WorldWideScience

Sample records for iron-oxidizing nitrate-reducing bacteria

  1. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.

    Science.gov (United States)

    Miot, J; Benzerara, K; Morin, G; Bernard, S; Beyssac, O; Larquet, E; Kappler, A; Guyot, F

    2009-06-01

    In phosphate-rich environments, vivianite (Fe(II)(3)(PO(4))(2), 8H(2)O) is an important sink for dissolved Fe(II) and is considered as a very stable mineral due to its low solubility at neutral pH. In the present study, we report the mineralogical transformation of vivianite in cultures of the nitrate-reducing iron-oxidizing bacterial strain BoFeN1 in the presence of dissolved Fe(II). Vivianite was first transformed into a greenish phase consisting mostly of an amorphous mixed valence Fe-phosphate. This precipitate became progressively orange and the final product of iron oxidation consisted of an amorphous Fe(III)-phosphate. The sub-micrometer analysis by scanning transmission X-ray microscopy of the iron redox state in samples collected at different stages of the culture indicated that iron was progressively oxidized at the contact of the bacteria and at a distance from the cells in extracellular minerals. Iron oxidation in the extracellular minerals was delayed by a few days compared with cell-associated Fe-minerals. This led to strong differences of Fe redox in between these two types of minerals and finally to local heterogeneities of redox within the sample. In the absence of dissolved Fe(II), vivianite was not significantly transformed by BoFeN1. Whereas Fe(II) oxidation at the cell contact is most probably directly catalyzed by the bacteria, vivianite transformation at a distance from the cells might result from oxidation by nitrite. In addition, processes leading to the export of Fe(III) from bacterial oxidation sites to extracellular minerals are discussed including some involving colloids observed by cryo-transmission electron microscopy in the culture medium.

  2. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    DEFF Research Database (Denmark)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume

    2009-01-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent ......Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate...... precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria...... and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All...

  3. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    Science.gov (United States)

    Scholz, Florian; Löscher, Carolin R.; Fiskal, Annika; Sommer, Stefan; Hensen, Christian; Lomnitz, Ulrike; Wuttig, Kathrin; Göttlicher, Jörg; Kossel, Elke; Steininger, Ralph; Canfield, Donald E.

    2016-11-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface. Even in the anoxic water of oxygen minimum zones, where iron solubility should be enhanced, most of the iron is rapidly re-precipitated. To constrain the mechanism(s) of iron removal in anoxic ocean regions we explored the sediment and water in the oxygen minimum zone off Peru. During our sampling campaign the water column featured two distinct redox boundaries separating oxic from nitrate-reducing (i.e., nitrogenous) water and nitrogenous from weakly sulfidic water. The sulfidic water mass in contact with the shelf sediment contained elevated iron concentrations >300 nM. At the boundary between sulfidic and nitrogenous conditions, iron concentrations dropped sharply to <20 nM coincident with a maximum in particulate iron concentration. Within the iron gradient, we found an increased expression of the key functional marker gene for nitrate reduction (narG). Part of this upregulation was related to the activity of known iron-oxidizing bacteria. Collectively, our data suggest that iron oxidation and removal is induced by nitrate-reducing microbes, either enzymatically through anaerobic iron oxidation or by providing nitrite for an abiotic reaction. Given the important role that iron plays in nitrogen fixation, photosynthesis and respiration, nitrate-dependent iron oxidation likely represents a key-link between the marine biogeochemical cycles of nitrogen, oxygen and carbon.

  4. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.

    Science.gov (United States)

    Hyde, Embriette R; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K; Torregrossa, Ashley C; Tribble, Gena; Kaplan, Heidi B; Petrosino, Joseph F; Bryan, Nathan S

    2014-01-01

    The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.

  5. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.

    Directory of Open Access Journals (Sweden)

    Embriette R Hyde

    Full Text Available The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.

  6. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms.

    Science.gov (United States)

    Torres, M J; Simon, J; Rowley, G; Bedmar, E J; Richardson, D J; Gates, A J; Delgado, M J

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation. © 2016 Elsevier Ltd. All rights reserved.

  7. Towards a Mechanistic Understanding of Anaerobic Nitrate Dependent Iron Oxidation: Balancing Electron Uptake and Detoxification

    Directory of Open Access Journals (Sweden)

    Hans Karl Carlson

    2012-02-01

    Full Text Available The anaerobic oxidation of Fe(II by subsurface microorganisms is an important part of biogeochemical cycling in the environment, but the biochemical mechanisms used to couple iron oxidation to nitrate respiration are not well understood. Based on our own work and the evidence available in the literature, we propose a mechanistic model for anaerobic nitrate dependent iron oxidation. We suggest that anaerobic iron oxidizing microorganisms likely exist along a continuum including: 1 bacteria that inadvertently oxidize Fe(II by abiotic or biotic reactions with enzymes or chemical intermediates in their metabolic pathways (e.g. denitrification and suffer from toxicity or energetic penalty, 2 Fe(II tolerant bacteria that gain little or no growth benefit from iron oxidation but can manage the toxic reactions, and 3 bacteria that efficiently accept electrons from Fe(II to gain a growth advantage while preventing or mitigating the toxic reactions. Predictions of the proposed model are highlighted and experimental approaches are discussed.

  8. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide

    International Nuclear Information System (INIS)

    Li, F.B.; Li, X.M.; Zhou, S.G.; Zhuang, L.; Cao, F.; Huang, D.Y.; Xu, W.; Liu, T.X.; Feng, C.H.

    2010-01-01

    The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (α-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of α-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe 2+ + α-FeOOH and the system of DIRB + α-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of α-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. - This is the first case reporting the reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.

  9. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.B., E-mail: cefbli@soil.gd.c [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Li, X.M. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Zhou, S.G.; Zhuang, L. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Cao, F. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Huang, D.Y.; Xu, W.; Liu, T.X. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Feng, C.H. [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China)

    2010-05-15

    The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (alpha-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of alpha-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe{sup 2+} + alpha-FeOOH and the system of DIRB + alpha-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of alpha-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. - This is the first case reporting the reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.

  10. Effects of iron-reducing bacteria and nitrate-reducing bacteria on the transformations of iron corrosion products, magnetite and siderite, formed at the surface of non-alloy steel

    International Nuclear Information System (INIS)

    Etique, Marjorie

    2014-01-01

    Radioactive waste is one of the major problems facing the nuclear industry. To circumvent this issue France plans to store vitrified high-level nuclear waste in a stainless steel container, placed into a non-alloy steel overpack, at a depth of 500 m in an argillaceous formation. The main iron corrosion products formed at the surface of the non-alloy steel are siderite (Fe II CO 3 ) and magnetite (Fe II Fe III 2 O 4 ). These compounds are formed in the anoxic conditions present in the nuclear waste repository and play a protective role against corrosion as a passive layer. This work aims to investigate the activity of nitrate-reducing bacteria (NRB, Klebsiella mobilis) and iron-reducing bacteria (IRB, Shewanella putrefaciens) during the transformation of siderite and magnetite, especially those involved in anoxic iron biogeochemical cycle. Klebsiella mobilis and Shewanella putrefaciens were first incubated with siderite or magnetite suspensions (high surface specific area) in order to exacerbate the microbial iron transformation, subsequently incubated with a magnetite/siderite film synthesized by anodic polarization at applied current density. The transformation of siderite and magnetite by direct or indirect microbial processes led to the formation of carbonated green rust (Fe II 4 Fe III 2 (OH) 12 CO 3 ). As a transient phase shared by several bacterial reactions involving Fe II and Fe III , this compound is the cornerstone of the anoxic iron biogeochemical cycle. The novelty of this thesis is the consideration of bacterial metabolisms of NRB and IRB often overlooked in bio-corrosion processes. (author) [fr

  11. Solubilization of plutonium hydrous oxide by iron-reducing bacteria

    International Nuclear Information System (INIS)

    Rusin, P.A.; Quintana, L.; Brainard, J.R.; Strietelmeler, B.A.; Tait, C.D.; Ekberg, S.A.; Palmer, P.D.; Newton, T.W.; Clark, D.L.

    1994-01-01

    The removal of plutonium from soils id challenging because of its strong sorption to soils and limited solubility, Microbial reduction of metals is known to affect the speciation and solubility of sparingly soluble metals in the environment, notably iron and manganese. The similarity in reduction potential for α-FeOOH(s) and hydrous PuO 2 (s) suggests that iron-reducing bacteria may also reduce and solubilize plutonium. Bacillus strains were used to demonstrate that iron-reducing bacteria mediate the solubilization of hydrous PuO 2 (s) under anaerobic conditions. Up to ∼90% of the PuO 2 was biosolubilized in the presence of nitrilotriacetic acid (NTA) within 6-7 days. Biosolubilization occurred to a lesser extent (∼ 40%) in the absence of NTA. Little PuO 2 solubilization occurred in sterile culture media or in the presence of a non-iron-reducing Escherichia coli. These observations suggest a potentially attractive, environmentally benign strategy for the remediation of Pu-contaminated soils. 26 refs., 5 figs., 2 tabs

  12. Dynamic transition of chemolithotrophic sulfur-oxidizing bacteria in response to amendment with nitrate in deposited marine sediments

    Directory of Open Access Journals (Sweden)

    Tomo eAoyagi

    2015-05-01

    Full Text Available Although environmental stimuli are known to affect the structure and function of microbial communities, their impact on the metabolic network of microorganisms has not been well investigated. Here, geochemical analyses, high-throughput sequencing of 16S rRNA genes and transcripts, and isolation of potentially relevant bacteria were carried out to elucidate the anaerobic respiration processes stimulated by nitrate (20 mM amendment of marine sediments. Marine sediments deposited by the Great East Japan Earthquake in 2011 were incubated anaerobically in the dark at 25°C for 5 days. Nitrate in slurry water decreased gradually for 2 days, then more rapidly until its complete depletion at day 5; production of N2O followed the same pattern. From day 2 to 5, the sulfate concentration increased and the sulfur content in solid-phase sediments significantly decreased. These results indicated that denitrification and sulfur oxidation occurred simultaneously. Illumina sequencing revealed the proliferation of known sulfur oxidizers, i.e., Sulfurimonas spp. and Chromatiales bacteria, which accounted for approximately 43.5% and 14.8% of the total population at day 5, respectively. They also expressed 16S rRNA to a considerable extent, whereas the other microorganisms, e.g., iron(III reducers and methanogens, became metabolically active at the end of the incubation. Extinction dilution culture in a basal-salts medium supplemented with sulfur compounds and nitrate successfully isolated the predominant sulfur oxidizers: Sulfurimonas sp. strain HDS01 and Thioalkalispira sp. strain HDS22. Their 16S rRNA genes showed 95.2−96.7% sequence similarity to the closest cultured relatives and they grew chemolithotrophically on nitrate and sulfur. Novel sulfur-oxidizing bacteria were thus directly involved in carbon fixation under nitrate-reducing conditions, activating anaerobic respiration processes and the reorganization of microbial communities in the deposited marine

  13. Microbial nitrate removal in biologically enhanced treated coal gasification wastewater of low COD to nitrate ratio by coupling biological denitrification with iron and carbon micro-electrolysis.

    Science.gov (United States)

    Zhang, Zhengwen; Han, Yuxing; Xu, Chunyan; Ma, Wencheng; Han, Hongjun; Zheng, Mengqi; Zhu, Hao; Ma, Weiwei

    2018-04-21

    Mixotrophic denitrification coupled biological denitrification with iron and carbon micro-electrolysis (IC-ME) is a promising emerging bioprocess for nitrate removal of biologically enhanced treated coal gasification wastewater (BECGW) with low COD to nitrate ratio. TN removal efficiency in R1 with IC-ME assisted was 16.64% higher than R2 with scrap zero valent iron addition, 23.05% higher than R3 with active carbon assisted, 30.51% higher than R4 with only active sludge addition, 80.85% higher than R5 utilizing single IC-ME as control. Fe 2+ generated from IC-ME decreased the production of N 2 O and enriched more Nitrate-reducing Fe(Ⅱ) oxidation bacteria (NRFOB) Acidovorax and Thiobacillus, which could convert nitrate to nitrogen gas. And the presence of Fe 3+ , as the Fe 2+ oxidation product, could stimulate the growth of Fe(III)-reducing strain (FRB) that indicated by redundancy analysis. Microbial network analysis demonstrated FRB Geothrix had a co-occurrence relationship with other bacteria, revealing its dominant involvement in nitrate removal of BECGW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    He, Q.; He, Z.; Joyner, D.C.; Joachimiak, M.; Price, M.N.; Yang, Z.K.; Yen, H.-C. B.; Hemme, C. L.; Chen, W.; Fields, M.; Stahl, D. A.; Keasling, J. D.; Keller, M.; Arkin, A. P.; Hazen, T. C.; Wall, J. D.; Zhou, J.

    2010-07-15

    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.

  15. Potential Role of Nitrite for Abiotic Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by Denitrifying Bacteria

    Science.gov (United States)

    Klueglein, Nicole; Zeitvogel, Fabian; Stierhof, York-Dieter; Floetenmeyer, Matthias; Konhauser, Kurt O.; Obst, Martin

    2014-01-01

    Microorganisms have been observed to oxidize Fe(II) at neutral pH under anoxic and microoxic conditions. While most of the mixotrophic nitrate-reducing Fe(II)-oxidizing bacteria become encrusted with Fe(III)-rich minerals, photoautotrophic and microaerophilic Fe(II) oxidizers avoid cell encrustation. The Fe(II) oxidation mechanisms and the reasons for encrustation remain largely unresolved. Here we used cultivation-based methods and electron microscopy to compare two previously described nitrate-reducing Fe(II) oxidizers ( Acidovorax sp. strain BoFeN1 and Pseudogulbenkiania sp. strain 2002) and two heterotrophic nitrate reducers (Paracoccus denitrificans ATCC 19367 and P. denitrificans Pd 1222). All four strains oxidized ∼8 mM Fe(II) within 5 days in the presence of 5 mM acetate and accumulated nitrite (maximum concentrations of 0.8 to 1.0 mM) in the culture media. Iron(III) minerals, mainly goethite, formed and precipitated extracellularly in close proximity to the cell surface. Interestingly, mineral formation was also observed within the periplasm and cytoplasm; intracellular mineralization is expected to be physiologically disadvantageous, yet acetate consumption continued to be observed even at an advanced stage of Fe(II) oxidation. Extracellular polymeric substances (EPS) were detected by lectin staining with fluorescence microscopy, particularly in the presence of Fe(II), suggesting that EPS production is a response to Fe(II) toxicity or a strategy to decrease encrustation. Based on the data presented here, we propose a nitrite-driven, indirect mechanism of cell encrustation whereby nitrite forms during heterotrophic denitrification and abiotically oxidizes Fe(II). This work adds to the known assemblage of Fe(II)-oxidizing bacteria in nature and complicates our ability to delineate microbial Fe(II) oxidation in ancient microbes preserved as fossils in the geological record. PMID:24271182

  16. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis

    International Nuclear Information System (INIS)

    Xu, Dake; Li, Yingchao; Song, Fengmei; Gu, Tingyue

    2013-01-01

    Nitrate injection is used to suppress reservoir souring in oil and gas fields caused by Sulfate Reducing Bacteria (SRB) through promotion of nitrate respiration by Nitrate Reducing Bacteria (NRB). However, it is not well publicized that nitrate reduction by NRB can cause Microbiologically Influenced Corrosion (MIC) because nitrate reduction coupled with iron oxidation is thermodynamically favorable. NRB benefits bioenergetically from this redox reaction under biocatalysis. This work showed that the Bacillus licheniformis biofilm, when grown as an NRB biofilm, caused a 14.5 μm maximum pit depth and 0.89 mg/cm 2 normalized weight loss against C1018 carbon steel in one-week lab tests

  17. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism

    Science.gov (United States)

    Price, Alex; Pearson, Victoria K.; Schwenzer, Susanne P.; Miot, Jennyfer; Olsson-Francis, Karen

    2018-01-01

    This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1–3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate

  18. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism

    Directory of Open Access Journals (Sweden)

    Alex Price

    2018-03-01

    Full Text Available This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1–3.7 Ga match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with

  19. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism.

    Science.gov (United States)

    Price, Alex; Pearson, Victoria K; Schwenzer, Susanne P; Miot, Jennyfer; Olsson-Francis, Karen

    2018-01-01

    This work considers the hypothetical viability of microbial nitrate-dependent Fe 2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe 2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe 2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1-3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe 2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate

  20. Sphaerotilus natans encrusted with nanoball-shaped Fe(III) oxide minerals formed by nitrate-reducing mixotrophic Fe(II) oxidation.

    Science.gov (United States)

    Park, Sunhwa; Kim, Dong-Hun; Lee, Ji-Hoon; Hur, Hor-Gil

    2014-10-01

    Ferrous iron has been known to function as an electron source for iron-oxidizing microorganisms in both anoxic and oxic environments. A diversity of bacteria has been known to oxidize both soluble and solid-phase Fe(II) forms coupled to the reduction of nitrate. Here, we show for the first time Fe(II) oxidation by Sphaerotilus natans strain DSM 6575(T) under mixotrophic condition. Sphaerotilus natans has been known to form a sheath structure enclosing long chains of rod-shaped cells, resulting in a thick biofilm formation under oxic conditions. Here, we also demonstrate that strain DSM 6575(T) grows mixotrophically with pyruvate, Fe(II) as electron donors and nitrate as an electron acceptor and single cells of strain DSM 6575(T) are dominant under anoxic conditions. Furthermore, strain DSM 6575(T) forms nanoball-shaped amorphous Fe(III) oxide minerals encrusting on the cell surfaces through the mixotrophic iron oxidation reaction under anoxic conditions. We propose that cell encrustation results from the indirect Fe(II) oxidation by biogenic nitrite during nitrate reduction and that causes the bacterial morphological change to individual rod-shaped single cells from filamentous sheath structures. This study extends the group of existing microorganisms capable of mixotrophic Fe(II) oxidation by a new strain, S. natans strain DSM 6575(T) , and could contribute to biogeochemical cycles of Fe and N in the environment. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  1. Mossbauer and magnetic study of solid phases formed by dissimilatory iron-reducing bacteria

    Czech Academy of Sciences Publication Activity Database

    Chistyakova, N.I.; Rusakov, V.S.; Shapkin, A.A.; Pigalev, P.A.; Kazakov, A.P.; Zhilina, T.N.; Zavarzina, D.G.; Lančok, Adriana; Kohout, J.; Greneche, J. M.

    2012-01-01

    Roč. 190, JUNE (2012), s. 721-724 ISSN 1012-0394 Institutional research plan: CEZ:AV0Z40320502 Keywords : Mossbauer spectroscopy * dissimilatory iron-reducing bacteria * iron oxides * biomagnetism Subject RIV: CA - Inorganic Chemistry

  2. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals

    Science.gov (United States)

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  3. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions

    International Nuclear Information System (INIS)

    Dou Junfeng; Liu Xiang; Ding Aizhong

    2009-01-01

    Mixed bacteria were enriched from soil samples contaminated with polycyclic aromatic hydrocarbons (PAHs). The anaerobic degradation characteristics by the enriched bacteria with different initial naphthalene concentrations were investigated under nitrate reducing conditions. The results showed that the mixed bacteria could degrade nearly all the naphthalene over the incubations of 25 days when the initial naphthalene concentration was below 30 mg/L. The degradation rates of naphthalene increased with increasing initial concentrations. A high naphthalene concentration of 30 mg/L did not inhibit neither on the bacterial growth nor on the naphthalene degradation ability. The accumulation of nitrite was occurred during the reduction of nitrate, and a nitrite concentration of 50 mg/L had no inhibition effect on the degradation of naphthalene. The calculation of electron balances revealed that most of the naphthalene was oxidized whereas a small proportion was used for cell synthesis.

  4. Determination of Ammonia Oxidizing Bacteria and Nitrate Oxidizing Bacteria in Wastewater and Bioreactors

    Science.gov (United States)

    Francis, Somilez Asya

    2014-01-01

    The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.

  5. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms

    Science.gov (United States)

    Villahermosa, Desirée; Corzo, Alfonso; Garcia-Robledo, Emilio; González, Juan M.; Papaspyrou, Sokratis

    2016-01-01

    Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm-3 h-1) and oxygen consumption rates (0.01 μmol cm-3 h-1). The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic

  6. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms.

    Directory of Open Access Journals (Sweden)

    Desirée Villahermosa

    Full Text Available Nitrate decreases sulfide release in wastewater treatment plants (WWTP, but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm showed low sulfide production (0.31 μmol cm-3 h-1 and oxygen consumption rates (0.01 μmol cm-3 h-1. The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1. Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB. This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1 an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2 a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR

  7. Anomalous electrical signals associated with microbial activity: Results from Iron and Nitrate-Reducing Columns

    Science.gov (United States)

    Aaron, R. B.; Zheng, Q.; Flynn, P.; Singha, K.; Brantley, S.

    2008-12-01

    Three flow-through columns outfitted with Ag/AgCl electrodes were constructed to test the effects of different microbial processes on the geophysical measurements of self potential (SP), bulk electrical conductivity (σ b), and induced polarization (IP). The columns were filled with sieved, Fe-bearing subsurface sediment from the Delmarva Peninsula near Oyster, VA, inoculated (9:1 ratio) with a freshly-collected, shallow subsurface sediment from a wetland floodplain (Dorn Creek) near Madison, WI. Each of the columns was fed anoxic and sterile PIPES buffered artificial groundwater (PBAGW) containing different concentrations of acetate and nitrate. The medium fed to Column 1 (nitrate-reducing) was amended with 100 μM acetate and 2 mM nitrate. Column 2 (iron-reducing) was run with PBAGW containing 1.0 mM acetate and 0 mM nitrate. Column 3 (alternating redox state) was operated under conditions designed to alternately stimulate nitrate-reducing and iron-reducing populations to provide conditions, i.e., the presence of both nitrate and microbially-produced Fe(II), that would allow growth of nitrate-dependent Fe(II)-oxidizing populations. We operated Column 3 with a cycling strategy of 14-18 days of high C medium (1 mM acetate and 100 μ M nitrate) followed by 14-18 days of low C medium (100 μ M acetate and 2 mM nitrate). Effluent chemistry (NO3-, NO2-, NH4+, acetate, and Fe2+) was sampled daily for four months so as to be concurrent with the electrical measurements. We observed chemical evidence of iron reduction (dissolved [Fe(II)] = 0.2mM) in the effluent from the iron reduction and alternating redox columns. Chemical depletion of NO3- ([NO3-] ranged from 1 to 0.02mM), the production of NO2-, and possible production of NH4+ (0.2 mM) was observed in the nitrate reducing column as well as the alternating redox column. All three columns displayed loss of acetate as microbial activity progressed. σ b remained constant in the alternating redox column (~0.15 S

  8. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    Science.gov (United States)

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Isolation of a nitrate-reducing bacteria strain from oil field brine and ...

    African Journals Online (AJOL)

    A nitrate-reducing bacteria (NRB) strain with vigorous growth, strong nitrate reduction ability, strain B9 2-1, was isolated from Suizhong36-1 oilfield, its routine identification and analysis of 16S rRNA and also the competitive inhibition experiments with the enrichment of sulfate-reducing bacteria (SRB) were carried out.

  10. The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria.

    Science.gov (United States)

    Zhang, Zhennan; Yin, Naiyi; Du, Huili; Cai, Xiaolin; Cui, Yanshan

    2016-05-01

    Arsenic (As) is a redox-active metalloid whose toxicity and mobility in soil depend on its oxidation state. Arsenite [As(III)] can be oxidized by microbes and adsorbed by minerals in the soil. However, the combined effects of these abiotic and biotic processes are not well understood. In this study, the fate of arsenic in the presence of an isolated As(III)-oxidizing bacterium (Pseudomonas sp. HN-1, 10(9) colony-forming units (CFUs)·ml(-1)) and three iron oxides (goethite, hematite, and magnetite at 1.6 g L(-1)) was determined using batch experiments. The total As adsorption by iron oxides was lower with bacteria present and was higher with iron oxides alone. The total As adsorption decreased by 78.6%, 36.0% and 79.7% for goethite, hematite and magnetite, respectively, due to the presence of bacteria. As(III) adsorbed on iron oxides could also be oxidized by Pseudomonas sp. HN-1, but the oxidation rate (1.3 μmol h(-1)) was much slower than the rate in the aqueous phase (96.2 μmol h(-1)). Therefore, the results of other studies with minerals only might overestimate the adsorptive capacity of solids in natural systems; the presence of minerals might hinder As(III) oxidation by microbes. Under aerobic conditions, in the presence of iron oxides and As(III)-oxidizing bacteria, arsenic is adsorbed onto iron oxides within the adsorption capacity, and As(V) is the primary form in the solid and aqueous phases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Nitrate and sulfate reducers-retrievable number of bacteria and their activities in Indian waters

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    Culturable heterotrophic, nitrate reducing and sulfate reducing bacteria (HB, NRB and SRB) were enumerated from 25, 50, 100 and 200 m depths at 15 stations and their potential activities viz. Nitrate reducing (NRA) and Sulfate reducing (SRA) were...

  12. Nitrate Reduction to Nitrite, Nitric Oxide and Ammonia by Gut Bacteria under Physiological Conditions

    Science.gov (United States)

    Tiso, Mauro; Schechter, Alan N.

    2015-01-01

    The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome

  13. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions.

    Directory of Open Access Journals (Sweden)

    Mauro Tiso

    Full Text Available The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in

  14. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer

    Science.gov (United States)

    Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Böhlke, J.K.

    2017-01-01

    weeks. Additionally, Fe(II)-oxidizing, nitrate-reducing microbial enrichment cultures were obtained from aquifer sediments. Growth experiments with the cultures sequentially produced nitrite and nitrous oxide from nitrate while simultaneously oxidizing Fe(II). Field and culture results suggest that nitrogen oxide reduction and Fe(II) oxidation in the aquifer are a complex interaction of coupled biotic and abiotic reactions. Overall, the results of this study demonstrate that anoxic nitrate-dependent iron oxidation can occur in groundwater; that it could control iron speciation; and that the process can impact the mobility of other chemical species (e.g., phosphate and arsenic) not directly involved in the oxidation–reduction reaction.

  15. Neutrophilic iron-oxidizing bacteria: occurrence and relevance in biological drinking water treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    2013-01-01

    Rapid sand filtration (RSF) is an economical way to treat anoxic groundwater around the world. It consists of groundwater aeration followed by passage through a sand filter. The oxidation and removal of ferrous iron, which is commonly found in anoxic groundwaters, is often believed to be a fully...... role of FeOB in iron removal at waterworks using RSF technologies....... physicochemical process. However, persistently low temperatures in RSF across Denmark may negatively affect the kinetics of chemical oxidation. The slower chemical oxidation of ferrous iron may increase the chances for iron bioconversion by neutrophilic iron-oxidizing bacteria (FeOB), which are found naturally...

  16. Fossilization of Iron-Oxidizing Bacteria at Hydrothermal Vents: a Useful Biosignature on Mars?

    Science.gov (United States)

    Leveille, R. J.; Lui, S.

    2009-05-01

    Iron oxidizing bacteria are ubiquitous in marine and terrestrial environments on Earth, where they often display distinctive cell morphologies and are commonly encrusted by minerals, especially bacteriogenic iron oxides and silica. Putative microfossils of iron oxidizing bacteria have been found in jaspers as old as 490Ma and microbial iron oxidation may be an ancient metabolic pathway. In order to investigate the usefulness of mineralized iron oxidizing bacteria as a biosignature, we have examined mineral samples collected from relict hydrothermal systems along Explorer Ridge, NE Pacific Ocean. In addition, microaerophilic, neutrophilic iron oxidizing bacteria, isolated from Pacific hydrothermal vents, were grown in a Fe-enriched seawater medium at constant pH (6.5) and oxygen concentration (5 percent) in a controlled bioreactor system. Both natural samples and experimental products were examined with a combination of variable pressure scanning electron microscopy (SEM), field emission gun SEM, and in some cases by preparing samples with a focused ion beam (FIB) milling system. Natural seafloor samples display abundant filamentous forms often resembling, in both size and shape, the twisted stalks of Gallionella and the elongated filaments of Leptothrix. Generally, these filamentous features are 1-5 microns in diameter and up to several microns in length. Some samples consist entirely of low- density, porous masses of silica encrusted filamentous forms. Presumably, these masses were formed by a rapid precipitation by the influx of silica-rich fluids into a microbial mat dominated by bacteria with filamentous morphologies. The presence of rare, amorphous (unmineralized) filamentous matter rich in C and Fe suggests that these bacteria were iron oxidizers. There is no evidence that sulfur oxidizers were present. Filamentous features sectioned by FIB milling show internal material within semi-hollow tubular-like features. Silica encrustations also show pseudo

  17. Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria.

    Science.gov (United States)

    Li, Yongchao; Hu, Xiaoxian; Ren, Bozhi

    2016-01-01

    The present article summarizes antimony mine distribution, antimony mine drainage generation and environmental impacts, and critically analyses the remediation approach with special emphasis on iron oxidizing bacteria and sulfate reducing bacteria. Most recent research focuses on readily available low-cost adsorbents, such as minerals, wastes, and biosorbents. It is found that iron oxides prepared by chemical methods present superior adsorption ability for Sb(III) and Sb(V). However, this process is more costly and iron oxide activity can be inhibited by plenty of sulfate in antimony mine drainage. In the presence of sulfate reducing bacteria, sulfate can be reduced to sulfide and form Sb(2)S(3) precipitates. However, dissolved oxygen and lack of nutrient source in antimony mine drainage inhibit sulfate reducing bacteria activity. Biogenetic iron oxide minerals from iron corrosion by iron-oxidizing bacteria may prove promising for antimony adsorption, while the micro-environment generated from iron corrosion by iron oxidizing bacteria may provide better growth conditions for symbiotic sulfate reducing bacteria. Finally, based on biogenetic iron oxide adsorption and sulfate reducing bacteria followed by precipitation, the paper suggests an alternative treatment for antimony mine drainage that deserves exploration.

  18. Microbially catalyzed nitrate-dependent metal/radionuclide oxidation in shallow subsurface sediments

    Science.gov (United States)

    Weber, K.; Healy, O.; Spanbauer, T. L.; Snow, D. D.

    2011-12-01

    Anaerobic, microbially catalyzed nitrate-dependent metal/radionuclide oxidation has been demonstrated in a variety of sediments, soils, and groundwater. To date, studies evaluating U bio-oxidation and mobilization have primarily focused on anthropogenically U contaminated sites. In the Platte River Basin U originating from weathering of uranium-rich igneous rocks in the Rocky Mountains was deposited in shallow alluvial sediments as insoluble reduced uranium minerals. These reduced U minerals are subject to reoxidation by available oxidants, such nitrate, in situ. Soluble uranium (U) from natural sources is a recognized contaminant in public water supplies throughout the state of Nebraska and Colorado. Here we evaluate the potential of anaerobic, nitrate-dependent microbially catalyzed metal/radionuclide oxidation in subsurface sediments near Alda, NE. Subsurface sediments and groundwater (20-64ft.) were collected from a shallow aquifer containing nitrate (from fertilizer) and natural iron and uranium. The reduction potential revealed a reduced environment and was confirmed by the presence of Fe(II) and U(IV) in sediments. Although sediments were reduced, nitrate persisted in the groundwater. Nitrate concentrations decreased, 38 mg/L to 30 mg/L, with increasing concentrations of Fe(II) and U(IV). Dissolved U, primarily as U(VI), increased with depth, 30.3 μg/L to 302 μg/L. Analysis of sequentially extracted U(VI) and U(IV) revealed that virtually all U in sediments existed as U(IV). The presence of U(IV) is consistent with reduced Fe (Fe(II)) and low reduction potential. The increase in aqueous U concentrations with depth suggests active U cycling may occur at this site. Tetravalent U (U(IV)) phases are stable in reduced environments, however the input of an oxidant such as oxygen or nitrate into these systems would result in oxidation. Thus co-occurrence of nitrate suggests that nitrate could be used by bacteria as a U(IV) oxidant. Most probable number

  19. Rethinking anaerobic As(III) oxidation in filters: Effect of indigenous nitrate respirers.

    Science.gov (United States)

    Cui, Jinli; Du, Jingjing; Tian, Haixia; Chan, Tingshan; Jing, Chuanyong

    2018-04-01

    Microorganisms play a key role in the redox transformation of arsenic (As) in aquifers. In this study, the impact of indigenous bacteria, especially the prevailing nitrate respirers, on arsenite (As(III)) oxidation was explored during groundwater filtration using granular TiO 2 and subsequent spent TiO 2 anaerobic landfill. X-ray absorption near edge structure spectroscopy analysis showed As(III) oxidation (46% in 10 days) in the presence of nitrate in the simulated anaerobic landfills. Meanwhile, iron (Fe) species on the spent TiO 2 were dominated by amorphous ferric arsenate, ferrihydrite and goethite. The Fe phase showed no change during the anaerobic landfill incubation. Batch incubation experiments implied that the indigenous bacteria completely oxidized As(III) to arsenate (As(V)) in 10 days using nitrate as the terminal electron acceptor under anaerobic conditions. The bacterial community analysis indicated that various kinds of microbial species exist in groundwater matrix. Phylogenetic tree analysis revealed that Proteobacteria was the dominant phylum, with Hydrogenophaga (34%), Limnohabitans (16%), and Simplicispira (7%) as the major bacterial genera. The nitrate respirers especially from the Hydrogenophaga genus anaerobically oxidized As(III) using nitrate as an electron acceptor instead of oxygen. Our study implied that microbes can facilitate the groundwater As oxidation using nitrate on the adsorptive media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.

    Science.gov (United States)

    Lin, Shiping; Krause, Federico; Voordouw, Gerrit

    2009-05-01

    Nitrate, injected into oil fields, can oxidize sulfide formed by sulfate-reducing bacteria (SRB) through the action of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB). When reservoir rock contains siderite (FeCO(3)), the sulfide formed is immobilized as iron sulfide minerals, e.g. mackinawite (FeS). The aim of our study was to determine the extent to which oil field NR-SOB can oxidize or transform FeS. Because no NR-SOB capable of growth with FeS were isolated, the well-characterized oil field isolate Sulfurimonas sp. strain CVO was used. When strain CVO was presented with a mixture of chemically formed FeS and dissolved sulfide (HS(-)), it only oxidized the HS(-). The FeS remained acid soluble and non-magnetic indicating that it was not transformed. In contrast, when the FeS was formed by adding FeCl(2) to a culture of SRB which gradually produced sulfide, precipitating FeS, and to which strain CVO and nitrate were subsequently added, transformation of the FeS to a magnetic, less acid-soluble form was observed. X-ray diffraction and energy-dispersive spectrometry indicated the transformed mineral to be greigite (Fe(3)S(4)). Addition of nitrite to cultures of SRB, containing microbially formed FeS, was similarly effective. Nitrite reacts chemically with HS(-) to form polysulfide and sulfur (S(0)), which then transforms SRB-formed FeS to greigite, possibly via a sulfur addition pathway (3FeS + S(0) --> Fe(3)S(4)). Further chemical transformation to pyrite (FeS(2)) is expected at higher temperatures (>60 degrees C). Hence, nitrate injection into oil fields may lead to NR-SOB-mediated and chemical mineral transformations, increasing the sulfide-binding capacity of reservoir rock. Because of mineral volume decreases, these transformations may also increase reservoir injectivity.

  1. Nitrous oxide production in soil isolates of nitrate-ammonifying bacteria

    NARCIS (Netherlands)

    Streminska, M.A.; Felgate, H.; Rowley, G.; Richardson, D.J.; Baggs, E.M.

    2012-01-01

    Here we provide the first demonstration of the potential for N2O production by soil-isolated nitrate-ammonifying bacteria under different C and N availabilities, building on characterizations informed from model strains. The potential for soil-isolated Bacillus sp. and Citrobacter sp. to reduce

  2. Neutrophilic Iron Oxidizing Bacteria: Occurrence and Relevance in Biological Drinking Water Treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    Rapid sand filtration (RSF) is an economical way to treat anoxic groundwater around the world. It consists of groundwater aeration followed by passage through a sand filter. The oxidation and removal of ferrous iron, which is commonly found in anoxic groundwaters, is often believed to be a fully......, neutrophilic iron oxidizers were present at the level of up to 7 105 cells per gram sediment. The spatial abundance and diversity of FeOB inferred by DGGE fingerprinting differed greatly both between and within individual sand filters. The results suggest a larger than assumed role of FeOB in iron removal...... physicochemical process. However, persistently low temperatures in RSF across Denmark may negatively affect the kinetics of chemical oxidation. The slower chemical oxidation of ferrous iron may increase the chances for iron bioconversion by neutrophilic iron-oxidizing bacteria (FeOB), which are found naturally...

  3. Mimicking microbial interactions under nitrate-reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio.

    Science.gov (United States)

    Arshad, Arslan; Dalcin Martins, Paula; Frank, Jeroen; Jetten, Mike S M; Op den Camp, Huub J M; Welte, Cornelia U

    2017-12-01

    Microorganisms are main drivers of the sulfur, nitrogen and carbon biogeochemical cycles. These elemental cycles are interconnected by the activity of different guilds in sediments or wastewater treatment systems. Here, we investigated a nitrate-reducing microbial community in a laboratory-scale bioreactor model that closely mimicked estuary or brackish sediment conditions. The bioreactor simultaneously consumed sulfide, methane and ammonium at the expense of nitrate. Ammonium oxidation occurred solely by the activity of anammox bacteria identified as Candidatus Scalindua brodae and Ca. Kuenenia stuttgartiensis. Fifty-three percent of methane oxidation was catalyzed by archaea affiliated to Ca. Methanoperedens and 47% by Ca. Methylomirabilis bacteria. Sulfide oxidation was mainly shared between two proteobacterial groups. Interestingly, competition for nitrate did not lead to exclusion of one particular group. Metagenomic analysis showed that the most abundant taxonomic group was distantly related to Thermodesulfovibrio sp. (87-89% 16S rRNA gene identity, 52-54% average amino acid identity), representing a new family within the Nitrospirae phylum. A high quality draft genome of the new species was recovered, and analysis showed high metabolic versatility. Related microbial groups are found in diverse environments with sulfur, nitrogen and methane cycling, indicating that these novel Nitrospirae bacteria might contribute to biogeochemical cycling in natural habitats. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Iron oxide deposits associated with the ectosymbiotic bacteria in the hydrothermal vent shrimp Rimicaris exoculata

    Directory of Open Access Journals (Sweden)

    P. Compère

    2008-09-01

    Full Text Available The Rimicaris exoculata shrimp is considered as a primary consumer that dominates the fauna of most Mid-Atlantic Ridge (MAR hydrothermal ecosystems. These shrimps harbour in their gill chambers an important ectosymbiotic community of chemoautotrophic bacteria associated with iron oxide deposits. The structure and elemental composition of the mineral concretions associated with these bacteria have been investigated by using LM, ESEM, TEM STEM and EDX microanalyses. The nature of the iron oxides in shrimps obtained from the Rainbow vent field has also been determined by Mössbauer spectroscopy. This multidisciplinary approach has revealed that the three layers of mineral crust in the Rimicaris exoculata shrimps consist of large concretions formed by aggregated nanoparticles of two-line ferrihydrite and include other minor elements as Si, Ca, Mg, S and P, probably present as silicates cations, sulphates or phosphates respectively that may contribute to stabilise the ferrihydrite form of iron oxides. TEM-observations on the bacteria have revealed their close interactions with these minerals. Abiotic and biotic precipitation could occur within the gill chamber of Rimicaris exoculata, suggesting the biologically-mediated formation of the iron oxide deposits. The difference of the bacterial density in the three-mineral crust layers could be correlated to the importance of the iron oxide concretions and suggest that the first mineral particles precipitates on the lower layer which could be considered as the most likely location of iron-oxidizing bacteria.

  5. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria.

    Science.gov (United States)

    Si, Youbin; Zou, Yan; Liu, Xiaohong; Si, Xiongyuan; Mao, Jingdong

    2015-03-01

    Iron reduction and mercury methylation by dissimilatory iron-reducing bacteria (DIRB), Geobacter sulfurreducens and Shewanella oneidensis, were studied, and the relationship of mercury methylation coupled to iron reduction was determined. The ability of both bacteria for reducing iron was tested, and Fe(III) reduction occurred with the highest rate when ferric oxyhydroxide was used as a terminal electron acceptor. G. sulfurreducens had proven to mediate the production of methylmercury (MeHg), and a notable increase of MeHg following the addition of inorganic Hg was observed. When the initial concentration of HgCl2 was 500nM, about 177.03nM of MeHg was determined at 8d after G. sulfurreducens inoculation. S. oneidensis was tested negligible for Hg methylation and only 12.06nM of MeHg was determined. Iron reduction could potentially influence Hg methylation rates. The increase in MeHg was consistent with high rate of iron reduction, indicating that Fe(III) reduction stimulated the formation of MeHg. Furthermore, the net MeHg concentration increased at low Fe(III) additions from 1.78 to 3.57mM, and then decreased when the added Fe(III) was high from 7.14 to 17.85mM. The mercury methylation rate was suppressed with high Fe(III) additions, which might have been attributable to mercury complexation and low availability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Fractionation of hydrogen isotopes by sulfate- and nitrate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Magdalena Rose Osburn

    2016-08-01

    Full Text Available Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen –protium and deuterium –that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ2H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ2H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ2H suggest much potential as an environmental recorder of metabolism.

  7. Fractionation of Hydrogen Isotopes by Sulfate- and Nitrate-Reducing Bacteria.

    Science.gov (United States)

    Osburn, Magdalena R; Dawson, Katherine S; Fogel, Marilyn L; Sessions, Alex L

    2016-01-01

    Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen-protium and deuterium-that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ(2)H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ(2)H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ(2)H suggest much potential as an environmental recorder of metabolism.

  8. Environmental Factors Affecting Ammonium Oxidation Under Iron Reducing Conditions

    Science.gov (United States)

    Jaffe, P. R.; Huang, S.; Ruiz-Urigüen, M.

    2014-12-01

    Ammonium (NH4+) oxidation coupled to iron (Fe) reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) has been reported by several investigators and referred to as Feammox. Feammox is a biological reaction, where Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+ is the electron donor, which is oxidized to NO2-. Through a 180-day anaerobic incubation experiment, and using PCR-DGGE, 454-pyosequecing and qPCR analysis, we have shown that an Acidimicrobiaceae bacterium A6, a previously unreported species in the Acidimicrobiaceae family, might be either responsible or plays a key role in the Feammox process, We have enriched these Feammox bacteria (65.8% in terms of cell numbers) in a membrane reactor, and isolated the pure Acidimicrobiaceae bacterium A6 strain in an autotrophic medium. In samples collected and then incubated from a series of local wetland-, upland-, as well as storm-water detention pond-sediments, Feammox activity was only detected in acidic soil environments that contain Fe oxides. Using primers we developed for this purpose, Acidimicrobiaceae bacterium A6 was detected in all incubations where Feammox was observed. Anaerobic incubations of Feammox enrichment cultures adjusted to different pH, revealed that the optimal pH for Feammox is 4 ~ 5, and the reaction does not proceed when pH > 7. Feammox was still proceeding at pH as low as 2. In Feammox culture amended with different Fe(III) sources, Feammox reaction proceeded only when Fe oxides (ferrihydrite or goethite ) were supplied, whereas samples incubated with ferric chloride or ferric citrate showed no measurable NH4+ oxidation. Furthermore, we have also determined from incubation experiments conducted with a temperature gradient (10 ~ 35℃), that the Feammox process was active when the temperature is above 15℃, and the optimal temperature is 20℃. Incubations of enrichment culture with 79% Feammox bacteria appeared to remove circa 8% more NH4+ at 20ºC than at

  9. Iron minerals formed by dissimilatory iron-and sulfur reducing bacteria studied by Moessbauer spectrometry

    International Nuclear Information System (INIS)

    Chistyakova, N. I.; Rusakov, V. S.; Nazarova, K. A.; Koksharov, Yu. A.; Zavarzina, D. G.; Greneche, J.-M.

    2008-01-01

    Zero-field and in-field Moessbauer investigations and electron paramagnetic resonance (EPR) measurements to follow the kinetics of the iron mineral formation by thermophilic dissimilatory anaerobic Fe(III)-reducing bacteria (strain Z-0001) and anaerobic alkaliphilic bacteria (strain Z-0531) were carried out.

  10. Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate.

    Science.gov (United States)

    Thorup, Casper; Schramm, Andreas; Findlay, Alyssa J; Finster, Kai W; Schreiber, Lars

    2017-07-18

    This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase. IMPORTANCE Sulfide oxidation and sulfate reduction, the two major branches of the sulfur cycle, are usually ascribed to distinct sets of microbes with distinct diagnostic genes. Here we show a more complex picture, as D. alkaliphilus , with the genomic setup of a sulfate reducer, grows by sulfide oxidation. The high expression of genes typically involved in the sulfate reduction pathway suggests that these genes, including the reductive-type dissimilatory bisulfite reductases, are also involved in as-yet-unresolved sulfide oxidation pathways. Finally, D. alkaliphilus is closely related to cable bacteria, which grow by electrogenic sulfide oxidation. Since there are no pure cultures of cable bacteria, D. alkaliphilus may represent an

  11. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans

    Directory of Open Access Journals (Sweden)

    Harry R Beller

    2013-08-01

    Full Text Available Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV and Fe(II oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II oxidation, namely (a whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV oxides as electron donors under denitrifying conditions], (b Fe(II oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c random transposon-mutagenesis studies with screening for Fe(II oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III, which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV oxidation, nor have other c-type cytochromes yet been implicated in the process.

  12. Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface

    International Nuclear Information System (INIS)

    Wu, Weimin; Carley, Jack M.; Green, Stefan; Luo, Jian; Kelly, Shelly D.; Van Nostrand, Joy; Lowe, Kenneth Alan; Mehlhorn, Tonia L.; Carroll, Sue L.; Boonchayanant, Benjaporn; Loeffler, Frank E.; Jardine, Philip M.; Criddle, Craig

    2010-01-01

    The effects of nitrate on the stability of reduced, immobilized uranium were evaluated in field experiments at a U.S. Department of Energy site in Oak Ridge, TN. Nitrate (2.0 mM) was injected into a reduced region of the subsurface containing high levels of previously immobilized U(IV). The nitrate was reduced to nitrite, ammonium, and nitrogen gas; sulfide levels decreased; and Fe(II) levels increased then deceased. Uranium remobilization occurred concomitant with nitrite formation, suggesting nitrate-dependent, iron-accelerated oxidation of U(IV). Bromide tracer results indicated changes in subsurface flowpaths likely due to gas formation and/or precipitate. Desorption-adsorption of uranium by the iron-rich sediment impacted uranium mobilization and sequestration. After rereduction of the subsurface through ethanol additions, background groundwater containing high levels of nitrate was allowed to enter the reduced test zone. Aqueous uranium concentrations increased then decreased. Clone library analyses of sediment samples revealed the presence of denitrifying bacteria that can oxidize elemental sulfur, H 2 S, Fe(II), and U(IV) (e.g., Thiobacillus spp.), and a decrease in relative abundance of bacteria that can reduce Fe(III) and sulfate. XANES analyses of sediment samples confirmed changes in uranium oxidation state. Addition of ethanol restored reduced conditions and triggered a short-term increase in Fe(II) and aqueous uranium, likely due to reductive dissolution of Fe(III) oxides and release of sorbed U(VI). After two months of intermittent ethanol addition, sulfide levels increased, and aqueous uranium concentrations gradually decreased to <0.1 μM.

  13. Presence, distribution, and diversity of iron-oxidizing bacteria at a landfill leachate-impacted groundwater surface water interface

    DEFF Research Database (Denmark)

    Yu, R.; Gan, P.; Mackay, A.A.

    2010-01-01

    ) were dominated by members of the Bradyrhizobiaceae and Comamonadaceae; clones from the deeper sediments were phylogenetically more diverse, dominated by members of the Rhodocyclaceae. The iron deposition profiles indicated that active iron oxidation occurred only within the near-to-surface GSI......We examined the presence of iron-oxidizing bacteria (IOB) at a groundwater surface water interface (GSI) impacted by reduced groundwater originating as leachate from an upgradient landfill. IOB enrichments and quantifications were obtained, at high vertical resolution, by an iron/oxygen opposing...... site mirrored the IOB distribution. Clone libraries from two separate IOB enrichments indicated a stratified IOB community with clear differences at short vertical distances. Alpha- and Betaproteobacteria were the dominant phylotypes. Clones from the near-surface sediment (1-2 cm below ground surface...

  14. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS.

    Science.gov (United States)

    Nordhoff, M; Tominski, C; Halama, M; Byrne, J M; Obst, M; Kleindienst, S; Behrens, S; Kappler, A

    2017-07-01

    Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic and depend on organic cosubstrates for growth. Encrustation of cells in Fe(III) minerals has been observed for mixotrophic NRFeOB but not for autotrophic phototrophic and microaerophilic Fe(II) oxidizers. So far, little is known about cell-mineral associations in the few existing autotrophic NRFeOB. Here, we investigate whether the designated autotrophic Fe(II)-oxidizing strain (closely related to Gallionella and Sideroxydans ) or the heterotrophic nitrate reducers that are present in the autotrophic nitrate-reducing Fe(II)-oxidizing enrichment culture KS form mineral crusts during Fe(II) oxidation under autotrophic and mixotrophic conditions. In the mixed culture, we found no significant encrustation of any of the cells both during autotrophic oxidation of 8 to 10 mM Fe(II) coupled to nitrate reduction and during cultivation under mixotrophic conditions with 8 to 10 mM Fe(II), 5 mM acetate, and 4 mM nitrate, where higher numbers of heterotrophic nitrate reducers were present. Two pure cultures of heterotrophic nitrate reducers ( Nocardioides and Rhodanobacter ) isolated from culture KS were analyzed under mixotrophic growth conditions. We found green rust formation, no cell encrustation, and only a few mineral particles on some cell surfaces with 5 mM Fe(II) and some encrustation with 10 mM Fe(II). Our findings suggest that enzymatic, autotrophic Fe(II) oxidation coupled to nitrate reduction forms poorly crystalline Fe(III) oxyhydroxides and proceeds without cellular encrustation while indirect Fe(II) oxidation via heterotrophic nitrate-reduction-derived nitrite can lead to green rust as an intermediate mineral and significant cell encrustation. The extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible under environmental conditions in most habitats. IMPORTANCE Most described nitrate-reducing

  15. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS

    Science.gov (United States)

    Nordhoff, M.; Tominski, C.; Halama, M.; Byrne, J. M.; Obst, M.; Behrens, S.

    2017-01-01

    ABSTRACT Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic and depend on organic cosubstrates for growth. Encrustation of cells in Fe(III) minerals has been observed for mixotrophic NRFeOB but not for autotrophic phototrophic and microaerophilic Fe(II) oxidizers. So far, little is known about cell-mineral associations in the few existing autotrophic NRFeOB. Here, we investigate whether the designated autotrophic Fe(II)-oxidizing strain (closely related to Gallionella and Sideroxydans) or the heterotrophic nitrate reducers that are present in the autotrophic nitrate-reducing Fe(II)-oxidizing enrichment culture KS form mineral crusts during Fe(II) oxidation under autotrophic and mixotrophic conditions. In the mixed culture, we found no significant encrustation of any of the cells both during autotrophic oxidation of 8 to 10 mM Fe(II) coupled to nitrate reduction and during cultivation under mixotrophic conditions with 8 to 10 mM Fe(II), 5 mM acetate, and 4 mM nitrate, where higher numbers of heterotrophic nitrate reducers were present. Two pure cultures of heterotrophic nitrate reducers (Nocardioides and Rhodanobacter) isolated from culture KS were analyzed under mixotrophic growth conditions. We found green rust formation, no cell encrustation, and only a few mineral particles on some cell surfaces with 5 mM Fe(II) and some encrustation with 10 mM Fe(II). Our findings suggest that enzymatic, autotrophic Fe(II) oxidation coupled to nitrate reduction forms poorly crystalline Fe(III) oxyhydroxides and proceeds without cellular encrustation while indirect Fe(II) oxidation via heterotrophic nitrate-reduction-derived nitrite can lead to green rust as an intermediate mineral and significant cell encrustation. The extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible under environmental conditions in most habitats. IMPORTANCE Most described nitrate-reducing

  16. Potential of nitrate addition to control the activity of sulfate-reducing prokaryotes in high-temperature oil production systems - a comparative study on a nitrate-treated and an untreated system

    DEFF Research Database (Denmark)

    Gittel, Antje; Sørensen, Ketil; Skovhus, Torben L.

    Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. Adding nitrate to the injection water is applied to control SRP activity by favoring the growth of heterotrophic, nitrate-reducing bacteria (h......NRB) and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). Microbial diversity, abundance of Bacteria, Archaea and sulfate-reducing prokaryotes (SRP) and the potential activity of SRP were studied in production water samples from a nitrate-treated and an untreated system. The reservoirs and the produced water......) and Desulfotomaculum (system with nitrate). In samples from the untreated site, the presence of active SRP was supported by demonstrating their activity (incubations with 35S-sulfate) and growth in batch cultures at pipeline temperature. No SRP activity was detected at reservoir temperature and in samples from...

  17. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria.

    Science.gov (United States)

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-11-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.

  18. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.

    Science.gov (United States)

    Mejia, Jacqueline; Roden, Eric E; Ginder-Vogel, Matthew

    2016-04-05

    Oscillations between reducing and oxidizing conditions are observed at the interface of anaerobic/oxic and anaerobic/anoxic environments, and are often stimulated by an alternating flux of electron donors (e.g., organic carbon) and electron acceptors (e.g., O2 and NO3(-)). In iron (Fe) rich soils and sediments, these oscillations may stimulate the growth of both Fe-reducing bacteria (FeRB) and Fe-oxidizing bacteria (FeOB), and their metabolism may induce cycling between Fe(II) and Fe(III), promoting the transformation of Fe (hydr)oxide minerals. Here, we examine the mineralogical evolution of lepidocrocite and ferrihydrite, and the adaptation of a natural microbial community to alternating Fe-reducing (anaerobic with addition of glucose) and Fe-oxidizing (with addition of nitrate or air) conditions. The growth of FeRB (e.g., Geobacter) is stimulated under anaerobic conditions in the presence of glucose. However, the abundance of these organisms depends on the availability of Fe(III) (hydr)oxides. Redox cycling with nitrate results in decreased Fe(II) oxidation thereby decreasing the availability of Fe(III) for FeRB. Additionally, magnetite is detected as the main product of both lepidocrocite and ferrihydrite reduction. In contrast, introduction of air results in increased Fe(II) oxidation, increasing the availability of Fe(III) and the abundance of Geobacter. In the lepidocrocite reactors, Fe(II) oxidation by dissolved O2 promotes the formation of ferrihydrite and lepidocrocite, whereas in the ferrihydrite reactors we observe a decrease in magnetite stoichiometry (e.g., oxidation). Understanding Fe (hydr)oxide transformation under environmentally relevant redox cycling conditions provides insight into nutrient availability and transport, contaminant mobility, and microbial metabolism in soils and sediments.

  19. Potential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the young barley rhizosphere

    DEFF Research Database (Denmark)

    Højberg, Ole; Binnerup, S. J.; Sørensen, Jan

    1996-01-01

    Potential activities (enzyme contents) of ammonium (NH4+) oxidizing, nitrite (NO2-) oxidizing, nitrate (NO3-) reducing and denitrifying bacteria were measured in bulk and rhizosphere soil obtained from young barley plants in the field. The activities as well as pools of inorganic N (NH4+, NO2...

  20. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems.

    Science.gov (United States)

    Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A; Yang, Xiaofen; Tuovinen, Olli H; Dong, Hailiang; Fu, Xiang

    2013-01-15

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO(3))(2) was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0-24.2 mM Pb(II) added as Pb(NO(3))(2). Anglesite (PbSO(4)) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe(3)(SO(4))(2)(OH)(6)) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9-17.6 μM regardless of the concentrations of Pb(NO(3))(2) added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO(3))(2) addition even when anglesite was removed before inoculation. Experiments with 0-48 mM KNO(3) demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO(3))(2) addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1.

    Science.gov (United States)

    Dippon, Urs; Pantke, Claudia; Porsch, Katharina; Larese-Casanova, Phil; Kappler, Andreas

    2012-06-19

    The mobility of toxic metals and the transformation of organic pollutants in the environment are influenced and in many cases even controlled by iron minerals. Therefore knowing the factors influencing iron mineral formation and transformation by Fe(II)-oxidizing and Fe(III)-reducing bacteria is crucial for understanding the fate of contaminants and for the development of remediation technologies. In this study we followed mineral formation by the nitrate-reducing Fe(II)-oxidizing strain Acidovorax sp. BoFeN1 in the presence of the crystalline Fe(III) (oxyhydr)oxides goethite, magnetite and hematite added as potential nucleation sites. Mössbauer spectroscopy analysis of minerals precipitated by BoFeN1 in (57)Fe(II)-spiked microbial growth medium showed that goethite was formed in the absence of mineral additions as well as in the presence of goethite or hematite. The presence of magnetite minerals during Fe(II) oxidation induced the formation of magnetite in addition to goethite, while the addition of humic substances along with magnetite also led to goethite but no magnetite. This study showed that mineral formation not only depends on the aqueous geochemical conditions but can also be affected by the presence of mineral nucleation sites that initiate precipitation of the same underlying mineral phases.

  2. Effect of nitrate addition on the diversity and activity of sulfate-reducing prokaryotes in high-temperature oil production systems

    DEFF Research Database (Denmark)

    Gittel, Antje; Wieczorek, Adam; Sørensen, Ketil

    Sulfate-reducing prokaryotes (SRP) producing hydrogen sulfide cause severe problems like microbial corrosion, souring and plugging in seawater-injected oil production systems. Adding nitrate to the injection water is a possible strategy to control the activity of SRP by favoring the growth of both...... heterotrophic, nitrate-reducing bacteria that outcompete SRP for substrates, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). To assess the effects of nitrate addition, microbial diversity (Bacteria, Archaea) and SRP activity were studied in the production waters of a nitrate-treated and a non...... their potential activity under pipeline (60°C), but not under oil reservoir conditions (80°C), indicating that the troublesome SRP were pipeline-derived. Consistent with the low amount of SRP, no activity could be shown for samples from the nitrate-treated system suggesting that SRP were inhibited by nitrate...

  3. Chironomus plumosus larvae increase fluxes of denitrification products and diversity of nitrate-reducing bacteria in freshwater sediment

    DEFF Research Database (Denmark)

    Poulsen, Morten; W. V. Kofoed, Michael; H. Larsen, Lone

    2014-01-01

    , respectively, which was mostly due to stimulation of sedimentary denitrification; incomplete denitrification in the guts accounted for up to 20% of the N2O efflux. Phylotype richness of the nitrate reductase gene narG was significantly higher in sediment with than without larvae. In the gut, 47 narG phylotypes...... were found expressed, which may contribute to higher phylotype richness in colonized sediment. In contrast, phylotype richness of the nitrous oxide reductase gene nosZ was unaffected by the presence of larvae and very few nosZ phylotypes were expressed in the gut. Gene abundance of neither narG, nor...... nosZ wasdifferent in sediments with and without larvae. Hence, C. plumosus increases activity and diversity, but not overall abundance of nitrate-reducing bacteria, probably by providing additional ecological niches in its burrow and gut....

  4. Contribution to the study of the role of sulfate-reducing bacteria in bio-corrosion phenomenon

    International Nuclear Information System (INIS)

    Chatelus, C.

    1987-11-01

    By their metabolic activities of hydrogen consumption and of sulfides production, the sulfate-reducing bacteria are the main bacteria responsible of the metallic corrosion phenomena in the absence of oxygen. A physiological and enzymatic study of some Desulfovibrio has contributed to the understanding of the role of these bacteria in the anaerobic bio-corrosion phenomena. Desulfovibrio (D.) vulgaris in organic medium, after having oxidized the lactate, consumes the hydrogen formed by the electrochemical reaction of iron dissolution. The Desulfovibrio can be responsible either of a corrosion by a direct contact with the metal in using the H 2 layer formed at its surface, (bacteria are then adsorbed at the surface because of an iron sulfide crystalline lattice), or of a distant corrosion in consuming the dissolved or gaseous hydrogen. As their hydrogenases can be stable in time independently of the cellular structure (D. vulparis) and active at high temperatures (to 70 C - 75 C) (D. baculatus), these bacteria can act in conditions incompatible with the viability of cells but compatible with the enzymatic expression. A study in terms of temperature has shown that inside the mesophilic group of the Desulfovibrio, the behaviour towards this parameter is specific to each bacteria, that accounts for the permanent presence of the representatives of this population in sites where the temperature variations are important. A change of some degrees Celsius can induce modifications in the yields of bacteria growth and by a consequence in variations in the corrosion intensity. Moreover, sulfate D. multispirans can reduce with specific velocities of different growth, the nitrate, the nitrite and the fumarate. Some sulfato-reducing could then adapt themselves to the variations of concentrations in electron acceptors and metabolize the oxidized substances used as biocides too. The choice of an electron acceptor rather than another do not depend uniquely of the specificity of the

  5. A mathematical model of bacteria capable of complete oxidation of ammonium predicts improved nitrogen removal and reduced production of nitrous oxide

    OpenAIRE

    Pokhilko, Alexandra; Ebenhöh, Oliver

    2017-01-01

    The removal of excess nutrients\\ud from water ecosystems requires oxidation of toxic\\ud ammonium by two types of bacteria; one oxidizes\\ud ammonium to nitrite and the other oxidizes nitrite\\ud to nitrate. The oxidation of ammonium is often\\ud incomplete and nitrite accumulates. Nitrite is also\\ud toxic, and is converted by the ammoniumoxidizing\\ud bacteria to nitrous oxide, a powerful\\ud greenhouse gas. Here we use mathematical\\ud modeling to analyze a potential solution to the\\ud problems re...

  6. Bacterial Oxidation and Reduction of Iron in the Processes of Creation and Treatment of Acid Mining Waters

    Directory of Open Access Journals (Sweden)

    Daniel Kupka

    2004-12-01

    Full Text Available Acid mine drainages (AMDs arise at the weathering of sulphidic minerals. The occurrence of acidic streams is commonly associated with the human mining activities. Due to the disruption and excavation of sulphide deposits, the oxidation processes have initiated. Acidic products of sulphide oxidation accelerate the degradation of accompanying minerals. AMDs typically contain high concentrations of sulfuric acid and soluble metals and cause serious ecological problems due to the water pollution and the devastation of adjacent country. Microbial life in these extremely acidic environments may be considerably diverse. AMDs are abundant in bacteria capable to oxidize and/or to reduce iron. The rate of bacterial oxidation of ferrous iron released from pyrite surfaces is up to one million times faster than the chemical oxidation rate at low pH. Bacterial regeneration of ferric iron maintains the continuity of pyrite oxidation and the production of AMDs. Another group of microorganisms living in these environments are acidophilic ferric iron reducing bacteria. This group of microorganisms has been discovered only relatively recently. Acidophilic heterotrophic bacteria reduce ferric iron in either soluble or solid forms to ferrous iron. The reductive dissolution of ferric iron minerals brings about a mobilization of iron as well as associated heavy metals. The Bacterial oxidation and reduction of iron play an important role in the transformation of either crystalline or amorphous iron-containing minerals, including sulphides, oxides, hydroxysulfates, carbonates and silicates. This work discusses the role of acidophilic bacteria in the natural iron cycling and the genesis of acidic effluents. The possibilities of application of iron bacteria in the remediation of AMDs are also considered.

  7. Thioploca spp: filamentous sulfur bacteria with nitrate vacuoles

    DEFF Research Database (Denmark)

    Jørgensen, BB; Gallardo, VA

    1999-01-01

    communities of large Thioploca species live along the Pacific coast of South America and in other upwelling areas of high organic matter sedimentation with bottom waters poor in oxygen and rich in nitrate. Each cell of these thioplocas harbors a large liquid vacuole which is used as a storage for nitrate...... with a concentration of lip to 506 mM. The nitrate is used as an electron acceptor for sulfide oxidation and the bacteria may grow autotrophically or mixotrophically using acetate or other organic molecules as carbon source. The filaments stretch up into the overlying seawater, from which they take up nitrate...

  8. Carbon-Supported Iron Oxide Particles

    DEFF Research Database (Denmark)

    Meaz, T.; Mørup, Steen; Koch, C. Bender

    1996-01-01

    A carbon black ws impregnated with 6 wt% iron using an aqueous solution of iron nitrate. The impregnated carbon was initially dried at 125 C. The effect of heating of the iron oxide phase was investigated at temperatures between 200 and 600 C using Mossbauer spectroscopy. All heat treatments were...... done in an oxygen-containing atmosphere. Ferrihydrite is formed and is stable at and below a temperature of 300 C. At 600 C small particles of maghemite is the dominant iron oxide. A transformation reaction is suggested....

  9. Biodegradation of ortho-Cresol by a Mixed Culture of Nitrate-Reducing Bacteria Growing On Toluene

    DEFF Research Database (Denmark)

    Flyvbjerg, John; Jørgensen, Claus; Arvin, Erik

    1993-01-01

    A mixed culture of nitrate-reducing bacteria degraded o-cresol in the presence of toluene as a primary growth substrate. No degradation of o-cresol was observed in the absence of toluene or when the culture grew on p-cresol and 2,4-dimethylphenol. In batch cultures, the degradation of o-cresol st......A mixed culture of nitrate-reducing bacteria degraded o-cresol in the presence of toluene as a primary growth substrate. No degradation of o-cresol was observed in the absence of toluene or when the culture grew on p-cresol and 2,4-dimethylphenol. In batch cultures, the degradation of o...... of toluene metabolized, with an average yield of 0.47 mg of o-cresol degraded per mg of toluene metabolized. Experiments with (ring-U-14C)o-cresol indicated that about 73% of the carbon from degraded o-cresol was mineralized to CO-2 and about 23% was assimilated into biomass after the transient accumulation...

  10. Removal of Nitrate from Aqueous Solutions by Starch Stabilized nano Zero-Valent Iron(nZVI

    Directory of Open Access Journals (Sweden)

    Kaveh Yaghmaeian

    2016-09-01

    Full Text Available Background and Objective: Nitrate is one of the inorganic anions derived as a result of oxidation of elemental nitrogen. Urban and industrial wastewater, animal and vegetable waste products in large cities that have organic nitrogen are excreted along the soil. The primary risk of Nitrate in drinking water occurs when nitrate in the gastrointestinal tract switch to nitrite. Nitrite causes the oxidation of iron in hemoglobin of red blood cells, result in red blood cells could not carry the oxygen, a condition called methemoglobinemia. Therefore, achieving the new technologies for nitrate removal is necessary. Material and Methods: The present study was conducted at laboratory Scale in non-continuous batches. Stabilized adsorbent was produced through reducing Iron sulfate by sodium borohydride (NaBH4 in presence of Starch (0.2W % as a stabilizer. At first, the effect of various parameters such as contact time (10-90min, pH (3-11, adsorbent dose (0.5-3 g/L and initial concentration of arsenate (50-250 mg/L were investigated on process efficiency. Freundlich and Langmuir isotherm model equilibrium constant, were calculated. Residual nitrate were measured by using the DR5000 spectrophotometer. Results: The optimum values based on RSM for pH, absorbent dose, contact time, and initial concentration of nitrate were 5.87, 2.25 g/L, 55.7 min, and 110.35 mg/L respectively. Langmuir isotherm with R2= 0.9932 for nitrate was the best graph for the experimental data. The maximum amount of nitrate adsorption was 138.88mg/g. Conclusion: Stabilized absorbent due to have numerous absorption sites and Fe0 as a reducing agent could have great potential in nitrate removal from water.

  11. Sodium lauryl ether sulfate (SLES) degradation by nitrate-reducing bacteria.

    Science.gov (United States)

    Paulo, Ana M S; Aydin, Rozelin; Dimitrov, Mauricio R; Vreeling, Harm; Cavaleiro, Ana J; García-Encina, Pedro A; Stams, Alfons J M; Plugge, Caroline M

    2017-06-01

    The surfactant sodium lauryl ether sulfate (SLES) is widely used in the composition of detergents and frequently ends up in wastewater treatment plants (WWTPs). While aerobic SLES degradation is well studied, little is known about the fate of this compound in anoxic environments, such as denitrification tanks of WWTPs, nor about the bacteria involved in the anoxic biodegradation. Here, we used SLES as sole carbon and energy source, at concentrations ranging from 50 to 1000 mg L -1 , to enrich and isolate nitrate-reducing bacteria from activated sludge of a WWTP with the anaerobic-anoxic-oxic (A 2 /O) concept. In the 50 mg L -1 enrichment, Comamonas (50%), Pseudomonas (24%), and Alicycliphilus (12%) were present at higher relative abundance, while Pseudomonas (53%) became dominant in the 1000 mg L -1 enrichment. Aeromonas hydrophila strain S7, Pseudomonas stutzeri strain S8, and Pseudomonas nitroreducens strain S11 were isolated from the enriched cultures. Under denitrifying conditions, strains S8 and S11 degraded 500 mg L -1 SLES in less than 1 day, while strain S7 required more than 6 days. Strains S8 and S11 also showed a remarkable resistance to SLES, being able to grow and reduce nitrate with SLES concentrations up to 40 g L -1 . Strain S11 turned out to be the best anoxic SLES degrader, degrading up to 41% of 500 mg L -1 . The comparison between SLES anoxic and oxic degradation by strain S11 revealed differences in SLES cleavage, degradation, and sulfate accumulation; both ester and ether cleavage were probably employed in SLES anoxic degradation by strain S11.

  12. Anaerobic Oxidization of Methane in a Minerotrophic Peatland: Enrichment of Nitrite-Dependent Methane-Oxidizing Bacteria

    Science.gov (United States)

    Zhu, Baoli; van Dijk, Gijs; Fritz, Christian; Smolders, Alfons J. P.; Pol, Arjan; Jetten, Mike S. M.

    2012-01-01

    The importance of anaerobic oxidation of methane (AOM) as a methane sink in freshwater systems is largely unexplored, particularly in peat ecosystems. Nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and reported to be catalyzed by the bacterium “Candidatus Methylomirabilis oxyfera,” which is affiliated with the NC10 phylum. So far, several “Ca. Methylomirabilis oxyfera” enrichment cultures have been obtained using a limited number of freshwater sediments or wastewater treatment sludge as the inoculum. In this study, using stable isotope measurements and porewater profiles, we investigated the potential of n-damo in a minerotrophic peatland in the south of the Netherlands that is infiltrated by nitrate-rich ground water. Methane and nitrate profiles suggested that all methane produced was oxidized before reaching the oxic layer, and NC10 bacteria could be active in the transition zone where countergradients of methane and nitrate occur. Quantitative PCR showed high NC10 bacterial cell numbers at this methane-nitrate transition zone. This soil section was used to enrich the prevalent NC10 bacteria in a continuous culture supplied with methane and nitrite at an in situ pH of 6.2. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained. Phylogenetic analysis of retrieved 16S rRNA and pmoA genes showed that the enriched bacteria were very similar to the ones found in situ and constituted a new branch of NC10 bacteria with an identity of less than 96 and 90% to the 16S rRNA and pmoA genes of “Ca. Methylomirabilis oxyfera,” respectively. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and highlight their potential contribution to nitrogen and methane cycles. PMID:23042166

  13. Soil nitrate reducing processes drivers, mechanisms for spatial variation, and significance for nitrous oxide production

    OpenAIRE

    Giles, M.; Morley, N.; Baggs, E.M.; Daniell, T.J.

    2012-01-01

    The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium\\ud (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for\\ud the loss of nitrate (NO−\\ud 3 ) and production of the potent greenhouse gas, nitrous oxide (N2O).\\ud A number of factors are known to control these processes, including O2 concentrations and\\ud moisture content, N, C, pH, and the size and community structure of nitrate reducing organisms\\ud responsible for the ...

  14. Ammonium Oxidation Under Iron Reducing Conditions: Environmental Factors Characterization and Process Optimization

    Science.gov (United States)

    Huang, Shan; Ruiz, Melany; Jaffe, Peter

    2015-04-01

    Ammonium (NH4+) oxidation coupled to iron (Fe) reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) has been reported by several investigators and is referred to as Feammox. Feammox is a biological reaction, where Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+ is the electron donor, which is oxidized to NO2-. An Acidimicrobiaceae bacterium named A6, a previously unreported species in the Acidimicrobiaceae family, has been identified as being responsible for the Feammox process(1, 2) Feammox process was noted in riparian wetland soils in New Jersey(1,3), in tropical rainforest soils in Puerto Rico (4) and in paddy soils in China (5). In addition to these published locations, Feammox process was also found in samples collected from a series of local wetland-, upland-, as well as storm-water detention pond-sediments in New Jersey, river sediments from South Carolina, and forested soils near an acid mine drainage (Dabaoshan, Guangdong province) in China. Using primers acm342f - 439r (2), Acidimicrobiaceae bacterium A6 was detected in samples where Feammox was observed, after strictly anaerobic incubations. According to a canonical correspondence analysis with environmental characteristics and soil microbial communities, the species-environment relationship indicated that pH and Fe oxides content were the primary factors controlling Feammox process. Anaerobic incubations of Feammox enrichment cultures adjusted to different pH, revealed that the optimal pH for Feammox is 4 ~ 5, and the reaction does not proceed when pH > 7. No correlation was found between the distributions of Feammox bacteria and other NH4+ oxidation bacteria. Pure Acidimicrobiaceae bacterium A6 strain was isolated in an autotrophic medium, from an active Feammox membrane reactor (A6 was enriched to 65.8% of the total bacteria). A 13C labeled CO2 amendment was conducted, and the 13C in cells of A6 increased from 1.80% to 10.3% after 14 days incubation. In a separate

  15. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  16. Evaluating the potential for dissimilatory nitrate reduction by anammox bacteria for municipal wastewater treatment.

    Science.gov (United States)

    Castro-Barros, Celia M; Jia, Mingsheng; van Loosdrecht, Mark C M; Volcke, Eveline I P; Winkler, Mari K H

    2017-06-01

    Anammox bacteria can perform dissimilatory nitrate reduction to ammonium (DNRA) with nitrite as intermediate coupled to the oxidation of volatile fatty acids (VFA). Batch tests with enriched anammox and a co-culture of anammox and heterotrophic bacteria showed the capacity of Candidatus 'Brocadia fulgida' to perform the DNRA coupled to the anammox reaction (DNRA-anammox) at a high rate although the culture was not previously adapted to VFA. From thermodynamic calculations it could be stated that low COD/N influent ratios favour the DNRA-anammox transformation over heterotrophic conversions since more free energy is gained. A process scheme is proposed for an innovative nitrogen removal system in which the nitrate produced by nitrite oxidizing bacteria and/or anammox bacteria is converted during DNRA-anammox pathway, resulting in a sustainable nitrogen removal from municipal wastewater while circumventing the troublesome out-selection of nitrite oxidizing bacteria encountered in mainstream applications. Copyright © 2017. Published by Elsevier Ltd.

  17. Diversity of Nitrate-Reducing and Denitrifying Bacteria in a Marine Aquaculture Biofilter and their Response to Sulfide

    DEFF Research Database (Denmark)

    Krieger, Bärbel; Schwermer, Carsten U.; Rezakhani, Nastaran

    2006-01-01

    with Alphaproteobacteria but also including Beta- and Gammaproteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. The diversity of the isolates was compared to the cultivation-independent diversity of nitrate-reducing and denitrifying bacteria based on narG and nosZ as functional marker genes. Growth experiments...

  18. Seasonal variations of nitrate reducing and denitrifying bacteria utilizing hexadecane in Mandovi estuary, Goa, West Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sousa, T.D.; Ingole, B.; Sousa, S.D.; Bhosle, S.

    > cfu/ml on minimal media containing hexadecane as the sole carbon source. Highest bacterial counts were obtained during the monsoons. 22% of bacteria capable of hexadecane utilization were nitrate reducing and 12% were denitrifying. 29...

  19. Exploring Microbial Iron Oxidation in Wetland Soils

    Science.gov (United States)

    Wang, J.; Muyzer, G.; Bodelier, P. L. E.; den Oudsten, F.; Laanbroek, H. J.

    2009-04-01

    Iron is one of the most abundant elements on earth and is essential for life. Because of its importance, iron cycling and its interaction with other chemical and microbial processes has been the focus of many studies. Iron-oxidizing bacteria (FeOB) have been detected in a wide variety of environments. Among those is the rhizosphere of wetland plants roots which release oxygen into the soil creating suboxic conditions required by these organisms. It has been reported that in these rhizosphere microbial iron oxidation proceeds up to four orders of magnitude faster than strictly abiotic oxidation. On the roots of these wetland plants iron plaques are formed by microbial iron oxidation which are involved in the sequestering of heavy metals as well organic pollutants, which of great environmental significance.Despite their important role being catalysts of iron-cycling in wetland environments, little is known about the diversity and distribution of iron-oxidizing bacteria in various environments. This study aimed at developing a PCR-DGGE assay enabling the detection of iron oxidizers in wetland habitats. Gradient tubes were used to enrich iron-oxidizing bacteria. From these enrichments, a clone library was established based on the almost complete 16s rRNA gene using the universal bacterial primers 27f and 1492r. This clone library consisted of mainly α- and β-Proteobacteria, among which two major clusters were closely related to Gallionella spp. Specific probes and primers were developed on the basis of this 16S rRNA gene clone library. The newly designed Gallionella-specific 16S rRNA gene primer set 122f/998r was applied to community DNA obtained from three contrasting wetland environments, and the PCR products were used in denaturing gradient gel electrophoresis (DGGE) analysis. A second 16S rRNA gene clone library was constructed using the PCR products from one of our sampling sites amplified with the newly developed primer set 122f/998r. The cloned 16S rRNA gene

  20. Manganese and iron oxidation by fungi isolated from building stone.

    Science.gov (United States)

    de la Torre, M A; Gomez-Alarcon, G

    1994-01-01

    Acid and nonacid generating fungal strains isolated from weathered sandstone, limestone, and granite of Spanish cathedrals were assayed for their ability to oxidize iron and manganese. In general, the concentration of the different cations present in the mineral salt media directly affected Mn(IV) oxide formation, although in some cases, the addition of glucose and nitrate to the culture media was necessary. Mn(II) oxidation in acidogenic strains was greater in a medium containing the highest concentrations of glucose, nitrate, and manganese. High concentrations of Fe(II), glucose, and mineral salts were optimal for iron oxidation. Mn(IV) precipitated as oxides or hydroxides adhered to the mycelium. Most of the Fe(III) remained in solution by chelation with organic acids excreted by acidogenic strains. Other metabolites acted as Fe(III) chelators in nonacidogenic strains, although Fe(III) deposits around the mycelium were also detected. Both iron and manganese oxidation were shown to involve extracellular, hydrosoluble enzymes, with maximum specific activities during exponential growth. Strains able to oxidize manganese were also able to oxidize iron. It is concluded that iron and manganese oxidation reported in this work were biologically induced by filamentous fungi mainly by direct (enzymatic) mechanisms.

  1. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm.

    Science.gov (United States)

    Jia, Ru; Yang, Dongqing; Xu, Dake; Gu, Tingyue

    2017-12-01

    Electron transfer is a rate-limiting step in microbiologically influenced corrosion (MIC) caused by microbes that utilize extracellular electrons. Cross-cell wall electron transfer is necessary to transport the electrons released from extracellular iron oxidation into the cytoplasm of cells. Electron transfer mediators were found to accelerate the MIC caused by sulfate reducing bacteria. However, there is no publication in the literature showing the effect of electron transfer mediators on MIC caused by nitrate reducing bacteria (NRB). This work demonstrated that the corrosion of anaerobic Pseudomonas aeruginosa (PAO1) grown as a nitrate reducing bacterium biofilm on C1018 carbon steel was enhanced by two electron transfer mediators, riboflavin and flavin adenine dinucleotide (FAD) separately during a 7-day incubation period. The addition of either 10ppm (w/w) (26.6μM) riboflavin or 10ppm (12.7μM) FAD did not increase planktonic cell counts, but they increased the maximum pit depth on carbon steel coupons considerably from 17.5μm to 24.4μm and 25.0μm, respectively. Riboflavin and FAD also increased the specific weight loss of carbon steel from 2.06mg/cm 2 to 2.34mg/cm 2 and 2.61mg/cm 2 , respectively. Linear polarization resistance, electrochemical impedance spectroscopy and potentiodynamic polarization curves all corroborated the pitting and weight loss data. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Microbial Iron Oxidation in the Arctic Tundra and Its Implications for Biogeochemical Cycling

    Science.gov (United States)

    Scott, Jarrod J.; Benes, Joshua; Bowden, William B.

    2015-01-01

    The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long −149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides. PMID:26386054

  3. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    Science.gov (United States)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    where pH remains neutral. The "low-acid" oxidation of sulfides with nitrate as an electron acceptor has been demonstrated at the laboratory scale. In 90-day microcosm respirometry experiments, we exposed a mixture of pulverized quartz and pyrite -rich ore to natural, high-nitrate groundwater and inoculated the microcosms with a culture of aerobic and anaerobic nitrate-dependent iron and sulfur-oxidising microorganisms, which were enriched from ore, groundwater and activated waste water. Incubations were performed under both oxic and anoxic conditions, in addition to abiotic controls. Initial results show that oxidation of the sulfides under nitrate-rich and microbially enhanced conditions does produce less acid than the same material under oxic conditions, and to some degree can match the models as long as oxygen ingress can be controlled. These results are the focus of further research into how this process can be enhanced and whether it can be applied in the field. Nitrate-driven oxidation of sulfides could potentially be used as a new approach to reduce acid generation and leaching of contaminants from waste dumps, in a passive or actively managed process designed to deplete and/or ameliorate (i.e. through surface passivation) the mineralogical hazard. Developing our understanding of biological aspects of these processes may also allow testing of longer-term "bio-caps" for various tailings and dump materials.

  4. The Importance of Microbial Iron Sulfide Oxidation for Nitrate Depletion in Anoxic Danish Sediments

    DEFF Research Database (Denmark)

    Vaclavkova, Sarka; Jacobsen, Ole Stig; Jørgensen, Christian Juncher

    2014-01-01

    of organic carbon in the sediment. An apparent salinity limitation to MISON was observed in the most brackish environment. Addition of high surface area synthetically precipitated iron sulfide (FeS x ) to the aquifer sediment with the lowest natural FeS x reactivity increased both the relative fraction of NO......Nitrate (NO3 −) reduction processes are important for depleting the NO3 − load from agricultural source areas before the discharge water reaches surface waters or groundwater aquifers. In this study, we experimentally demonstrate the co-occurrence of microbial iron sulfide oxidation by NO3 − (MISON......) and other NO3 −-depleting processes in a range of contrasting sediment types: sandy groundwater aquifer, non-managed minerotrophic freshwater peat and two brackish muddy sediments. Approximately 1/3 of the net NO3 − reduction was caused by MISON in three of the four environments despite the presence...

  5. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Electron uptake by iron-oxidizing phototrophic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Bose, A; Gardel, EJ; Vidoudez, C; Parra, EA; Girguis, PR

    2014-02-26

    Oxidation-reduction reactions underlie energy generation in nearly all life forms. Although most organisms use soluble oxidants and reductants, some microbes can access solid-phase materials as electron-acceptors or -donors via extracellular electron transfer. Many studies have focused on the reduction of solid-phase oxidants. Far less is known about electron uptake via microbial extracellular electron transfer, and almost nothing is known about the associated mechanisms. Here we show that the iron-oxidizing photoautotroph Rhodopseudomonas palustris TIE-1 accepts electrons from a poised electrode, with carbon dioxide as the sole carbon source/electron acceptor. Both electron uptake and ruBisCo form I expression are stimulated by light. Electron uptake also occurs in the dark, uncoupled from photosynthesis. Notably, the pioABC operon, which encodes a protein system essential for photoautotrophic growth by ferrous iron oxidation, influences electron uptake. These data reveal a previously unknown metabolic versatility of photoferrotrophs to use extracellular electron transfer for electron uptake.

  7. Biodegradation of phenols in a sandstone aquifer under aerobic conditions and mixed nitrate and iron reducing conditions

    DEFF Research Database (Denmark)

    Broholm, Mette; Arvin, Erik

    2000-01-01

    in the groundwater. The potential for biodegradation of the phenols in the sandstone aquifer at the site has been investigated in laboratory microcosms under aerobic (oxygen amended) and mixed nitrate and iron reducing (nitrate enriched and unamended) anaerobic conditions, at a range of concentrations (low: similar...... to 5 mg 1(-1): high: similar to 60 mg 1(-1), and very high: similar to 600 mg 1(-1)) and in the presence of other organic coal-tar compounds (mono- and polyaromatic hydrocarbons (BTEXs and PAHs) and heterocyclic compounds (NSOs)) and ammonia liquor. Sandstone cores and groundwater for the microcosms...

  8. Competition for nitrate and glucose between Pseudomonas fluorescens and Bacillus licheniformis under continuous or fluctuating anoxic conditions

    NARCIS (Netherlands)

    Nijburg, J.W.; Gerards, S.; Laanbroek, H.J.

    1998-01-01

    The dissimilatory nitrate-reducing bacterial community in the rhizosphere of aerenchymatous plant species such as Glyceria maxima, consists of oxidative. denitrifying and fermentative nitrate-ammonifying bacteria. To study the respective ecological niches of both types of nitrate-reducing bacteria,

  9. Life on the energetic edge: Iron oxidation by circumneutral lithotrophic bacteria in the wetland plant rhizosphere

    Science.gov (United States)

    Neubauer, S. C.; Emerson, D.; Megonigal, J. P.; Weiss, J. V.

    2002-05-01

    We have discovered a phylogenetically and genotypically coherent group of obligately lithotrophic Fe-oxidizing bacteria that grow at neutral pH and are globally distributed in a range of habitats, from the rhizosphere of freshwater wetlands to deep-sea hydrothermal vents. We have initiated bioreactor studies using pure cultures of these organisms to determine the significance of microbial Fe(II) oxidation at circumneutral pH and identify the biotic and abiotic variables that affect the partitioning between microbial and chemical oxidation. These studies have focused on strain BrT, which was isolated from an iron oxide precipitate in rhizosphere of a wetland plant. In one set of experiments, Fe(II) oxidation rates were measured before and after cultures of strain BrT were poisoned with sodium azide. These experiments indicated that 18 to 53 % of total iron oxidation was due to microbial metabolism. In a second set of experiments, Fe(II) was constantly added to bioreactors inoculated with live cells, killed cells, or no cells. A statistical model fit to the experimental data demonstrated that metabolic Fe(II) oxidation accounted for up to 62 % of total oxidation. Total Fe(II) oxidation rates in these experiments were strongly limited by the rate of Fe(II) delivery to the system, and were also influenced by O2 and total iron concentrations. Additionally, the model suggested that the microbes inhibited rates of abiotic Fe(II) oxidation, perhaps by binding Fe(II) to bacterial exopolymers. The net effect of strain BrT was to accelerate total oxidation rates by up to 18 % versus cell-free treatments. Using two independent techniques, we demonstrated that strain BrT actively metabolizes Fe(II) and can account for up to 50 to 60 % of total Fe(II) oxidation in laboratory cultures. These results suggest that neutrophilic Fe(II)-oxidizing bacteria may compete for limited O2 in the rhizosphere and influence the biogeochemistry of other elements including carbon, phosphorus, and

  10. Community Composition and Ultrastructure of a Nitrate-Dependent Anaerobic Methane-Oxidizing Enrichment Culture.

    Science.gov (United States)

    Gambelli, Lavinia; Guerrero-Cruz, Simon; Mesman, Rob J; Cremers, Geert; Jetten, Mike S M; Op den Camp, Huub J M; Kartal, Boran; Lueke, Claudia; van Niftrik, Laura

    2018-02-01

    Methane is a very potent greenhouse gas and can be oxidized aerobically or anaerobically through microbe-mediated processes, thus decreasing methane emissions in the atmosphere. Using a complementary array of methods, including phylogenetic analysis, physiological experiments, and light and electron microscopy techniques (including electron tomography), we investigated the community composition and ultrastructure of a continuous bioreactor enrichment culture, in which anaerobic oxidation of methane (AOM) was coupled to nitrate reduction. A membrane bioreactor was seeded with AOM biomass and continuously fed with excess methane. After 150 days, the bioreactor reached a daily consumption of 10 mmol nitrate · liter -1 · day -1 The biomass consisted of aggregates that were dominated by nitrate-dependent anaerobic methane-oxidizing " Candidatus Methanoperedens"-like archaea (40%) and nitrite-dependent anaerobic methane-oxidizing " Candidatus Methylomirabilis"-like bacteria (50%). The " Ca Methanoperedens" spp. were identified by fluorescence in situ hybridization and immunogold localization of the methyl-coenzyme M reductase (Mcr) enzyme, which was located in the cytoplasm. The " Ca Methanoperedens" sp. aggregates consisted of slightly irregular coccoid cells (∼1.5-μm diameter) which produced extruding tubular structures and putative cell-to-cell contacts among each other. " Ca Methylomirabilis" sp. bacteria exhibited the polygonal cell shape typical of this genus. In AOM archaea and bacteria, cytochrome c proteins were localized in the cytoplasm and periplasm, respectively, by cytochrome staining. Our results indicate that AOM bacteria and archaea might work closely together in the process of anaerobic methane oxidation, as the bacteria depend on the archaea for nitrite. Future studies will be aimed at elucidating the function of the cell-to-cell interactions in nitrate-dependent AOM. IMPORTANCE Microorganisms performing nitrate- and nitrite-dependent anaerobic

  11. Soil nitrate reducing processes - drivers, mechanisms for spatial variation, and significance for nitrous oxide production.

    Science.gov (United States)

    Giles, Madeline; Morley, Nicholas; Baggs, Elizabeth M; Daniell, Tim J

    2012-01-01

    The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate ([Formula: see text]) and production of the potent greenhouse gas, nitrous oxide (N(2)O). A number of factors are known to control these processes, including O(2) concentrations and moisture content, N, C, pH, and the size and community structure of nitrate reducing organisms responsible for the processes. There is an increasing understanding associated with many of these controls on flux through the nitrogen cycle in soil systems. However, there remains uncertainty about how the nitrate reducing communities are linked to environmental variables and the flux of products from these processes. The high spatial variability of environmental controls and microbial communities across small sub centimeter areas of soil may prove to be critical in determining why an understanding of the links between biotic and abiotic controls has proved elusive. This spatial effect is often overlooked as a driver of nitrate reducing processes. An increased knowledge of the effects of spatial heterogeneity in soil on nitrate reduction processes will be fundamental in understanding the drivers, location, and potential for N(2)O production from soils.

  12. Magnetic characteristics of ultrafine Fe particles reduced from uniform iron oxide particles

    Science.gov (United States)

    Bridger, K.; Watts, J.; Tadros, M.; Xiao, Gang; Liou, S. H.; Chien, C. L.

    1987-04-01

    Uniform, cubic 0.05-μm iron oxide particles were formed by forced hydrolysis of ferric perchlorate. These particles were reduced to α-Fe by heating in hydrogen at temperatures between 300 and 500 °C. The effect of reduction temperature and various prereduction treatments on the microstructure of the iron particles will be discussed. Complete reduction to α-Fe was established by 57Fe Mössbauer spectroscopy and x-ray diffraction. Magnetic measurements on epoxy and polyurethane films containing these particles with various mass fractions gave coercivities as high as 1000 Oe. The relationship between the magnetic measurements and the microstructure will be discussed. Na2SiO3 is found to be the best coating material for the process of reducing iron oxide particles to iron.

  13. Relating dynamic conditions to the performance of biological rapid sand filters used to remove ammonium, iron, and manganese from drinking water

    DEFF Research Database (Denmark)

    Lee, Carson; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    consistently meeting regulatory guidelines for compounds like ammonium and reduced forms of iron and manganese. These compounds can cause biological instability in the distribution system and can lead to many problems including the growth of pathogens and aesthetic problems (taste, odor, and color...... and media samples were collected throughout the depth of the column and over the operational cycle of the columns. Substrate analysis included ammonium, nitrite, nitrate, iron, and manganese. Qpcr analysis were also performed to quantify ammonium oxidizing bacteria (AOBs), ammonium oxidizing archea ( AOAs...

  14. Removal of Nitrate by Zero Valent Iron in the Presence of H2O2

    Directory of Open Access Journals (Sweden)

    M.R. Samarghandi

    2014-01-01

    Full Text Available Background & Aims: Nitrate is the oxidation state of nitrogen compounds, which is founded in water resources that contaminated by municipal, industrial and agricultural waste water. If nitrate leek in to ground water resources, it can cause health problems. Material and Methods: Removal of nitrate from ground water by iron powder in the presence of H2O2 was investigated. Experiments have been done by use of 250 ml of water samples containing 100 mg/L nitrate in various condition. Various parameters such as pH (3, 5, 7, 9, iron dosage (10, 15, 20, 30 g/L, initial H2O2 concentration (5, 10, 15, 20 ml/L and contact time (10-120 min. Results: Obtained results shows the removal of nitrate was increased by pH reduction, increment of iron mass and contact time. In addition, nitrate reduction was increased by increment of initial H2O2 concentration up to 15 ml/L. High removal was observed at pH=3, iron mass=30 g/L, contact time equal 120 min and H2O2 concentration=15 ml/L. At above condition, upon 98% of nitrate was removed. Conclusion: In summary, this method is simple, low cost and effective for removal of nitrate from ground water and industrial activity.

  15. Microbiological oxidation of antimony(III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments

    Science.gov (United States)

    Terry, Lee R.; Kulp, Thomas R.; Wiatrowski, Heather A.; Miller, Laurence G.; Oremland, Ronald S.

    2015-01-01

    Bacterial oxidation of arsenite [As(III)] is a well-studied and important biogeochemical pathway that directly influences the mobility and toxicity of arsenic in the environment. In contrast, little is known about microbiological oxidation of the chemically similar anion antimonite [Sb(III)]. In this study, two bacterial strains, designated IDSBO-1 and IDSBO-4, which grow on tartrate compounds and oxidize Sb(III) using either oxygen or nitrate, respectively, as a terminal electron acceptor, were isolated from contaminated mine sediments. Both isolates belonged to the Comamonadaceae family and were 99% similar to previously described species. We identify these novel strains as Hydrogenophagataeniospiralis strain IDSBO-1 and Variovorax paradoxus strain IDSBO-4. Both strains possess a gene with homology to the aioA gene, which encodes an As(III)-oxidase, and both oxidize As(III) aerobically, but only IDSBO-4 oxidized Sb(III) in the presence of air, while strain IDSBO-1 could achieve this via nitrate respiration. Our results suggest that expression of aioA is not induced by Sb(III) but may be involved in Sb(III) oxidation along with an Sb(III)-specific pathway. Phylogenetic analysis of proteins encoded by the aioA genes revealed a close sequence similarity (90%) among the two isolates and other known As(III)-oxidizing bacteria, particularly Acidovorax sp. strain NO1. Both isolates were capable of chemolithoautotrophic growth using As(III) as a primary electron donor, and strain IDSBO-4 exhibited incorporation of radiolabeled [14C]bicarbonate while oxidizing Sb(III) from Sb(III)-tartrate, suggesting possible Sb(III)-dependent autotrophy. Enrichment cultures produced the Sb(V) oxide mineral mopungite and lesser amounts of Sb(III)-bearing senarmontite as precipitates.

  16. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    OpenAIRE

    Lili Zhang; Xinxin Yu; Hongrui Hu; Yang Li; Mingzai Wu; Zhongzhu Wang; Guang Li; Zhaoqi Sun; Changle Chen

    2015-01-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4?7H2O. By adjusting reaction temperature, ?-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from ?-Fe2O3 to Fe3O4 via ?-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide ...

  17. Arsenic mobilization and immobilization in paddy soils

    Science.gov (United States)

    Kappler, A.; Hohmann, C.; Zhu, Y. G.; Morin, G.

    2010-05-01

    Arsenic is oftentimes of geogenic origin and in many cases bound to iron(III) minerals. Iron(III)-reducing bacteria can harvest energy by coupling the oxidation of organic or inorganic electron donors to the reduction of Fe(III). This process leads either to dissolution of Fe(III)-containing minerals and thus to a release of the arsenic into the environment or to secondary Fe-mineral formation and immobilisation of arsenic. Additionally, aerobic and anaerobic iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II) oxidation at neutral pH that is usually followed by iron(III) mineral precipitation. We are currently investigating arsenic immobilization by Fe(III)-reducing bacteria and arsenic co-precipitation and immobilization by anaerobic iron(II)-oxidizing bacteria in batch, microcosm and rice pot experiments. Co-precipitation batch experiments with pure cultures of nitrate-dependent Fe(II)-oxidizing bacteria are used to quantify the amount of arsenic that can be immobilized during microbial iron mineral precipitation, to identify the minerals formed and to analyze the arsenic binding environment in the precipitates. Microcosm and rice pot experiments are set-up with arsenic-contaminated rice paddy soil. The microorganisms (either the native microbial population or the soil amended with the nitrate-dependent iron(II)-oxidizing Acidovorax sp. strain BoFeN1) are stimulated either with iron(II), nitrate, or oxygen. Dissolved and solid-phase arsenic and iron are quantified. Iron and arsenic speciation and redox state in batch and microcosm experiments are determined by LC-ICP-MS and synchrotron-based methods (EXAFS, XANES).

  18. Soil nitrate reducing processes – drivers, mechanisms for spatial variation, and significance for nitrous oxide production

    Science.gov (United States)

    Giles, Madeline; Morley, Nicholas; Baggs, Elizabeth M.; Daniell, Tim J.

    2012-01-01

    The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate (NO3−) and production of the potent greenhouse gas, nitrous oxide (N2O). A number of factors are known to control these processes, including O2 concentrations and moisture content, N, C, pH, and the size and community structure of nitrate reducing organisms responsible for the processes. There is an increasing understanding associated with many of these controls on flux through the nitrogen cycle in soil systems. However, there remains uncertainty about how the nitrate reducing communities are linked to environmental variables and the flux of products from these processes. The high spatial variability of environmental controls and microbial communities across small sub centimeter areas of soil may prove to be critical in determining why an understanding of the links between biotic and abiotic controls has proved elusive. This spatial effect is often overlooked as a driver of nitrate reducing processes. An increased knowledge of the effects of spatial heterogeneity in soil on nitrate reduction processes will be fundamental in understanding the drivers, location, and potential for N2O production from soils. PMID:23264770

  19. Soil nitrate reducing processes – drivers, mechanisms for spatial variation and significance for nitrous oxide production

    Directory of Open Access Journals (Sweden)

    Madeline Eleanore Giles

    2012-12-01

    Full Text Available The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate (NO3-¬ and production of the potent greenhouse gas, nitrous oxide (N2O. A number of factors are known to control these processes, including O2 concentrations and moisture content, N, C, pH and the size and community structure of nitrate reducing organisms responsible for the processes. There is an increasing understanding associated with many of these controls on flux through the nitrogen cycle in soil systems. However, there remains uncertainty about how the nitrate reducing communities are linked to environmental variables and the flux of products from these processes. The high spatial variability of environmental controls and microbial communities across small sub cm areas of soil may prove to be critical in determining why an understanding of the links between biotic and abiotic controls has proved elusive. This spatial effect is often overlooked as a driver of nitrate reducing processes. An increased knowledge of the effects of spatial heterogeneity in soil on nitrate reduction processes will be fundamental in understanding the drivers, location and potential for N2O production from soils.

  20. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue; Gao, Jinhao; Zhang, Bei; Zhang, Xixiang; Xu, Bing

    2010-01-01

    nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X

  1. Dynamics of Phenol Degrading—Iron Reducing Bacteria in Intensive Rice Croopping System

    Institute of Scientific and Technical Information of China (English)

    LUWENJING; W.REICHARDT; 等

    2001-01-01

    Field and greenhouse experiments were conducted to investigate the effects of cropping season,nitrogen fertilizer input and aerated fallow o the dynamics of phenol degrading-iron reducing bacteria(PD-IRB)in tropical irrigated rice(Oryza sativa L.)systems,The PD-IRB population density was monitored at different stages of rice growth in two cropping seasons (dry and early wet) in a continuous annual triple rice cropping system under irrigated condition,In this system,the high nitrogen input (195 and 135 kg N ha-1 in dry and ewt seasons ,respectively)plots and control plots receiving no N fertilizer were compared to investigate the effect of nitrogen rate on population size.The phenol degrading-iron reducing bacteria (PD-IRB)were abundant in soils under croppin systems of tropical irrigated rice.However,density of the bacterial populations varied with rice growth stages.Cropping seasons,rhizosphere,and aerated fallow could affect the dynamics of PD-IRB,In the field trial,viable counts of PD-IRB in the topsoil layer(15 cm)ranged between 102 and 108 cells per gram of dry soil.A steep increase in viable counts during the second half of the cropping season suggested that the population density of PD-IRB increased ant advanced crop-growth stages.Population growth of PD-IRB was accelerated during the dry season compared to the wet season,In the greenhouse experiment,the adjacent aerated fallow revealed 1-2 orders of magnitude higher in most probable number(MPN)of PD-IRB than the wet fallow treated plots.As a prominent group of Fe reducing bacteria,PD-IRB predominated in the rhizosphere of rice,since maximum MPN of PD-IRB (2.62×108 g-1 soil) was found in rhizosphere soil.Mineral N fertilizer rates showed no significant effect on PD-IRB population density.

  2. The role of hydrogenotrophic iron-reducing bacteria on the corrosion process in the context of geological disposal

    International Nuclear Information System (INIS)

    Kerber-Schutz, Marta

    2013-01-01

    The nuclear industry must to demonstrate the feasibility and safety of high level nuclear waste (HLNW) disposal. The generally recognised strategy for HLNW disposal is based on a multi-barrier system made by metallic packages surrounded by geological formation. The nuclear waste repository will be water re-saturated with time, and then the metallic corrosion process will take place. The aqueous corrosion will produce dihydrogen (H 2 ) that represents a new energetic source (electron donor) for microbial development. Moreover, the formation of Fe(II,III) solid corrosion products, such as magnetite (Fe 3 O 4 ), will provide electron acceptors favoring the development of iron-reducing bacteria (IRB). The activity of hydrogenotrophic and IRB can potentially alter the protective properties of passivating oxide layers (i.e. magnetite) which could reactivate corrosion. The main objective of this study is to evaluate the role of hydrogenotrophic and IRB activities on anoxic corrosion process by using geochemical indicators. Shewanella oneidensis strain MR-1 was chosen as model organism, and both abiotic and biotic conditions were investigated. In a first setup of experiments, our results indicate that synthetic magnetite is destabilized in the presence of hydrogenotrophic IRB due to structural Fe(III) reduction coupled to H 2 oxidation. The extent of Fe(III) bioreduction is notably enhanced with the increase in the H 2 concentration in the system: 4% H 2 ≤ 10% H 2 ≤ 60% H 2 . In a second setup of experiments, our results indicate that corrosion extent changes according to the solution composition and the surface of metallic sample (iron powder and carbon steel coupon). Moreover, the solid corrosion products are different for each sample: vivianite, siderite and chukanovite are the main mineral phases identified in the experiments with iron powder, while vivianite and magnetite are identified with carbon steel coupons. Our results demonstrate that corrosion rate is

  3. Contribution to the study of the role of sulfate-reducing bacteria in bio-corrosion phenomenon; Contribution a l'etude du role des bacteries sulfato-reductrices dans les phenomenes de biocorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Chatelus, C

    1987-11-15

    By their metabolic activities of hydrogen consumption and of sulfides production, the sulfate-reducing bacteria are the main bacteria responsible of the metallic corrosion phenomena in the absence of oxygen. A physiological and enzymatic study of some Desulfovibrio has contributed to the understanding of the role of these bacteria in the anaerobic bio-corrosion phenomena. Desulfovibrio (D.) vulgaris in organic medium, after having oxidized the lactate, consumes the hydrogen formed by the electrochemical reaction of iron dissolution. The Desulfovibrio can be responsible either of a corrosion by a direct contact with the metal in using the H{sub 2} layer formed at its surface, (bacteria are then adsorbed at the surface because of an iron sulfide crystalline lattice), or of a distant corrosion in consuming the dissolved or gaseous hydrogen. As their hydrogenases can be stable in time independently of the cellular structure (D. vulparis) and active at high temperatures (to 70 C - 75 C) (D. baculatus), these bacteria can act in conditions incompatible with the viability of cells but compatible with the enzymatic expression. A study in terms of temperature has shown that inside the mesophilic group of the Desulfovibrio, the behaviour towards this parameter is specific to each bacteria, that accounts for the permanent presence of the representatives of this population in sites where the temperature variations are important. A change of some degrees Celsius can induce modifications in the yields of bacteria growth and by a consequence in variations in the corrosion intensity. Moreover, sulfate D. multispirans can reduce with specific velocities of different growth, the nitrate, the nitrite and the fumarate. Some sulfato-reducing could then adapt themselves to the variations of concentrations in electron acceptors and metabolize the oxidized substances used as biocides too. The choice of an electron acceptor rather than another do not depend uniquely of the specificity of

  4. SOLVENT FREE OXIDATION OF ALCOHOLS USING IRON (III) NITRATE NONAHYDRATE

    Science.gov (United States)

    Oxidation of alcohols have been conducted with metal nitrate reagents on various mineral supports such as clay, silica and zeolite etc. To circumvent the limitations of these supported reagents namely their preparation using solvents and short shelf-life, we explored the use of i...

  5. In situ iron-57 Moessbauer spectroscopic investigations of the effect of titania surface area on the reducibility of titania-supported iron oxide

    International Nuclear Information System (INIS)

    Berry, F.J.; Du Hongzhang

    1990-01-01

    Iron-57 Moessbauer spectroscopy has been used to monitor the reducibility in hydrogen of iron oxides supported on titania of differing surface areas. The results show that although Fe 3+ in the iron oxide supported on low surface area titania (11 m 2 g -1 ) is not amenable to facile reduction at low temperatures, complete reduction to metallic iron is achieved by treatment at 600deg C. The data also show that the extent of reduction at elevated temperatures exceeds that which is obtained on similar silica- and alumina-supported systems. Fe 3+ in iron oxide supported on higher surface area titania (50 m 2 g -1 and 240 m 2 g -1 ) is partially reduced in hydrogen at 235deg C to Fe 2+ but fails to attain complete reduction to the metallic state following treatment at 600deg C. The results are related to the different dispersions of iron oxide which can be attained on titania of differing surface area and the consequent interactions between the support and the supported phases. (orig.)

  6. Isotopologue signatures of nitrous oxide produced by nitrate-ammonifying bacteria isolated from soil

    Science.gov (United States)

    Behrendt, Undine; Well, Reinhard; Giesemann, Anette; Ulrich, Andreas; Augustin, Jürgen

    2015-04-01

    Agricultural soils are the largest single source of anthropogenic N2O to the atmosphere, primarily driven by microbiological processes such as denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Both processes occur under similar conditions of low oxygen concentration and therefore, source partitioning of emitted N2O is difficult. Understanding what controls the dynamics and reaction equilibrium of denitrification and DNRA is important and may allow the development of more effective mitigation strategies. 15N site preference (SP), i.e. the difference between 15N of the central and peripheral N-position of the asymmetric N2O molecule, differs depending on processes involved in N2O formation. Hence investigation of the isotopomer ratios of formed N2O potentially presents a reliable mean to identify its source. In this study, bacterial isolates obtained from organic soils were screened for their ability to reduce nitrate/nitrite to ammonium and to release N2O to the atmosphere. Taxonomic characterisation of the strains revealed that N2O formation was only detected in ammonifying strains affiliated to several genera of the family Enterobacteriaceae and strains belonging to the genus Bacillus and Paenibacillus. Sampling of N2O was conducted by incubation of strains under oxic and anoxic conditions. Investigation of the 15N site preference showed SP values in the range of 39 to 57 o . Incubation conditions had no influence on the SP. The lowest values were achieved by a strain of the species Escherichia coli which was included in this study as a DNRA reference bacterium harbouring the NrfA gene that is coding the nitrite reductase, associated with respiratory nitrite ammonification. Soil isolates showed SP-values higher than 40 o . Comparison of these results with SP-values of N2O produced by denitrifying bacteria in pure cultures (-5 to 0 o )^[1, 2]revealedsignificantdifferences.Incontrast,N_2OproducedbydenitrifyingfungidisplayedSP - valuesinarangeof

  7. Serum Iron and Nitric Oxide Production in Trypanosoma brucei ...

    African Journals Online (AJOL)

    JTEkanem

    reduction in the serum iron status and a modulation of nitric oxide synthase activity of T. brucei infected rats. ... inflammation and tissue damage15. ... The serum iron level was determined ... concentration or of total nitrate and nitrite ... 15. 16. 17. 18. Days. S e ru m iro n lev e l mg. /ml. Infected treated. Infected untreated. 0.

  8. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors.

    Science.gov (United States)

    Zhang, Haiming; Yu, Xinzhi; Guo, Di; Qu, Baihua; Zhang, Ming; Li, Qiuhong; Wang, Taihong

    2013-08-14

    Supercapacitors with potential high power are useful and have attracted much attention recently. Graphene-based composites have been demonstrated to be promising electrode materials for supercapacitors with enhanced properties. To improve the performance of graphene-based composites further and realize their synthesis with large scale, we report a green approach to synthesize bacteria-reduced graphene oxide-nickel sulfide (BGNS) networks. By using Bacillus subtilis as spacers, we deposited reduced graphene oxide/Ni3S2 nanoparticle composites with submillimeter pores directly onto substrate by a binder-free electrostatic spray approach to form BGNS networks. Their electrochemical capacitor performance was evaluated. Compared with stacked reduced graphene oxide-nickel sulfide (GNS) prepared without the aid of bacteria, BGNS with unique nm-μm structure exhibited a higher specific capacitance of about 1424 F g(-1) at a current density of 0.75 A g(-1). About 67.5% of the capacitance was retained as the current density increased from 0.75 to 15 A g(-1). At a current density of 75 A g(-1), a specific capacitance of 406 F g(-1) could still remain. The results indicate that the reduced graphene oxide-nickel sulfide network promoted by bacteria is a promising electrode material for supercapacitors.

  9. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments.

    Science.gov (United States)

    Hori, Tomoyuki; Aoyagi, Tomo; Itoh, Hideomi; Narihiro, Takashi; Oikawa, Azusa; Suzuki, Kiyofumi; Ogata, Atsushi; Friedrich, Michael W; Conrad, Ralf; Kamagata, Yoichi

    2015-01-01

    Reduction of crystalline Fe(III) oxides is one of the most important electron sinks for organic compound oxidation in natural environments. Yet the limited number of isolates makes it difficult to understand the physiology and ecological impact of the microorganisms involved. Here, two-stage cultivation was implemented to selectively enrich and isolate crystalline iron(III) oxide reducing microorganisms in soils and sediments. Firstly, iron reducers were enriched and other untargeted eutrophs were depleted by 2-years successive culture on a crystalline ferric iron oxide (i.e., goethite, lepidocrocite, hematite, or magnetite) as electron acceptor. Fifty-eight out of 136 incubation conditions allowed the continued existence of microorganisms as confirmed by PCR amplification. High-throughput Illumina sequencing and clone library analysis based on 16S rRNA genes revealed that the enrichment cultures on each of the ferric iron oxides contained bacteria belonging to the Deltaproteobacteria (mainly Geobacteraceae), followed by Firmicutes and Chloroflexi, which also comprised most of the operational taxonomic units (OTUs) identified. Venn diagrams indicated that the core OTUs enriched with all of the iron oxides were dominant in the Geobacteraceae while each type of iron oxides supplemented selectively enriched specific OTUs in the other phylogenetic groups. Secondly, 38 enrichment cultures including novel microorganisms were transferred to soluble-iron(III) containing media in order to stimulate the proliferation of the enriched iron reducers. Through extinction dilution-culture and single colony isolation, six strains within the Deltaproteobacteria were finally obtained; five strains belonged to the genus Geobacter and one strain to Pelobacter. The 16S rRNA genes of these isolates were 94.8-98.1% identical in sequence to cultured relatives. All the isolates were able to grow on acetate and ferric iron but their physiological characteristics differed considerably in

  10. Contribution to the study of the role of sulfate-reducing bacteria in bio-corrosion phenomenon; Contribution a l'etude du role des bacteries sulfato-reductrices dans les phenomenes de biocorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Chatelus, C

    1987-11-15

    By their metabolic activities of hydrogen consumption and of sulfides production, the sulfate-reducing bacteria are the main bacteria responsible of the metallic corrosion phenomena in the absence of oxygen. A physiological and enzymatic study of some Desulfovibrio has contributed to the understanding of the role of these bacteria in the anaerobic bio-corrosion phenomena. Desulfovibrio (D.) vulgaris in organic medium, after having oxidized the lactate, consumes the hydrogen formed by the electrochemical reaction of iron dissolution. The Desulfovibrio can be responsible either of a corrosion by a direct contact with the metal in using the H{sub 2} layer formed at its surface, (bacteria are then adsorbed at the surface because of an iron sulfide crystalline lattice), or of a distant corrosion in consuming the dissolved or gaseous hydrogen. As their hydrogenases can be stable in time independently of the cellular structure (D. vulparis) and active at high temperatures (to 70 C - 75 C) (D. baculatus), these bacteria can act in conditions incompatible with the viability of cells but compatible with the enzymatic expression. A study in terms of temperature has shown that inside the mesophilic group of the Desulfovibrio, the behaviour towards this parameter is specific to each bacteria, that accounts for the permanent presence of the representatives of this population in sites where the temperature variations are important. A change of some degrees Celsius can induce modifications in the yields of bacteria growth and by a consequence in variations in the corrosion intensity. Moreover, sulfate D. multispirans can reduce with specific velocities of different growth, the nitrate, the nitrite and the fumarate. Some sulfato-reducing could then adapt themselves to the variations of concentrations in electron acceptors and metabolize the oxidized substances used as biocides too. The choice of an electron acceptor rather than another do not depend uniquely of the specificity of

  11. A new method to produce nanoscale iron for nitrate removal

    International Nuclear Information System (INIS)

    Chen, S.-S.; Hsu, H.-D.; Li, C.-W.

    2004-01-01

    This article proposes a novel technology combining electrochemical and ultrasonic methods to produce nanoscale zero valent iron (NZVI). With platinum placed in the cathode and the presence of the dispersion agent, 0.2g/l cetylpyridinium chloride (CPC), a cation surfactant, in the solution, the nanoscale iron particle was successfully produced with diameter of 1-20 nm and specific surface area of 25.4m 2 /g. The produced NZVI was tested in batch experiments for nitrate removal. The results showed that the nitrate reduction was affected by pH. Al low pH, nitrate was shown faster decline and more reduction in term of g NO 3 - -N/g NZVI. The reaction was first order and kinetic coefficients for the four pHs were directly related to pH with R 2 >0.95. Comparing with microscale zero-valent iron (45μm, 0.183m 2 /g), microscale zero-valent iron converted nitrate to ammonia completely, but NZVI converted nitrate to ammonia partially from 36.2 to 45.3% dependent on pH. For mass balance of iron species, since the dissolved iron in the solution was very low ( 2 O 3 was recognized. Thus the reaction mechanisms can be determined

  12. Competition for nitrate and glucose between Pseudomonas fluorescens and Bacillus licheniformis under continuous or fluctuating anoxic conditions

    NARCIS (Netherlands)

    Nijburg, J.W.; Gerards, S.; Laanbroek, H.J.

    1998-01-01

    The dissimilatory nitrate-reducing bacterial community in the rhizosphere of aerenchymatous plant species such as Glyceria maxima, consists of oxidative, denitrifying and fermentative nitrate-ammonifying bacteria. To study the respective ecological niches of both types of nitrate-reducing

  13. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.

    Science.gov (United States)

    Jeong, Daun; Kim, Kitae; Min, Dae Wi; Choi, Wonyong

    2015-11-03

    Dissolution of iron from mineral dust particles greatly depends upon the type and amount of copresent inorganic anions. In this study, we investigated the roles of sulfate, chloride, nitrate, and perchlorate on the dissolution of maghemite and lepidocrocite in ice under both dark and UV irradiation and compared the results with those of their aqueous counterparts. After 96 h of reaction, the total dissolved iron in ice (pH 3 before freezing) was higher than that in the aqueous phase (pH 3) by 6-28 times and 10-20 times under dark and UV irradiation, respectively. Sulfuric acid was the most efficient in producing labile iron under dark condition, whereas hydrochloric acid induced the most dissolution of the total and ferrous iron in the presence of light. This ice-induced dissolution result was also confirmed with Arizona Test Dust (AZTD). In the freeze-thaw cycling test, the iron oxide samples containing chloride, nitrate, or perchlorate showed a similar extent of total dissolved iron after each cycling while the sulfate-containing sample rapidly lost its dissolution activity with repeating the cycle. This unique phenomenon observed in ice might be related to the freeze concentration of protons, iron oxides, and inorganic anions in the liquid-like ice grain boundary region. These results suggest that the ice-enhanced dissolution of iron oxides can be a potential source of bioavailable iron, and the acid anions critically influence this process.

  14. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor.

    Science.gov (United States)

    Kato, Souichiro; Yumoto, Isao; Kamagata, Yoichi

    2015-01-01

    Corrosion of iron occurring under anoxic conditions, which is termed microbiologically influenced corrosion (MIC) or biocorrosion, is mostly caused by microbial activities. Microbial activity that enhances corrosion via uptake of electrons from metallic iron [Fe(0)] has been regarded as one of the major causative factors. In addition to sulfate-reducing bacteria and methanogenic archaea in marine environments, acetogenic bacteria in freshwater environments have recently been suggested to cause MIC under anoxic conditions. However, no microorganisms that perform acetogenesis-dependent MIC have been isolated or had their MIC-inducing mechanisms characterized. Here, we enriched and isolated acetogenic bacteria that induce iron corrosion by utilizing Fe(0) as the sole electron donor under freshwater, sulfate-free, and anoxic conditions. The enriched communities produced significantly larger amounts of Fe(II) than the abiotic controls and produced acetate coupled with Fe(0) oxidation prior to CH4 production. Microbial community analysis revealed that Sporomusa sp. and Desulfovibrio sp. dominated in the enrichments. Strain GT1, which is closely related to the acetogen Sporomusa sphaeroides, was eventually isolated from the enrichment. Strain GT1 grew acetogenetically with Fe(0) as the sole electron donor and enhanced iron corrosion, which is the first demonstration of MIC mediated by a pure culture of an acetogen. Other well-known acetogenic bacteria, including Sporomusa ovata and Acetobacterium spp., did not grow well on Fe(0). These results indicate that very few species of acetogens have specific mechanisms to efficiently utilize cathodic electrons derived from Fe(0) oxidation and induce iron corrosion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Transformation of Nitrate and Toluene in Groundwater by Sulfur Modified Iron(SMI-III)

    Science.gov (United States)

    Lee, W.; Park, S.; Lim, J.; Hong, U.; Kwon, S.; Kim, Y.

    2009-12-01

    In Korea, nitrate and benzene, toluene, ethylbenzene, and xylene isomers (BTEX) are frequently detected together as ground water contaminants. Therefore, a system simultaneously treating both nitrate (inorganic compound) and BTEX (organic compounds) is required to utilize groundwater as a water resource. In this study, we investigated the efficiency of Sulfur Modified Iron (SMI-III) in treating both nitrate and BTEX contaminated groundwater. Based on XRD (X-Ray Diffraction) analysis, the SMI-III is mainly composed of Fe3O4, S, and Fe. A series of column tests were conducted at three different empty bed contact times (EBCTs) for each compound. During the experiments, removal efficiency for both nitrate and toluene were linearly correlated with EBCT, suggesting that SMI-III have an ability to transform both nitrate and toluene. The concentration of SO42- and oxidation/reduction potential (ORP) were also measured. After exposed to nitrate contaminated groundwater, the composition of SMI-III was changed to Fe2O3, Fe3O4, Fe, and Fe0.95S1.05. The trends of effluent sulfate concentrations were inversely correlated with effluent nitrate concentrations, while the trends of ORP values, having the minimum values of -480 mV, were highly correlated with effluent nitrate concentrations. XRD analysis before and after exposed to nitrate contaminated groundwater, sulfate production, and nitrite detection as a reductive transformation by-product of nitrate suggest that nitrate is reductively transformed by SMI-III. Interestingly, in the toluene experiments, the trends of ORP values were inversely correlated with effluent toluene concentrations, suggesting that probably degrade through oxidation reaction. Consequently, nitrate and toluene probably degrade through reduction and oxidation reaction, respectively and SMI-III could serve as both electron donor and acceptor.

  16. Reduction of ferric iron by acidophilic heterotrophic bacteria: evidence for constitutive and inducible enzyme systems in Acidiphilium spp.

    Science.gov (United States)

    Johnson, D B; Bridge, T A M

    2002-01-01

    To compare the abilities of two obligately acidophilic heterotrophic bacteria, Acidiphilium acidophilum and Acidiphilium SJH, to reduce ferric iron to ferrous when grown under different culture conditions. Bacteria were grown in batch culture, under different aeration status, and in the presence of either ferrous or ferric iron. The specific rates of ferric iron reduction by fermenter-grown Acidiphilium SJH were unaffected by dissolved oxygen (DO) concentrations, while iron reduction by A. acidophilum was highly dependent on DO concentrations in the growth media. The ionic form of iron present (ferrous or ferric) had a minimal effect on the abilities of harvested cells to reduce ferric iron. Whole cell protein profiles of Acidiphilium SJH were very similar, regardless of the DO status of the growth medium, while additional proteins were present in A. acidophilum grown microaerobically compared with aerobically-grown cells. The dissimilatory reduction of ferric iron is constitutive in Acidiphilium SJH while it is inducible in A. acidophilum. Ferric iron reduction by Acidiphilium spp. may occur in oxygen-containing as well as anoxic acidic environments. This will detract from the effectiveness of bioremediation systems where removal of iron from polluted waters is mediated via oxidation and precipitation of the metal.

  17. Applicability of anaerobic nitrate-dependent Fe(II) oxidation to microbial enhanced oil recovery (MEOR).

    Science.gov (United States)

    Zhu, Hongbo; Carlson, Han K; Coates, John D

    2013-08-06

    Microbial processes that produce solid-phase minerals could be judiciously applied to modify rock porosity with subsequent alteration and improvement of floodwater sweep in petroleum reservoirs. However, there has been little investigation of the application of this to enhanced oil recovery (EOR). Here, we investigate a unique approach of altering reservoir petrology through the biogenesis of authigenic rock minerals. This process is mediated by anaerobic chemolithotrophic nitrate-dependent Fe(II)-oxidizing microorganisms that precipitate iron minerals from the metabolism of soluble ferrous iron (Fe(2+)) coupled to the reduction of nitrate. This mineral biogenesis can result in pore restriction and reduced pore throat diameter. Advantageously and unlike biomass plugs, these biominerals are not susceptible to pressure or thermal degradation. Furthermore, they do not require continual substrate addition for maintenance. Our studies demonstrate that the biogenesis of insoluble iron minerals in packed-bed columns results in effective hydrology alteration and homogenization of heterogeneous flowpaths upon stimulated microbial Fe(2+) biooxidation. We also demonstrate almost 100% improvement in oil recovery from hydrocarbon-saturated packed-bed columns as a result of this metabolism. These studies represent a novel departure from traditional microbial EOR approaches and indicate the potential for nitrate-dependent Fe(2+) biooxidation to improve volumetric sweep efficiency and enhance both the quality and quantity of oil recovered.

  18. Iron-Oxidizing Bacteria Found at Slow-Spreading Ridge: a Case Study of Capelinhos Hydrothermal Vent (Lucky Strike, MAR 37°N)

    Science.gov (United States)

    Henri, P. A.; Rommevaux, C.; Lesongeur, F.; Emerson, D.; Leleu, T.; Chavagnac, V.

    2015-12-01

    Iron-oxidizing bacteria becomes increasingly described in different geological settings from volcanically active seamounts, coastal waters, to diffuse hydrothermal vents near seafloor spreading centers [Emerson et al., 2010]. They have been mostly identified and described in Pacific Ocean, and have been only recently found in hydrothermal systems associated to slow spreading center of the Mid-Atlantic Ridge (MAR) [Scott et al., 2015]. During the MoMARSAT'13 cruise at Lucky Strike hydrothermal field (MAR), a new hydrothermal site was discovered at about 1.5 km eastward from the lava lake and from the main hydrothermal vents. This active venting site, named Capelinhos, is therefore the most distant from the volcano, features many chimneys, both focused and diffuses. The hydrothermal end-member fluids from Capelinhos are different from those of the other sites of Lucky Strike, showing the highest content of iron (Fe/Mn≈3.96) and the lowest chlorinity (270 mmol/l) [Leleu et al., 2015]. Most of the chimneys exhibit rust-color surfaces and bacterial mats near diffuse flows. During the MoMARSAT'15 cruise, an active chimney, a small inactive one, and rust-color bacterial mat near diffuse flow were sampled at Capelinhos. Observations by SEM of the hydrothermal samples revealed the presence of iron oxides in an assemblage of tubular "sheaths", assembled "stalks", helical "stalks" and amorphous aggregates. These features are similar to those described from the Loihi iron-mats deposits and argue for the occurrence of iron-oxidizing bacteria. Cultures under micro-aerobic and neutral pH conditions allowed us to isolate strains from the small inactive chimney. Pyrosequencing of the 16S rRNA gene of the isolates and environmental samples will soon be performed, which should confirm the presence of iron-oxidizing bacteria and reveal the organization of bacterial communities in this original and newly discovered hydrothermal site of the slow spreading Mid-Atlantic Ridge. Emerson

  19. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation

    Science.gov (United States)

    Nealson, K. H.; Saffarini, D.

    1994-01-01

    Dissimilatory iron and/or manganese reduction is known to occur in several organisms, including anaerobic sulfur-reducing organisms such as Geobacter metallireducens or Desulfuromonas acetoxidans, and facultative aerobes such as Shewanella putrefaciens. These bacteria couple both carbon oxidation and growth to the reduction of these metals, and inhibitor and competition experiments suggest that Mn(IV) and Fe(III) are efficient electron acceptors similar to nitrate in redox abilities and capable of out-competing electron acceptors of lower potential, such as sulfate (sulfate reduction) or CO2 (methanogenesis). Field studies of iron and/or manganese reduction suggest that organisms with such metabolic abilities play important roles in coupling the oxidation of organic carbon to metal reduction under anaerobic conditions. Because both iron and manganese oxides are solids or colloids, they tend to settle downward in aquatic environments, providing a physical mechanism for the movement of oxidizing potential into anoxic zones. The resulting biogeochemical metal cycles have a strong impact on many other elements including carbon, sulfur, phosphorous, and trace metals.

  20. Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process.

    Science.gov (United States)

    Fu, Liang; Ding, Jing; Lu, Yong-Ze; Ding, Zhao-Wei; Zeng, Raymond J

    2017-05-01

    The co-culture system of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) has a potential application in wastewater treatment plant. This study explored the effects of permutation and combination of nitrate, nitrite, and ammonium on the culture enrichment from freshwater sediments. The co-existence of NO 3 - , NO 2 - , and NH 4 + shortened the enrichment time from 75 to 30 days and achieved a total nitrogen removal rate of 106.5 mg/L/day on day 132. Even though ammonium addition led to Anammox bacteria increase and a higher nitrogen removal rate, DAMO bacteria still dominated in different reactors with the highest proportion of 64.7% and the maximum abundance was 3.07 ± 0.25 × 10 8 copies/L (increased by five orders of magnitude) in the nitrite reactor. DAMO bacteria showed greater diversity in the nitrate reactor, and one was similar to M. oxyfera; DAMO bacteria in the nitrite reactor were relatively unified and similar to M. sinica. Interestingly, no DAMO archaea were found in the nitrate reactor. This study will improve the understanding of the impact of nitrogen source on DAMO and Anammox co-culture enrichment.

  1. One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal

    International Nuclear Information System (INIS)

    Thakur, Suman; Karak, Niranjan

    2014-01-01

    An environmentally friendly effective technique was demonstrated to prepare iron oxide/reduced graphene oxide nanohybrid (IO/RGO) at room temperature by using banana peel ash aqueous extract as the base source and Colocasia esculenta leaves aqueous extract as the reducing agent. The nanohybrid was characterized by Fourier transform infrared spectroscopy, X-ray diffractometry, transmission electron microscopy, vibrating sample magnetometry, Raman spectroscopy and thermal studies. The results indicated the decoration of superparamagnetic IO nanoparticles on the surface of the RGO. Both organic and inorganic pollutants were effectively removed from the contaminated water (for Pb 2+ and Cd 2+ within 10 min, whereas for tetrabromobisphenol A within 30 min) by IO/RGO. The study revealed that adsorption followed pseudo-second order kinetics and isotherms were well described by the Langmuir model in all the cases. The thermodynamics parameters (ΔG°, ΔS° and ΔH°) were calculated from the temperature dependent isotherms and indicated that the adsorptions were endothermic and spontaneous. - Highlights: • Eco-friendly one step preparation of iron oxide/reduced graphene oxide nanohybrid. • The nanohybrid has excellent pollutants removal capacity from contaminated water. • Superparamagnetic iron oxide nanoparticles help in easy recycle. • The adsorption processes of pollutants are endothermic and spontaneous

  2. One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Suman; Karak, Niranjan, E-mail: karakniranjan@yahoo.com

    2014-04-01

    An environmentally friendly effective technique was demonstrated to prepare iron oxide/reduced graphene oxide nanohybrid (IO/RGO) at room temperature by using banana peel ash aqueous extract as the base source and Colocasia esculenta leaves aqueous extract as the reducing agent. The nanohybrid was characterized by Fourier transform infrared spectroscopy, X-ray diffractometry, transmission electron microscopy, vibrating sample magnetometry, Raman spectroscopy and thermal studies. The results indicated the decoration of superparamagnetic IO nanoparticles on the surface of the RGO. Both organic and inorganic pollutants were effectively removed from the contaminated water (for Pb{sup 2+} and Cd{sup 2+} within 10 min, whereas for tetrabromobisphenol A within 30 min) by IO/RGO. The study revealed that adsorption followed pseudo-second order kinetics and isotherms were well described by the Langmuir model in all the cases. The thermodynamics parameters (ΔG°, ΔS° and ΔH°) were calculated from the temperature dependent isotherms and indicated that the adsorptions were endothermic and spontaneous. - Highlights: • Eco-friendly one step preparation of iron oxide/reduced graphene oxide nanohybrid. • The nanohybrid has excellent pollutants removal capacity from contaminated water. • Superparamagnetic iron oxide nanoparticles help in easy recycle. • The adsorption processes of pollutants are endothermic and spontaneous.

  3. Do freshwater macrophytes influence the community structure of ammonia-oxidizing and denitrifying bacteria in the rhizospere?

    DEFF Research Database (Denmark)

    Herrmann, Martina; Schramm, Andreas

    2006-01-01

    to unvegetated sediment, especially with respect to the availability of oxygen, organic carbon, and inorganic nitrogen. We hypothesize that macrophyte species create specific niches for ammonia oxidizing and nitrate-reducing bacteria in their rhizosphere, leading to plant-dependant differences in abundance...... dortmanna have been shown to release oxygen from their roots and to stimulate nitrification and coupled nitrification-denitrification in the rhizosphere. Together with the excretion of root exudates, this effect leads to strongly modified microenvironments at the root surface and in the rhizosphere compared......-denitrification using the 15N isotope pairing technique. Ammonia-oxidizing and nitrate-reducing populations are analyzed based on the ammonia monooxygenase gene (amoA) and the nitrate reductase gene (narG) as functional markers. Preliminary data indicate that there in fact exist differences in the community composition...

  4. Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem

    Science.gov (United States)

    Garrelfs, Julia

    2014-01-01

    About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recognized. Under anoxic conditions (e.g., in oil and gas pipelines), sulfate-reducing bacteria (SRB) are commonly considered the main culprits of MIC. This perception largely stems from three recurrent observations. First, anoxic sulfate-rich environments (e.g., anoxic seawater) are particularly corrosive. Second, SRB and their characteristic corrosion product iron sulfide are ubiquitously associated with anaerobic corrosion damage, and third, no other physiological group produces comparably severe corrosion damage in laboratory-grown pure cultures. However, there remain many open questions as to the underlying mechanisms and their relative contributions to corrosion. On the one hand, SRB damage iron constructions indirectly through a corrosive chemical agent, hydrogen sulfide, formed by the organisms as a dissimilatory product from sulfate reduction with organic compounds or hydrogen (“chemical microbially influenced corrosion”; CMIC). On the other hand, certain SRB can also attack iron via withdrawal of electrons (“electrical microbially influenced corrosion”; EMIC), viz., directly by metabolic coupling. Corrosion of iron by SRB is typically associated with the formation of iron sulfides (FeS) which, paradoxically, may reduce corrosion in some cases while they increase it in others. This brief review traces the historical twists in the perception of SRB-induced corrosion, considering the presently most plausible explanations as well as possible early misconceptions in the understanding of severe corrosion in anoxic, sulfate-rich environments. PMID:24317078

  5. In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions.

    Science.gov (United States)

    Paradis, Charles J; Jagadamma, Sindhu; Watson, David B; McKay, Larry D; Hazen, Terry C; Park, Melora; Istok, Jonathan D

    2016-04-01

    Reoxidation and mobilization of previously reduced and immobilized uranium by dissolved-phase oxidants poses a significant challenge for remediating uranium-contaminated groundwater. Preferential oxidation of reduced sulfur-bearing species, as opposed to reduced uranium-bearing species, has been demonstrated to limit the mobility of uranium at the laboratory scale yet field-scale investigations are lacking. In this study, the mobility of uranium in the presence of nitrate oxidant was investigated in a shallow groundwater system after establishing conditions conducive to uranium reduction and the formation of reduced sulfur-bearing species. A series of three injections of groundwater (200 L) containing U(VI) (5 μM) and amended with ethanol (40 mM) and sulfate (20 mM) were conducted in ten test wells in order to stimulate microbial-mediated reduction of uranium and the formation of reduced sulfur-bearing species. Simultaneous push-pull tests were then conducted in triplicate well clusters to investigate the mobility of U(VI) under three conditions: 1) high nitrate (120 mM), 2) high nitrate (120 mM) with ethanol (30 mM), and 3) low nitrate (2 mM) with ethanol (30 mM). Dilution-adjusted breakthrough curves of ethanol, nitrate, nitrite, sulfate, and U(VI) suggested that nitrate reduction was predominantly coupled to the oxidation of reduced-sulfur bearing species, as opposed to the reoxidation of U(IV), under all three conditions for the duration of the 36-day tests. The amount of sulfate, but not U(VI), recovered during the push-pull tests was substantially more than injected, relative to bromide tracer, under all three conditions and further suggested that reduced sulfur-bearing species were preferentially oxidized under nitrate-reducing conditions. However, some reoxidation of U(IV) was observed under nitrate-reducing conditions and in the absence of detectable nitrate and/or nitrite. This suggested that reduced sulfur-bearing species may not be fully effective at

  6. Distribution of iron- and sulfate-reducing bacteria across a coastal acid sulfate soil (CASS environment: implications for passive bioremediation by tidal inundation

    Directory of Open Access Journals (Sweden)

    Yu-Chen eLing

    2015-07-01

    Full Text Available Coastal acid sulfate soils (CASS constitute a serious and global environmental problem. Oxidation of iron sulfide minerals exposed to air generates sulfuric acid with consequently negative impacts on coastal and estuarine ecosystems. Tidal inundation represents one current treatment strategy for CASS, with the aim of neutralizing acidity by triggering microbial iron- and sulfate-reduction and inducing the precipitation of iron-sulfides. Although well-known functional guilds of bacteria drive these processes, their distributions within CASS environments, as well as their relationships to tidal cycling and the availability of nutrients and electron acceptors, are poorly understood. These factors will determine the long-term efficacy of passive CASS remediation strategies. Here we studied microbial community structure and functional guild distribution in sediment cores obtained from ten depths ranging from 0-20 cm in three sites located in the supra-, inter- and sub-tidal segments, respectively, of a CASS-affected salt marsh (East Trinity, Cairns, Australia. Whole community 16S rRNA gene diversity within each site was assessed by 454 pyrotag sequencing and bioinformatic analyses in the context of local hydrological, geochemical and lithological factors. The results illustrate spatial overlap, or close association, of iron- and sulfate-reducing bacteria in an environment rich in organic matter and controlled by parameters such as acidity, redox potential, degree of water saturation, and mineralization. The observed spatial distribution implies the need for empirical understanding of the timing, relative to tidal cycling, of various terminal electron-accepting processes that control acid generation and biogeochemical iron and sulfur cycling.

  7. Assessing the Role of Iron Sulfides in the Long Term Sequestration of Uranium by Sulfate-Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Kim F. [Univ. of Michigan, Ann Arbor, MI (United States); Bi, Yuqiang [Univ. of Michigan, Ann Arbor, MI (United States); Carpenter, Julian [Univ. of Michigan, Ann Arbor, MI (United States); Hyng, Sung Pil [Univ. of Michigan, Ann Arbor, MI (United States); Rittmann, Bruce E. [Arizona State Univ., Tempe, AZ (United States); Zhou, Chen [Arizona State Univ., Tempe, AZ (United States); Vannela, Raveender [Arizona State Univ., Tempe, AZ (United States); Davis, James A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-12-31

    This overarching aim of this project was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed under sulfate-reducing conditions when subjected to re-oxidizing conditions. The work reported herein was achieved through the collaborative research effort conducted at Arizona State University (ASU) and the University of Michigan (UM). Research at ASU, focused on the biogenesis aspects, examined the biogeochemical bases for iron-sulfide production by Desulfovibrio vulgaris, a Gram-negative bacterium that is one of the most-studied strains of sulfate-reducing bacteria. A series of experimental studies were performed to investigate comprehensively important metabolic and environmental factors that affect the rates of sulfate reduction and iron-sulfide precipitation, the mineralogical characteristics of the iron sulfides, and how uranium is reduced or co-reduced by D. vulagaris. FeS production studies revealed that controlling the pH affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH produced larger-sized mackinawite (Fe1+xS). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and stimulated mackinawite transformation to greigite (Fe3S4) when the free sulfide concentration was 29.3 mM. On the other hand, using solid Fe(III) (hydr)oxides as the iron source led to less productivity of FeS due to their slow and incomplete dissolution and scavenging of sulfide. Furthermore, sufficient free Fe2+, particularly during Fe(III) (hydr)oxide reductions, led to the additional formation of vivianite [Fe3(PO4)2•8(H2O)]. The U(VI) reduction studies revealed that D. vulgaris reduced U(VI) fastest when accumulating sulfide from concomitant sulfate reduction, since direct enzymatic and sulfide

  8. Synergetic treatment of uranium-bearing waste water with sulfate reducing bacteria and zero-valent iron

    International Nuclear Information System (INIS)

    Zhou Quanyu; Tan Kaixuan; Zeng Sheng; Liu Dong

    2009-01-01

    The treatment of uranium-bearing wastewater from uranium mine and using microorganism to treat wastewater were paid much attention to environmental researchers. Based on column experiments, we investigated the potential using sulfate reducing bacteria (SRB) and zero-valent iron (ZVI) to synergetic treat contamination in wastewater such as sulfate, uranium, etc. SRB+ZVI can effectively remove contamination U(VI) and SO 4 2- in wastewater. The removal rate is 99.4% and 86.2% for U(VI) and SO 4 2- , respectively. The pH of wastewater can be basified to neutral. U(VI) and SO 4 2- as electron acceptor of sulfate reducing bacteria are removed by biological reduction. The corrosion of ZVI is benefit to enhance the pH of wastewater, forms anaerobic reducing environment, strengthens survival and metabolism reaction of SRB, and plays a synergetic enhancement. (authors)

  9. Iron oxides in acid mine drainage environments and their association with bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, F G; Tazaki, K; Fyfe, W S

    1989-01-20

    A variety of iron oxides were identified by X-ray diffraction in sediments receiving acid drainage from mine tailing and coal refuse impoundments. Small amounts of goethite and hematite were found in the sediment samples. However, the major iron oxide species was ferrihydrite which gave diffuse diffraction bands at angles corresponding to d2.5, 2.2 and 1.5 Angstrom. Main core line binding energies in Fe (2p) and O (1s) X-ray photoelectron spectra were consistent with the hydrous nature and predominance of ferrihydrite. Electron microscopy and energy-dispersive X-ray spectroscopy also showed that individual bacterial cells promoted the development of iron oxide mineralization. The bacterial associated iron oxides were similar to those in the bulk sediment samples, and exhibited structures conforming to the presence of chemisorbed sulfate or silicate anions. 23 refs., 3 figs.

  10. Amorphous structure of iron oxide of bacterial origin

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hideki; Fujii, Tatsuo [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Asaoka, Hiroshi [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Kusano, Yoshihiro [Department of Fine and Applied Arts, Kurashiki University of Science and the Arts, Kurashiki, Okayama 712-8505 (Japan); Ikeda, Yasunori [Research Institute for Production Development, Sakyo-ku, Kyoto 606-0805 (Japan); Nakanishi, Makoto [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Benino, Yasuhiko; Nanba, Tokuro [Graduate School of Environmental Science, Okayama University, Okayama 700-8530 (Japan); Takada, Jun, E-mail: jtakada@cc.okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan)

    2012-12-14

    In nature, there are various iron oxides produced by the water-habitant bacterial group called 'iron-oxidizing bacteria'. These iron oxides have been studied mainly from biological and geochemical perspectives. Today, attempts are made to use such iron oxides as novel functional materials in several applications. However, their quantitative structural characteristics are still unclear. We studied the structure of iron oxide of microtubular form consisting of amorphous nanoparticles formed by an iron-oxidizing bacterium, Leptothrix ochracea, using a combination of high-energy X-ray diffraction and reverse Monte Carlo simulation. We found that its structure consists of a framework of corner- and edge-sharing distorted FeO{sub 6} octahedral units, while SiO{sub 4} tetrahedral units are isolated in the framework. The results reveal the atomic arrangement of iron oxide of bacterial origin, which is essential for investigating its potential as a functional material. -- Highlights: Black-Right-Pointing-Pointer The amorphous structure of bacterial iron oxide was investigated. Black-Right-Pointing-Pointer The structure was simulated by high-energy X-ray diffraction and reverse Monte Carlo simulation. Black-Right-Pointing-Pointer The structure was constructed of a framework of corner- and edge-sharing distorted FeO{sub 6} octahedral units. Black-Right-Pointing-Pointer SiO{sub 4} tetrahedral units were distributed isolatedly in the framework of FeO{sub 6} octahedral units.

  11. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria.

    Science.gov (United States)

    Güven, Didem; Dapena, Ana; Kartal, Boran; Schmid, Markus C; Maas, Bart; van de Pas-Schoonen, Katinka; Sozen, Seval; Mendez, Ramon; Op den Camp, Huub J M; Jetten, Mike S M; Strous, Marc; Schmidt, Ingo

    2005-02-01

    Anaerobic ammonium oxidation (anammox) is a recently discovered microbial pathway and a cost-effective way to remove ammonium from wastewater. Anammox bacteria have been described as obligate chemolithoautotrophs. However, many chemolithoautotrophs (i.e., nitrifiers) can use organic compounds as a supplementary carbon source. In this study, the effect of organic compounds on anammox bacteria was investigated. It was shown that alcohols inhibited anammox bacteria, while organic acids were converted by them. Methanol was the most potent inhibitor, leading to complete and irreversible loss of activity at concentrations as low as 0.5 mM. Of the organic acids acetate and propionate, propionate was consumed at a higher rate (0.8 nmol min(-1) mg of protein(-1)) by Percoll-purified anammox cells. Glucose, formate, and alanine had no effect on the anammox process. It was shown that propionate was oxidized mainly to CO(2), with nitrate and/or nitrite as the electron acceptor. The anammox bacteria carried out propionate oxidation simultaneously with anaerobic ammonium oxidation. In an anammox enrichment culture fed with propionate for 150 days, the relative amounts of anammox cells and denitrifiers did not change significantly over time, indicating that anammox bacteria could compete successfully with heterotrophic denitrifiers for propionate. In conclusion, this study shows that anammox bacteria have a more versatile metabolism than previously assumed.

  12. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    International Nuclear Information System (INIS)

    Ngoi, Kuan Hoon; Chia, Chin-Hua; Zakaria, Sarani; Chiu, Wee Siong

    2015-01-01

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature

  13. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    Energy Technology Data Exchange (ETDEWEB)

    Ngoi, Kuan Hoon; Chia, Chin-Hua, E-mail: chia@ukm.edu.my; Zakaria, Sarani [School of Applied Physics, Faculty Science and Technology, University Kebangsaan Malaysia 43600 UKM Bangi, Selangor (Malaysia); Chiu, Wee Siong [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur (Malaysia)

    2015-09-25

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature.

  14. Investigating nitrate-dependent humic substance oxidation and in-service K-12 teachers' understanding of microbiology

    Science.gov (United States)

    Jones, Nastassia N.

    2011-12-01

    Humic substances (HS) are the humified portions of totally decomposed soil organic matter that are ubiquitous in nature. Although these substances have been studied for more than 200 years, neither their metabolic capabilities nor a specific chemical structure has yet to be determined. HS have been studied as a carbon source in many environments where they are degraded; however, previous studies have shown that some microorganisms are capable of utilizing humic substances as electron acceptors and electron donors in anaerobic respiration. Even though there have been humic-reducing and humic-oxidizing microorganisms isolated and studied in recent years, the mechanism of humics metabolism and its interaction in the natural environment are not well understood. However, it is known that the continuous change in the redox state of HS is important to the cycling of iron, stability of nitrogen and carbon, and the mobility and bioavailability of inorganic and organic environmental pollutants. In this study, microbial communities were examined to evaluate the community dynamics of nitrate-dependent HS-oxidizing populations and to provide a snapshot of the phylogenetic diversity of these microorganisms. Column studies were performed using nitrate as the sole electron acceptor and the following as the electron donors in different columns: reduced humic acids, oxidized humic acids, and acetate as the control. Liquid buffered media was added to a separate column to serve as an additional control. Polymerase chain reactions of the 16S rRNA genes using DNA from the column studies were performed and analyzed by constructing 16S rDNA clone libraries and by performing denaturing gradient gel electrophoresis (DGGE). Clones from the library have been sequenced and analyzed to paint a phylogenetic picture of the microbial community under the various conditions. Results indicate that the majority of the clones were assigned to four well-characterized divisions, the Acidobacteria, the

  15. Investigation of Combination Effect of Magnesium Oxide and Iron Oxide Nanoparticles on the Growth And Morphology of the Bacteria Staphylococcus Aureus and Escherichia Coli in Juice

    Directory of Open Access Journals (Sweden)

    mahdi torabi zarchi

    2017-02-01

    Full Text Available Introduction: Nanoparticles (NPs are one of the antibacterial substances, among them nanoparticles type MgO and Fe2O3 are less toxic to mammalian cells. So, the aim of this study was investigation of combination effects of iron oxide and magnesium oxide nanoparticles on the growth of Staphylococcus aureus and Escherichia coli (E.coli to achieve the optimum combination of nanoparticles inhibit the growth of Staphylococcus aureus and Escherichia coli in food (juice. Methods: In this experimental research, the effect of MgO and Fe2O3 Nanoparticles compound on Staphylococcus aureus and Escherichia coli bacteria in liquid environment was investigated, and then their effect was investigated separately in juices of carrot, pomegranate and apple via colony count approach. Also, scanning electron microscopy was used to characterize the morphological changes of Staphylococcus aureus and Escherichia coli after antimicrobial treatments. The results of the research were analyzed using one way ANNOVA. Results: The results of the research indicated that in liquid medium, these nanoparticles lead to reduce the growth of both bacteria. compound of 1.5Mg+0.5Fe2O3 was introduced as the most appropriate antibacterial compounds; Staphylococcus aureus sensitivity to Escherichia coli was higher against nanoparticles. The findings of research about the juices revealed that the combined effect of nanoparticles reduced the growth of both bacteria. the combined effect of Fe2o3 and MgO nanoparticles treatments distorted and damaged the cell membrane, resulting in a leakage of intracellular contents and eventually the death of bacterial cells. Conclusion: Nanoparticles in the allowed concentrations have significant effect on Staphylococcus aureus and Escherichia coli bacteria.

  16. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan

    Science.gov (United States)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

    2011-04-01

    Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

  17. Interactions between ammonia and nitrite oxidizing bacteria in co-cultures: Is there evidence for mutualism, commensalism, or competition?

    Energy Technology Data Exchange (ETDEWEB)

    Sayavedra-Soto, Luis [Oregon State Univ., Corvallis, OR (United States); Arp, Daniel [Oregon State Univ., Corvallis, OR (United States)

    2017-08-01

    Nitrification is a two-step environmental microbial process in the nitrogen cycle in which ammonia is oxidized to nitrate. Ammonia-oxidizing bacteria and archaea oxidize ammonia to nitrite and nitrite is oxidized to nitrate by nitrite-oxidizing bacteria. These microorganisms, which likely act in concert in a microbial community, play critical roles in the movement of inorganic N in soils, sediments and waters and are essential to the balance of the nitrogen cycle. Anthropogenic activity has altered the balance of the nitrogen cycle through agriculture practices and organic waste byproducts. Through their influence on available N for plant growth, nitrifying microorganisms influence plant productivity for food and fiber production and the associated carbon sequestration. N Fertilizer production, primarily as ammonia, requires large inputs of natural gas and hydrogen. In croplands fertilized with ammonia-based fertilizers, nitrifiers contribute to the mobilization of this N by producing nitrate (NO3-), wasting the energy used in the production and application of ammonia-based fertilizer. The resulting nitrate is readily leached from these soils, oxidized to gaseous N oxides (greenhouse gases), and denitrified to N2 (which is no longer available as a plant N source). Still, ammonia oxidizers are beneficial in the treatment of wastewater and they also show potential to contribute to microbial bioremediation strategies for clean up of environments contaminated with chlorinated hydrocarbons. Mitigation of the negative effects and exploitation of the beneficial effects of nitrifiers will be facilitated by a systems-level understanding of the interactions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria with the environment and with each other.

  18. Using Thermodynamics to Predict the Outcomes of Nitrate-Based Oil Reservoir Souring Control Interventions

    Directory of Open Access Journals (Sweden)

    Jan Dolfing

    2017-12-01

    Full Text Available Souring is the undesirable production of hydrogen sulfide (H2S in oil reservoirs by sulfate-reducing bacteria (SRB. Souring is a common problem during secondary oil recovery via water flooding, especially when seawater with its high sulfate concentration is introduced. Nitrate injection into these oil reservoirs can prevent and remediate souring by stimulating nitrate-reducing bacteria (NRB. Two conceptually different mechanisms for NRB-facilitated souring control have been proposed: nitrate-sulfate competition for electron donors (oil-derived organics or H2 and nitrate driven sulfide oxidation. Thermodynamics can facilitate predictions about which nitrate-driven mechanism is most likely to occur in different scenarios. From a thermodynamic perspective the question “Which reaction yields more energy, nitrate driven oxidation of sulfide or nitrate driven oxidation of organic compounds?” can be rephrased as: “Is acetate driven sulfate reduction to sulfide exergonic or endergonic?” Our analysis indicates that under conditions encountered in oil fields, sulfate driven oxidation of acetate (or other SRB organic electron donors is always more favorable than sulfide oxidation to sulfate. That predicts that organotrophic NRB that oxidize acetate would outcompete lithotrophic NRB that oxidize sulfide. However, sulfide oxidation to elemental sulfur is different. At low acetate HS− oxidation is more favorable than acetate oxidation. Incomplete oxidation of sulfide to S0 is likely to occur when nitrate levels are low, and is favored by low temperatures; conditions that can be encountered at oil field above-ground facilities where intermediate sulfur compounds like S0 may cause corrosion. These findings have implications for reservoir management strategies and for assessing the success and progress of nitrate-based souring control strategies and the attendant risks of corrosion associated with souring and nitrate injection.

  19. Nitrate reductase and nitrous oxide production by Fusarium oxysporum 11dn1 under aerobic and anaerobic conditions.

    Science.gov (United States)

    Kurakov, A V; Nosikov, A N; Skrynnikova, E V; L'vov, N P

    2000-08-01

    The fungus Fusarium oxysporum 11dn1 was found to be able to grow and produce nitrous oxide on nitrate-containing medium in anaerobic conditions. The rate of nitrous oxide formation was three to six orders of magnitude lower than the rates of molecular nitrogen production by common denitrifying bacteria. Acetylene and ammonia did not affect the release of nitrous oxide release. It was shown that under anaerobic conditions fast increase of nitrate reductase activity occurred, caused by the synthesis of enzyme de novo and protein dephosphorylation. Reverse transfer of the mycelium to aerobic conditions led to a decline in nitrate reductase activity and stopped nitrous oxide production. The presence of two nitrate reductases was shown, which differed in molecular mass, location, temperature optima, and activity in nitrate- and ammonium-containing media. Two enzymes represent assimilatory and dissimilatory nitrate reductases, which are active in aerobic and anaerobic conditions, respectively.

  20. Efeito da aplicação de nitrato na redução biogênica de sulfeto sob diferentes concentrações iniciais de bactérias redutoras de nitrato e sulfato Effect of nitrate application on reduction of biogenic sulphide under different initial concentrations of nitrate and sulphate-reducing bacteria

    Directory of Open Access Journals (Sweden)

    Kally Alves de Sousa

    2010-01-01

    Full Text Available The effect of sodium nitrate application in the reduction of biogenic sulphide was evaluated through a 2k complete factorial design, using as variable response the production of sulfide at intervals of incubation of 7, 14 and 28 days. The most effective condition for reducing the sulphide production (final concentrations from 0.4 to 1.6 mg S2- L-1 was obtained with an initial population of sulphate-reducing bacteria and nitrate-reducing bacteria of 10(4 MPN mL-1 and 427.5 mg L-1 nitrate. The results also suggested that the applications of nitrate to control the process of souring should follow a continuous scheme.

  1. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer.

    Science.gov (United States)

    Hellal, Jennifer; Guédron, Stéphane; Huguet, Lucie; Schäfer, Jörg; Laperche, Valérie; Joulian, Catherine; Lanceleur, Laurent; Burnol, André; Ghestem, Jean-Philippe; Garrido, Francis; Battaglia-Brunet, Fabienne

    2015-09-01

    Mercury (Hg) mobility and speciation in subsurface aquifers is directly linked to its surrounding geochemical and microbial environment. The role of bacteria on Hg speciation (i.e., methylation, demethylation and reduction) is well documented, however little data is available on their impact on Hg mobility. The aim of this study was to test if (i) Hg mobility is due to either direct iron oxide reduction by iron reducing bacteria (IRB) or indirect iron reduction by sulfide produced by sulfate reducing bacteria (SRB), and (ii) to investigate its subsequent fate and speciation. Experiments were carried out in an original column setup combining geochemical and microbiological approaches that mimic an aquifer including an interface of iron-rich and iron depleted zones. Two identical glass columns containing iron oxides spiked with Hg(II) were submitted to (i) direct iron reduction by IRB and (ii) to indirect iron reduction by sulfides produced by SRB. Results show that in both columns Hg was leached and methylated during the height of bacterial activity. In the column where IRB are dominant, Hg methylation and leaching from the column was directly correlated to bacterial iron reduction (i.e., Fe(II) release). In opposition, when SRB are dominant, produced sulfide induced indirect iron oxide reduction and rapid adsorption of leached Hg (or produced methylmercury) on neoformed iron sulfides (e.g., Mackinawite) or its precipitation as HgS. At the end of the SRB column experiment, when iron-oxide reduction was complete, filtered Hg and Fe concentrations increased at the outlet suggesting a leaching of Hg bound to FeS colloids that may be a dominant mechanism of Hg transport in aquifer environments. These experimental results highlight different biogeochemical mechanisms that can occur in stratified sub-surface aquifers where bacterial activities play a major role on Hg mobility and changes in speciation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Bioleaching of a complex nickel–iron concentrate by mesophile bacteria.

    OpenAIRE

    Santos, Luciano Rodrigo Gomes; Barbosa, Alexandre Ferraz; Souza, Adelson Dias de; Leão, Versiane Albis

    2006-01-01

    This work investigates the bioleaching of a complex nickel–iron concentrate (pentlandite, pyrrhotite, and minor amounts of chalcopyrite) using acidophile iron-oxidizing bacteria. It aims to improve the understanding of the mechanism of bacterial action on nickel sulphide bioleaching. The effects of the external addition of Fe(II) and the mineralogical assembly on the extraction of nickel are evaluated. A high nickel extraction (around 70%) can be achieved in batch experiments. Moreover, the e...

  3. Reduction of Net Sulfide Production Rate by Nitrate in Wastewater Bioreactors. Kinetics and Changes in the Microbial Community

    DEFF Research Database (Denmark)

    Villahermosa, Desiree; Corzo, Alfonso; Gonzalez, J M

    2013-01-01

    Nitrate addition stimulated sulfide oxidation by increasing the activity of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB), decreasing the concentration of dissolved H2S in the water phase and, consequently, its release to the atmosphere of a pilot-scale anaerobic bioreactor. The effect of ...

  4. Perrhenate sorption kinetics in zerovalent iron in high pH and nitrate media

    International Nuclear Information System (INIS)

    Lenell, Brian A.; Arai, Yuji

    2017-01-01

    Graphical abstract: Ammonium adsorption enhanced ReO 4 − adsorption in ZVI under alkaline conditions (modified from Cho et al., 2015) [39]. - Highlights: • ZVI effectively sorbs Re(VII) at near neutral pH. • Sorption of Re(VII) in ZVI is attributed to the reductive precipitation of Re(IV)O 2 . • The extent of Re(VII) sorption in ZVI decreases with increasing pH from 8 to 10. • The rate of Re(VII) sorption in ZVI increases with increasing nitrate concentration. - Abstract: Technetium(Tc)-99 is one of major risk drivers in low level radioactive liquid waste at the U.S. Department of Energy sites. Cementitious waste technology (CWT) has been considered immobilizing pertechnetate, Tc(VII)O 4 − , in brine and alkaline waste solutions, as Tc(IV) oxides and/or sulfides with the use of reducing agents like slag. In this study, zero valent iron (ZVI) was evaluated as a potential reducing agent in CWT as a function of pH and [nitrate] (0–0.1 M) using perrhenate, Re(VII)O 4 − , as an analogue for Tc(VII)O 4 − . Batch Re(VII)O 4 − sorption experiments in conjunction with X-ray absorption spectroscopic analysis showed that the Re(VII) sorption occurred via the reductive precipitation of Re(IV)O 2 (s) and the extent of sorption decreased with increasing pH from 8 to 10. Interestingly, pseudo 2nd order kinetic rates increased with increasing [nitrate] which was attributed to co-adsorption of NH 4 + (i.e., a reaction product of reduced nitrate by ZVI), facilitating electrostatic attraction towards ReO 4 − under alkaline conditions. Considering the thermodynamically favorable reduction of Tc(VII) over Re(VII), ZVI might have potential for improving the reduction capacity of the current CWT.

  5. Disguised as a sulfate reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate

    DEFF Research Database (Denmark)

    Thorup, Casper; Schramm, Andreas; Findlay, Alyssa Jean Lehsau

    2017-01-01

    This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D...... of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane......-anchored nitrite reductase....

  6. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria.

    Science.gov (United States)

    Voordouw, G; Armstrong, S M; Reimer, M F; Fouts, B; Telang, A J; Shen, Y; Gevertz, D

    1996-05-01

    Oil field bacteria were characterized by cloning and sequencing of PCR-amplified 16S rRNA genes. A variety of gram-negative, sulfate-reducing bacteria was detected (16 members of the family Desulfovibrionaceae and 8 members of the family Desulfobacteriaceae). In contrast, a much more limited number of anaerobic, fermentative, or acetogenic bacteria was found (one Clostridium sp., one Eubacterium sp., and one Synergistes sp.). Potential sulfide oxidizers and/or microaerophiles (Thiomicrospira, Arcobacter, Campylobacter, and Oceanospirillum spp.) were also detected. The first two were prominently amplified from uncultured production water DNA and represented 28 and 47% of all clones, respectively. Growth on media containing sulfide as the electron donor and nitrate as the electron acceptor and designed for the isolation of Thiomicrospira spp. gave only significant enrichment of the Campylobacter sp., which was shown to be present in different western Canadian oil fields. This newly discovered sulfide oxidizer may provide a vital link in the oil field sulfur cycle by reoxidizing sulfide formed by microbial sulfate or sulfur reduction.

  7. Microbial Anaerobic Ammonium Oxidation Under Iron Reducing Conditions, Alternative Electron Acceptors

    Science.gov (United States)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2015-12-01

    Autotrophic Acidimicrobiaceae-bacterium named A6 (A6), part of the Actinobacteria phylum have been linked to anaerobic ammonium (NH4+) oxidation under iron reducing conditions. These organisms obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, the TEAs are iron oxides [Fe(III)], which are reduced to Fe(II), this process is known as Feammox. Our studies indicate that alternative forms of TEAs can be used by A6, e.g. iron rich clays (i.e. nontronite) and electrodes in bioelectrochemical systems such as Microbial Electrolysis Cells (MECs), which can sustain NH4+removal and A6 biomass production. Our results show that nontronite can support Feammox and promote bacterial cell production. A6 biomass increased from 4.7 x 104 to 3.9 x 105 cells/ml in 10 days. Incubations of A6 in nontronite resulted in up to 10 times more NH4+ removal and 3 times more biomass production than when ferrihydrite is used as the Fe(III) source. Additionally, Fe in nontronite can be reoxidized by aeration and A6 can reutilize it; however, Fe is still finite in the clay. In contrast, in MECs, A6 harvest electrons from NH4+ and use an anode as an unlimited TEA, as a result current is produced. We operated multiple MECs in parallel using a single external power source, as described by Call & Logan (2011). MECs were run with an applied voltage of 0.7V and different growing mediums always containing initial 5mM NH4+. Results show that current production is favored when anthraquinone-2,6-disulfonate (AQDS), an electron shuttled, is present in the medium as it facilitates the transfer of electrons from the bacterial cell to the anode. Additionally, A6 biomass increased from 1 x 104 to 9.77 x 105cells/ml in 14 days of operation. Due to Acidimicrobiaceae-bacterium A6's ability to use various TEAs, MECs represent an alternative, iron-free form, for optimized biomass production of A6 and its application in NH4

  8. Bioleaching of ilmenite and basalt in the presence of iron-oxidizing and iron-scavenging bacteria

    Science.gov (United States)

    Navarrete, Jesica U.; Cappelle, Ian J.; Schnittker, Kimberlin; Borrok, David M.

    2013-04-01

    Bioleaching has been suggested as an alternative to traditional mining techniques in extraterrestrial environments because it does not require extensive infrastructure and bulky hardware. In situ bioleaching of silicate minerals, such as those found on the moon or Mars, has been proposed as a feasible alternative to traditional extraction techniques that require either extreme heat and/or substantial chemical treatment. In this study, we investigated the biotic and abiotic leaching of basaltic rocks (analogues to those found on the moon and Mars) and the mineral ilmenite (FeTiO3) in aqueous environments under acidic (pH ˜ 2.5) and circumneutral pH conditions. The biological leaching experiments were conducted using Acidithiobacillus ferrooxidans, an iron (Fe)-oxidizing bacteria, and Pseudomonas mendocina, an Fe-scavenging bacteria. We found that both strains were able to grow using the Fe(II) derived from the tested basaltic rocks and ilmenite. Although silica leaching rates were the same or slightly less in the bacterial systems with A. ferrooxidans than in the abiotic control systems, the extent of Fe, Al and Ti released (and re-precipitated in new solid phases) was actually greater in the biotic systems. This is likely because the Fe(II) leached from the basalt was immediately oxidized by A. ferrooxidans, and precipitated into Fe(III) phases which causes a change in the equilibrium of the system, i.e. Le Chatelier's principle. Iron(II) in the abiotic experiment was allowed to build up in solution which led to a decrease in its overall release rate. For example, the percentage of Fe, Al and Ti leached (dissolved + reactive mineral precipitates) from the Mars simulant in the A. ferrooxidans experimental system was 34, 41 and 13% of the total Fe, Al and Ti in the basalt, respectively, while the abiotic experimental system released totals of only 11, 25 and 2%. There was, however, no measurable difference in the amounts of Fe and Ti released from ilmenite in the

  9. A preliminary study of anaerobic thiosulfate-oxidising bacteria as denitrifiers in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Chandramohan, D.; Nair, S.

    Bacteria which oxidize thiosulfate and reduce nitrate (TONRB) and bacteria which oxidize thiosulfate and denitrify (TODB) sampled at 5-, 100-, 200-and 300-m depths were enumerated in agar shake cultures by colony counting and by applying MPN...

  10. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue

    2010-03-16

    Nanoparticles that self-assemble on a liquid-liquid interface serve as the building block for making heterodimeric nanostructures. Specifically, hollow iron oxide nanoparticles within hexane form colloidosomes in the aqueous solution of silver nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectrometry, X-ray diffraction, UV-vis spectroscopy, and SQUID were used to characterize the heterodimers. Interestingly, the formation of silver nanoparticles helps the removal of spinglass layer on the hollow iron oxide nanoparticles. This work demonstrates a powerful yet convenient strategy for producing sophisticated, multifunctional nanostructures. © 2010 American Chemical Society.

  11. Multiple hearth furnace for reducing iron oxide

    Science.gov (United States)

    Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  12. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature.

    Science.gov (United States)

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-03-19

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4 · 7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures.

  13. Sulfur-Modified Zero-Valent Iron for Remediation Applications at DOE Sites - 13600

    Energy Technology Data Exchange (ETDEWEB)

    Fogwell, Thomas W. [Fogwell Consulting, P.O. Box 20221, Piedmont, CA 94620 (United States); Santina, Pete [SMI-PS, Inc., 2073 Prado Vista, Lincoln, CA 95648 (United States)

    2013-07-01

    Many DOE remediation sites have chemicals of concern that are compounds in higher oxidation states, which make them both more mobile and more toxic. The chemical reduction of these compounds both prevents the migration of these chemicals and in some cases reduces the toxicity. It has also been shown that zero-valent iron is a very effective substance to use in reducing oxygenated compounds in various treatment processes. These have included the treatment of halogenated hydrocarbons in the form volatile organic compounds used as solvents and pesticides. Zero-valent iron has also been used to reduce various oxidized metals such as chromium, arsenic, and mercury in order to immobilize them, decrease their toxicity, and prevent further transport. In addition, it has been used to immobilize or break down other non-metallic species such as selenium compounds and nitrates. Of particular interest at several DOE remediation sites is the fact that zero-valent iron is very effective in immobilizing several radioactive metals which are mobile in their oxidized states. These include both technetium and uranium. The main difficulty in using zero-valent iron has been its tendency to become inactive after relatively short periods of time. While it is advantageous to have the zero-valent iron particles as porous as possible in order to provide maximum surface area for reactions to take place, these pores can become clogged when the iron is oxidized. This is due to the fact that ferric oxide has a greater volume for a given mass than metallic iron. When the surfaces of the iron particles oxidize to ferric oxide, the pores become narrower and will eventually shut. In order to minimize the degradation of the chemical activity of the iron due to this process, a modification of zero-valent iron has been developed which prevents or slows this process, which decreases its effectiveness. It is called sulfur-modified iron, and it has been produced in high purity for applications in

  14. Structural investigations of biogenic iron oxide samples. Preliminary results

    International Nuclear Information System (INIS)

    Balasoiu, M.; Kuklin, A.I.; Orelovich, O.L.; Kovalev, Yu.S.; Arzumanyan, G.M.; Kurkin, T.S.; Stolyar, S.V.; Iskhakov, R.S.; Rajkher, Yu.L.

    2008-01-01

    Some preliminary results on morphology and structure of iron oxide particles formed inside Klebsiella oxytoca bacteria are presented. In particular, by means of optical microscopy, scanning electron microscopy and small-angle X-ray scattering the effect of the bacteria age (the duration of growth) on the nanoparticles properties is studied

  15. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea RID B-8834-2011

    DEFF Research Database (Denmark)

    Kuypers, MMM; Sliekers, AO; Lavik, G.

    2003-01-01

    The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions(1). The conversion of nitrate to N(2) by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean(2......). Here we provide evidence for bacteria that anaerobically oxidize ammonium with nitrite to N(2) in the world's largest anoxic basin, the Black Sea. Phylogenetic analysis of 16S ribosomal RNA gene sequences shows that these bacteria are related to members of the order Planctomycetales performing...... the anammox (anaerobic ammonium oxidation) process in ammonium-removing bioreactors(3). Nutrient profiles, fluorescently labelled RNA probes, (15)N tracer experiments and the distribution of specific 'ladderane' membrane lipids(4) indicate that ammonium diffusing upwards from the anoxic deep water is consumed...

  16. Potential for microbial oxidation of ferrous iron in basaltic glass.

    Science.gov (United States)

    Xiong, Mai Yia; Shelobolina, Evgenya S; Roden, Eric E

    2015-05-01

    Basaltic glass (BG) is an amorphous ferrous iron [Fe(II)]-containing material present in basaltic rocks, which are abundant on rocky planets such as Earth and Mars. Previous research has suggested that Fe(II) in BG can serve as an energy source for chemolithotrophic microbial metabolism, which has important ramifications for potential past and present microbial life on Mars. However, to date there has been no direct demonstration of microbially catalyzed oxidation of Fe(II) in BG. In this study, three different culture systems were used to investigate the potential for microbial oxidation of Fe(II) in BG, including (1) the chemolithoautotrophic Fe(II)-oxidizing, nitrate-reducing "Straub culture"; (2) the mixotrophic Fe(II)-oxidizing, nitrate-reducing organism Desulfitobacterium frappieri strain G2; and (3) indigenous microorganisms from a streambed Fe seep in Wisconsin. The BG employed consisted of clay and silt-sized particles of freshly quenched lava from the TEB flow in Kilauea, Hawaii. Soluble Fe(II) or chemically reduced NAu-2 smectite (RS) were employed as positive controls to verify Fe(II) oxidation activity in the culture systems. All three systems demonstrated oxidation of soluble Fe(II) and/or structural Fe(II) in RS, whereas no oxidation of Fe(II) in BG material was observed. The inability of the Straub culture to oxidize Fe(II) in BG was particularly surprising, as this culture can oxidize other insoluble Fe(II)-bearing minerals such as biotite, magnetite, and siderite. Although the reason for the resistance of the BG toward enzymatic oxidation remains unknown, it seems possible that the absence of distinct crystal faces or edge sites in the amorphous glass renders the material resistant to such attack. These findings have implications with regard to the idea that Fe(II)-Si-rich phases in basalt rocks could provide a basis for chemolithotrophic microbial life on Mars, specifically in neutral-pH environments where acid-promoted mineral dissolution and

  17. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid

    International Nuclear Information System (INIS)

    Ismail, Raid A.; Sulaiman, Ghassan M.; Abdulrahman, Safa A.; Marzoog, Thorria R.

    2015-01-01

    In this study, (50–110 nm) magnetic iron oxide (α-Fe 2 O 3 ) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results showed a noteworthy inhibition on both bacterial strains. The preparation conditions were found to affect significantly the antibacterial activity of these nanoparticles. The synthesized magnetic nanoparticles were used to capture rapidly S. aureus bacteria under the magnetic field effect. - Highlights: • Synthesis magnetic iron oxide nanoparticles by pulsed laser ablation • Antibacterial activity against Gram-positive and Gram-negative bacteria • Captured magnetic nanoparticles by S. aureus bacteria under effect of magnetic field

  18. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Raid A., E-mail: raidismail@yahoo.com [Laser Physics Division, Applied Science Department, University of Technology, Baghdad (Iraq); Sulaiman, Ghassan M. [Biotechnology Division, Applied Science Department, University of Technology, Baghdad (Iraq); Abdulrahman, Safa A. [Laser Physics Division, Applied Science Department, University of Technology, Baghdad (Iraq); Marzoog, Thorria R. [Biotechnology Division, Applied Science Department, University of Technology, Baghdad (Iraq)

    2015-08-01

    In this study, (50–110 nm) magnetic iron oxide (α-Fe{sub 2}O{sub 3}) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results showed a noteworthy inhibition on both bacterial strains. The preparation conditions were found to affect significantly the antibacterial activity of these nanoparticles. The synthesized magnetic nanoparticles were used to capture rapidly S. aureus bacteria under the magnetic field effect. - Highlights: • Synthesis magnetic iron oxide nanoparticles by pulsed laser ablation • Antibacterial activity against Gram-positive and Gram-negative bacteria • Captured magnetic nanoparticles by S. aureus bacteria under effect of magnetic field.

  19. Toxicity and transformation of graphene oxide and reduced graphene oxide in bacteria biofilm.

    Science.gov (United States)

    Guo, Zhiling; Xie, Changjian; Zhang, Peng; Zhang, Junzhe; Wang, Guohua; He, Xiao; Ma, Yuhui; Zhao, Bin; Zhang, Zhiyong

    2017-02-15

    Impact of graphene based material (GNMs) on bacteria biofilm has not been well understood yet. In this study, we compared the impact of graphene oxide (GO) and reduced graphene oxide (rGO) on biofilm formation and development in Luria-Bertani (LB) medium using Escherichia coli and Staphylococcus aureus as models. GO significantly enhanced the cell growth, biofilm formation, and biofilm development even up to a concentration of 500mg/L. In contrast, rGO (≥50mg/L) strongly inhibited cell growth and biofilm formation. However, the inhibitory effects of rGO (50mg/L and 100mg/L) were attenuated in the mature phase (>24h) and eliminated at 48h. GO at 250mg/L decreased the reactive oxygen species (ROS) levels in biofilm and extracellular region at mature phase. ROS levels were significantly increased by rGO at early phase, while they returned to the same levels as control at mature phase. These results suggest that oxidative stress contributed to the inhibitory effect of rGO on bacterial biofilm. We further found that supplement of extracellular polymeric substances (EPS) in the growth medium attenuated the inhibitory effect of rGO on the growth of developed biofilm. XPS results showed that rGO were oxidized to GO which can enhance the bacterial growth. We deduced that the elimination of the toxicity of rGO at mature phase was contributed by EPS protection and the oxidation of rGO. This study provides new insights into the interaction of GNMs with bacteria biofilm. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust

    Science.gov (United States)

    Enning, Dennis; Venzlaff, Hendrik; Garrelfs, Julia; Dinh, Hang T; Meyer, Volker; Mayrhofer, Karl; Hassel, Achim W; Stratmann, Martin; Widdel, Friedrich

    2012-01-01

    Iron (Fe0) corrosion in anoxic environments (e.g. inside pipelines), a process entailing considerable economic costs, is largely influenced by microorganisms, in particular sulfate-reducing bacteria (SRB). The process is characterized by formation of black crusts and metal pitting. The mechanism is usually explained by the corrosiveness of formed H2S, and scavenge of ‘cathodic’ H2 from chemical reaction of Fe0 with H2O. Here we studied peculiar marine SRB that grew lithotrophically with metallic iron as the only electron donor. They degraded up to 72% of iron coupons (10 mm × 10 mm × 1 mm) within five months, which is a technologically highly relevant corrosion rate (0.7 mm Fe0 year−1), while conventional H2-scavenging control strains were not corrosive. The black, hard mineral crust (FeS, FeCO3, Mg/CaCO3) deposited on the corroding metal exhibited electrical conductivity (50 S m−1). This was sufficient to explain the corrosion rate by electron flow from the metal (4Fe0 → 4Fe2+ + 8e−) through semiconductive sulfides to the crust-colonizing cells reducing sulfate (8e− + SO42− + 9H+ → HS− + 4H2O). Hence, anaerobic microbial iron corrosion obviously bypasses H2 rather than depends on it. SRB with such corrosive potential were revealed at naturally high numbers at a coastal marine sediment site. Iron coupons buried there were corroded and covered by the characteristic mineral crust. It is speculated that anaerobic biocorrosion is due to the promiscuous use of an ecophysiologically relevant catabolic trait for uptake of external electrons from abiotic or biotic sources in sediments. PMID:22616633

  1. Transformation of benzalkonium chloride under nitrate reducing conditions.

    Science.gov (United States)

    Tezel, Ulas; Pavlostathis, Spyros G

    2009-03-01

    The effect and transformation potential of benzalkonium chlorides (BAC) under nitrate reducing conditions were investigated at concentrations up to 100 mg/L in batch assays using a mixed, mesophilic (35 degrees C) methanogenic culture. Glucose was used as the carbon and energy source and the initial nitrate concentration was 70 mg N/L Dissimilatory nitrate reduction to ammonia (DNRA) and to dinitrogen (DNRN) were observed at BAC concentrations up to 25 mg/L At and above 50 mg BAC/L, DNRA was inhibited and DNRN was incomplete resulting in accumulation of nitrous oxide. Long-term inhibition of methanogenesis and accumulation of volatile fatty acids were observed at and above 50 mg BAC/L Over 99% of the added BAC was recovered from all cultures except the one amended with 100 mg BAC/L where 37% of the initially added BAC was transformed during the 100 day incubation period. Abiotic and biotic assays performed with 100 mg/L of BAC and 5 mM (in the liquid phase) of either nitrate, nitrite, or nitric oxide demonstrated that BAC transformation was abiotic and followed the modified Hofmann degradation pathway, i.e., bimolecular nucleophilic substitution with nitrite. Alkyl dimethyl amines (tertiary amines) were produced at equamolar levels to BAC transformed, but were not further degraded. This is the first report demonstrating the transformation of BAC under nitrate reducing conditions and elucidating the BAC transformation pathway.

  2. Vertical activity distribution of dissimilatory nitrate reduction in coastal marine sediments

    DEFF Research Database (Denmark)

    Behrendt, A.; de Beer, D.; Stief, P.

    2013-01-01

    The relative importance of two dissimilatory nitrate reduction pathways, denitrification (DEN) and dissimilatory nitrate reduction to ammonium (DNRA), was investigated in intact sediment cores from five different coastal marine field sites (Dorum, Aarhus Bight, Mississippi Delta, Limfjord...... reduction was clearly dominated by DEN (59-131% of the total NO3- reduced) rather than by DNRA, irrespective of the sedimentary inventories of electron donors such as organic carbon, sulfide, and iron. Highest ammonium production via DNRA, accounting for up to 8.9% of the total NO3- reduced, was found...... was detected accounting for 37-77% of the total NO3- reduced. These contradictory results might be explained by enhanced NO3- availability for DNRA bacteria in the sediment slurries compared to the core-incubated sediments in which diffusion of NO3- from the water column may only reach DEN bacteria...

  3. Bench-scale study of the effect of phosphate on an aerobic iron oxidation plant for mine water treatment.

    Science.gov (United States)

    Tischler, Judith S; Wiacek, Claudia; Janneck, Eberhard; Schlömann, Michael

    2014-01-01

    At the opencast pit Nochten acidic iron- and sulfate-rich mine waters are treated biotechnologically in a mine-water treatment plant by microbial iron oxidation. Due to the low phosphate concentration in such waters the treatment plant was simulated in bench-scale to investigate the influence of addition of potassium dihydrogen phosphate on chemical and biological parameters of the mine-water treatment. As a result of the phosphate addition the number of cells increased, which resulted in an increase of the iron oxidation rate in the reactor with phosphate addition by a factor of 1.7 compared to a reference approach without phosphate addition. Terminal restriction fragment length polymorphism (T-RFLP) analysis during the cultivation revealed a shift of the microbial community depending on the phosphate addition. While almost exclusively iron-oxidizing bacteria related to "Ferrovum" sp. were detected with phosphate addition, the microbial community was more diverse without phosphate addition. In the latter case, iron-oxidizing bacteria ("Ferrovum" sp., Acidithiobacillus spp.) as well as non-iron-oxidizing bacteria (Acidiphilium sp.) were identified. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Nitrous oxide emission by the non-denitrifying, nitrate ammonifier Bacillus licheniformis.

    Science.gov (United States)

    Sun, Yihua; De Vos, Paul; Heylen, Kim

    2016-01-19

    Firmicutes have the capacity to remove excess nitrate from the environment via either denitrification, dissimilatory nitrate reduction to ammonium or both. The recent renewed interest in their nitrogen metabolism has revealed many interesting features, the most striking being their wide variety of dissimilatory nitrate reduction pathways. In the present study, nitrous oxide production from Bacillus licheniformis, a ubiquitous Gram-positive, spore-forming species with many industrial applications, is investigated. B. licheniformis has long been considered a denitrifier but physiological experiments on three different strains demonstrated that nitrous oxide is not produced from nitrate in stoichiometric amounts, rather ammonium is the most important end-product, produced during fermentation. Significant strain dependency in end-product ratios, attributed to nitrite and ammonium, and medium dependency in nitrous oxide production were also observed. Genome analyses confirmed the lack of a nitrite reductase to nitric oxide, the key enzyme of denitrification. Based on the gene inventory and building on knowledge from other non-denitrifying nitrous oxide emitters, hypothetical pathways for nitrous oxide production, involving NarG, NirB, qNor and Hmp, are proposed. In addition, all publically available genomes of B. licheniformis demonstrated similar gene inventories, with specific duplications of the nar operon, narK and hmp genes as well as NarG phylogeny supporting the evolutionary separation of previously described distinct BALI1 and BALI2 lineages. Using physiological and genomic data we have demonstrated that the common soil bacterium B. licheniformis does not denitrify but is capable of fermentative dissimilatory nitrate/nitrite reduction to ammonium (DNRA) with concomitant production of N2O. Considering its ubiquitous nature and non-fastidious growth in the lab, B. licheniformis is a suitable candidate for further exploration of the actual mechanism of N2O

  5. Branched-chain amino acids reduce hepatic iron accumulation and oxidative stress in hepatitis C virus polyprotein-expressing mice

    Science.gov (United States)

    Korenaga, Masaaki; Nishina, Sohji; Korenaga, Keiko; Tomiyama, Yasuyuki; Yoshioka, Naoko; Hara, Yuichi; Sasaki, Yusuke; Shimonaka, Yasushi; Hino, Keisuke

    2015-01-01

    Background & Aims Branched-chain amino acids (BCAA) reduce the incidence of hepatocellular carcinoma (HCC) in patients with cirrhosis. However, the mechanisms that underlie these effects remain unknown. Previously, we reported that oxidative stress in male transgenic mice that expressed hepatitis C virus polyprotein (HCVTgM) caused hepatic iron accumulation by reducing hepcidin transcription, thereby leading to HCC development. This study investigated whether long-term treatment with BCAA reduced hepatic iron accumulation and oxidative stress in iron-overloaded HCVTgM and in patients with HCV-related advanced fibrosis. Methods Male HCVTgM were fed an excess-iron diet that comprised either casein or 3.0% BCAA, or a control diet, for 6 months. Results For HCVTgM, BCAA supplementation increased the serum hepcidin-25 levels and antioxidant status [ratio of biological antioxidant potential (BAP) relative to derivatives of reactive oxygen metabolites (dROM)], decreased the hepatic iron contents, attenuated reactive oxygen species generation, and restored mitochondrial superoxide dismutase expression and mitochondrial complex I activity in the liver compared with mice fed the control diet. After 48 weeks of BCAA supplementation in patients with HCV-related advanced fibrosis, BAP/dROM and serum hepcidin-25 increased and serum ferritin decreased compared with the pretreatment levels. Conclusions BCAA supplementation reduced oxidative stress by restoring mitochondrial function and improved iron metabolism by increasing hepcidin-25 in both iron-overloaded HCVTgM and patients with HCV-related advanced fibrosis. These activities of BCAA may partially account for their inhibitory effects on HCC development in cirrhosis patients. PMID:25156780

  6. Toxicity of xenobiotics during sulfate, iron, and nitrate reduction in primary sewage sludge suspensions

    DEFF Research Database (Denmark)

    Elsgaard, Lars

    2010-01-01

    The effect and persistence of six organic xenobiotics was tested under sulfate-, iron-, and nitrate-reducing conditions in primary sewage sludge suspensions. The xenobiotics tested were acenaphthene, phenanthrene, di(2-ethylhexyl)phthalate (DEHP), 4-nonylphenol (4-NP), linear alkylbenzene sulfonate...

  7. Preparation of yttrium iron garnet (YIG) by modified domestic iron oxide

    International Nuclear Information System (INIS)

    Mozaffari, M.; Amighian

    2002-01-01

    Iron oxide by product of a local steel complex was modified to use for preparation of Yttrium iron garnet (YIG). The improvement was necessary to reduce impurities, especially the Si0 2 and Cl contents, which have deteriorative effects on magnetic properties and equipment used for preparation of the samples. The modified iron oxide was then mixed with Yttrium oxide of Merck Company in appropriate proportion to obtain a stoichiometric single phase YIG, using the conventional ceramic technique. XRD and SEM equipments were used to identify the resulting phases and microstructure respectively. Magnetic parameters were measured by VSM. Curie temperature of the samples was obtained by DTG (M) method. The results were compared with those obtained from samples that made by Merck iron oxide. There are small differences between the results. This was discussed according to extra pores and minute secondary phase in the samples made by domestic iron oxide. (Author)

  8. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(III) reduction in a riparian zone.

    Science.gov (United States)

    Ding, Bangjing; Li, Zhengkui; Qin, Yunbin

    2017-12-01

    Anaerobic ammonium oxidation coupled to iron(III) reduction (termed Feammox) is a recently discovered pathway of nitrogen cycling. However, little is known about the pathways of N transformation via Feammox process in riparian zones. In this study, evidence for Feammox in riparian zones with or without vegetation cover was demonstrated using isotope tracing technique and high-throughput sequencing technology. The results showed that Feammox could occur in riparian zones, and demonstrated that N 2 directly from Feammox was dominant Feammox pathway. The Feammox rates in vegetated soil samples was 0.32-0.37 mg N kg -1 d -1 , which is higher than that in un-vegetated soil samples (0.20 mg N kg -1 d -1 ). Moreover, the growth of vegetation led to a 4.99-6.41% increase in the abundance of iron reducing bacteria (Anaeromyxobacter, Pseudomonas and Geobacter) and iron reducing bacteria play an essential role in Feammox process. An estimated loss of 23.7-43.9 kg N ha -1 year -1 was associated with Feammox in the examined riparian zone. Overall, the co-occurrence of ammonium oxidation and iron reduction suggest that Feammox can play an essential role in the pathway of nitrogen removal in riparian zones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Moessbauer effect study of oxidation and coordination states of iron in some sodium borate glasse:;

    International Nuclear Information System (INIS)

    Eissa, N.A.; Sanad, A.M.; Youssef, S.M.; El-Henawii, S.A.; Gomaa, S.Sh.; Mostafa, A.G.

    1980-01-01

    A structural study of some sodium borate glasses containing iron was carried out applying ME spectroscopy. Both oxidation and coordination states of iron were investigated under the effect of gradual replacing of sodium carbonate by sodium nitrate in the glass batches. The glasses were melted in porcelain crucibles using an electrically heated furnace at 1000+-10 deg C, then were quenched on a steel plate at room temperature (R.T.). The ME source was 20 mCi radioactive Co-57 in chromium. The obtained ME spectra indicated that at lower sodium nitrate content both Fe 2+ and Fe 3+ are present in these glasses. At moderate concentrations some Fe 3+ ions were separated in a crystalline phase and the rest of the iron ions appeared as ferric ions in glassy state. At high sodium nitrate content only Fe 3+ ions in glassy state were detected. The values of the ME parameters for all iron ions indicated that all of them are in the octahedral coordination state. The density measurements confirm the separation of a crystalline phase at moderate sodium nitrate content. (author)

  10. Effects of nitrate on the treatment of lead contaminated groundwater by nanoscale zerovalent iron.

    Science.gov (United States)

    Su, Yiming; Adeleye, Adeyemi S; Zhou, Xuefei; Dai, Chaomeng; Zhang, Weixian; Keller, Arturo A; Zhang, Yalei

    2014-09-15

    Nanoscale zerovalent iron (nZVI) is efficient for removing Pb(2+) and nitrate from water. However, the influence of nitrate, a common groundwater anion, on Pb(2+) removal by nZVI is not well understood. In this study, we showed that under excess Fe(0) conditions (molar ratio of Fe(0)/nitrate>4), Pb(2+) ions were immobilized more quickly (nitrate-free systems (∼ 15 min) due to increasing pH. With nitrate in excess (molar ratio of Fe(0)/nitratenitrate stimulated the formation of crystal PbxFe3-xO4 (ferrite), which provided additional Pb(2+) removal. However, ∼ 7% of immobilized Pb(2+) ions were released into aqueous phase within 2h due to ferrite deformation. Oxidation-reduction potential (ORP) values below -600 mV correlated with excess Fe(0) conditions (complete Pb(2+) immobilization), while ORP values ≥-475 mV characterized excess nitrate conditions (ferrite process and Pb(2+) release occurrence). This study indicates that ORP monitoring is important for proper management of nZVI-based remediation in the subsurface to avoid lead remobilization in the presence of nitrate. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Diffusion of hydrogen in iron oxides

    International Nuclear Information System (INIS)

    Bruzzoni, P.

    1993-01-01

    The diffusion of hydrogen in transitions metals oxides has been recently studied at room temperature through the permeability electrochemical technique. This work studies thin oxide layers grown in air or in presence of oxidizing atmospheres at temperatures up to 200 deg C. The substrate was pure iron with different superficial treatments. It was observed that these oxides reduce up to three magnitudes orders, the hydrogen stationary flux through membranes of usual thickness in comparison with iron membranes free of oxide. (Author)

  12. Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems.

    Directory of Open Access Journals (Sweden)

    Jarrod J Scott

    Full Text Available Chemolithoautotrophic iron-oxidizing bacteria play an essential role in the global iron cycle. Thus far, the majority of marine iron-oxidizing bacteria have been identified as Zetaproteobacteria, a novel class within the phylum Proteobacteria. Marine iron-oxidizing microbial communities have been found associated with volcanically active seamounts, crustal spreading centers, and coastal waters. However, little is known about the presence and diversity of iron-oxidizing communities at hydrothermal systems along the slow crustal spreading center of the Mid-Atlantic Ridge. From October to November 2012, samples were collected from rust-colored mats at three well-known hydrothermal vent systems on the Mid-Atlantic Ridge (Rainbow, Trans-Atlantic Geotraverse, and Snake Pit using the ROV Jason II. The goal of these efforts was to determine if iron-oxidizing Zetaproteobacteria were present at sites proximal to black smoker vent fields. Small, diffuse flow venting areas with high iron(II concentrations and rust-colored microbial mats were observed at all three sites proximal to black smoker chimneys. A novel, syringe-based precision sampler was used to collect discrete microbial iron mat samples at the three sites. The presence of Zetaproteobacteria was confirmed using a combination of 16S rRNA pyrosequencing and single-cell sorting, while light micros-copy revealed a variety of iron-oxyhydroxide structures, indicating that active iron-oxidizing communities exist along the Mid-Atlantic Ridge. Sequencing analysis suggests that these iron mats contain cosmopolitan representatives of Zetaproteobacteria, but also exhibit diversity that may be uncommon at other iron-rich marine sites studied to date. A meta-analysis of publically available data encompassing a variety of aquatic habitats indicates that Zetaproteobacteria are rare if an iron source is not readily available. This work adds to the growing understanding of Zetaproteobacteria ecology and suggests

  13. Radiation-induced synthesis of gold, iron-oxide composite nanoparticles

    International Nuclear Information System (INIS)

    Seino, Satoshi; Yamamoto, Takao; Nakagawa, Takashi; Kinoshita, Takuya; Kojima, Takao; Taniguchi, Ryoichi; Okuda, Shuichi

    2007-01-01

    Composite nanoparticles consisting of magnetic iron oxide nanoparticles and gold nanoparticles were synthesized using gamma-rays or electron beam. Ionizing irradiation induces the generation of reducing species inside the aqueous solution, and gold ions are reduced to form metallic Au nanoparticles. The size of Au nanoparticles depended on the dose rate and the concentration of support iron oxide. The gold nanoparticles on iron oxide nanoparticles selectively adsorb biomolecules via Au-S bonding. By using magnetic property of the support iron oxide nanoparticles, the composite nanoparticles are expected as a new type of magnetic nanocarrier for biomedical applications. (author)

  14. Characterization of nitrate-reducing and amino acid-using bacteria prominent in nitrotoxin-enriched equine cecal populations

    Science.gov (United States)

    In the present study, populations of equine cecal microbes enriched for enhanced rates of 3-nitro-1-propionic acid (NPA) or nitrate metabolism were diluted and cultured for NPA-metabolizing bacteria on a basal enrichment medium (BEM) or tryptose soy agar (TSA) medium supplemented with either 5 mM NP...

  15. Ultrasonic-assisted synthesis and magnetic studies of iron oxide/MCM-41 nanocomposite

    International Nuclear Information System (INIS)

    Ursachi, Irina; Vasile, Aurelia; Ianculescu, Adelina; Vasile, Eugeniu; Stancu, Alexandru

    2011-01-01

    Highlights: → A quick and facile route for the synthesis of iron oxide/MCM-41 nanocomposite. → Magnetic nanoparticles were stabilized inside the pores of mesoporous silica MCM-41. → The pore size of MCM-41 dictates the properties of iron oxide nanoparticles. → The procedure provides a narrow size distribution of magnetic nanoparticles. - Abstract: Iron oxide nanoparticles were stabilized within the pores of mesoporous silica MCM-41 amino-functionalized by a sonochemical method. Formation of iron oxide nanoparticles inside the mesoporous channels of amino-functionalized MCM-41 was realized by wet impregnation using iron nitrate, followed by calcinations at 550 deg. C in air. The effect of functionalization level on structural and magnetic properties of obtained nanocomposites was studied. The resulting materials were characterized by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy and selected area electron diffraction (HRTEM and SAED), vibrating sample and superconducting quantum interface magnetometers (VSM and SQUID) and nitrogen adsorption-desorption isotherms measurements. The HRTEM images reveal that the most of the iron oxide nanoparticles were dispersed inside the mesopores of silica matrix and the pore diameter of the amino-functionalized MCM-41 matrix dictates the particle size of iron oxide nanoparticles. The obtained material possesses mesoporous structure and interesting magnetic properties. Saturation magnetization value of magnetic iron oxide nanopatricles stabilized in MCM-41 amino-functionalized by in situ sonochemical synthesis was 1.84 emu g -1 . An important finding is that obtained magnetic nanocomposite materials exhibit enhanced magnetic properties than those of iron oxide/MCM-41 nanocomposite obtained by conventional method. The described method is providing a rather short preparation time and a narrow size distribution of iron oxide nanoparticles.

  16. Combined chemical-biological treatment for prevention/rehabilitation of clogged wells by an iron-oxidizing bacterium.

    Science.gov (United States)

    Gino, Efrat; Starosvetsky, Jeanna; Kurzbaum, Eyal; Armon, Robert

    2010-04-15

    Groundwater wells containing large concentrations of ferrous iron face serious clogging problems as a result of biotic iron oxidation. Following a short time after their start off, wells get clogged, and their production efficiency drop significantly up to a total obstruction, making cleanup and rehabilitation an economic burden. The present study was undertaken to test an experimental combined treatment (chemical and biological) for future prevention or rehabilitation of clogged wells. Sphaerotilus natans (an iron-oxidizing bacterium) freshly isolated from a deep well was grown to form biofilms on two systems: coupons and sand buried miniature wedge wire screen baskets. A combined chemical-biological treatment, applied at laboratory scale by use of glycolic acid (2%) and isolated bacteriophages against Sphaerotilus natans (SN1 and ER1-a newly isolated phage) at low multiplicity of infection (MOI), showed inhibition of biofilm formation and inactivation of the contaminant bacteria. In addition to complete inactivation of S. natans planktonic bacteria by the respective phages, earlier biofilm treatment with reduced glycolic acid concentration revealed efficient exopolysaccharide (EPS) digestion allowing phages to be increasingly efficient against biofilm matrix bacteria. Utilization of this combined treatment revealed clean surfaces of a model stainless steel wedge wire screen baskets (commonly used in wells) for up to 60 days.

  17. Electrodeposition of Polypyrrole/Reduced Graphene Oxide/Iron Oxide Nanocomposite as Supercapacitor Electrode Material

    Directory of Open Access Journals (Sweden)

    Y. C. Eeu

    2013-01-01

    Full Text Available Polypyrrole (PPy was reinforced with reduced graphene oxide (RGO and iron oxide to achieve electrochemical stability and enhancement. The ternary nanocomposite film was prepared using a facile one-pot chronoamperometry approach, which is inexpensive and experimentally friendly. The field emission scanning electron microscopy (FESEM image shows a layered morphology of the ternary nanocomposite film as opposed to the dendritic structure of PPy, suggesting hybridization of the three materials during electrodeposition. X-ray diffraction (XRD profile shows the presence of Fe2O3 in the ternary nanocomposite. Cyclic voltammetry (CV analysis illustrates enhanced current for the nanocomposite by twofold and fourfold compared to its binary (PPy/RGO and individual (PPy counterparts, respectively. The ternary nanocomposite film exhibited excellent specific capacitance retention even after 200 cycles of charge/discharge.

  18. Rust dissolution and removal by iron-reducing bacteria: A potential rehabilitation of rusted equipment

    International Nuclear Information System (INIS)

    Starosvetsky, J.; Kamari, R.; Farber, Y.; Bilanović, D.; Armon, R.

    2016-01-01

    Highlights: • The present study demonstrated the high reductive capacity of both strains: the collection S. oneidensis and the wild strain Geobacter spp. (soil isolate). • The experimental strains were successful in Fe 3+ reduction for both states: soluble and crystalline (originally prepared from rust). • Rust dissolution can be improved by: addition of AFC at low concentration (0.2 g/l), increasing bacterial initial inoculum and rust reactive surface. • Both experimental IRB strains were able to completely remove previously formed rust on carbon steel coupons. • Additional results (not showed) revealed that culture S. oneidensis and the environmental isolate Geobacter spp., apparently have a different mechanism of iron reduction that requires further study. - Abstract: Iron reducing bacteria (IRB), to be used in rust dissolution and removal, have been isolated and enriched from different environmental sources. Comparative measurements revealed that a soil isolate (Geobacter sulfurreducens sp.) had the highest reductive activity equivalent to Shewanella oneidensis (strain CIP 106686, pure culture). Both reductive microorganisms can use Fe 3+ ions as electron acceptors from soluble as well as from crystalline sources. In nutrient medium containing soluble Fe 3+ , the highest reductive activity obtained for G. sulfurreducens sp. and S. oneidensis was 93 and 97% respectively. Successful removal of rust from carbon steel coupons has been achieved with both experimental bacteria.

  19. Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate

    Directory of Open Access Journals (Sweden)

    Casper Thorup

    2017-07-01

    Full Text Available This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus. Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR. Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase.

  20. Mechanisms of Persistence of the Ammonia-Oxidizing Bacteria Nitrosomonas to the Biocide Free Nitrous Acid.

    Science.gov (United States)

    Laloo, Andrew E; Wei, Justin; Wang, Dongbo; Narayanasamy, Shaman; Vanwonterghem, Inka; Waite, David; Steen, Jason; Kaysen, Anne; Heintz-Buschart, Anna; Wang, Qilin; Schulz, Benjamin; Nouwens, Amanda; Wilmes, Paul; Hugenholtz, Philip; Yuan, Zhiguo; Bond, Philip L

    2018-05-01

    Free nitrous acid (FNA) exerts a broad range of antimicrobial effects on bacteria, although susceptibility varies considerably among microorganisms. Among nitrifiers found in activated sludge of wastewater treatment processes (WWTPs), nitrite-oxidizing bacteria (NOB) are more susceptible to FNA compared to ammonia-oxidizing bacteria (AOB). This selective inhibition of NOB over AOB in WWTPs bypasses nitrate production and improves the efficiency and costs of the nitrogen removal process in both the activated sludge and anaerobic ammonium oxidation (Anammox) system. However, the molecular mechanisms governing this atypical tolerance of AOB to FNA have yet to be understood. Herein we investigate the varying effects of the antimicrobial FNA on activated sludge containing AOB and NOB using an integrated metagenomics and label-free quantitative sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) metaproteomic approach. The Nitrosomonas genus of AOB, on exposure to FNA, maintains internal homeostasis by upregulating a number of known oxidative stress enzymes, such as pteridine reductase and dihydrolipoyl dehydrogenase. Denitrifying enzymes were upregulated on exposure to FNA, suggesting the detoxification of nitrite to nitric oxide. Interestingly, proteins involved in stress response mechanisms, such as DNA and protein repair enzymes, phage prevention proteins, and iron transport proteins, were upregulated on exposure to FNA. In addition enzymes involved in energy generation were also upregulated on exposure to FNA. The total proteins specifically derived from the NOB genus Nitrobacter was low and, as such, did not allow for the elucidation of the response mechanism to FNA exposure. These findings give us an understanding of the adaptive mechanisms of tolerance within the AOB Nitrosomonas to the biocidal agent FNA.

  1. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Clara S; Fakra, Sirine C; Emerson, David; Fleming, Emily J; Edwards, Katrina J

    2011-07-01

    Neutrophilic Fe-oxidizing bacteria (FeOB) are often identified by their distinctive morphologies, such as the extracellular twisted ribbon-like stalks formed by Gallionella ferruginea or Mariprofundus ferrooxydans. Similar filaments preserved in silica are often identified as FeOB fossils in rocks. Although it is assumed that twisted iron stalks are indicative of FeOB, the stalk's metabolic role has not been established. To this end, we studied the marine FeOB M. ferrooxydans by light, X-ray and electron microscopy. Using time-lapse light microscopy, we observed cells excreting stalks during growth (averaging 2.2 {micro}m h(-1)). Scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy show that stalks are Fe(III)-rich, whereas cells are low in Fe. Transmission electron microscopy reveals that stalks are composed of several fibrils, which contain few-nanometer-sized iron oxyhydroxide crystals. Lepidocrocite crystals that nucleated on the fibril surface are much larger ({approx}100 nm), suggesting that mineral growth within fibrils is retarded, relative to sites surrounding fibrils. C and N 1s NEXAFS spectroscopy and fluorescence probing show that stalks primarily contain carboxyl-rich polysaccharides. On the basis of these results, we suggest a physiological model for Fe oxidation in which cells excrete oxidized Fe bound to organic polymers. These organic molecules retard mineral growth, preventing cell encrustation. This model describes an essential role for stalk formation in FeOB growth. We suggest that stalk-like morphologies observed in modern and ancient samples may be correlated confidently with the Fe-oxidizing metabolism as a robust biosignature.

  2. Microwave-Assisted Combustion Synthesis of Nano Iron Oxide/Iron-Coated Activated Carbon, Anthracite, Cellulose Fiber, and Silica, with Arsenic Adsorption Studies

    Directory of Open Access Journals (Sweden)

    Mallikarjuna N. Nadagouda

    2011-01-01

    Full Text Available Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber, and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was completed within a few minutes. The method used no additional fuel and nitrate, which is present in the precursor itself, to drive the reaction. The obtained samples were then characterized with X-ray mapping, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDS, selected area diffraction pattern (SAED, transmission electron microscopy (TEM, X-ray diffraction (XRD, and inductively coupled plasma (ICP spectroscopy. The size of the iron oxide/iron nanoparticle-coated activated carbon, anthracite, cellulose fiber, and silica samples were found to be in the nano range (50–400 nm. The iron oxide/iron nanoparticles mostly crystallized into cubic symmetry which was confirmed by SAED. The XRD pattern indicated that iron oxide/iron nano particles existed in four major phases. That is, γ-Fe2O3, α-Fe2O3, Fe3O4, and Fe. These iron-coated activated carbon, anthracite, cellulose fiber, and silica samples were tested for arsenic adsorption through batch experiments, revealing that few samples had significant arsenic adsorption.

  3. Inhibition of bio corrosion of steel coupon by sulphate reducing ...

    African Journals Online (AJOL)

    SRB) and Iron oxidizing bacteria (IOB) using Aloe vera (Aloe barbadensis) extract was tested. The water sample revealed a heterotrophic bacterial count of 1.7x103 cfu/ml for the sulphate reducing bacteria and 4.1x103 cfu/ml for the Iron oxidizing ...

  4. Defluoridation by Bacteriogenic Iron Oxides: Sorption Studies

    Science.gov (United States)

    Evans, K.; Ferris, F.

    2009-05-01

    At concentrations above 1 mg/L, fluoride in drinking water can lead to dental and skeletal fluorosis, a disease that causes mottling of the teeth, calcification of ligaments, crippling bone deformities and many other physiological disorders that can, ultimately, lead to death. Conservative estimates are that fluorosis afflicts tens of millions of people worldwide. As there is no treatment for fluorosis, prevention is the only means of controlling the disease. While numerous defluoridation techniques have been explored, no single method has been found to be both effective and inexpensive enough to implement widely. Our research began in India, with a large-scale geochemical study of the groundwater in a fluoride-contaminated region of Orissa. Having developed a better understanding of the geochemical relationships that exist between fluoride and other parameters present in an affected area, as well as the complex relationships that arise among those parameters that can impact the presence of fluoride, we began investigating certain remediation scenarios involving iron oxides. A common approach to remediation involves the partitioning of fluoride from groundwater by sorption onto a variety of materials, one of the most effective of which is iron oxide whose surface area acts as a scavenger for fluoride. In the presence of iron oxidizing bacteria, the oxidation rate of iron has been shown to be ˜6 times greater than in their absence; fluoride should, therefore, be removed from an aqueous environment by bacteriogenic iron oxides (BIOS) much more quickly than by abiotic iron oxides. Most recently, sorption studies have been conducted using both BIOS and synthetic hydrous ferric oxides in order to compare the behavior between biotic and abiotic sorbents. These studies have provided sorption isotherms that allow comparison of fluoride removed by sorption to BIOS versus synthetic iron oxides. Sorption affinity constants have also been determined, which allow for the

  5. Perrhenate sorption kinetics in zerovalent iron in high pH and nitrate media

    Energy Technology Data Exchange (ETDEWEB)

    Lenell, Brian A.; Arai, Yuji, E-mail: yarai@illinois.edu

    2017-01-05

    Graphical abstract: Ammonium adsorption enhanced ReO{sub 4}{sup −} adsorption in ZVI under alkaline conditions (modified from Cho et al., 2015) [39]. - Highlights: • ZVI effectively sorbs Re(VII) at near neutral pH. • Sorption of Re(VII) in ZVI is attributed to the reductive precipitation of Re(IV)O{sub 2}. • The extent of Re(VII) sorption in ZVI decreases with increasing pH from 8 to 10. • The rate of Re(VII) sorption in ZVI increases with increasing nitrate concentration. - Abstract: Technetium(Tc)-99 is one of major risk drivers in low level radioactive liquid waste at the U.S. Department of Energy sites. Cementitious waste technology (CWT) has been considered immobilizing pertechnetate, Tc(VII)O{sub 4}{sup −}, in brine and alkaline waste solutions, as Tc(IV) oxides and/or sulfides with the use of reducing agents like slag. In this study, zero valent iron (ZVI) was evaluated as a potential reducing agent in CWT as a function of pH and [nitrate] (0–0.1 M) using perrhenate, Re(VII)O{sub 4}{sup −}, as an analogue for Tc(VII)O{sub 4}{sup −}. Batch Re(VII)O{sub 4}{sup −} sorption experiments in conjunction with X-ray absorption spectroscopic analysis showed that the Re(VII) sorption occurred via the reductive precipitation of Re(IV)O{sub 2}(s) and the extent of sorption decreased with increasing pH from 8 to 10. Interestingly, pseudo 2nd order kinetic rates increased with increasing [nitrate] which was attributed to co-adsorption of NH{sub 4}{sup +} (i.e., a reaction product of reduced nitrate by ZVI), facilitating electrostatic attraction towards ReO{sub 4}{sup −} under alkaline conditions. Considering the thermodynamically favorable reduction of Tc(VII) over Re(VII), ZVI might have potential for improving the reduction capacity of the current CWT.

  6. Fast Oxidation Processes in a Naturally Reduced Aquifer Zone Caused by Dissolved Oxygen

    Science.gov (United States)

    Davis, J. A.; Jemison, N. E.; Williams, K. H.; Hobson, C.; Bush, R. P.

    2014-12-01

    The occurrence of naturally reduced zones is quite common in alluvial aquifers in the western U.S.A. due to the burial of woody debris in flood plains. The naturally reduced zones are heterogeneously dispersed in such aquifers and are characterized by high concentrations of organic carbon and reduced phases, including iron sulfides and reduced forms of metals, including uranium(IV). The persistence of high concentrations of dissolved uranium(VI) at uranium-contaminated aquifers on the Colorado Plateau has been attributed to slow oxidation of insoluble uranium(IV) mineral phases that are found in association with these natural reducing zones, although there is little understanding of the relative importance of various potential oxidants. Three field experiments were conducted within an alluvial aquifer adjacent to the Colorado River near Rifle, CO wherein groundwater associated with naturally reduced zones was pumped into a gas-impermeable tank, mixed with a conservative tracer (Br-), bubbled with a gas phase composed of 97% O2 and 3% CO2, and then returned to the subsurface in the same well from which it was withdrawn. Within minutes of re-injection of the oxygenated groundwater, dissolved uranium(VI) concentrations increased from less than 1 μM to greater than 2.5 μM, demonstrating that oxygen can be an important oxidant for uranium in these field systems if supplied to the naturally reduced zones. Small concentrations of nitrate were also observed in the previously nitrate-free groundwater, and Fe(II) decreased to the detection limit. These results contrast with other laboratory and field results in which oxygen was introduced to systems containing high concentrations of mackinawite (FeS) rather than the more crystalline iron sulfides found in aged, naturally reduced zones. The flux of oxygen to the naturally reduced zones in the alluvial aquifers occurs mainly through interactions between groundwater and gas phases at the water table, and seasonal variations

  7. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.)

    KAUST Repository

    Ngugi, David

    2011-11-28

    Soil-feeding termites play important roles in the dynamics of carbon and nitrogen in tropical soils. Through the mineralization of nitrogenous humus components, their intestinal tracts accumulate enormous amounts of ammonia, and nitrate and nitrite concentrations are several orders of magnitude above those in the ingested soil. Here, we studied the metabolism of nitrate in the different gut compartments of two Cubitermes and one Ophiotermes species using 15N isotope tracer analysis. Living termites emitted N 2 at rates ranging from 3.8 to 6.8nmolh -1 (g fresh wt.) -1. However, in homogenates of individual gut sections, denitrification was restricted to the posterior hindgut, whereas nitrate ammonification occurred in all gut compartments and was the prevailing process in the anterior gut. Potential rates of nitrate ammonification for the entire intestinal tract were tenfold higher than those of denitrification, implying that ammonification is the major sink for ingested nitrate in the intestinal tract of soil-feeding termites. Because nitrate is efficiently reduced already in the anterior gut, reductive processes in the posterior gut compartments must be fuelled by an endogenous source of oxidized nitrogen species. Quite unexpectedly, we observed an anaerobic oxidation of 15N-labelled ammonia to nitrite, especially in the P4 section, which is presumably driven by ferric iron; nitrification and anammox activities were not detected. Two of the termite species also emitted substantial amounts of N 2O, ranging from 0.4 to 3.9nmolh -1 (g fresh wt.) -1, providing direct evidence that soil-feeding termites are a hitherto unrecognized source of this greenhouse gas in tropical soils. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Long-term aerobic exercise increases redox-active iron through nitric oxide in rat hippocampus.

    Science.gov (United States)

    Chen, Qian; Xiao, De-Sheng

    2014-01-30

    Adult hippocampus is highly vulnerable to iron-induced oxidative stress. Aerobic exercise has been proposed to reduce oxidative stress but the findings in the hippocampus are conflicting. This study aimed to observe the changes of redox-active iron and concomitant regulation of cellular iron homeostasis in the hippocampus by aerobic exercise, and possible regulatory effect of nitric oxide (NO). A randomized controlled study was designed in the rats with swimming exercise treatment (for 3 months) and/or an unselective inhibitor of NO synthase (NOS) (L-NAME) treatment. The results from the bleomycin-detectable iron assay showed additional redox-active iron in the hippocampus by exercise treatment. The results from nonheme iron content assay, combined with the redox-active iron content, showed increased storage iron content by exercise treatment. NOx (nitrate plus nitrite) assay showed increased NOx content by exercise treatment. The results from the Western blot assay showed decreased ferroportin expression, no changes of TfR1 and DMT1 expressions, increased IRP1 and IRP2 expression, increased expressions of eNOS and nNOS rather than iNOS. In these effects of exercise treatment, the increased redox-active iron content, storage iron content, IRP1 and IRP2 expressions were completely reversed by L-NAME treatment, and decreased ferroportin expression was in part reversed by L-NAME. L-NAME treatment completely inhibited increased NOx and both eNOS and nNOS expression in the hippocampus. Our findings suggest that aerobic exercise could increase the redox-active iron in the hippocampus, indicating an increase in the capacity to generate hydroxyl radicals through the Fenton reactions, and aerobic exercise-induced iron accumulation in the hippocampus might mainly result from the role of the endogenous NO. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Ochrobactrum anthropi used to control ammonium for nitrate removal by starch-stabilized nanoscale zero valent iron.

    Science.gov (United States)

    Zhou, Jun; Sun, Qianyu; Chen, Dan; Wang, Hongyu; Yang, Kai

    2017-10-01

    In this study, the hydrogenotrophic denitrifying bacterium Ochrobactrum anthropi was added in to the process of nitrate removal by starch-stabilized nanoscale zero valent iron (nZVI) to minimize undesirable ammonium. The ammonium control performance and cooperative mechanism of this combined process were investigated, and batch experiments were conducted to discuss the effects of starch-stabilized nZVI dose, biomass, and pH on nitrate reduction and ammonium control of this system. The combined system achieved satisfactory performance because the anaerobic iron corrosion process generates H 2 , which is used as an electron donor for the autohydrogenotrophic bacterium Ochrobactrum anthropi to achieve the autohydrogenotrophic denitrification process converting nitrate to N 2 . When starch-stabilized nZVI dose was increased from 0.5 to 2.0 g/L, nitrate reduction rate gradually increased, and ammonium yield also increased from 9.40 to 60.51 mg/L. Nitrate removal rate gradually decreased and ammonium yield decreased from 14.93 to 2.61 mg/L with initial OD 600 increasing from 0.015 to 0.080. The abiotic Fe 0 reduction process played a key role in nitrate removal in an acidic environment and generated large amounts of ammonium. Meanwhile, the nitrate removal rate decreased and ammonium yield also reduced in an alkaline environment.

  10. The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering

    International Nuclear Information System (INIS)

    Sasaki, K.; Tsunekawa, M.; Ohtsuka, T.; Konno, H.

    1998-01-01

    The paper investigates the role of the sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering in order to clarify the effects of the bacteria on the dissolution behavior of pyrite and the formation of secondary minerals using Raman spectroscopy and powder X-ray diffraction (XRD) in addition to solution analysis. It was found that T. thiooxidans, when present with the iron-oxidizing bacteria Thiobacillus ferrooxidans, enhanced the dissolution of Fe and S species for pyrite, whereas T. thiooxidans alone did not oxidize pyrite. Enhancement of the consumption of elemental sulfur and regeneration of Fe(II) ions were also observed with T. thiooxidans together with T. ferrooxidans, while this did not occur with T. ferrooxidans alone

  11. Iron oxide surfaces

    Science.gov (United States)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  12. Assessing the Role of Iron Sulfides in the Long Term Sequestration of U by Sulfate Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Bruce; Zhou, Chen; Vannela, Raveender

    2013-12-31

    This four-year project’s overarching aim was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed under sulfate-reducing conditions when subjected to re-oxidizing conditions. As stated in this final report, significant progress was achieved through the collaborative research effort conducted at Arizona State University (ASU) and the University of Michigan (UM).

  13. Nitrous oxide metabolism in nitrate-reducing bacteria: Physiology and regulatory mechanisms

    OpenAIRE

    Torres, Maria; Simon, Jorg; Rowley, Gary; Bedmar, Eulogio; Richardson, David; Gates, Andrew; Delgado, Maria

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nit- ric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the appli- cation of synthetic nitrogen-containing fertilizers. Thus, mitigation stra...

  14. Iron-Coupled Anaerobic Oxidation of Methane Performed by a Mixed Bacterial-Archaeal Community Based on Poorly Reactive Minerals.

    Science.gov (United States)

    Bar-Or, Itay; Elvert, Marcus; Eckert, Werner; Kushmaro, Ariel; Vigderovich, Hanni; Zhu, Qingzeng; Ben-Dov, Eitan; Sivan, Orit

    2017-11-07

    Anaerobic oxidation of methane (AOM) was shown to reduce methane emissions by over 50% in freshwater systems, its main natural contributor to the atmosphere. In these environments iron oxides can become main agents for AOM, but the underlying mechanism for this process has remained enigmatic. By conducting anoxic slurry incubations with lake sediments amended with 13 C-labeled methane and naturally abundant iron oxides the process was evidenced by significant 13 C-enrichment of the dissolved inorganic carbon pool and most pronounced when poorly reactive iron minerals such as magnetite and hematite were applied. Methane incorporation into biomass was apparent by strong uptake of 13 C into fatty acids indicative of methanotrophic bacteria, associated with increasing copy numbers of the functional methane monooxygenase pmoA gene. Archaea were not directly involved in full methane oxidation, but their crucial participation, likely being mediators in electron transfer, was indicated by specific inhibition of their activity that fully stopped iron-coupled AOM. By contrast, inhibition of sulfur cycling increased 13 C-methane turnover, pointing to sulfur species involvement in a competing process. Our findings suggest that the mechanism of iron-coupled AOM is accomplished by a complex microbe-mineral reaction network, being likely representative of many similar but hidden interactions sustaining life under highly reducing low energy conditions.

  15. Evaluation of the Effects of Iron Oxides on Soil Reducing Conditions and Methane Generation in Cambodian Wetland Rice Fields

    Science.gov (United States)

    Weaver, M.; Benner, S.; Fendorf, S.; Sampson, M.; Leng, M.

    2007-12-01

    Atmospheric concentrations of methane have been steadily increasing over the last 100 years, which has given rise to research of wetland rice fields, recently identified as a major anthropomorphic source of methane. Establishment of experimental soil pots, cultivating an aromatic early variety rice strain in the Kean Svay District of Cambodia, have recently been carried out to evaluate methods to minimize methane release by promoting redox buffering by iron oxides. In the first series of experiments, iron oxides were added to the soils and the rate of change in reducing conditions and methanogenesis onset was monitored. In the second series of experiments, plots are subject to periodic drying cycles to promote rejuvenation of buffering iron oxides. Initial results indicate a delay in the onset of methanogenesis, and overall methane generation, in plots where initial iron oxides concentrations are elevated.

  16. Reduction Behaviors of Carbon Composite Iron Oxide Briquette Under Oxidation Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Woo; Kim, Kang-Min; Kwon, Jae-Hong; Han, Jeong-Whan [Inha University, Incheon (Korea, Republic of); Son, Sang-Han [POSCO, Pohang (Korea, Republic of)

    2017-01-15

    The carbon composite iron oxide briquette (CCB) is considered a potential solution to the upcoming use of low grade iron resources in the ironmaking process. CCB is able to reduce raw material cost by enabling the use of low grade powdered iron ores and coal. Additionally, the fast reduction of iron oxides by direct contact with coal can be utilized. In this study, the reduction behaviors of CCB were investigated in the temperature range of 200-1200 ℃ under oxidizing atmosphere. Briquettes were prepared by mixing iron ore and coal in a weight ratio of 8:2. Then reduction experiments were carried out in a mixed gas atmosphere of N{sub 2}, O{sub 2}, and CO{sub 2}. Compressive strength tests and quantitative analysis were performed by taking samples at each target temperature. In addition, the reduction degree depending on the reaction time was evaluated by off-gas analysis during the reduction test. It was found that the compressive strength and the metallization degree of the reduced briquettes increased with increases in the reaction temperature and holding time. However, it tended to decrease when the re-oxidation phenomenon was caused by injected oxygen. The degree of reduction reached a maximum value in 26 minutes. Therefore, the re-oxidation phenomenon becomes dominant after 26 minutes.

  17. A twisted tale - how biocorrosion communities yield new insight on the distribution of marine iron-oxidizing bacteria

    Science.gov (United States)

    McBeth, J. M.; Emerson, D.

    2011-12-01

    Microbiologically influenced corrosion (MIC) of mild steel is a complex process involving biogeochemical interactions between bacteria, steel surfaces, and biogenic and abiotically produced minerals. The role of neutrophilic iron-oxidizing bacteria (FeOB) in this process is poorly understood, and surprisingly, little is known about the microbial ecology of corroding steel in marine environments. Based on previous work (McBeth et al 2011), we hypothesized that coastal sediments act as reservoirs for marine FeOB of the candidatus class 'Zetaproteobacteria', and that these bacteria will colonize and become numerically abundant on steel surfaces. To test this, mild steel coupons were incubated in a salt marsh and sampled over 40 days in summer 2010. DNA extracted from the steel surfaces was analyzed for overall bacterial diversity by pyrosequencing of the V4 variable region of the 16S rRNA gene, and relevant communities were quantified using qPCR. The qPCR analyses were done using 16S primers specific to prokaryotes (Takai & Horikoshi 2000) and Zetaproteobacteria (Kato et al 2009), and a dsrA gene specific primer (Ben-Dov et al 2007) to assess the population of sulfate-reducing bacteria (SRB). Pyrosequencing data analyses showed Zetaproteobacteria were present on steel samples throughout the incubations and were also present in adjacent sediments; however, the diversity of Zetaproteobacteria was lower on the steel in comparison with sediments, indicating specific populations were enriched on the steel coupons. Iron oxyhydroxide stalk biosignatures were observed on the steel and in enrichment cultures, evidence that the Zetaproteobacteria identified using molecular techniques were likely FeOB. Relatives of the H2-oxidizing genus Hydrogenophaga and members of the family Rhodobacterales were also identified as important members of the biocorrosion community and were present both on steel and in sediments. The diversity of these organisms on steel surfaces increased with

  18. H2S Attenuates LPS-Induced Acute Lung Injury by Reducing Oxidative/Nitrative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Hong-Xia Zhang

    2016-12-01

    Full Text Available Background: Hydrogen sulfide (H2S, known as the third endogenous gaseous transmitter, has received increasing attention because of its diverse effects, including angiogenesis, vascular relaxation and myocardial protection.We aimed to investigate the role of H2S in oxidative/nitrative stress and inflammation in acute lung injury (ALI induced by endotoxemia. Methods: Male ICR mice were divided in six groups: (1 Control group; (2 GYY4137treatment group; (3 L-NAME treatment group; (4 lipopolysaccharide (LPS treatment group; (5 LPS with GYY4137 treatment group; and (6 LPS with L-NAME treatment group. The lungs were analysed by histology, NO production in the mouse lungs determined by modified Griess (Sigma-Aldrich reaction, cytokine levels utilizing commercialkits, and protein abundance by Western blotting. Results: GYY4137, a slowly-releasing H2S donor, improved the histopathological changes in the lungs of endotoxemic mice. Treatment with NG-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase (NOS inhibitor, increased anti-oxidant biomarkers such as thetotal antioxidant capacity (T-AOC and theactivities of catalase (CAT and superoxide dismutase (SOD but decreased a marker of peroxynitrite (ONOO- action and 3-nitrotyrosine (3-NT in endotoxemic lung. L-NAME administration also suppressed inflammation in endotoxemic lung, as evidenced by the decreased pulmonary levels of interleukin (IL-6, IL-8, and myeloperoxidase (MPO and the increased level of anti-inflammatory cytokine IL-10. GYY4137 treatment reversed endotoxin-induced oxidative/nitrative stress, as evidenced by a decrease in malondialdehyde (MDA, hydrogenperoxide (H2O2 and 3-NT and an increase in the antioxidant biomarker ratio of reduced/oxidized glutathione(GSH/GSSG ratio and T-AOC, CAT and SOD activity. GYY4137 also attenuated endotoxin-induced lung inflammation. Moreover, treatment with GYY4137 inhibited inducible NOS (iNOS expression and nitric oxide (NO production in the

  19. Microbial Oxidation of Hg(0) - Its Effect on Hg Stable Isotope Fractionation and Methylmercury Production

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Nathan [Rutgers Univ., New Brunswick, NJ (United States); Barkay, Tamar [Rutgers Univ., New Brunswick, NJ (United States); Reinfelder, John [Rutgers Univ., New Brunswick, NJ (United States)

    2016-06-28

    Mercury (Hg) associated with mixed waste generated by nuclear weapons manufacturing has contaminated vast areas of the Oak Ridge Reservation (ORR). Neurotoxic methylmercury (MeHg) has been formed from the inorganic Hg wastes discharged into headwaters of East Fork Poplar Creek (EFPC). Thus, understanding the processes and mechanisms that lead to Hg methylation along the flow path of EFPC is critical to predicting the impacts of the contamination and the design of remedial action at the ORR. In part I of our project, we investigated Hg(0) oxidation and methylation by anaerobic bacteria. We discovered that the anaerobic bacterium Desulfovibrio desulfuricans ND132 can oxidize elemental mercury [Hg(0)]. When provided with dissolved elemental mercury, D. desulfuricans ND132 converts Hg(0) to Hg(II) and neurotoxic methylmercury [MeHg]. We also demonstrated that diverse species of subsurface bacteria oxidizes dissolved elemental mercury under anoxic conditions. The obligate anaerobic bacterium Geothrix fermentans H5, and the facultative anaerobic bacteria Shewanella oneidensis MR-1 and Cupriavidus metallidurans AE104 can oxidize Hg(0) to Hg(II) under anaerobic conditions. In part II of our project, we established anaerobic enrichment cultures and obtained new bacterial strains from the DOE Oak Ridge site. We isolated three new bacterial strains from subsurface sediments collected from Oak Ridge. These isolates are Bradyrhizobium sp. strain FRC01, Clostridium sp. strain FGH, and a novel Negativicutes strain RU4. Strain RU4 is a completely new genus and species of bacteria. We also demonstrated that syntrophic interactions between fermentative bacteria and sulfate-reducing bacteria in Oak Ridge saprolite mediate iron reduction via multiple mechanisms. Finally, we tested the impact of Hg on denitrification in nitrate reducing enrichment cultures derived from subsurface sediments from the Oak Ridge site, where nitrate is a major contaminant. We showed that there is an inverse

  20. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments.

    Science.gov (United States)

    Bonnefoy, Violaine; Holmes, David S

    2012-07-01

    This minireview presents recent advances in our understanding of iron oxidation and homeostasis in acidophilic Bacteria and Archaea. These processes influence the flux of metals and nutrients in pristine and man-made acidic environments such as acid mine drainage and industrial bioleaching operations. Acidophiles are also being studied to understand life in extreme conditions and their role in the generation of biomarkers used in the search for evidence of existing or past extra-terrestrial life. Iron oxidation in acidophiles is best understood in the model organism Acidithiobacillus ferrooxidans. However, recent functional genomic analysis of acidophiles is leading to a deeper appreciation of the diversity of acidophilic iron-oxidizing pathways. Although it is too early to paint a detailed picture of the role played by lateral gene transfer in the evolution of iron oxidation, emerging evidence tends to support the view that iron oxidation arose independently more than once in evolution. Acidic environments are generally rich in soluble iron and extreme acidophiles (e.g. the Leptospirillum genus) have considerably fewer iron uptake systems compared with neutrophiles. However, some acidophiles have been shown to grow as high as pH 6 and, in the case of the Acidithiobacillus genus, to have multiple iron uptake systems. This could be an adaption allowing them to respond to different iron concentrations via the use of a multiplicity of different siderophores. Both Leptospirillum spp. and Acidithiobacillus spp. are predicted to synthesize the acid stable citrate siderophore for Fe(III) uptake. In addition, both groups have predicted receptors for siderophores produced by other microorganisms, suggesting that competition for iron occurs influencing the ecophysiology of acidic environments. Little is known about the genetic regulation of iron oxidation and iron uptake in acidophiles, especially how the use of iron as an energy source is balanced with its need to take up

  1. Microbial impact on metallic corrosion processes: case of iron reducing bacteria

    International Nuclear Information System (INIS)

    Esnault, Loic; Jullien, Michel; Libert, Marie; Mustin, Christian

    2010-01-01

    corrosion product alteration, magnetite and hematite mainly (c). For that, an optimised method of H2 measure at weak pressure has been realised by gaseous phase chromatography coupled with a sensitive pressure captor. - H 2 + Fe 3+ magnetite → Fe 2+ solution + 2H + (c) The interest of this study is to determine and to understand the reactivity of one model microbe species, the ferric-reducing bacterium 'Schewanella oneidensis strain MR-1', on a Fe(0) corrosion and these corrosion products (magnetite, hematite mainly) in presence or not of clay minerals (bentonite MX80). The introduction of short-term experiments in the scattered environment (batch) over reactivity Iron-bacteria with or without clay mineral is here studied through a kinetic study of H 2 bio-consumed or product, chemical analysis in solution, and by use a crystallo-chemistry tool (XRD and SEM). The main results are bio-alteration of corrosion products with development of ferri-reducing bacterial community. This microbial alteration entails an increase of aqueous corrosion by consumption of corrosion products (passivation layer). In such condition, corrosion process could be reactivated. (authors)

  2. Iron cycling at corroding carbon steel surfaces

    Science.gov (United States)

    Lee, Jason S.; McBeth, Joyce M.; Ray, Richard I.; Little, Brenda J.; Emerson, David

    2013-01-01

    Surfaces of carbon steel (CS) exposed to mixed cultures of iron-oxidizing bacteria (FeOB) and dissimilatory iron-reducing bacteria (FeRB) in seawater media under aerobic conditions were rougher than surfaces of CS exposed to pure cultures of either type of microorganism. The roughened surface, demonstrated by profilometry, is an indication of loss of metal from the surface. In the presence of CS, aerobically grown FeOB produced tight, twisted helical stalks encrusted with iron oxides. When CS was exposed anaerobically in the presence of FeRB, some surface oxides were removed. However, when the same FeOB and FeRB were grown together in an aerobic medium, FeOB stalks were less encrusted with iron oxides and appeared less tightly coiled. These observations suggest that iron oxides on the stalks were reduced and solubilized by the FeRB. Roughened surfaces of CS and denuded stalks were replicated with three culture combinations of different species of FeOB and FeRB under three experimental conditions. Measurements of electrochemical polarization resistance established different rates of corrosion of CS in aerobic and anaerobic media, but could not differentiate rate differences between sterile controls and inoculated exposures for a given bulk concentration of dissolved oxygen. Similarly, total iron in the electrolyte could not be used to differentiate treatments. The experiments demonstrate the potential for iron cycling (oxidation and reduction) on corroding CS in aerobic seawater media. PMID:24093730

  3. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens.

    Science.gov (United States)

    Samuelsson, M O

    1985-10-01

    The influence of redox potential on dissimilatory nitrate reduction to ammonium was investigated on a marine bacterium, Pseudomonas putrefaciens. Nitrate was consumed (3.1 mmol liter-1), and ammonium was produced in cultures with glucose and without sodium thioglycolate. When sodium thioglycolate was added, nitrate was consumed at a lower rate (1.1 mmol liter-1), and no significant amounts of nitrite or ammonium were produced. No growth was detected in glucose media either with or without sodium thioglycolate. When grown on tryptic soy broth, the production of nitrous oxide paralleled growth. In the same medium, but with sodium thioglycolate, nitrous oxide was first produced during growth and then consumed. Acetylene caused the nitrous oxide to accumulate. These results and the mass balance calculations for different nitrogen components indicate that P. putrefaciens has the capacity to dissimilate nitrate to ammonium as well as to dinitrogen gas and nitrous oxide (denitrification). The dissimilatory pathway to ammonium dominates except when sodium thioglycolate is added to the medium.

  4. Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: a novel prospective technology for autotrophic denitrification.

    Science.gov (United States)

    Zhang, Meng; Zheng, Ping; Li, Wei; Wang, Ru; Ding, Shuang; Abbas, Ghulam

    2015-03-01

    Nitrate-dependent anaerobic ferrous oxidizing (NAFO) is a valuable biological process, which utilizes ferrous iron to convert nitrate into nitrogen gas, removing nitrogen from wastewater. In this work, the performance of NAFO process was investigated as a nitrate removal technology. The results showed that NAFO system was feasible for autotrophic denitrification. The volumetric loading rate (VLR) and volumetric removal rate (VRR) under steady state were 0.159±0.01 kg-N/(m(3) d) and 0.073±0.01 kg-N/(m(3) d), respectively. In NAFO system, the effluent pH was suggested as an indicator which demonstrated a good correlation with nitrogen removal. The nitrate concentration was preferred to be less than 130 mg-N/L. Organic matters had little influence on NAFO performance. Abundant iron compounds were revealed to accumulate in NAFO sludge with peak value of 51.73% (wt), and they could be recycled for phosphorus removal, with capacity of 16.57 mg-P/g VS and removal rate of 94.77±2.97%, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. From bacteria to mollusks: the principles underlying the biomineralization of iron oxide materials.

    Science.gov (United States)

    Faivre, Damien; Godec, Tina Ukmar

    2015-04-13

    Various organisms possess a genetic program that enables the controlled formation of a mineral, a process termed biomineralization. The variety of biological material architectures is mind-boggling and arises from the ability of organisms to exert control over crystal nucleation and growth. The structure and composition of biominerals equip biomineralizing organisms with properties and functionalities that abiotically formed materials, made of the same mineral, usually lack. Therefore, elucidating the mechanisms underlying biomineralization and morphogenesis is of interdisciplinary interest to extract design principles that will enable the biomimetic formation of functional materials with similar capabilities. Herein, we summarize what is known about iron oxides formed by bacteria and mollusks for their magnetic and mechanical properties. We describe the chemical and biological machineries that are involved in controlling mineral precipitation and organization and show how these organisms are able to form highly complex structures under physiological conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth.

    Science.gov (United States)

    Luef, Birgit; Fakra, Sirine C; Csencsits, Roseann; Wrighton, Kelly C; Williams, Kenneth H; Wilkins, Michael J; Downing, Kenneth H; Long, Philip E; Comolli, Luis R; Banfield, Jillian F

    2013-02-01

    Iron-reducing bacteria (FeRB) play key roles in anaerobic metal and carbon cycling and carry out biogeochemical transformations that can be harnessed for environmental bioremediation. A subset of FeRB require direct contact with Fe(III)-bearing minerals for dissimilatory growth, yet these bacteria must move between mineral particles. Furthermore, they proliferate in planktonic consortia during biostimulation experiments. Thus, a key question is how such organisms can sustain growth under these conditions. Here we characterized planktonic microbial communities sampled from an aquifer in Rifle, Colorado, USA, close to the peak of iron reduction following in situ acetate amendment. Samples were cryo-plunged on site and subsequently examined using correlated two- and three-dimensional cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission X-ray microscopy (STXM). The outer membranes of most cells were decorated with aggregates up to 150 nm in diameter composed of ∼3 nm wide amorphous, Fe-rich nanoparticles. Fluorescent in situ hybridization of lineage-specific probes applied to rRNA of cells subsequently imaged via cryo-TEM identified Geobacter spp., a well-studied group of FeRB. STXM results at the Fe L(2,3) absorption edges indicate that nanoparticle aggregates contain a variable mixture of Fe(II)-Fe(III), and are generally enriched in Fe(III). Geobacter bemidjiensis cultivated anaerobically in the laboratory on acetate and hydrous ferric oxyhydroxides also accumulated mixed-valence nanoparticle aggregates. In field-collected samples, FeRB with a wide variety of morphologies were associated with nano-aggregates, indicating that cell surface Fe(III) accumulation may be a general mechanism by which FeRB can grow while in planktonic suspension.

  7. Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin et al

    2008-01-01

    Full Text Available The main objectives of the present study were to investigate the chemical reduction of nitrate or nitrite species by zero-valent iron nanoparticle (ZVIN in aqueous solution and related reaction kinetics or mechanisms using fine structure characterization. This work also exemplifies the utilization of field emission-scanning electron microscope (FE–SEM, transmission electron microscopy (TEM, and x-ray diffraction (XRD to reveal the speciation and possible reaction pathway in a very complex adsorption and redox reaction process. Experimentally, ZVIN of this study was prepared by sodium borohydride reduction method at room temperature and ambient pressure. The morphology of as-synthesized ZVIN shows that the nearly ball and ultrafine particles ranged of 20–50 nm were observed with FE–SEM or TEM analysis. The kinetic model of nitrites or nitrates reductive reaction by ZVIN is proposed as a pseudo first-order kinetic equation. The nitrite and nitrate removal efficiencies using ZVIN were found 65–83% and 51–68%, respectively, based on three different initial concentrations. Based on the XRD pattern analyses, it is found that the quantitative relationship between nitrite and Fe(III or Fe(II is similar to the one between nitrate and Fe(III in the ZVIN study. The possible reason is due to the faster nitrite reduction by ZVIN. In fact, the occurrence of the relative faster nitrite reductive reaction suggested that the passivation of the ZVIN have a significant contribution to iron corrosion. The extended x-ray absorption fine structure (EXAFS or x-ray absorption near edge structure (XANES spectra show that the nitrites or nitrates reduce to N2 or NH3 while oxidizing the ZVIN to Fe2O3 or Fe3O4 electrochemically. It is also very clear that decontamination of nitrate or nitrite species in groundwater via the in-situ remediation with a ZVIN permeable reactive barrier would be environmentally attractive.

  8. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.

    Science.gov (United States)

    Lovley, D R; Phillips, E J

    1988-06-01

    A dissimilatory Fe(III)- and Mn(IV)-reducing microorganism was isolated from freshwater sediments of the Potomac River, Maryland. The isolate, designated GS-15, grew in defined anaerobic medium with acetate as the sole electron donor and Fe(III), Mn(IV), or nitrate as the sole electron acceptor. GS-15 oxidized acetate to carbon dioxide with the concomitant reduction of amorphic Fe(III) oxide to magnetite (Fe(3)O(4)). When Fe(III) citrate replaced amorphic Fe(III) oxide as the electron acceptor, GS-15 grew faster and reduced all of the added Fe(III) to Fe(II). GS-15 reduced a natural amorphic Fe(III) oxide but did not significantly reduce highly crystalline Fe(III) forms. Fe(III) was reduced optimally at pH 6.7 to 7 and at 30 to 35 degrees C. Ethanol, butyrate, and propionate could also serve as electron donors for Fe(III) reduction. A variety of other organic compounds and hydrogen could not. MnO(2) was completely reduced to Mn(II), which precipitated as rhodochrosite (MnCO(3)). Nitrate was reduced to ammonia. Oxygen could not serve as an electron acceptor, and it inhibited growth with the other electron acceptors. This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe(III) or Mn(IV) reduction can yield energy for microbial growth. GS-15 provides a model for how enzymatically catalyzed reactions can be quantitatively significant mechanisms for the reduction of iron and manganese in anaerobic environments.

  9. Nitrate radical oxidation of γ-terpinene: hydroxy nitrate, total organic nitrate, and secondary organic aerosol yields

    Science.gov (United States)

    Slade, Jonathan H.; de Perre, Chloé; Lee, Linda; Shepson, Paul B.

    2017-07-01

    Polyolefinic monoterpenes represent a potentially important but understudied source of organic nitrates (ONs) and secondary organic aerosol (SOA) following oxidation due to their high reactivity and propensity for multi-stage chemistry. Recent modeling work suggests that the oxidation of polyolefinic γ-terpinene can be the dominant source of nighttime ON in a mixed forest environment. However, the ON yields, aerosol partitioning behavior, and SOA yields from γ-terpinene oxidation by the nitrate radical (NO3), an important nighttime oxidant, have not been determined experimentally. In this work, we present a comprehensive experimental investigation of the total (gas + particle) ON, hydroxy nitrate, and SOA yields following γ-terpinene oxidation by NO3. Under dry conditions, the hydroxy nitrate yield = 4(+1/-3) %, total ON yield = 14(+3/-2) %, and SOA yield ≤ 10 % under atmospherically relevant particle mass loadings, similar to those for α-pinene + NO3. Using a chemical box model, we show that the measured concentrations of NO2 and γ-terpinene hydroxy nitrates can be reliably simulated from α-pinene + NO3 chemistry. This suggests that NO3 addition to either of the two internal double bonds of γ-terpinene primarily decomposes forming a relatively volatile keto-aldehyde, reconciling the small SOA yield observed here and for other internal olefinic terpenes. Based on aerosol partitioning analysis and identification of speciated particle-phase ON applying high-resolution liquid chromatography-mass spectrometry, we estimate that a significant fraction of the particle-phase ON has the hydroxy nitrate moiety. This work greatly contributes to our understanding of ON and SOA formation from polyolefin monoterpene oxidation, which could be important in the northern continental US and the Midwest, where polyolefinic monoterpene emissions are greatest.

  10. Iron availability, nitrate uptake, and exportable new production in the subarctic Pacific. [phytoplankton population growth support and atmospheric CO2 removal

    Science.gov (United States)

    Banse, Karl

    1991-01-01

    This paper presents a critique of experimental data and papers by Martin et al. (1989, 1990), who suggested that the phytoplankton growth is iron-limited and that, small additions of iron to large subarctic ocean areas might be a way of removing significant amounts of atmospheric CO2 by increasing phytoplancton growth. Data are presented to show that, in the summer of 1987, the phytoplankton assemblage as a whole was not iron limited, as measured by the bulk removal of nitrate or by the increase of chlorophyll. It is suggested that grazing normally prevents the phytoplankton from reaching concentrations that reduce the iron (and nitrate) to levels that depress division rates drastically.

  11. Oxidized Carbo-Iron causes reduced reproduction and lower tolerance of juveniles in the amphipod Hyalella azteca

    Energy Technology Data Exchange (ETDEWEB)

    Weil, Mirco, E-mail: m.weil@ect.de [ECT Oekotoxikologie GmbH, Böttgerstrasse 2-14, 65439 Flörsheim (Germany); Meißner, Tobias, E-mail: tmeiss@gmx.net [Fraunhofer Institute for Ceramic Technologies and Systems, Winterbergstrasse 28, 01277 Dresden (Germany); Springer, Armin, E-mail: armin.springer@nano.tu-dresden.de [Dresden University of Technology, Budapesterstrasse 27, 01069 Dresden (Germany); Bundschuh, Mirco, E-mail: mirco.bundschuh@slu.se [Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala (Sweden); Institute for Environmental Sciences, University of Koblenz-Landau, Forststrasse 7, 76829 Landau (Germany); Hübler, Lydia, E-mail: lydia.huebler@gmail.com [ECT Oekotoxikologie GmbH, Böttgerstrasse 2-14, 65439 Flörsheim (Germany); Schulz, Ralf, E-mail: schulz@uni-landau.de [Institute for Environmental Sciences, University of Koblenz-Landau, Forststrasse 7, 76829 Landau (Germany); Duis, Karen, E-mail: k-duis@ect.de [ECT Oekotoxikologie GmbH, Böttgerstrasse 2-14, 65439 Flörsheim (Germany)

    2016-12-15

    Highlights: • Effects on growth, reproduction and survival at ≥12.5 mg of oxidized Carbo-Iron/L were studied. • Carbo-Iron significantly increases sensitivity of offspring from exposed amphipods. • Toxicity is most likely mediated by an impaired uptake of nutrients and energy. - Abstract: For in situ remediation of groundwater contaminated by halogenated hydrocarbons Carbo-Iron{sup ®}, a composite of microscale activated carbon and nano Fe{sup 0}, was developed. Against the background of intended release of Carbo-Iron into the environment in concentrations in the g/L-range, potential ecotoxicological consequences were evaluated in the present study. The nano Fei{sup 0} in Carbo-Iron acts as reducing agent and is oxidized in aqueous systems by chlorinated solvents, groundwater constituents (e.g. dissolved oxygen) and anaerobic corrosion. As Carbo-Iron is generally oxidized rapidly after application into the environment, the oxidized state is environmentally most relevant, and Carbo-Iron was used in its oxidized form in the ecotoxicological tests. The amphipod Hyalella azteca was selected as a surrogate test species for functionally important groundwater crustaceans. Effects of Carbo-Iron on H. azteca were determined in a 10-d acute test, a 7-d feeding activity test and a 42-d chronic test. Additionally, a 56-d life cycle test was performed with a modified design to further evaluate effects of Carbo-Iron on adult H. azteca and their offspring. The size of Carbo-Iron particles in stock and test suspensions was determined via dynamic light scattering. Potential uptake of particles into test organisms was investigated using transmission and scanning electron microscopy. At the termination of the feeding and acute toxicity test (i.e. after 7 and 10 d of exposure, respectively), Carbo-Iron had a significant effect on the weight, length and feeding rate of H. azteca at the highest test concentration of 100 mg/L. While an uptake of Carbo-Iron into the gut was

  12. Bio-dissolution of Ni, V and Mo from spent petroleum catalyst using iron oxidizing bacteria.

    Science.gov (United States)

    Pradhan, Debabrata; Kim, Dong J; Roychaudhury, Gautam; Lee, Seoung W

    2010-01-01

    Bioleaching studies of spent petroleum catalyst containing Ni, V and Mo were carried out using iron oxidizing bacteria. Various leaching parameters such as Fe(II) concentration, pulp density, pH, temperature and particle size were studied to evaluate their effects on the leaching efficiency as well as the kinetics of dissolution. The percentage of leaching of Ni and V were higher than Mo. The leaching process followed a diffusion controlled model and the product layer was observed to be impervious due to formation of ammonium jarosite (NH(4))Fe(3)(SO(4))(2)(OH)(6). Apart from this, the lower leaching efficiency of Mo was due to a hydrophobic coating of elemental sulfur over Mo matrix in the spent catalyst. The diffusivities of the attacking species for Ni, V and Mo were also calculated.

  13. Co-existence of Anaerobic Ammonium Oxidation Bacteria and Denitrifying Anaerobic Methane Oxidation Bacteria in Sewage Sludge: Community Diversity and Seasonal Dynamics.

    Science.gov (United States)

    Xu, Sai; Lu, Wenjing; Mustafa, Muhammad Farooq; Caicedo, Luis Miguel; Guo, Hanwen; Fu, Xindi; Wang, Hongtao

    2017-11-01

    Anaerobic ammonium oxidation (ANAMMOX) and denitrifying anaerobic methane oxidation (DAMO) have been recently discovered as relevant processes in the carbon and nitrogen cycles of wastewater treatment plants. In this study, the seasonal dynamics of ANAMMOX and DAMO bacterial community structures and their abundance in sewage sludge collected from wastewater treatment plants were analysed. Results indicated that ANAMMOX and DAMO bacteria co-existed in sewage sludge in different seasons and their abundance was positively correlated (P bacteria in autumn and winter indicated that these seasons were the preferred time to favour the growth of ANAMMOX and DAMO bacteria. The community structure of ANNAMOX and DAMO bacteria could also shift with seasonal changes. The "Candidatus Brocadia" genus of ANAMMOX bacteria was mainly recovered in spring and summer, and an unknown cluster was primarily detected in autumn and winter. Similar patterns of seasonal variation in the community structure of DAMO bacteria were also observed. Group B was the dominant in spring and summer, whereas in autumn and winter, group A and group B presented almost the same proportion. The redundancy analysis revealed that pH and nitrate were the most significant factors affecting community structures of these two groups (P < 0.01). This study reported the diversity of ANAMMOX and DAMO in wastewater treatment plants that may be the basis for new nitrogen removal technologies.

  14. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    Science.gov (United States)

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances. Copyright © 2014. Published by Elsevier B.V.

  15. Physiology and genetics of sulfur-oxidizing bacteria.

    Science.gov (United States)

    Friedrich, C G

    1998-01-01

    Reduced inorganic sulfur compounds are oxidized by members of the domains Archaea and Bacteria. These compounds are used as electron donors for anaerobic phototrophic and aerobic chemotrophic growth, and are mostly oxidized to sulfate. Different enzymes mediate the conversion of various reduced sulfur compounds. Their physiological function in sulfur oxidation is considered (i) mostly from the biochemical characterization of the enzymatic reaction, (ii) rarely from the regulation of their formation, and (iii) only in a few cases from the mutational gene inactivation and characterization of the resulting mutant phenotype. In this review the sulfur-metabolizing reactions of selected phototrophic and of chemotrophic prokaryotes are discussed. These comprise an archaeon, a cyanobacterium, green sulfur bacteria, and selected phototrophic and chemotrophic proteobacteria. The genetic systems are summarized which are presently available for these organisms, and which can be used to study the molecular basis of their dissimilatory sulfur metabolism. Two groups of thiobacteria can be distinguished: those able to grow with tetrathionate and other reduced sulfur compounds, and those unable to do so. This distinction can be made irrespective of their phototrophic or chemotrophic metabolism, neutrophilic or acidophilic nature, and may indicate a mechanism different from that of thiosulfate oxidation. However, the core enzyme for tetrathionate oxidation has not been identified so far. Several phototrophic bacteria utilize hydrogen sulfide, which is considered to be oxidized by flavocytochrome c owing to its in vitro activity. However, the function of flavocytochrome c in vivo may be different, because it is missing in other hydrogen sulfide-oxidizing bacteria, but is present in most thiosulfate-oxidizing bacteria. A possible function of flavocytochrome c is discussed based on biophysical studies, and the identification of a flavocytochrome in the operon encoding enzymes involved

  16. Microbial Degradation of Phenols and Aromatic Hydrocarbons in Creosote-contaminated Groundwater Under Nitrate-reducing Conditions

    DEFF Research Database (Denmark)

    Flyvbjerg, John; Arvin, Erik; Jensen, Bjørn K.

    1993-01-01

    of toluene, 2,4-DMP, 3,4-DMP and p-cresol depended on nitrate or nitrite as electron acceptors. 40–80% of the nitrate consumed during degradation of the aromatic compounds was recovered as nitrite, and the consumption of nitrate was accompanied by a production of ATP. Stoichiometric calculations indicated......Batch experiments were carried out to investigate the biodegradation of phenols and aromatic hydrocarbons under anaerobic, nitrate-reducing conditions in groundwater from a creosote-contaminated site at Fredensborg, Denmark. The bacteria in the creosote-contaminated groundwater degraded a mixture...... that in addition to the phenols are toluene other carbon sources present in the groundwater contributed to the consumption of nitrate. If the groundwater was incubated under anaerobic conditions without nitrate, sulphate-reducing conditions evolved after ∼ 1 month at 20°C and ∼2 months at 10°C. In the sulphate...

  17. Nitrate removal by electro-bioremediation technology in Korean soil

    International Nuclear Information System (INIS)

    Choi, Jeong-Hee; Maruthamuthu, Sundaram; Lee, Hyun-Goo; Ha, Tae-Hyun; Bae, Jeong-Hyo

    2009-01-01

    The nitrate concentration of surface has become a serious concern in agricultural industry through out the world. In the present study, nitrate was removed in the soil by employing electro-bioremediation, a hybrid technology of bioremediation and electrokinetics. The abundance of Bacillus spp. as nitrate reducing bacteria were isolated and identified from the soil sample collected from a greenhouse at Jinju City of Gyengsangnamdo, South Korea. The nitrate reducing bacterial species were identified by 16 s RNA sequencing technique. The efficiency of bacterial isolates on nitrate removal in broth was tested. The experiment was conducted in an electrokinetic (EK) cell by applying 20 V across the electrodes. The nitrate reducing bacteria (Bacillus spp.) were inoculated in the soil for nitrate removal process by the addition of necessary nutrient. The influence of nitrate reducers on electrokinetic process was also studied. The concentration of nitrate at anodic area of soil was higher when compared to cathode in electrokinetic system, while adding bacteria in EK (EK + bio) system, the nitrate concentration was almost nil in all the area of soil. The bacteria supplies electron from organic degradation (humic substances) and enhances NO 3 - reduction (denitrification). Experimental results showed that the electro-bio kinetic process viz. electroosmosis and physiological activity of bacteria reduced nitrate in soil environment effectively. Involvement of Bacillus spp. on nitrification was controlled by electrokinetics at cathode area by reduction of ammonium ions to nitrogen gas. The excellence of the combined electro-bio kinetics technology on nitrate removal is discussed.

  18. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers

    Science.gov (United States)

    Anderson, I. C.; Levine, J. S.

    1986-01-01

    An account is given of the atmospheric chemical and photochemical effects of biogenic nitric and nitrous oxide emissions. The magnitude of the biogenic emission of NO is noted to remain uncertain. Possible soil sources of NO and N2O encompass nitrification by autotropic and heterotropic nitrifiers, denitrification by nitrifiers and denitrifiers, nitrate respiration by fermenters, and chemodenitrification. Oxygen availability is the primary determinant of these organisms' relative rates of activity. The characteristics of this major influence are presently investigated in light of the effect of oxygen partial pressure on NO and N2O production by a wide variety of common soil-nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The results obtained indicate that aerobic soils are primary sources only when there is sufficient moisture to furnish anaerobic microsites for denitrification.

  19. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    DEFF Research Database (Denmark)

    Scholz, Florian; Löscher, Carolin; Fiskal, Annika

    2016-01-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface...

  20. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

    Science.gov (United States)

    Sand, Wolfgang; Gehrke, Tilman

    2006-01-01

    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed.

  1. [Effect of the interaction of microorganisms and iron oxides on arsenic releasing into groundwater in Chinese Loess].

    Science.gov (United States)

    Xie, Yun-Yun; Chen, Tian-Hu; Zhou, Yue-Fei; Xie, Qiao-Qin

    2013-10-01

    A large part of groundwater in the Chinese Loess Plateau area is characterized by high arsenic concentration. Anaerobic bacteria have been considered to play key roles in promoting arsenic releasing from loess to groundwater. However, this hypothesis remains unconfirmed. Based on modeling experiments, this study investigated the speciation of arsenic in loess, and then determined the release rates and quantities of arsenic with the mediation of anaerobic bacteria. The results showed that arsenic contents in loess were between 23 mg.kg-1 and 30 mg.kg-1. No obvious arsenic content difference among loess samples was observed. The ratios for specific adsorbed, iron oxides co-precipitated and silicate co-precipitated arsenic were 37.76% , 36. 15% and 25. 69% , respectively. Indigenous microorganisms, dissimilatory iron reducing bacteria (DIRB) and sulfate reducing bacteria (SRB) could all promote the release of arsenic from loess. Organic matters highly affected the release rates. More than 100 mg.L-1 sodium lactate was required for all bacterial experiments to facilitate obvious arsenic release. Considering the redox condition in loess, the contribution of SRB to arsenic release in loess area was less feasible than that of DIRB and indigenous microorganisms.

  2. Comparison of the Efficiencies of Zero-Valent Iron Nanoparticles and Stabilized Iron Nanoparticles for Nitrate Reduction from Polluted Waters

    Directory of Open Access Journals (Sweden)

    Fatemeh Nooralivand

    2015-12-01

    Full Text Available The present study was conducted to evaluate the feasibility of zero-valent iron nanoparticles (ZVIN for the removal of nitrate from aqueous solutions. For this purpose, bare zero-valent iron nanoparticles (bare-ZVIN and CMC-ZVIN were synthesized using the borohydride reduction method and their morphological characteristics were examined via scanning electron microscopy (SEM, X-ray diffraction (XRD, and Fourier Transmission Infrared Spectroscopy (FTIR. The effects of pH of the aqueous solution, initial nitrate concentration, ZVIN concentration, and contact time on nitrate reduction were investigated as operational parameters and the kinetics of nitrate reduction was studied in batch experiments. The results showed that 93.65% of nitrate was removed by stabilized nanoparticles at pH=6 while non-stabilized nanoparticles at pH=2 were able to remove 85.55% of the nitrate.Furthermore, nitrate reduction was enhanced by increasing ZVIN concentration and contact time while it was decreased as a result of increasing initial nitrate concentration. The major product of nitrate reduction at an acidic pH was found to be ammonium; at an alkaline pH, however, nitrate was converted to nitrogen and nitrite production dropped to less than 2%. Kinetic analysis demonstrated that denitrification of nitrate by the nanoparticles fitted well with first-order and second-order reaction models. The results also demonstrated that the stabilized ZVI nanoparticles were more effective than bare-ZVIN for nitrate reduction in aqueous solutions.

  3. Mtr Extracellular Electron Transfer Pathways in Fe(III)-reducing or Fe(II)-oxidizing Bacteria: A Genomic Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Rosso, Kevin M.; Zachara, John M.; Fredrickson, Jim K.

    2012-12-01

    Originally discovered in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), the Mtr (i.e., metal-reducing) pathway exists in all characterized strains of metal-reducing Shewanella. The protein components identified to date for the Mtr pathway of MR-1 include four multi-heme c-type cytochromes (c-Cyts), CymA, MtrA, MtrC and OmcA, and a porin-like, outer membrane protein MtrB. They are strategically positioned along the width of the MR-1 cell envelope to mediate electron transfer from the quinone/quinol pool in the inner-membrane to the Fe(III)-containing minerals external to the bacterial cells. A survey of microbial genomes revealed homologues of the Mtr pathway in other dissimilatory Fe(III)-reducing bacteria, including Aeromonas hydrophila, Ferrimonas balearica and Rhodoferax ferrireducens, and in the Fe(II)-oxidizing bacteria Dechloromonas aromatica RCB, Gallionella capsiferriformans ES-2 and Sideroxydans lithotrophicus ES-1. The widespread distribution of Mtr pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria emphasizes the importance of this type of extracellular electron transfer pathway in microbial redox transformation of Fe. Their distribution in these two different functional groups of bacteria also emphasizes the bi-directional nature of electron transfer reactions carried out by the Mtr pathways. The characteristics of the Mtr pathways may be shared by other pathways used by microorganisms for exchanging electrons with their extracellular environments.

  4. Halophilic and haloalkaliphilic sulfur-oxidizing bacteria

    NARCIS (Netherlands)

    Sorokin, D.Y.; Banciu, H.; Robertson, L.A.; Kuenen, J.G.; Muntyan, M.S.; Muyzer, G.; Rosenberg, E.; DeLong, F.; Delong, E.; Lory, S.; Stackebrandt, E.; Thompson, F.

    2013-01-01

    Chemotrophic sulfur-oxidizing bacteria (SOB) represent an important functional group of microorganisms responsible for the dark oxidation of reduced sulfur compounds generated by sulfidogens. Until recently, only a single genus of halophilic SOB (Halothiobacillus) has been described, and nothing was

  5. Nitrate Enhanced Microbial Cr(VI) Reduction-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John F. Stolz

    2011-06-15

    A major challenge for the bioremediation of radionuclides (i.e., uranium, technetium) and metals (i.e., Cr(VI), Hg) is the co-occurrence of nitrate as it can inhibit metal transformation. Denitrification (nitrate reduction to dinitrogen gas) is considered the most important ecological process. For many metal and metalloid reducing bacteria, however, ammonia is the end product through respiratory nitrate reduction (RNRA). The focus of this work was to determine how RNRA impacts Cr(VI) transformation. The goal was to elucidate the specific mechanism(s) that limits Cr(VI) reduction in the presence of nitrate and to use this information to develop strategies that enhance Cr(VI) reduction (and thus detoxification). Our central hypothesis is that nitrate impacts the biotransformation of metals and metalloids in three ways 1) as a competitive alternative electron acceptor (inhibiting transformation), 2) as a co-metabolite (i.e., concomitant reduction, stimulating transformation), and 3) as an inducer of specific proteins and pathways involved in oxidation/reduction reactions (stimulating transformation). We have identified three model organisms, Geobacter metallireducens (mechanism 1), Sulfurospirillum barnesii, (mechasism 2), and Desulfovibrio desulfuricans (mechanisms 3). Our specific aims were to 1) investigate the role of Cr(VI) concentration on the kinetics of both growth and reduction of nitrate, nitrite, and Cr(VI) in these three organisms; 2) develop a profile of bacterial enzymes involved in nitrate transformation (e.g., oxidoreductases) using a proteomic approach; 3) investigate the function of periplasmic nitrite reductase (Nrf) as a chromate reductase; and 4) develop a strategy to maximize microbial chromium reduction in the presence of nitrate. We found that growth on nitrate by G. metallireducens was inhibited by Cr(VI). Over 240 proteins were identified by LC/MS-MS. Redox active proteins, outer membrane heavy metal efflux proteins, and chemotaxis sensory

  6. 21 CFR 186.1374 - Iron oxides.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Iron oxides. 186.1374 Section 186.1374 Food and... Substances Affirmed as GRAS § 186.1374 Iron oxides. (a) Iron oxides (oxides of iron, CAS Reg. No. 1332-37-2) are undefined mixtures of iron (II) oxide (CAS Reg. No. 1345-25-1, black cubic crystals) and iron (III...

  7. Removal of arsenic from aqueous solutions using waste iron columns inoculated with iron bacteria.

    Science.gov (United States)

    Azhdarpoor, Abooalfazl; Nikmanesh, Roya; Samaei, Mohammad Reza

    2015-01-01

    Arsenic contamination of water resources is one of the serious risks threatening natural ecosystems and human health. This study investigates arsenic removal using a waste iron column with and without iron bacteria in continuous and batch phases. In batch experiments, the effects of pH, contact time, initial concentration of arsenic and adsorbent dose were investigated. Results indicated that the highest arsenate removal efficiency occurred at pH 7 (96.76%). On increasing the amount of waste iron from 0.25 to 1 g, the removal rate changed from about 42.37%-96.70%. The results of continuous experiments on the column containing waste iron showed that as the empty bed contact time increased from 5 to 60 min, the secondary arsenate concentration changed from 23 to 6 µg/l. In experiments involving a waste iron column with iron bacteria, an increase in residence time from 5 to 60 min decreased the secondary arsenate concentration from 14.97 to 4.86 µg/l. The results of this study showed that waste iron containing iron bacteria is a good adsorbent for removal of arsenic from contaminated water.

  8. Nanocomposites of cellulose/iron oxide: influence of synthesis conditions on their morphological behavior and thermal stability

    International Nuclear Information System (INIS)

    Ma Mingguo; Zhu Jiefang; Li Shuming; Jia Ning; Sun Runcang

    2012-01-01

    Nanocomposites of cellulose/iron oxide have been successfully prepared by hydrothermal method using cellulose solution and Fe(NO 3 ) 3 ·9H 2 O at 180 °C. The cellulose solution was obtained by the dissolution of microcrystalline cellulose in NaOH/urea aqueous solution, which is a good system to dissolve cellulose and favors the synthesis of iron oxide without needing any template or other reagents. The phases, microstructure, and morphologies of nanocomposites were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectra (EDS). The effects of the heating time, heating temperature, cellulose concentration, and ferric nitrate concentration on the morphological behavior of products were investigated. The experimental results indicated that the cellulose concentration played an important role in both the phase and shape of iron oxide in nanocomposites. Moreover, the nanocomposites synthesized by using different cellulose concentrations displayed different thermal stabilities. - Highlights: ► Nanocomposites of cellulose/iron oxide have been prepared by hydrothermal method. ► The cellulose concentration played an important role in the phase of iron oxide. ► The cellulose concentration played an important role in the shape of iron oxide. ► The samples displayed different thermal stabilities.

  9. Sulfur-oxidizing bacteria dominate the microbial diversity shift during the pyrite and low-grade pyrolusite bioleaching process.

    Science.gov (United States)

    Han, Yifan; Ma, Xiaomei; Zhao, Wei; Chang, Yunkang; Zhang, Xiaoxia; Wang, Xingbiao; Wang, Jingjing; Huang, Zhiyong

    2013-10-01

    The microbial ecology of the pyrite-pyrolusite bioleaching system and its interaction with ore has not been well-described. A 16S rRNA gene clone library was created to evaluate changes in the microbial community at different stages of the pyrite-pyrolusite bioleaching process in a shaken flask. The results revealed that the bacterial community was disturbed after 5 days of the reaction. Phylogenetic analysis of 16S rRNA sequences demonstrated that the predominant microorganisms were members of a genus of sulfur-oxidizing bacteria, Thiomonas sp., that subsequently remained dominant during the bioleaching process. Compared with iron-oxidizing bacteria, sulfur-oxidizing bacteria were more favorable to the pyrite-pyrolusite bioleaching system. Decreased pH due to microbial acid production was an important condition for bioleaching efficiency. Iron-oxidizing bacteria competed for pyrite reduction power with Mn(IV) in pyrolusite under specific conditions. These results extend our knowledge of microbial dynamics during pyrite-pyrolusite bioleaching, which is a key issue to improve commercial applications. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific Ocean.

    Science.gov (United States)

    Langley, S; Igric, P; Takahashi, Y; Sakai, Y; Fortin, D; Hannington, M D; Schwarz-Schampera, U

    2009-01-01

    Sediment samples were obtained from areas of diffuse hydrothermal venting along the seabed in the Tonga sector of the Tonga-Kermadec Arc, southwest Pacific Ocean. Sediments from Volcano 1 and Volcano 19 were analyzed by X-ray diffraction (XRD) and found to be composed primarily of the iron oxyhydroxide mineral, two-line ferrihydrite. XRD also suggested the possible presence of minor amounts of more ordered iron (hydr)oxides (including six-line ferrihydrite, goethite/lepidocrocite and magnetite) in the biogenic iron oxides (BIOS) from Volcano 1; however, Mössbauer spectroscopy failed to detect any mineral phases more crystalline than two-line ferrihydrite. The minerals were precipitated on the surfaces of abundant filamentous microbial structures. Morphologically, some of these structures were similar in appearance to the known iron-oxidizing genus Mariprofundus spp., suggesting that the sediments are composed of biogenic iron oxides. At Volcano 19, an areally extensive, active vent field, the microbial cells appeared to be responsible for the formation of cohesive chimney-like structures of iron oxyhydroxide, 2-3 m in height, whereas at Volcano 1, an older vent field, no chimney-like structures were apparent. Iron reduction of the sediment material (i.e. BIOS) by Shewanella putrefaciens CN32 was measured, in vitro, as the ratio of [total Fe(II)]:[total Fe]. From this parameter, reduction rates were calculated for Volcano 1 BIOS (0.0521 day(-1)), Volcano 19 BIOS (0.0473 day(-1)), and hydrous ferric oxide, a synthetic two-line ferrihydrite (0.0224 day(-1)). Sediments from both BIOS sites were more easily reduced than synthetic ferrihydrite, which suggests that the decrease in effective surface area of the minerals within the sediments (due to the presence of the organic component) does not inhibit subsequent microbial reduction. These results indicate that natural, marine BIOS are easily reduced in the presence of dissimilatory iron-reducing bacteria, and that the

  11. Inorganic Nitrate Promotes the Browning of White Adipose Tissue through the Nitrate-Nitrite-Nitric Oxide Pathway

    Science.gov (United States)

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Griffin, Julian L

    2015-01-01

    Inorganic nitrate was once considered an oxidation end-product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach we mechanistically define that nitrate not only increases the expression of thermogenic genes in brown-adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious co-morbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Since resulting beige/brite cells exhibit anti-obesity and anti-diabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome. PMID:25249574

  12. Characterization and uranium bioleaching performance of mixed iron- and sulfur-oxidizers versus iron-oxidizers

    International Nuclear Information System (INIS)

    Qian Li; Jing Sun; Dexin Ding; Qingliang Wang; Wenge Shi; Eming Hu; Xiaoyu Jiang; University of South China, Hengyang; Xingxing Wang

    2017-01-01

    In order to develop and apply mixed iron- and sulfur-oxidizers in uranium bioleaching, the characteristics of a mixed iron- and sulfur-oxidizing consortium (Consortium ISO) were comparatively investigated versus an iron-oxidizing consortium (Consortium IO). The results showed, the Consortium ISO exerted stronger oxidative ability and acid-producing ability than Consortium IO did. The synergy of sulfur-oxidizers and iron-oxidizers could change the structure and properties of the passivation substance, and work positively for eliminating the accumulation of passivation substance. In the bioleaching process, the uranium bioleaching experiments showed the recovery percentage of uranium reached 99.5% with Consortium ISO, 6.3% more than that of Consortium IO. (author)

  13. Ultrastructure and potential sub-seafloor evidence of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge, north-east Pacific Ocean.

    Science.gov (United States)

    Kennedy, C B; Scott, S D; Ferris, F G

    2003-03-01

    Iron oxides from the caldera of Axial Volcano, a site of hydrothermal vent activity along the Juan de Fuca Ridge, were found to consist predominantly of microbial structures in hydrated whole mounts examined using an environmental scanning electron microscope. Novel observations were made of the iron oxides revealing the spatial relationships of the bacteria within to be more consistent with microbial mats than mineral precipitates. The bacterial structures are attributed to the sheaths of Leptothrix ochracea, the stalks of Gallionella ferruginea, and the filaments of a novel iron oxidizing PV-1 strain, based on the distinctive morphological characteristics of these three bacteria. Energy dispersive X-ray spectroscopy revealed the presence and distribution of Fe, Si, and Cl on the bacterial sheaths, stalks and filaments. The iron oxides were identified by X-ray diffraction to be two-line ferrihydrite, a poorly ordered iron oxyhydroxide. Adsorption of Si in particular to two-line ferrihydrite likely contributes to its stability on the seafloor, and might also be a preservation mechanism creating microfossils of the bacterial structures encrusted with ferrihydrite. Presumptive evidence of the sub-seafloor presence of L. ochracea, G. ferruginea and PV-1 at Axial Volcano was obtained from the presence of these bacteria on a trap that had been placed within an active vent, and also in a vent fluid sample. If indeed these bacteria are present in the sub-seafloor, it may be an indication that the surface expression of iron oxide deposits at Axial Volcano is minimal in comparison to what exists beneath the seafloor.

  14. Bio-Reduction of Graphene Oxide Using Sulfate-Reducing Bacteria and Its Implication on Anti-Biocorrosion.

    Science.gov (United States)

    Song, Tian-Shun; Tan, Wei-Min; Xie, Jingjing

    2018-08-01

    In this paper, we developed an environmental friendly, cost effective, simple and green approach to reduce graphene oxide (GO) by a sulfate-reducing bacterium Desulfovibrio desulfuricans. The D. desulfuricans reduces exfoliated GO to reduced graphene oxide (rGO) at 25 °C in an aqueous solution without any toxic and environmentally harmful reducing agents. The rGO was characterized with X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscope, X-ray Photoelectron Spectroscopy and Raman Spectroscopy. The analysis results showed that rGO had excellent properties and multi-layer graphene sheets structure. Furthermore, we demonstrated that D. desulfuricans, one of the primary bacteria responsible for the biocorrosion of various metals, might reduce GO to rGO on the surface of copper and prevented the corrosion of copper, which confirmed that electrophoretic deposition of GO on the surface of metals had great potential on the anti-biocorrosion applications.

  15. Effect of Nitrates, Thiocyanates and Selenium on the Iron and Iodine Status of Postpartum Women.

    Science.gov (United States)

    Bivolarska, Anelia V; Maneva, Ana I; Gatseva, Penka D; Katsarova, Mariana N

    2016-09-01

    To find correlations between high thiocyanate and nitrate levels and low selenium levels and the indicators of the iodine and iron status of postpartum women. The study included 41 mothers aged 26.4±5.9 yrs from Asenovgrad and nearby villages. Urinary iodine was determined by the Sandell-Kolthoff reaction and thiocyanate - by the interaction of these ions with acidic solution of KMnO4; for serum nitrates we used the colorimetric method; serum selenium was assessed by electro-thermal atomic-absorption spectrophotometry; thyroxin (FT4), the thyroid stimulating hormone (TSH), serum ferritin (SF), and serum transferrin receptor (sTfR) were determined using ELISA; Hb levels were determined by hematology analyzer. Assessing the iodine status, we found a negative correlation between the levels of iodine and thiocyanates in urine (R=-0.717, рnitrates and TSH (R=0.487, р=0.003) and a negative correlation between nitrates and FT4 (R=-0.312, р=0.06). For the iron status, we found a negative correlation between nitrates and SF (R=-0.429, р=0.009) and between nitrates and Hb (R=-0.383, р=0.021). The Mann-Whitney U-test showed that in women with nitrate levels higher than the mean value there was low FT4 level (р=0.06), high TSH level (р=0.013), low Hb concentration (р=0.061) and low SF concentration (р=0.005). The combined effects of environmental factors (elevated nitrate levels and low selenium level) on the iodine and iron status are manifested by low concentrations of FT4 (р=0.033), Hb (р=0.06) and SF (р=0.05) and high level of TSH (р=0.05). In conclusion, we found that environmental factors, especially when combined, have a negative impact on the iron and iodine status of females.

  16. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.

    Science.gov (United States)

    Vavilin, V A; Rytov, S V

    2015-09-01

    A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Inhibition of nitrate reduction by NaCl adsorption on a nano-zero-valent iron surface during a concentrate treatment for water reuse.

    Science.gov (United States)

    Hwang, Yuhoon; Kim, Dogun; Shin, Hang-Sik

    2015-01-01

    Nanoscale zero-valent iron (NZVI) has been considered as a possible material to treat water and wastewater. However, it is necessary to verify the effect of the matrix components in different types of target water. In this study, different effects depending on the sodium chloride (NaCl) concentration on reductions of nitrates and on the characteristics of NZVI were investigated. Although NaCl is known as a promoter of iron corrosion, a high concentration of NaCl (>3 g/L) has a significant inhibition effect on the degree of NZVI reactivity towards nitrate. The experimental results were interpreted by a Langmuir-Hinshelwood-Hougen-Watson reaction in terms of inhibition, and the decreased NZVI reactivity could be explained by the increase in the inhibition constant. As a result of a chloride concentration analysis, it was verified that 7.7-26.5% of chloride was adsorbed onto the surface of NZVI. Moreover, the change of the iron corrosion product under different NaCl concentrations was investigated by a surface analysis of spent NZVI. Magnetite was the main product, with a low NaCl concentration (0.5 g/L), whereas amorphous iron hydroxide was observed at a high concentration (12 g/L). Though the surface was changed to permeable iron hydroxide, the Fe(0) in the core was not completely oxidized. Therefore, the inhibition effect of NaCl could be explained as the competitive adsorption of chloride and nitrate.

  18. Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers

    DEFF Research Database (Denmark)

    Huang, Li‐Zhi; Ayala‐Luis, Karina B.; Fang, Liping

    2013-01-01

    hydroxide planar layer were preserved during the oxidation, as shown by FTIR spectroscopy. The high positive charge in the hydroxide layer produced by the oxidation of iron(II) to iron(III) is partially compensated by the deprotonation of hydroxy groups, as shown by X‐ray photoelectron spectroscopy...... between the alkyl chains of the intercalated dodecanoate anions play a crucial role in stabilizing the structure and hindering the collapse of the iron(II)–iron(III) (hydr)oxide structure during oxidation. This is the first report describing the formation of a stable planar layered octahedral iron......(III) (hydr)oxide. oxGRC12 shows promise as a sorbent and host for hydrophobic reagents, and as a possible source of single planar layers of iron(III) (hydr)oxide....

  19. NO oxidation on Zeolite Supported Cu Catalysts: Formation and Reactivity of Surface Nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hai-Ying; Wei, Zhehao; Kollar, Marton; Gao, Feng; Wang, Yilin; Szanyi, Janos; Peden, Charles HF

    2016-04-18

    The comparative activities of a small-pore Cu-CHA and a large-pore Cu-BEA catalyst for the selective catalytic reduction (SCR) of NOx with NH3, and for the oxidation of NO to NO2 and the subsequent formation of surface nitrates were investigated. Although both catalysts are highly active in SCR reactions, they exhibit very low NO oxidation activity. Furthermore, Cu-CHA is even less active than Cu-BEA in catalyzing NO oxidation but is clearly more active for SCR reactions. Temperature-programed desorption (TPD) experiments following the adsorption of (NO2 + NO + O2) with different NO2:NO ratios reveal that the poor NO oxidation activity of the two catalysts is not due to the formation of stable surface nitrates. On the contrary, NO is found to reduce and decompose the surface nitrates on both catalysts. To monitor the reaction pathways, isotope exchange experiments were conducted by using 15NO to react with 14N-nitrate covered catalyst surfaces. The evolution of FTIR spectra during the isotope exchange process demonstrates that 14N-nitrates are simply displaced with no formation of 15N-nitrates on the Cu-CHA sample, which is clearly different from that observed on the Cu-BEA sample where formation of 15N-nitrates is apparent. The results suggest that the formal oxidation state of N during the NO oxidation on Cu-CHA mainly proceeds from its original +2 to a +3 oxidation state, whereas reaching a higher oxidation state for N, such as +4 or +5, is possible on Cu-BEA. The authors at PNNL gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  20. 21 CFR 73.2250 - Iron oxides.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Iron oxides. 73.2250 Section 73.2250 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron oxides consist of any one or any combination of synthetically prepared iron oxides, including the...

  1. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous?

    Science.gov (United States)

    Hong, Dachao; Mandal, Sukanta; Yamada, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Llobet, Antoni; Fukuzumi, Shunichi

    2013-08-19

    Thermal water oxidation by cerium(IV) ammonium nitrate (CAN) was catalyzed by nonheme iron complexes, such as Fe(BQEN)(OTf)2 (1) and Fe(BQCN)(OTf)2 (2) (BQEN = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, BQCN = N,N'-dimethyl-N,N'-bis(8-quinolyl)cyclohexanediamine, OTf = CF3SO3(-)) in a nonbuffered aqueous solution; turnover numbers of 80 ± 10 and 20 ± 5 were obtained in the O2 evolution reaction by 1 and 2, respectively. The ligand dissociation of the iron complexes was observed under acidic conditions, and the dissociated ligands were oxidized by CAN to yield CO2. We also observed that 1 was converted to an iron(IV)-oxo complex during the water oxidation in competition with the ligand oxidation. In addition, oxygen exchange between the iron(IV)-oxo complex and H2(18)O was found to occur at a much faster rate than the oxygen evolution. These results indicate that the iron complexes act as the true homogeneous catalyst for water oxidation by CAN at low pHs. In contrast, light-driven water oxidation using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer and S2O8(2-) as a sacrificial electron acceptor was catalyzed by iron hydroxide nanoparticles derived from the iron complexes under basic conditions as the result of the ligand dissociation. In a buffer solution (initial pH 9.0) formation of the iron hydroxide nanoparticles with a size of around 100 nm at the end of the reaction was monitored by dynamic light scattering (DLS) in situ and characterized by X-ray photoelectron spectra (XPS) and transmission electron microscope (TEM) measurements. We thus conclude that the water oxidation by CAN was catalyzed by short-lived homogeneous iron complexes under acidic conditions, whereas iron hydroxide nanoparticles derived from iron complexes act as a heterogeneous catalyst in the light-driven water oxidation reaction under basic conditions.

  2. Iron(III) species formed during iron(II) oxidation and iron-core formation in bacterioferritin of Escherichia coli

    International Nuclear Information System (INIS)

    Hawkins, C.; Treffry, A.; Mackey, J.; Williams, J.M.; Andrews, S.C.; Guest, J.R.; Harrison, P.M.

    1996-01-01

    This paper describes a preliminary investigation of the mechanisms of Fe(II) oxidation and storage of Fe(III) in the bacterioferritin of Escherichia coli (EcBFR). Using Moessbauer spectroscopy to examine the initial oxidation of iron by EcBFR it is confirmed that this ferritin exhibits 'ferroxidase' activity and is shown that dimeric and monomeric iron species are produced as intermediates. The characteristics of ferroxidase activity in EcBFR is compare d with those of human H-chain ferritin (HuHF) and discuss the different Moessbauer parameters of their dimeric iron with reference to the structures of their di-metal sites. In addition, it is presented preliminary findings suggesting that after an initial 'burst', the rate of oxidation is greatly reduced, possibly due to blockage of the ferroxidase centre by bound iron. A new component, not found in HuHF and probably representing a small cluster of Fe(III) atoms, is reported

  3. Effects of nitrate addition to a diet on fermentation and microbial populations in the rumen of goats, with special reference to Selenomonas ruminantium having the ability to reduce nitrate and nitrite.

    Science.gov (United States)

    Asanuma, Narito; Yokoyama, Shota; Hino, Tsuneo

    2015-04-01

    This study investigated the effects of dietary nitrate addition on ruminal fermentation characteristics and microbial populations in goats. The involvement of Selenomonas ruminantium in nitrate and nitrite reduction in the rumen was also examined. As the result of nitrate feeding, the total concentration of ruminal volatile fatty acids decreased, whereas the acetate : propionate ratio and the concentrations of ammonia and lactate increased. Populations of methanogens, protozoa and fungi, as estimated by real-time PCR, were greatly decreased as a result of nitrate inclusion in the diet. There was modest or little impact of nitrate on the populations of prevailing species or genus of bacteria in the rumen, whereas Streptococcus bovis and S. ruminantium significantly increased. Both the activities of nitrate reductase (NaR) and nitrite reductase (NiR) per total mass of ruminal bacteria were increased by nitrate feeding. Quantification of the genes encoding NaR and NiR by real-time PCR with primers specific for S. ruminantium showed that these genes were increased by feeding nitrate, suggesting that the growth of nitrate- and nitrite-reducing S. ruminantium is stimulated by nitrate addition. Thus, S. ruminantium is likely to play a major role in nitrate and nitrite reduction in the rumen. © 2014 Japanese Society of Animal Science.

  4. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments

    DEFF Research Database (Denmark)

    Schippers, A.; Jørgensen, BB

    2002-01-01

    as substrates and NO3- as electron acceptor, in the presence of (FeS2)-Fe-55, to test for co-oxidation of FeS2, but an anaerobic microbial dissolution of (FeS2)-Fe-55, could not been detected. FeS2 and FeS were not oxidized by amorphous Fe(III) oxide in the presence of Fe-complexing organic compounds......Pyrite (FeS2) and iron monosulfide (FeS) play a central role in the sulfur and iron cycles of marine sediments, They may be buried in the sediment or oxidized by O-2 after transport by bioturbation to the sediment surface. FeS2 and FeS may also be oxidized within the anoxic sediment in which NO3...... marine sediments and incubated at different temperatures for > 1 yr. Bacteria could not be enriched with FeS2 as substrate or with FeS and amorphous Fe(III) oxide. With FeS and NO3-, 14 enrichments were obtained. One of these enrichments was further cultivated anaerobically with Fe2+ and S-0...

  5. Research of calcium oxide hydration in calcium nitrate solutions

    Directory of Open Access Journals (Sweden)

    M.A. Oliynyk

    2016-09-01

    Full Text Available Mineral fertilizers are one of the important factors of agriculture intensification and increasing of food products quantity. The volume of fertilizers production and its domestic consumption in Ukraine indicate that nitrogen fertilizer using only comes nearer to the required number of science-based. One of the most widespread artificial fertilizers is the calcium nitrate. Aim: The aim is to study and theoretically substantiate the processes occurring in the preparation of suspensions of calcium hydroxide Са(ОН2 in solution of calcium nitrate Ca(NО32. Materials and Methods: The technical calcium oxide (quicklime DSTU BV.2.7-90-99, solutions of calcium nitrate of 15, 20, 25, 30, 35 and 40% Ca(NО32 concentrations were used in the work. The content of lime in the preparation of a suspension in the solution changed (in terms of calcium oxide CaO from 150 g/dm3 to the maximum possible. Each of these solutions saturated at 40°С in lime to maximum concentration. Suitable for use in these experiments and in the technology of calcium nitrate obtaining are considered the solutions (suspensions that within 12 hours did not lose their mobility (transportability. Results: The experimental results show that increasing of the concentration of calcium nitrate in solution within the range 15...40%, the amount of lime that you can put into the solution without loss of transportability decreases. Further increasing of lime quantity in solutions concentrations causes to its solidifying, loss of mobility (transportability. Calculations showed that in the presence of calcium nitrate the solubility of Са(ОН2 is reduced nearly by order that can lead to the formation of calcium oxide CaO the solid phase Са(ОН2 on the surface, which also can form hydrogen bonds with the components of the solution. As the probability of formation of hydrogen bonds in solutions is high, there is a possibility of formation of clusters.

  6. Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron

    Science.gov (United States)

    Shen, Yi; Posavec, Lidija; Bolisetty, Sreenath; Hilty, Florentine M.; Nyström, Gustav; Kohlbrecher, Joachim; Hilbe, Monika; Rossi, Antonella; Baumgartner, Jeannine; Zimmermann, Michael B.; Mezzenga, Raffaele

    2017-07-01

    Iron-deficiency anaemia (IDA) is a major global public health problem. A sustainable and cost-effective strategy to reduce IDA is iron fortification of foods, but the most bioavailable fortificants cause adverse organoleptic changes in foods. Iron nanoparticles are a promising solution in food matrices, although their tendency to oxidize and rapidly aggregate in solution severely limits their use in fortification. Amyloid fibrils are protein aggregates initially known for their association with neurodegenerative disorders, but recently described in the context of biological functions in living organisms and emerging as unique biomaterial building blocks. Here, we show an original application for these protein fibrils as efficient carriers for iron fortification. We use biodegradable amyloid fibrils from β-lactoglobulin, an inexpensive milk protein with natural reducing effects, as anti-oxidizing nanocarriers and colloidal stabilizers for iron nanoparticles. The resulting hybrid material forms a stable protein-iron colloidal dispersion that undergoes rapid dissolution and releases iron ions during acidic and enzymatic in vitro digestion. Importantly, this hybrid shows high in vivo iron bioavailability, equivalent to ferrous sulfate in haemoglobin-repletion and stable-isotope studies in rats, but with reduced organoleptic changes in foods. Feeding the rats with these hybrid materials did not result in abnormal iron accumulation in any organs, or changes in whole blood glutathione concentrations, inferring their primary safety. Therefore, these iron-amyloid fibril hybrids emerge as novel, highly effective delivery systems for iron in both solid and liquid matrices.

  7. Effect of nitrate, acetate and hydrogen on native perchlorate-reducing microbial communities and their activity in vadose soil

    Science.gov (United States)

    Nozawa-Inoue, Mamie; Jien, Mercy; Yang, Kun; Rolston, Dennis E.; Hristova, Krassimira R.; Scow, Kate M.

    2011-01-01

    Effect of nitrate, acetate and hydrogen on native perchlorate-reducing bacteria (PRB) was examined by conducting microcosm tests using vadose soil collected from a perchlorate-contaminated site. The rate of perchlorate reduction was enhanced by hydrogen amendment and inhibited by acetate amendment, compared to unamendment. Nitrate was reduced before perchlorate in all amendments. In hydrogen-amended and unamended soils, nitrate delayed perchlorate reduction, suggesting the PRB preferentially use nitrate as an electron acceptor. In contrast, nitrate eliminated the inhibitory effect of acetate amendment on perchlorate reduction and increased the rate and the extent, possibly because the preceding nitrate reduction/denitrification decreased the acetate concentration which was inhibitory to the native PRB. In hydrogen-amended and unamended soils, perchlorate reductase gene (pcrA) copies, representing PRB densities, increased with either perchlorate or nitrate reduction, suggesting either perchlorate or nitrate stimulates growth of the PRB. In contrast, in acetate-amended soil pcrA increased only when perchlorate was depleted: a large portion of the PRB may have not utilized nitrate in this amendment. Nitrate addition did not alter the distribution of the dominant pcrA clones in hydrogen-amended soil, likely because of the functional redundancy of PRB as nitrate-reducers/denitrifiers, whereas acetate selected different pcrA clones from those with hydrogen amendment. PMID:21284679

  8. Magnetic behavior of iron oxide nanoparticle-biomolecule assembly

    International Nuclear Information System (INIS)

    Kim, Taegyun; Reis, Lynn; Rajan, Krishna; Shima, Mutsuhiro

    2005-01-01

    Iron oxide nanoparticles of 8-20 nm in size were investigated as an assembly with biomolecules synthesized in an aqueous solution. The magnetic behavior of the biomolecule-nanoparticles assembly depends sensitively on the morphology and hence the distribution of the nanoparticles, where the dipole coupling between the nanoparticles governs the overall magnetic behavior. In assemblies of iron oxide nanoparticles with trypsin, we observe a formation of unusual self-alignment of nanoparticles within trypsin molecules. In such an assembly structure, the magnetic particles tend to exhibit a lower spin-glass transition temperature than as-synthesized bare iron oxide nanoparticles probably due to reduced interparticle couplings within the molecular matrix. The observed self-alignment of nanoparticles in biomolecules may be a useful approach for directed nanoparticles assembly

  9. Facile and sustainable synthesis of shaped iron oxide nanoparticles: effect of iron precursor salts on the shapes of iron oxides.

    Science.gov (United States)

    Sayed, Farheen N; Polshettiwar, Vivek

    2015-05-05

    A facile and sustainable protocol for synthesis of six different shaped iron oxides is developed. Notably, all the six shapes of iron oxides can be synthesised using exactly same synthetic protocol, by simply changing the precursor iron salts. Several of the synthesised shapes are not reported before. This novel protocol is relatively easy to implement and could contribute to overcome the challenge of obtaining various shaped iron oxides in economical and sustainable manner.

  10. Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xin-Jun [State Key Lab. of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, BJ (China); Graduate Univ., Chinese Academy of Sciences, BJ (China); Yang Jing; Chen Xue-Ping; Sun Guo-Xin [State Key Lab. of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, BJ (China); Zhu Yong-Guan [State Key Lab. of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, BJ (China); Key Lab. of Urban Environment and Health, Inst. of Urban Environment, Chinese Academy of Sciences, Xiamen (China)

    2009-12-15

    Purpose: Dissimilatory iron-reducing bacteria have been described by both culture-dependent and -independent methods in various environments, including freshwater, marine sediments, natural wetlands, and contaminated aquifers. However, little is known about iron-reducing microbial communities in paddy soils. The goal of this study was to characterize iron-reducing microbial communities in paddy soil. Moreover, the effect of dissolved and solid-phase iron (III) species on the iron-reducing microbial communities was also investigated by enrichment cultures. Methods: Ferric citrate and ferrihydrite were used respectively to set up enrichment cultures of dissimilatory ironreducing microorganisms using 1% inoculum of soil samples, and the iron reduction was measured. Moreover, bacterial DNA was extracted and 16S rRNA genes were PCR-amplified, and subsequently analyzed by the clone library and terminal restriction fragment length polymorphism (T-RFLP). Results: Phylogenetic analysis of 16S rRNA gene sequences extracted from the enrichment cultures revealed that Bradyrhizobium, Bacteroides, Clostridium and Ralstonia species were the dominant bacteria in the ferric citrate enrichment. However, members of the genera Clostridium, Bacteroides, and Geobacter were the dominant micro-organisms in the ferrihydrite enrichment. Analysis of enrichment cultures by T-RFLP strongly supported the cloning and sequencing results. Conclusions: The present study demonstrated that dissimilatory iron-reducing consortia in As-contaminated paddy soil are phylogenetically diverse. Moreover, iron (III) sources as a key factor have a strong effect on the iron (III)-reducing microbial community structure and relative abundance in the enrichments. In addition, Geobacter species are selectively enriched by ferrihydrite enrichment cultures. (orig.)

  11. Biostimulation of Iron Reduction and Uranium Immobilization: Microbial and Mineralogical Controls

    International Nuclear Information System (INIS)

    Joel E. Kostka; Lainie Petrie; Nadia North; David L. Balkwill; Joseph W. Stucki; Lee Kerkhof

    2004-01-01

    The overall objective of our project is to understand the microbial and geochemical mechanisms controlling the reduction and immobilization of U(VI) during biostimulation in subsurface sediments of the Field Research Center (FRC) which are cocontaminated with uranium and nitrate. The focus will be on activity of microbial populations (metal- and nitrate-reducing bacteria) and iron minerals which are likely to make strong contributions to the fate of uranium during in situ bioremediation. The project will: (1) quantify the relationships between active members of the microbial communities, iron mineralogy, and nitrogen transformations in the field and in laboratory incubations under a variety of biostimulation conditions, (2) purify and physiologically characterize new model metal-reducing bacteria isolated from moderately acidophilic FRC subsurface sediments, and (3) elucidate the biotic and abiotic mechanisms by which FRC aluminosilicate clay minerals are reduced and dissolved under environmental conditions resembling those during biostimulation. Active microbial communities will be assessed using quantitative molecular techniques along with geochemical measurements to determine the different terminal-electron-accepting pathways. Iron minerals will be characterized using a suite of physical, spectroscopic, and wet chemical methods. Monitoring the activity and composition of the denitrifier community in parallel with denitrification intermediates during nitrate removal will provide a better understanding of the indirect effects of nitrate reduction on uranium speciation. Through quantification of the activity of specific microbial populations and an in-depth characterization of Fe minerals likely to catalyze U sorption/precipitation, we will provide important inputs for reaction-based biogeochemical models which will provide the basis for development of in situ U bioremediation strategies. In collaboration with Jack Istok and Lee Krumholz, we have begun to study the

  12. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field.

    Science.gov (United States)

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-01-01

    The nitrate-dependent denitrifying anaerobic methane oxidation (DAMO) process, which is metabolized together by anaerobic methanotrophic archaea and NC10 phylum bacteria, is expected to be important for the global carbon and nitrogen cycles. However, there are little studies about the existence of this process and the functional microbes in environments. Therefore, the coexistence of DAMO archaea and bacteria in a paddy field was evaluated in this study. Next-generation sequencing showed that the two orders, Methanosarcinales and Nitrospirales, to which DAMO archaea and DAMO bacteria belong, were detected in the four soil samples. Then the in vitro experiments demonstrated both of nitrite- and nitrate-dependent DAMO activities, which confirmed the coexistence of DAMO archaea and DAMO bacteria. It was the first report about the coexistence of DAMO archaea and bacteria in a paddy field. Furthermore, anammox bacteria were detected in two of the four samples. The in vitro experiments did not show anammox activity in the initial period but showed low anammox activity after 20 days' enrichment. These results implicated that anammox bacteria may coexist with DAMO microorganisms in this field, but at a very low percentage.

  13. Anaerobic U(IV) Bio-oxidation and the Resultant Remobilization of Uranium in Contaminated Sediments

    International Nuclear Information System (INIS)

    Coates, John D.

    2005-01-01

    A proposed strategy for the remediation of uranium (U) contaminated sites is based on immobilizing U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Due to the use of nitric acid in the processing of nuclear fuels, nitrate is often a co-contaminant found in many of the environments contaminated with uranium. Recent studies indicate that nitrate inhibits U(VI) reduction in sediment slurries. However, the mechanism responsible for the apparent inhibition of U(VI) reduction is unknown, i.e. preferential utilization of nitrate as an electron acceptor, direct biological oxidation of U(IV) coupled to nitrate reduction, and/or abiotic oxidation by intermediates of nitrate reduction. Recent studies indicates that direct biological oxidation of U(IV) coupled to nitrate reduction may exist in situ, however, to date no organisms have been identified that can grow by this metabolism. In an effort to evaluate the potential for nitrate-dependent bio-oxidation of U(IV) in anaerobic sedimentary environments, we have initiated the enumeration of nitrate-dependent U(IV) oxidizing bacteria. Sediments, soils, and groundwater from uranium (U) contaminated sites, including subsurface sediments from the NABIR Field Research Center (FRC), as well as uncontaminated sites, including subsurface sediments from the NABIR FRC and Longhorn Army Ammunition Plant, Texas, lake sediments, and agricultural field soil, sites served as the inoculum source. Enumeration of the nitrate-dependent U(IV) oxidizing microbial population in sedimentary environments by most probable number technique have revealed sedimentary microbial populations ranging from 9.3 x 101 - 2.4 x 103 cells (g sediment)-1 in both contaminated and uncontaminated sites. Interestingly uncontaminated subsurface sediments (NABIR FRC Background core FB618 and Longhorn Texas Core BH2-18) both harbored the most numerous nitrate-dependent U(IV) oxidizing population 2.4 x 103 cells (g sediment)-1

  14. Whey Peptide-Iron Complexes Increase the Oxidative Stability of Oil-in-Water Emulsions in Comparison to Iron Salts.

    Science.gov (United States)

    Caetano-Silva, Maria Elisa; Barros Mariutti, Lilian Regina; Bragagnolo, Neura; Bertoldo-Pacheco, Maria Teresa; Netto, Flavia Maria

    2018-02-28

    Food fortification with iron may favor lipid oxidation in both food matrices and the human body. This study aimed at evaluating the effect of peptide-iron complexation on lipid oxidation catalyzed by iron, using oil-in-water (O/W) emulsions as a model system. The extent of lipid oxidation of emulsions containing iron salts (FeSO 4 or FeCl 2 ) or iron complexes (peptide-iron complexes or ferrous bisglycinate) was evaluated during 7 days, measured as primary (peroxide value) and secondary products (TBARS and volatile compounds). Both salts catalyzed lipid oxidation, leading to peroxide values 2.6- to 4.6-fold higher than the values found for the peptide-iron complexes. The addition of the peptide-iron complexes resulted in the formation of lower amounts of secondary volatiles of lipid oxidation (up to 78-fold) than those of iron salts, possibly due to the antioxidant activity of the peptides and their capacity to keep iron apart from the lipid phase, since the iron atom is coordinated and takes part in a stable structure. The peptide-iron complexes showed potential to reduce the undesirable sensory changes in food products and to decrease the side effects related to free iron and the lipid damage of cell membranes in the organism, due to the lower reactivity of iron in the complexed form.

  15. Nitrogen uptake by heterotrophic bacteria and phytoplankton in the nitrate-rich Thames estuary

    NARCIS (Netherlands)

    Middelburg, J.J.; Nieuwenhuize, J.

    2000-01-01

    The uptake of ammonium, nitrate, amino acids and urea was examined in the nitrate-rich Thames estuary and adjacent area in the North Sea during February 1999. The majority of uptake was by heterotrophic bacteria, as demonstrated by addition of a prokaryotic inhibitor that lowered uptake rates by 82,

  16. Electrochemistry study of the influence of local hydrogen generation in carbon steel bio-corrosion mechanisms in presence of iron reducing bacteria (Shewanella oneidensis)

    International Nuclear Information System (INIS)

    Moreira, R.; Libert, M.; Tribollet, B.; Vivier, V.

    2012-01-01

    Document available in extended abstract form only. The safe disposal of nuclear waste is a major concern for the nuclear energy industry. The high-level long-lived waste (HLNW) should be maintained for millions of years in clay formations at 500 metres depth in order to prevent the migration of radionuclides. Thence, different kinds of materials such as, carbon steel, stainless steel, concrete, clay, etc., are chosen aiming to last as long as possible and to preserve the radioactivity properties. In contrast, the anoxic corrosion of the different metallic envelopes is an expected phenomenon due to the changes on the environmental conditions (such as re-saturation) within HLNW repositories. In this context, corrosion products like iron oxides (i.e. magnetite, Fe 3 O 4 ), and hydrogen will be also expected. On the one hand, hydrogen poses a significant threat to the nuclear waste repository when it is accumulated for a long time in the surrounding clay - such hydrogen production may damage the barrier properties of the geological formation, affecting the safety of the repository. On the other hand, hydrogen production represents a new energy source for bacterial growth, especially in such environments with low content of biodegradable organic matter. Moreover, some hydrogeno-trophic bacteria can also use Fe 3+ as an electron acceptor for their development. Therefore, the biological activity and biofilm formation could interfere in the metal corrosion behaviour. This phenomenon is widely known by MIC (Microbiologically Influenced Corrosion), which can represent a huge problem when promoting local corrosion. The objective of this study is to better understand the influence of local hydrogen formation in the carbon steel bio-corrosion process in the presence of Shewanella oneidensis MR-1, a model of Iron Reducing Bacteria (IRB), in order to evaluate the impact of the bacterial activity in terms of long term behaviour of geological disposal materials. In this study

  17. Superparamagnetic iron oxides for MRI

    International Nuclear Information System (INIS)

    Weissleder, R.; Reimer, P.

    1993-01-01

    Pharmaceutical iron oxide preparations have been used as MRI contrast agents for a variety of purposes. These agents predominantly decrease T2 relaxation times and therefore cause a decrease in signal intensity of tissues that contain the agent. After intravenous administration, dextran-coated iron oxides typically accumulate in phagocytic cells in liver and spleen. Clinical trials have shown that iron oxide increases lesion/liver and lesion/spleen contrast, that more lesions can be depicted than on plain MRI or CT, and that the size threshold for lesion detection decreases. Decreased uptake of iron oxides in liver has been observed in hepatitis and cirrhosis, potentially allowing the assessment of organ function. More recently a variety of novel, target-specific monocrystalline iron oxides compounds have been used for receptor and immunospecific images. Future development of targeted MRI contrast agents is critical for organ- or tissue-specific quantitative and functional MRI. (orig.)

  18. Superparamagnetic iron oxides for MRI

    Energy Technology Data Exchange (ETDEWEB)

    Weissleder, R [MGH-NMR Center, Dept. of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Reimer, P [MGH-NMR Center, Dept. of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); [Inst. fuer Klinische Radiologie, Zentrale Roentgendiagnostik, Westfaelische-Wilhelms-Univ., Muenster (Germany)

    1993-06-01

    Pharmaceutical iron oxide preparations have been used as MRI contrast agents for a variety of purposes. These agents predominantly decrease T2 relaxation times and therefore cause a decrease in signal intensity of tissues that contain the agent. After intravenous administration, dextran-coated iron oxides typically accumulate in phagocytic cells in liver and spleen. Clinical trials have shown that iron oxide increases lesion/liver and lesion/spleen contrast, that more lesions can be depicted than on plain MRI or CT, and that the size threshold for lesion detection decreases. Decreased uptake of iron oxides in liver has been observed in hepatitis and cirrhosis, potentially allowing the assessment of organ function. More recently a variety of novel, target-specific monocrystalline iron oxides compounds have been used for receptor and immunospecific images. Future development of targeted MRI contrast agents is critical for organ- or tissue-specific quantitative and functional MRI. (orig.)

  19. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate-nitrite-nitric oxide pathway.

    Science.gov (United States)

    Lidder, Satnam; Webb, Andrew J

    2013-03-01

    The discovery that dietary (inorganic) nitrate has important vascular effects came from the relatively recent realization of the 'nitrate-nitrite-nitric oxide (NO) pathway'. Dietary nitrate has been demonstrated to have a range of beneficial vascular effects, including reducing blood pressure, inhibiting platelet aggregation, preserving or improving endothelial dysfunction, enhancing exercise performance in healthy individuals and patients with peripheral arterial disease. Pre-clinical studies with nitrate or nitrite also show the potential to protect against ischaemia-reperfusion injury and reduce arterial stiffness, inflammation and intimal thickness. However, there is a need for good evidence for hard endpoints beyond epidemiological studies. Whilst these suggest reduction in cardiovascular risk with diets high in nitrate-rich vegetables (such as a Mediterranean diet), others have suggested possible small positive and negative associations with dietary nitrate and cancer, but these remain unproven. Interactions with other nutrients, such as vitamin C, polyphenols and fatty acids may enhance or inhibit these effects. In order to provide simple guidance on nitrate intake from different vegetables, we have developed the Nitrate 'Veg-Table' with 'Nitrate Units' [each unit being 1 mmol of nitrate (62 mg)] to achieve a nitrate intake that is likely to be sufficient to derive benefit, but also to minimize the risk of potential side effects from excessive ingestion, given the current available evidence. The lack of data concerning the long term effects of dietary nitrate is a limitation, and this will need to be addressed in future trials. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  20. Iron oxide nanotubes synthesized via template-based electrodeposition

    Science.gov (United States)

    Lim, Jin-Hee; Min, Seong-Gi; Malkinski, Leszek; Wiley, John B.

    2014-04-01

    Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition. In the case of magnetite nanotubes, which consist of slightly larger nanoparticles, magnetization curves show ferromagnetism with weak coercivity at room temperature, while FC-ZFC curves exhibit the Verwey transition at 125 K.Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition

  1. Goethite promoted biodegradation of 2,4-dinitrophenol under nitrate reduction condition.

    Science.gov (United States)

    Tang, Ting; Yue, Zhengbo; Wang, Jin; Chen, Tianhu; Qing, Chengsong

    2018-02-05

    Iron oxide may interact with other pollutants in the aquatic environments and further influence their toxicity, transport and fate. The current study was conducted to investigate the biodegradation of 2,4-dinitrophenol (2,4-DNP) in the presence of iron oxide of goethite under anoxic condition using nitrate as the electron acceptor. Experiment results showed that the degradation rate of 2,4-DNP was improved by goethite. High performance liquid chromatography-mass spectra analysis results showed that goethite promoted degradation and transformation of 2,4-diaminophenol and 2-amino-4-nitrophenol (2-nitro-4-aminophenol). Microbial community analysis results showed that the abundance of Actinobacteria, which have the potential ability to degrade PAHs, was increased when goethite was available. This might partially explain the higher degradation of 2,4-DNP. Furthermore, another bacterium of Desulfotomaculum reducens which could reduce soluble Fe(III) and nitrate was also increased. Results further confirmed that nanomaterials in the aquatic environment will influence the microbial community and further change the transformation process of toxic pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process.

    Science.gov (United States)

    Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-11-15

    This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N2 selectivity achieved at HRT of 80min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings.

    Science.gov (United States)

    Li, Yang; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-07-15

    The oxidization of metal sulfide in tailings causes acid mine drainage. However, it remains unclear whether vegetation prevents the oxidization of metal sulfides. The oxidization characteristics and microbial indices of the tailings in the presence of various plant species were investigated to explore the effects of vegetation on the oxidization of sulfide minerals in tailings. The pH, reducing sulfur, free iron oxides (Fed), chemical oxygen consumption (COC) and biological oxygen consumption (BOC) were measured. Key iron- and sulfur-oxidizing bacteria (Acidithiobacillus spp., Leptospirillum spp. and Thiobacillus spp.) were quantified using real-time PCR. The results indicate that vegetation growing on tailings can effectively prevent the oxidization of sulfide minerals in tailings. A higher pH and reducing-sulfur content and lower Fed were observed in the 0-30 cm depth interval in the presence of vegetation compared to bare tailings (BT). The COC gradually decreased with depth in all of the soil profiles; specifically, the COC rapidly decreased in the 10-20 cm interval in the presence of vegetation but gradually decreased in the BT profiles. Imperata cylindrica (IC) and Chrysopogon zizanoides (CZ) profiles contained the highest BOC in the 10-20 cm interval. The abundance of key iron- and sulfur-oxidizing bacteria in the vegetated tailings were significantly lower than in the BT; in particular, IC was associated with the lowest iron- and sulfur-oxidizing bacterial abundance. In conclusion, vegetation successfully prevented the oxidization of sulfide minerals in the tailings, and Imperata cylindrica is the most effective in reducing the number of iron- and sulfur-oxidizing bacteria and helped to prevent the oxidization of sulfide minerals in the long term. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Won; Kim, Jeong Jin; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, Dong Woo [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2016-03-15

    There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

  5. Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields

    Directory of Open Access Journals (Sweden)

    A. W. Rollins

    2009-09-01

    Full Text Available Alkyl nitrates and secondary organic aerosol (SOA produced during the oxidation of isoprene by nitrate radicals has been observed in the SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber chamber. A 16 h dark experiment was conducted with temperatures at 289–301 K, and maximum concentrations of 11 ppb isoprene, 62.4 ppb O3 and 31.1 ppb NOx. We find the yield of nitrates is 70±8% from the isoprene + NO3 reaction, and the yield for secondary dinitrates produced in the reaction of primary isoprene nitrates with NO3 is 40±20%. We find an effective rate constant for reaction of NO3 with the group of first generation oxidation products to be 7×10−14 molecule−1 cm3 s−1. At the low total organic aerosol concentration in the chamber (max=0.52 μg m−3 we observed a mass yield (ΔSOA mass/Δisoprene mass of 2% for the entire 16 h experiment. However a comparison of the timing of the observed SOA production to a box model simulation of first and second generation oxidation products shows that the yield from the first generation products was <0.7% while the further oxidation of the initial products leads to a yield of 14% (defined as ΔSOA/Δisoprene2x where Δisoprene2x is the mass of isoprene which reacted twice with NO3. The SOA yield of 14% is consistent with equilibrium partitioning of highly functionalized C5 products of isoprene oxidation.

  6. Nitrate as an Oxidant in the Cathode Chamber of a Microbial Fuel Cell for Both Power Generation and Nutrient Removal Purposes

    DEFF Research Database (Denmark)

    Fang, Cheng; Min, Booki; Angelidaki, Irini

    2011-01-01

    with the operation without catalyst. Nitrate was reduced to nitrite and ammonia in the liquid phase at a ratio of 0.6% and 51.8% of the total nitrate amount. These results suggest that nitrate can be successfully used as an oxidant for power generation without aeration and also nitrate removal from water in MFC......Nitrate ions were used as the oxidant in the cathode chamber of a microbial fuel cell (MFC) to generate electricity from organic compounds with simultaneous nitrate removal. The MFC using nitrate as oxidant could generate a voltage of 111 mV (1,000 Ω) with a plain carbon cathode. The maximum power...... density achieved was 7.2 mW m−2 with a 470 Ω resistor. Nitrate was reduced from an initial concentration of 49 to 25 mg (NO3−−N) L−1 during 42-day operation. The daily removal rate was 0.57 mg (NO3−–N) L−1 day−1 with a voltage generation of 96 mV. In the presence of Pt catalyst dispersed on cathode...

  7. Comparative modelling and molecular docking of nitrate reductase from Bacillus weihenstephanensis (DS45

    Directory of Open Access Journals (Sweden)

    R. Seenivasagan

    2016-07-01

    Full Text Available Nitrate reductase catalyses the oxidation of NAD(PH and the reduction of nitrate to nitrite. NR serves as a central point for the integration of metabolic pathways by governing the flux of reduced nitrogen through several regulatory mechanisms in plants, algae and fungi. Bacteria express nitrate reductases that convert nitrate to nitrite, but mammals lack these specific enzymes. The microbial nitrate reductase reduces toxic compounds to nontoxic compounds with the help of NAD(PH. In the present study, our results revealed that Bacillus weihenstephanensis expresses a nitrate reductase enzyme, which was made to generate the 3D structure of the enzyme. Six different modelling servers, namely Phyre2, RaptorX, M4T Server, HHpred, SWISS MODEL and Mod Web, were used for comparative modelling of the structure. The model was validated with standard parameters (PROCHECK and Verify 3D. This study will be useful in the functional characterization of the nitrate reductase enzyme and its docking with nitrate molecules, as well as for use with autodocking.

  8. Liquid Phase Plasma Synthesis of Iron Oxide/Carbon Composite as Dielectric Material for Capacitor

    Directory of Open Access Journals (Sweden)

    Heon Lee

    2014-01-01

    Full Text Available Iron oxide/carbon composite was synthesized using a liquid phase plasma process to be used as the electrode of supercapacitor. Spherical iron oxide nanoparticles with the size of 5~10 nm were dispersed uniformly on carbon powder surface. The specific capacitance of the composite increased with increasing quantity of iron oxide precipitate on the carbon powder up to a certain quantity. When the quantity of the iron oxide precipitate exceeds the threshold, however, the specific capacitance was rather reduced by the addition of precipitate. The iron oxide/carbon composite containing an optimum quantity (0.33 atomic % of iron oxide precipitate exhibited the smallest resistance and the largest initial resistance slope.

  9. Nitrous oxide and nitrate concentration in under-drainage from arable fields subject to diffuse pollution mitigation measures

    Science.gov (United States)

    Hama-Aziz, Zanist; Hiscock, Kevin; Adams, Christopher; Reid, Brian

    2016-04-01

    Atmospheric nitrous oxide concentrations are increasing by 0.3% annually and a major source of this greenhouse gas is agriculture. Indirect emissions of nitrous oxide (e.g. from groundwater and surface water) account for about quarter of total nitrous oxide emissions. However, these indirect emissions are subject to uncertainty, mainly due to the range in reported emission factors. It's hypothesised in this study that cover cropping and implementing reduced (direct drill) cultivation in intensive arable systems will reduce dissolved nitrate concentration and subsequently indirect nitrous oxide emissions. To test the hypothesis, seven fields with a total area of 102 ha in the Wensum catchment in eastern England have been chosen for experimentation together with two fields (41 ha) under conventional cultivation (deep inversion ploughing) for comparison. Water samples from field under-drainage have been collected for nitrate and nitrous oxide measurement on a weekly basis from April 2013 for two years from both cultivation areas. A purge and trap preparation line connected to a Shimadzu GC-8A gas chromatograph fitted with an electron capture detector was used for dissolved nitrous oxide analysis. Results revealed that with an oilseed radish cover crop present, the mean concentration of nitrate, which is the predominant form of N, was significantly depleted from 13.9 mg N L-1 to 2.5 mg N L-1. However, slightly higher mean nitrous oxide concentrations under the cover crop of 2.61 μg N L-1 compared to bare fields of 2.23 μg N L-1 were observed. Different inversion intensity of soil tended to have no effect on nitrous oxide and nitrate concentrations. The predominant production mechanism for nitrous oxide was nitrification process and the significant reduction of nitrate was due to plant uptake rather than denitrification. It is concluded that although cover cropping might cause a slight increase of indirect nitrous oxide emission, it can be a highly effective

  10. Accelerated dissolution of iron oxides in ice

    Directory of Open Access Journals (Sweden)

    D. Jeong

    2012-11-01

    Full Text Available Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4, the dissolution of iron oxides was greatly enhanced in the ice phase compared to that in water. The dissolved iron was mainly in the ferric form, which indicates that the dissolution is not a reductive process. The extent of dissolved iron was greatly affected by the kind of organic complexing ligands and the surface area of iron oxides. The iron dissolution was most pronounced with high surface area iron oxides and in the presence of strong iron binding ligands. The enhanced dissolution of iron oxides in ice is mainly ascribed to the "freeze concentration effect", which concentrates iron oxide particles, organic ligands, and protons in the liquid like ice grain boundary region and accelerates the dissolution of iron oxides. The ice-enhanced dissolution effect gradually decreased when decreasing the freezing temperature from −10 to −196 °C, which implies that the presence and formation of the liquid-like ice grain boundary region play a critical role. The proposed phenomenon of enhanced dissolution of iron oxides in ice may provide a new pathway of bioavailable iron production. The frozen atmospheric ice with iron-containing dust particles in the upper atmosphere thaws upon descending and may provide bioavailable iron upon deposition onto the ocean surface.

  11. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.

    Science.gov (United States)

    Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo

    2012-12-01

    In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Iron accumulation with age, oxidative stress and functional decline.

    Directory of Open Access Journals (Sweden)

    Jinze Xu

    2008-08-01

    Full Text Available Identification of biological mediators in sarcopenia is pertinent to the development of targeted interventions to alleviate this condition. Iron is recognized as a potent pro-oxidant and a catalyst for the formation of reactive oxygen species in biological systems. It is well accepted that iron accumulates with senescence in several organs, but little is known about iron accumulation in muscle and how it may affect muscle function. In addition, it is unclear if interventions which reduced age-related loss of muscle quality, such as calorie restriction, impact iron accumulation. We investigated non-heme iron concentration, oxidative stress to nucleic acids in gastrocnemius muscle and key indices of sarcopenia (muscle mass and grip strength in male Fischer 344 X Brown Norway rats fed ad libitum (AL or a calorie restricted diet (60% of ad libitum food intake starting at 4 months of age at 8, 18, 29 and 37 months of age. Total non-heme iron levels in the gastrocnemius muscle of AL rats increased progressively with age. Between 29 and 37 months of age, the non-heme iron concentration increased by approximately 200% in AL-fed rats. Most importantly, the levels of oxidized RNA in gastrocnemius muscle of AL rats were significantly increased as well. The striking age-associated increase in non-heme iron and oxidized RNA levels and decrease in sarcopenia indices were all attenuated in the calorie restriction (CR rats. These findings strongly suggest that the age-related iron accumulation in muscle contributes to increased oxidative damage and sarcopenia, and that CR effectively attenuates these negative effects.

  13. Effect of sulfate absence and nitrate addition on bacterial community in a sulfidogenic bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yangguo [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Wang Aijie, E-mail: waj0578@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Ren Nanqi [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2009-12-30

    The characteristics and behavior of sulfate-reducing bacteria (SRB), methane-producing bacteria (MPB) and denitrifying bacteria (DB) were investigated by polymerase chain reaction (PCR) based methods under the transitory sulfate absence or nitrate addition conditions in a sulfidogenic continuously stirred tank reactor. The bioreactor started-up feeding with 4000 mg l{sup -1} COD (lactate) and 2000 mg l{sup -1} sulfate (SO{sub 4}{sup 2-}). The sulfate removal efficiency reached 3.84 g l{sup -1} d{sup -1} when the activated sludge formed a stable bacterial community comprising of some members of genera Desulfobulbus, Desulfovibrio, Clostridium and Pseudomonas after 20 days' operation. And about 79% of reduced sulfate captured electrons from the oxidization of propionate. Sulfate absence influenced little on quantity and population structure of SRB and DB, while much on MPB and metabolic typing. And the acetate (up to 86% (w/w) of total end-products) in end-product profiles was replaced by the propionate (75% (w/w)). The addition of nitrate to sulfidogenic system suppressed the sulfidogenesis mainly by capturing the electron flow. These results suggested that sulfate absence or nitrate addition would not inhibit SRB permanently in a stable sulfidogenic community.

  14. Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments

    Science.gov (United States)

    Sun, W.; Sierra-Alvarez, R.; Milner, L.; Oremland, R.; Field, J.A.

    2009-01-01

    The objective of this study was to explore a bioremediation strategy based on injecting NO3- to support the anoxic oxidation of ferrous iron (Fe(II)) and arsenite (As(III)) in the subsurface as a means to immobilize As in the form of arsenate (As(V)) adsorbed onto biogenic ferric (Fe(III)) (hydr)oxides. Continuous flows and filled columns were used to simulate a natural anaerobic groundwater and sediment system with co-occurring As(III) and Fe(II) in the presence (column SF1) or absence (column SF2) of nitrate, respectively. During operation for 250 days, the average influent arsenic concentration of 567 ??g L-1 was reduced to 10.6 (??9.6) ??g L-1 in the effluent of column SF1. The cumulative removal of Fe(II) and As(III) in SF1 was 6.5 to 10-fold higher than that in SF2. Extraction and measurement of the mass of iron and arsenic immobilized on the sand packing of the columns were close to the iron and arsenic removed from the aqueous phase during column operation. The dominant speciation of the immobilized iron and arsenic was Fe(III) and As(V) in SF1, compared with Fe(II) and As(III) in SF2. The speciation was confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicate that microbial oxidation of As(III) and Fe(II) linked to denitrification resulted in the enhanced immobilization of aqueous arsenic in anaerobic environments by forming Fe(III) (hydr)oxide coated sands with adsorbed As(V). ?? 2009 American Chemical Society.

  15. NO2-induced synthesis of nitrato-iron(III) porphyrin with diverse ...

    Indian Academy of Sciences (India)

    found serendipitously in the reaction of [Fe(4-Me-TPP)Cl] with nitrous acid, which ... Nitric oxide and its derivatives nitrite and nitrate ion ... oxide.2 Nitrate is produced in heme proteins from oxi- ... and nitrogen assimilation.4 Iron nitrate(III) porphyrins ... one-pot method.15 ... of the compound was determined based on the lack.

  16. Iron, Oxidative Stress and Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Taifeng Zhuang

    2014-09-01

    Full Text Available Both iron deficiency and hyperglycemia are highly prevalent globally for pregnant women. Iron supplementation is recommended during pregnancy to control iron deficiency. The purposes of the review are to assess the oxidative effects of iron supplementation and the potential relationship between iron nutrition and gestational diabetes. High doses of iron (~relative to 60 mg or more daily for adult humans can induce lipid peroxidation in vitro and in animal studies. Pharmaceutical doses of iron supplements (e.g., 10× RDA or more for oral supplements or direct iron supplementation via injection or addition to the cell culture medium for a short or long duration will induce DNA damage. Higher heme-iron intake or iron status measured by various biomarkers, especially serum ferritin, might contribute to greater risk of gestational diabetes, which may be mediated by iron oxidative stress though lipid oxidation and/or DNA damage. However, information is lacking about the effect of low dose iron supplementation (≤60 mg daily on lipid peroxidation, DNA damage and gestational diabetes. Randomized trials of low-dose iron supplementation (≤60 mg daily for pregnant women are warranted to test the relationship between iron oxidative stress and insulin resistance/gestational diabetes, especially for iron-replete women.

  17. Effect of the oxidation rate and Fe(II) state on microbial nitrate-dependent Fe(III) mineral formation

    Science.gov (United States)

    Senko, John M.; Dewers , Thomas A.; Krumholz, Lee R.

    2005-01-01

    A nitrate-dependent Fe(II)-oxidizing bacterium was isolated and used to evaluate whether Fe(II) chemical form or oxidation rate had an effect on the mineralogy of biogenic Fe(III) (hydr)oxides resulting from nitrate-dependent Fe(II) oxidation. The isolate (designated FW33AN) had 99% 16S rRNA sequence similarity to Klebsiella oxytoca. FW33AN produced Fe(III) (hydr)oxides by oxidation of soluble Fe(II) [Fe(II)sol] or FeS under nitrate-reducing conditions. Based on X-ray diffraction (XRD) analysis, Fe(III) (hydr)oxide produced by oxidation of FeS was shown to be amorphous, while oxidation of Fe(II)sol yielded goethite. The rate of Fe(II) oxidation was then manipulated by incubating various cell concentrations of FW33AN with Fe(II)sol and nitrate. Characterization of products revealed that as Fe(II) oxidation rates slowed, a stronger goethite signal was observed by XRD and a larger proportion of Fe(III) was in the crystalline fraction. Since the mineralogy of Fe(III) (hydr)oxides may control the extent of subsequent Fe(III) reduction, the variables we identify here may have an effect on the biogeochemical cycling of Fe in anoxic ecosystems.

  18. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Moussavi, Gholamreza, E-mail: moussavi@modares.ac.ir; Shekoohiyan, Sakine

    2016-11-15

    Highlights: • Simultaneous advanced oxidation and reduction processes were explored in VUV system. • Complete reduction of nitrate to N{sub 2} was achieved at the presence of acetaminophen. • Complete degradation of acetaminophen was achieved at the presence of nitrate. • Over 95% of acetaminophen was mineralized in the VUV photoreactor. • VUV is a chemical-less advanced process for treating water emerging contaminants. - Abstract: This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO· while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N{sub 2} selectivity achieved at HRT of 80 min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80 min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate.

  19. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process

    International Nuclear Information System (INIS)

    Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-01-01

    Highlights: • Simultaneous advanced oxidation and reduction processes were explored in VUV system. • Complete reduction of nitrate to N_2 was achieved at the presence of acetaminophen. • Complete degradation of acetaminophen was achieved at the presence of nitrate. • Over 95% of acetaminophen was mineralized in the VUV photoreactor. • VUV is a chemical-less advanced process for treating water emerging contaminants. - Abstract: This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO· while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N_2 selectivity achieved at HRT of 80 min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80 min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate.

  20. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.

    Science.gov (United States)

    Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong

    2015-11-01

    Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4(-) and •O2(-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water.

  1. Relative importance of nitrate and sulfate aerosol production mechanisms in urban atmospheres

    International Nuclear Information System (INIS)

    Middleton, P.; Kiang, C.S.

    1979-01-01

    The relative importance of the various sulfate and nitrate aerosol production mechanisms is calculated for different atmospheric conditions. The calculation scheme used to determine the rates of nitrate and sulfate production, based on the concept that vapor transfer to the aerosols and nitrate and sulfate formation within the aerosols are coupled kinetic processes, considers sulfate formation by ozone and hydrogen peroxide oxidation and catalytic oxidation in the presence of soot, iron and manganese of sulfite solutions and sulfuric acid condensation and nitrate formation by the liquid-phase oxidation of dissolved nitrogen oxides for different initial gas concentrations and particle compositions and sizes. It is found that sulfate production is higher under daytime conditions, primarily proceeding by mechanisms involving sulfuric acid and hydrogen peroxide, while at night oxidation processes on the surface of the aerosol film are more important. Nitrate tends to decrease nighttime sulfate production due to an increase in aerosol acidity and nitrate production is found to be higher under nighttime conditions and in the winter

  2. Molecular- and cultivation-based analyses of microbial communities in oil field water and in microcosms amended with nitrate to control H{sub 2}S production

    Energy Technology Data Exchange (ETDEWEB)

    Kumaraswamy, Raji; Ebert, Sara; Fedorak, Phillip M.; Foght, Julia M. [Alberta Univ., Edmonton, AB (Canada). Biological Sciences; Gray, Murray R. [Alberta Univ., Edmonton, AB (Canada). Chemical and Materials Engineering

    2011-03-15

    Nitrate injection into oil fields is an alternative to biocide addition for controlling sulfide production ('souring') caused by sulfate-reducing bacteria (SRB). This study examined the suitability of several cultivation-dependent and cultivation-independent methods to assess potential microbial activities (sulfidogenesis and nitrate reduction) and the impact of nitrate amendment on oil field microbiota. Microcosms containing produced waters from two Western Canadian oil fields exhibited sulfidogenesis that was inhibited by nitrate amendment. Most probable number (MPN) and fluorescent in situ hybridization (FISH) analyses of uncultivated produced waters showed low cell numbers ({<=}10{sup 3} MPN/ml) dominated by SRB (>95% relative abundance). MPN analysis also detected nitrate-reducing sulfide-oxidizing bacteria (NRSOB) and heterotrophic nitrate-reducing bacteria (HNRB) at numbers too low to be detected by FISH or denaturing gradient gel electrophoresis (DGGE). In microcosms containing produced water fortified with sulfate, near-stoichiometric concentrations of sulfide were produced. FISH analyses of the microcosms after 55 days of incubation revealed that Gammaproteobacteria increased from undetectable levels to 5-20% abundance, resulting in a decreased proportion of Deltaproteobacteria (50-60% abundance). DGGE analysis confirmed the presence of Delta- and Gammaproteobacteria and also detected Bacteroidetes. When sulfate-fortified produced waters were amended with nitrate, sulfidogenesis was inhibited and Deltaproteobacteria decreased to levels undetectable by FISH, with a concomitant increase in Gammaproteobacteria from below detection to 50-60% abundance. DGGE analysis of these microcosms yielded sequences of Gamma- and Epsilonproteobacteria related to presumptive HNRB and NRSOB (Halomonas, Marinobacterium, Marinobacter, Pseudomonas and Arcobacter), thus supporting chemical data indicating that nitrate-reducing bacteria out-compete SRB when nitrate is

  3. Prokaryotic community structure and activity of sulfate reducers in production water from high-temperature oil reservoirs with and without nitrate treatment

    DEFF Research Database (Denmark)

    Gittel, Antje; Sørensen, Ketil; Skovhus, Torben L.

    2009-01-01

    Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. One strategy to control SRP activity is the addition of nitrate to the injection water. Production waters from two adjacent, hot (80°C) oil reservoirs......, one with and one without nitrate treatment, were compared for prokaryotic community structure and activity of SRP. Bacterial and archaeal 16S rRNA gene analyses revealed higher prokaryotic abundance but lower diversity for the nitrate-treated field. The 16S rRNA gene clone libraries from both fields...... were dominated by sequences affiliated with Firmicutes (Bacteria) and Thermococcales (Archaea). Potential heterotrophic nitrate reducers (Deferribacterales) were exclusively found at the nitrate-treated field, possibly stimulated by nitrate addition. Quantitative PCR of dsrAB genes revealed...

  4. On bacteria oxidizing enlargement scale test for uranium in-situ leaching at. 381 mine

    International Nuclear Information System (INIS)

    Hu Kaiguang; Wang Qingliang; Liu Yingjiu; Shi Wenge; Hu Shihe; Hu Yincai; Fang Qiu

    1999-01-01

    The results of enlarged scale test of bacteria as oxidizer for uranium in-situ leaching at No 381 mine showed that redox potential of the oxidized absorbed tailing water by bacteria is more than 510 mV, without any effects on after treatments by using bacteria as oxidizer and reduce oxidizer costs 70% compared with H 2 O 2 as oxidizer

  5. Bio-reduction of free and laden perchlorate by the pure and mixed perchlorate reducing bacteria: Considering the pH and coexisting nitrate.

    Science.gov (United States)

    Shang, Yanan; Wang, Ziyang; Xu, Xing; Gao, Baoyu; Ren, Zhongfei

    2018-08-01

    Pure bacteria cell (Azospira sp. KJ) and mixed perchlorate reducing bacteria (MPRB) were employed for decomposing the free perchlorate in water as well as the laden perchlorate on surface of quaternary ammonium wheat residuals (QAWR). Results indicated that perchlorate was decomposed by the Azospira sp. KJ prior to nitrate while MPRB was just the reverse. Bio-reduction of laden perchlorate by Azospira sp. KJ was optimal at pH 8.0. In contrast, bio-reduction of laden perchlorate by MPRB was optimal at pH 7.0. Generally, the rate of perchlorate reduction was controlled by the enzyme activity of PRB. In addition, perchlorate recovery (26.0 mg/g) onto bio-regenerated QAWR by MPRB was observed with a small decrease as compared with that (31.1 mg/g) by Azospira sp. KJ at first 48 h. Basically, this study is expected to offer some different ideas on bio-regeneration of perchlorate-saturated adsorbents using biological process, which may provide the economically alternative to conventional methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Ferroxidase-Mediated Iron Oxide Biomineralization

    DEFF Research Database (Denmark)

    Zeth, Kornelius; Hoiczyk, Egbert; Okuda, Mitsuhiro

    2016-01-01

    Iron oxide biomineralization occurs in all living organisms and typically involves protein compartments ranging from 5 to 100nm in size. The smallest iron-oxo particles are formed inside dodecameric Dps protein cages, while the structurally related ferritin compartments consist of twice as many......, translocation, oxidation, nucleation, and storage, that are mediated by ferroxidase centers. Thus, compartmentalized iron oxide biomineralization yields uniform nanoparticles strictly determined by the sizes of the compartments, allowing customization for highly diverse nanotechnological applications....... identical protein subunits. The largest known compartments are encapsulins, icosahedra made of up to 180 protein subunits that harbor additional ferritin-like proteins in their interior. The formation of iron-oxo particles in all these compartments requires a series of steps including recruitment of iron...

  7. Roentgenoelectronic investigation into oxidation of iron-chromium and iron-chromium-nickel alloys

    International Nuclear Information System (INIS)

    Akimov, A.G.; Rozenfel'd, I.L.; Kazanskij, L.P.; Machavariani, G.V.

    1978-01-01

    Kinetics of iron-chromium and iron-chromium-nickel alloy oxidation (of the Kh13 and Kh18N10T steels) in oxygen was investigated using X-ray electron spectroscopy. It was found that according to X-ray electron spectra chromium oxidation kinetics in the iron-chromium alloy differs significantly from oxidation kinetics of chromium pattern. Layer by layer X-ray electron analysis showed that chromium is subjected to a deeper oxidation as compared to iron, and accordingly, Cr 2 O 3 layer with pure iron impregnations is placed between the layer of mixed oxide (Fe 3 O 4 +Cr 2 O 3 ) and metal. A model of the iron-chromium alloy surface is suggested. The mixed oxide composition on the steel surface is presented as spinel Fesub(2+x)Crsub(1-x)Osub(y)

  8. Distribution of bacteria and associated minerals in the gill chamber of the vent shrimp Rimicaris exoculata and related biogeochemical processes

    Science.gov (United States)

    Zbinden, M.; Le Bris, N.; Compere, P.; Gaill, F.

    2004-12-01

    The shrimp Rimicaris exoculata dominates the megafauna of some mid-Atlantic Ridge hydrothermal vent fields. This species harbors a rich bacterial epibiosis inside its gill chamber. At the Rainbow vent field, the epibionts are associated with iron oxide deposits. Investigation of both bacteria and minerals by scanning electron microscopy (SEM) and X-ray microanalysis (EDX) shows the occurrence of three distinct compartments in the gill chamber: (1) the lower pre-branchial chamber, housing bacteria, but devoid of minerals, (2) the "true" branchial chamber that contains the gills and remains free of both bacteria and minerals, and (3) the upper pre-branchial chamber housing the main ectosymbiotic bacterial community and associated iron oxides. According to our chemical and temperature data, abiotic iron oxidation appears to be kinetically inhibited in the environment of the shrimps and this would explain the lack of iron oxide deposits in the first two areas. We propose that, in the third area, iron oxidation is microbially promoted. The discrepancy between the spatial distribution of bacteria and minerals suggests that different bacterial metabolisms are involved in the two compartments. A possible explanation lies in the modification of physico-chemical conditions downstream of the gills, that would reduce the oxygen content and favor the development of bacterial iron-oxidizers in this Fe II-rich environment. A potential role of such iron-oxidizing symbionts in the shrimp diet is suggested. This would be unusual for hydrothermal ecosystems, where most previously described symbioses rely on sulphide or methane as an energy source.

  9. Genomic and Evolutionary Perspectives on Sulfur Metabolism in Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A.

    2008-01-01

    Green sulfur bacteria (GSB) are anaerobic photoautotrophs that oxidize sulfide, elemental sulfur, thiosulfate, ferrous iron, and hydrogen for growth. We present here an analysis of the distribution and evolution of enzymes involved in oxidation of sulfur compounds in GSB based on genome sequence......, in combination with phylogenetic analyses, suggests that the Dsr system in GSB could be a recent acquisition, which was obtained by lateral gene transfer in part from sulfideoxidizing bacteria and in part from sulfate-reducing bacteria. All thiosulfate-utilizing GSB strains have an identical sox gene cluster...

  10. Solid-state Water-mediated Transport Reduction of Nanostructured Iron Oxides

    International Nuclear Information System (INIS)

    Smirnov, Vladimir M.; Povarov, Vladimir G.; Voronkov, Gennadii P.; Semenov, Valentin G.; Murin, Igor' V.; Gittsovich, Viktor N.; Sinel'nikov, Boris M.

    2001-01-01

    The Fe 2+ /Fe 3+ ratio in two-dimensional iron oxide nanosructures (nanolayers with a thickness of 0.3-1.5 nm on silica surface) may be precisely controlled using the transport reduction (TR) technique. The species ≡-O-Fe(OH) 2 and (≡Si-O-) 2 -FeOH forming the surface monolayer are not reduced at 400-600 deg. C because of their covalent bonding to the silica surface, as demonstrated by Moessbauer spectroscopy. Iron oxide microparticles (microstructures) obtained by the impregnation technique, being chemically unbound to silica, are subjected to reduction at T ≥ 500 deg. C with formation of metallic iron in the form of α-Fe. Transport reduction of supported nanostructures (consisting of 1 or 4 monolayers) at T ≥ 600 deg. C produces bulk iron(II) silicate and metallic iron phases. The structural-chemical transformations occurring in transport reduction of supported iron oxide nanolayers are proved to be governed by specific phase processes in the nanostructures themselves

  11. The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions.

    Science.gov (United States)

    Jin, Xin; Wang, Fang; Gu, Chenggang; Yang, Xinglun; Kengara, Fredrick O; Bian, Yongrong; Song, Yang; Jiang, Xin

    2015-11-01

    The objective of the study was to elucidate the biotic and abiotic processes under dissimilatory iron reducing conditions involved in reductive dechlorination and iron reduction. DDT transformation was investigated in cultures of Shewanella putrefaciens 200 with/without α-FeOOH. A modified first-order kinetics model was developed and described DDT transformation well. Both the α-FeOOH reduction rate and the dechlorination rate of DDT were positively correlated to the biomass. Addition of α-FeOOH enhanced reductive dechlorination of DDT by favoring the cell survival and generating Fe(II) which was absorbed on the surface of bacteria and iron oxide. 92% of the absorbed Fe(II) was Na-acetate (1M) extractable. However, α-FeOOH also played a negative role of competing for electrons as reflected by the dechlorination rate of DDT was inhibited when increasing the α-FeOOH from 1 g L(-1) to 5 g L(-1). DDT was measured to be toxic to S. putrefaciens 200. The metabolites DDD, DDE and DDMU were recalcitrant to S. putrefaciens 200. The results suggested that iron oxide was not the key factor to promote the dissipation of DDX (DDT and the metabolites), whereas the one-electron reduction potential (E1) of certain organochlorines is the main factor and that the E1 higher than the threshold of the reductive driving forces of DIRB probably ensures the occur of reductive dechlorination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Surface Analysis of Marine Sulphate-Reducing Bacteria Exo polymers on Steel During Bio corrosion Using X-ray Photoelectron Spectroscopy

    International Nuclear Information System (INIS)

    Fathul Karim Sahrani; Madzlan Abd. Aziz; Zaharah Ibrahim; Adibah Yahya

    2008-01-01

    The aim of this study was to determine the surface chemistry during bio corrosion process on growth and on the production of exo polymeric substances (EPS) in batch cultures of mix-strains of marine sulphate-reducing bacteria (SRB) isolated from Malaysian Shipyard and Engineering Harbours, Pasir Gudang. The EPS and precipitates were analyzed by x-ray photoelectron spectroscopy (XPS). The XPS results indicate that Fe(2p 3/2 ) spectrum for iron sulphide can be fitted with Fe(II) and Fe(III) components, both corresponding to Fe-S bond types. The absence of oxide oxygen in the O(1s) spectrum and Fe(III)-O bond types in the Fe(2p 3/2 ) spectrum supports the conclusion that iron sulphides are composed of both ferric and ferrous iron coordinated with mono sulphide and disulphide. (author)

  13. 21 CFR 73.3125 - Iron oxides.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3125 Iron oxides. (a) Identity and specifications. The color additive iron oxides (CAS Reg. No. 1332-37-2), Color Index No. 77491, shall conform in...

  14. Meta-Transcriptomic Analysis of a Chromate-Reducing Aquifer Microbial Community

    Science.gov (United States)

    Beller, H. R.; Brodie, E. L.; Han, R.; Karaoz, U.

    2010-12-01

    A major challenge for microbial ecology that has become more tractable in the advent of new molecular techniques is characterizing gene expression in complex microbial communities. We are using meta-transcriptomic analysis to characterize functional changes in an aquifer-derived, chromate-reducing microbial community as it transitions through various electron-accepting conditions. We inoculated anaerobic microcosms with groundwater from the Cr-contaminated Hanford 100H site and supplemented them with lactate and electron acceptors present at the site, namely, nitrate, sulfate, and Fe(III). The microcosms progressed successively through various electron-accepting conditions (e.g., denitrifying, sulfate-reducing, and ferric iron-reducing conditions, as well as nitrate-dependent, chemolithotrophic Fe(II)-oxidizing conditions). Cr(VI) was rapidly reduced initially and again upon further Cr(VI) amendments. Extensive geochemical sampling and analysis (e.g., lactate, acetate, chloride, nitrate, nitrite, sulfate, dissolved Cr(VI), total Fe(II)), RNA/DNA harvesting, and PhyloChip analyses were conducted. Methods were developed for removal of rRNA from total RNA in preparation for meta-transcriptome sequencing. To date, samples representing denitrifying and fermentative/sulfate-reducing conditions have been sequenced using 454 Titanium technology. Of the non-rRNA related reads for the denitrifying sample (which was also actively reducing chromate), ca. 8% were associated with denitrification and ca. 0.9% were associated with chromate resistance/transport, in contrast to the fermentative/sulfate-reducing sample (in which chromate had already been reduced), which had zero reads associated with either of these categories but many predicted proteins associated with sulfate-reducing bacteria. We observed sequences for key functional transcripts that were unique at the nucleotide level compared to the GenBank non-redundant database [such as L-lactate dehydrogenase (iron

  15. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Guan, E-mail: huangg66@126.com; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-30

    Graphical abstract: A biomimetic catalyst of iron-tetrakis(4-sulfonatophenyl)porphyrin immobilized on powdered chitosan achieves efficient cyclohexane oxidation with high ketone and alcohol yields. - Highlights: • Fe (TPPS)/pd-CTS is an excellent catalyst for cyclohexane oxidation. • Amino ligation alters the electron cloud density around the iron cation. • Amino coordination likely reduces the activation energy of Fe (TPPS). • The catalyst achieved 22.9 mol% yields of cyclohexanone and cyclohexanol. - Abstract: This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O{sub 2}. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  16. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress.

    Science.gov (United States)

    Daiber, Andreas; Münzel, Thomas

    2015-10-10

    Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3',-5'-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed.

  17. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress

    Science.gov (United States)

    2015-01-01

    Abstract Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3′,-5′-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed. Antioxid. Redox Signal. 23, 899–942. PMID:26261901

  18. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Hasan, E-mail: h.bagheri@bmsu.ac.ir [Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hajian, Ali [Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges Köhler Allee 103, 79110 Freiburg (Germany); Rezaei, Mosayeb; Shirzadmehr, Ali [Young Researchers and Elite Club, Hamedan Branch, Islamic Azad University, Hamedan (Iran, Islamic Republic of)

    2017-02-15

    Highlights: • An electrochemical sensor based on Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide modified glassy carbon electrode was developed. • Simultaneous electrochemical determination of nitrate and nitrite by fabricated sensor was performed. • Modification improved the sensitivity and detection limit of the method. • It is a useful method for determining of nitrate and nitrite in various real samples. - Abstract: In the present research, we aimed to fabricate a novel electrochemical sensor based on Cu metal nanoparticles on the multiwall carbon nanotubes-reduced graphene oxide nanosheets (Cu/MWCNT/RGO) for individual and simultaneous determination of nitrite and nitrate ions. The morphology of the prepared nanocomposite on the surface of glassy carbon electrode (GCE) was characterized using various methods including scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy. Under optimal experimental conditions, the modified GCE showed excellent catalytic activity toward the electro-reduction of nitrite and nitrate ions (pH = 3.0) with a significant increase in cathodic peak currents in comparison with the unmodified GCE. By square wave voltammetry (SWV) the fabricated sensor demonstrated wide dynamic concentration ranges from 0.1 to 75 μM with detection limits (3S{sub b}/m) of 30 nM and 20 nM method for nitrite and nitrate ions, respectively. Furthermore, the applicability of the proposed modified electrode was demonstrated by measuring the concentration of nitrite and nitrate ions in the tap and mineral waters, sausages, salami, and cheese samples.

  19. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate

    International Nuclear Information System (INIS)

    Bagheri, Hasan; Hajian, Ali; Rezaei, Mosayeb; Shirzadmehr, Ali

    2017-01-01

    Highlights: • An electrochemical sensor based on Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide modified glassy carbon electrode was developed. • Simultaneous electrochemical determination of nitrate and nitrite by fabricated sensor was performed. • Modification improved the sensitivity and detection limit of the method. • It is a useful method for determining of nitrate and nitrite in various real samples. - Abstract: In the present research, we aimed to fabricate a novel electrochemical sensor based on Cu metal nanoparticles on the multiwall carbon nanotubes-reduced graphene oxide nanosheets (Cu/MWCNT/RGO) for individual and simultaneous determination of nitrite and nitrate ions. The morphology of the prepared nanocomposite on the surface of glassy carbon electrode (GCE) was characterized using various methods including scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy. Under optimal experimental conditions, the modified GCE showed excellent catalytic activity toward the electro-reduction of nitrite and nitrate ions (pH = 3.0) with a significant increase in cathodic peak currents in comparison with the unmodified GCE. By square wave voltammetry (SWV) the fabricated sensor demonstrated wide dynamic concentration ranges from 0.1 to 75 μM with detection limits (3S_b/m) of 30 nM and 20 nM method for nitrite and nitrate ions, respectively. Furthermore, the applicability of the proposed modified electrode was demonstrated by measuring the concentration of nitrite and nitrate ions in the tap and mineral waters, sausages, salami, and cheese samples.

  20. Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy, Manjunath; Vehkamäki, Marko [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Kukli, Kaupo, E-mail: kaupo.kukli@helsinki.fi [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); University of Tartu, Institute of Physics, W. Ostwald 1, EE-50411 Tartu (Estonia); Dimri, Mukesh Chandra [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Kemell, Marianna; Hatanpää, Timo; Heikkilä, Mikko J. [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Mizohata, Kenichiro [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 Helsinki (Finland); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Ritala, Mikko; Leskelä, Markku [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-07-29

    Bismuth iron oxide films with varying contributions from Fe{sub 2}O{sub 3} or Bi{sub 2}O{sub 3} were prepared using atomic layer deposition. Bismuth (III) 2,3-dimethyl-2-butoxide, was used as the bismuth source, iron(III) tert-butoxide as the iron source and water vapor as the oxygen source. The films were deposited as stacks of alternate Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} layers. Films grown at 140 °C to the thickness of 200–220 nm were amorphous, but crystallized upon post-deposition annealing at 500 °C in nitrogen. Annealing of films with intermittent bismuth and iron oxide layers grown to different thicknesses influenced their surface morphology, crystal structure, composition, electrical and magnetic properties. Implications of multiferroic performance were recognized in the films with the remanent charge polarization varying from 1 to 5 μC/cm{sup 2} and magnetic coercivity varying from a few up to 8000 A/m. - Highlights: • Bismuth iron oxide thin films were grown by atomic layer deposition at 140 °C. • The major phase formed in the films upon annealing at 500 °C was BiFeO{sub 3}. • BiFeO{sub 3} films and films containing excess Bi favored electrical charge polarization. • Slight excess of iron oxide enhanced saturative magnetization behavior.

  1. Effect of honey on oxidation, chlorination and nitration by purified equine myeloperoxidase

    Directory of Open Access Journals (Sweden)

    Saad Aissat

    2017-09-01

    Full Text Available Objective: To evaluate the antioxidant effect of honey using two classical methods generally used, and for the first time to test the effect of honey on the oxidation, chlorination and nitration by purified equine myeloperoxidase (MPO. Methods: The antioxidant activity of three Algerian honey samples (nectar honey, mixed honey and honeydew honey was evaluated by two classical methods, the ferric- reducing/antioxidant power (FRAP assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH radical-scavenging capacity. Results: Honeydew honey had the highest reducing power and DPPH radical-scavenging activity, whereas nectar honey showed the lowest reducing power and DPPH radical-scavenging activity. All honey samples showed a significant inhibitory effect on the chlorination activity of equine MPO, but honeydew honey was the weakest inhibitor. The three samples were poorly inhibitor on the MPO oxidation and nitration activities, except for nectar honey that exerted an inhibitory effect at the highest tested concentration of 10%. These later results seem to contradict those obtained with DPPH and FRAP. Conclusions: The antioxidant capacity of honey is mainly due to the phenolic compounds and flavonoids it contained. It has been suggested that MPO might be involved in the antioxidant, not pro-oxidant, activity of phenolic compounds.

  2. Anaerobic sulfide-oxidation in marine colorless sulfur-oxidizing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    Colorless sulfur-oxidizing bacteria are ubiquitous in Indian waters and have the ability to oxidize sulfide under anaerobic conditions. These bacteria can not only mediate the sulfur cycle oxidatively but also the nitrogen cycle reductively without...

  3. Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes.

    Science.gov (United States)

    Ren, Ge; Ma, Anzhou; Zhang, Yanfen; Deng, Ye; Zheng, Guodong; Zhuang, Xuliang; Zhuang, Guoqiang; Fortin, Danielle

    2018-04-06

    Mud volcanoes (MVs) emit globally significant quantities of methane into the atmosphere, however, methane cycling in such environments is not yet fully understood, as the roles of microbes and their associated biogeochemical processes have been largely overlooked. Here, we used data from high-throughput sequencing of microbial 16S rRNA gene amplicons from six MVs in the Junggar Basin in northwest China to quantify patterns of diversity and characterize the community structure of archaea and bacteria. We found anaerobic methanotrophs and diverse sulfate- and iron-reducing microbes in all of the samples, and the diversity of both archaeal and bacterial communities was strongly linked to the concentrations of sulfate, iron and nitrate, which could act as electron acceptors in anaerobic oxidation of methane (AOM). The impacts of sulfate/iron/nitrate on AOM in the MVs were verified by microcosm experiments. Further, two representative MVs were selected to explore the microbial interactions based on phylogenetic molecular ecological networks. The sites showed distinct network structures, key species and microbial interactions, with more complex and numerous linkages between methane-cycling microbes and their partners being observed in the iron/sulfate-rich MV. These findings suggest that electron acceptors are important factors driving the structure of microbial communities in these methane-rich environments. © 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2004-01-01

    We present studies of the magnetic properties of core-shell iron-iron oxide nanoparticles. By combining Mossbauer and X-ray absorption spectroscopy we have been able to measure the change from a Fe3O4-like to a gamma-Fe2O3-like composition from the interface to the surface. Furthermore, we have...

  5. Vertical profiles of community abundance and diversity of anaerobic methanotrophic archaea (ANME) and bacteria in a simple waste landfill in north China.

    Science.gov (United States)

    Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen

    2015-03-01

    Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms.

  6. Attenuation of iron-binding proteins in ARPE-19 cells reduces their resistance to oxidative stress.

    Science.gov (United States)

    Karlsson, Markus; Kurz, Tino

    2016-09-01

    Oxidative stress-related damage to retinal pigment epithelial (RPE) cells is an important feature in the development of age-related macular degeneration. Iron-catalysed intralysosomal production of hydroxyl radicals is considered a major pathogenic factor, leading to lipofuscin formation with ensuing depressed cellular autophagic capacity, lysosomal membrane permeabilization and apoptosis. Previously, we have shown that cultured immortalized human RPE (ARPE-19) cells are extremely resistant to exposure to bolus doses of hydrogen peroxide and contain considerable amounts of the iron-binding proteins metallothionein (MT), heat-shock protein 70 (HSP70) and ferritin (FT). According to previous findings, autophagy of these proteins depresses lysosomal redox-active iron. The aim of this study was to investigate whether up- or downregulation of these proteins would affect the resistance of ARPE-19 cells to oxidative stress. The sensitivity of ARPE-19 cells to H2 O2 exposure was tested following upregulation of MT, HSP70 and/or FT by pretreatment with ZnSO4 , heat shock or FeCl3 , as well as siRNA-mediated downregulation of the same proteins. Upregulation of MT, HSP70 and FT did not improve survival following exposure to H2 O2 . This was interpreted as existence of an already maximal protection. Combined siRNA-mediated attenuation of both FT chains (H and L), or simultaneous downregulation of all three proteins, made the cells significantly more susceptible to oxidative stress confirming the importance of iron-binding proteins. The findings support our hypothesis that the oxidative stress resistance exhibited by RPE cells may be explained by a high autophagic influx of iron-binding proteins that would keep levels of redox-active lysosomal iron low. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  7. Combination Therapy with Losartan and Pioglitazone Additively Reduces Renal Oxidative and Nitrative Stress Induced by Chronic High Fat, Sucrose, and Sodium Intake

    Directory of Open Access Journals (Sweden)

    Xiang Kong

    2012-01-01

    Full Text Available We recently showed that combination therapy with losartan and pioglitazone provided synergistic effects compared with monotherapy in improving lesions of renal structure and function in Sprague-Dawley rats fed with a high-fat, high-sodium diet and 20% sucrose solution. This study was designed to explore the underlying mechanisms of additive renoprotection provided by combination therapy. Losartan, pioglitazone, and their combination were orally administered for 8 weeks. The increased level of renal malondialdehyde and expression of nicotinamide adenine dinucleotide phosphate oxidase subunit p47phox and nitrotyrosine as well as the decreased total superoxide dismutase activity and copper, zinc-superoxide dismutase expression were tangible evidence for the presence of oxidative and nitrative stress in the kidney of model rats. Treatment with both drugs, individually and in combination, improved these abnormal changes. Combination therapy showed synergistic effects in reducing malondialdehyde level, p47phox, and nitrotyrosine expression to almost the normal level compared with monotherapy. All these results suggest that the additive renoprotection provided by combination therapy might be attributed to a further reduction of oxidative and nitrative stress.

  8. When Density Functional Approximations Meet Iron Oxides.

    Science.gov (United States)

    Meng, Yu; Liu, Xing-Wu; Huo, Chun-Fang; Guo, Wen-Ping; Cao, Dong-Bo; Peng, Qing; Dearden, Albert; Gonze, Xavier; Yang, Yong; Wang, Jianguo; Jiao, Haijun; Li, Yongwang; Wen, Xiao-Dong

    2016-10-11

    Three density functional approximations (DFAs), PBE, PBE+U, and Heyd-Scuseria-Ernzerhof screened hybrid functional (HSE), were employed to investigate the geometric, electronic, magnetic, and thermodynamic properties of four iron oxides, namely, α-FeOOH, α-Fe 2 O 3 , Fe 3 O 4 , and FeO. Comparing our calculated results with available experimental data, we found that HSE (a = 0.15) (containing 15% "screened" Hartree-Fock exchange) can provide reliable values of lattice constants, Fe magnetic moments, band gaps, and formation energies of all four iron oxides, while standard HSE (a = 0.25) seriously overestimates the band gaps and formation energies. For PBE+U, a suitable U value can give quite good results for the electronic properties of each iron oxide, but it is challenging to accurately get other properties of the four iron oxides using the same U value. Subsequently, we calculated the Gibbs free energies of transformation reactions among iron oxides using the HSE (a = 0.15) functional and plotted the equilibrium phase diagrams of the iron oxide system under various conditions, which provide reliable theoretical insight into the phase transformations of iron oxides.

  9. Effects of iron-oxide nanoparticles and magnetic fields on oral biofilms

    Science.gov (United States)

    Alas, Gema; Pagano, Ronald E.; Nguyen, Jane Q.; Bandara, H. M. H. Nihal; Ivanov, Sergei A.; Smolyakov, Gennady A.; Huber, Dale L.; Smyth, Hugh D. C.; Osiński, Marek

    2017-02-01

    Human mouth is a host of a large gamut of bacteria species, with over 700 of different bacteria strains identified. Most of these bacterial species are harmless, some are beneficial (such as probiotics assisting in food digestion), but some are responsible for various diseases, primarily tooth decay and gum diseases such as gingivitis and periodontitis. For example, Streptococus mutans produces enamel-eroding acids, while Porphyromonas gingivalis is strongly linked to periodontitis. In this paper, we report on the effects of exposure of oral biofilms to iron oxide nanoparticles and static magnetic fields as possible bactericidal agent.

  10. Microbial community analysis of perchlorate-reducing cultures growing on zero-valent iron

    International Nuclear Information System (INIS)

    Son, Ahjeong; Schmidt, Carl J.; Shin, Hyejin; Cha, Daniel K.

    2011-01-01

    Anaerobic microbial mixed cultures demonstrated its ability to completely remove perchlorate in the presence of zero-valent iron. In order to understand the major microbial reaction in the iron-supported culture, community analysis comprising of microbial fatty acids and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) techniques was performed for perchlorate reducing cultures. Analysis of fatty acid methyl esters (FAMEs) and subsequent principal component analysis (PCA) showed clear distinctions not only between iron-supported perchlorate reducing culture and seed bacteria, but also among perchlorate-reducing cultures receiving different electron donors. The DGGE pattern targeting the chlorite dismutase (cld) gene showed that iron-supported perchlorate reducing culture is similar to hydrogen-fed cultures as compared to acetate-fed culture. The phylogenetic tree suggested that the dominant microbial reaction may be a combination of the autotrophic and heterotrophic reduction of perchlorate. Both molecular and chemotaxonomic experimental results support further understanding in the function of zero-valent iron as an adequate electron source for enhancing the microbial perchlorate reduction in natural and engineered systems.

  11. Microbial community analysis of perchlorate-reducing cultures growing on zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ahjeong, E-mail: ason@auburn.edu [Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); Schmidt, Carl J. [Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716 (United States); Shin, Hyejin [Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849 (United States); Cha, Daniel K. [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States)

    2011-01-30

    Anaerobic microbial mixed cultures demonstrated its ability to completely remove perchlorate in the presence of zero-valent iron. In order to understand the major microbial reaction in the iron-supported culture, community analysis comprising of microbial fatty acids and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) techniques was performed for perchlorate reducing cultures. Analysis of fatty acid methyl esters (FAMEs) and subsequent principal component analysis (PCA) showed clear distinctions not only between iron-supported perchlorate reducing culture and seed bacteria, but also among perchlorate-reducing cultures receiving different electron donors. The DGGE pattern targeting the chlorite dismutase (cld) gene showed that iron-supported perchlorate reducing culture is similar to hydrogen-fed cultures as compared to acetate-fed culture. The phylogenetic tree suggested that the dominant microbial reaction may be a combination of the autotrophic and heterotrophic reduction of perchlorate. Both molecular and chemotaxonomic experimental results support further understanding in the function of zero-valent iron as an adequate electron source for enhancing the microbial perchlorate reduction in natural and engineered systems.

  12. Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization

    International Nuclear Information System (INIS)

    Neri, G.; Visco, A.M.; Galvagno, S.; Donato, A.; Panzalorto, M.

    1999-01-01

    Gold on iron oxides catalysts have been characterized by temperature programmed reduction (TPR) and X-ray diffraction spectroscopy (XRD). The influence of preparation method, gold loading and pretreatment conditions on the reducibility of iron oxides have been investigated. On the impregnated Au/iron oxide catalysts as well as on the support alone the partial reduction of Fe(III) oxy(hydroxides) to Fe 3 O 4 starts in the 550 and 700 K temperature range. On the coprecipitated samples, the temperature of formation of Fe 3 O 4 is strongly dependent on the presence of gold. The reduction temperature is lowered as the gold loading is increased. The reduction of Fe 3 O 4 to FeO occurs at about 900 K and is not dependent on the presence of gold and the preparation method. It is suggested that the effect of gold on the reducibility of the iron oxides is related to an increase of the structural defects and/or of the surface hydroxyl groups. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture.

    Science.gov (United States)

    Wang, Zhe; Lin, Yan; Wu, Deyi; Kong, Hainan

    2016-02-01

    A simple method to functionalize diatomite with hydrous iron oxide was attempted and its performance as a new active filtration material to remove and recover phosphate from water was investigated under varying solution conditions. The Langmuir phosphate adsorption capacity increased from 0.6 mgP/g for raw diatomite to 4.89, 14.71, 25.02 mgP/g for hydrous iron oxide modified diatomite (HIOMD), depending on the amount of iron loaded. Loading of hydrous iron oxide caused the increase in true and bulk density and a decline in filtration rate, but to a lesser extent. It was shown that the HIOMD product with suitable iron content could retain a good filtration performance with a greatly increased adsorption capacity for phosphate. The phosphate adsorption increased by decreasing pH and by increasing ionic strength at high pH levels. The adsorption process was interpreted by ligand exchange. Coexisting oxyanions of sulfate, nitrate, citrate, carbonate, silicate and humic acid showed different effects on phosphate fixation but it was presumed that their influence at their concentrations and pH levels commonly encountered in effluent or natural waters was limited, i.e., HIOMD had a reasonably good selectivity. Results in repeated adsorption, desorption and regeneration experiment showed that the adsorbed phosphate could be recovered and the material could be reused after regeneration. The column test showed that HIOMD could be potentially utilized as an adsorption filtration medium for phosphate removal and recovery from water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Sulfate- and Sulfur-Reducing Bacteria as Terrestrial Analogs for Microbial Life on Jupiter's Satellite Io

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Observations from the Voyager and Galileo spacecraft have revealed Jupiter's moon Io to be the most volcanically active body of our Solar System. The Galileo Near Infrared Imaging Spectrometer (NIMS) detected extensive deposits of sulfur compounds, elemental sulfur and SO2 frost on the surface of Io. There are extreme temperature variations on Io's surface, ranging from -130 C to over 2000 C at the Pillan Patera volcanic vent. The active volcanoes, fumaroles, calderas, and lava lakes and vast sulfur deposits on this frozen moon indicate that analogs of sulfur- and sulfate-reducing bacteria might inhabit Io. Hence Io may have great significance to Astrobiology. Earth's life forms that depend on sulfur respiration are members of two domains: Bacteria and Archaea. Two basic links of the biogeochemical sulfur cycle of Earth have been studied: 1) the sulfur oxidizing process (occurring at aerobic conditions) and 2) the process of sulfur-reduction to hydrogen sulfide (anaerobic conditions). Sulfate-reducing bacteria (StRB) and sulfur-reducing bacteria (SrRB) are responsible for anaerobic reducing processes. At the present time the systematics of StRB include over 112 species distributed into 35 genera of Bacteria and Archaea. Moderately thermophilic and mesophilic SrRB belong to the Bacteria. The hyperthermophilic SrRB predominately belong to the domain Archaea and are included in the genera: Pyrodictium, Thermoproteus, Pyrobaculum, Thermophilum, Desulfurococcus, and Thermodiscus. The StRB and SrRB use a wide spectrum of substrates as electron donors for lithotrophic and heterotrophic type nutrition. The electron acceptors for the StRB include: sulfate, thiosulfate, sulfite, sulfur, arsenate, dithionite, tetrathionate, sulfur monoxide, iron, nitrite, selenite, fumarate, oxygen, carbon dioxide, and chlorine-containing phenol compounds. The Sulfate- and Sulfur-reducing bacteria are widely distributed in anaerobic ecosystems, including extreme environments like hot springs

  15. Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria

    DEFF Research Database (Denmark)

    Gregersen, Lea Haarup; Bryant, Donald A.; Frigaard, Niels-Ulrik

    2011-01-01

    Green sulfur bacteria (GSB) constitute a closely related group of photoautotrophic and thiotrophic bacteria with limited phenotypic variation. They typically oxidize sulfide and thiosulfate to sulfate with sulfur globules as an intermediate. Based on genome sequence information from 15 strains...... product is further oxidized to sulfite by the dissimilatory sulfite reductase (DSR) system. This system consists of components horizontally acquired partly from sulfide-oxidizing and partly from sulfate-reducing bacteria. Depending on the strain, the sulfite is probably oxidized to sulfate by one of two...... in sulfate formation in other bacteria has been replaced by the DSR system in GSB. Sequence analyses suggested that the conserved soxJXYZAKBW gene cluster was horizontally acquired by Chlorobium phaeovibrioides DSM 265 from the Chlorobaculum lineage and that this acquisition was mediated by a mobile genetic...

  16. Copolymerization of poly (ethylene oxide) and poly (methyl methacrylate) initiated by ceric ammonium nitrate

    International Nuclear Information System (INIS)

    Gomes, A.S.; Ferreira, A.A.; Coutinho, F.M.B.; Marinho, J.R.D.

    1984-01-01

    Cerium (IV) salts such as the ceric ammonium nitrate and ceric ammonium sulfate in aqueous acid solution with reducing agents such as alcohols, thiols, glycols, aldehydes and amines are well known initiators of vinyl polymerization. In this work, the polymerization of methyl methacrylate initiated by ceric ammonium nitrate/HNO 3 -poly(ethylene oxide) with hydroxyl end group system was studied in aqueous solution at 25 0 C to obtain block copolymers. (Author) [pt

  17. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum group II CF-1

    Directory of Open Access Journals (Sweden)

    Gloria Paz Levicán

    2016-05-01

    Full Text Available Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species. Cobalamin (vitamin B12 is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular reactive oxygen species and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective.

  18. Redox?Reversible Iron Orthovanadate Cathode for Solid Oxide Steam Electrolyzer

    OpenAIRE

    Gan, Lizhen; Ye, Lingting; Ruan, Cong; Chen, Shigang; Xie, Kui

    2015-01-01

    A redox?reversible iron orthovanadate cathode is demonstrated for a solid oxide electrolyser with up to 100% current efficiency for steam electrolysis. The iron catalyst is grown on spinel?type electronic conductor FeV2O4 by in situ tailoring the reversible phase change of FeVO4 to Fe+FeV2O4 in a reducing atmosphere. Promising electrode performances have been obtained for a solid oxide steam electrolyser based on this composite cathode.

  19. Reducing gas content of coal deposits by means of bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Godlewska-Lipowa, A A; Kozlowski, B

    1981-07-01

    This paper discusses the results of experiments carried out in Poland under laboratory conditions on efficiency of methane control using bacteria from Methanosarcina and Methanomonas groups. Malashenko and Whittenburry culture mediums were used. Bacteria growth in an atmosphere of air and methane (48.2%, 8.6% and 5.21%) was observed. Temperature ranged from 19 to 20 C. Investigations show that the bacteria are characterized by high oxidation activity. Depending on methane concentration in the air the bacteria consume from 75% to 100% of methane during biosynthesis. The bacteria reduce methane and oxygen content and increase carbon dioxide content in the air. Using bacteria methane concentration in the air was reduced from 48.2% to 12.3%, from 8.6% to 0.0% and from 5.21% to 0.01%. (7 refs.) (In Polish)

  20. Distribution of iron during full loading of amberlite IRC-72 resin with uranium from nitrate solutions at 300C

    International Nuclear Information System (INIS)

    Shaffer, J.H.; Greene, C.W.

    1979-01-01

    The integrity of resin-based fuel kernels used in the fabrication of fuel elements for a high-temperature gas-cooled reactor will depend, in part, on the concentration of iron incorporated in the resin particles during their loading with uranium. Consequently, assessment of chemical specifications for iron as an impurity in uranyl nitrate solution should be based on its distribution during the resin loading operation. For this purpose, the behavior of iron, as an impurity in uranyl nitrate solutions, was investigated under equilibrium conditions at 30 0 C during full loading of Amberlite IRC-72 cation exchange reaction were derived from calculations based on complex coordination of ferric ion with the resin over the nitrate ion concentration range of approx. 0.5 to 2 N

  1. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene.

    OpenAIRE

    Kaspar, H F; Tiedje, J M

    1981-01-01

    15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, whe...

  2. Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time.

    Science.gov (United States)

    Baek, Gahyun; Kim, Jaai; Shin, Seung Gu; Lee, Changsoo

    2016-01-01

    Although anaerobic digestion (AD) is a widely used option to manage waste activated sludge (WAS), there are some drawbacks related to its slow reaction rate and low energy productivity. This study examined an anaerobic WAS digester, augmented with an iron-reducing microbial consortium, relative to changes in microbial community structure and process performance at decreasing hydraulic retention times (HRTs) of 20 to 10 days. The enhanced methanation performance (approximately 40 % increase in methane yield) by the bioaugmentation was sustained until the HRT was decreased to 12.5 days, under Fe(3+)-rich conditions (ferric oxyhydroxide, 20 mM Fe). Enhanced iron-reducing activity was evidenced by the increased Fe(2+) to total Fe ratio maintained above 50 % during the stable operational phases. A further decrease in HRT to 10 days resulted in a significant performance deterioration, along with a drop in the Fe(2+) to total Fe ratio to bacteria (IRBs) was identified by denaturing gradient gel electrophoresis (DGGE), with Spirochaetaceae- and Thauera-related organisms being dominant members, and clear dominance shifts among them with respect to decrease in HRT were observed. Lowering HRT led to evident shifts in bacterial community structure likely associated with washout of IRBs, leading to decreases in iron respiration activity and AD performance at a lower HRT. The bacterial community structure shifted dynamically over phases, and the community transitions correlated well with the changes in process performance. Overall, the combined biostimulation and bioaugmentation investigated in this study proved effective for enhanced methane recovery from anaerobic WAS digestion, which suggests an interesting potential for high-rate AD.

  3. 21 CFR 73.1200 - Synthetic iron oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically prepared...

  4. 21 CFR 73.200 - Synthetic iron oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically prepared...

  5. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. II. Inhibition in run of mine refuse under simulated field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, P.R.

    1987-01-01

    The combination of sodium lauryl sulfate and benzoic acid effectively inhibits iron- and sulfur-oxidizing bacteria in coal refuse and prevents the conversion of iron pyrite to sulfate, ferric iron, and sulfuric acid, thereby significantly reducing the formation of acidic drainage from coal refuse. The inhibitors were effective in a concentration of 1.1. mg/kg refuse, and data indicate that the SLS was in excess of the concentration required. The treatment was compatible with the use of lime for neutralization of acid present prior to inhibition of its formation.

  6. Synthetic modeling chemistry of iron-sulfur clusters in nitric oxide signaling.

    Science.gov (United States)

    Fitzpatrick, Jessica; Kim, Eunsuk

    2015-08-18

    Nitric oxide (NO) is an important signaling molecule that is involved in many physiological and pathological functions. Iron-sulfur proteins are one of the main reaction targets for NO, and the [Fe-S] clusters within these proteins are converted to various iron nitrosyl species upon reaction with NO, of which dinitrosyl iron complexes (DNICs) are the most prevalent. Much progress has been made in identifying the origin of cellular DNIC generation. However, it is not well-understood which other products besides DNICs may form during [Fe-S] cluster degradation nor what effects DNICs and other degradation products can have once they are generated in cells. Even more elusive is an understanding of the manner by which cells cope with unwanted [Fe-S] modifications by NO. This Account describes our synthetic modeling efforts to identify cluster degradation products derived from the [2Fe-2S]/NO reaction in order to establish their chemical reactivity and repair chemistry. Our intent is to use the chemical knowledge that we generate to provide insight into the unknown biological consequences of cluster modification. Our recent advances in three different areas are described. First, new reaction conditions that lead to the formation of previously unrecognized products during the reaction of [Fe-S] clusters with NO are identified. Hydrogen sulfide (H2S), a gaseous signaling molecule, can be generated from the reaction between [2Fe-2S] clusters and NO in the presence of acid or formal H• (e(-)/H(+)) donors. In the presence of acid, a mononitrosyl iron complex (MNIC) can be produced as the major iron-containing product. Second, cysteine analogues can efficiently convert MNICs back to [2Fe-2S] clusters without the need for any other reagents. This reaction is possible for cysteine analogues because of their ability to labilize NO from MNICs and their capacity to undergo C-S bond cleavage, providing the necessary sulfide for [2Fe-2S] cluster formation. Lastly, unique dioxygen

  7. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species.

    Science.gov (United States)

    Poonnachit, U; Darnell, R

    2004-04-01

    Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.

  8. A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea

    Science.gov (United States)

    Arshad, Arslan; Speth, Daan R.; de Graaf, Rob M.; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Welte, Cornelia U.

    2015-01-01

    Methane oxidation is an important process to mitigate the emission of the greenhouse gas methane and further exacerbating of climate forcing. Both aerobic and anaerobic microorganisms have been reported to catalyze methane oxidation with only a few possible electron acceptors. Recently, new microorganisms were identified that could couple the oxidation of methane to nitrate or nitrite reduction. Here we investigated such an enrichment culture at the (meta) genomic level to establish a metabolic model of nitrate-driven anaerobic oxidation of methane (nitrate-AOM). Nitrate-AOM is catalyzed by an archaeon closely related to (reverse) methanogens that belongs to the ANME-2d clade, tentatively named Methanoperedens nitroreducens. Methane may be activated by methyl-CoM reductase and subsequently undergo full oxidation to carbon dioxide via reverse methanogenesis. All enzymes of this pathway were present and expressed in the investigated culture. The genome of the archaeal enrichment culture encoded a variety of enzymes involved in an electron transport chain similar to those found in Methanosarcina species with additional features not previously found in methane-converting archaea. Nitrate reduction to nitrite seems to be located in the pseudoperiplasm and may be catalyzed by an unusual Nar-like protein complex. A small part of the resulting nitrite is reduced to ammonium which may be catalyzed by a Nrf-type nitrite reductase. One of the key questions is how electrons from cytoplasmically located reverse methanogenesis reach the nitrate reductase in the pseudoperiplasm. Electron transport in M. nitroreducens probably involves cofactor F420 in the cytoplasm, quinones in the cytoplasmic membrane and cytochrome c in the pseudoperiplasm. The membrane-bound electron transport chain includes F420H2 dehydrogenase and an unusual Rieske/cytochrome b complex. Based on genome and transcriptome studies a tentative model of how central energy metabolism of nitrate-AOM could work is

  9. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    International Nuclear Information System (INIS)

    Weathers, Lenly J.; Katz, Lynn E.

    2002-01-01

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated

  10. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lenly J. Weathers; Lynn E. Katz

    2002-05-29

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated.

  11. Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress.

    Science.gov (United States)

    Yang, Ting; Zhang, Xing-Mei; Tarnawski, Laura; Peleli, Maria; Zhuge, Zhengbing; Terrando, Niccolo; Harris, Robert A; Olofsson, Peder S; Larsson, Erik; Persson, A Erik G; Lundberg, Jon O; Weitzberg, Eddie; Carlstrom, Mattias

    2017-10-01

    Ischemia-reperfusion (IR) injury involves complex pathological processes in which reduction of nitric oxide (NO) bioavailability is suggested as a key factor. Inorganic nitrate can form NO in vivo via NO synthase-independent pathways and may thus provide beneficial effects during IR. Herein we evaluated the effects of dietary nitrate supplementation in a renal IR model. Male mice (C57BL/6J) were fed nitrate-supplemented chow (1.0mmol/kg/day) or standard chow for two weeks prior to 30min ischemia and during the reperfusion period. Unilateral renal IR caused profound tubular and glomerular damage in the ischemic kidney. Renal function, assessed by plasma creatinine levels, glomerular filtration rate and renal plasma flow, was also impaired after IR. All these pathologies were significantly improved by nitrate. Mechanistically, nitrate treatment reduced renal superoxide generation, pro-inflammatory cytokines (IL-1β, IL-6 and IL-12 p70) and macrophage infiltration in the kidney. Moreover, nitrate reduced mRNA expression of pro-inflammatory cytokines and chemo attractors, while increasing anti-inflammatory cytokines in the injured kidney. In another cohort of mice, two weeks of nitrate supplementation lowered superoxide generation and IL-6 expression in bone marrow-derived macrophages. Our study demonstrates protective effect of dietary nitrate in renal IR injury that may be mediated via modulation of oxidative stress and inflammatory responses. These novel findings suggest that nitrate supplementation deserve further exploration as a potential treatment in patients at high risk of renal IR injury. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Thermally stimulated iron oxide transformations and magnetic behaviour of cerium dioxide/iron oxide reactive sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Luňáček, J., E-mail: jiri.lunacek@vsb.cz [Department of Physics, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Department 606, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Životský, O. [Department of Physics, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Department 606, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Jirásková, Y. [CEITEC IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Buršík, J. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Janoš, P. [Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem (Czech Republic)

    2016-10-15

    The present paper is devoted to detailed study of the magnetically separable sorbents based on a cerium dioxide/iron oxide composite annealed at temperatures T{sub a} = 773 K, 873 K, and 973 K. The X-ray diffraction and high resolution transmission electron microscopy are used to determine the phase composition and microstructure morphology. Mössbauer spectroscopy at room (300 K) and low (5 K) temperatures has contributed to more exact identification of iron oxides and their transformations Fe{sub 3}O{sub 4} → γ-Fe{sub 2}O{sub 3} (ε-Fe{sub 2}O{sub 3}) → α-Fe{sub 2}O{sub 3} in dependence on calcination temperature. Different iron oxide phase compositions and grain size distributions influence the magnetic characteristics determined from the room- and low-temperature hysteresis loop measurements. The results are supported by zero-field-cooled and field-cooled magnetization measurements allowing a quantitative estimation of the grain size distribution and its effect on the iron oxide transformations. - Highlights: •Magnetically separable sorbents based on a CeO{sub 2}/Fe{sub 2}O{sub 3} composite were investigated. •Microstructure of sorbents was determined by XRD, TEM and Mössbauer spectroscopy. •Magnetic properties were studied by hysteresis loops at room- and low-temperatures. •Phase transitions of iron oxides with increasing annealing temperature are observed.

  13. Carbon isotope fractionation by sulfate-reducing bacteria using different pathways for the oxidation of acetate.

    Science.gov (United States)

    Goevert, Dennis; Conrad, Ralf

    2008-11-01

    Acetate is a key intermediate in the anaerobic degradation of organic matter. In anoxic environments, available acetate is a competitive substrate for sulfate-reducing bacteria (SRB) and methane-producing archaea. Little is known about the fractionation of carbon isotopes by sulfate reducers. Therefore, we determined carbon isotope compositions in cultures of three acetate-utilizing SRB, Desulfobacter postgatei, Desulfobacter hydrogenophilus, and Desulfobacca acetoxidans. We found that these species showed strong differences in their isotope enrichment factors (epsilon) of acetate. During the consumption of acetate and sulfate, acetate was enriched in 13C by 19.3% per hundred in Desulfobacca acetoxidans. By contrast, both D. postgatei and D. hydrogenophilus showed a slight depletion of 13C resulting in epsilon(ac)-values of 1.8 and 1.5% per hundred, respectively. We suggest that the different isotope fractionation is due to the different metabolic pathways for acetate oxidation. The strongly fractionating Desulfobacca acetoxidans uses the acetyl-CoA/carbon monoxide dehydrogenase pathway, which is also used by acetoclastic methanogens that show a similar fractionation of acetate (epsilon(ac) = -21 to -27% per hundred). In contrast, Desulfobacter spp. oxidize acetate to CO2 via the tricarboxylic acid (TCA) cycle and apparently did not discriminate against 13C. Our results suggestthat carbon isotope fractionation in environments with sulfate reduction will strongly depend on the composition of the sulfate-reducing bacterial community oxidizing acetate.

  14. Chronic Iron Limitation Confers Transient Resistance to Oxidative Stress in Marine Diatoms.

    Science.gov (United States)

    Graff van Creveld, Shiri; Rosenwasser, Shilo; Levin, Yishai; Vardi, Assaf

    2016-10-01

    Diatoms are single-celled, photosynthetic, bloom-forming algae that are responsible for at least 20% of global primary production. Nevertheless, more than 30% of the oceans are considered "ocean deserts" due to iron limitation. We used the diatom Phaeodactylum tricornutum as a model system to explore diatom's response to iron limitation and its interplay with susceptibility to oxidative stress. By analyzing physiological parameters and proteome profiling, we defined two distinct phases: short-term (chronic (>5 d, phase II) iron limitation. While at phase I no significant changes in physiological parameters were observed, molecular markers for iron starvation, such as Iron Starvation Induced Protein and flavodoxin, were highly up-regulated. At phase II, down-regulation of numerous iron-containing proteins was detected in parallel to reduction in growth rate, chlorophyll content, photosynthetic activity, respiration rate, and antioxidant capacity. Intriguingly, while application of oxidative stress to phase I and II iron-limited cells similarly oxidized the reduced glutathione (GSH) pool, phase II iron limitation exhibited transient resistance to oxidative stress, despite the down regulation of many antioxidant proteins. By comparing proteomic profiles of P. tricornutum under iron limitation and metatranscriptomic data of an iron enrichment experiment conducted in the Pacific Ocean, we propose that iron-limited cells in the natural environment resemble the phase II metabolic state. These results provide insights into the trade-off between optimal growth rate and susceptibility to oxidative stress in the response of diatoms to iron quota in the marine environment. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.

    Science.gov (United States)

    Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M

    2015-11-01

    A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration--a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder.

  16. Impact of Seasonal Hypoxia on Activity and Community Structure of Chemolithoautotrophic Bacteria in a Coastal Sediment.

    Science.gov (United States)

    Lipsewers, Yvonne A; Vasquez-Cardenas, Diana; Seitaj, Dorina; Schauer, Regina; Hidalgo-Martinez, Silvia; Sinninghe Damsté, Jaap S; Meysman, Filip J R; Villanueva, Laura; Boschker, Henricus T S

    2017-05-15

    Seasonal hypoxia in coastal systems drastically changes the availability of electron acceptors in bottom water, which alters the sedimentary reoxidation of reduced compounds. However, the effect of seasonal hypoxia on the chemolithoautotrophic community that catalyzes these reoxidation reactions is rarely studied. Here, we examine the changes in activity and structure of the sedimentary chemolithoautotrophic bacterial community of a seasonally hypoxic saline basin under oxic (spring) and hypoxic (summer) conditions. Combined 16S rRNA gene amplicon sequencing and analysis of phospholipid-derived fatty acids indicated a major temporal shift in community structure. Aerobic sulfur-oxidizing Gammaproteobacteria ( Thiotrichales ) and Epsilonproteobacteria ( Campylobacterales ) were prevalent during spring, whereas Deltaproteobacteria ( Desulfobacterales ) related to sulfate-reducing bacteria prevailed during summer hypoxia. Chemolithoautotrophy rates in the surface sediment were three times higher in spring than in summer. The depth distribution of chemolithoautotrophy was linked to the distinct sulfur oxidation mechanisms identified through microsensor profiling, i.e., canonical sulfur oxidation, electrogenic sulfur oxidation by cable bacteria, and sulfide oxidation coupled to nitrate reduction by Beggiatoaceae The metabolic diversity of the sulfur-oxidizing bacterial community suggests a complex niche partitioning within the sediment, probably driven by the availability of reduced sulfur compounds (H 2 S, S 0 , and S 2 O 3 2- ) and electron acceptors (O 2 and NO 3 - ) regulated by seasonal hypoxia. IMPORTANCE Chemolithoautotrophic microbes in the seafloor are dependent on electron acceptors, like oxygen and nitrate, that diffuse from the overlying water. Seasonal hypoxia, however, drastically changes the availability of these electron acceptors in the bottom water; hence, one expects a strong impact of seasonal hypoxia on sedimentary chemolithoautotrophy. A

  17. Mechanical properties of bio self-healing concrete containing immobilized bacteria with iron oxide nanoparticles.

    Science.gov (United States)

    Seifan, Mostafa; Sarmah, Ajit K; Samani, Ali Khajeh; Ebrahiminezhad, Alireza; Ghasemi, Younes; Berenjian, Aydin

    2018-05-01

    Concrete is arguably one of the most important and widely used materials in the world, responsible for the majority of the industrial revolution due to its unique properties. However, it is susceptible to cracking under internal and external stresses. The generated cracks result in a significant reduction in the concrete lifespan and an increase in maintenance and repair costs. In recent years, the implementation of bacterial-based healing agent in the concrete matrix has emerged as one of the most promising approaches to address the concrete cracking issue. However, the bacterial cells need to be protected from the high pH content of concrete as well as the exerted shear forces during preparation and hardening stages. To address these issues, we propose the magnetic immobilization of bacteria with iron oxide nanoparticles (IONs). In the present study, the effect of the designed bio-agent on mechanical properties of concrete (compressive strength and drying shrinkage) is investigated. The results indicate that the addition of immobilized Bacillus species with IONs in concrete matrix contributes to increasing the compressive strength. Moreover, the precipitates in the bio-concrete specimen were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). The characterization studies confirm that the precipitated crystals in bio-concrete specimen were CaCO 3 , while no precipitation was observed in the control sample.

  18. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart

    Science.gov (United States)

    Sárközy, Márta; Pipicz, Márton; Dux, László; Csont, Tamás

    2016-01-01

    Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia. PMID:26788247

  19. Nitrous oxide production kinetics during nitrate reduction in river sediments.

    Science.gov (United States)

    Laverman, Anniet M; Garnier, Josette A; Mounier, Emmanuelle M; Roose-Amsaleg, Céline L

    2010-03-01

    A significant amount of nitrogen entering river basins is denitrified in riparian zones. The aim of this study was to evaluate the influence of nitrate and carbon concentrations on the kinetic parameters of nitrate reduction as well as nitrous oxide emissions in river sediments in a tributary of the Marne (the Seine basin, France). In order to determine these rates, we used flow-through reactors (FTRs) and slurry incubations; flow-through reactors allow determination of rates on intact sediment slices under controlled conditions compared to sediment homogenization in the often used slurry technique. Maximum nitrate reduction rates (R(m)) ranged between 3.0 and 7.1microg Ng(-1)h(-1), and affinity constant (K(m)) ranged from 7.4 to 30.7mg N-NO(3)(-)L(-1). These values were higher in slurry incubations with an R(m) of 37.9microg Ng(-1)h(-1) and a K(m) of 104mg N-NO(3)(-)L(-1). Nitrous oxide production rates did not follow Michaelis-Menten kinetics, and we deduced a rate constant with an average of 0.7 and 5.4ng Ng(-1)h(-1) for FTR and slurry experiments respectively. The addition of carbon (as acetate) showed that carbon was not limiting nitrate reduction rates in these sediments. Similar rates were obtained for FTR and slurries with carbon addition, confirming the hypothesis that homogenization increases rates due to release of and increasing access to carbon in slurries. Nitrous oxide production rates in FTR with carbon additions were low and represented less than 0.01% of the nitrate reduction rates and were even negligible in slurries. Maximum nitrate reduction rates revealed seasonality with high potential rates in fall and winter and low rates in late spring and summer. Under optimal conditions (anoxia, non-limiting nitrate and carbon), nitrous oxide emission rates were low, but significant (0.01% of the nitrate reduction rates). Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Iron/iron oxide core-shell nanoclusters for biomedical applications

    International Nuclear Information System (INIS)

    Qiang You; Antony, Jiji; Sharma, Amit; Nutting, Joseph; Sikes, Daniel; Meyer, Daniel

    2006-01-01

    Biocompatible magnetic nanoparticles have been found promising in several biomedical applications for tagging, imaging, sensing and separation in recent years. Most magnetic particles or beads currently used in biomedical applications are based on ferromagnetic iron oxides with very low specific magnetic moments of about 20-30 emu/g. Here we report a new approach to synthesize monodispersed core-shell nanostructured clusters with high specific magnetic moments above 200 emu/g. Iron nanoclusters with monodispersive size of diameters from 2 nm to 100 nm are produced by our newly developed nanocluster source and go to a deposition chamber, where a chemical reaction starts, and the nanoclusters are coated with iron oxides. HRTEM Images show the coatings are very uniform and stable. The core-shell nanoclusters are superparamagnetic at room temperature for sizes less than 15 nm, and then become ferromagnetic when the cluster size increases. The specific magnetic moment of core-shell nanoclusters is size dependent, and increases rapidly from about 80 emu/g at the cluster size of around 3 nm to over 200 emu/g up to the size of 100 nm. The use of high magnetic moment nanoclusters for biomedical applications could dramatically enhance the contrast for MRI, reduce the concentration of magnetic particle needs for cell separation, or make drug delivery possible with much lower magnetic field gradients

  1. Experimental investigation of activities and tolerance of denitrifying bacteria under alkaline and reducing condition

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mihara, Morihiro; Ooi, Takao

    2000-07-01

    In the geological disposal system of TRU wastes, nitrogen generation by denitrifying bacteria could provide significant impact on the assessment of this system, because nitrate contained in process concentrated liquid waste might be electron acceptor for denitrifying bacteria. In this study, the activities and tolerance of denitrifying under disposal condition were investigated. Pseudomonas denitrificans as denitrifying bacteria was used. The results showed that Pseudomonas denitrificans had activity under reducing condition, but under high pH condition (pH>9.5), the activity of Pseudomonas denitrificans was not detected. It is possible that the activity of Pseudomonas denitrificans would be low under disposal condition. (author)

  2. Thermal and magnetic properties of iron oxide colloids: influence of surfactants

    International Nuclear Information System (INIS)

    I P Soares, Paula; Lochte, Frederik; Echeverria, Coro; M M Ferreira, Isabel; P M R Borges, João; C J Pereira, Laura; T Coutinho, Joana; M M Novo, Carlos

    2015-01-01

    Iron oxide nanoparticles (NPs) have been extensively studied in the last few decades for several biomedical applications such as magnetic resonance imaging, magnetic drug delivery and hyperthermia. Hyperthermia is a technique used for cancer treatment which consists in inducing a temperature of about 41–45 °C in cancerous cells through magnetic NPs and an external magnetic field. Chemical precipitation was used to produce iron oxide NPs 9 nm in size coated with oleic acid and trisodium citrate. The influence of both stabilizers on the heating ability and in vitro cytotoxicity of the produced iron oxide NPs was assessed. Physicochemical characterization of the samples confirmed that the used surfactants do not change the particles’ average size and that the presence of the surfactants has a strong effect on both the magnetic properties and the heating ability. The heating ability of Fe_3O_4 NPs shows a proportional increase with the increase of iron concentration, although when coated with trisodium citrate or oleic acid the heating ability decreases. Cytotoxicity assays demonstrated that both pristine and trisodium citrate Fe_3O_4 samples do not reduce cell viability. However, oleic acid Fe_3O_4 strongly reduces cell viability, more drastically in the SaOs-2 cell line. The produced iron oxide NPs are suitable for cancer hyperthermia treatment and the use of a surfactant brings great advantages concerning the dispersion of NPs, also allowing better control of the hyperthermia temperature. (paper)

  3. Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron

    International Nuclear Information System (INIS)

    Jiang, Chenghong; Xu, Xuping; Megharaj, Mallavarapu; Naidu, Ravendra; Chen, Zuliang

    2015-01-01

    To investigate the effect of nanoscale zero-valent iron (nZVI) on the growth of Paracoccus sp. strain and biodenitrification under aerobic conditions, specific factors were studied, pH, concentration of nitrate, Fe (II) and carbon dioxide. Low concentration of nZVI (50 mg/L) promoted both cell growth and biodegradation of nitrate which rose from 69.91% to 76.16%, while nitrate removal fell to 67.10% in the presence of high nZVI concentration (1000 mg/L). This may be attributed to the ions produced in nZVI corrosion being used as an electron source for the biodegradation of nitrate. However, the excess uptake of Fe (II) causes oxidative damage to the cells. To confirm this, nitrate was completely removed after 20 h when 100 mg/L Fe (II) was added to the solution, which is much faster than the control (86.05%, without adding Fe (II)). However, nitrate removal reached only 45.64% after 20 h, with low cell density (OD 600 = 0.62) in the presence of 300 mg/L Fe (II). Characterization techniques indicated that nZVI adhered to microorganism cell membranes. These findings confirmed that nZVI could affect the activity of the strain and consequently change the biodenitrification. - Highlights: • Biodenitrification by Paracoccus sp. in the presence of nZVI was studied. • Biodegradation was promoted at a low nZVI concentration. • Biodegradation was inhibited at a high nZVI concentration. • nZVI that adhered to microorganism cell membranes was characterized

  4. Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chenghong; Xu, Xuping [School of Life Science, Fujian Normal University, Fuzhou 350108, Fujian Province (China); Megharaj, Mallavarapu; Naidu, Ravendra [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Chen, Zuliang, E-mail: Zuliang.chen@unisa.edu.au [School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2015-10-15

    To investigate the effect of nanoscale zero-valent iron (nZVI) on the growth of Paracoccus sp. strain and biodenitrification under aerobic conditions, specific factors were studied, pH, concentration of nitrate, Fe (II) and carbon dioxide. Low concentration of nZVI (50 mg/L) promoted both cell growth and biodegradation of nitrate which rose from 69.91% to 76.16%, while nitrate removal fell to 67.10% in the presence of high nZVI concentration (1000 mg/L). This may be attributed to the ions produced in nZVI corrosion being used as an electron source for the biodegradation of nitrate. However, the excess uptake of Fe (II) causes oxidative damage to the cells. To confirm this, nitrate was completely removed after 20 h when 100 mg/L Fe (II) was added to the solution, which is much faster than the control (86.05%, without adding Fe (II)). However, nitrate removal reached only 45.64% after 20 h, with low cell density (OD{sub 600} = 0.62) in the presence of 300 mg/L Fe (II). Characterization techniques indicated that nZVI adhered to microorganism cell membranes. These findings confirmed that nZVI could affect the activity of the strain and consequently change the biodenitrification. - Highlights: • Biodenitrification by Paracoccus sp. in the presence of nZVI was studied. • Biodegradation was promoted at a low nZVI concentration. • Biodegradation was inhibited at a high nZVI concentration. • nZVI that adhered to microorganism cell membranes was characterized.

  5. Performance of nanoscale zero-valent iron in nitrate reduction from water using a laboratory-scale continuous-flow system.

    Science.gov (United States)

    Khalil, Ahmed M E; Eljamal, Osama; Saha, Bidyut Baran; Matsunaga, Nobuhiro

    2018-04-01

    Nanoscale zero-valent iron (nZVI) is a versatile treatment reagent that should be utilized in an effective application for nitrate remediation in water. For this purpose, a laboratory-scale continuous-flow system (LSCFS) was developed to evaluate nZVI performance in removal of nitrate in different contaminated-water bodies. The equipment design (reactor, settler, and polisher) and operational parameters of the LSCFS were determined based on nZVI characterization and nitrate reduction kinetics. Ten experimental runs were conducted at different dosages (6, 10 and 20 g) of nZVI-based reagents (nZVI, bimetallic nZVI-Cu, CuCl 2 -added nZVI). Effluent concentrations of nitrogen and iron compounds were measured, and pH and ORP values were monitored. The major role exhibited by the recirculation process of unreacted nZVI from the settler to the reactor succeeded in achieving overall nitrate removal efficiency (RE) of >90%. The similar performance of both nZVI and copper-ions-modified nZVI in contaminated distilled water was an indication of LSCFS reliability in completely utilizing iron nanoparticles. In case of treating contaminated river water and simulated groundwater, the nitrate reduction process was sensitive towards the presence of interfering substances that dropped the overall RE drastically. However, the addition of copper ions during the treatment counteracted the retardation effect and greatly enhanced the nitrate RE. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Bio-inspired Iron Catalysts for Hydrocarbon Oxidations

    Energy Technology Data Exchange (ETDEWEB)

    Que, Jr., Lawrence [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-03-22

    Stereoselective oxidation of C–H and C=C bonds are catalyzed by nonheme iron enzymes. Inspired by these bioinorganic systems, our group has been exploring the use of nonheme iron complexes as catalysts for the oxidation of hydrocarbons using H2O2 as an environmentally friendly and atom-efficient oxidant in order to gain mechanistic insights into these novel transformations. In particular, we have focused on clarifying the nature of the high-valent iron oxidants likely to be involved in these transformations.

  7. Production and consumption of nitrous oxide in nitrate-ammonifying Wolinella succinogenes cells.

    Science.gov (United States)

    Luckmann, Monique; Mania, Daniel; Kern, Melanie; Bakken, Lars R; Frostegård, Asa; Simon, Jörg

    2014-08-01

    Global warming is moving more and more into the public consciousness. Besides the commonly mentioned carbon dioxide and methane, nitrous oxide (N2O) is a powerful greenhouse gas in addition to its contribution to depletion of stratospheric ozone. The increasing concern about N2O emission has focused interest on underlying microbial energy-converting processes and organisms harbouring N2O reductase (NosZ), such as denitrifiers and ammonifiers of nitrate and nitrite. Here, the epsilonproteobacterial model organism Wolinella succinogenes is investigated with regard to its capacity to produce and consume N2O during growth by anaerobic nitrate ammonification. This organism synthesizes an unconventional cytochrome c nitrous oxide reductase (cNosZ), which is encoded by the first gene of an atypical nos gene cluster. However, W. succinogenes lacks a nitric oxide (NO)-producing nitrite reductase of the NirS- or NirK-type as well as an NO reductase of the Nor-type. Using a robotized incubation system, the wild-type strain and suitable mutants of W. succinogenes that either produced or lacked cNosZ were analysed as to their production of NO, N2O and N2 in both nitrate-sufficient and nitrate-limited growth medium using formate as electron donor. It was found that cells growing in nitrate-sufficient medium produced small amounts of N2O, which derived from nitrite and, most likely, from the presence of NO. Furthermore, cells employing cNosZ were able to reduce N2O to N2. This reaction, which was fully inhibited by acetylene, was also observed after adding N2O to the culture headspace. The results indicate that W. succinogenes cells are competent in N2O and N2 production despite being correctly grouped as respiratory nitrate ammonifiers. N2O production is assumed to result from NO detoxification and nitrosative stress defence, while N2O serves as a terminal electron acceptor in anaerobic respiration. The ecological implications of these findings are discussed. © 2014 The Authors.

  8. Chronic Iron Limitation Confers Transient Resistance to Oxidative Stress in Marine Diatoms1

    Science.gov (United States)

    Graff van Creveld, Shiri; Rosenwasser, Shilo; Vardi, Assaf

    2016-01-01

    Diatoms are single-celled, photosynthetic, bloom-forming algae that are responsible for at least 20% of global primary production. Nevertheless, more than 30% of the oceans are considered “ocean deserts” due to iron limitation. We used the diatom Phaeodactylum tricornutum as a model system to explore diatom’s response to iron limitation and its interplay with susceptibility to oxidative stress. By analyzing physiological parameters and proteome profiling, we defined two distinct phases: short-term (5 d, phase II) iron limitation. While at phase I no significant changes in physiological parameters were observed, molecular markers for iron starvation, such as Iron Starvation Induced Protein and flavodoxin, were highly up-regulated. At phase II, down-regulation of numerous iron-containing proteins was detected in parallel to reduction in growth rate, chlorophyll content, photosynthetic activity, respiration rate, and antioxidant capacity. Intriguingly, while application of oxidative stress to phase I and II iron-limited cells similarly oxidized the reduced glutathione (GSH) pool, phase II iron limitation exhibited transient resistance to oxidative stress, despite the down regulation of many antioxidant proteins. By comparing proteomic profiles of P. tricornutum under iron limitation and metatranscriptomic data of an iron enrichment experiment conducted in the Pacific Ocean, we propose that iron-limited cells in the natural environment resemble the phase II metabolic state. These results provide insights into the trade-off between optimal growth rate and susceptibility to oxidative stress in the response of diatoms to iron quota in the marine environment. PMID:27503604

  9. Iron release from ferritin and lipid peroxidation by radiolytically generated reducing radicals

    International Nuclear Information System (INIS)

    Reif, D.W.; Schubert, J.; Aust, S.D.

    1988-01-01

    Iron is involved in the formation of oxidants capable of damaging membranes, protein, and DNA. Using 137 Cs gamma radiation, we investigated the release of iron from ferritin and concomitant lipid peroxidation by radiolytically generated reducing radicals, superoxide and the carbon dioxide anion radical. Both radicals released iron from ferritin with similar efficiencies and iron mobilization from ferritin required an iron chelator. Radiolytically generated superoxide anion resulted in peroxidation of phospholipid liposomes as measured by malondialdehyde formation only when ferritin was included as an iron source and the released iron was found to be chelated by the phospholipid liposomes

  10. FY1995 acquisition of useful and high ability genes for acidophilic bacteria; 1995 nendo kosansei saikin ni takai noryoku wo fuyosuru idenshi no kakutoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The purpose of this project is to obtain and to study useful and high ability genes which can use for gene engineering of acidophilic bacteria. 130 isolates of acidophilic bacteria (major species are iron-oxidizing bacteria) were isolated from various environment. 10 isolates of iron-oxidizing bacteria were selected in the point of high ferrous iron oxidizing ability and heavy metal tolerance. Mercury ion resistance genes of iron-oxidizing bacteria were identified and cloned in E.coli. Sequencing analysis and functional identification of gene products were performed. These genes are thought to be useful for selection marker of gen engineering of acidophilic bacteria. (NEDO)

  11. Oxidative stability of a heme iron-fortified bakery product: Effectiveness of ascorbyl palmitate and co-spray-drying of heme iron with calcium caseinate.

    Science.gov (United States)

    Alemán, Mercedes; Bou, Ricard; Tres, Alba; Polo, Javier; Codony, Rafael; Guardiola, Francesc

    2016-04-01

    Fortification of food products with iron is a common strategy to prevent or overcome iron deficiency. However, any form of iron is a pro-oxidant and its addition will cause off-flavours and reduce a product's shelf life. A highly bioavailable heme iron ingredient was selected to fortify a chocolate cream used to fill sandwich-type cookies. Two different strategies were assessed for avoiding the heme iron catalytic effect on lipid oxidation: ascorbyl palmitate addition and co-spray-drying of heme iron with calcium caseinate. Oxidation development and sensory acceptability were monitored in the cookies over one-year of storage at room temperature in the dark. The addition of ascorbyl palmitate provided protection against oxidation and loss of tocopherols and tocotrienols during the preparation of cookies. In general, ascorbyl palmitate, either alone or in combination with the co-spray-dried heme iron, prevented primary oxidation and hexanal formation during storage. The combination of both strategies resulted in cookies that were acceptable from a sensory point of view after 1year of storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate‐reducing benthic microbial populations

    Science.gov (United States)

    Saad, Sainab; Bhatnagar, Srijak; Tegetmeyer, Halina E.; Geelhoed, Jeanine S.; Strous, Marc

    2017-01-01

    Summary For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate‐reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate‐ and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24‐12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name ‘USabulitectum silens’ and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate‐reducing microbial communities and their adaptation to a dynamic environment. PMID:28836729

  13. Dynamics of Phenol Degrading-Iron ReducingBacteria{1mm in Intensive Rice Cropping System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Field and greenhouse experiments were conducted to investigate theeffects of cropping season, nitrogen fertilizer input and aeratedfallow on the dynamics of phenol degrading-iron reducingbacteria (PD-IRB) in tropical irrigated rice ({ Oryza sativa L.)systems. The PD-IRB population density was monitored at different stagesof rice growth in two cropping seasons (dry and early wet) in acontinuous annual triple rice cropping system under irrigated condition.In this system, the high nitrogen input (195 and 135 kg N ha-1 indry and wet seasons, respectively) plots and control plots receiving noN fertilizer were compared to investigate the effect of nitrogen rate onpopulation size. The phenol degrading-iron reducing bacteria (PD-IRB)were abundant in soils under cropping systems of tropical irrigatedrice. However, density of the bacterial populations varied with ricegrowth stages. Cropping seasons, rhizosphere, and aerated fallow couldaffect the dynamics of PD-IRB. In the field trial, viable counts ofPD-IRB in the topsoil layer (15 cm) ranged between 102 and 108cells per gram of dry soil. A steep increase in viable counts during thesecond half of the cropping season suggested that the population densityof PD-IRB increased at advanced crop-growth stages. Population growth ofPD-IRB was accelerated during the dry season compared to the wet season.In the greenhouse experiment, the adjacent aerated fallow revealed 1-2orders of magnitude higher in most probable number (MPN) of PD-IRB thanthe wet fallow treated plots. As a prominent group of Fe reducingbacteria, PD-IRB predominated in the rhizosphere of rice, since maximumMPN of PD-IRB (2.62108 g-1 soil) was found in rhizospheresoil. Mineral N fertilizer rates showed no significant effect on PD-IRBpopulation density.

  14. Preparation of nano-iron oxide red pigment powders by use of cyanided tailings

    International Nuclear Information System (INIS)

    Li Dengxin; Gao Guolong; Meng Fanling; Ji Chong

    2008-01-01

    On one hand, cyanided tailings are one kind of pollutants. On the other hand, they contain a lot of valuable elements. So utilization of them can bring social and environmental benefits. In this paper, cyanided tailings were used to prepare nano-iron oxide red pigment powders by an ammonia process with urea as precipitant. At first, cyanided tailings were oxidized by nitric acid. Then, the oxidizing mixture was separated into solid and liquid parts. The liquid mixture was reduced by scrap iron and the impurity of it was removed by use of NH 3 .H 2 O. Then, the seed crystal of γ-FeOOH was obtained, when the pure liquid reacted with ammonia liquid at the selected experimental conditions. At last, nano-iron oxide red pigment powders were prepared. The structure, morphology and size distribution of seed crystal and iron oxide red were characterized systematically by means of X-ray diffraction (XRD), transmission electron microscope (TEM) and laser particle size analyzer (LPSA). The results revealed that typical iron oxide nanoparticles were α-Fe 2 O 3 with particle size of 50-70 nm. Furthermore, the factors that affected the hue and quality of the seed crystal and iron oxide red pigment were also discussed

  15. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria; FINAL

    International Nuclear Information System (INIS)

    Lenly J. Weathers; Lynn E. Katz

    2002-01-01

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated

  16. Selectivity in the oxidative dehydrogenation of butene on zinc-iron oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kung, H.H.; Kundalkar, B.; Kung, M.C.; Cheng, W.H.

    1980-02-21

    Adsorption, temperature-programed desorption, and pulse reaction studies of cis-2-butene and butadiene on spinel zinc ferrite by previously described methods provided evidence that the selectivity for oxidative dehydrogenation of butenes increases when zinc is added to the iron oxide catalyst because selective oxidation and complete oxidation proceed on separate sites, as they do on pure iron; because the density of sites for selective oxidation is higher and the density of sites for complete combustion is lower than on pure iron oxide; and because the activity of the combustion sites is lower.

  17. Anaerobic ammonium oxidation by Anammox bacteria in the Black Sea

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Kuypers, M.M.M.; Sliekers, O.; Lavik, G.; Schmid, M.; Jørgensen, B.B.; Kuenen, J.G.; Strous, M.; Jetten, M.S.M.

    2003-01-01

    The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions1. The conversion of nitrate to N2 by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ocean2. Here we

  18. The Abundance and Activity of Nitrate-Reducing Microbial Populations in Estuarine Sediments

    Science.gov (United States)

    Cardarelli, E.; Francis, C. A.

    2014-12-01

    Estuaries are productive ecosystems that ameliorate nutrient and metal contaminants from surficial water supplies. At the intersection of terrestrial and aquatic environments, estuarine sediments host major microbially-mediated geochemical transformations. These include denitrification (the conversion of nitrate to nitrous oxide and/or dinitrogen) and dissimilatory nitrate reduction to ammonium (DNRA). Denitrification has historically been seen as the predominant nitrate attenuation process and functions as an effective sink for nitrate. DNRA has previously been believed to be a minor nitrate reduction process and transforms nitrate within the ecosystem to ammonium, a more biologically available N species. Recent studies have compared the two processes in coastal environments and determined fluctuating environmental conditions may suppress denitrification, supporting an increased role for DNRA in the N cycle. Nitrate availability and salinity are factors thought to influence the membership of the microbial communities present, and the nitrate reduction process that predominates. The aim of this study is to investigate how nitrate concentration and salinity alter the transcript abundances of N cycling functional gene markers for denitrification (nirK, nirS) and DNRA (nrfA) in estuarine sediments at the mouth of the hypernutrified Old Salinas River, CA. Short-term whole core incubations amended with artificial freshwater/artificial seawater (2 psu, 35 psu) and with varying NO3- concentrations (200mM, 2000mM) were conducted to assess the activity as well as the abundance of the nitrate-reducing microbial populations present. Gene expression of nirK, nirS, and nrfA at the conclusion of the incubations was quantified using reverse transcription quantitative polymerase chain reaction (RT-qPCR). High abundances of nirK, nirS, and nrfA under particular conditions coupled with the resulting geochemical data ultimately provides insight onto how the aforementioned factors

  19. Influence of organic carbon sources and isotope exchange processes between water and nitrate on the fractionation of the stable isotopes 15N/14N and 18O/16O in dissolved nitrate during microbial dentrification in groundwater

    International Nuclear Information System (INIS)

    Wunderlich, Anja A.L.

    2012-01-01

    Stable isotopes of nitrate are commonly used to determine sources and degradation of nitrate. In this study, nitrite oxidizing bacteria were found to promote an oxygen isotope exchange between water and nitrate under anoxic conditions. Also, different carbon sources were found to influence the enrichment of stable isotopes in nitrate during microbial denitrification. Both results refine the stable isotope model of nitrate in respect to nitrate source determination and microbial nitrate reduction.

  20. Catecholate siderophores protect bacteria from pyochelin toxicity.

    Directory of Open Access Journals (Sweden)

    Conrado Adler

    Full Text Available Bacteria produce small molecule iron chelators, known as siderophores, to facilitate the acquisition of iron from the environment. The synthesis of more than one siderophore and the production of multiple siderophore uptake systems by a single bacterial species are common place. The selective advantages conferred by the multiplicity of siderophore synthesis remains poorly understood. However, there is growing evidence suggesting that siderophores may have other physiological roles besides their involvement in iron acquisition.Here we provide the first report that pyochelin displays antibiotic activity against some bacterial strains. Observation of differential sensitivity to pyochelin against a panel of bacteria provided the first indications that catecholate siderophores, produced by some bacteria, may have roles other than iron acquisition. A pattern emerged where only those strains able to make catecholate-type siderophores were resistant to pyochelin. We were able to associate pyochelin resistance to catecholate production by showing that pyochelin-resistant Escherichia coli became sensitive when biosynthesis of its catecholate siderophore enterobactin was impaired. As expected, supplementation with enterobactin conferred pyochelin resistance to the entE mutant. We observed that pyochelin-induced growth inhibition was independent of iron availability and was prevented by addition of the reducing agent ascorbic acid or by anaerobic incubation. Addition of pyochelin to E. coli increased the levels of reactive oxygen species (ROS while addition of ascorbic acid or enterobactin reduced them. In contrast, addition of the carboxylate-type siderophore, citrate, did not prevent pyochelin-induced ROS increases and their associated toxicity.We have shown that the catecholate siderophore enterobactin protects E. coli against the toxic effects of pyochelin by reducing ROS. Thus, it appears that catecholate siderophores can behave as protectors of

  1. Inhibition of Bio corrosion of steel coupon by sulphate reducing ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Inhibition of Bio corrosion of steel coupon by sulphate reducing bacteria and Iron oxidizing bacteria using .... Ethanol for 24 h. The extract was ... with distilled water to get a zero reading from the meter before .... Ethanol extract of musa species peels as a green corrosion ... Eco friendly extract of banana peel as corrosion ...

  2. Nitrate bioreduction in redox-variable low permeability sediments

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Sen [China University of Geosciences, Wuhan 430074 (China); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Liu, Chongxuan, E-mail: chongxuan.liu@pnnl.gov [China University of Geosciences, Wuhan 430074 (China); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Shi, Liang; Shang, Jianying [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Shan, Huimei [China University of Geosciences, Wuhan 430074 (China); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Zachara, John; Fredrickson, Jim; Kennedy, David; Resch, Charles T.; Thompson, Christopher; Fansler, Sarah [Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

    2016-01-01

    Low permeability zone (LPZ) can play an important role as a sink or secondary source in contaminant transport in groundwater system. This study investigated the rate and end product of nitrate bioreduction in LPZ sediments. The sediments were from the U.S. Department of Energy's Hanford Site, where nitrate is a groundwater contaminant as a by-product of radionuclide waste discharges. The LPZ at the Hanford site consists of two layers with an oxidized layer on top and reduced layer below. The oxidized layer is directly in contact with the overlying contaminated aquifer, while the reduced layer is in contact with an uncontaminated aquifer below. The experimental results showed that nitrate bioreduction rate and end-product differed significantly in the sediments. The bioreduction rate in the oxidized sediment was significantly faster than that in the reduced one. A significant amount of N{sub 2}O was accumulated in the reduced sediment; while in the oxidized sediment, N{sub 2}O was further reduced to N{sub 2}. RT-PCR analysis revealed that nosZ, the gene that codes for N{sub 2}O reductase, was below detection limit in the reduced sediment. Batch experiments and kinetic modeling were performed to provide insights into the role of organic carbon bioavailability, biomass growth, and competition between nitrate and its reducing products for electrons from electron donors. The results revealed that it is important to consider sediment redox conditions and functional genes in understanding and modeling nitrate bioreduction in subsurface sediments. The results also implied that LPZ sediments can be important sink of nitrate and a potential secondary source of N{sub 2}O as a nitrate bioreduction product in groundwater. - Highlights: • Low permeability zones (LPZ) can microbially remove nitrate in groundwater. • The rate and end product of nitrate bioreduction vary within LPZ. • Greenhouse gas N{sub 2}O can be the end product of nitrate bioreduction in LPZ.

  3. In adenosine A2B knockouts acute treatment with inorganic nitrate improves glucose disposal, oxidative stress and AMPK signaling in the liver

    Directory of Open Access Journals (Sweden)

    Maria ePeleli

    2015-08-01

    Full Text Available Rationale: Accumulating studies suggest that nitric oxide (NO deficiency and oxidative stress are central pathological mechanisms in type 2 diabetes. Recent findings demonstrate therapeutic effects by boosting a nitrate-nitrite-NO pathway, an alternative pathway for NO formation. This study aimed at investigating the acute effects of inorganic nitrate on glucose and insulin signaling in adenosine A2B receptor knockout mice (A2B-/-, a genetic model of impaired metabolic regulation.Methods: Acute effects of nitrate treatment were investigated in aged wild-type (WT and A2B-/- mice. One hour after injection with nitrate or placebo, metabolic regulation was evaluated by glucose and insulin tolerance tests. NADPH oxidase-mediated superoxide production and AMPK phosphorylation were measured in livers obtained from non-treated or glucose-treated mice, with or without prior nitrate injection. Plasma was used to determine insulin resistance (HOMA-IR and NO signaling.Results: A2B-/- displayed increased body weight, reduced glucose clearance and attenuated overall insulin responses compared with age-matched WT. Nitrate treatment increased circulating levels of nitrate, nitrite and cGMP in A2B-/-, and improved glucose clearance. In WT mice, however, nitrate treatment did not influence glucose clearance. HOMA-IR increased following glucose injection in A2B-/-, but remained at basal levels in mice pretreated with nitrate. NADPH oxidase activity in livers from A2B-/-, but not WT mice, was reduced by nitrate. Livers from A2B-/- displayed reduced AMPK phosphorylation compared with WT mice, and this was increased by nitrate treatment. Injection with the anti-diabetic agent metformin induced similar therapeutic effects in the A2B-/- as observed with nitrate. Conclusion: The A2B-/- mouse is a genetic model of metabolic syndrome. Acute treatment with nitrate improved the metabolic profile, at least partly via reduction in oxidative stress and improved AMPK signaling

  4. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments.

    Science.gov (United States)

    Egger, Matthias; Rasigraf, Olivia; Sapart, Célia J; Jilbert, Tom; Jetten, Mike S M; Röckmann, Thomas; van der Veen, Carina; Bândă, Narcisa; Kartal, Boran; Ettwig, Katharina F; Slomp, Caroline P

    2015-01-06

    Methane is a powerful greenhouse gas and its biological conversion in marine sediments, largely controlled by anaerobic oxidation of methane (AOM), is a crucial part of the global carbon cycle. However, little is known about the role of iron oxides as an oxidant for AOM. Here we provide the first field evidence for iron-dependent AOM in brackish coastal surface sediments and show that methane produced in Bothnian Sea sediments is oxidized in distinct zones of iron- and sulfate-dependent AOM. At our study site, anthropogenic eutrophication over recent decades has led to an upward migration of the sulfate/methane transition zone in the sediment. Abundant iron oxides and high dissolved ferrous iron indicate iron reduction in the methanogenic sediments below the newly established sulfate/methane transition. Laboratory incubation studies of these sediments strongly suggest that the in situ microbial community is capable of linking methane oxidation to iron oxide reduction. Eutrophication of coastal environments may therefore create geochemical conditions favorable for iron-mediated AOM and thus increase the relevance of iron-dependent methane oxidation in the future. Besides its role in mitigating methane emissions, iron-dependent AOM strongly impacts sedimentary iron cycling and related biogeochemical processes through the reduction of large quantities of iron oxides.

  5. Factors Affecting Ballability of Mixture Iron Ore Concentrates and Iron Oxide Bearing Wastes in Metallurgical Processing

    Directory of Open Access Journals (Sweden)

    Mfon Udo

    2018-05-01

    Full Text Available Iron oxide bearing wastes (IROBEWAS are produced at every segment of processing stage of sinter, molten iron and steel production. They are hard to handle and in many cases are stockpiled only to be a source of environmental pollution but can be balled into pellets. Pellet of good ballability values are transportable and recyclable as they can withstand stress they will encounter without disintegrating back to dust. But ballability is affected by some factors like the grain sizes of the materials, the moisture and binder contents of the ball mix, wettability of the balled materials and the processing perimeters of the granulator. The objective of this research work is to investigate the factors affecting ballability of mixture of iron ore concentrates and iron oxide bearing wastes (IROBEWAS in metallurgical processing. The parameters under consideration were grain size of materials, the moisture contents, the speed of balling disc, IROBEWAS and Bentonite (Binder contents of the balled mix. This was carried out by balling different volume fractions of mix containing iron oxide concentrate and IROBEWAS using a balling disc and testing the resulting balls for green compressive strength using universal testing machine. It was found that the ballability of the mixture of iron ore concentrate and IROBEWAS increases as grain sizes of the materials reduce but increases as the moisture contents and IROBEWAS content increase up to an optimum value of moisture content in the mix before it starts to reduce. The ballability also increases as the speed of the granulator (Balling disc increases within the limit of this work. It was also observed that there was an increase in ballability with slight increase in bentonite content in the mix.

  6. The influence of Glyceria maxima and nitrate input on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community

    NARCIS (Netherlands)

    Nijburg, J.W.; Laanbroek, H.J.

    1997-01-01

    The influence of nitrate addition and the presence of Glyceria maxima (reed sweetgrass) on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community was investigated. Anoxic freshwater sediment was incubated in pots with or without G. maxima and with or

  7. Formation, Evaporation, and Hydrolysis of Organic Nitrates from Nitrate Radical Oxidation of Monoterpenes

    Science.gov (United States)

    Ng, N. L.; Takeuchi, M.; Eris, G.; Berkemeier, T.; Boyd, C.; Nah, T.; Xu, L.

    2017-12-01

    Organic nitrates play an important role in the cycling of NOx and secondary organic aerosol (SOA) formation, yet their formation mechanisms and fates remain highly uncertain. The interactions of biogenic VOCs with NO3 radicals represent a direct way for positively linking anthropogenic and biogenic emissions. Results from ambient studies suggest that organic nitrates have a relatively short lifetime, though corresponding laboratory data are limited. SOA and organic nitrates produced at night may evaporate the following morning due to increasing temperatures or dilution of semi-volatile compounds. Once formed, organic nitrates can also undergo hydrolysis in the presence of particle water. In this work, we investigate the formation, evaporation, and hydrolysis of organic nitrates generated from the nitrate radical oxidation of a-pinene, b-pinene, and limonene. Experiments are conducted in the Georgia Environmental Chamber facility (GTEC) under dry and humid conditions and different temperatures. Experiments are also designed to probe different peroxy radical pathways (RO2+HO2 vs RO2+NO3). Speciated gas-phase and particle-phase organic nitrates are continuously monitored by a Filter Inlet for Gases and AEROsols High Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (FIGAERO-HR-ToF-CIMS). Bulk aerosol composition is measured by a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). A large suite of highly oxygenated gas- and particle-phase organic nitrates are formed rapidly. We find a resistance to aerosol evaporation when it is heated. The extent of organic nitrate hydrolysis in the humid experiments is evaluated. The dynamics of the speciated organic nitrates over the course of the experiments will also be discussed. Results from this chamber study provide fundamental data for understanding the dynamics of organic nitrate aerosols over its atmospheric lifetime.

  8. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers

    International Nuclear Information System (INIS)

    Jensen, Henriette Stokbro; Lens, Piet N.L.; Nielsen, Jeppe L.; Bester, Kai; Nielsen, Asbjorn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2011-01-01

    Hydrogen sulfide oxidation by microbes present on concrete surfaces of sewer pipes is a key process in sewer corrosion. The growth of aerobic sulfur oxidizing bacteria from corroded concrete surfaces was studied in a batch reactor. Samples of corrosion products, containing sulfur oxidizing bacteria, were suspended in aqueous solution at pH similar to that of corroded concrete. Hydrogen sulfide was supplied to the reactor to provide the source of reduced sulfur. The removal of hydrogen sulfide and oxygen was monitored. The utilization rates of both hydrogen sulfide and oxygen suggested exponential bacterial growth with median growth rates of 1.25 d -1 and 1.33 d -1 as determined from the utilization rates of hydrogen sulfide and oxygen, respectively. Elemental sulfur was found to be the immediate product of the hydrogen sulfide oxidation. When exponential growth had been achieved, the addition of hydrogen sulfide was terminated leading to elemental sulfur oxidation. The ratio of consumed sulfur to consumed oxygen suggested that sulfuric acid was the ultimate oxidation product. To the knowledge of the authors, this is the first study to determine the growth rate of bacteria involved in concrete corrosion with hydrogen sulfide as source of reduced sulfur.

  9. Metal ion binding to iron oxides

    Science.gov (United States)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  10. Effect of nitrate addition on prokaryotic diversity and the activity of sulfate-reducing prokaryotes in high-temperature oil production systems

    DEFF Research Database (Denmark)

    Gittel, Antje; Wieczorek, Adam; Sørensen, Ketil

    Adding nitrate to injection water is a possible strategy to control the activity of sulfate-reducing prokaryotes (SRP) in oil production system. To assess the effects of nitrate addition, prokaryotic diversity (Bacteria, Archaea, SRP) and SRP activity were studied in the production waters......-treated site was additionally supported by demonstrating their potential activity at 58°C, indicating that the troublesome SRP were pipeline-derived. Consistent with the low frequency of SRP in the clone libraries, no activity could be shown for samples from the nitrate-treated system suggesting that SRP were...... inhibited by nitrate addition. Visualization and quantification of the identified troublesome prokaryotes and potential competitors using the CARD-FISH technique will be performed on production water from both sites....

  11. Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Hu, Xuexiang; Yang, Min; Qu, Jiuhui

    2012-03-15

    The effects of disinfection and biofilm on the corrosion of cast iron pipe in a model reclaimed water distribution system were studied using annular reactors (ARs). The corrosion scales formed under different conditions were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM), while the bacterial characteristics of biofilm on the surface were determined using several molecular methods. The corrosion scales from the ARs with chlorine included predominantly α-FeOOH and Fe2O3, while CaPO3(OH)·2H2O and α-FeOOH were the predominant phases after chloramines replaced chlorine. Studies of the consumption of chlorine and iron release indicated that the formation of dense oxide layers and biofilm inhibited iron corrosion, causing stable lower chlorine decay. It was verified that iron-oxidizing bacteria (IOB) such as Sediminibacterium sp., and iron-reducing bacteria (IRB) such as Shewanella sp., synergistically interacted with the corrosion product to prevent further corrosion. For the ARs without disinfection, α-FeOOH was the predominant phase at the primary stage, while CaCO3 and α-FeOOH were predominant with increasing time. The mixed corrosion-inducing bacteria, including the IRB Shewanella sp., the IOB Sediminibacterium sp., and the sulfur-oxidizing bacteria (SOB) Limnobacter thioxidans strain, promoted iron corrosion by synergistic interactions in the primary period, while anaerobic IRB became the predominant corrosion bacteria, preventing further corrosion via the formation of protective layers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  13. Fermentative Bacteria Influence the Competition between Denitrifiers and DNRA Bacteria

    Directory of Open Access Journals (Sweden)

    Eveline M. van den Berg

    2017-09-01

    Full Text Available Denitrification and dissimilatory reduction to ammonium (DNRA are competing nitrate-reduction processes that entail important biogeochemical consequences for nitrogen retention/removal in natural and man-made ecosystems. The nature of the available carbon source and electron donor have been suggested to play an important role on the outcome of this microbial competition. In this study, the influence of lactate as fermentable carbon source on the competition for nitrate was investigated for varying ratios of lactate and nitrate in the influent (Lac/N ratio. The study was conducted in an open chemostat culture, enriched from activated sludge, under strict anoxia. The mechanistic explanation of the conversions observed was based on integration of results from specific batch tests with biomass from the chemostat, molecular analysis of the biomass enriched, and a computational model. At high Lac/N ratio (2.97 mol/mol both fermentative and respiratory nitrate reduction to ammonium occurred, coupled to partial oxidation of lactate to acetate, and to acetate oxidation respectively. Remaining lactate was fermented to propionate and acetate. At a decreased Lac/N ratio (1.15 mol/mol, the molar percentage of nitrate reduced to ammonium decreased to 58%, even though lactate was supplied in adequate amounts for full ammonification and nitrate remained the growth limiting compound. Data evaluation at this Lac/N ratio suggested conversions were comparable to the higher Lac/N ratio, except for lactate oxidation to acetate that was coupled to denitrification instead of ammonification. Respiratory DNRA on acetate was likely catalyzed by two Geobacter species related to G. luticola and G. lovleyi. Two Clostridiales members were likely responsible for lactate fermentation and partial lactate fermentation to acetate coupled to fermentative DNRA. An organism related to Propionivibrio militaris was identified as the organism likely responsible for denitrification. The

  14. Iron oxides characterization by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Basurto Sanchez, R.

    1993-01-01

    In this work rust development on low carbon wire surface after the conformation process at different temperatures was studied by Moessbauer spectroscopy. The characterization was made by determining the following spectral parameters; 1) Quadrupole splitting, 2) Isomer shift, and 3) Magnetic splitting. The area quantification determined the percentage amount of three different iron oxides. These iron oxides were: a) Wustite (Fe O), b) Hematite (Fe 2 O 3 ), and c) Magnetite (Fe 3 O 4 ) which were present in the rust studied. With the results it was possible to establish the best temperature to favor the development of each of these iron oxides. (Author)

  15. The influence of Glyceria maxima and nitrate input on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community

    NARCIS (Netherlands)

    Nijburg, J.W.; Laanbroek, H.J.

    1997-01-01

    The influence of nitrate addition and the presence of Glyceria maxima (reed sweetgrass) on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community was investigated. Anoxic freshwater sediment was incubated in pots with or without G. maxima and with or without

  16. Influence of iron on plutonium absorption by the adult and neonatal rat

    International Nuclear Information System (INIS)

    Sullivan, M.F.; Ruemmler, P.S.; Buschbom, R.L.

    1986-01-01

    To determine how iron affects plutonium absorption, adult rats were gavaged with 238 Pu nitrate (pH 2) after they had been fed an iron-deficient diet or treated with iron supplements. Neonatal rats born to dams on an iron-deficient diet were also gavaged with 238 Pu. An iron-deficient diet resulted in enhanced 238 Pu absorption both in the adults and in neonates born to iron-deficient dams. Ferric iron increased 238 Pu absorption 12-fold in adult rats; injected iron-dextran reduced that increase; gavaged ferrous iron reduced 238 Pu absorption to one-third of the control value. Rat neonates absorbed 30 to 40 times as much 238 Pu as adults; absorption was lowered in groups that received iron supplements: Iron-dextran caused a 50% reduction; ferric iron, 95%; and ferrous iron, greater than 95%. The results demonstrate an effect of the oxidation state of iron on plutonium absorption in adult rats different from that observed in suckling rats. The results suggest that the high rate of 238 Pu absorption by neonatal animals is due not only to the permeability of their intestines but also to their high demand for iron

  17. Direct and indirect photodegradation of estriol in the presence of humic acid, nitrate and iron complexes in water solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yong [Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747 (United States); School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Kai [Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747 (United States); Zuo, Yuegang, E-mail: yzuo@umassd.edu [Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747 (United States)

    2013-10-01

    The photochemical behavior of a natural estrogen estriol (E3) was investigated in the presence of the natural photoreactive constituents including nitrate, iron(III), and humic acid (HA). The direct photodegradation of E3 increased with increasing incident light intensity, decreasing initial concentration of E3 and increasing pH in the range of 6.0 to 10.0. The direct photodegradation of the deprotonated speciation of E3 was much faster than that of its protonated form. The presence of NO{sub 3}{sup −} and iron(III) promoted the photochemical loss of E3 in the aqueous solutions. The quenching experiments verified that hydroxyl radicals were predominantly responsible for the indirect photodegradation of E3. HA could act as photosensitizer, light screening agent and free radical quencher. For the first time, the enhancement or inhibition effect of HA on photodegradation was found to depend on the irradiation light intensity. HA enhanced the photodegradation of E3 under sunlight or weak irradiation of simulated sunlight. In contrast, under high irradiation light intensity, HA inhibited the photodegradation. The hydroxylation photoproducts were identified using GC-MS and the photodegradation pathway of E3 was proposed. - Highlights: • Direct and indirect photodegradation of estriol (E3) were first investigated. • The direct photodegradation of E3 increased with increasing pH of the solutions. • The light intensity affected the photosensitization effect of humic acid. • Nitrate and iron(III) promoted the photodecomposition of estriol in water. • The ·OH oxidation products of E3 was first determined.

  18. Fabrication and characterization of iron oxide dextran composite layers

    Science.gov (United States)

    Iconaru, S. L.; Predoi, S. A.; Beuran, M.; Ciobanu, C. S.; Trusca, R.; Ghita, R.; Negoi, I.; Teleanu, G.; Turculet, S. C.; Matei, M.; Badea, Monica; Prodan, A. M.

    2018-02-01

    Super paramagnetic iron oxide nanoparticles such as maghemite have been shown to exhibit antimicrobial properties [1-5]. Moreover, the iron oxide nanoparticles have been proposed as a potential magnetically controllable antimicrobial agent which could be directed to a specific infection [3-5]. The present research has focused on studies of the surface and structure of iron oxide dextran (D-IO) composite layers surface and structure. These composite layers were deposited on Si substrates. The structure of iron oxide dextran composite layers was investigated by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) while the surface morphology was evaluated by Scanning Electron Microscopy (SEM). The structural characterizations of the iron oxide dextran composite layers revealed the basic constituents of both iron and dextran structure. Furthermore, the in vitro evaluation of the antifungal effect of the complex layers, which have been shown revealed to be active against C. albicans cells at distinct intervals of time, is exhibited. Our research came to confirm the fungicidal effect of iron oxide dextran composite layers. Also, our results suggest that iron oxide dextran surface may be used for medical treatment of biofilm associated Candida infections.

  19. Biodegradation of pharmaceuticals and endocrine disruptors with oxygen, nitrate, manganese (IV), iron (III) and sulfate as electron acceptors

    Science.gov (United States)

    Schmidt, Natalie; Page, Declan; Tiehm, Andreas

    2017-08-01

    Biodegradation of pharmaceuticals and endocrine disrupting compounds was examined in long term batch experiments for a period of two and a half years to obtain more insight into the effects of redox conditions. A mix including lipid lowering agents (e.g. clofibric acid, gemfibrozil), analgesics (e.g. diclofenac, naproxen), beta blockers (e.g. atenolol, propranolol), X-ray contrast media (e.g. diatrizoic acid, iomeprol) as well as the antiepileptic carbamazepine and endocrine disruptors (e.g. bisphenol A, 17α-ethinylestradiol) was analyzed in batch tests in the presence of oxygen, nitrate, manganese (IV), iron (III), and sulfate. Out of the 23 selected substances, 14 showed a degradation of > 50% of their initial concentrations under aerobic conditions. The beta blockers propranolol and atenolol and the analgesics pentoxifylline and naproxen showed a removal of > 50% under anaerobic conditions. In particular naproxen proved to be degradable with oxygen and under most anaerobic conditions, i.e. with manganese (IV), iron (III), or sulfate. The natural estrogens estriol, estrone and 17β-estradiol showed complete biodegradation under aerobic and nitrate-reducing conditions, with a temporary increase of estrone during transformation of estriol and 17β-estradiol. Transformation of 17β-estradiol under Fe(III)-reducing conditions resulted in an increase of estriol as well. Concentrations of clofibric acid, carbamazepine, iopamidol and diatrizoic acid, known for their recalcitrance in the environment, remained unchanged.

  20. The inhibitory effects of free ammonia on ammonia oxidizing bacteria and nitrite oxidizing bacteria under anaerobic condition.

    Science.gov (United States)

    Qian, Wenting; Peng, Yongzhen; Li, Xiyao; Zhang, Qiong; Ma, Bin

    2017-11-01

    The free ammonia (FA) inhibition on ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) under anaerobic condition was investigated in this study. The results indicated that NOB was more sensitive to the FA anaerobic treatment than AOB. The FA anaerobic inhibition on nitrifier gradually heightened with the increase of FA concentration. Accompanied with FA concentration increase from 0 to 16.82mgNH 3 -N·L -1 (the highest concentration adopted in this study), the activity of AOB reduced by 15.9%, while NOB decreased by 29.2%. After FA anaerobic treatment, nitrite was accumulated during nitrification. However, the nitrite accumulation disappeared on the sixth cycle of activity recovery tests with excessive aeration. Based on this result, a novel strategy for achieving nitritation is proposed, which involves recirculating a portion of the activated sludge through a side-line sludge treatment unit, where the sludge is subjected to treatment with FA under anaerobic condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate-reducing benthic microbial populations.

    Science.gov (United States)

    Saad, Sainab; Bhatnagar, Srijak; Tegetmeyer, Halina E; Geelhoed, Jeanine S; Strous, Marc; Ruff, S Emil

    2017-12-01

    For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate-reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate- and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24-12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name ' U Sabulitectum silens' and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate-reducing microbial communities and their adaptation to a dynamic environment. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Soft Chemistry Preparation of lead Iron Vanadate

    International Nuclear Information System (INIS)

    Melghit, Khaled

    2011-01-01

    In order to prepare the new monoclinic Pb 2 FeV 3 O 11 at low temperature; an acidic solution of vanadium oxide, pH 2, was mixed with a corresponding amount of both lead and iron nitrate at boiling temperature. The yellow precipitate obtained is a mixture of lead pyrovanadate Pb 2 V 2 O 7 and an amorphous phase. At 500deg. C, the new monoclinic Pb 2 FeV 3 O 11 phase appears but mixed with Pb 2 V 2 O 7 . At higher temperature, 570deg. C, the monoclinic phase disappears and a new phase appears. This phase is similar to triclinic Pb 2 Fe 2 V 4 O 15 , recently reported, although the EDAX analysis shows the as-prepared sample with higher amount of vanadium and iron. To understand the mechanism involved, lead and iron nitrate solution were reacted separately with vanadium oxide solution. The phases formed were found to be sensitive to initial concentration and to stirring time

  3. Thermodynamic Characterization of Iron Oxide-Aqueous Fe(2+) Redox Couples.

    Science.gov (United States)

    Gorski, Christopher A; Edwards, Rebecca; Sander, Michael; Hofstetter, Thomas B; Stewart, Sydney M

    2016-08-16

    Iron is present in virtually all terrestrial and aquatic environments, where it participates in redox reactions with surrounding metals, organic compounds, contaminants, and microorganisms. The rates and extent of these redox reactions strongly depend on the speciation of the Fe2+ and Fe3+ phases, although the underlying reasons remain unclear. In particular, numerous studies have observed that Fe2+ associated with iron oxide surfaces (i.e., oxide-associated Fe2+) often reduces oxidized contaminants much faster than aqueous Fe2+ alone. Here, we tested two hypotheses related to this observation by determining if solutions containing two commonly studied iron oxides—hematite and goethite—and aqueous Fe2+ reached thermodynamic equilibrium over the course of a day. We measured reduction potential (EH) values in solutions containing these oxides at different pH values and aqueous Fe2+ concentrations using mediated potentiometry. This analysis yielded standard reduction potential (EH0) values of 768 ± 1 mV for the aqueous Fe2+–goethite redox couple and 769 ± 2 mV for the aqueous Fe2+–hematite redox couple. These values were in excellent agreement with those calculated from existing thermodynamic data, and the data could be explained by the presence of an iron oxide lowering EH values of aqueous Fe3+/Fe2+ redox couples.

  4. Manganese Oxidation by Bacteria: Biogeochemical Aspects

    Digital Repository Service at National Institute of Oceanography (India)

    Sujith, P.P.; LokaBharathi, P.A.

    Manganese is an essential trace metal that is not as readily oxidizable like iron. Several bacterial groups posses the ability to oxidize Mn effectively competing with chemical oxidation. The oxides of Mn are the strongest of the oxidants, next...

  5. Coastal Benthic Boundary Layer (CBBL) Research Program: A review of the fourth year

    Science.gov (United States)

    1998-09-01

    followed by manganese oxide, nitrate , iron oxides, and sulfate. Some of these reactions produce protons, which promote the dissolution of carbonate...investigated. Specific activities during FY97 include: (1) continued multiscale analysis of Eckernförde sediments with inclusions of Key West...certain bacteria can then mediate organic matter oxidation (and obtain energy in the process) using nitrate as the terminal electron acceptor rather than

  6. Nitrate and Nitrogen Oxides: Sources, Health Effects and Their Remediation.

    Science.gov (United States)

    Hakeem, Khalid Rehman; Sabir, Muhammad; Ozturk, Munir; Akhtar, Mohd Sayeed; Ibrahim, Faridah Hanum

    Increased use of nitrogenous (N) fertilizers in agriculture has significantly altered the global N-cycle because they release nitrogenous gases of environmental concerns. The emission of nitrous oxide (N 2 O) contributes to the global greenhouse gas accumulation and the stratospheric ozone depletion. In addition, it causes nitrate leaching problem deteriorating ground water quality. The nitrate toxicity has been reported in a number of studies showing the health hazards like methemoglobinemia in infants and is a potent cause of cancer. Despite these evident negative environmental as well as health impacts, consumption of N fertilizer cannot be reduced in view of the food security for the teeming growing world population. Various agronomic and genetic modifications have been practiced to tackle this problem. Some agronomic techniques adopted include split application of N, use of slow-release fertilizers, nitrification inhibitors and encouraging the use of organic manure over chemical fertilizers. As a matter of fact, the use of chemical means to remediate nitrate from the environment is very difficult and costly. Particularly, removal of nitrate from water is difficult task because it is chemically non-reactive in dilute aqueous solutions. Hence, the use of biological means for nitrate remediation offers a promising strategy to minimize the ill effects of nitrates and nitrites. One of the important goals to reduce N-fertilizer application can be effectively achieved by choosing N-efficient genotypes. This will ensure the optimum uptake of applied N in a balanced manner and exploring the molecular mechanisms for their uptake as well as metabolism in assimilatory pathways. The objectives of this paper are to evaluate the interrelations which exist in the terrestrial ecosystems between the plant type and characteristics of nutrient uptake and analyze the global consumption and demand for fertilizer nitrogen in relation to cereal production, evaluate the various

  7. Deactivation of iron oxide used in the steam-iron process to produce hydrogen

    NARCIS (Netherlands)

    Bleeker, M.F.; Veringa, H.J.; Kersten, Sascha R.A.

    2009-01-01

    In the steam-iron process pure hydrogen can be produced from any hydrocarbon feedstock by using a redox cycle of iron oxide. One of the main problems connected to the use of the iron oxide is the inherent structural changes that take place during oxygen loading and unloading leading to severe

  8. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    International Nuclear Information System (INIS)

    Cravotta, C.A. III

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (< 5-m depth) from sludge-treated spoil (pH 5.9) were not elevated relative to untreated spoil (pH 4.4). In contrast, concentrations of nitrate were elevated in vadose water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only

  9. Insights into the genome of large sulfur bacteria revealed by analysis of single filaments

    DEFF Research Database (Denmark)

    Mussmann, Marc; Hu, Fen Z.; Richter, Michael

    2007-01-01

    Beggiatoa to overcome non-overlapping availabilities of electron donors and acceptors while gliding between oxic and sulfidic zones. The first look into the genome of these filamentous sulfur-oxidizing bacteria substantially deepens the understanding of their evolution and their contribution to sulfur......Marine sediments are frequently covered by mats of the filamentous Beggiatoa and other large nitrate-storing bacteria that oxidize hydrogen sulfide using either oxygen or nitrate, which they store in intracellular vacuoles. Despite their conspicuous metabolic properties and their biogeochemical...

  10. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    Science.gov (United States)

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  11. Influence of organic carbon sources and isotope exchange processes between water and nitrate on the fractionation of the stable isotopes {sup 15}N/{sup 14}N and {sup 18}O/{sup 16}O in dissolved nitrate during microbial dentrification in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Anja A.L.

    2012-11-02

    Stable isotopes of nitrate are commonly used to determine sources and degradation of nitrate. In this study, nitrite oxidizing bacteria were found to promote an oxygen isotope exchange between water and nitrate under anoxic conditions. Also, different carbon sources were found to influence the enrichment of stable isotopes in nitrate during microbial denitrification. Both results refine the stable isotope model of nitrate in respect to nitrate source determination and microbial nitrate reduction.

  12. Effect of Stabilized Zero-Valent Iron Nanoparticles on Nitrate Removal from Sandy Soil

    Directory of Open Access Journals (Sweden)

    F. Nooralivand

    2016-02-01

    Full Text Available Introduction: During the recent decades, the use of N fertilizers has undeniable development regardless of their effects on the soil and environment. Increasing nitrate ion concentration in soil solution and then, leaching it into groundwater causes increase nitrate concentration in the water and raise the risk suffering from the people to some diseases. World health organization recommended maximum concentration level for nitrate and nitrite in the drinking water 50 and 3 mg/l, respectively. There are different technologies for the removal of nitrate ions from aqueous solution. The conventional methods are ion exchange, biological denitrification, reverse osmosis and chemical reduction. Using nanoscale Fe0 particles compared to other methods of nitrate omission was preferred because of; its high surface area, more reactive, lower cost and higher efficiency. More studies on the reduction of nitrate by zero-valent iron nanoparticles have been in aqueous solutions or in the soil in batch scale. Nanoparticles surface modified with poly-electrolytes, surfactants and polymers cause colloidal stability of the particles against the forces of attraction between particles and increases nanoparticle transport in porous media. The objectives of this study were to synthesize carboxymethyl cellulose stabilized zero-valent iron nanoparticles and consideration of their application for nitrate removal from sandy soil. Materials and Methods: The nanoparticles were synthesized in a lab using borohydride reduction method and their morphological characteristics were examined via scanning electron microscopy (SEM, X-ray diffraction (XRD and Fourier Transmission Infrared Spectroscopy (FTIR. Experiments were conducted on packed sand column (40 cm length and 2.5 cm inner diameter under conditions of different nanoparticle concentration (1, 2, and 3 g1-1and high initial NO3- concentration (150, 250, and 350 mgl-1. Homogeneous soil column was filled with the wet packed

  13. Microbial Reducibility of Fe(III Phases Associated with the Genesis of Iron Ore Caves in the Iron Quadrangle, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Ceth W. Parker

    2013-11-01

    Full Text Available The iron mining regions of Brazil contain thousands of “iron ore caves” (IOCs that form within Fe(III-rich deposits. The mechanisms by which these IOCs form remain unclear, but the reductive dissolution of Fe(III (hydroxides by Fe(III reducing bacteria (FeRB could provide a microbiological mechanism for their formation. We evaluated the susceptibility of Fe(III deposits associated with these caves to reduction by the FeRB Shewanella oneidensis MR-1 to test this hypothesis. Canga, an Fe(III-rich duricrust, contained poorly crystalline Fe(III phases that were more susceptible to reduction than the Fe(III (predominantly hematite associated with banded iron formation (BIF, iron ore, and mine spoil. In all cases, the addition of a humic acid analogue enhanced Fe(III reduction, presumably by shuttling electrons from S. oneidensis to Fe(III phases. The particle size and quartz-Si content of the solids appeared to exert control on the rate and extent of Fe(III reduction by S. oneidensis, with more bioreduction of Fe(III associated with solid phases containing more quartz. Our results provide evidence that IOCs may be formed by the activities of Fe(III reducing bacteria (FeRB, and the rate of this formation is dependent on the physicochemical and mineralogical characteristics of the Fe(III phases of the surrounding rock.

  14. On the crystalline structures of iron oxides formed during the removal process of iron in water

    International Nuclear Information System (INIS)

    Cho, Bongyeon; Fujita, Kenji; Oda, Katsuro; Ino, Hiromitsu

    1993-01-01

    The iron oxide samples collected from both filtration and batch reactors were analysed by X-ray diffraction and Moessbauer spectroscopy. In the filtration of water containing iron, the oxidized form of iron was determined to be ferrihydrite. In contrast, in the batch experiment without filtration, iron was oxidized to microcrystalline goethite. (orig.)

  15. Aminoethyl nitrate – the novel super nitrate?

    Science.gov (United States)

    Bauersachs, Johann

    2009-01-01

    Long-term use of most organic nitrates is limited by development of tolerance, induction of oxidative stress and endothelial dysfunction. In this issue of the BJP, Schuhmacher et al. characterized a novel class of organic nitrates with amino moieties (aminoalkyl nitrates). Aminoethyl nitrate was identified as a novel organic mononitrate with high potency but devoid of induction of mitochondrial oxidative stress. Cross-tolerance to nitroglycerin or the endothelium-dependent agonist acetylcholine after in vivo treatment was not observed. Like all nitrates, aminoethyl nitrate induced vasorelaxation by activation of soluble guanylate cyclase. Thus, in contrast to the prevailing view, high potency in an organic nitrate is not necessarily accompanied by induction of oxidative stress or endothelial dysfunction. This work from Daiber's group is an important step forward in the understanding of nitrate bioactivation, tolerance phenomena and towards the development of better organic nitrates for clinical use. PMID:19732062

  16. Geochemical patterns and microbial contribution to iron plaque formation in the rice plant rhizosphere

    Science.gov (United States)

    Maisch, Markus; Murata, Chihiro; Unger, Julia; Kappler, Andreas; Schmidt, Caroline

    2015-04-01

    Rice is the major food source for more than half of the world population and 80 percent of the worldwide rice cultivation is performed on water logged paddy soils. The establishment of reducing conditions in the soil and across the soil-water interface not only stimulates the microbial production and release of the greenhouse gas methane. These settings also create optimal conditions for microbial iron(III) reduction and therefore saturate the system with reduced ferrous iron. Through the reduction and dissolution of ferric minerals that are characterized by their high surface activity, sorbed nutrients and contaminants (e.g. arsenic) will be mobilized and are thus available for uptake by plants. Rice plants have evolved a strategy to release oxygen from their roots in order to prevent iron toxification in highly ferrous environments. The release of oxygen to the reduced paddy soil causes ferric iron plaque formation on the rice roots and finally increases the sorption capacity for toxic metals. To this date the geochemical and microbiological processes that control the formation of iron plaque are not deciphered. It has been hypothesized that iron(II)-oxidizing bacteria play a potential role in the iron(III) mineral formation along the roots. However, not much is known about the actual processes, mineral products, and geochemical gradients that establish within the rhizosphere. In the present study we have developed a growth set-up that allows the co-cultivation of rice plants and iron(II)-oxidizing bacteria, as well as the visual observation and in situ measurement of geochemical parameters. Oxygen and dissolved iron(II) gradients have been measured using microelectrodes and show geochemical hot spots that offer optimal growth conditions for microaerophilic iron(II) oxidizers. First mineral identification attempts of iron plaque have been performed using Mössbauer spectroscopy and microscopy. The obtained results on mineraology and crystallinity have been

  17. Facial synthesis of carrageenan/reduced graphene oxide/Ag composite as efficient SERS platform

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yuhong; Wang, Zhong; Fu, Li; Peng, Feng, E-mail: yuhongzhengcas@gmail.com [Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing (China); Wang, Aiwu [Department of Physics and Materials Science, City University of Hong (Hong Kong)

    2017-01-15

    In this paper, we reported the preparation of carrageenan/reduced graphene oxide/Ag composite (CA-RGO-Ag) by a wet chemical method at room temperature using carrageenan, graphene oxide and silver nitrate as starting materials. As-prepared composite was characterized by UV-vis spectroscopy, Raman spectroscopy, FTIR, SEM, EDX and XRD. Results showed that the reduction of graphene oxide (GO) and silver nitrate was achieved simultaneously by addition of NaBH{sub 4} . Surface-enhanced Raman scattering study showed that the obtained composite give an intensive and enhanced Raman scattering when Rhodamine B was used as a probing molecule. (author)

  18. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia.

    Science.gov (United States)

    Hamamura, Natsuko; Itai, Takaaki; Liu, Yitai; Reysenbach, Anna-Louise; Damdinsuren, Narantuya; Inskeep, William P

    2014-10-01

    Microbial arsenic transformation pathways associated with a saline lake located in northern Mongolia were examined using molecular biological and culturing approaches. Bacterial 16S rRNA gene sequences recovered from saline lake sediments and soils were affiliated with haloalkaliphiles, including Bacillus and Halomonas spp. Diverse sequences of arsenate respiratory reductase (arrA) and a new group of arsenite oxidase (arxA) genes were also identified. Pure cultures of arsenate-reducing Nitrincola strain and anaerobic arsenite-oxidizing Halomonas strain were isolated. The chemoorganotrophic Halomonas strain contains arxA gene similar to that of a chemoautotrophic arsenite-oxidizing Alkalilimnicola ehrlichii strain MLHE-1. These results revealed the diversity of arsenic transformation pathways associated with a geographically distinct saline system and the potential contribution of arx-dependent arsenite oxidation by heterotrophic bacteria.

  19. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate.

    Science.gov (United States)

    Yamada, Chihaya; Kato, Souichiro; Ueno, Yoshiyuki; Ishii, Masaharu; Igarashi, Yasuo

    2015-06-01

    Anaerobic digester is one of the attractive technologies for treatment of organic wastes and wastewater, while continuous development and improvements on their stable operation with efficient organic removal are required. Particles of conductive iron oxides (e.g., magnetite) are known to facilitate microbial interspecies electron transfer (termed as electric syntrophy). Electric syntrophy has been reported to enhance methanogenic degradation of organic acids by mesophilic communities in soil and anaerobic digester. Here we investigated the effects of supplementation of conductive iron oxides (magnetite) on thermophilic methanogenic microbial communities derived from a thermophilic anaerobic digester. Supplementation of magnetite accelerated methanogenesis from acetate and propionate under thermophilic conditions, while supplementation of ferrihydrite also accelerated methanogenesis from propionate. Microbial community analysis revealed that supplementation of magnetite drastically changed bacterial populations in the methanogenic acetate-degrading cultures, in which Tepidoanaerobacter sp. and Coprothermobacter sp. dominated. These results suggest that supplementation of magnetite induce electric syntrophy between organic acid-oxidizing bacteria and methanogenic archaea and accelerate methanogenesis even under thermophilic conditions. Findings from this study would provide a possibility for the achievement of stably operating thermophilic anaerobic digestion systems with high efficiency for removal of organics and generation of CH4. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Fe-oxide grain coatings support bacterial Fe-reducing metabolisms in 1.7-2.0 km-deep subsurface quartz arenite sandstone reservoirs of the Illinois Basin (USA

    Directory of Open Access Journals (Sweden)

    Yiran eDong

    2014-09-01

    Full Text Available The Cambrian-age Mt. Simon Sandstone, deeply buried within the Illinois Basin of the midcontinent of North America, contains quartz sand grains ubiquitously encrusted with iron-oxide cements and dissolved ferrous iron in pore-water. Although microbial iron reduction has previously been documented in the deep terrestrial subsurface, the potential for diagenetic mineral cementation to drive microbial activity has not been well studied. In this study, two subsurface formation water samples were collected at 1.72 and 2.02 km, respectively, from the Mt. Simon Sandstone in Decatur, Illinois. Low-diversity microbial communities were detected from both horizons and were dominated by Halanaerobiales of Phylum Firmicutes. Iron-reducing enrichment cultures fed with ferric citrate were successfully established using the formation water. Phylogenetic classification identified the enriched species to be related to Vulcanibacillus from the 1.72 km depth sample, while Orenia dominated the communities at 2.02 km of burial depth. Species-specific quantitative analyses of the enriched organisms in the microbial communities suggest that they are indigenous to the Mt. Simon Sandstone. Optimal iron reduction by the 1.72 km enrichment culture occurred at a temperature of 40oC (range 20 to 60oC and a salinity of 25 parts per thousand (range 25-75 ppt. This culture also mediated fermentation and nitrate reduction. In contrast, the 2.02 km enrichment culture exclusively utilized hydrogen and pyruvate as the electron donors for iron reduction, tolerated a wider range of salinities (25-200 ppt, and exhibited only minimal nitrate- and sulfate-reduction. In addition, the 2.02 km depth community actively reduces the more crystalline ferric iron minerals goethite and hematite. The results suggest evolutionary adaptation of the autochthonous microbial communities to the Mt. Simon Sandstone and carries potentially important implications for future utilization of this reservoir

  1. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    Science.gov (United States)

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  2. Detecting Organic Compounds Released from Iron Oxidizing Bacteria using Sample Analysis at Mars (SAM) Like Instrument Protocols

    Science.gov (United States)

    Glavin, D. P.; Popa, R.; Martin, M. G.; Freissinet, C.; Fisk, M. R.; Dworkin, J. P.; Mahaffy, P. R.

    2012-01-01

    Mars is a planet of great interest for Astrobiology since its past environmental conditions are thought to have been favourable for the emergence life. At present, the Red Planet is extremely cold and dry and the surface is exposed to intense UV and ionizing radiation, conditions generally considered to be incompatible with life as we know it on Earth. It was proposed that the shallow subsurface of Mars, where temperatures can be above freezing and liquid water can exist on rock surfaces, could harbor chemolithoautotrophic bacteria such as the iron oxidizing microorganism Pseudomonas sp. HerB. The Mars Science Laboratory (MSL) mission will provide the next opportunity to carry out in situ measurements for organic compounds of possible biological origin on Mars. One instrument onboard MSL, called the Sample Analysis at Mars (SAM) instrument suite, will carry out a broad and sensitive search for organic compounds in surface samples using either high temperature pyrolysis or chemical extraction followed by gas chromatography mass spectrometry. We present gas chromatograph mass spectrometer (GC/MS) data on crushed olivine rock powders that have been inoculated with Pseudomonas sp. HerB at different concentrations ranging from approx 10(exp 2) to 10(exp 7) cells per gram. The inoculated olivine samples were heated under helium carrier gas flow at 500 C and the pyrolysis products concentrated using a SAM-like hydrocarbon trap set at -20 C followed by trap heating and analysis by GC/Ms. In addition, the samples were also extracted using a low temperature "one-pot" chemical extraction technique using N-methyl, N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) as the silylating agent prior to GC/MS analysis. We identified several aldehydes, thiols, and alkene nitriles after pyrolysis GC/MS analysis of the bacteria that were not found in the olivine control samples that had not been inoculated with bacteria. The distribution of pyrolysis products extracted from the

  3. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

    Science.gov (United States)

    Woodman, Andrew G; Mah, Richard; Keddie, Danae; Noble, Ronan M N; Panahi, Sareh; Gragasin, Ferrante S; Lemieux, Hélène; Bourque, Stephane L

    2018-06-01

    Prenatal iron deficiency alters fetal developmental trajectories, which results in persistent changes in organ function. Here, we studied the effects of prenatal iron deficiency on fetal kidney and liver mitochondrial function. Pregnant Sprague-Dawley rats were fed partially or fully iron-restricted diets to induce a state of moderate or severe iron deficiency alongside iron-replete control rats. We assessed mitochondrial function via high-resolution respirometry and reactive oxygen species generation via fluorescence microscopy on gestational d 21. Hemoglobin levels were reduced in dams in the moderate (-31%) and severe groups (-54%) compared with controls, which was accompanied by 55% reductions in fetal hemoglobin levels in both moderate and severe groups versus controls. Male iron-deficient kidneys exhibited globally reduced mitochondrial content and respiration, as well as increased cytosolic superoxide and decreased NO. Female iron-deficient kidneys exhibited complex II down-regulation and increased mitochondrial oxidative stress. Male iron-deficient livers exhibited reduced complex IV respiration and increased cytosolic superoxide, whereas female liver tissues exhibited no alteration in oxidant levels or mitochondrial function. These findings indicate that prenatal iron deficiency causes changes in mitochondrial content and function as well as oxidant status in a sex- and organ-dependent manner, which may be an important mechanism that underlies the programming of cardiovascular disease.-Woodman, A. G., Mah, R., Keddie, D., Noble, R. M. N., Panahi, S., Gragasin, F. S., Lemieux, H., Bourque, S. L. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

  4. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB......). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms...... in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative...

  5. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Science.gov (United States)

    Huang, Guan; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-01

    This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O2. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  6. High-nitrate vegetable diet increases plasma nitrate and nitrite concentrations and reduces blood pressure in healthy women.

    Science.gov (United States)

    Ashworth, Ann; Mitchell, Klaus; Blackwell, Jamie R; Vanhatalo, Anni; Jones, Andrew M

    2015-10-01

    Epidemiological studies suggest that green leafy vegetables, which are high in dietary nitrate, are protective against CVD such as stroke. High blood pressure (BP) is a major risk factor for stroke and inorganic nitrate has been shown to reduce BP. The objective of the present study was to test the hypothesis that diets containing high-nitrate (HN) vegetables would increase plasma nitrate and nitrite concentrations and reduce BP in healthy women. A randomized, crossover trial, where participants received HN vegetables (HN diet) or avoided HN vegetables (Control diet) for 1 week. Before and after each intervention, resting BP and plasma nitrate and nitrite concentrations were measured. University of Exeter, UK. Nineteen healthy women (mean age 20 (sd 2) years; mean BMI 22·5 (sd 3·8) kg/m2). The HN diet significantly increased plasma nitrate concentration (before HN diet: mean 24·4 (sd 5·6) µmol/l; after HN diet: mean 61·0 (sd 44·1) µmol/l, Pdiet: mean 98 (sd 91) nmol/l; after HN diet: mean 185 (sd 34) nmol/l, Pdiet. The HN diet significantly reduced resting systolic BP (before HN diet: mean 107 (sd 9) mmHg; after HN diet: mean 103 (sd 6) mmHg, Pdiet (before Control diet: mean 106 (sd 8) mmHg; after Control diet: mean 106 (sd 8) mmHg). Consumption of HN vegetables significantly increased plasma nitrate and nitrite concentrations and reduced BP in normotensive women.

  7. Nitrous oxide emission by the non-denitrifying, nitrate ammonifier Bacillus licheniformis

    OpenAIRE

    Sun, Yihua; De Vos, Paul; Heylen, Kim

    2016-01-01

    Background Firmicutes have the capacity to remove excess nitrate from the environment via either denitrification, dissimilatory nitrate reduction to ammonium or both. The recent renewed interest in their nitrogen metabolism has revealed many interesting features, the most striking being their wide variety of dissimilatory nitrate reduction pathways. In the present study, nitrous oxide production from Bacillus licheniformis, a ubiquitous Gram-positive, spore-forming species with many industria...

  8. Synthesis and characterization of dextran-coated iron oxide nanoparticles

    Science.gov (United States)

    Predescu, Andra Mihaela; Matei, Ecaterina; Berbecaru, Andrei Constantin; Pantilimon, Cristian; Drăgan, Claudia; Vidu, Ruxandra; Predescu, Cristian; Kuncser, Victor

    2018-03-01

    Synthesis and characterization of iron oxide nanoparticles coated with a large molar weight dextran for environmental applications are reported. The first experiments involved the synthesis of iron oxide nanoparticles which were coated with dextran at different concentrations. The synthesis was performed by a co-precipitation technique, while the coating of iron oxide nanoparticles was carried out in solution. The obtained nanoparticles were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction spectrometry, Fourier transform infrared spectroscopy and superconducting quantum interference device magnetometry. The results demonstrated a successful coating of iron oxide nanoparticles with large molar weight dextran, of which agglomeration tendency depended on the amount of dextran in the coating solution. SEM and TEM observations have shown that the iron oxide nanoparticles are of about 7 nm in size.

  9. Rapid and controlled transformation of nitrate in water and brine by stabilized iron nanoparticles

    International Nuclear Information System (INIS)

    Xiong Zhong; Zhao Dongye; Pan Gang

    2009-01-01

    Highly reactive zero-valent iron (ZVI) nanoparticles stabilized with carboxymethyl cellulose (CMC) were tested for reduction of nitrate in fresh water and brine. Batch kinetic tests showed that the pseudo first-order rate constant (k obs ) with the stabilized nanoparticles was five times greater than that for non-stabilized counterparts. The stabilizer not only increased the specific surface area of the nanoparticles, but also increased the reactive particle surface. The allocation between the two reduction products, NH 4 + and N 2 , can be manipulated by varying the ZVI-to-nitrate molar ratio and/or applying a Cu-Pd bimetallic catalyst. Greater CMC-to-ZVI ratios lead to faster nitrate reduction. Application of a 0.05 M HEPES buffer increased the k obs value by 15 times compared to that without pH control. Although the presence of 6% NaCl decreased k obs by 30%, 100% nitrate was transformed within 2 h in the saline water. The technology provides a powerful alternative for treating water with concentrated nitrate such as ion exchange brine.

  10. Mechanism of anodic oxidation of molybdenum and tungsten in nitrate-nitrite melts

    International Nuclear Information System (INIS)

    Yurkinskij, V.P.; Firsova, E.G.; Morachevskij, A.G.

    1987-01-01

    The mechanism of anode oxidation of tungsten and molybdenum in NaNO 3 -KNO 3 (50 mass %) nitrate-nitrite melts with NaNO 2 -KNO 2 (0.5-50 mass %) addition and in NaNO 2 -KNO 2 (35 mole %) nitrite melt in the 516-580 K temperature range is studied. It is supposed that the process of anode dissloving of the mentioned metals in nitrite melt and nitrate-nitrite mixtures is two-electron. Formation of oxide passivating film is possible under electrolysis on the anode surface, the film is then dissolved in nitrate-nitrite melt with formation of molybdates or tungstates

  11. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  12. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    International Nuclear Information System (INIS)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  13. Uranium Immobilization in an Iron-Rich Rhizosphere of a Native Wetland Plant from the Savannah River Site under Reducing Conditions

    Science.gov (United States)

    The hypothesis of this study was that iron plaque formed on the roots of wetland plants and their rhizospheres create environmental conditions favorable for iron reducing bacteria that promote the in situ immobilization of uranium. Greenhouse microcosm studies were conducted usin...

  14. One step paired electrochemical synthesis of iron and iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Ordoukhanian Juliet

    2016-09-01

    Full Text Available In this study, a new one step paired electrochemical method is developed for simultaneous synthesis of iron and iron oxide nanoparticles. iron and iron oxide are prepared as cathodic and anodic products from iron (ii sulfate aqueous solution in a membrane divided electrolytic cell by the pulsed current electrosynthesis. Because of organic solvent-free and electrochemical nature of the synthesis, the process could be considered as green and environmentally friendly. The reduction of energy consumption and low cost are the other significant advantages of this new method that would have a great application potential in the chemical industry. The nanostructure of prepared samples was characterized by Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The magnetic properties were studied by vibrating sample magnetometer (VsM.

  15. Preparation and characterization of polyindole - iron oxide nanocomposite electrolyte

    International Nuclear Information System (INIS)

    Rajasudha, G.; Stephen, A.; Narayanan, V.

    2009-01-01

    Full text: A novel polyindole-iron oxide containing LiClO 4 solid polymer electrolyte has been prepared. The diverse property of magnetic nanoparticle has elicited wide interest from the point of view of technological applications. Their properties are known to be strongly dependent on size, anisotropy and inter particle interactions. The proton conducting materials has received considerable attention as electrolyte materials in technological applications such as fuel cells, sensors and electrochromic display. In this work, polyindole-iron oxide nanocomposite containing LiClO 4 was prepared by in situ polymerization. The indole was polymerized in the presence of iron oxide, using ammonium peroxy disulphate as an oxidizing agent. The polyindole-iron oxide nanocomposite was characterized by XRD, IR, SEM, TGA and TEM. The iron oxide nano particles was incorporated into polyindole and was confirmed by XRD and Fourier transform infrared (FTIR) spectroscopy. The surface Morphology and thermal stability were studied by thermogravimetric analysis (TGA) and SEM respectively. The ionic conductivity of polyindole electrolyte was analyzed from impedance spectrum. The prepared polyindole-iron oxide nanocomposite could be used as solid electrolyte in lithium ion batteries

  16. Prediction of reducible soil iron content from iron extraction data

    NARCIS (Netherlands)

    Bodegom, van P.M.; Reeven, van J.; Denier van der Gon, H.A.C.

    2003-01-01

    Soils contain various iron compounds that differ in solubility, reducibility and extractability. Moreover, the contribution of the various iron compounds to total iron (Fe) and total Fe concentrations differs highly among soils. As a result, the total reducible Fe content can also differ among

  17. Obtaining and Organophilisation of Smectite Clays with Reduced Iron Oxide Content

    Directory of Open Access Journals (Sweden)

    Karasa Jūlija

    2016-05-01

    Full Text Available Raw clays from the Baltic region are characterized as smectite containing clays with significant amount of naturally occurring impurities that limiting the potential applications of crude Baltic clay resources. Purification of clay samples from Šaltiškių deposit (Venta basin was carried out by varied concentration hydrochloric acid solutions and resulted in fine removal of carbonates and iron oxide. The main idea of this work is to widen the possible applications of local clay resources providing a new type of raw material for further organoclay production.

  18. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria.

    OpenAIRE

    Voordouw, G; Armstrong, S M; Reimer, M F; Fouts, B; Telang, A J; Shen, Y; Gevertz, D

    1996-01-01

    Oil field bacteria were characterized by cloning and sequencing of PCR-amplified 16S rRNA genes. A variety of gram-negative, sulfate-reducing bacteria was detected (16 members of the family Desulfovibrionaceae and 8 members of the family Desulfobacteriaceae). In contrast, a much more limited number of anaerobic, fermentative, or acetogenic bacteria was found (one Clostridium sp., one Eubacterium sp., and one Synergistes sp.). Potential sulfide oxidizers and/or microaerophiles (Thiomicrospira,...

  19. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene.

    Science.gov (United States)

    Kaspar, H F; Tiedje, J M

    1981-03-01

    15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, when 13NO3- was incubated with rumen microbiota virtually no [13N]N2 was produced. Acetylene partially inhibited the reduction of nitrite to ammonium as well as the formation of nitrous oxide. It is suggested that in the rumen ecosystem nitrous oxide is a byproduct of dissimilatory nitrite reduction to ammonium rather than a product of denitrification and that the latter process is absent from the rumen habitat.

  20. Hydrothermal oxidation in the Biwabik Iron Formation, MN, USA

    Science.gov (United States)

    Losh, Steven; Rague, Ryan

    2018-02-01

    Precambrian iron formations throughout the world, notably in Australia, Brazil, and South Africa, show evidence of hypogene (≥ 110 °C, mostly > 250 °C) oxidation, alteration, and silica dissolution as a result of tectonic or magmatic activity. Although hydrothermal oxidation has been proposed for the prototype Lake Superior-type iron formation, the Biwabik Iron Formation in Minnesota (USA), it has not been documented there. By examining oxidized and unoxidized Biwabik Iron Formation in three mines, including material from high-angle faults that are associated with oxidation, we document an early hypogene oxidation event ( 175 °C) involving medium-salinity aqueous fluids (8.4 ± 4.9 wt% NaCl equiv) that infiltrated iron formation along high-angle faults. At the Hibbing Taconite Mine, hydrothermal fluids oxidized iron carbonates and silicates near faults, producing goethite ± quartz. In contrast with much of the oxidized iron ores on the Mesabi Range, silica was not removed but rather recrystallized during this event, perhaps lying in a rock-dominated system at low cumulative fluid flux. During the hydrothermal oxidation event in the Hibbing Taconite deposit, quartz-filled microfractures and irregular inclusions commonly formed in coarse variably oxidized magnetite, currently the ore mineral: these inclusions degrade the ore by introducing excess silica in magnetic concentrate. Hydrothermal oxidation at Hibbing Taconite Mine is overprinted by later, relatively minor supergene oxidation both along faults and near the surface, which locally dissolved quartz. At the Fayal Reserve Mine, widespread silicate and carbonate gangue dissolution and iron oxidation was followed by precipitation of pyrite, Mn-siderite, apatite, and other minerals in void spaces, which prevented post-oxidation compaction and significant volume loss in the sampled rocks. Although definitive temperature data for this assemblage are needed, the weight of evidence indicates that this

  1. Distinguishing iron-reducing from sulfate-reducing conditions

    Science.gov (United States)

    Chapelle, F.H.; Bradley, P.M.; Thomas, M.A.; McMahon, P.B.

    2009-01-01

    Ground water systems dominated by iron- or sulfate-reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe2+) and sulfide (sum of H2S, HS-, and S= species and denoted here as "H2S"). This approach is based on the observation that concentrations of Fe2+ and H2S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe2+ concentrations are high, H2S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe2+ with H2S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron- and the sulfate-reducing microorganisms that catalyze the production of Fe2+ and H 2S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe2+ and H 2S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H2) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe2+/H2S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H2 ???0.2 to 0.8 nM). Conversely, if the Fe 2+/H2S ratio was less than 0.30, consistent sulfate-reducing (H2 ???1 to 5 nM) conditions were observed over time. Concomitantly high Fe2+ and H2S concentrations were associated with H2 concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron- and sulfate-reducing zones or concomitant iron and sulfate reduction under nonelectron donor-limited conditions. These observations suggest that Fe2+/H2S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems. ?? 2009 National Ground Water Association.

  2. Gene expression correlates with process rates quantified for sulfate- and Fe(III-reducing bacteria in U(VI-contaminated sediments

    Directory of Open Access Journals (Sweden)

    Denise M Akob

    2012-08-01

    Full Text Available Though iron- and sulfate-reducing bacteria are well known for mediating uranium(VI reduction in contaminated subsurface environments, quantifying the in situ activity of the microbial groups responsible remains a challenge. The objective of this study was to demonstrate the use of quantitative molecular tools that target mRNA transcripts of key genes related to Fe(III and sulfate reduction pathways in order to monitor these processes during in situ U(VI remediation in the subsurface. Expression of the Geobacteraceae-specific citrate synthase gene (gltA and the dissimilatory (bisulfite reductase gene (dsrA, were correlated with the activity of iron- or sulfate-reducing microorganisms, respectively, under stimulated bioremediation conditions in microcosms of sediments sampled from the U.S. Department of Energy’s Oak Ridge Integrated Field Research Challenge (OR-IFRC site at Oak Ridge, Tennessee. In addition, Geobacteraceae-specific gltA and dsrA transcript levels were determined in parallel with the predominant electron acceptors present in moderately and highly contaminated subsurface sediments from the OR-IFRC. Phylogenetic analysis of the cDNA generated from dsrA mRNA, sulfate-reducing bacteria-specific 16S rRNA, and gltA mRNA identified activity of specific microbial groups. Active sulfate reducers were members of the Desulfovibrio, Desulfobacterium, and Desulfotomaculum genera. Members of the subsurface Geobacter clade, closely related to uranium-reducing Geobacter uraniireducens and Geobacter daltonii, were the metabolically-active iron-reducers in biostimulated microcosms and in situ core samples. Direct correlation of transcripts and process rates demonstrated evidence of competition between the functional guilds in subsurface sediments. We further showed that active populations of Fe(III-reducing bacteria and sulfate-reducing bacteria are present in OR-IFRC sediments and are good potential targets for in situ bioremediation.

  3. Scalable high-affinity stabilization of magnetic iron oxide nanostructures by a biocompatible antifouling homopolymer

    KAUST Repository

    Luongo, Giovanni; Campagnolo, Paola; Perez, Jose E.; Kosel, Jü rgen; Georgiou, Theoni K.; Regoutz, Anna; Payne, David J; Stevens, Molly M.; Ryan, Mary P.; Porter, Alexandra E; Dunlop, Iain E

    2017-01-01

    Iron oxide nanostructures have been widely developed for biomedical applications, due to their magnetic properties and biocompatibility. In clinical application, the stabilization of these nanostructures against aggregation and non-specific interactions is typically achieved using weakly anchored polysaccharides, with better-defined and more strongly anchored synthetic polymers not commercially adopted due to complexity of synthesis and use. Here, we show for the first time stabilization and biocompatibilization of iron oxide nanoparticles by a synthetic homopolymer with strong surface anchoring and a history of clinical use in other applications, poly(2-methacryloyloxyethy phosphorylcholine) (poly(MPC)). For the commercially important case of spherical particles, binding of poly(MPC) to iron oxide surfaces and highly effective individualization of magnetite nanoparticles (20 nm) are demonstrated. Next-generation high-aspect ratio nanowires (both magnetite/maghemite and core-shell iron/iron oxide) are furthermore stabilized by poly(MPC)-coating, with nanowire cytotoxicity at large concentrations significantly reduced. The synthesis approach is exploited to incorporate functionality into the poly(MPC) chain is demonstrated by random copolymerization with an alkyne-containing monomer for click-chemistry. Taking these results together, poly(MPC) homopolymers and random copolymers offer a significant improvement over current iron oxide nanoformulations, combining straightforward synthesis, strong surface-anchoring and well-defined molecular weight.

  4. Scalable high-affinity stabilization of magnetic iron oxide nanostructures by a biocompatible antifouling homopolymer

    KAUST Repository

    Luongo, Giovanni

    2017-10-12

    Iron oxide nanostructures have been widely developed for biomedical applications, due to their magnetic properties and biocompatibility. In clinical application, the stabilization of these nanostructures against aggregation and non-specific interactions is typically achieved using weakly anchored polysaccharides, with better-defined and more strongly anchored synthetic polymers not commercially adopted due to complexity of synthesis and use. Here, we show for the first time stabilization and biocompatibilization of iron oxide nanoparticles by a synthetic homopolymer with strong surface anchoring and a history of clinical use in other applications, poly(2-methacryloyloxyethy phosphorylcholine) (poly(MPC)). For the commercially important case of spherical particles, binding of poly(MPC) to iron oxide surfaces and highly effective individualization of magnetite nanoparticles (20 nm) are demonstrated. Next-generation high-aspect ratio nanowires (both magnetite/maghemite and core-shell iron/iron oxide) are furthermore stabilized by poly(MPC)-coating, with nanowire cytotoxicity at large concentrations significantly reduced. The synthesis approach is exploited to incorporate functionality into the poly(MPC) chain is demonstrated by random copolymerization with an alkyne-containing monomer for click-chemistry. Taking these results together, poly(MPC) homopolymers and random copolymers offer a significant improvement over current iron oxide nanoformulations, combining straightforward synthesis, strong surface-anchoring and well-defined molecular weight.

  5. Analytical Chemistry and Materials Characterization Results for Debris Recovered from Nitrate Salt Waste Drum S855793

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Patrick Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chamberlin, Rebecca M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schwartz, Daniel S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Worley, Christopher Gordon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garduno, Katherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lujan, Elmer J. W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Borrego, Andres Patricio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Castro, Alonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Colletti, Lisa Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fulwyler, James Brent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holland, Charlotte S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Keller, Russell C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Klundt, Dylan James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martin, Frances Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Montoya, Dennis Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Porterfield, Donivan R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schake, Ann Rene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schappert, Michael Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Soderberg, Constance B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Spencer, Khalil J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanley, Floyd E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thomas, Mariam R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Townsend, Lisa Ellen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Xu, Ning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-16

    Solid debris was recovered from the previously-emptied nitrate salt waste drum S855793. The bulk sample was nondestructively assayed for radionuclides in its as-received condition. Three monoliths were selected for further characterization. Two of the monoliths, designated Specimen 1 and 3, consisted primarily of sodium nitrate and lead nitrate, with smaller amounts of lead nitrate oxalate and lead oxide by powder x-ray diffraction. The third monolith, Specimen 2, had a complex composition; lead carbonate was identified as the predominant component, and smaller amounts of nitrate, nitrite and carbonate salts of lead, magnesium and sodium were also identified. Microfocused x-ray fluorescence (MXRF) mapping showed that lead was ubiquitous throughout the cross-sections of Specimens 1 and 2, while heteroelements such as potassium, calcium, chromium, iron, and nickel were found in localized deposits. MXRF examination and destructive analysis of fragments of Specimen 3 showed elevated concentrations of iron, which were broadly distributed through the sample. With the exception of its high iron content and low carbon content, the chemical composition of Specimen 3 was within the ranges of values previously observed in four other nitrate salt samples recovered from emptied waste drums.

  6. Development of hydrogen oxidizing bacteria using hydrogen from radiolysis or metal corrosion

    International Nuclear Information System (INIS)

    Libert, M.F.; Sellier, R.; Marty, V.; Camaro, S.

    2000-01-01

    The effect of many parameters need to be studied to characterize the long term behavior of nuclear waste in a deep repository. These parameters concern the chemical effects, radiolytic effects, mechanical properties, water composition, and microbiological activity. To evaluate microbial activity in such an environment, work was focused on an inventory of key nutrients (C, H, 0, N, P, S) and energy sources required for bacterial growth. The production of hydrogen in the nuclear waste environment leads to the growth of hydrogen oxidizing bacteria, which modify the gas production balance. A deep repository containing bituminized waste drums implies several sources of hydrogen: - water radiolysis; -corrosion of metal containers; - radiolysis of the embedding matrix (bitumen). Two deep geological disposal conditions leading to H 2 production in a bituminized nuclear waste environment were simulated in the present study: - H 2 production by iron corrosion under anaerobic conditions was simulated by adding 10% of H 2 in the atmosphere; - H 2 production by radiolysis of bitumen matrix was approached by subjecting this material to external gamma irradiation with a dose rate near real conditions (6 Gy/h). The presence of dissolved H 2 in water allows the growth of hydrogen oxidizing bacteria leading to: - CO 2 and N 2 production; - H 2 consumption; - lower NO 3 - concentration caused by reduction to nitrogen. In the first case, hydrogen consumption is limited by the NO 3 - release rate from the bitumen matrix. In the second case, however, under gamma radiation at a low dose rate, hydrogen production is weak, and the hydrogen is completely consumed by microorganisms. Knowledge about these hydrogen oxidizing bacteria is just beginning to emerge. Heterotrophic denitrifying bacteria adapt well to hydrogen metabolism (autotrophic metabolism) by oxidizing H 2 instead of hydrocarbons. (authors)

  7. Microbial life in geothermal waters

    Energy Technology Data Exchange (ETDEWEB)

    Sand, W. [Universitaet Hamburg (Germany). Mikrobiologie

    2003-12-01

    Geothermal waters usually contain many salts, often in varying concentrations. Some of these salts, especially if they are oxidizable or reducible, may be subject to microbial conversion and/or (bio)precipitation. Microorganisms can oxidize, sometimes even under anoxic (absence of oxygen) conditions, reduced sulfur compounds, iron (II) ions, and manganese (II) ions, to mention just a few of the most important. On the other hand, partially or fully oxidized compounds can be reduced by microorganisms, for example sulfur compounds, iron (III) ions, manganese (IV) ions, nitrogen oxides such as nitrite and nitrate, and, finally, bicarbonate and carbonate ions. If organic compounds are present, these may also be oxidized or reduced. A multitude of these microorganisms are able to perform such a metabolism under aerobic or anoxic conditions. All these (bio)processes allow bacteria to grow and proliferate. The consequences include biocorrosion and biodeterioration. The growth requirements and the biodeterioration mechanisms will be discussed in this review. (author)

  8. Electrodes as Terminal Electron Acceptors in Anaerobic Ammonium Oxidation

    Science.gov (United States)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2017-12-01

    Anaerobic ammonium (NH4+) oxidation under iron (Fe) reducing conditions is a microbial- mediated process known as Feammox. This is a novel pathway in the nitrogen cycle, and a key process for alleviating NH4+ accumulation in anoxic soils, wetlands, and wastewater. Acidimicrobiaceae-bacterium A6, phylum Actinobacteria, are one type of autotrophic bacteria linked to this process. The Feammox-bacteria obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, iron oxides are the TEAs. However, in this study we show that electrodes in Microbial Electrolysis Cells (MECs) or electrodes set in the field can be used as TEAs by Feammox-bacteria. The potential difference between electrodes is the driving force for electron transfer, making the reaction energetically feasible. Our results show that MECs containing Feammox cultures can remove NH4+ up to 3.5 mg/L in less than 4 hours, compared to an average of 9 mg/L in 2 weeks when cultured under traditional conditions. Concomitantly, MECs produce an average current of 30.5 A/m3 whilst dead bacteria produced low (Actinobacteria when compared to bulk soil. Electrodes as TEAs enhance electrogenic bacteria recovery and culturing. The use of MECs for the productions of Feammox-bacteria eliminates the dependence of Fe, a finite electron acceptor, therefore, allowing for continuous NH4+ removal. Finally, Fe-free Feammox-bacteria can be applied to reduce other metals of environmental concern; therefore, opening the range of possible application of Feammox-bacteria.

  9. Metagenomic Study of Iron Homeostasis in Iron Depositing Hot Spring Cyanobacterial Community

    Science.gov (United States)

    Brown, I.; Franklin H.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    Introduction: It is not clear how an iron-rich thermal hydrosphere could be hospitable to cyanobacteria, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, metagenomic study of cyanobacterial community in iron-depositing hot springs may help elucidate how oxygenic prokaryotes can withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe2+ and O2. Method: Anchor proteins from various species of cyanobacteria and some anoxygenic phototrophs were selected on the basis of their hypothetical role in Fe homeostasis and the suppression of oxidative stress and were BLASTed against the metagenomes of iron-depositing Chocolate Pots and freshwater Mushroom hot springs. Results: BLASTing proteins hypothesized to be involved in Fe homeostasis against the microbiomes from the two springs revealed that iron-depositing hot spring has a greater abundance of defensive proteins such as bacterioferritin comigratory protein (Bcp) and DNA-binding Ferritin like protein (Dps) than a fresh-water hot spring. One may speculate that the abundance of Bcp and Dps in an iron-depositing hot spring is connected to the need to suppress oxidative stress in bacteria inhabiting environments with high Fe2+ concnetration. In both springs, Bcp and Dps are concentrated within the cyanobacterial fractions of the microbial community (regardless of abundance). Fe3+ siderophore transport (from the transport system permease protein query) may be less essential to the microbial community of CP because of the high [Fe]. Conclusion: Further research is needed to confirm that these proteins are unique to photoautotrophs such as those living in iron-depositing hot spring.

  10. Screw calciner mechanical direct denitration process for plutonium nitrate to oxide conversion

    International Nuclear Information System (INIS)

    Souply, K.R.; Sperry, W.E.

    1977-01-01

    This report describes a screw calciner direct-denitration process for converting plutonium nitrate to plutonium oxide. The information should be used when making comparisons of alternative plutonium nitrate-to-oxide conversion processes or as a basis for further detailed studies. The report contains process flow sheets with a material balance; a process description; and a discussion of the process including history, advantages and disadvantages, and additional research required

  11. Evaluating Ecosystem Services for Reducing Groundwater Nitrate Contamination: Nitrate Attenuation in the Unsaturated and Saturated Zones

    Science.gov (United States)

    Wang, J.

    2013-12-01

    Nitrates are the most common type of groundwater contamination in agricultural regions. Environmental policies targeting nitrates have focused on input control (e.g., restricted fertilizer application), intermediate loads control (e.g., reduce nitrate leached from crop fields), and final loads control (e.g., reduce catchment nitrate loads). Nitrate loads can be affected by hydrological processes in both unsaturated and saturated zones. Although many of these processes have been extensively investigated in literature, they are commonly modeled as exogenous to farm management. A couple of recent studies by scientists from the Lawrence Livermore National Laboratory show that in some situations nitrate attenuation processes in the unsaturated/saturated zone, particularly denitrification, can be intensified by certain management practices to mitigate nitrate loads. Therefore, these nitrate attenuation processes can be regarded as a set of ecosystem services that farmers can take advantage of to reduce their cost of complying with environmental policies. In this paper, a representative California dairy farm is used as a case study to show how such ecosystem attenuation services can be framed within the farm owner's decision-making framework as an option for reducing groundwater nitrate contamination. I develop an integrated dynamic model, where the farmer maximizes discounted net farm profit over multiple periods subject to environmental regulations. The model consists of three submodels: animal-waste-crop, hydrologic, and economic model. In addition to common choice variables such as irrigation, fertilization, and waste disposal options, the farmer can also endogenously choose from three water sources: surface water, deep groundwater (old groundwater in the deep aquifer that is not affected by farm effluent in the short term), and shallow groundwater (drainage water that can be recycled via capture wells at the downstream end of the farm). The capture wells not only

  12. Bacteria and Acidic Drainage from Coal Refuse: Inhibition by Sodium Lauryl Sulfate and Sodium Benzoate

    OpenAIRE

    Dugan, Patrick R.; Apel, William A.

    1983-01-01

    The application of an aqueous solution of sodium lauryl sulfate and sodium benzoate to the surface of high-sulfur coal refuse resulted in the inhibition of iron-and sulfur-oxidizing chemoautotrophic bacteria and in the decrease of acidic drainage from the refuse, suggesting that acid drainage can be abated in the field by inhibiting iron- and sulfur-oxidizing bacteria.

  13. Sulphate-reducing bacteria associated with biocorrosion: a review

    Directory of Open Access Journals (Sweden)

    Tania C. de Araujo-Jorge

    1992-09-01

    Full Text Available Biocorrosion means any process of corrosion in wich microorganisms are somehow involved. As far as the petroleum industry is concerned, the anaerobic type is the more important, with Sulphate-Reducing Bacteria (SRB accouting for half of the described processes. SRB are obligate anaerobs that use sulphur, sulphate or other oxidized sulphur compounds as oxidizing agents when decomposing organic material. A typical product of SRB metabolism, hydrogen sulphide -H2S-, is extremely toxic. In the present work we review the literature on mechanisms underlying biocorrosive process in wich SRB are involved and summarize some of the ultrastructural and eletrochemical work developed using SRB obtained from water injection flow in wells located on PETROBRAS offshore marine plataforms, sampled directly in the field over metallic probes, or cultured under laboratory conditions. Biofilms develop when SRB adhere to inert surfaces. A high diversity of morphological types is found inside these biofilms. Their extracellular matrix is highly hydrated and mainly anionic, as shown by its avid reaction with cationic compounds like ruthenium red. We have noted that variations in iron contet lead to interesting changes in the ultrastructure of the bacterial cell coat and also in the rate of corrosion induced in metallic test cupons. Since routine methods to prevent and treat SRB contamination and biodeterioration involve the use of biocides that are toxic and always have some environmental impact, an accurate diagnosis of biocorrosion is always required prior to a treatment decision. We developed a method that detects and semi-quantifies the presence of living or dead SRB by using free silver potentials as an indicator of corrosive action by SRB-associated sulphides. We found a correlation between sulphide levels (determined either by spectrophotometry, or using a silver electrode -E(Ag- that measured changes in free potentials induced by the presence of exogeneously

  14. Effects of soluble flavin on heterogeneous electron transfer between surface-exposed bacterial cytochromes and iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zheming; Shi, Zhi; Shi, Liang; White, Gaye F.; Richardson, David J.; Clarke, Thomas A.; Fredrickson, Jim K.; Zachara, John M.

    2015-08-25

    Dissimilatory iron-reducing bacteria can utilize insoluble Fe(Mn)-oxides as a terminal electron acceptor under anaerobic conditions. For Shewanella species specifically, some evidence suggests that iron reduction is associated with the secretion of flavin mononucleotide (FMN) and riboflavin that are proposed to mediate electron transfer (Marsili et al., 2008). In this work, we used methyl viologen (MV•+)-encapsulated, porin-cytochrome complex (MtrCAB) embedded liposomes (MELs) as a synthetic model of the Shewanella outer membrane to investigate the proposed mediating behavior of secreted flavins. The reduction kinetics of goethite, hematite and lepidocrocite (200 µM) by MELs ([MV•+] ~ 42 µM and MtrABC ≤ 1 nM) were determined in the presence FMN at pH 7.0 in N2 atmosphere by monitoring the concentrations of MV•+ and FMN through their characteristic UV-visible absorption spectra. Experiments were performed where i) FMN and Fe(III)-oxide were mixed and then reacted with the reduced MELs and ii) FMN was reacted with the reduced MELs followed by addition of Fe(III)-oxide. The redox reactions proceeded in two steps: a fast step that was completed in a few seconds, and a slower one lasting over 400 seconds. For all three Fe(III)-oxides, the initial reaction rate in the presence of a low concentration of FMN (≤ 1 µM) was at least a factor of five faster than those with MELs alone, and orders of magnitude faster than those by FMNH2, suggesting that FMN may serve as a co-factor that enhances electron transfer from outer-membrane c-cytochromes to Fe(III)-oxides. The rate and extent of the initial reaction followed the order of lepidocrocite > hematite > goethite, the same as their reduction potentials, implying thermodynamic control on reaction rate. However, at higher FMN concentrations (> 1 µM), the reaction rates for both steps decreased and varied inversely with FMN concentration, indicating that FMN inhibited the MEL to Fe(III)-oxide electron transfer

  15. Uranium Immobilization through Fe(II) bio-oxidation: A Column study

    Energy Technology Data Exchange (ETDEWEB)

    Coates, John D.

    2009-09-14

    Current research on the bioremediation of heavy metals and radionuclides is focused on the ability of reducing organisms to use these metals as alternative electron acceptors in the absence of oxygen and thus precipitate them out of solution. However, many aspects of this proposed scheme need to be resolved, not the least of which is the time frame of the treatment process. Once treatment is complete and the electron donor addition is halted, the system will ultimately revert back to an oxic state and potentially result in the abiotic reoxidation and remobilization of the immobilized metals. In addition, the possibility exists that the presence of more electropositive electron acceptors such as nitrate or oxygen will also stimulate the biological oxidation and remobilization of these contaminants. The selective nitrate-dependent biooxidation of added Fe(II) may offer an effective means of “capping off” and completing the attenuation of these contaminants in a reducing environment making the contaminants less accessible to abiotic and biotic reactions and allowing the system to naturally revert to an oxic state. Our previous DOE-NABIR funded studies demonstrated that radionuclides such as uranium and cobalt are rapidly removed from solution during the biogenic formation of Fe(III)-oxides. In the case of uranium, X-ray spectroscopy analysis indicated that the uranium was in the hexavalent form (normally soluble) and was bound to the precipitated Fe(III)-oxides thus demonstrating the bioremediative potential of this process. We also demonstrated that nitrate-dependent Fe(II)- oxidizing bacteria are prevalent in the sediment and groundwater samples collected from sites 1 and 2 and the background site of the NABIR FRC in Oakridge, TN. However, all of these studies were performed in batch experiments in the laboratory with pure cultures and although a significant amount was learned about the microbiology of nitrate-dependent bio-oxidation of Fe(II), the effects of

  16. Denitrifying bacteria from the terrestrial subsurface exposed to mixed waste contamination

    International Nuclear Information System (INIS)

    Green, Stefan; Prakash, Om; Gihring, Thomas; Akob, Denise M.; Jasrotia, Puja; Jardine, Philip M.; Watson, David B.; Brown, Steven David; Palumbo, Anthony Vito; Kostka, Joel

    2010-01-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available with which to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria) and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were confirmed as complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. Ribosomal RNA gene analyses reveal that bacteria from the genus Rhodanobacter comprise a diverse population of circumneutral to moderately acidophilic denitrifiers at the ORIFRC site, with a high relative abundance in areas of the acidic source zone. Rhodanobacter species do not contain a periplasmic nitrite reductase and have not been previously detected in functional gene surveys of denitrifying bacteria at the OR-IFRC site. Sequences of nitrite and nitrous oxide reductase genes were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation, genomic and metagenomic data are essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifying microorganisms. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.

  17. Oxidative Stress and the Homeodynamics of Iron Metabolism

    Science.gov (United States)

    Bresgen, Nikolaus; Eckl, Peter M.

    2015-01-01

    Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress. PMID:25970586

  18. Bactericide for sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shklyar, T F; Anoshina, G M; Blokhin, V Ye; Kisarrev, Ye L; Novikovsa, G M

    1981-01-01

    The aim of the invention is to find a bactericide for sulfate-reducing bacteria of oil fields in Western Siberia in order to suppress the biocorrosive activity on oil industry equipment. This goal is achieved by using M-nitroacetanylide as the bactericide of sulfate-reducing bacteria. This agent suppresses the activity of a stored culture of sulfate-reducing bacteria that comes from industrial waste waters injection wells of the Smotlor oil field.

  19. Nitrous oxide emission by aquatic macrofauna

    Science.gov (United States)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter; Brix, Hans; Schramm, Andreas

    2009-01-01

    A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic animals is quantitatively important in nitrate-rich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability in tropical regions and the numeric dominance of filter- and deposit-feeders in eutrophic ecosystems. PMID:19255427

  20. Sulfidation of alumina-supported iron and iron-molybdenum oxide catalysts

    NARCIS (Netherlands)

    Ramselaar, W.L.T.M.; Crajé, M.W.J.; Hadders, R.H.; Gerkema, E.; Beer, de V.H.J.; Kraan, van der A.M.

    1990-01-01

    The transition of alumina-supported iron and iron-molybdenum catalysts from the oxidic precursor to the sulfided catalysts was systematically studied by means of in-situ Mössbauer spectroscopy at room temperature. This enabled the adjudgement of various sulfidic phases in the sulfided catalysts. The

  1. Iron Oxide Deposition from Aqueous Solution and Iron Formations on Mars

    Science.gov (United States)

    Catling, David; Moore, Jeff

    2000-01-01

    Iron formations are ancient, laminated chemical sediments containing at least 15 wt% Fe. We discuss possible mechanisms for their formation in aqueous environments on early Mars. Such iron oxide deposits may be detectable today.

  2. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron reducing conditions

    Science.gov (United States)

    Huang, S.; Jaffé, P. R.

    2014-08-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron were measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454-pyrosequencing, and real-time quantitative PCR analysis. We believe that one of the dominant microbial species in our system (an uncultured Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  3. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions

    Science.gov (United States)

    Huang, S.; Jaffé, P. R.

    2015-02-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron was measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454 pyrosequencing, and real-time quantitative PCR analysis. We be Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  4. Redox transformations of iron at extremely low pH: fundamental and applied aspects

    Directory of Open Access Journals (Sweden)

    D. Barrie eJohnson

    2012-03-01

    Full Text Available Many different species of acidophilic prokaryotes, widely distributed within the domains Bacteria and Archaea, can catalyze the dissimilatory oxidation of ferrous iron or reduction of ferric iron, or can do both. Microbially-mediated cycling of iron in extremely acidic environments (pH <3 is strongly influenced by the enhanced chemical stability of ferrous iron and far greater solubility of ferric iron under such conditions. Cycling of iron has been demonstrated in vitro using both pure and mixed cultures of acidophiles, and there is considerable evidence that active cycling of iron occurs in acid mine drainage streams, pit lakes and iron-rich acidic rivers, such as the Rio Tinto. Measurements of specific rates of iron oxidation and reduction by acidophilic microorganisms show that different species vary in their capacities for iron oxido-reduction, and that this is influenced by the electron donor provided and growth conditions used. These measurements, and comparison with corresponding data for oxidation of reduced sulfur compounds, also help explain why ferrous iron is usually used preferentially as an electron donor by acidophiles that can oxidize both iron and sulfur, even though the energy yield from oxidizing iron is much smaller than that available from sulfur oxidation. Iron-oxidizing acidophiles have been used in biomining (a technology that harness their abilities to accelerate the oxidative dissolution of sulfidic minerals and thereby facilitate the extraction of precious and base metals for several decades. More recently they have also been used to simultaneously remediate iron-contaminated surface and ground-waters and produce a useful mineral by-product (schwertmannite. Bioprocessing of oxidized mineral ores using acidophiles that bring about the reductive dissolution of ferric iron minerals such as goethite has also recently been demonstrated, and new biomining technologies based on this approach are being developed.

  5. Application Of Bacterial Iron Reduction For The Removal Of Iron Impurities From Industrial Silica Sand And Kaolin

    Science.gov (United States)

    Zegeye, A.; Yahaya, S.; Fialips, C. I.; White, M.; Manning, D. A.; Gray, N.

    2008-12-01

    Biogeochemical evidence exists to support the potential importance of crystalline or amorphous Fe minerals as electron acceptor for Fe reducing bacteria in soils and subsurface sediments. This microbial metabolic activity can be exploited as alternative method in different industrial applications. For instance, the removal of ferric iron impurities from minerals for the glass and paper industries currently rely on physical and chemical treatments having substantial economical and environmental disadvantages. The ability to remove iron by other means, such as bacterial iron reduction, may reduce costs, allow lower grade material to be mined, and improve the efficiency of mineral processing. Kaolin clay and silica sand are used in a wide range of industrial applications, particularly in paper, ceramics and glass manufacturing. Depending on the geological conditions of deposition, they are often associated with iron (hydr)oxides that are either adsorbed to the mineral surfaces or admixed as separate iron bearing minerals. In this study, we have examined the Fe(III) removal efficiency from kaolin and silica sand by a series of iron- reducing bacteria from the Shewanella species (S. alga BrY, S. oneidensis MR-1, S. putrefaciens CN32 and S. putrefaciens ATCC 8071) in the presence of anthraquinone 2,6 disulfonate (AQDS). We have also investigated the effectiveness of a natural organic matter, extracted with the silica sand, as a substitute to AQDS for enhancing Fe(III) reduction kinetics. The microbial reduction of Fe(III) was achieved using batch cultures under non-growth conditions. The rate and the extent of Fe(III) reduction was monitored as a function of the initial Fe(III) content, Shewanella species and temperature. The bacterially- treated minerals were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) to observe any textural and mineralogical transformation. The whiteness and ISO brightness of the kaolin was also measured by

  6. Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients

    DEFF Research Database (Denmark)

    Sass, Andrea M.; Wieland, Andrea Eschemann; Kühl, Michael

    2002-01-01

    Growth and chemotactic behavior in oxic–anoxic gradients were studied with two freshwater and four marine strains of sulfate-reducing bacteria related to the genera Desulfovibrio, Desulfomicrobium or Desulfobulbus. Cells were grown in oxygen–sulfide counter-gradients within tubes filled with agar...... chemotactically to lactate, nitrate, sulfate and thiosulfate, and even sulfide functioned as an attractant. In oxic–anoxic gradients the bacteria moved away from high oxygen concentrations and formed bands at the outer edge of the oxic zone at low oxygen concentration (... to actively change the extension and slope of the gradients by oxygen reduction with lactate or even sulfide as electron donor. Generally, the chemotactic behavior was in agreement with a defense strategy that re-establishes anoxic conditions, thus promoting anaerobic growth and, in a natural community...

  7. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress

    Directory of Open Access Journals (Sweden)

    Saba Naqvi

    2010-11-01

    Full Text Available Saba Naqvi1, Mohammad Samim2, MZ Abdin3, Farhan Jalees Ahmed4, AN Maitra5, CK Prashant6, Amit K Dinda61Faculty of Engineering and Interdisciplinary Sciences, 2Department of Chemistry, 3Department of Biotechnology, Faculty of Science, 4Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, 5Department of Chemistry, University of Delhi, 6Department of Pathology, All India Institute of Medical Sciences, New Delhi, IndiaAbstract: Iron oxide nanoparticles with unique magnetic properties have a high potential for use in several biomedical, bioengineering and in vivo applications, including tissue repair, magnetic resonance imaging, immunoassay, drug delivery, detoxification of biologic fluids, cell sorting, and hyperthermia. Although various surface modifications are being done for making these nonbiodegradable nanoparticles more biocompatible, their toxic potential is still a major concern. The current in vitro study of the interaction of superparamagnetic iron oxide nanoparticles of mean diameter 30 nm coated with Tween 80 and murine macrophage (J774 cells was undertaken to evaluate the dose- and time-dependent toxic potential, as well as investigate the role of oxidative stress in the toxicity. A 15–30 nm size range of spherical nanoparticles were characterized by transmission electron microscopy and zeta sizer. MTT assay showed >95% viability of cells in lower concentrations (25–200 µg/mL and up to three hours of exposure, whereas at higher concentrations (300–500 µg/mL and prolonged (six hours exposure viability reduced to 55%–65%. Necrosis-apoptosis assay by propidium iodide and Hoechst-33342 staining revealed loss of the majority of the cells by apoptosis. H2DCFDDA assay to quantify generation of intracellular reactive oxygen species (ROS indicated that exposure to a higher concentration of nanoparticles resulted in enhanced ROS generation, leading to cell injury and death. The cell membrane injury

  8. Iron is a signal for Stenotrophomonas maltophilia biofilm formation, oxidative stress response, OMPs expression and virulence

    Directory of Open Access Journals (Sweden)

    Carlos Adrian Garcia

    2015-09-01

    Full Text Available Stenotrophomonas maltophilia is an emerging nosocomial pathogen. In many bacteria iron availability regulates, trough the Fur system, not only iron homeostasis but also virulence. The aim of this work was to assess the role of iron on S. maltophilia biofilm formation, EPS production, oxidative stress response, OMPs regulation, quorum sensing (QS, and virulence. Studies were done on K279 and its isogenic fur mutant F60 cultured in the presence or absence of dipyridyl. This is the first report of spontaneous fur mutants obtained in S. maltophilia. F60 produced higher amounts of biofilms than K279a and CLSM analysis demonstrated improved adherence and biofilm organization. Under iron restricted conditions, K279a produced biofilms with more biomass and enhanced thickness. In addition, F60 produced higher amounts of EPS than K279a but with a similar composition, as revealed by ATR-FTIR spectroscopy. With respect to the oxidative stress response, MnSOD was the only SOD isoenzyme detected in K279a. F60 presented higher SOD activity than the wt strain in planktonic and biofilm cultures, and iron deprivation increased K279a SOD activity. Under iron starvation, SDS-PAGE profile from K279a presented two iron-repressed proteins. Mass spectrometry analysis revealed homology with FepA and another putative TonB-dependent siderophore receptor of K279a. In silico analysis allowed the detection of potential Fur boxes in the respective coding genes. K279a encodes the QS diffusible signal factor (DSF. Under iron restriction K279a produced higher amounts of DSF than under iron rich condition. Finally, F60 was more virulent than K279a in the Galleria mellonella killing assay. These results put in evidence that iron levels regulate, likely through the Fur system, S. maltophilia biofilm formation, oxidative stress response, OMPs expression, DSF production and virulence.

  9. Role of a unique population of lithotrophic, Fe-oxidizing bacteria in forming microbial Fe-mats at the Loihi Seamount.

    Science.gov (United States)

    Emerson, D.; Rentz, J. A.; Moyer, C. L.

    2005-12-01

    The Loihi Seamount, located 30 km SE of the island of Hawai'i, is among the most active volcanos on Earth. The summit, at a depth of 1100m, includes a 250m deep caldera (Pele's Pit) formed by an eruption in 1996. The summit, and especially Pele's Pit, are the site of extensive low to intermediate temperature (10° to 65°C) hydrothermal venting, emanating both from diffuse fissures and orifices that have substantial flow rates. The vent fluid is characterized by a low sulfide content, high CO2 concentrations and Fe(II) amounts in the 10s to 100s of μM. Associated with all vents are extensive deposits of iron oxyhydroxides that typically have 107 to 108 bacterial cells/cc associated with them. The morphology of the Fe-oxides are indicative of biological origins. We have isolated microaerophilic, obligately lithotrophic Fe-oxidizing bacteria from Loihi and describe here `Mariprofundus ferroxydans' a unique bacterium that forms a filamentous iron oxide mineral. `M. ferroxydans' is the first cultured representative of a novel division of the Proteobacteria, known previously only from clones from different hydrothermal vent sites. Molecular evidence from Loihi mats based on clone libraries and terminal restriction length polymorphism (T-RFLP) analysis of 16S rRNA genes indicate that this lineage of Fe-oxidizing organisms are common inhabitants at Loihi. We speculate that this organism and its relatives form the basis of an active microbial mat community that owe their existence to the inherent gradients of Fe(II) and O2 that exist at the Loihi vents. In a geological context this is interesting because the Loihi summit and caldera are in an O2-minima zone; O2 concentrations in the bulk seawater are around 0.5 mg/l. In effect, Loihi could serve as a proxy for the late Archaean and early Proterozoic periods when the Earth's atmosphere went from reducing to oxidizing, and it is speculated that abundant Fe(II) in the Earth's oceans served as a major sink for O2 production

  10. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage.

    Science.gov (United States)

    Burns, Andrew S; Pugh, Charles W; Segid, Yosief T; Behum, Paul T; Lefticariu, Liliana; Bender, Kelly S

    2012-06-01

    The effectiveness of a passive flow sulfate-reducing bioreactor processing acid mine drainage (AMD) generated from an abandoned coal mine in Southern Illinois was evaluated using geochemical and microbial community analysis 10 months post bioreactor construction. The results indicated that the treatment system was successful in both raising the pH of the AMD from 3.09 to 6.56 and in lowering the total iron level by 95.9%. While sulfate levels did decrease by 67.4%, the level post treatment (1153 mg/l) remained above recommended drinking water levels. Stimulation of biological sulfate reduction was indicated by a +2.60‰ increase in δ(34)S content of the remaining sulfate in the water post-treatment. Bacterial community analysis targeting 16S rRNA and dsrAB genes indicated that the pre-treated samples were dominated by bacteria related to iron-oxidizing Betaproteobacteria, while the post-treated water directly from the reactor outflow was dominated by sequences related to sulfur-oxidizing Epsilonproteobacteria and complex carbon degrading Bacteroidetes and Firmicutes phylums. Analysis of the post-treated water, prior to environmental release, revealed that the community shifted back to predominantly iron-oxidizing Betaproteobacteria. DsrA analysis implied limited diversity in the sulfate-reducing population present in both the bioreactor outflow and oxidation pond samples. These results support the use of passive flow bioreactors to lower the acidity, metal, and sulfate levels present in the AMD at the Tab-Simco mine, but suggest modifications of the system are necessary to both stimulate sulfate-reducing bacteria and inhibit sulfur-oxidizing bacteria.

  11. Polypyrrole Coated Cellulosic Substrate Modified by Copper Oxide as Electrode for Nitrate Electroreduction

    Science.gov (United States)

    Hamam, A.; Oukil, D.; Dib, A.; Hammache, H.; Makhloufi, L.; Saidani, B.

    2015-08-01

    The aim of this work is to synthesize polypyrrole (PPy) films on nonconducting cellulosic substrate and modified by copper oxide particles for use in the nitrate electroreduction process. Firstly, the chemical polymerization of polypyrrole onto cellulosic substrate is conducted by using FeCl3 as an oxidant and pyrrole as monomer. The thickness and topography of the different PPy films obtained were estimated using a profilometer apparatus. The electrochemical reactivity of the obtained electrodes was tested by voltamperometry technique and electrochemical impedance spectroscopy. Secondly, the modification of the PPy film surface by incorporation of copper oxide particles is conducted by applying a galvanostatic procedure from a CuCl2 solution. The SEM, EDX and XRD analysis showed the presence of CuO particles in the polymer films with dimensions less than 50 nm. From cyclic voltamperometry experiments, the composite activity for the nitrate electroreduction reaction was evaluated and the peak of nitrate reduction is found to vary linearly with initial nitrate concentration.

  12. Phosphorus Retention (32P) by synthetic iron oxides

    International Nuclear Information System (INIS)

    Bittencourt, V.C.; Montanheiro, M.N.S.

    1975-02-01

    The P retention by iron oxides was characterized as a chemical adsorption process followed by a physical adsorption. The former process was very intense with initial amounts of added P but after a certain surface saturation is reached physical interaction occurs. It was supposed that the chemically adsorbed phosphate confers a negative charge on the iron oxides particles, which repels any further physical adsorbtion of the anion. However due to diffusion of phosphate ions into the internal layers of the iron oxides, their surface can retain further amounts of P [pt

  13. Molecular hydrogen: an energy source for bacterial activity in nuclear waste disposal

    International Nuclear Information System (INIS)

    Libert, M.; Esnault, L.

    2010-01-01

    Document available in extended abstract form only. Hydrogen is a common product of microbial metabolism, large number of bacteria are able to use it as energetic substrate in subsurface ecosystems. Moreover H 2 is known as one of the most energetic substrates for deep subsurface ecosystem. It could be produced in different ways mainly volcanic activity (basalts iron rich volcanic rocks) or natural radiolysis of water or even fermentation. The millimolar concentrations of H 2 observed in the ground waters are consistent with the activity of a large variety of hydrogen-oxidising bacteria as described in the following Table. Electron acceptors are identified as O 2 , CO 2 , NO 3 , SO 4 or Fe +++ . Aerobic, anaerobic, obligate and facultative autotrophs are included. Numerous of these bacteria are thermophilic bacteria. This bacterial activity leads to the production of methane, acetate, nitrogen, hydrogen sulphur or ferrous oxides. In anoxic environments, H 2 concentrations are governed by microbial metabolism. In most cases, H 2 producing microorganisms are thermodynamically controlled by the abundance of H 2 , and survive thanks to H 2 consumers, a metabolism called inter-species H 2 transfer. Metabolism of H 2 is catalysed by hydrogenase as cytoplasmic enzymes or membrane bound enzymes. Several situations of H 2 production will occur in nuclear waste repository: - Radiolysis of water. - Radiolysis of organic matter (such as bitumen, in case of B waste), H 2 production due to gamma radiolysis of bitumen is evaluated to 1 L H 2 /kg of bitumen /MGy. - Corrosion of metal containers (in deaerated solutions). Large amount of H 2 are predicted in some situations, and will select the development of hydrogen species. Then, aerobic hydrogen bacteria oxidising hydrogen could be found in basins containing irradiating waste, or during the oxic period of storage, denitrifying bacteria or sulfate reducing bacteria will develop near the bitumen waste. Groundwater of the Callovo

  14. Bacteria and Acidic Drainage from Coal Refuse: Inhibition by Sodium Lauryl Sulfate and Sodium Benzoate

    Science.gov (United States)

    Dugan, Patrick R.; Apel, William A.

    1983-01-01

    The application of an aqueous solution of sodium lauryl sulfate and sodium benzoate to the surface of high-sulfur coal refuse resulted in the inhibition of iron-and sulfur-oxidizing chemoautotrophic bacteria and in the decrease of acidic drainage from the refuse, suggesting that acid drainage can be abated in the field by inhibiting iron- and sulfur-oxidizing bacteria. PMID:16346347

  15. Electrochemical study of bio-corrosion mechanisms at the carbon steel interface in presence of iron-reducing and hydrogenotrophic bacteria in the nuclear waste disposal context

    International Nuclear Information System (INIS)

    Leite-de-Souza-Moreira, Rebeca

    2013-01-01

    The safety of deep geological repository for nuclear waste is a very important and topical matter especially for the nuclear industry. Such as nuclear fuel the high level waste have to be stored for time frames of millions of years in metallic containers. Typically these containers should be placed in deep geological clay formations 500 metres underground. Corrosion processes, will take place after the re-saturation of the geological medium and under the prevalent anoxic conditions may lead to the generation of hydrogen. This gas accumulates in clay environment through the years and eventually becomes hazardous for steel containers. In the particular environment of geological repositories does not provide much biodegradable substances. This is the reason that hydrogen represents a new suitable energy source for hydrogenotrophic bacteria. Thereby formed bacterial bio-films on the containers may contribute to a process of fast decay of the steel, the so called bio-corrosion. The aim of this study is to characterize the electrochemical interfaces in order to obtain the mechanisms of bio-corrosion of carbon steels in presence of iron reducing and hydrogenotrophic bacterium Shewanella oneideinsis. The products of corrosion processes, namely hydrogen and iron (III) oxides are used as electron donor and acceptor, respectively. The amount of hydrogen consumed by Shewanella could be estimated with 10"-"4 mol s"-"1 using Scanning Electrochemical Microscopy (SECM) techniques. The influence of the local hydrogen generation was evaluated via chrono-amperometry. When hydrogen was locally generated above a carbon steel substrate an accelerated corrosion process can be observed. Eventually, using Local Electrochemical Impedance Spectroscopy (LEIS) techniques, the mechanism of the generalised corrosion process was demonstrated. (author)

  16. Sulfate-reducing bacteria in rice field soil and on rice roots.

    Science.gov (United States)

    Wind, T; Stubner, S; Conrad, R

    1999-05-01

    Rice plants that were grown in flooded rice soil microcosms were examined for their ability to exhibit sulfate reducing activity. Washed excised rice roots showed sulfate reduction potential when incubated in anaerobic medium indicating the presence of sulfate-reducing bacteria. Rice plants, that were incubated in a double-chamber (phylloshpere and rhizosphere separated), showed potential sulfate reduction rates in the anoxic rhizosphere compartment. These rates decreased when oxygen was allowed to penetrate through the aerenchyma system of the plants into the anoxic root compartment, indicating that sulfate reducers on the roots were partially inhibited by oxygen or that sulfate was regenerated by oxidation of reduced S-compounds. The potential activity of sulfate reducers on rice roots was consistent with MPN enumerations showing that H2-utilizing sulfate-reducing bacteria were present in high numbers on the rhizoplane (4.1 x 10(7) g-1 root fresh weight) and in the adjacent rhizosperic soil (2.5 x 10(7) g-1 soil dry weight). Acetate-oxidizing sulfate reducers, on the other hand, showed highest numbers in the unplanted bulk soil (1.9 x 10(6) g-1 soil dry weight). Two sulfate reducing bacteria were isolated from the highest dilutions of the MPN series and were characterized physiologically and phylogenetically. Strain F1-7b which was isolated from the rhizoplane with H2 as electron donor was related to subgroup II of the family Desulfovibrionaceae. Strain EZ-2C2, isolated from the rhizoplane on acetate, grouped together with Desulforhabdus sp. and Syntrophobacter wolinii. Other strains of sulfate-reducing bacteria originated from bulk soil of rice soil microcosms and were isolated using different electron donors. From these isolates, strains R-AcA1, R-IbutA1, R-PimA1 and R-AcetonA170 were Gram-positive bacteria which were affiliated with the genus Desulfotomaculum. The other isolates were members of subgroup II of the Desulfovibrionaceae (R-SucA1 and R-LacA1), were

  17. Beta-Thalassemia Major and Female Fertility: The Role of Iron and Iron-Induced Oxidative Stress

    Science.gov (United States)

    Roussou, Paraskevi; Tsagarakis, Nikolaos J.; Diamanti-Kandarakis, Evanthia

    2013-01-01

    Endocrine complications due to haemosiderosis are present in a significant number of patients with beta-thalassemia major (BTM) worldwide and often become barriers in their desire for parenthood. Thus, although spontaneous fertility can occur, the majority of females with BTM is infertile due to hypogonadotropic hypogonadism (HH) and need assisted reproductive techniques. Infertility in these women seems to be attributed to iron deposition and iron-induced oxidative stress (OS) in various endocrine organs, such as hypothalamus, pituitary, and female reproductive system, but also through the iron effect on other organs, such as liver and pancreas, contributing to the impaired metabolism of hormones and serum antioxidants. Nevertheless, the gonadal function of these patients is usually intact and fertility is usually retrievable. Meanwhile, a significant prooxidants/antioxidants imbalance with subsequent increased (OS) exists in patients with BTM, which is mainly caused by tissue injury due to overproduction of free radicals by secondary iron overload, but also due to alteration in serum trace elements and antioxidant enzymes. Not only using the appropriate antioxidants, essential trace elements, and minerals, but also regulating the advanced glycation end products, could probably reduce the extent of oxidative damage and related complications and retrieve BTM women's infertility. PMID:24396593

  18. Intracellular Nitrate of Marine Diatoms as a Driver of Anaerobic Nitrogen Cycling in Sinking Aggregates

    Directory of Open Access Journals (Sweden)

    Anja Kamp

    2016-11-01

    Full Text Available Diatom-bacteria aggregates are key for the vertical transport of organic carbon in the ocean. Sinking aggregates also represent pelagic microniches with intensified microbial activity, oxygen depletion in the center, and anaerobic nitrogen cycling. Since some of the aggregate-forming diatom species store nitrate intracellularly, we explored the fate of intracellular nitrate and its availability for microbial metabolism within anoxic diatom-bacteria aggregates. The ubiquitous nitrate-storing diatom Skeletonema marinoi was studied as both axenic cultures and laboratory-produced diatom-bacteria aggregates. Stable 15N isotope incubations under dark and anoxic conditions revealed that axenic S. marinoi is able to reduce intracellular nitrate to ammonium that is immediately excreted by the cells. When exposed to a light:dark cycle and oxic conditions, S. marinoi stored nitrate intracellularly in concentrations > 60 mmol L-1 both as free-living cells and associated to aggregates. Intracellular nitrate concentrations exceeded extracellular concentrations by three orders of magnitude. Intracellular nitrate was used up within 2-3 days after shifting diatom-bacteria aggregates to dark and anoxic conditions. Thirty-one percent of the diatom-derived nitrate was converted to nitrogen gas, indicating that a substantial fraction of the intracellular nitrate pool of S. marinoi becomes available to the aggregate-associated bacterial community. Only 5% of the intracellular nitrate was reduced to ammonium, while 59% was recovered as nitrite. Hence, aggregate-associated diatoms accumulate nitrate from the surrounding water and sustain complex nitrogen transformations, including loss of fixed nitrogen, in anoxic, pelagic microniches. Additionally, it may be expected that intracellular nitrate not converted before the aggregates have settled onto the seafloor could fuel benthic nitrogen transformations.

  19. Iron oxides as a cause of GPR reflections

    NARCIS (Netherlands)

    van Dam, R.L.; Schlager, W.; Dekkers, M.; Huisman, J.A.

    2002-01-01

    Iron oxides frequently occur as secondary precipitates in both modern and ancient sediments and may form bands or irregular patterns. We show from time-domain reflectometry (TDR) field studies that goethite iron-oxide precipitates significantly lower the electromagnetic wave velocity of sediments.

  20. Underground Corrosion by Microorganisms Part II : Role of Anaerobic Sulphate Reducing Bacteria-Desulfotomaculum SP

    OpenAIRE

    H. M. Dayal; K. C. Tiwari; Kamlesh Mehta; Mr. Chandrashekhar

    1988-01-01

    During the course of studies on the corrosion causing soil microflora from different geoclimatic regions of India, several strains of anaerobic sulphate reducing bacteria belonging to genus Desulfotomaculum were isolated and characterised. Their corrosive action on mild steel, galvanised iron and structural aluminium, the three main metals of construction of underground structures, have been studied under laboratory conditions.

  1. Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments.

    Science.gov (United States)

    Somenahally, Anil C; Hollister, Emily B; Yan, Wengui; Gentry, Terry J; Loeppert, Richard H

    2011-10-01

    Rice cultivated on arsenic (As) contaminated-soils will accumulate variable grain-As concentrations, as impacted by varietal differences, soil variables, and crop management. A field-scale experiment was conducted to study the impact of intermittent and continuous flooding on As speciation and microbial populations in rice rhizosphere compartments of soils that were either historically amended with As pesticide or unamended with As. Rhizosphere-soil, root-plaque, pore-water and grain As were quantified and speciated, and microbial populations in rhizosphere soil and root-plaque were characterized. Total-As concentrations in rhizosphere and grain were significantly lower in intermittently flooded compared to the continuously flooded plots (86% lower in pore-water, 55% lower in root-plaque and 41% lower in grain samples). iAs(V), iAs(III), and DMAs(V) were the predominant As species detected in rhizosphere-soil and root-plaque, pore-water and grain samples, respectively. Relative proportions of Archaea and iron-reducing bacteria (FeRB) were higher in rhizosphere soil compared to root-plaque. In rhizosphere soil, the relative abundance of FeRB was lower in intermittently flooded compared to continuously flooded plots, but there were no differences between root-plaque samples. This study has demonstrated that reductions in dissolved As concentrations in the rhizosphere and subsequent decreases in grain-As concentration can be attained through water management.

  2. Labeling Efficacy of Superparamagnetic Iron Oxide Nanoparticles to Human Neural Stem Cells: Comparison of Ferumoxides, Monocrystalline Iron Oxide, Cross-linked Iron Oxide (CLIO)-NH2 and tat-CLIO

    International Nuclear Information System (INIS)

    Song, Mi Yeoun; Moon, Woo Kyung; Kim, Yun Hee; Song, In Chan; Yoon, Byung Woo; Lim, Dong Yeol

    2007-01-01

    We wanted to compare the human neural stem cell (hNSC) labeling efficacy of different superparamagnetic iron oxide nanoparticles (SPIONs), namely, ferumoxides, monocrystalline iron oxide (MION), cross-linked iron oxide (CLIO)-NH 2 and tat-CLIO. The hNSCs (5x10 5 HB1F3 cells/ml) were incubated for 24 hr in cell culture media that contained 25 μg/ml of ferumoxides, MION or CLIO-NH 2 , and with or without poly-L-lysine (PLL) and tat-CLIO. The cellular iron uptake was analyzed qualitatively with using a light microscope and this was quantified via atomic absorption spectrophotometry. The visibility of the labeled cells was assessed with MR imaging. The incorporation of SPIONs into the hNSCs did not affect the cellular proliferations and viabilities. The hNSCs labeled with tat-CLIO showed the longest retention, up to 72 hr, and they contained 2.15± 0.3 pg iron/cell, which are 59 fold, 430 fold and six fold more incorporated iron than that of the hNSCs labeled with ferumoxides, MION or CLIO-NH 2 , respectively. However, when PLL was added, the incorporation of ferumoxides, MION or CLIO-NH 2 into the hNSCs was comparable to that of tat-CLIO. For MR imaging, hNSCs can be efficiently labeled with tat-CLIO alone or with a combination of ferumoxides, MION, CLIO-NH 2 and the transfection agent PLL

  3. Labeling Efficacy of Superparamagnetic Iron Oxide Nanoparticles to Human Neural Stem Cells: Comparison of Ferumoxides, Monocrystalline Iron Oxide, Cross-linked Iron Oxide (CLIO)-NH2 and tat-CLIO

    Science.gov (United States)

    Song, Miyeoun; Kim, Yunhee; Lim, Dongyeol; Song, In-Chan; Yoon, Byung-Woo

    2007-01-01

    Objective We wanted to compare the human neural stem cell (hNSC) labeling efficacy of different superparamagnetic iron oxide nanoparticles (SPIONs), namely, ferumoxides, monocrystalline iron oxide (MION), cross-linked iron oxide (CLIO)-NH2 and tat-CLIO. Materials and Methods The hNSCs (5 × 105 HB1F3 cells/ml) were incubated for 24 hr in cell culture media that contained 25 µg/ml of ferumoxides, MION or CLIO-NH2, and with or without poly-L-lysine (PLL) and tat-CLIO. The cellular iron uptake was analyzed qualitatively with using a light microscope and this was quantified via atomic absorption spectrophotometry. The visibility of the labeled cells was assessed with MR imaging. Results The incorporation of SPIONs into the hNSCs did not affect the cellular proliferations and viabilities. The hNSCs labeled with tat-CLIO showed the longest retention, up to 72 hr, and they contained 2.15 ± 0.3 pg iron/cell, which are 59 fold, 430 fold and six fold more incorporated iron than that of the hNSCs labeled with ferumoxides, MION or CLIO-NH2, respectively. However, when PLL was added, the incorporation of ferumoxides, MION or CLIO-NH2 into the hNSCs was comparable to that of tat-CLIO. Conclusion For MR imaging, hNSCs can be efficiently labeled with tat-CLIO alone or with a combination of ferumoxides, MION, CLIO-NH2 and the transfection agent PLL. PMID:17923778

  4. Quantitative analysis of O-2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic Iron(II)-oxidizing bacteria

    DEFF Research Database (Denmark)

    Lueder, U.; Druschel, G.; Emerson, D.

    2018-01-01

    The classical approach for the cultivation of neutrophilic microaerophilic Fe(II)-oxidizing bacteria is agar-based gradient tubes where these bacteria find optimal growth conditions in opposing gradients of oxygen (O-2) and dissolved Fe(II) (Fe2+). The goals of this study were to quantify...... imply that transfer of cultures to fresh tubes within 48-72 h is crucial to provide optimal growth conditions for microaerophilic Fe(II)-oxidizers, particularly for the isolation of new strains....

  5. High pressure Moessbauer spectroscopy of perovskite iron oxide

    International Nuclear Information System (INIS)

    Nasu, Saburo; Suenaga, Tomoya; Morimoto, Shotaro; Kawakami, Takateru; Kuzushita, Kaori; Takano, Mikio

    2003-01-01

    High-pressure 57 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO 3 , CaFeO 3 and La 1/3 Sr 2/3 O 3 . The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  6. Differential responses of nitrate reducer community size, structure, and activity to tillage systems.

    Science.gov (United States)

    Chèneby, D; Brauman, A; Rabary, B; Philippot, L

    2009-05-01

    The main objective of this study was to determine how the size, structure, and activity of the nitrate reducer community were affected by adoption of a conservative tillage system as an alternative to conventional tillage. The experimental field, established in Madagascar in 1991, consists of plots subjected to conventional tillage or direct-seeding mulch-based cropping systems (DM), both amended with three different fertilization regimes. Comparisons of size, structure, and activity of the nitrate reducer community in samples collected from the top layer in 2005 and 2006 revealed that all characteristics of this functional community were affected by the tillage system, with increased nitrate reduction activity and numbers of nitrate reducers under DM. Nitrate reduction activity was also stimulated by combined organic and mineral fertilization but not by organic fertilization alone. In contrast, both negative and positive effects of combined organic and mineral fertilization on the size of the nitrate reducer community were observed. The size of the nitrate reducer community was a significant predictor of the nitrate reduction rates except in one treatment, which highlighted the inherent complexities in understanding the relationships the between size, diversity, and structure of functional microbial communities along environmental gradients.

  7. Respiration of Nitrate and Nitrite.

    Science.gov (United States)

    Cole, Jeffrey A; Richardson, David J

    2008-09-01

    Nitrate reduction to ammonia via nitrite occurs widely as an anabolic process through which bacteria, archaea, and plants can assimilate nitrate into cellular biomass. Escherichia coli and related enteric bacteria can couple the eight-electron reduction of nitrate to ammonium to growth by coupling the nitrate and nitrite reductases involved to energy-conserving respiratory electron transport systems. In global terms, the respiratory reduction of nitrate to ammonium dominates nitrate and nitrite reduction in many electron-rich environments such as anoxic marine sediments and sulfide-rich thermal vents, the human gastrointestinal tract, and the bodies of warm-blooded animals. This review reviews the regulation and enzymology of this process in E. coli and, where relevant detail is available, also in Salmonella and draws comparisons with and implications for the process in other bacteria where it is pertinent to do so. Fatty acids may be present in high levels in many of the natural environments of E. coli and Salmonella in which oxygen is limited but nitrate is available to support respiration. In E. coli, nitrate reduction in the periplasm involves the products of two seven-gene operons, napFDAGHBC, encoding the periplasmic nitrate reductase, and nrfABCDEFG, encoding the periplasmic nitrite reductase. No bacterium has yet been shown to couple a periplasmic nitrate reductase solely to the cytoplasmic nitrite reductase NirB. The cytoplasmic pathway for nitrate reduction to ammonia is restricted almost exclusively to a few groups of facultative anaerobic bacteria that encounter high concentrations of environmental nitrate.

  8. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water

    Energy Technology Data Exchange (ETDEWEB)

    Gui Minghui; Smuleac, Vasile [University of Kentucky, Department of Chemical and Materials Engineering (United States); Ormsbee, Lindell E. [University of Kentucky, Department of Civil Engineering (United States); Sedlak, David L. [University of California at Berkeley, Department of Civil and Environmental Engineering (United States); Bhattacharyya, Dibakar, E-mail: db@engr.uky.edu [University of Kentucky, Department of Chemical and Materials Engineering (United States)

    2012-05-15

    The potential for using hydroxyl radical (OH{sup Bullet }) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H{sub 2}O{sub 2} addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80-100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Moessbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H{sub 2}O{sub 2} by NP surface generated OH{sup Bullet} were investigated. Depending on the ratio of iron and H{sub 2}O{sub 2}, TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.

  9. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water

    International Nuclear Information System (INIS)

    Gui Minghui; Smuleac, Vasile; Ormsbee, Lindell E.; Sedlak, David L.; Bhattacharyya, Dibakar

    2012-01-01

    The potential for using hydroxyl radical (OH • ) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H 2 O 2 addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80–100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Mössbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H 2 O 2 by NP surface generated OH • were investigated. Depending on the ratio of iron and H 2 O 2 , TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.

  10. Structural transformations of heat-treated bacterial iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hideki, E-mail: hideki-h@cc.okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan); Fujii, Tatsuo [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Nakanishi, Koji [Office of Society-Academia Collaboration for Innovation, Kyoto University, Uji 611-0011 (Japan); Yogi, Chihiro [SR Center, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Peterlik, Herwig [Faculty of Physics, University of Vienna, A-1090 Vienna (Austria); Nakanishi, Makoto [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Takada, Jun [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan)

    2015-04-01

    A bacterial siliceous iron oxide microtubule (diameter: ca. 1 μm, 15Fe{sub 2}O{sub 3}·8SiO{sub 2}·P{sub 2}O{sub 5}·30H{sub 2}O) produced by Leptothrix ochracea was heat treated in air and its structural transformation was investigated in detail by microscopy, diffractometry, and spectroscopy. Although the heat-treated bacterial iron oxide retained its original microtubular structure, its nanoscopic, middle-range, and local structures changed drastically. Upon heat treatment, nanosized pores were formed and their size changed depending on temperature. The Fe–O–Si linkages were gradually cleaved with increasing temperature, causing the progressive separation of Fe and Si ions into iron oxide and amorphous silicate phases, respectively. Concomitantly, global connectivity and local structure of FeO{sub 6} octahedra in the iron oxide nanoparticles systematically changed depending on temperature. These comprehensive investigations clearly revealed various structural changes of the bacterial iron oxide which is an important guideline for the future exploration of novel bio-inspired materials. - Highlights: • Structural transformation of a bacterial iron oxide microtubule was investigated. • Si–O–Fe was cleaved with increasing temperature to form α-Fe{sub 2}O{sub 3}/silicate composite. • Crystallization to 2Fh started at 500 °C to give α-Fe{sub 2}O{sub 3} >700 °C. • FeO{sub 6} octahedra were highly distorted <500 °C. • Formation of face-sharing FeO{sub 6} was promoted >500 °C, releasing the local strain of FeO{sub 6}.

  11. Polyaniline: Aniline oxidation with strong and weak oxidants under various acidity

    Energy Technology Data Exchange (ETDEWEB)

    Bláha, Michal, E-mail: blaha@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic); Trchová, Miroslava; Bober, Patrycja; Morávková, Zuzana [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic); Prokeš, Jan [Charles University, Faculty of Mathematics and Physics, 180 00 Prague 8 (Czech Republic); Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague 6 (Czech Republic)

    2017-06-15

    Aniline was oxidized with three strong inorganic oxidants (ammonium peroxydisulfate, cerium(IV) sulfate, potassium dichromate), two weak inorganic oxidants (iron(III) chloride, silver nitrate), and one organic oxidant (p-benzoquinone) in aqueous solutions of methanesulfonic acid (MSA) of various concentration. Whereas oxidation of aniline with ammonium peroxydisulfate yielded high-molecular-weight conducting polyaniline (PANI) in the whole acidity range, the oxidation with cerium(IV) sulfate led also to a single product close to PANI with considerably lower molecular weight and lower conductivity. Potassium dichromate gave PANI only at high concentration of MSA. The use of iron(III) chloride yielded composite mixtures of PANI and low-molecular-weight aniline oligomers. The oxidation of aniline with silver nitrate led to composites of silver and an organic part, which was constituted either by aniline oligomers or conducting polyaniline or both. p-Benzoquinone as oxidant produced mainly aniline oligomers with poor conductivity and 2,5-dianilino-p-benzoquinone-like structure detected in FTIR and Raman spectra when oxidation proceeded with weak oxidants. A general model of oxidation with strong and weak oxidants was formulated. - Highlights: • Comparison of aniline oxidation with oxidants of different redox potential. • UV–vis, FTIR and Raman spectroscopies combined with size-exclusion chromatography. • The contents of polymer and oligomers were analyzed and discussed. • General model of aniline oxidation with strong and weak oxidants was formulated.

  12. Bacterial corrosion in low-temperature geothermal. Mechanisms of corrosion by sulphate-reducing bacteria

    International Nuclear Information System (INIS)

    Daumas, Sylvie

    1987-01-01

    Within the frame of researches aimed at determining the causes of damages noticed on geothermal equipment, this research thesis aims at assessing the respective importance of physical-chemical processes and bacterial intervention in corrosion phenomena. It proposes an ecological approach of the fluid sampled in the Creil geothermal power station. The aim is to define the adaptation and activity degree of isolated sulphate-reducing bacteria with respect to their environment conditions. The author studied the effect of the development of these bacteria on the corrosion of carbon steel used in geothermal. Thus, he proposes a contribution to the understanding of mechanisms related to iron attack by these bacteria. Electrochemical techniques have been adapted to biological processes and used to measure corrosion [fr

  13. Intracellular conversion of environmental nitrate and nitrite to nitric oxide with resulting developmental toxicity to the crustacean Daphnia magna.

    Directory of Open Access Journals (Sweden)

    Bethany R Hannas

    2010-08-01

    Full Text Available Nitrate and nitrite (jointly referred to herein as NO(x are ubiquitous environmental contaminants to which aquatic organisms are at particularly high risk of exposure. We tested the hypothesis that NO(x undergo intracellular conversion to the potent signaling molecule nitric oxide resulting in the disruption of endocrine-regulated processes.These experiments were performed with insect cells (Drosophila S2 and whole organisms Daphnia magna. We first evaluated the ability of cells to convert nitrate (NO(3(- and nitrite (NO(2(- to nitric oxide using amperometric real-time nitric oxide detection. Both NO(3(- and NO(2(- were converted to nitric oxide in a substrate concentration-dependent manner. Further, nitric oxide trapping and fluorescent visualization studies revealed that perinatal daphnids readily convert NO(2(- to nitric oxide. Next, daphnids were continuously exposed to concentrations of the nitric oxide-donor sodium nitroprusside (positive control and to concentrations of NO(3(- and NO(2(-. All three compounds interfered with normal embryo development and reduced daphnid fecundity. Developmental abnormalities were characteristic of those elicited by compounds that interfere with ecdysteroid signaling. However, no compelling evidence was generated to indicate that nitric oxide reduced ecdysteroid titers.Results demonstrate that nitrite elicits developmental and reproductive toxicity at environmentally relevant concentrations due likely to its intracellular conversion to nitric oxide.

  14. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications

    Science.gov (United States)

    Amstad, Esther; Textor, Marcus; Reimhult, Erik

    2011-07-01

    Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface presentation of functionalities. This review is focused on different aspects of the stability of superparamagnetic iron oxide NPs, from its practical definition to its implementation by molecular design of the dispersant shell around the iron oxide core and further on to its influence on the magnetic properties of the superparamagnetic iron oxide NPs. Special attention is given to the selection of molecular anchors for the dispersant shell, because of their importance to ensure colloidal and functional stability of sterically stabilized superparamagnetic iron oxide NPs. We further detail how dispersants have been optimized to gain close control over iron oxide NP stability, size and functionalities by independently considering the influences of anchors and the attached sterically repulsive polymer brushes. A critical evaluation of different strategies to stabilize and functionalize core-shell superparamagnetic iron oxide NPs as well as a brief introduction to characterization methods to compare those strategies is given.Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface

  15. Catalyst for reduction of nitrogen oxides

    Science.gov (United States)

    Ott, Kevin C.

    2010-04-06

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  16. Effect of soybean lecithin on iron-catalyzed or chlorophyll-photosensitized oxidation of canola oil emulsion.

    Science.gov (United States)

    Choe, Jeesu; Oh, Boyoung; Choe, Eunok

    2014-11-01

    The effect of soybean lecithin addition on the iron-catalyzed or chlorophyll-photosensitized oxidation of emulsions consisting of purified canola oil and water (1:1, w/w) was studied based on headspace oxygen consumption using gas chromatography and hydroperoxide production using the ferric thiocyanate method. Addition levels of iron sulfate, chlorophyll, and soybean lecithin were 5, 4, and 350 mg/kg, respectively. Phospholipids (PLs) during oxidation of the emulsions were monitored by high performance liquid chromatography. Addition of soybean lecithin to the emulsions significantly reduced and decelerated iron-catalyzed oil oxidation by lowering headspace oxygen consumption and hydroperoxide production. However, soybean lecithin had no significant antioxidant effect on chlorophyll-photosensitized oxidation of the emulsions. PLs in soybean lecithin added to the emulsions were degraded during both oxidation processes, although there was little change in PL composition. Among PLs in soybean lecithin, phosphatidylethanolamine and phosphatidylinositol were degraded the fastest in the iron-catalyzed and the chlorophyll-photosensitized oxidation, respectively. The results suggest that addition of soybean lecithin as an emulsifier can also improve the oxidative stability of oil in an emulsion. © 2014 Institute of Food Technologists®

  17. Fe(II)/Cu(II) interaction on goethite stimulated by an iron-reducing bacteria Aeromonas Hydrophila HS01 under anaerobic conditions.

    Science.gov (United States)

    Tao, Liang; Zhu, Zhen-Ke; Li, Fang-Bai; Wang, Shan-Li

    2017-11-01

    Copper is a trace element essential for living creatures, but copper content in soil should be controlled, as it is toxic. The physical-chemical-biological features of Cu in soil have a significant correlation with the Fe(II)/Cu(II) interaction in soil. Of significant interest to the current study is the effect of Fe(II)/Cu(II) interaction conducted on goethite under anaerobic conditions stimulated by HS01 (a dissimilatory iron reduction (DIR) microbial). The following four treatments were designed: HS01 with α-FeOOH and Cu(II) (T1), HS01 with α-FeOOH (T2), HS01 with Cu(II) (T3), and α-FeOOH with Cu(II) (T4). HS01 presents a negligible impact on copper species transformation (T3), whereas the presence of α-FeOOH significantly enhanced copper aging contributing to the DIR effect (T1). Moreover, the violent reaction between adsorbed Fe(II) and Cu(II) leads to the decreased concentration of the active Fe(II) species (T1), further inhibiting reactions between Fe(II) and iron (hydr)oxides and decelerating the phase transformation of iron (hydr)oxides (T1). From this study, the effects of the Fe(II)/Cu(II) interaction on goethite under anaerobic conditions by HS01 are presented in three aspects: (1) the accelerating effect of copper aging, (2) the reductive transformation of copper, and (3) the inhibition effect of the phase transformation of iron (hydr)oxides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Chronic exposure to iron oxide, chromium oxide, and nickel oxide fumes of metal dressers in a steelworks

    Science.gov (United States)

    Jones, J. Graham; Warner, C. G.

    1972-01-01

    Graham Jones, J., and Warner, C. G. (1972).Brit. J. industr. Med.,29, 169-177. Chronic exposure to iron oxide, chromium oxide, and nickel oxide fumes of metal dressers in a steelworks. Occupational and medical histories, smoking habits, respiratory symptoms, chest radiographs, and ventilatory capacities were studied in 14 steelworkers employed as deseamers of steel ingots for periods of up to 16 years. The men were exposed for approximately five hours of each working shift to fume concentrations ranging from 1·3 to 294·1 mg/m3 made up mainly of iron oxide with varying proportions of chromium oxide and nickel oxide. Four of the men, with 14 to 16 years' exposure, showed radiological evidence of pneumoconiosis classified as ILO categories 2 or 3. Of these, two had pulmonary function within the normal range and two had measurable loss of function, moderate in one case and mild in the other. Many observers would diagnose these cases as siderosis but the authors consider that this term should be reserved for cases exposed to pure iron compounds. The correct diagnosis is mixed-dust pneumoconiosis and the loss of pulmonary function is caused by the effects of the mixture of metallic oxides. It is probable that inhalation of pure iron oxide does not cause fibrotic pulmonary changes, whereas the inhalation of iron oxide plus certain other substances obviously does. Images PMID:5021996

  19. Iron oxide shell coating on nano silicon prepared from the sand for lithium-ion battery application

    Science.gov (United States)

    Furquan, Mohammad; Vijayalakshmi, S.; Mitra, Sagar

    2018-05-01

    Elemental silicon, due to its high specific capacity (4200 mAh g-1) and non-toxicity is expected to be an attractive anode material for Li-ion battery. But its huge expansion volume (> 300 %) during charging of battery, leads to pulverization and cracking in the silicon particles and causes sudden failure of the Li-ion battery. In this work, we have designed yolk-shell type morphology of silicon, prepared from carbon coated silicon nanoparticles soaked in aqueous solution of ferric nitrate and potassium hydroxide. The soaked silicon particles were dried and finally calcined at 800 °C for 30 minutes. The product obtained is deprived of carbon and has a kind of yolk-shell morphology of nano silicon with iron oxide coating (Si@Iron oxide). This material has been tested for half-cell lithium-ion battery configuration. The discharge capacity is found to be ≈ 600 mAh g-1 at a current rate of 1.0 A g-1 for 200 cycles. It has shown a stable performance as anode for Li-ion battery application.

  20. Plutonium purification cycle in centrifugal extractors: comparative study of flowsheets using uranous nitrate and hydroxylamine nitrate

    International Nuclear Information System (INIS)

    Baron, P.; Dinh, B.; Mauborgne, B.; Drain, F.; Gillet, B.

    1998-01-01

    The extension of the UP2 plant at La Hague includes a new plutonium purification cycle using multi-stage centrifugal extractors, to replace the present cycle which uses mixer/settler banks. The advantage of this type of extractor is basically the compactness of the equipment and the short residence time, which limits solvent degradation, particularly when reprocessing fuel containing a high proportion of plutonium 238. Two types of reducing agents have been considered for the plutonium stripping operation, uranous nitrate and hydroxylamine nitrate. Uranous nitrate displays a very fast reduction kinetics, ideal for the very short residence time of the phases in the centrifugal extractors. However, its extractability in the organic phase exacerbates the undesirable re-oxidation of plutonium, which is present in high concentration in this stage of the process. The short residence time of the centrifugal extractors is an advantage in as much as it could conceivably be adequate to obtain a sufficient reduction efficiency, while minimizing undesirable re-oxidation mechanisms. Hydroxylamine nitrate helps to minimize undesirable re-oxidation and is the normal choice for this type of operation. However, the plutonium (IV) reduction kinetics obtained is slower than with uranous nitrate, making it necessary to check whether its use is compatible with the very short residence times of centrifugal extractors.This article discusses the feasibility studies employing these two reducing agents. (author)

  1. Effect of oxidative stress induced by intracranial iron overload on central pain after spinal cord injury.

    Science.gov (United States)

    Meng, Fan Xing; Hou, Jing Ming; Sun, Tian Sheng

    2017-02-08

    Central pain (CP) is a common clinical problem in patients with spinal cord injury (SCI). Recent studies found the pathogenesis of CP was related to the remodeling of the brain. We investigate the roles of iron overload and subsequent oxidative stress in the remodeling of the brain after SCI. We established a rat model of central pain after SCI. Rats were divided randomly into four groups: SCI, sham operation, SCI plus deferoxamine (DFX) intervention, and SCI plus nitric oxide synthase (NOS) inhibitor treatment. Pain behavior was observed and thermal pain threshold was measured regularly, and brain levels of iron, transferrin receptor 1 (TfR1), ferritin (Fn), and lactoferrin (Lf), were detected in the different groups 12 weeks after establishment of the model. Rats demonstrated self-biting behavior after SCI. Furthermore, the latent period of thermal pain was reduced and iron levels in the hind limb sensory area, hippocampus, and thalamus increased after SCI. Iron-regulatory protein (IRP) 1 levels increased in the hind limb sensory area, while Fn levels decreased. TfR1 mRNA levels were also increased and oxidative stress was activated. Oxidative stress could be inhibited by ferric iron chelators and NOS inhibitors. SCI may cause intracranial iron overload through the NOS-iron-responsive element/IRP pathway, resulting in central pain mediated by the oxidative stress response. Iron chelators and oxidative stress inhibitors can effectively relieve SCI-associated central pain.

  2. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States); Qin, Ying [Alabama Innovation and Mentoring of Entrepreneurs, The University of Alabama, Tuscaloosa, AL 35487 (United States); Bao, Yuping, E-mail: ybao@eng.ua.edu [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States)

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  3. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    International Nuclear Information System (INIS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-01-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  4. Enhance wastewater biological treatment through the bacteria induced graphene oxide hydrogel.

    Science.gov (United States)

    Shen, Liang; Jin, Ziheng; Wang, Dian; Wang, Yuanpeng; Lu, Yinghua

    2018-01-01

    The interaction between bacteria and graphene-family materials like pristine graphene, graphene oxide (GO) and reduced graphene oxide (rGO) is such an elusive issue that its implication in environmental biotechnology is unclear. Herein, two kinds of self-assembled bio-rGO-hydrogels (BGHs) were prepared by cultivating specific Shewanella sp. strains with GO solution for the first time. The microscopic examination by SEM, TEM and CLSM indicated a porous 3D structure of BGHs, in which live bacteria firmly anchored and extracellular polymeric substances (EPS) abundantly distributed. Spectra of XRD, FTIR, XPS and Raman further proved that GO was reduced to rGO by bacteria along with the gelation process, which suggests a potential green technique to produce graphene. Based on the characterization results, four mechanisms for the BGH formation were proposed, i.e., stacking, bridging, rolling and cross-linking of rGO sheets, through the synergistic effect of activities and EPS from special bacteria. More importantly, the BGHs obtained in this study were found able to achieve unique cleanup performance that the counterpart free bacteria could not fulfill, as exemplified in Congo red decolorization and Cr(VI) bioreduction. These findings therefore enlighten a prospective application of graphene materials for the biological treatment of wastewaters in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Mechanistic Study of Monodisperse Iron Oxide Nanocrystals ...

    African Journals Online (AJOL)

    To gain better insight into the formation of iron oxide nanocrystals from the solution phase thermal decomposition of iron (III) oleate complex, different reaction conditions including time, heating ramp, as well as concentrations of iron oleate precursor and oleic acid ligand were systematically varied and the resulting ...

  6. Microbial leaching of iron from pyrite by moderate thermophile chemolithotropic bacteria

    International Nuclear Information System (INIS)

    Ilyas, S.; Niazi, S.B.

    2007-01-01

    The present work was aimed at studying the bioleachability of iron from pyrite by the selected moderately thermophilic strains of acidophilic chemolithotrophic and acidophilic heterotrophic bacteria. These included Sulfobacillus thermosulfidooxidans (chemolithotroph) and an un-identified strain of acidophilic heterotroph (code 6A1TSB) isolated from local environments. As compared to inoculated flasks, dissolution of metal (due to acid leaching) was significantly low in the un-inoculated control flasks in all the experiments in ore. A decrease in the bioleaching activity was observed at the later stages of bioleaching of metal from ore. Among the strategies adopted to enhance the metal leaching rates, a mixed consortium of the metal adapted cultures of the above-mentioned bacteria was found to exhibit the maximum metal leaching efficiency. In all the flasks where high metal leaching rates were observed, concomitantly biomass production rates were also high indicating high growth rates. It showed that the metal bioleaching capability of the bacteria was associated with their growth. Pyrite contained 42% iron. (author)

  7. Activation of Graphene Oxide with Hydrochloric Acid for Nitrate Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Abolghasem Alighardashi

    2017-11-01

    Full Text Available Long-term drinking of nitrate-contaminated water poses a serious risk to human health. The present study explores the possibility of enhancing the adsorption capacity of graphene oxide via activation with hydrochloric acid for nitrate removal from aqueous solutions. Experiments were performed in a batch reactor in which such major factors as pH, reaction time, and concentrations of both graphene oxide (GO and activated graphene oxide (AGO were used as variables. Nitrate removal efficiency was investigated using the One-Way ANOVA statistical test and SPSS-16 software. The chemical composition and solid structure of the synthesized AGO were analyzed using FE-SEM coupled with energy dispersive spectrometry (EDS. The micropore volumes of the samples were determined using the BET and BJH. The predominant composition (52% of the synthesized AGO was C and its mean pore diameter was 26.896 nm. The maximum adsorption capacity of AGO was estimated at 3333.33 mg/g. Based on the results, the AGO nano-structure may be recomended as a new means for nitrate removal from aqueous solutions.

  8. Study of calcium chloride and calcium nitrate purification on inorganic sorbents

    International Nuclear Information System (INIS)

    Vasil'eva, L.V.; Knyazeva, A.N.; Fakeev, A.A.; Belyaeva, N.A.; Morozov, V.I.; Kucherova, V.V.

    1986-01-01

    Purification of calcium chloride and calcium nitrate from iron, chromium, manganese and cobalt impurities by sorption on some inorganic collectors are considered in this article. Study was conducted by means of radioactive-tracer technique at concurrent use of several γ-radioactive isotopes. As a collectors were used hydrated aluminium and zirconium oxides. Dependence of effectiveness of precipitation by collectors on ph-value of medium, quantity of collector, nature and concentration of components is studied. Optimal parameters of purification of calcium chloride and calcium nitrate are defined.

  9. Anaerobic ammonium oxidation mediated by Mn-oxides: from sediment to strain level.

    Science.gov (United States)

    Javanaud, Cedric; Michotey, Valerie; Guasco, Sophie; Garcia, Nicole; Anschutz, Pierre; Canton, Mathieu; Bonin, Patricia

    2011-11-01

    Nitrite and (29)N(2) productions in slurry incubations of anaerobically sediment after (15)NO(3) or (15)NH(4) labelling in the presence of Mn-oxides suggested that anaerobic Mn-oxides mediated nitrification coupled with denitrification in muddy intertidal sediments of Arcachon Bay (SW Atlantic French coast). From this sediment, bacterial strains were isolated and physiologically characterized in terms of Mn-oxides and nitrate reduction as well as potential anaerobic nitrification. One of the isolated strain, identified as Marinobacter daepoensis strain M4AY14, was a denitrifier. Nitrous oxide production by this strain was demonstrated in the absence of nitrate and with Mn-oxides and NH(4) amendment, giving indirect proof of anaerobic nitrate or nitrite production. Anaerobic Mn-oxide-mediated nitrification was confirmed by (29)N(2) production in the presence of (15)NO(3) and (14)NH(4) under denitrifying conditions. Anaerobic nitrification by M4AY14 seemed to occur only in the absence of nitrate, or at nitrate levels lower than that of Mn-oxides. Most of the other isolates were affiliated with the Shewanella genus and were able to use both nitrate and Mn-oxides as electron acceptors. When both electron acceptors were present, whatever their concentrations, nitrate and Mn-oxide reduction co-occurred. These data indicate that bacterial Mn-oxide reduction could be an important process in marine sediments with low oxygen concentrations, and demonstrate for the first time the role of bacteria in anaerobic Mn-mediated nitrification. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  10. Effect of Oxidation Degree on Valence Change and Distribution of Octahedral Fe Element in Biotite

    Directory of Open Access Journals (Sweden)

    Li Ziqian

    2017-01-01

    Full Text Available In this paper, the valence change and distribution of iron elements in octahedral vacancies of biotite were studied in the oxidation process. The biotite and saturated barium nitrate solution were mixed in dilute hydrochloric acid under hydrothermal reaction conditions, the solid after reaction was used as the test sample. Firstly, the remainder potassium and iron content were measured by atomic absorption spectrometry(AAS. Secondly, the state of iron along with oxidation degree increased was analyzed, in addition, the phase composition and the change of layer spacing in samples was detected by X-ray diffraction(XRD. Thirdly, The variation mode of Si-O bond were characterized by Fourier transform infrared spectroscopy(FT-IR.This research was adopted hydrogen ions in diluted hydrochloric acid and nitrate ions in barium nitrate to provide oxidation environment for reaction, and the oxidation degree was controlled by adjusted the amount of hydrogen ion introduced. We found out that the amount of hydrogen ion is positively correlated with oxidation degree in biotite, and the deeper oxidation degree in biotite, the lower electronegativity of singer layer. Potassium and iron element would be release out of micaceous structure during the biotite oxidation. The higher the oxidation degree is, the greater the releasing happen. The charge density combining Fe oxidation and releasing firstly increased then decreased with the oxidation degree turned greater. During the oxidation, the Si-O vibrated would change from parallel layer vibration model to vertical vibration model.

  11. Synthesis and magnetic characterizations of uniform iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Jiang, FuYi; Li, XiaoYi; Zhu, Yuan; Tang, ZiKang

    2014-01-01

    Uniform iron oxide nanoparticles with a cubic shape were prepared by the decomposition of homemade iron oleate in 1-octadecene with the presence of oleic acid. The particle shape and size uniformity are sensitive to the quantity of oleic acid. XRD, HRTEM and SAED results indicated that the main phase content of as-prepared iron oxide nanoparticles is Fe 3 O 4 with an inverse spinel structure. Magnetic measurements revealed that the as-prepared iron oxide nanoparticles display a ferromagnetic behavior with a blocking temperature of 295 K. At low temperatures the magnetic anisotropy of the aligned nanoparticles caused the appearance of a hysteresis loop.

  12. The effects of bacteria on the corrosion behavior of carbon steel in compacted bentonite

    International Nuclear Information System (INIS)

    Nishimura, T.; Wada, R.; Nishimoto, H.; Fujiwara, K.; Taniguchi, N.; Honda, A.

    1999-10-01

    As a part of evaluation of corrosion life of carbon steel overpack, the experimental studies have been performed on the effects of bacteria on the corrosion behavior of carbon steel in compacted bentonite using iron bacteria (IB) as a representative oxidizing bacteria and sulphur reducing bacteria (SRB) as a representative reducing bacteria. The results of the experimental studies showed that; The activity of SRB was low in compacted bentonite in spite of applying suitable condition for the action of bacteria such as temperature and nutritious solution. Although the corrosion behavior of carbon steel was affected by the existence of bacteria in simple solution, the corrosion rates of carbon steel in compacted bentonite were several μ m/year -10 μ m/year irrespective of coexistence of bacteria and that the corrosion behavior was not affected by the existence of bacteria. According to these results, it was concluded that the bacteria would not affect the corrosion behavior of carbon steel overpack under repository condition. (author)

  13. Magnetic and gravity gradiometry framework for Mesoproterozoic iron oxide-apatite and iron oxide-copper-gold deposits, southeast Missouri, USA

    Science.gov (United States)

    McCafferty, Anne E.; Phillips, Jeffrey; Driscoll, Rhonda L.

    2016-01-01

    High-resolution airborne magnetic and gravity gradiometry data provide the geophysical framework for evaluating the exploration potential of hidden iron oxide deposits in Mesoproterozoic basement rocks of southeast Missouri. The data are used to calculate mineral prospectivity for iron oxide-apatite (IOA) ± rare earth element (REE) and iron oxide-copper-gold (IOCG) deposits. Results delineate the geophysical footprints of all known iron oxide deposits and reveal several previously unrecognized prospective areas. The airborne data are also inverted to three-dimensional density and magnetic susceptibility models over four concealed deposits at Pea Ridge (IOA ± REE), Boss (IOCG), Kratz Spring (IOA), and Bourbon (IOCG). The Pea Ridge susceptibility model shows a magnetic source that is vertically extensive and traceable to a depth of greater than 2 km. A smaller density source, located within the shallow Precambrian basement, is partly coincident with the magnetic source at Pea Ridge. In contrast, the Boss models show a large (625-m-wide), vertically extensive, and coincident dense and magnetic stock with shallower adjacent lobes that extend more than 2,600 m across the shallow Precambrian paleosurface. The Kratz Spring deposit appears to be a smaller volume of iron oxides and is characterized by lower density and less magnetic rock compared to the other iron deposits. A prospective area identified south of the Kratz Spring deposit shows the largest volume of coincident dense and nonmagnetic rock in the subsurface, and is interpreted as prospective for a hematite-dominant lithology that extends from the top of the Precambrian to depths exceeding 2 km. The Bourbon deposit displays a large bowl-shaped volume of coincident high density and high-magnetic susceptibility rock, and a geometry that suggests the iron mineralization is vertically restricted to the upper parts of the Precambrian basement. In order to underpin the evaluation of the prospectivity and three

  14. Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides

    International Nuclear Information System (INIS)

    Braga, Tiago P.; Vasconcelos, Igor F.; Sasaki, Jose M.; Fabris, J.D.; Oliveira, Diana Q.L. de; Valentini, Antoninho

    2010-01-01

    Materials containing hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides were obtained from a chemical precursor prepared by admixing chitosan and iron and aluminum hydroxides. The oxides were first characterized with scanning electron microscopy, X-ray diffraction, and Moessbauer spectroscopy. Scanning electron microscopy micrographs showed the size distribution of the resulting spheres to be highly homogeneous. The occurrence of nano-composites containing aluminum oxides and iron oxides was confirmed from powder X-ray diffraction patterns; except for the sample with no aluminum, the superparamagnetic relaxation due to iron oxide particles were observed from Moessbauer spectra obtained at 298 and 110 K; the onset six line-spectrum collected at 20 K indicates a magnetic ordering related to the blocking relaxation effect for significant portion of small spheres in the sample with a molar ratio Al:Fe of 2:1.

  15. IRON AND FREE RADICAL OXIDATIONS IN CELL MEMBRANES

    Science.gov (United States)

    Schafer, Freya Q.; Yue Qian, Steven; Buettner, Garry R.

    2013-01-01

    Brain tissue being rich in polyunsaturated fatty acids, is very susceptible to lipid peroxidation. Iron is well known to be an important initiator of free radical oxidations. We propose that the principal route to iron-mediated lipid peroxidations is via iron-oxygen complexes rather than the reaction of iron with hydrogen peroxide, the Fenton reaction. To test this hypothesis, we enriched leukemia cells (K-562 and L1210 cells) with docosahexaenoic acid (DHA) as a model for brain tissue, increasing the amount of DHA from approximately 3 mole % to 32 mole %. These cells were then subjected to ferrous iron and dioxygen to initiate lipid peroxidation in the presence or absence of hydrogen peroxide. Lipid-derived radicals were detected using EPR spin trapping with α-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN). As expected, lipid-derived radical formation increases with increasing cellular lipid unsaturation. Experiments with Desferal demonstrate that iron is required for the formation of lipid radicals from these cells. Addition of iron to DHA-enriched L1210 cells resulted in significant amounts of radical formation; radical formation increased with increasing amount of iron. However, the exposure of cells to hydrogen peroxide before the addition of ferrous iron did not increase cellular radical formation, but actually decreased spin adduct formation. These data suggest that iron-oxygen complexes are the primary route to the initiation of biological free radical oxidations. This model proposes a mechanism to explain how catalytic iron in brain tissue can be so destructive. PMID:10872752

  16. Thermochemical nitrate reduction

    International Nuclear Information System (INIS)

    Cox, J.L.; Lilga, M.A.; Hallen, R.T.

    1992-09-01

    A series of preliminary experiments was conducted directed at thermochemically converting nitrate to nitrogen and water. Nitrates are a major constituent of the waste stored in the underground tanks on the Hanford Site, and the characteristics and effects of nitrate compounds on stabilization techniques must be considered before permanent disposal operations begin. For the thermochemical reduction experiments, six reducing agents (ammonia, formate, urea, glucose, methane, and hydrogen) were mixed separately with ∼3 wt% NO 3 - solutions in a buffered aqueous solution at high pH (13); ammonia and formate were also mixed at low pH (4). Reactions were conducted in an aqueous solution in a batch reactor at temperatures of 200 degrees C to 350 degrees C and pressures of 600 to 2800 psig. Both gas and liquid samples were analyzed. The specific components analyzed were nitrate, nitrite, nitrous oxide, nitrogen, and ammonia. Results of experimental runs showed the following order of nitrate reduction of the six reducing agents in basic solution: formate > glucose > urea > hydrogen > ammonia ∼ methane. Airnmonia was more effective under acidic conditions than basic conditions. Formate was also effective under acidic conditions. A more thorough, fundamental study appears warranted to provide additional data on the mechanism of nitrate reduction. Furthermore, an expanded data base and engineering feasibility study could be used to evaluate conversion conditions for promising reducing agents in more detail and identify new reducing agents with improved performance characteristics

  17. Evaluation of the properties of iron oxide-filled castor oil polyurethane

    Directory of Open Access Journals (Sweden)

    Eleonora Mussatti

    2013-02-01

    Full Text Available The aim of this study was to obtain and evaluate the electrical, thermal and mechanical properties of iron oxide-filled castor oil polyurethane (PU/Fe2O3. The iron oxide used in this study was a residue derived from the steel pickling process of a Brazilian steel rolling industry. Polymeric composites with different iron oxide volume fractions (2.5, 5.0, 7.5, 10.0 and 12.5% were prepared through the casting process followed by compression molding at room temperature. The composites were analyzed by FTIR, XRD and densities, tensile strength, Young's modulus, electrical and thermal conductivities measurements. By increasing the iron oxide content, the apparent density, tensile strength, Young's modulus and electrical conductivity values of the composites were also increased. The iron oxide additions did not change significantly the value of thermal conductivity (from 0.191 W.mK-1 for PU up to 0.340 W.mK-1 for PU enriched with 12.5% v/v of iron oxide. Thus, even at the higher iron oxide concentration, the compounds as well as the pure polyurethane can be classified as thermal insulators.

  18. Evaluation of the Properties of Iron Oxide-Filled Castor Oil Polyurethane

    Directory of Open Access Journals (Sweden)

    Eleonora Mussatti

    2012-01-01

    Full Text Available The aim of this study was to obtain and evaluate the electrical, thermal and mechanical properties of iron oxide-filled castor oil polyurethane (PU/Fe2O3. The iron oxide used in this study was a residue derived from the steel pickling process of a Brazilian steel rolling industry. Polymeric composites with different iron oxide volume fractions (2.5, 5.0, 7.5, 10.0 and 12.5% were prepared through the casting process followed by compression molding at room temperature. The composites were analyzed by FTIR, XRD and densities, tensile strength, Young's modulus, electrical and thermal conductivities measurements. By increasing the iron oxide content, the apparent density, tensile strength, Young's modulus and electrical conductivity values of the composites were also increased. The iron oxide additions did not change significantly the value of thermal conductivity (from 0.191 W.mK-1 for PU up to 0.340 W.mK-1 for PU enriched with 12.5% v/v of iron oxide. Thus, even at the higher iron oxide concentration, the compounds as well as the pure polyurethane can be classified as thermal insulators.

  19. Fluid bed direct denitration process for plutonium nitrate to oxide conversion

    International Nuclear Information System (INIS)

    Souply, K.R.; Neal, D.H.

    1977-01-01

    The fluid bed direct-denitration process appears feasible for reprocessing Light Water Reactor fuel. Considerable experience with the fluid bed process exists in the denitration of uranyl nitrate and it shows promise for use in the denitration of plutonium nitrate. The process will require some development work before it can be used in a production-size facility. This report describes a fluid bed direct-denitration process for converting plutonium nitrate to plutonium oxide, and the information should be used when making comparisons of alternative processes or as a basis for further detailed studies

  20. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, Moshe Ben, E-mail: mosheinspain@hotmail.com [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100 (Israel); Calmano, Wolfgang [Institute of Environmental Technology and Energy Economics, Technical University of Hamburg-Harburg, 21073 Hamburg (Germany); Adin, Avner [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100 (Israel)

    2009-11-15

    The processes of iron oxidation in an electroflocculation cell were investigated for a pH range of 5-9 and electric currents of 0.05-0.4 A (equivalent current densities of 8.6-69 A/m{sup 2}). At all pH values and electric currents investigated, it was demonstrated and proven that for all practical purposes, the form of iron that dissolves from the anode is Fe{sup 2+} (ferrous). The difference between the amount of theoretical dissolution as calculated by Faraday's law and the amount of observed dissolved iron ions may indicate two phenomena in electrochemical cells. The first is possible dissolution of the anode even without the operation of an electric current; this led to higher theoretical dissolution rates at lower pH. The second is the participation of some of the electrons of the electric current in reactions other than anode dissolution which led to lower theoretical dissolution rates at higher pH. Those other reactions did not lead to an increase in the local oxidation saturation level near the anode and did not affect iron-oxidation rates in the electroflocculation processes. The oxidation rates of the dissolved Fe{sup 2+} (ferrous) to Fe{sup 3+} (ferric) ions in electroflocculation processes were strongly dependent on the pH and were similar to the known oxidation rates of iron in non-electrochemical cells.