie und Technik der Planung' (1978) by W. Blaas and P. Henseler and reformulated for presentation at the Workshop. They consider a brief introduction to the theory of linear programming and to some essential aspects of the SIMPLEX solution algorithm for the purposes of economic planning processes. 1 fig
International Nuclear Information System (INIS)
Rowe, C.H.; Wilton, M.S. de.
1979-01-01
An improved recirculating electron beam linear accelerator of the racetrack type is described. The system comprises a beam path of four straight legs with four Pretzel bending magnets at the end of each leg to direct the beam into the next leg of the beam path. At least one of the beam path legs includes a linear accelerator. (UK)
Development of Maglev and linear drive technology for transportation in Japan
Energy Technology Data Exchange (ETDEWEB)
Masada, Eisuke [Tokyo Univ. (Germany)
1996-12-31
In order to realise guided ground transportation systems with superspeed, better riding comforts and environmental effects two types of maglev transports, JR-Maglev and HSST have been developed since 20 years in Japan. JR-Maglev is bases on a electro-dynamic suspension system and driven by long-stator linear synchronous motors. HSST is an electromagnetic suspension system with short-stator linear induction motor. Both systems are presented. (HW)
A versatile stepping motor controller for systems with many motors
International Nuclear Information System (INIS)
Feng, S.K.; Siddons, D.P.
1989-01-01
A versatile system for controlling beamlines or complex experimental setups is described. The system as currently configured can control up to 32 motors, with all motors capable of full speed operation concurrently. There are 2 limit switch inputs for each motor, and a further input to accept a reference position marker. The motors can be controlled via a front panel keyboard with display, or by a host computer over an IEEE-488 interface. Both methods can be used together if required. There is an ''emergency stop'' key on the front panel keyboard to stop the motion of all motors without losing track of the motors' position. 3 refs., 4 figs., 1 tab
Advanced electric motor technology flux mapping
Doane, George B., III; Campbell, Warren; Dean, Garvin
1993-01-01
Design of electric motors which fulfill the needs of Thrust Vector Control (TVC) actuators used in large rocket propelled launch vehicles is covered. To accomplish this end the methodology of design is laid out in some detail. In addition a point design of a motor to fulfill the requirements of a certain actuator specified by MSFC is accomplished and reported upon. In the course of this design great stress has been placed on ridding the actuator of internally generated heat. To conduct the heat out of the motor use is made of the unique properties of the in house MSFC designed driving electronics. This property is that as along as they are operated in a quasi-linear mode the electronics nullify the effects of armature inductance as far as the phase of the armature current versus the rotor position is concerned. Actually the additional inductance due to the extended end turns in this design is of benefit because in the shorted armature failure mode the armature current in the fault (caused by the rotor flux sweeping past the armature) is diminished at a given rotor speed when compared to a more conventional motor with lower inductance. The magnetic circuit is analyzed using electromagnetic finite element methods.
Solid Rocket Motor Design Using Hybrid Optimization
Directory of Open Access Journals (Sweden)
Kevin Albarado
2012-01-01
Full Text Available A particle swarm/pattern search hybrid optimizer was used to drive a solid rocket motor modeling code to an optimal solution. The solid motor code models tapered motor geometries using analytical burn back methods by slicing the grain into thin sections along the axial direction. Grains with circular perforated stars, wagon wheels, and dog bones can be considered and multiple tapered sections can be constructed. The hybrid approach to optimization is capable of exploring large areas of the solution space through particle swarming, but is also able to climb “hills” of optimality through gradient based pattern searching. A preliminary method for designing tapered internal geometry as well as tapered outer mold-line geometry is presented. A total of four optimization cases were performed. The first two case studies examines designing motors to match a given regressive-progressive-regressive burn profile. The third case study studies designing a neutrally burning right circular perforated grain (utilizing inner and external geometry tapering. The final case study studies designing a linearly regressive burning profile for right circular perforated (tapered grains.
Semidefinite linear complementarity problems
International Nuclear Information System (INIS)
Eckhardt, U.
1978-04-01
Semidefinite linear complementarity problems arise by discretization of variational inequalities describing e.g. elastic contact problems, free boundary value problems etc. In the present paper linear complementarity problems are introduced and the theory as well as the numerical treatment of them are described. In the special case of semidefinite linear complementarity problems a numerical method is presented which combines the advantages of elimination and iteration methods without suffering from their drawbacks. This new method has very attractive properties since it has a high degree of invariance with respect to the representation of the set of all feasible solutions of a linear complementarity problem by linear inequalities. By means of some practical applications the properties of the new method are demonstrated. (orig.) [de
Axler, Sheldon
2015-01-01
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...
Nonlinear decoupling of torque and field amplitude in an induction motor
Energy Technology Data Exchange (ETDEWEB)
Rasmussen, H. [Aalborg University, Aalborg (Denmark); Vadstrup, P.; Boersting, H. [Grundfos A/S, Bjerringbro (Denmark)
1997-12-31
A novel approach to control of induction motors, based on nonlinear state feedback, is presented. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the field amplitude and the motor torque. The method is tested both by simulation and by experiments on a motor drive. (orig.) 12 refs.
Parkinson Disease: The Relationship Between Non-motor Symptoms and Motor Phenotype.
Ba, Fang; Obaid, Mona; Wieler, Marguerite; Camicioli, Richard; Martin, W R Wayne
2016-03-01
Parkinson disease (PD) presents with motor and non-motor symptoms (NMS). The NMS often precede the onset of motor symptoms, but may progress throughout the disease course. Tremor dominant, postural instability gait difficulty (PIGD), and indeterminate phenotypes can be distinguished using Unified PD Rating scales (UPDRS-III). We hypothesized that the PIGD phenotype would be more likely to develop NMS, and that the non-dopamine-responsive axial signs would correlate with NMS severity. We conducted a retrospective cross-sectional chart review to assess the relationship between NMS and PD motor phenotypes. PD patients were administered the NMS Questionnaire, the UPDRS-III, and the Mini-Mental State Examination score. The relationship between NMS burden and PD subtypes was examined using linear regression models. The prevalence of each NMS among difference PD motor subtypes was analyzed using chi-square test. PD patients with more advanced disease based on their UPDRS-III had higher NMS Questionnaire scores. The axial component of UPDRS-III correlated with higher NMS. There was no correlation between NMS and tremor scores. There was a significant correlation between PIGD score and higher NMS burden. PIGD group had higher prevalence in most NMS domains when compared with tremor dominant and indeterminate groups independent of disease duration and severity. NMS profile and severity vary according to motor phenotype. We conclude that in the PD population, patients with a PIGD phenotype who have more axial involvement, associated with advanced disease and poor motor response, have a higher risk for a higher NMS burden.
Energy Technology Data Exchange (ETDEWEB)
Schmitt, Marcus [AREVA NP GmbH, Erlangen (Germany)
2013-07-01
Even before the Fukushima event occurred some German nuclear power plants (NPP) have considered flooding scenarios. As a result of one of these studies, AREVA performed an upgrade project in NPP Isar 1 with flood-proof motors as a replacement of existing air-cooled low-voltage and high-voltage motors of the emergency cooling chain. After the Fukushima event, in which the cooling chains failed, the topic flood-proof equipment gets more and more into focus. This compact will introduce different kinds of flood-proof electrical motors which are currently installed or planned for installation into NPPs over the world. Moreover the process of qualification, as it was performed during the project in NPP Isar 1, will be shown. (orig.)
International Nuclear Information System (INIS)
Schmitt, Marcus
2013-01-01
Even before the Fukushima event occurred some German nuclear power plants (NPP) have considered flooding scenarios. As a result of one of these studies, AREVA performed an upgrade project in NPP Isar 1 with flood-proof motors as a replacement of existing air-cooled low-voltage and high-voltage motors of the emergency cooling chain. After the Fukushima event, in which the cooling chains failed, the topic flood-proof equipment gets more and more into focus. This compact will introduce different kinds of flood-proof electrical motors which are currently installed or planned for installation into NPPs over the world. Moreover the process of qualification, as it was performed during the project in NPP Isar 1, will be shown. (orig.)
Analytical modeling for thermal errors of motorized spindle unit
Liu, Teng; Gao, Weiguo; Zhang, Dawei; Zhang, Yifan; Chang, Wenfen; Liang, Cunman; Tian, Yanling
2017-01-01
Modeling method investigation about spindle thermal errors is significant for spindle thermal optimization in design phase. To accurately analyze the thermal errors of motorized spindle unit, this paper assumes approximately that 1) spindle linear thermal error on axial direction is ascribed to shaft thermal elongation for its heat transfer from bearings, and 2) spindle linear thermal errors on radial directions and angular thermal errors are attributed to thermal variations of bearing relati...
Linear ubiquitination in immunity.
Shimizu, Yutaka; Taraborrelli, Lucia; Walczak, Henning
2015-07-01
Linear ubiquitination is a post-translational protein modification recently discovered to be crucial for innate and adaptive immune signaling. The function of linear ubiquitin chains is regulated at multiple levels: generation, recognition, and removal. These chains are generated by the linear ubiquitin chain assembly complex (LUBAC), the only known ubiquitin E3 capable of forming the linear ubiquitin linkage de novo. LUBAC is not only relevant for activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in various signaling pathways, but importantly, it also regulates cell death downstream of immune receptors capable of inducing this response. Recognition of the linear ubiquitin linkage is specifically mediated by certain ubiquitin receptors, which is crucial for translation into the intended signaling outputs. LUBAC deficiency results in attenuated gene activation and increased cell death, causing pathologic conditions in both, mice, and humans. Removal of ubiquitin chains is mediated by deubiquitinases (DUBs). Two of them, OTULIN and CYLD, are constitutively associated with LUBAC. Here, we review the current knowledge on linear ubiquitination in immune signaling pathways and the biochemical mechanisms as to how linear polyubiquitin exerts its functions distinctly from those of other ubiquitin linkage types. © 2015 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.
Mechanical design of electric motors
Tong, Wei
2014-01-01
Rapid increases in energy consumption and emphasis on environmental protection have posed challenges for the motor industry, as has the design and manufacture of highly efficient, reliable, cost-effective, energy-saving, quiet, precisely controlled, and long-lasting electric motors.Suitable for motor designers, engineers, and manufacturers, as well as maintenance personnel, undergraduate and graduate students, and academic researchers, Mechanical Design of Electric Motors provides in-depth knowledge of state-of-the-art design methods and developments of electric motors. From motor classificati
Shultz, George
1991-01-01
Transformers and Motors is an in-depth technical reference which was originally written for the National Joint Apprenticeship Training Committee to train apprentice and journeymen electricians. This book provides detailed information for equipment installation and covers equipment maintenance and repair. The book also includes troubleshooting and replacement guidelines, and it contains a minimum of theory and math.In this easy-to-understand, practical sourcebook, you'll discover:* Explanations of the fundamental concepts of transformers and motors* Transformer connections and d
DEFF Research Database (Denmark)
Nielsen, Jens Bo
2016-01-01
Human studies in the past three decades have provided us with an emerging understanding of how cortical and spinal networks collaborate to ensure the vast repertoire of human behaviors. We differ from other animals in having direct cortical connections to spinal motoneurons, which bypass spinal...... the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior. Expected final online...
Lim, Jiufu; Sader, John E; Mulvaney, Paul
2009-03-01
Brownian ratchets produce directed motion through rectification of thermal fluctuations and have been used for separation processes and colloidal transport. We propose a flashing ratchet motor that enables the transduction of electrical energy into rotary micromechanical work. This is achieved through torque generation provided by boundary shaping of equipotential surfaces. The present device contrasts to previous implementations that focus on translational motion. Stochastic simulations elucidate the performance characteristics of this device as a function of its geometry. Miniaturization to nanoscale dimensions yields rotational speeds in excess of 1 kHz, which is comparable to biomolecular motors of similar size.
Nature of motor control: perspectives and issues.
Turvey, Michael T; Fonseca, Sergio
2009-01-01
Four perspectives on motor control provide the framework for developing a comprehensive theory of motor control in biological systems. The four perspectives, of decreasing orthodoxy, are distinguished by their sources of inspiration: neuroanatomy, robotics, self-organization, and ecological realities. Twelve major issues that commonly constrain (either explicitly or implicitly) the understanding of the control and coordination of movement are identified and evaluated within the framework of the four perspectives. The issues are as follows: (1) Is control strictly neural? (2) Is there a divide between planning and execution? (3) Does control entail a frequently involved knowledgeable executive? (4) Do analytical internal models mediate control? (5) Is anticipation necessarily model dependent? (6) Are movements preassembled? (7) Are the participating components context independent? (8) Is force transmission strictly myotendinous? (9) Is afference a matter of local linear signaling? (10) Is neural noise an impediment? (11) Do standard variables (of mechanics and physiology) suffice? (12) Is the organization of control hierarchical?
International Nuclear Information System (INIS)
Krivonos, S.O.; Sorin, A.S.
1994-06-01
We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
Linearity in Process Languages
DEFF Research Database (Denmark)
Nygaard, Mikkel; Winskel, Glynn
2002-01-01
The meaning and mathematical consequences of linearity (managing without a presumed ability to copy) are studied for a path-based model of processes which is also a model of affine-linear logic. This connection yields an affine-linear language for processes, automatically respecting open......-map bisimulation, in which a range of process operations can be expressed. An operational semantics is provided for the tensor fragment of the language. Different ways to make assemblies of processes lead to different choices of exponential, some of which respect bisimulation....
Amir-Moez, A R; Sneddon, I N
1962-01-01
Elements of Linear Space is a detailed treatment of the elements of linear spaces, including real spaces with no more than three dimensions and complex n-dimensional spaces. The geometry of conic sections and quadric surfaces is considered, along with algebraic structures, especially vector spaces and transformations. Problems drawn from various branches of geometry are given.Comprised of 12 chapters, this volume begins with an introduction to real Euclidean space, followed by a discussion on linear transformations and matrices. The addition and multiplication of transformations and matrices a
Weisberg, Sanford
2013-01-01
Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus
The effect of induction motor shaft diameter on motor performance
Directory of Open Access Journals (Sweden)
Asım Gökhan Yetgin
2017-10-01
Full Text Available Induction motors are used in many areas from the past to the present and in different fields with the development of technology has continued to be used. It is obvious that induction motors as an improvement to the efficiency in terms of energy saving would cause great benefit. In that context, induction motor manufacturers and designers are constantly trying out new methods to improve motor performance and efficiency. In this study, what would be the optimum diameter of the shaft in order to increase the efficiency of the induction motor were investigated. In the study, 5.5 kW, 7.5 kW and 11 kW motors analyzes were also performed. Obtained shaft diameter values were compared with the manufacturer values. In addition, critical points such as the magnetic flux values, weight values and performances of the motors were examined and optimal shaft diameter values for each motor have been determined.
Motor skills and calibrated autism severity in young children with autism spectrum disorder.
MacDonald, Megan; Lord, Catherine; Ulrich, Dale A
2014-04-01
In addition to the core characteristics of autism spectrum disorder (ASD), motor skill deficits are present, persistent, and pervasive across age. Although motor skill deficits have been indicated in young children with autism, they have not been included in the primary discussion of early intervention content. One hundred fifty-nine young children with a confirmed diagnosis of ASD (n = 110), PDD-NOS (n = 26), and non-ASD (n = 23) between the ages of 14-33 months participated in this study.1 The univariate general linear model tested the relationship of fine and gross motor skills and social communicative skills (using calibrated autism severity scores). Fine motor and gross motor skills significantly predicted calibrated autism severity (p motor skills have greater social communicative skill deficits. Future directions and the role of motor skills in early intervention are discussed.
HTSL massive motor. Project: Motor field calculation. Final report
International Nuclear Information System (INIS)
Gutt, H.J.; Gruener, A.
2003-01-01
HTS motors up to 300 kW were to be developed and optimized. For this, specific calculation methods were enhanced to include superconducting rotor types (hysteresis, reluctance and permanent magnet HTS rotors). The experiments were carried out in a SHM70-45 hysteresis motor. It was shown how static and dynamic trapped field magnetisation of the rotor with YBCO rings will increase flux in the air gap motor, increasing the motor capacity to twice its original level. (orig.) [de
Solar photovoltaic water pumping system using a new linear actuator
Andrada Gascón, Pedro; Castro, Javier
2007-01-01
In this paper a photovoltaic solar pumping system using a new linear actuator is presented. This linear actuator is a double-sided flat two-phase variable-reluctance linear stepper motor that moves a piston-type water pump with the help of a rope, a pulley and a counterweight. The entire actuator pump ensemble is controlled by a simple electronic unit that manages the electric power generated by a photovoltaic array. The proposed system is suitable for rural communities in developing...
Nonlinear Control of Induction Motors: A Performance Study
DEFF Research Database (Denmark)
Rasmussen, Henrik; Vadstrup, P.; Børsting, H.
1998-01-01
A novel approach to control of induction motors based on nonlinear state feedback has previously been presented by the authors. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers for the...... for the field amplitude and the motor torque. The method is compared with the traditional Rotor Field Oriented Control method as regards variations in rotor resistance an magnetizing inductance......A novel approach to control of induction motors based on nonlinear state feedback has previously been presented by the authors. The resulting scheme gives a linearized input-output decoupling of the torque and the amplitude of the field. The proposed approach is used to design controllers...
Discrete-Time LPV Current Control of an Induction Motor
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Trangbæk, Klaus
2003-01-01
In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... as a set of linear matrix inequalities with full-block multipliers. A standard nonlinear model of the motor is constructed and written on LPV form. We then show that, although originally developed in continuous time, the controller synthesis results can be applied to a discrete-time model as well without...... further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as on the actual induction motor, both in open-loop current control and when an outer speed control loop...
Controller design approach based on linear programming.
Tanaka, Ryo; Shibasaki, Hiroki; Ogawa, Hiromitsu; Murakami, Takahiro; Ishida, Yoshihisa
2013-11-01
This study explains and demonstrates the design method for a control system with a load disturbance observer. Observer gains are determined by linear programming (LP) in terms of the Routh-Hurwitz stability criterion and the final-value theorem. In addition, the control model has a feedback structure, and feedback gains are determined to be the linear quadratic regulator. The simulation results confirmed that compared with the conventional method, the output estimated by our proposed method converges to a reference input faster when a load disturbance is added to a control system. In addition, we also confirmed the effectiveness of the proposed method by performing an experiment with a DC motor. © 2013 ISA. Published by ISA. All rights reserved.
Asynchronous slip-ring motor synchronized with permanent magnets
Directory of Open Access Journals (Sweden)
Glinka Tadeusz
2017-03-01
Full Text Available The electric LSPMSM motor presented in the paper differs from standard induction motor by rotor design. The insulated start-up winding is located in slots along the rotor circumference. The winding ends are connected to the slip-rings. The rotor core contains permanent magnets. The electromechanical characteristics for synchronous operation were calculated, as were the start-up characteristics for operation with a short-circuited rotor winding. Two model motors were used for the calculations, the V-shaped Permanent Magnet (VPM – Fig. 3, and the Linear Permanent Magnet (IPM – Fig. 4, both rated at 14.5 kW. The advantages of the investigated motor are demonstrated in the conclusions.
Synchronization of low- and high-threshold motor units.
Defreitas, Jason M; Beck, Travis W; Ye, Xin; Stock, Matt S
2014-04-01
We examined the degree of synchronization for both low- and high-threshold motor unit (MU) pairs at high force levels. MU spike trains were recorded from the quadriceps during high-force isometric leg extensions. Short-term synchronization (between -6 and 6 ms) was calculated for every unique MU pair for each contraction. At high force levels, earlier recruited motor unit pairs (low-threshold) demonstrated relatively low levels of short-term synchronization (approximately 7.3% extra firings than would have been expected by chance). However, the magnitude of synchronization increased significantly and linearly with mean recruitment threshold (reaching 22.1% extra firings for motor unit pairs recruited above 70% MVC). Three potential mechanisms that could explain the observed differences in synchronization across motor unit types are proposed and discussed. Copyright © 2013 Wiley Periodicals, Inc.
Evaluation and prediction of the performance of positive displacement motor
Energy Technology Data Exchange (ETDEWEB)
Tudor, R.; Ginzburg, L. [Canadian Fracmaster Ltd., Calgary, AB (Canada); Xu, H. [Japan National Oil Corp (Japan); Li, J.; Robello, G.; Grigor, C.
1998-12-31
Test results of positive displacement motors (PDMs) collected by using various PDMs from a number of different suppliers have been analyzed. Various correlations have been developed and motor performance pumped with incompressible drilling fluid was evaluated based on test data provided by suppliers in the form of pressure drop versus torque output. Conclusions drawn from the study suggest that when a motor is operated at less than full load, the correlation between mechanical power and hydraulic power across the PDM power section can be described with a simple linear equation (different for each PDM type). Assuming the availability of patented geometric information for each PDM type, the performance of PDMs can be described by both the geometric parameters of the motor and the rheological properties of the circulation fluid. 9 refs., 8 figs.
Dynamic properties of motor proteins with two subunits
International Nuclear Information System (INIS)
Kolomeisky, Anatoly B; III, Hubert Phillips
2005-01-01
The dynamics of motor protein molecules consisting of two subunits is investigated using simple discrete stochastic models. Exact steady-state analytical expressions are obtained for velocities and dispersions for any number of intermediate states and conformations between the corresponding binding states of proteins. These models enable us to provide a detailed description and comparison of two different mechanisms of the motion of motor proteins along the linear tracks: the hand-over-hand mechanism, when the motion of subunits alternate; and the inchworm mechanism, when one subunit is always trailing another one. It is shown that the proteins in the hand-over-hand mechanism move faster and fluctuate more than the molecules in the inchworm mechanism. The effect of external forces on dynamic properties of motor proteins is also discussed. Finally, a quantitative method, based on experimental observations for single motor proteins, is proposed for distinguishing between two mechanisms of motion
Callier, Frank M.; Desoer, Charles A.
1991-01-01
The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.
Impaired motor imagery in right hemiparetic cerebral palsy
Mutsaarts, M.J.H.; Steenbergen, B.; Bekkering, H.
2007-01-01
It is generally assumed that movements of a part of the body (e.g., hands) are simulated in motor imagery (MI) tasks. This is evidenced by a linear increase in reaction time as a function of the angular rotation of the stimulus. Under the assumption that MI plays a critical role for anticipatory
Graves, S. R.
2000-01-01
This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.
Switched reluctance motor drives
Indian Academy of Sciences (India)
Davis RM, Ray WF, Blake RJ 1981 Inverter drive for switched reluctance: circuits and component ratings. Inst. Elec. Eng. Proc. B128: 126-136. Ehsani M. 1991 Position Sensor elimination technique for the switched reluctance motor drive. US Patent No. 5,072,166. Ehsani M, Ramani K R 1993 Direct control strategies based ...
Directory of Open Access Journals (Sweden)
J Gordon Millichap
2004-07-01
Full Text Available The relationship between motor performance, attention deficit, impulsiveness, and hyperactivity in 42 school-aged children with ADHD (36 males, 6 females; mean age 8 years 2 months; range 6-11 years was studied at National Taiwan University, Taipei, Taiwan.
Deafness and motor abilities level
Directory of Open Access Journals (Sweden)
A Zwierzchowska
2008-09-01
Full Text Available The audition injury hinders some motor motions and the organised coordination at the higher level and may be a cause of disturbances and disorder in some motor abilities adoption. It was assumed that deafness including its aetiology and injury mechanism may significantly influence the motor development of human being. The study aimed in checking if the deafness, as a result of various unfavourable factors, determines the motor development of children and youngsters. Consequently the dependency between qualitative features i.e.: signed motor level and aetiology, audition injury mechanism and the deafness degree was examined. The mechanism and aetiology of hearing correlated with the motor abilities displayed statistically significant dependencies in few motor trials only. Revealed correlations regarded mostly the coordination trials excluding the flexibility one. Statistically significant dependencies between the audition diminution and the motor abilities level were not found.
Motor planning in children with cerebral palsy: A longitudinal perspective.
Lust, Jessica Mireille; Spruijt, Steffie; Wilson, Peter H; Steenbergen, Bert
2018-08-01
Motor planning is important for daily functioning. Deficits in motor planning can result in slow, inefficient, and clumsy motor behavior and are linked to disruptions in performance of activities of daily living in children with cerebral palsy (CP). However, the evidence in CP is primarily based on cross-sectional data. Data are presented on the development of motor planning in children with CP using a longitudinal design with three measurement occasions, each separated by 1 year. Twenty-two children with CP (9 boys, 13 girls; age in years;months, M = 7;1, SD = 1;2) and 22 age-matched controls (10 boys, 12 girls, M = 7;1, SD = 1;3) participated. Children performed a bar transport task in which some conditions ("critical angles") required participants to sacrifice initial posture comfort in order to achieve end-state comfort. Performance on critical trials was analyzed using linear growth curve modeling. In general, children with CP showed poor end-state planning for critical angles. Importantly, unlike in controls, motor planning ability did not improve across the three measurement occasions in children with CP. These longitudinal results show that motor planning issues in CP do not resolve with development over childhood. Strategies to enhance motor planning are suggested for intervention.
NdFeB magnets for high-power motors
International Nuclear Information System (INIS)
Oswald, B.; Soell, M.; Berberich, A.
1998-01-01
The use of REM in electric motors especially in the case of servo drives is state of the art today. Whether permanent magnet types SmCo or NdFeB are also suitable for high power main drives has to be decided regarding criteria which apply to high power machines. In this paper operation characteristics of common electric motors and especially those of drives with controlled speed are presented. In the case of electric motors with REM, increased output power and high efficiency at the same time are to be expected in comparison to classical drives. This makes them attractive for a number of applications. However their speed range is restricted for fundamental reasons as normally weakening of field is not possible. It is to be expected that due to their advantages the use of permanent magnet motors for elevated output power also will increase. Besides other forms they can be used also as special design such as e.g. round or flat linear motors. Their power density (force density) makes them attractive for numerous applications in this form. A comparison between permanent magnet motors with superconducting motors made of bulk HTS material gives insight into the wide area of future design of electrical machines. (orig.)
Directory of Open Access Journals (Sweden)
Rabit Veseli
2015-05-01
Full Text Available Football is one of the most famous games that man has invented. It is a complex of collective organization and individual ingenuity. No doubt, top results in sport require a serious base of scientific researches and skills. Certainly, modern top results that have been achieved can be analyzed scientifically. It is exactly the scientific approach that is to establish the characteristics of basic importance to provide success in football. It is in favor of top football game to regularly conduct researches, which, as elements of special interest, would cover the basic motoric and specific motoric abilities with football players.The subject of the research is the motoric and specific motoric abilities with young football players aged from 14 to 16. The goal of the research is to establish how the explosive power influences the dribbling skills. The sample of respondents in the research consists of 39 school children at the age of 14 to 16, who play at FC ”Gjilani” and have attended the club for at least two years. They underwent three tests for assessing the explosive power: 1. Standing long jump; 2. 20-meter running and 3. Sargent test. Along with it, two tests for assessing the specific motorics: 1. Dribbling 20 metres with start from the place and 2. Dribbling 20 metres - fly start. The data obtained from the applied five tests is worked out with basic statistic parameters. The relation between motoric and specific motoric abilities is determined through linear regressive analyzes in manifest space. The results suggest that there is a positive and significant relation between the applied motoric and specific motoric abilities. This confirms the close relation between the explosive power and specific motorics of football players expressed through dribbling. Similar results are obtained in the researches of the following authors: Christou et all., 2006, Kraemer et al., 1998, and Young et al., 2001.
Motor protein traffic regulation by supply–demand balance of resources
International Nuclear Information System (INIS)
Ciandrini, Luca; Dauloudet, Olivier; Parmeggiani, Andrea; Neri, Izaak; Walter, Jean Charles
2014-01-01
In cells and in in vitro assays the number of motor proteins involved in biological transport processes is far from being unlimited. The cytoskeletal binding sites are in contact with the same finite reservoir of motors (either the cytosol or the flow chamber) and hence compete for recruiting the available motors, potentially depleting the reservoir and affecting cytoskeletal transport. In this work we provide a theoretical framework in which to study, analytically and numerically, how motor density profiles and crowding along cytoskeletal filaments depend on the competition of motors for their binding sites. We propose two models in which finite processive motor proteins actively advance along cytoskeletal filaments and are continuously exchanged with the motor pool. We first look at homogeneous reservoirs and then examine the effects of free motor diffusion in the surrounding medium. We consider as a reference situation recent in vitro experimental setups of kinesin-8 motors binding and moving along microtubule filaments in a flow chamber. We investigate how the crowding of linear motor proteins moving on a filament can be regulated by the balance between supply (concentration of motor proteins in the flow chamber) and demand (total number of polymerized tubulin heterodimers). We present analytical results for the density profiles of bound motors and the reservoir depletion, and propose novel phase diagrams that present the formation of jams of motor proteins on the filament as a function of two tuneable experimental parameters: the motor protein concentration and the concentration of tubulins polymerized into cytoskeletal filaments. Extensive numerical simulations corroborate the analytical results for parameters in the experimental range and also address the effects of diffusion of motor proteins in the reservoir. We then propose experiments for validating our models and discuss how the ‘supply–demand’ effects can regulate motor traffic also in in vivo
MOTORIC STIMULATION RELATED TO FINE MOTORIC DEVELOPMENT ON CHILD
Directory of Open Access Journals (Sweden)
Mira Triharini
2017-07-01
Full Text Available Introduction: Motor developmental stimulation is an activity undertaken to stimulate the children basic skills and so they can grow and develop optimally. Children who obtain a direct stimulus will grow faster than who get less stimulus. Mother’s behavior of stimulation is very important for children, it is considering as the basic needs of children and it must be fulfilled. Providing good stimulation could optimize fine motor development in children. The purpose of this study was to analyze mother’s behavior about motor stimulation with fine motor development in toddler age 4-5 years old. Method: Design have been used in this study was cross sectional. Population were mothers and their toddler in Group A of Dharma Wanita Persatuan Driyorejo Gresik Preschool. Sample were 51 respondents recruited by using purposive sampling technique according to inclusion and exclusion criteria. The independent variable was mother’s behavior about motor stimulation whereas dependent variable was fine motor development in toddler. The data were collected using questionnaire and conducting observation on fine motor development based on Denver Development Screening Test (DDST. Data then analyzed using Spearman Rho (r test to find relation between mother’s behaviors about stimulation motor on their toddler fine motor development. Result: Results of this study showed that there were correlations between mother’s knowledge and fine motor development in toddler (p=0.000, between mother’s attitude and fine motor development in toddler (p=0.000, and between mother’s actions and fine motor development in toddler (p=0.000. Analysis: In sort study found that there were relation between fine motor development and mother’s behavior. Discussion: Therefore mother’s behavior needed to be improved. Further research about stimulation motor and fine motor development aspects in toddler is required.
Microprocessor controller for stepping motors
International Nuclear Information System (INIS)
Strait, B.G.; Thuot, M.E.
1977-01-01
A new concept for digital computer control of multiple stepping motors which operate in a severe electromagnetic pulse environment is presented. The motors position mirrors in the beam-alignment system of a 100-kJ CO 2 laser. An asynchronous communications channel of a computer is used to send coded messages, containing the motor address and stepping-command information, to the stepping-motor controller in a bit serial format over a fiber-optics communications link. The addressed controller responds by transmitting to the computer its address and other motor information, thus confirming the received message. Each controller is capable of controlling three stepping motors. The controller contains the fiber-optics interface, a microprocessor, and the stepping-motor driven circuits. The microprocessor program, which resides in an EPROM, decodes the received messages, transmits responses, performs the stepping-motor sequence logic, maintains motor-position information, and monitors the motor's reference switch. For multiple stepping-motor application, the controllers are connected in a daisy chain providing control of many motors from one asynchronous communications channel of the computer
Multiple stage miniature stepping motor
International Nuclear Information System (INIS)
Niven, W.A.; Shikany, S.D.; Shira, M.L.
1981-01-01
A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed
Kraftmakher, Yaakov
2010-01-01
Experiments with an electric motor provide good opportunity to demonstrate some basic laws of electricity and magnetism. The aim of the experiments with a low-power dc motor is to show how the motor approaches its steady rotation and how its torque, mechanical power and efficiency depend on the rotation velocity. The tight relationship between the…
Fundamental Principles underlying Motor Reflexes
K. Zhou (Kuikui)
2017-01-01
markdownabstractThe cerebellum has been suggested to be involved in motor control ever since the early 19th century. The motor control ranges from timing and strength of simple reflexes to multiple joint/limb coordination and complex motor sequence acquisition. The current thesis discusses the
Motor Vehicle Theft. Special Report.
Harlow, Caroline Wolf
Thirteen years of data from the National Crime Survey were analyzed to examine the characteristics of motor vehicle theft, to identify trends during the past 13 years, and to determine who are most likely to be victims of motor vehicle theft. All motor vehicle thefts reported to the National Crime Survey from 1973 through 1985 were examined.…
Design Analysis of Taper Width Variations in Magnetless Linear Machine for Traction Applications
Directory of Open Access Journals (Sweden)
Saadha Aminath
2018-01-01
Full Text Available Linear motors are being used in a different application with a huge popularity in the use of transport industry. With the invention of maglev trains and other high-speed trains, linear motors are being used for the translation and braking applications for these systems. However, a huge drawback of the linear motor design is the cogging force, low thrust values, and voltage ripples. This paper aims to study the force analysis with change in taper/teeth width of the motor stator and mover to understand the best teeth ratio to obtain a high flux density and a high thrust. The analysis is conducted through JMAG software and it is found that the optimum teeth ratio for both the stator and mover gives an increase of 94.4% increases compared to the 0.5mm stator and mover width.
Segmented motor drive - with multi-phase induction motor
DEFF Research Database (Denmark)
Bendixen, Flemming Buus
of the induction motor is set up. The model is able to calculate dynamical electric, magnetic and mechanic state variables, but initially it is used to calculate static characteristics in motors with different number of phases and different voltage supply shapes. This analysis show i.e. that the efficiency....... The multi-phase motor is selected for further analysis. The project is limited to examine if increasing the number of phases can improve the characteristics for induction motor drives. In the literature it is demonstrated that torque production in a six-phase motor can be increased, if a 3rd harmonic......This PhD project commences in modulation of motor drives, i.e. having the advantage of reducing the number of variants and improves the system reliability at error situations. Four different motor drive topologies with modular construction as common denominator are compared on a general level...
Blyth, T S
2002-01-01
Most of the introductory courses on linear algebra develop the basic theory of finite dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num ber of illustrative and worked examples, as well as many exercises that are strategi cally placed throughout the text. Solutions to the ex...
Variation in motor output and motor performance in a centrally generated motor pattern
Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.
2014-01-01
Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348
Split-phase motor running as capacitor starts motor and as capacitor run motor
Yahaya Asizehi ENESI; Jacob TSADO; Mark NWOHU; Usman Abraham USMAN; Odu Ayo IMORU
2016-01-01
In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The ma...
International Nuclear Information System (INIS)
Mamyrin, B.A.; Shmikk, D.V.
1979-01-01
A description and operating principle of a linear mass reflectron with V-form trajectory of ion motion -a new non-magnetic time-of-flight mass spectrometer with high resolution are presented. The ion-optical system of the device consists of an ion source with ionization by electron shock, of accelerating gaps, reflector gaps, a drift space and ion detector. Ions move in the linear mass refraction along the trajectories parallel to the axis of the analyzer chamber. The results of investigations into the experimental device are given. With an ion drift length of 0.6 m the device resolution is 1200 with respect to the peak width at half-height. Small-sized mass spectrometric transducers with high resolution and sensitivity may be designed on the base of the linear mass reflectron principle
Olver, Peter J
2018-01-01
This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the un...
Banach, S
1987-01-01
This classic work by the late Stefan Banach has been translated into English so as to reach a yet wider audience. It contains the basics of the algebra of operators, concentrating on the study of linear operators, which corresponds to that of the linear forms a1x1 + a2x2 + ... + anxn of algebra.The book gathers results concerning linear operators defined in general spaces of a certain kind, principally in Banach spaces, examples of which are: the space of continuous functions, that of the pth-power-summable functions, Hilbert space, etc. The general theorems are interpreted in various mathematical areas, such as group theory, differential equations, integral equations, equations with infinitely many unknowns, functions of a real variable, summation methods and orthogonal series.A new fifty-page section (``Some Aspects of the Present Theory of Banach Spaces'''') complements this important monograph.
DEFF Research Database (Denmark)
Høskuldsson, Agnar
1996-01-01
Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four of these cri......Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....
Linear programming using Matlab
Ploskas, Nikolaos
2017-01-01
This book offers a theoretical and computational presentation of a variety of linear programming algorithms and methods with an emphasis on the revised simplex method and its components. A theoretical background and mathematical formulation is included for each algorithm as well as comprehensive numerical examples and corresponding MATLAB® code. The MATLAB® implementations presented in this book are sophisticated and allow users to find solutions to large-scale benchmark linear programs. Each algorithm is followed by a computational study on benchmark problems that analyze the computational behavior of the presented algorithms. As a solid companion to existing algorithmic-specific literature, this book will be useful to researchers, scientists, mathematical programmers, and students with a basic knowledge of linear algebra and calculus. The clear presentation enables the reader to understand and utilize all components of simplex-type methods, such as presolve techniques, scaling techniques, pivoting ru...
International Nuclear Information System (INIS)
Anon.
1994-01-01
The aim of the TESLA (TeV Superconducting Linear Accelerator) collaboration (at present 19 institutions from seven countries) is to establish the technology for a high energy electron-positron linear collider using superconducting radiofrequency cavities to accelerate its beams. Another basic goal is to demonstrate that such a collider can meet its performance goals in a cost effective manner. For this the TESLA collaboration is preparing a 500 MeV superconducting linear test accelerator at the DESY Laboratory in Hamburg. This TTF (TESLA Test Facility) consists of four cryomodules, each approximately 12 m long and containing eight 9-cell solid niobium cavities operating at a frequency of 1.3 GHz
Acute exercise improves motor memory
DEFF Research Database (Denmark)
Skriver, Kasper Christen; Roig, Marc; Lundbye-Jensen, Jesper
2014-01-01
We have recently shown that a single bout of acute cardiovascular exercise improves motor skill learning through an optimization of long-term motor memory. Here we expand this previous finding, to explore potential exercise-related biomarkers and their association with measures of motor memory...... practice whereas lactate correlated with better retention 1 hour as well as 24 hours and 7 days after practice. Thus, improvements in motor skill acquisition and retention induced by acute cardiovascular exercise are associated with increased concentrations of biomarkers involved in memory and learning...... processes. More mechanistic studies are required to elucidate the specific role of each biomarker in the formation of motor memory....
Linearly Adjustable International Portfolios
Fonseca, R. J.; Kuhn, D.; Rustem, B.
2010-09-01
We present an approach to multi-stage international portfolio optimization based on the imposition of a linear structure on the recourse decisions. Multiperiod decision problems are traditionally formulated as stochastic programs. Scenario tree based solutions however can become intractable as the number of stages increases. By restricting the space of decision policies to linear rules, we obtain a conservative tractable approximation to the original problem. Local asset prices and foreign exchange rates are modelled separately, which allows for a direct measure of their impact on the final portfolio value.
Linearly Adjustable International Portfolios
International Nuclear Information System (INIS)
Fonseca, R. J.; Kuhn, D.; Rustem, B.
2010-01-01
We present an approach to multi-stage international portfolio optimization based on the imposition of a linear structure on the recourse decisions. Multiperiod decision problems are traditionally formulated as stochastic programs. Scenario tree based solutions however can become intractable as the number of stages increases. By restricting the space of decision policies to linear rules, we obtain a conservative tractable approximation to the original problem. Local asset prices and foreign exchange rates are modelled separately, which allows for a direct measure of their impact on the final portfolio value.
Hogben, Leslie
2013-01-01
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of
Linear Algebra Thoroughly Explained
Vujičić, Milan
2008-01-01
Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.
Liu, Gang; Peng, Kangqiang; Dang, Chao; Tan, Shuangquan; Chen, Hongbing; Xie, Chuanmiao; Xing, Shihui; Zeng, Jinsheng
2018-01-01
Secondary degeneration of the fiber tract of the motor pathway below infarct foci and functional recovery after stroke have been well demonstrated, but the role of the fiber tract above stroke foci remains unclear. This study aimed to investigate diffusion changes in motor fibers above the lesion and identify predictors of motor improvement within 12 weeks after subcortical infarction. Diffusion tensor imaging and the Fugl-Meyer (FM) scale were conducted 1, 4, and 12 weeks (W) after a subcortical infarct. Proportional recovery model residuals were used to assign patients to proportional recovery and poor recovery groups. Region of interest analysis was used to assess diffusion changes in the motor pathway above and below a stroke lesion. Multivariable linear regression was employed to identify predictors of motor improvement within 12 weeks after stroke. Axial diffusivity (AD) in the underlying white matter of the ipsilesional primary motor area (PMA) and cerebral peduncle (CP) in both proportional and poor recovery groups was lower at W1 compared to the controls and values in the contralesional PMA and CP (all P motor improvement within 12 weeks after stroke in patients with proportional or poor recovery. Increases of AD in the motor pathway above stroke foci may be associated with motor recovery after subcortical infarction. Early measurement of diffusion metrics in the ipsilesional non-ischemic motor pathway has limited value in predicting future motor improvement patterns (proportional or poor recovery).
Du, Juan; Yang, Fang; Zhang, Zhiqiang; Hu, Jingze; Xu, Qiang; Hu, Jianping; Zeng, Fanyong; Lu, Guangming; Liu, Xinfeng
2018-05-15
An accurate prediction of long term outcome after stroke is urgently required to provide early individualized neurorehabilitation. This study aimed to examine the added value of early neuroimaging measures and identify the best approaches for predicting motor outcome after stroke. This prospective study involved 34 first-ever ischemic stroke patients (time since stroke: 1-14 days) with upper limb impairment. All patients underwent baseline multimodal assessments that included clinical (age, motor impairment), neurophysiological (motor-evoked potentials, MEP) and neuroimaging (diffusion tensor imaging and motor task-based fMRI) measures, and also underwent reassessment 3 months after stroke. Bivariate analysis and multivariate linear regression models were used to predict the motor scores (Fugl-Meyer assessment, FMA) at 3 months post-stroke. With bivariate analysis, better motor outcome significantly correlated with (1) less initial motor impairment and disability, (2) less corticospinal tract injury, (3) the initial presence of MEPs, (4) stronger baseline motor fMRI activations. In multivariate analysis, incorporating neuroimaging data improved the predictive accuracy relative to only clinical and neurophysiological assessments. Baseline fMRI activation in SMA was an independent predictor of motor outcome after stroke. A multimodal model incorporating fMRI and clinical measures best predicted the motor outcome following stroke. fMRI measures obtained early after stroke provided independent prediction of long-term motor outcome.
Dynamically Timed Electric Motor
Casper, Ann M. (Inventor)
1997-01-01
A brushless DC motor including a housing having an end cap secured thereto. The housing encloses a rotor. a stator and a rotationally displaceable commutation board having sensors secured thereon and spaced around the periphery of the rotor. An external rotational force is applied to the commutation board for displacement of the sensors to various positions whereby varying feedback signals are generated by the positioning of the sensors relative to the rotating rotor. The commutation board is secured in a fixed position in response to feedback signals indicative of optimum sensor position being determined. The rotation of the commutation board and the securing of the sensors in the desired fixed position is accomplished without requiring the removal of the end cap and with the DC motor operating.
International Nuclear Information System (INIS)
Murray, J.G.; Bronner, G.; Horton, M.
1977-01-01
A general description is given of 475 MVA pulsed motor generators for TFTR at Princeton Plasma Physics Laboratory. Two identical generators operating in parallel are capable of supplying 950 MVA for an equivalent square pulse of 6.77 seconds and 4,500 MJ at 0.7 power factor to provide the energy for the pulsed electrical coils and heating system for TFTR. The description includes the operational features of the 15,000 HP wound rotor motors driving each generator with its starting equipment and cycloconverter for controlling speed, power factor, and regulating line voltage during load pulsing where the generator speed changes from 87.5 to 60 Hz frequency variation to provide the 4,500 MJ or energy. The special design characteristics such as fatigue stress calculations for 10 6 cycles of operation, forcing factor on exciter to provide regulation, and low generator impedance are reviewed
Linear and Nonlinear Analysis of Brain Dynamics in Children with Cerebral Palsy
Sajedi, Firoozeh; Ahmadlou, Mehran; Vameghi, Roshanak; Gharib, Masoud; Hemmati, Sahel
2013-01-01
This study was carried out to determine linear and nonlinear changes of brain dynamics and their relationships with the motor dysfunctions in CP children. For this purpose power of EEG frequency bands (as a linear analysis) and EEG fractality (as a nonlinear analysis) were computed in eyes-closed resting state and statistically compared between 26…
Sieloff, Susan F.; Kinnunen, Raymond; Chevarley, Joseph
2011-01-01
Kei Yun Wong has big dreams. She has been entrusted with the United States launch of Libert-E Motor, a new line of Chinese-manufactured electric scooters. With only $750,000 of her original budget of $3 million left, she needs to make sure that the launch succeeds, as it represents the initial step in her desire to create the first Chinese global…
CERN PhotoLab
1974-01-01
Each logic circuit in the central computers consumes only a fraction of a watt: however, the final load constituted by many such circuits plus peripheral equipment is nearly half a million watts. Shown here are two 350 KVA motor generators used to convert 50 Hz mains to 60 Hz (US standard). Flywheels on the M.G. shafts remove power dropouts of up to 0.5 s.
Energy Technology Data Exchange (ETDEWEB)
2015-09-01
A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.
Motor car driving; Kraftfahrzeugfuehrung
Energy Technology Data Exchange (ETDEWEB)
Juergensohn, T. [Technische Univ. Berlin (Germany). ISS-Fahrzeugtechnik; Timpe, K.P. (eds.) [Technische Univ. Berlin (DE). Zentrum Mensch-Maschine-Systeme (ZMMS)
2001-07-01
This is the first comprehensive book on motor car driving, i.e. all aspects of motor car technology that cannot be looked at separately from the needs, characteristics and limitations of the human driver. This includes ergonomics as well as the design of the driver interface in consideration of the findings of cognitive science, problems of driving simulation in the context of simulation of technical systems, problems relating to optimal car automation up to traffic psychology. The book is in honour of Prof. Dr. Willumeit who died in summer 2000. Prof. Willumeit was one of the few scientists in Germany who had been an expert on all aspects of motor car driving for many years. [German] Erstmalig wird das Thema der Fahrzeugfuehrung geschlossen dargestellt. Die Thematik der 'Kraftfahrzeugfuehrung' umfasst in diesem Zusammenhang alle Aspekte der Kraftfahrzeugtechnik, die nicht isoliert von den Erfordernissen, Eigenschaften und Grenzen des menschlichen Fahrers betrachtet werden koennen. Dies beinhaltet u.a. Probleme der Ergonomie, aber auch Fragen nach einer kognitionswissenschaftlich unterstuetzten Schnittstellengestaltung, Fragen der Simulation des Fahrverhalten im Kontext der Simulation technischer Systeme oder Fragen einer optimalen Fahrzeugautomatisierung bis hin zu verkehrspsychologischen Aspekten. Das Buch ist als Gedenkband fuer Prof. Dr. Willumeit konzipiert, der im Sommer 2000 verstarb. Prof. Willumeit war einer der wenigen Wissenschaftler in Deutschland, der ueber viele Jahre diese Thematik der Kraftfahrzeugfuehrung in ihrer vollen Breite verfolgte. (orig.)
Two-dimensional servo control of surface motor; Surface motor no nijigen servo control
Energy Technology Data Exchange (ETDEWEB)
Ebihara, D; Takahashi, T; Watada, M [Musashi Institute of Technology, Tokyo (Japan)
1995-08-20
Two dimensional (2D) drive system is needed in many aspects of factory automation (FA) and office automation (OA) machines, such as pen drivers in X-Y plotters, X-Y stage for machining, 2D moving robots, etc. Conventional 2D drive systems are consisted from two sets of rotational motor drive and several types of rotary-to-linear transform mechanisms. Linear motors, in these days, have become to be effective as the requirement for high speed increases. We have been studying about Surface Motor which enables 2D drive on a surface by single mover, and the characteristics are measured. Main difficulty of the actuator is that it is short of thrust forces. Also the feasibility is limited because of its vocational uncertainty caused by the open loop control. Our interest is to introduce the closed loop digital control, to obtain required thrust force at any point on the stator. Since open loop control is used, that is, stability point where the thrust force is zero is moved one after another, generated thrust force within the range of synchronization is small. We have been studying about the peculiar expression of exciting currents to generate required direction at all the stator. On the basis of results, two dimensional position feedback system is assembled, which detect the two dimensional location of the mover by optical sensors and direct current instructions are generated for all the four phases of the mover. 14 refs., 11 figs., 1 tab.
2013-05-10
AND VICTIM- ~ vAP BLAMING 4. AMERICA, LINEARLY CYCUCAL AF IMT 1768, 19840901, V5 PREVIOUS EDITION WILL BE USED. C2C Jessica Adams Dr. Brissett...his desires, his failings, and his aspirations follow the same general trend throughout history and throughout cultures. The founding fathers sought
International Nuclear Information System (INIS)
Southworth, B.
1985-01-01
The peak of the construction phase of the Stanford Linear Collider, SLC, to achieve 50 GeV electron-positron collisions has now been passed. The work remains on schedule to attempt colliding beams, initially at comparatively low luminosity, early in 1987. (orig./HSI).
International Nuclear Information System (INIS)
Mafra Neto, F.
1992-01-01
The dose of gamma radiation from a linear source of cesium 137 is obtained, presenting two difficulties: oblique filtration of radiation when cross the platinum wall, in different directions, and dose connection due to the scattering by the material mean of propagation. (C.G.C.)
Resistors Improve Ramp Linearity
Kleinberg, L. L.
1982-01-01
Simple modification to bootstrap ramp generator gives more linear output over longer sweep times. New circuit adds just two resistors, one of which is adjustable. Modification cancels nonlinearities due to variations in load on charging capacitor and due to changes in charging current as the voltage across capacitor increases.
LINEAR COLLIDERS: 1992 workshop
International Nuclear Information System (INIS)
Settles, Ron; Coignet, Guy
1992-01-01
As work on designs for future electron-positron linear colliders pushes ahead at major Laboratories throughout the world in a major international collaboration framework, the LC92 workshop held in Garmisch Partenkirchen this summer, attended by 200 machine and particle physicists, provided a timely focus
Brameier, Markus
2007-01-01
Presents a variant of Genetic Programming that evolves imperative computer programs as linear sequences of instructions, in contrast to the more traditional functional expressions or syntax trees. This book serves as a reference for researchers, but also contains sufficient introduction for students and those who are new to the field
Dobbs, David E.
2013-01-01
A direct method is given for solving first-order linear recurrences with constant coefficients. The limiting value of that solution is studied as "n to infinity." This classroom note could serve as enrichment material for the typical introductory course on discrete mathematics that follows a calculus course.
International Nuclear Information System (INIS)
Takeda, Seishi
1992-01-01
The status of R and D of future e + e - linear colliders proposed by the institutions throughout the world is described including the JLC, NLC, VLEPP, CLIC, DESY/THD and TESLA projects. The parameters and RF sources are discussed. (G.P.) 36 refs.; 1 tab
2011-01-05
... Electric Motors and Small Electric Motors; Proposed Rule #0;#0;Federal Register / Vol. 76, No. 3... Motors and Small Electric Motors AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... motors and small electric motors, clarify the scope of energy conservation standards for electric motors...
46 CFR 111.70-3 - Motor controllers and motor-control centers.
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or motor-control...
Peters, Denise M; Fridriksson, Julius; Stewart, Jill C; Richardson, Jessica D; Rorden, Chris; Bonilha, Leonardo; Middleton, Addie; Gleichgerrcht, Ezequiel; Fritz, Stacy L
2018-01-01
Advances in neuroimaging have enabled the mapping of white matter connections across the entire brain, allowing for a more thorough examination of the extent of white matter disconnection after stroke. To assess how cortical disconnection contributes to motor impairments, we examined the relationship between structural brain connectivity and upper and lower extremity motor function in individuals with chronic stroke. Forty-three participants [mean age: 59.7 (±11.2) years; time poststroke: 64.4 (±58.8) months] underwent clinical motor assessments and MRI scanning. Nonparametric correlation analyses were performed to examine the relationship between structural connectivity amid a subsection of the motor network and upper/lower extremity motor function. Standard multiple linear regression analyses were performed to examine the relationship between cortical necrosis and disconnection of three main cortical areas of motor control [primary motor cortex (M1), premotor cortex (PMC), and supplementary motor area (SMA)] and motor function. Anatomical connectivity between ipsilesional M1/SMA and the (1) cerebral peduncle, (2) thalamus, and (3) red nucleus were significantly correlated with upper and lower extremity motor performance (P ≤ 0.003). M1-M1 interhemispheric connectivity was also significantly correlated with gross manual dexterity of the affected upper extremity (P = 0.001). Regression models with M1 lesion load and M1 disconnection (adjusted for time poststroke) explained a significant amount of variance in upper extremity motor performance (R 2 = 0.36-0.46) and gait speed (R 2 = 0.46), with M1 disconnection an independent predictor of motor performance. Cortical disconnection, especially of ipsilesional M1, could significantly contribute to variability seen in locomotor and upper extremity motor function and recovery in chronic stroke. Hum Brain Mapp 39:120-132, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Kondo, Minoru; Kawamura, Junya; Terauchi, Nobuo
Performance tests are carried out to demonstrate the superiority of a permanent magnet synchronous motor to an induction motor as a traction motor for high-speed train. A prototype motor was manufactured by replacing the rotor of a conventional induction motor. The test results show that the permanent magnet motor is lighter, efficient and more silent than the induction motor because of the different rotor structure.
Finite-dimensional linear algebra
Gockenbach, Mark S
2010-01-01
Some Problems Posed on Vector SpacesLinear equationsBest approximationDiagonalizationSummaryFields and Vector SpacesFields Vector spaces Subspaces Linear combinations and spanning sets Linear independence Basis and dimension Properties of bases Polynomial interpolation and the Lagrange basis Continuous piecewise polynomial functionsLinear OperatorsLinear operatorsMore properties of linear operatorsIsomorphic vector spaces Linear operator equations Existence and uniqueness of solutions The fundamental theorem; inverse operatorsGaussian elimination Newton's method Linear ordinary differential eq