WorldWideScience

Sample records for iron-formation-hosted gold deposit

  1. Iron oxide copper-gold deposits in the Islamic Republic of Mauritania (phase V, deliverable 79): Chapter M in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    Science.gov (United States)

    Fernette, Gregory

    2015-01-01

    Mauritania hosts one significant copper-gold deposit, Guelb Moghrein and several occurrences, which have been categorized as iron oxide copper-gold (IOCG) deposits but which are atypical in some important respects. Nonetheless, Guelb Moghrein is an economically significant mineral deposit and an attractive exploration target. The deposit is of Archean age and is hosted by a distinctive metacarbonate rock which is part of a greenstone-banded iron formation (BIF) package within a thrust stack in the northern part of the Mauritanide Belt. The surrounding area hosts a number of similar copper-gold occurrences. Based on the characteristics of the Guelb Moghrein deposit and its geologic environment, five tracts which are considered permissive for IOCG type mineralization similar to Guelb Moghrein have been delineated.

  2. Sediment-hosted gold deposits of the world: database and grade and tonnage models

    Science.gov (United States)

    Berger, Vladimir I.; Mosier, Dan L.; Bliss, James D.; Moring, Barry C.

    2014-01-01

    All sediment-hosted gold deposits (as a single population) share one characteristic—they all have disseminated micron-sized invisible gold in sedimentary rocks. Sediment-hosted gold deposits are recognized in the Great Basin province of the western United States and in China along with a few recognized deposits in Indonesia, Iran, and Malaysia. Three new grade and tonnage models for sediment-hosted gold deposits are presented in this paper: (1) a general sediment-hosted gold type model, (2) a Carlin subtype model, and (3) a Chinese subtype model. These models are based on grade and tonnage data from a database compilation of 118 sediment-hosted gold deposits including a total of 123 global deposits. The new general grade and tonnage model for sediment-hosted gold deposits (n=118) has a median tonnage of 5.7 million metric tonnes (Mt) and a gold grade of 2.9 grams per tonne (g/t). This new grade and tonnage model is remarkable in that the estimated parameters of the resulting grade and tonnage distributions are comparable to the previous model of Mosier and others (1992). A notable change is in the reporting of silver in more than 10 percent of deposits; moreover, the previous model had not considered deposits in China. From this general grade and tonnage model, two significantly different subtypes of sediment-hosted gold deposits are differentiated: Carlin and Chinese. The Carlin subtype includes 88 deposits in the western United States, Indonesia, Iran, and Malaysia, with median tonnage and grade of 7.1 Mt and 2.0 g/t Au, respectively. The silver grade is 0.78 g/t Ag for the 10th percentile of deposits. The Chinese subtype represents 30 deposits in China, with a median tonnage of 3.9 Mt and medium grade of 4.6 g/t Au. Important differences are recognized in the mineralogy and alteration of the two sediment-hosted gold subtypes such as: increased sulfide minerals in the Chinese subtype and decalcification alteration dominant in the Carlin type. We therefore

  3. Major Brazilian gold deposits - 1982 to 1999

    Science.gov (United States)

    Thorman, Charles H.; DeWitt, Ed; Maron, Marcos A.; Ladeira, Eduardo A.

    2001-07-01

    Brazil has been a major but intermittent producer of gold since its discovery in 1500. Brazil led the world in gold production during the 18th and early 19th centuries. From the late 19th century to the late 20th century, total mining company and garimpeiro production was small and relatively constant at about 5 to 8 t/year. The discovery of alluvial deposits in the Amazon by garimpeiros in the 1970s and the opening of eight mines by mining companies from 1983 to 1990 fueled a major boom in Brazil's gold production, exceeding 100 t/year in 1988 and 1989. However, garimpeiro alluvial production decreased rapidly in the 1990s, to about 10 t/year by 1999. Company production increased about tenfold from about 4 t/year in 1982 to 40 t in 1992. Production from 1992 to the present remained relatively stable, even though several mines were closed or were in the process of closing and no new major mines were put into production during that period. Based on their production history from 1982-1999, 17 gold mines are ranked as major (>20 t) and minor (3-8 t) mines. From 1982-1999, deposits hosted in Archean rocks produced 66% of the gold in Brazil, whereas deposits in Paleoproterozoic and Neoproterozoic rocks accounted for 19% and 15%, respectively. Deposits in metamorphosed sedimentary rocks, especially carbonate-rich rocks and carbonate iron-formation, yielded the great bulk of the gold. Deposits in igneous rocks were of much less importance. The Archean and Paleoproterozoic terranes of Brazil largely lack base-metal-rich volcanogenic massive sulfide deposits, porphyry deposits, and polymetallic veins and sedimentary exhalative deposits. An exception to this is in the Carajás Mineral Province.

  4. Major brazilian gold deposits - 1982 to 1999

    Science.gov (United States)

    Thorman, C.H.; Dewitt, E.; Maron, M.A.; Ladeira, E.A.

    2001-01-01

    Brazil has been a major but intermittent producer of gold since its discovery in 1500. Brazil led the world in gold production during the 18th and early 19th centuries. From the late 19th century to the late 20th century, total mining company and garimpeiro production was small and relatively constant at about 5 to 8 t/year. The discovery of alluvial deposits in the Amazon by garimpeiros in the 1970s and the opening of eight mines by mining companies from 1983 to 1990 fueled a major boom in Brazil's gold production, exceeding 100 t/year in 1988 and 1989. However, garimpeiro alluvial production decreased 'rapidly in the 1990s, to about 10 t/year by 1999. Company production increased about tenfold from about 4 t/year in 1982 to 40 t in 1992. Production from 1992 to the present remained relatively stable, even though several mines were closed or were in the process of closing and no new major mines were put into production during that period. Based on their production history from 1982-1999, 17 gold mines are ranked as major (> 20 t) and minor (3-8 t) mines. From 1982-1999, deposits hosted in Archean rocks produced 66% of the gold in Brazil, whereas deposits in Paleoproterozoic and Neoproterozoic rocks accounted for 19% and 15%, respectively. Deposits in metamorphosed sedimentary rocks, especially carbonate-rich rocks and carbonate iron-formation, yielded the great bulk of the gold. Deposits in igneous rocks were of much less importance. The Archean and Paleoproterozoic terranes of Brazil largely lack base-metal-rich volcanogenic massive sulfide deposits, porphyry deposits, and polymetallic veins and sedimentary exhalative deposits. An exception to this is in the Caraja??s Mineral Province.

  5. Microbial processes in banded iron formation deposition

    DEFF Research Database (Denmark)

    Posth, Nicole; Konhauser, Kurt; Kappler, Andreas

    2013-01-01

    , remains unresolved. Evidence of an anoxic Earth with only localized oxic areas until the Great Oxidation Event ca 2·45 to 2·32 Ga makes the investigation of O2-independent mechanisms for banded iron formation deposition relevant. Recent studies have explored the long-standing proposition that Archean......Banded iron formations have been studied for decades, particularly regarding their potential as archives of the Precambrian environment. In spite of this effort, the mechanism of their deposition and, specifically, the role that microbes played in the precipitation of banded iron formation minerals...... banded iron formations may have been formed, and diagenetically modified, by anaerobic microbial metabolisms. These efforts encompass a wide array of approaches including isotope, ecophysiological and phylogeny studies, molecular and mineral marker analysis, and sedimentological reconstructions. Herein...

  6. Metallogenesis of Precambrian gold deposits in the Wutai greenstone belt: Constrains on the tectonic evolution of the North China Craton

    Directory of Open Access Journals (Sweden)

    Ju-Quan Zhang

    2018-03-01

    Full Text Available The Wutai greenstone belt in central North China Craton (NCC hosts a number of Precambrian gold deposits and ore occurrences. Based on the host rock association, these can be divided into Banded Iron Formation (BIF, meta-volcano-sedimentary and meta-conglomerate types. The two former types formed during ∼2.5–2.3 Ga and the third one at ∼1.85 Ga. The characteristics of these Precambrian gold deposits are broadly similar with those of the orogenic gold deposits. Based on available geochronological data, here we reconstruct the major tectonic events and their relationship with gold mineralization in the Wutai-Hengshan-Fuping region during Neoarchean to Paleoproterozoic as follows. (1 ∼2.6–2.5 Ga: widespread intrusion of tonalite-trondhjemite-granodiorite (TTG magmas in the Hengshan terrane and Fuping continental arc, formation of the Wutai volcanic arc in the southern margin of Hengshan terrane with granitoids emplacement, and the Hengshan-Wutai intra-oceanic arc accretion to the Fuping arc at the end of Neoarchean. (2 ∼2.5–2.3 Ga: the subduction of Hengshan arc from north leading to persistent magmatism and orogenic gold mineralization. (3 ∼2.2–2.1 Ga: extension leading to the formation of graben structure in the Wutai and Fuping region, deposition of the Hutuo and Wanzi Group sediments, formation of placer gold through erosion of the orogenic gold deposits. (4 ∼2.2–2.0 Ga: widespread magmatism in the Wutai-Hengshan-Fuping region. (5 ∼1.95–1.8 Ga: regional metamorphism associated with collision of the Western and Eastern Blocks of the NCC and associated orogenic gold deposits. The multiple subduction-accretion-collision history and subsequent deep erosion has significantly affected most of the Precambrian gold deposits in the Wutai greenstone belt.

  7. Iron Oxide Deposition from Aqueous Solution and Iron Formations on Mars

    Science.gov (United States)

    Catling, David; Moore, Jeff

    2000-01-01

    Iron formations are ancient, laminated chemical sediments containing at least 15 wt% Fe. We discuss possible mechanisms for their formation in aqueous environments on early Mars. Such iron oxide deposits may be detectable today.

  8. Gold particle formation via photoenhanced deposition on lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Zaniewski, A.M., E-mail: azaniews@asu.edu; Meeks, V.; Nemanich, R.J.

    2017-05-31

    Highlights: • Gold chloride is reduced into solid gold nanoparticles at the surface of a polarized semiconductor. • Reduction processes are driven by ultraviolet light. • Gold nanoparticle and silver nanoparticle deposition patterns are compared. - Abstract: In this work, we report on a technique to reduce gold chloride into sub-micron particles and nanoparticles. We use photoelectron transfer from periodically polarized lithium niobate (PPLN) illuminated with above band gap light to drive the surface reactions required for the reduction and particle formation. The particle sizes and distributions on the PPLN surface are sensitive to the solution concentration, with inhibited nucleation and large particles (>150 nm) for both low (2E−8M to 9E−7M) and high (1E−5M to 1E−3M) concentrations of gold chloride. At midrange values of the concentration, nucleation is more frequent, resulting in smaller sized particles (<150 nm). We compare the deposition process to that for silver, which has been previously studied. We find that the reduction of gold chloride into nanoparticles is inhibited compared to silver ion reduction, due to the multi-step reaction required for gold particle formation. This also has consequences for the resulting deposition patterns: while silver deposits into nanowires along boundaries between areas with opposite signed polarizations, such patterning of the deposition is not observed for gold, for a wide range of concentrations studied (2E−8 to 1E−3M).

  9. Regional framework and geology of iron oxide-apatite-rare earth element and iron oxide-copper-gold deposits of the Mesoproterozoic St. Francois Mountains Terrane, southeast Missouri

    Science.gov (United States)

    Day, Warren C.; Slack, John F.; Ayuso, Robert A.; Seeger, Cheryl M.

    2016-01-01

    This paper provides an overview on the genesis of Mesoproterozoic igneous rocks and associated iron oxide ± apatite (IOA) ± rare earth element, iron oxide-copper-gold (IOCG), and iron-rich sedimentary deposits in the St. Francois Mountains terrane of southeast Missouri, USA. The St. Francois Mountains terrane lies along the southeastern margin of Laurentia as part of the eastern granite-rhyolite province. The province formed during two major pulses of igneous activity: (1) an older early Mesoproterozoic (ca. 1.50–1.44 Ga) episode of volcanism and granite plutonism, and (2) a younger middle Mesoproterozoic (ca. 1.33–1.30 Ga) episode of bimodal gabbro and granite plutonism. The volcanic rocks are predominantly high-silica rhyolite pyroclastic flows, volcanogenic breccias, and associated volcanogenic sediments with lesser amounts of basaltic to andesitic volcanic and associated subvolcanic intrusive rocks. The iron oxide deposits are all hosted in the early Mesoproterozoic volcanic and volcaniclastic sequences. Previous studies have characterized the St. Francois Mountains terrane as a classic, A-type within-plate granitic terrane. However, our new whole-rock geochemical data indicate that the felsic volcanic rocks are effusive derivatives from multicomponent source types, having compositional similarities to A-type within-plate granites as well as to S- and I-type granites generated in an arc setting. In addition, the volcanic-hosted IOA and IOCG deposits occur within bimodal volcanic sequences, some of which have volcanic arc geochemical affinities, suggesting an extensional tectonic setting during volcanism prior to emplacement of the ore-forming systems.The Missouri iron orebodies are magmatic-related hydrothermal deposits that, when considered in aggregate, display a vertical zonation from high-temperature, magmatic ± hydrothermal IOA deposits emplaced at moderate depths (~1–2 km), to magnetite-dominant IOA veins and IOCG deposits emplaced at shallow

  10. Gold, iron and manganese in central Amapá, Brazil

    Directory of Open Access Journals (Sweden)

    Wilson Scarpelli

    Full Text Available ABSTRACT: Greenstone belts with deposits of gold, iron and manganese are common in the Paleoproterozoic Maroni-Itacaiunas Tectonic Province of the Guiana Shield. In Brazil, in the State of Amapá and northwest of Pará, they are represented by the Vila Nova Group, constituted by a basal unit of metabasalts, covered by metasediments of clastic and chemical origin. The basal metasediments, the Serra do Navio Formation, are made of a cyclothem with lenses of manganese marbles at the top of each cycle. Under the intense weathering of the Amazon, these lenses were oxidized to large deposits of high-grade manganese oxides. The exploitation of these oxides left behind the manganese carbonates and low-grade oxides. The overlaying Serra da Canga Formation presents a calcium and magnesium domain grading to an iron domain with banded silicate and oxide iron formations, mined for iron ores. Overlapping structures and superposed metamorphic crystallizations indicate two phases of dynamothermal metamorphism, the first one with axis to north-northeast and the second one to northwest, with an intermediate phase of thermal metamorphism related to syntectonic granitic intrusions. Shears oriented north-south, possibly formed during the first dynamothermal metamorphism and reactivated in the second, are ideal sites for hydrothermalism and gold mineralization, which is greater when occurs in iron formation and carbonate-bearing rocks, as it happened at the Tucano mine. Layered mafic-ultramafic intrusions in the greenstones represent a potential for chromite and platinum group elements. Pegmatites are source of cassiterite and tantalite exploited from alluvial deposits.

  11. Metamorphic Rock-Hosted Orogenic Gold Deposit Type as a Source of Langkowala Placer Gold, Bombana, Southeast Sulawesi

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i1.114In 2008, placer gold was discovered in Langkowala area (Bombana Regency, Southeast Sulawesi, Indonesia, and more than 60,000 traditional gold miners in the early 2009 have been operating by digging vertical pits and panning active stream sediments. The grade of placer gold ranges from 50 to 140 g/t. Local geological framework indicates that the placer gold is not related to volcanic rock-related hydrothermal gold deposit, e.g. epithermal, skarn or porphyry. This paper describes a preliminary study on possible primary deposit type as a source of the Langkowala (Bombana secondary placer gold. A field study indicates that the Langkowala (Bombana placer/paleoplacer gold is possibly related to gold-bearing quartz veins/veinlets hosted by metamorphic rocks particularly mica schist and metasediments in the area. These quartz veins/veinlets are currently recognized in metamorphic rocks at Wumbubangka Mountains, a northern flank of Rumbia Mountain Range. Sheared, segmented quartz veins/veinlets are of 2 cm to 2 m in width and contain gold in a grade varying between 2 and 61 g/t. At least, there are two generations of the quartz veins. The first generation of quartz vein is parallel to foliation of mica schist and metasediments with general orientation of N 300oE/60o; the second quartz vein generation crosscut the first quartz vein and the foliation of the wallrock. The first quartz veins are mostly sheared/deformed, brecciated, and occasionally sigmoidal, whereas the second quartz veins are relatively massive. The similar quartz veins/veinlets types are also probably present in Mendoke Mountain Range, in the northern side of Langkowala area. This primary gold deposit is called as ‘orogenic gold type’. The orogenic gold deposit could be a new target of gold exploration in Indonesia in the future.

  12. Timing of multiple hydrothermal events in the iron oxide-copper-gold deposits of the Southern Copper Belt, Carajás Province, Brazil

    Science.gov (United States)

    Moreto, Carolina P. N.; Monteiro, Lena V. S.; Xavier, Roberto P.; Creaser, Robert A.; DuFrane, S. Andrew; Melo, Gustavo H. C.; Delinardo da Silva, Marco A.; Tassinari, Colombo C. G.; Sato, Kei

    2015-06-01

    The Southern Copper Belt, Carajás Province, Brazil, hosts several iron oxide-copper-gold (IOCG) deposits, including Sossego, Cristalino, Alvo 118, Bacuri, Bacaba, Castanha, and Visconde. Mapping and U-Pb sensitive high-resolution ion microprobe (SHRIMP) IIe zircon geochronology allowed the characterization of the host rocks, situated within regional WNW-ESE shear zones. They encompass Mesoarchean (3.08-2.85 Ga) TTG orthogneiss, granites, and remains of greenstone belts, Neoarchean (ca. 2.74 Ga) granite, shallow-emplaced porphyries, and granophyric granite coeval with gabbro, and Paleoproterozoic (1.88 Ga) porphyry dykes. Extensive hydrothermal zones include albite-scapolite, biotite-scapolite-tourmaline-magnetite alteration, and proximal potassium feldspar, chlorite-epidote and chalcopyrite formation. U-Pb laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICP-MS) analysis of ore-related monazite and Re-Os NTIMS analysis of molybdenite suggest multiple Neoarchean (2.76 and 2.72-2.68 Ga) and Paleoproterozoic (2.06 Ga) hydrothermal events at the Bacaba and Bacuri deposits. These results, combined with available geochronological data from the literature, indicate recurrence of hydrothermal systems in the Southern Copper Belt, including 1.90-1.88-Ga ore formation in the Sossego-Curral ore bodies and the Alvo 118 deposit. Although early hydrothermal evolution at 2.76 Ga points to fluid migration coeval with the Carajás Basin formation, the main episode of IOCG genesis (2.72-2.68 Ga) is related to basin inversion coupled with Neoarchean (ca. 2.7 Ga) felsic magmatism. The data suggest that the IOCG deposits in the Southern Copper Belt and those in the Northern Copper Belt (2.57-Ga Salobo and Igarapé Bahia-Alemão deposits) do not share a common metallogenic evolution. Therefore, the association of all IOCG deposits of the Carajás Province with a single extensive hydrothermal system is precluded.

  13. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits

    Science.gov (United States)

    Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; Singh, B.; Foster, J.

    2009-01-01

    Laser ablation ICP-MS imaging of gold and other trace elements in pyrite from four different sediment- hosted gold-arsenic deposits has revealed two distinct episodes of gold enrichment in each deposit: an early synsedimentary stage where invisible gold is concentrated in arsenian diagenetic pyrite along with other trace elements, in particular, As, Ni, Pb, Zn, Ag, Mo, Te, V, and Se; and a later hydrothermal stage where gold forms as either free gold grains in cracks in overgrowth metamorphic and/or hydrothermal pyrite or as narrow gold- arsenic rims on the outermost parts of the overgrowth hydrothermal pyrite. Compared to the diagenetic pyrites, the hydrothermal pyrites are commonly depleted in Ni, V, Zn, Pb, and Ag with cyclic zones of Co, Ni, and As concentration. The outermost hydrothermal pyrite rims are either As-Au rich, as in moderate- to high- grade deposits such as Carlin and Bendigo, or Co-Ni rich and As-Au poor as in moderate- to low-grade deposits such as Sukhoi Log and Spanish Mountain. The early enrichment of gold in arsenic-bearing syngenetic to diagenetic pyrite, within black shale facies of sedimentary basins, is proposed as a critical requirement for the later development of Carlin-style and orogenic gold deposits in sedimentary environments. The best grade sediment-hosted deposits appear to have the gold climax event, toward the final stages of deformation-related hydrothermal pyrite growth and fluid flow. ?? 2009 Society of Economic Geologists, Inc.

  14. Uranium in minerals of gold-bearing formations of the North-Eastern part of the USSR

    International Nuclear Information System (INIS)

    Zagruzina, I.A.; Pinsky, E.M.

    1979-01-01

    Uranium concentration in 2190 mineral grains from 23 gold-bearing veins of different age deposits in the North-Eastern part of the USSR have been determined using f-radiography. The deposits studied are referred to two formation types: gold-silver epithermal and gold-quartz mesothermal. Differences in physico-chemical conditions of deposite formation of the above formation types are emphasized by the differences in uranium concentration in the vein minerals: 1.0-1.4 g/tU in the first type and 0.4 g/tU in the second one. Uranium content in minerals of gold-bearing veins as compared to minerals of other deposits is characterized by the lowest concentrations. In all gold-bearing veins hydrooxides of iron and hydromica are the main concentrators of uranium. Hypergene stage plays dominating role in uranium accumulation

  15. The late cretaceous Donlin Creek gold deposit, Southwestern Alaska: Controls on epizonal ore formation

    Science.gov (United States)

    Goldfarb, R.J.; Ayuso, R.; Miller, M.L.; Ebert, S.W.; Marsh, E.E.; Petsel, S.A.; Miller, L.D.; Bradley, D.; Johnson, Chad; McClelland, W.

    2004-01-01

    The Donlin Creek gold deposit, southwestern Alaska, has an indicated and inferred resource of approximately 25 million ounces (Moz) Au at a cutoff grade of 1.5 g/t. The ca. 70 Ma deposit is hosted in the Late Cretaceous Kuskokwim flysch basin, which developed in the back part of the are region of an active continental margin, on previously accreted oceanic terranes and continental fragments. A hypabyssal, mainly rhyolitic to rhyodacitic, and commonly porphyritic, 8- ?? 3-km dike complex, part of a regional ca. 77 to 58 Ma magmatic arc, formed a structurally competent host for the mineralization. This deposit is subdivided into about one dozen distinct prospects, most of which consist of dense quartz ?? carbonate veinlet networks that fill north-northeast-striking extensional fractures in the northeast-trending igneous rocks. The sulfide mineral assemblage is dominated by arsenopyrite, pyrite, and, typically younger, stibnite; gold is refractory within the arsenopyrite. Sericitization, carbonatization, and suffidation were the main alteration processes. Fluid inclusion studies of the quartz that hosts the resource indicate dominantly aqueous ore fluids with also about 3 to 7 mol percent CO2 ?? CH4 and a few tenths to a few mole percent NaCl + KCl. The gold-bearing fluids were mainly homogeneously trapped at approximately 275?? to 300??C and at depths of 1 to 2 km. Some of the younger stibnite may have been deposited by late-stage aqueous fluids at lower temperature. Measured ??18O values for the gold-bearing quartz range between 11 and 25 per mil; the estimated ??18O fluid values range from 7 to 12 per mil, suggesting a mainly crustally derived fluid. A broad range of measured ??D values for hydrothermal micas, between -150 and -80 per mil, is suggestive of a contribution from devolatilization of organic matter and/or minor amounts of mixing with meteoric fluids. Gold-associated hydrothermal sulfide minerals are characterized by ??34S values mainly between -16 and

  16. Biological and Geochemical Development of Placer Gold Deposits at Rich Hill, Arizona, USA

    Directory of Open Access Journals (Sweden)

    Erik B. Melchiorre

    2018-02-01

    Full Text Available Placer gold from the Devils Nest deposits at Rich Hill, Arizona, USA, was studied using a range of micro-analytical and microbiological techniques to assess if differences in (paleo-environmental conditions of three stratigraphically-adjacent placer units are recorded by the gold particles themselves. High-angle basin and range faulting at 5–17 Ma produced a shallow basin that preserved three placer units. The stratigraphically-oldest unit is thin gold-rich gravel within bedrock gravity traps, hosting elongated and flattened placer gold particles coated with manganese-, iron-, barium- (Mn-Fe-Ba oxide crusts. These crusts host abundant nano-particulate and microcrystalline secondary gold, as well as thick biomats. Gold surfaces display unusual plumate-dendritic structures of putative secondary gold. A new micro-aerophilic Betaproteobacterium, identified as a strain of Comamonas testosteroni, was isolated from these biomats. Significantly, this ‘black’ placer gold is the radiogenically youngest of the gold from the three placer units. The middle unit has well-rounded gold nuggets with deep chemical weathering rims, which likely recorded chemical weathering during a wetter period in Arizona’s history. Biomats, nano-particulate gold and secondary gold growths were not observed here. The uppermost unit is a pulse placer deposited by debris flows during a recent drier period. Deep cracks and pits in the rough and angular gold from this unit host biomats and nano-particulate gold. During this late arid period, and continuing to the present, microbial communities established within the wet, oxygen-poor bedrock traps of the lowermost placer unit, which resulted in biological modification of placer gold chemistry, and production of Mn-Fe-Ba oxide biomats, which have coated and cemented both gold and sediments. Similarly, deep cracks and pits in gold from the uppermost unit provided a moist and sheltered micro-environment for additional gold

  17. A Holistic Model That Physicochemically Links Iron Oxide - Apatite and Iron Oxide - Copper - Gold Deposits to Magmas

    Science.gov (United States)

    Simon, A. C.; Reich, M.; Knipping, J.; Bilenker, L.; Barra, F.; Deditius, A.; Lundstrom, C.; Bindeman, I. N.

    2015-12-01

    Iron oxide-apatite (IOA) and iron oxide-copper-gold deposits (IOCG) are important sources of their namesake metals and increasingly for rare earth metals in apatite. Studies of natural systems document that IOA and IOCG deposits are often spatially and temporally related with one another and coeval magmatism. However, a genetic model that accounts for observations of natural systems remains elusive, with few observational data able to distinguish among working hypotheses that invoke meteoric fluid, magmatic-hydrothermal fluid, and immiscible melts. Here, we use Fe and O isotope data and high-resolution trace element (e.g., Ti, V, Mn, Al) data of individual magnetite grains from the world-class Los Colorados (LC) IOA deposit in the Chilean Iron Belt to elucidate the origin of IOA and IOCG deposits. Values of d56Fe range from 0.08‰ to 0.26‰, which are within the global range of ~0.06‰ to 0.5‰ for magnetite formed at magmatic conditions. Values of δ18O for magnetite and actinolite are 2.04‰ and 6.08‰, respectively, consistent with magmatic values. Ti, V, Al, and Mn are enriched in magnetite cores and decrease systematically from core to rim. Plotting [Al + Mn] vs. [Ti + V] indicates that magnetite cores are consistent with magmatic and/or magmatic-hydrothermal (i.e., porphyry) magnetites. Decreasing Al, Mn, Ti, V is consistent with a cooling trend from porphyry to Kiruna to IOCG systems. The data from LC are consistent with the following new genetic model for IOA and IOCG systems: 1) magnetite cores crystallize from silicate melt; 2) these magnetite crystals are nucleation sites for aqueous fluid that exsolves and scavenges inter alia Fe, P, S, Cu, Au from silicate melt; 3) the magnetite-fluid suspension is less dense that the surrounding magma, allowing ascent; 4) as the suspension ascends, magnetite grows in equilibrium with the fluid and takes on a magmatic-hydrothermal character (i.e., lower Al, Mn, Ti, V); 5) during ascent, magnetite, apatite and

  18. Magnetic and gravity gradiometry framework for Mesoproterozoic iron oxide-apatite and iron oxide-copper-gold deposits, southeast Missouri, USA

    Science.gov (United States)

    McCafferty, Anne E.; Phillips, Jeffrey; Driscoll, Rhonda L.

    2016-01-01

    High-resolution airborne magnetic and gravity gradiometry data provide the geophysical framework for evaluating the exploration potential of hidden iron oxide deposits in Mesoproterozoic basement rocks of southeast Missouri. The data are used to calculate mineral prospectivity for iron oxide-apatite (IOA) ± rare earth element (REE) and iron oxide-copper-gold (IOCG) deposits. Results delineate the geophysical footprints of all known iron oxide deposits and reveal several previously unrecognized prospective areas. The airborne data are also inverted to three-dimensional density and magnetic susceptibility models over four concealed deposits at Pea Ridge (IOA ± REE), Boss (IOCG), Kratz Spring (IOA), and Bourbon (IOCG). The Pea Ridge susceptibility model shows a magnetic source that is vertically extensive and traceable to a depth of greater than 2 km. A smaller density source, located within the shallow Precambrian basement, is partly coincident with the magnetic source at Pea Ridge. In contrast, the Boss models show a large (625-m-wide), vertically extensive, and coincident dense and magnetic stock with shallower adjacent lobes that extend more than 2,600 m across the shallow Precambrian paleosurface. The Kratz Spring deposit appears to be a smaller volume of iron oxides and is characterized by lower density and less magnetic rock compared to the other iron deposits. A prospective area identified south of the Kratz Spring deposit shows the largest volume of coincident dense and nonmagnetic rock in the subsurface, and is interpreted as prospective for a hematite-dominant lithology that extends from the top of the Precambrian to depths exceeding 2 km. The Bourbon deposit displays a large bowl-shaped volume of coincident high density and high-magnetic susceptibility rock, and a geometry that suggests the iron mineralization is vertically restricted to the upper parts of the Precambrian basement. In order to underpin the evaluation of the prospectivity and three

  19. Quartz-pebble-conglomerate gold deposits: Chapter P in Mineral deposit models for resource assessment

    Science.gov (United States)

    Taylor, Ryan D.; Anderson, Eric D.

    2018-05-17

    Quartz-pebble-conglomerate gold deposits represent the largest repository of gold on Earth, largely due to the deposits of the Witwatersrand Basin, which account for nearly 40 percent of the total gold produced throughout Earth’s history. This deposit type has had a controversial history in regards to genetic models. However, most researchers conclude that they are paleoplacer deposits that have been modified by metamorphism and hydrothermal fluid flow subsequent to initial sedimentation.The deposits are found exclusively within fault-bounded depositional basins. The periphery of these basins commonly consists of granite-greenstone terranes, classic hosts for lode gold that source the detrital material infilling the basin. The gold reefs are typically located along unconformities or, less commonly, at the top of sedimentary beds. Large quartz pebbles and heavy-mineral concentrates are found associated with the gold. Deposits that formed prior to the Great Oxidation Event (circa 2.4 giga-annum [Ga]) contain pyrite, whereas younger deposits contain iron oxides. Uranium minerals and hydrocarbons are also notable features of some deposits.Much of the gold in these types of deposits forms crystalline features that are the product of local remobilization. However, some gold grains preserve textures that are undoubtedly of detrital origin. Other heavy minerals, such as pyrite, contain growth banding that is truncated along broken margins, which indicates that they were transported into place as opposed to forming by in situ growth in a hydrothermal setting.The ore tailings associated with these deposits commonly contain uranium-rich minerals and sulfides. Oxidation of the sulfides releases sulfuric acid and mobilizes various metals into the environment. The neutralizing potential of the tailings is minimal, since carbonate minerals are rare. The continuity of the tabular ore bodies, such as those of the Witwatersrand Basin, has allowed these mines to be the deepest in

  20. Nature and source of the ore-forming fluids associated with orogenic gold deposits in the Dharwar Craton

    Directory of Open Access Journals (Sweden)

    Biswajit Mishra

    2018-05-01

    Full Text Available Neoarchean orogenic gold deposits, associated with the greenstone-granite milieus in the Dharwar Craton include (1 the famous Kolar mine and the world class Hutti deposit; (2 small mines at Hira-Buddini, Uti, Ajjanahalli, and Guddadarangavanahalli; (3 prospects at Jonnagiri; and (4 old mining camps in the Gadag and Ramagiri-Penakacherla belts. The existing diametric views on the source of ore fluid for formation of these deposits include fluids exsolved from granitic melts and extracted by metamorphic devolatilization of the greenstone sequences. Lode gold mineralization occurs in structurally controlled higher order splays in variety of host rocks such as mafic/felsic greenstones, banded iron formations, volcaniclastic rocks and granitoids. Estimated metamorphic conditions of the greenstones vary from lower greenschist facies to mid-amphibolite facies and mineralizations in all the camps are associated with distinct hydrothermal alterations. Fluid inclusion microthermometric and Raman spectroscopic studies document low salinity aqueous-gaseous (H2O + CO2 ± CH4 + NaCl ore fluids, which precipitated gold and altered the host rocks in a narrow P–T window of 0.7–2.5 kbar and 215–320 °C. While the calculated fluid O- and C-isotopic values are ambiguous, S-isotopic compositions of pyrite-precipitating fluid show distinct craton-scale uniformity in terms of its reduced nature and a suggested crustal sulfur source.Available ages on greenstone metamorphism, granitoid plutonism and mineralization in the Hutti Belt are tantamount, making a geochronology-based resolution of the existing debate on the metamorphic vs. magmatic fluid source impossible. In contrast, tourmaline geochemistry suggests involvement of single fluid in formation of gold mineralization, primarily derived by metamorphic devolatilization of mafic greenstones and interlayered sedimentary rocks, with minor magmatic contributions. Similarly, compositions of scheelite

  1. Magnesium–Gold Alloy Formation by Underpotential Deposition of Magnesium onto Gold from Nitrate Melts

    Directory of Open Access Journals (Sweden)

    Vesna S. Cvetković

    2017-03-01

    Full Text Available Magnesium underpotential deposition on gold electrodes from magnesium nitrate –ammonium nitrate melts has been investigated. Linear sweep voltammetry and potential step were used as electrochemical techniques. Scanning electron microscopy (SEM, energy dispersive spectrometry (EDS and X-ray diffraction (XRD were used for characterization of obtained electrode surfaces. It was observed that reduction processes of nitrate, nitrite and traces of water (when present, in the Mg underpotential range studied, proceeded simultaneously with magnesium underpotential deposition. There was no clear evidence of Mg/Au alloy formation induced by Mg UPD from the melt made from eutectic mixture [Mg(NO32·6H2O + NH4NO3·XH2O]. However, EDS and XRD analysis showed magnesium present in the gold substrate and four different Mg/Au alloys being formed as a result of magnesium underpotential deposition and interdiffusion between Mg deposit and Au substrate from the melt made of a nonaqueous [Mg(NO32 + NH4NO3] eutectic mixture at 460 K.

  2. Comparison of the mineralogy of the Boss-Bixby, Missouri copper-iron deposit, and the Olympic Dam copper-uranium-gold deposit, South Australia

    International Nuclear Information System (INIS)

    Brandom, R.T.; Hagni, R.D.; Allen, C.R.

    1985-01-01

    An ore microscopic examination of 80 polished sections prepared from selected drill core specimens from the Boss-Bixby, Missouri copper-iron deposit has shown that its mineral assemblage is similar to that of the Olympic Dam (Roxby Downs) copper-uranium-gold deposit in South Australia. A comparison with the mineralogy reported for Olympic Dam shows that both deposits contain: 1) the principal minerals, magnetite, hematite, chalcopyrite, and bornite, 2) the cobalt-bearing phases, carrollite and cobaltian pyrite, 3) the titanium oxides, rutile and anatase, 4) smaller amounts of martite, covellite, and electrum, 5) fluorite and carbonates, and 6) some alteration minerals. The deposits also are similar with regard to the sequence of mineral deposition: 1) early oxides, 2) then sulfide minerals, and 3) a final oxide generation. The deposits, however, are dissimilar with regard to their host rock lithologies and structural settings. The Boss-Bixby ores occupy breccia zones within a hydrothermally altered basic intrusive and intruded silicic volcanics, whereas the Olympic Dam ores are contained in sedimentary breccias in a graben or trough. Also, some minerals have been found thus far to occur at only one of the deposits. The similarity of mineralogy in these deposits suggests that they were formed from ore fluids that had some similarities in character and that the St. Francois terrane of Missouri is an important region for further exploration for deposits with this mineral assemblage

  3. The Olympic Dam copper-uranium-gold deposit, Roxby Downs, South Australia

    International Nuclear Information System (INIS)

    Roberts, D.E.; Hudson, G.R.T.

    1983-01-01

    The Olympic Dam copper-uranium-gold deposit appears to be a new type of strata-bound sediment-hosted ore deposit. It is located 650 km north-northwest of Adelaide in South Australia and was discovered in 1975. It has an areal extent exceeding 20 km 2 with vertical thicknesses of mineralization up to 350 m. The deposit is estimated to contain in excess of 2,000 million metric tons of mineralized material with an average grade of 1.6 percent copper, 0.06 percent uranium oxide, and 0.6 g/metric ton gold. The deposit occurs in the basement beneath 350 m of unmineralized, flat-lying Adelaidean (late Proterozoic) to Cambrian sediments in the Stuart shelf region of South Australia. The host rocks of the deposit are unmetamorphosed and are probably younger than 1,580 m.y. The deposit is spatially related to coincident gravity and magnetic anomalies and the intersection of west-northwest- and north-northwest-trending lineaments. The Proterozoic sediments comprising the local basement sequence are predominantly sedimentary breccias ranging from matrix-poor granite breccias to matrix-rich polymict breccias containing clasts of a variety of rock types. This sequence is over 1 km thick and has been divided into two main units--the Olympic Dam Formation and the Greenfield Formation. The Olympic Dam Formation has five members, three of which are matrix rich. The Greenfield Formation has three members, the lower two being very hematite rich while the upper has a significant volcanic component. Pervasive hematite, chlorite, and sericite alteration of varying intensity affects all the basement sequence

  4. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings

    Science.gov (United States)

    Groves, David I.; Goldfarb, Richard J.; Santosh, M.

    2016-01-01

    It is quite evident that it is not anomalous metal transport, nor unique depositional conditions, nor any single factor at the deposit scale, that dictates whether a mineral deposit becomes a giant or not. A hierarchical approach thus is required to progressively examine controlling parameters at successively decreasing scales in the total mineral system to understand the location of giant gold deposits in non-arc environments. For giant orogenic, intrusion-related gold systems (IRGS) and Carlin-type gold deposits and iron oxide-copper-gold (IOCG) deposits, there are common factors among all of these at the lithospheric to crustal scale. All are sited in giant gold provinces controlled by complex fundamental fault or shear zones that follow craton margins or, in the case of most Phanerozoic orogenic giants, define the primary suture zones between tectonic terranes. Giant provinces of IRGS, IOCG, and Carlin-type deposits require melting of metasomatized lithosphere beneath craton margins with ascent of hybrid lamprophyric to granitic magmas and associated heat flux to generate the giant province. The IRGS and IOCG deposits require direct exsolution of volatile-rich magmatic-hydrothermal fluids, whereas the association of such melts with Carlin-type ores is more indirect and enigmatic. Giant orogenic gold provinces show no direct relationship to such magmatism, forming from metamorphic fluids, but show an indirect relationship to lamprophyres that reflect the mantle connectivity of controlling first-order structures.

  5. Principal types of precambrian uranium-gold deposits and their metallogenetic characteristics in China

    International Nuclear Information System (INIS)

    Liang Liang; Zhong Zhiyun.

    1988-01-01

    Principal types of Precambrian uranium-gold deposits are follows: paleo-conglomerate uranium-deposit, stratified or strata-bound uranium-gold deposit, unconformity-related uranium deposit (no or seldem gold) and greenstone gold deposit. The main types of gold deposits in China is greenstone one which is characterized by later age, high grade metamorphism and a large time difference between diagenesis of host rocks and gold metallogenesis. Gold deposits are spatially distributed in the uplift area, whereas uranium deposits are distributed in the downfaulted belt. Furthermore, both uranium and gold deposits are controlled by regional fractures

  6. Spectral characteristics of banded iron formations in Singhbhum craton, eastern India: Implications for hematite deposits on Mars

    Directory of Open Access Journals (Sweden)

    Mahima Singh

    2016-11-01

    Full Text Available Banded iron formations (BIFs are major rock units having hematite layers intermittent with silica rich layers and formed by sedimentary processes during late Archean to mid Proterozoic time. In terrestrial environment, hematite deposits are mainly found associated with banded iron formations. The BIFs in Lake Superior (Canada and Carajas (Brazil have been studied by planetary scientists to trace the evolution of hematite deposits on Mars. Hematite deposits are extensively identified in Meridiani region on Mars. Many hypotheses have been proposed to decipher the mechanism for the formation of these deposits. On the basis of geomorphological and mineralogical studies, aqueous environment of deposition is found to be the most supportive mechanism for its secondary iron rich deposits. In the present study, we examined the spectral characteristics of banded iron formations of Joda and Daitari located in Singhbhum craton in eastern India to check its potentiality as an analog to the aqueous/marine environment on Mars. The prominent banding feature of banded iron formations is in the range of few millimeters to few centimeters in thickness. Fe rich bands are darker (gray in color compared to the light reddish jaspilitic chert bands. Thin quartz veins (<4 mm are occasionally observed in the hand-specimens of banded iron formations. Spectral investigations have been conducted in VIS/NIR region of electromagnetic spectrum in the laboratory conditions. Optimum absorption bands identified include 0.65, 0.86, 1.4 and 1.9 μm, in which 0.56 and 0.86 μm absorption bands are due to ferric iron and 1.4 and 1.9 μm bands are due to OH/H2O. To validate the mineralogical results obtained from VIS/NIR spectral radiometry, laser Raman and Fourier transform infrared spectroscopic techniques were utilized and the results were found to be similar. Goethite-hematite association in banded iron formation in Singhbhum craton suggests dehydration activity, which has

  7. Comparative geology and geochemistry of sedimentary-rock-hosted (Carlin Type) gold deposits in the People's Republic of China and in Nevada, USA

    Science.gov (United States)

    Li, Zhiping; Peters, Stephen G.

    1998-01-01

    Sedimentary-rock-hosted (Carlin-type) gold deposits have been considered economically significant and geologically distinct since the early 1960's. This report consists of a nine-part text and an interactive database. This small database is to help Western companies get more information about these gold deposits in China, and to help geologists who are interested in world Carlin-type deposits conduct research on them. Because of their economic significance and geological distinctiveness, these deposits have caught the interest of economic geologists all over the world since the early 1960's. Similar deposits have been discovered in China, Australia, Dominican Republic, Spain, and Russia besides Nevada. Perhaps most significant are the 165 Carlin-type gold deposits that were found in southwest China during the past 15 years. Of these, at least 19 deposits have proven to be of substantial tonnage, making China the second leading country to exploit such deposits. With the increasing interest in Chinese Carlin-type gold deposits, some western companies and geologists desire to get more information about these Chinese deposits. This seems to have been very difficult because the literature was in Chinese. It is estimated that several hundred scientific publications (including papers, books, and technical reports) have been published. This database of Chinese Carlin-type Gold deposits is built on the documentation published during the most recent 10 years and includes six subjects, which consist of 165 records and 30 fields. A new Proterozoic-age sedimentary-rock-hosted gold deposit in northeastern P.R. China also is described. Note that for the old version 1.1 on the CD-ROM, the latitude and longitude locations of the mineral occurrences have been estimated from sketch maps and journal articles and are not intended for digital analysis. One of the improvements in this version 1.2 is the accuracy of geographic data. Version 1.3 updates to the database and includes maps

  8. THE ROLE OF DYNAMOMETAMORPHISM IN THE FORMATION OF THE MUKODEK GOLD FIELD (NORTH PRIBAIKALIE

    Directory of Open Access Journals (Sweden)

    V. A. Vanin

    2017-01-01

    Full Text Available The Mukodek gold field is discussed as an example proving that dynamometamorphism is a major factor in the formation of gold deposits in the Abchad fault zone. This deposit belongs to the gold‐silver‐ore zones of mylonitization and schistosity. The ore source is related to the original host rocks with an increased geochemical background concentration of Au. Due to dynamometamorphism processes, gold particles are abundant and mostly enlarged. From the primary rocks, the dynamometamorphites inherit a positive correlation between the number of particles and the concentrations of gold. The dynamometamorphic complex of the ore field developed in two stages, as a minimum. At the early stage (321.0±1.9 Ma, the host rocks were mechanochemically deformed and transformed into the gold‐ bearing mineralized dynamometamorphites containing sericite, chlorite, ankerite, albite, and quartz. In the second stage (280±15 Ma, the albite‐dolomite‐quartz ore veins were formed. Such veins have industrial gold contents.

  9. Distribution and composition of gold in porphyry gold systems: example from the Biely Vrch deposit, Slovakia

    Science.gov (United States)

    Koděra, Peter; Kozák, Jaroslav; Brčeková, Jana; Chovan, Martin; Lexa, Jaroslav; Jánošík, Michal; Biroň, Adrián; Uhlík, Peter; Bakos, František

    2018-03-01

    The Biely Vrch deposit in the Western Carpathians is assigned to the shallow, sulfide-poor porphyry gold deposit type and has an exceptionally low Cu/Au ratio. According to 3-D geochemical models, there is a limited spatial correlation between Au and Cu due to the primary introduction of gold by a salt melt and Cu by low-density vapor. Despite a rough spatial correlation of gold grades with quartz stockwork intensity, gold is hosted mostly by altered rock, exclusively in native form. Three main gold mineral assemblages were recognized here. In the deepest parts of the system, the K- and Ca-Na silicate gold assemblage is associated with minerals of high-temperature alteration (plagioclase, K-feldspar, actinolite), with gold grades and fineness depending on depth and potassium content of the host rock: K-silicate alteration hosts the lowest fineness gold ( 914), whereas Ca-Na silicate alteration has the highest ( 983). The intermediate argillic gold assemblage is the most widespread, with gold hosted mainly by chlorite, illite, smectite, and interstratified illite-chlorite-smectite minerals. The gold fineness is mostly variable (875-990) and inherited from the former gold mineral assemblages. The latest advanced argillic gold assemblage has its gold mostly in kaolinite. The extremely high fineness ( 994) results from gold remobilization by late-stage aqueous magmatic-hydrothermal fluids. Uncommon bonanza-grade appears where the earlier gold mineral assemblages were further enriched by this remobilized gold. Primary precipitation of gold occurred during ascent and cooling of salt melts at 450 to 309 °C, mostly during retrograde quartz solubility.

  10. Carbon-oxygen isotopes and rare earth elements as an exploration vector for Carlin-type gold deposits: A case study of the Shuiyindong gold deposit, Guizhou Province, SW China

    Science.gov (United States)

    Tan, Qin-Ping; Xia, Yong; Wang, Xueqiu; Xie, Zhuo-Jun; Wei, Dong-Tian

    2017-10-01

    The Shuiyindong gold deposit is a deeply concealed strata-bound Carlin-type deposit in southwestern Guizhou Province, China. The deposit lies on the eastern limb of the Huijiabao anticline with ores mainly along the anticline axis and hosted in bioclastic limestone, containing calcite veins, of the Permian Longtan Formation units. In this study, we measured carbon and oxygen isotopic ratios and rare earth element (REE) concentrations of the host rocks and calcite veins along a profile across the Shuiyindong deposit. Orebodies in the upper unit of the Longtan Formation have higher δ18O values (20.6-22.4‰) and lower δ13C values (-3.7 to -0.5‰) than the country rocks (δ18O: 18.8-21.4‰; δ13C: -0.7 to 0.8‰). However, there are no obvious trends of δ18O and δ13C values from the country rocks to the orebodies in the middle unit of the Longtan Formation. The spatial distribution of the calcite veins displays distinct halos of δ13C and δ18O values and REE concentrations. Calcite veins along the anticlinal axis and major reverse fault are enriched in Middle REE (Sm, Eu, Gd, and Tb) and 18O and depleted in 13C. Surficial veining calcite-filled fractures/faults that connect to deep concealed strata-bound gold mineralization systems can be vectors toward deep ores in southwestern Guizhou Province, China.

  11. Metamorphic rock-hosted orogenic gold deposit style at Bombana (Southeast Sulawesi and Buru Island (Maluku: Their key features and significances for gold exploration in Eastern Indonesia

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2017-06-01

    Full Text Available In Indonesia, gold is commonly mined from epithermal-, porphyry-, and skarn-type deposits that are commonly found in volcanic belts along island arcs or active continental margin settings. Numerous gold prospects, however, were recently discovered in association with metamorphic rocks. This paper focuses on metamorphic rock-hosted gold mineralization in Eastern Indonesia, in particular the Bombana (SE Sulawesi and Buru Island (Maluku prospects. At Bombana, gold-bearing quartz-veins are hosted by the Pompangeo metamorphic complex. Sheared, segmented veins vary in thickness from 2 cm to 2 m. Gold is mainly present in the form of ‘free gold’ among silicate minerals and closely related to cinnabar, stibnite, tripuhyite, and in places, minor arsenopyrite. The gold distribution is erratic, however, ranging from below detection limit up to 134 g/t. At least three generations of veins are identified. The first is parallel to the foliation, the second crosscuts the first generation of veins as well as the foliation, and the late-stage laminated deformed quartz-calcite vein represents the third mineralization stage. The early veins are mostly massive to crystalline, occasionally brecciated, and sigmoidal, whereas the second-stage veins are narrower than the first ones and less subjected to brecciation. Gold grades in the second- and third-stage veins are on average higher than that in the earlier veins. Microthermometric and Raman spectrometric studies of fluid inclusions indicate abundant H2O-NaCl and minor H2O-NaCl-CO2 fluids. Homogenization temperatures and salinities vary from 114 to 283 ºC and 0.35 to 9.08 wt.% NaCl eq., respectively. Crush-leach analysis of fluid inclusions suggests that the halogen fluid chemistry is not identical to sea water, magmatic or epithermal related fluids, but tends to be similar to fluids in mesothermal-type gold deposits. In Buru Island (Gunung Botak and Gogorea prospects, two distinct generations of quartz veins

  12. Multiple Stage Ore Formation in the Chadormalu Iron Deposit, Bafq Metallogenic Province, Central Iran: Evidence from BSE Imaging and Apatite EPMA and LA-ICP-MS U-Pb Geochronology

    Directory of Open Access Journals (Sweden)

    Hassan Heidarian

    2018-02-01

    Full Text Available The Chadormalu magnetite-apatite deposit in Bafq metallogenic province, Central Iran, is hosted in the late Precambrian-lower Cambrian volcano-sedimentary rocks with sodic, calcic, and potassic alterations characteristic of iron oxide copper-gold (IOCG and iron oxide-apatite (IOA ore systems. Apatite occurs as scattered irregular veinlets and disseminated grains, respectively, within and in the marginal parts of the main ore-body, as well as apatite-magnetite veins in altered wall rocks. Textural evidence (SEM-BSE images of these apatites shows primary bright, and secondary dark areas with inclusions of monazite/xenotime. The primary, monazite-free fluorapatite contains higher concentrations of Na, Si, S, and light rare earth elements (LREE. The apatite was altered by hydrothermal events that led to leaching of Na, Si, and REE + Y, and development of the dark apatite. The bright apatite yielded two U-Pb age populations, an older dominant age of 490 ± 21 Ma, similar to other iron deposits in the Bafq district and associated intrusions, and a younger age of 246 ± 17 Ma. The dark apatite yielded a U-Pb age of 437 ± 12 Ma. Our data suggest that hydrothermal magmatic fluids contributed to formation of the primary fluorapatite, and sodic and calcic alterations. The primary apatite reequilibrated with basinal brines in at least two regional extensions and basin developments in Silurian and Triassic in Central Iran.

  13. Geochemical Characteristics of Metamorphic Rock-Hosted Gold Deposit At Onzon-Kanbani Area, Central Myanmar

    Directory of Open Access Journals (Sweden)

    Aung Tay Zar

    2017-09-01

    Full Text Available Gold and associated base metal mineralization of Onzon-Kabani area located in the western border of generally N-S trending Mogoke Metamorphic Belt where well-known Sagaing fault is served as a western boundary of this area. In this research area, many artisanal and small-scale gold mines were noted in last three decades. Gold mineralization is hosted in marble and gneiss unit of research area but most common in marble unit. Variety of igneous intrusions are also observed in research area. Mineralizations are observed as fissure filling veins as well as lesser amount of disseminated nature in marble unit. Mineralogically, gold are associated with other base metal such as pyrite, galena, sphalerite, chalcopyrite, marcasite and arsenopyrite. Hydrothermal alteration halos are developed in peripheral of hydrothermal conduits or mineralization veins from proximal to distal such as 1 silicic, 2 sericite-illite, and 3 propylitic alteration.  Most of hydrothermal minerals from each altered zones showed that near neutral condition of pH (e.g. adularia, calcite, illite, sericite and chlorite. Alternatively, hydrothermal alteration zones that show with ore minerals such as native gold, electrum, sphalerite, galena, chalcopyrite, arsenopyrite and marcasite which mostly observed in silicic alteration zone. Typical boiling characters of vein textures and fluid inclusion petrography are observed in hydrothermal system of research area. Boiling, cooling and mixing are possiblily responsible for gold deposition in hydrothermal system. In this paper, authors are documented to clarify the type of mineralization based on hydrothermal alterations, ore and gangue mineral assemblages and fluid inclusion study. All of these data can describe and play an important role for both with respect to understanding deposit genesis and in mineral exploration.

  14. Oncoidal granular iron formation in the Mesoarchaean Pongola Supergroup, southern Africa: Textural and geochemical evidence for biological activity during iron deposition.

    Science.gov (United States)

    Smith, A J B; Beukes, N J; Gutzmer, J; Czaja, A D; Johnson, C M; Nhleko, N

    2017-11-01

    We document the discovery of the first granular iron formation (GIF) of Archaean age and present textural and geochemical results that suggest these formed through microbial iron oxidation. The GIF occurs in the Nconga Formation of the ca. 3.0-2.8 Ga Pongola Supergroup in South Africa and Swaziland. It is interbedded with oxide and silicate facies micritic iron formation (MIF). There is a strong textural control on iron mineralization in the GIF not observed in the associated MIF. The GIF is marked by oncoids with chert cores surrounded by magnetite and calcite rims. These rims show laminated domal textures, similar in appearance to microstromatolites. The GIF is enriched in silica and depleted in Fe relative to the interbedded MIF. Very low Al and trace element contents in the GIF indicate that chemically precipitated chert was reworked above wave base into granules in an environment devoid of siliciclastic input. Microbially mediated iron precipitation resulted in the formation of irregular, domal rims around the chert granules. During storm surges, oncoids were transported and deposited in deeper water environments. Textural features, along with positive δ 56 Fe values in magnetite, suggest that iron precipitation occurred through incomplete oxidation of hydrothermal Fe 2+ by iron-oxidizing bacteria. The initial Fe 3+ -oxyhydroxide precipitates were then post-depositionally transformed to magnetite. Comparison of the Fe isotope compositions of the oncoidal GIF with those reported for the interbedded deeper water iron formation (IF) illustrates that the Fe 2+ pathways and sources for these units were distinct. It is suggested that the deeper water IF was deposited from the evolved margin of a buoyant Fe 2+ aq -rich hydrothermal plume distal to its source. In contrast, oncolitic magnetite rims of chert granules were sourced from ambient Fe 2+ aq -depleted shallow ocean water beyond the plume. © 2017 John Wiley & Sons Ltd.

  15. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    In contrast to their province scale similarities, the different giant gold deposit styles show contrasting critical controls at the district to deposit scale. For orogenic gold deposits, the giants appear to have formed by conjunction of a greater number of parameters to those that control smaller deposits, with resultant geometrical and lithostratigraphic complexity as a guide to their location. There are few giant IRGS due to their inferior fluid-flux systems relative to orogenic gold deposits, and those few giants are essentially preservational exceptions. Many Carlin-type deposits are giants due to the exceptional conjunction of both structural and lithological parameters that caused reactive and permeable rocks, enriched in syngenetic gold, to be located below an impermeable cap along antiformal “trends”. Hydrocarbons probably played an important role in concentrating metal. The supergiant Post-Betze deposit has additional ore zones in strain heterogeneities surrounding the pre-gold Goldstrike stock. All unequivocal IOCG deposits are giant or near-giant deposits in terms of gold-equivalent resources, partly due to economic factors for this relatively poorly understood, low Cu-Au grade deposit type. The supergiant Olympic Dam deposit, the most shallowly formed deposit among the larger IOCGs, probably owes its origin to eruption of volatile-rich hybrid magma at surface, with formation of a large maar and intense and widespread brecciation, alteration and Cu-Au-U deposition in a huge rock volume.

  16. Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia

    Science.gov (United States)

    Heinson, Graham S.; Direen, Nicholas G.; Gill, Rob M.

    2006-07-01

    The iron oxide copper-gold Olympic Dam deposit, situated along the margin of the Proterozoic Gawler craton, South Australia, is the world's largest uranium deposit and sixth-largest copper deposit; it also contains significant reserves of gold, silver, and rare earth elements. Gaining a better understanding of the mechanisms for genesis of the economic liberalization is fundamental for defining exploration models in similar crustal settings. To delineate crustal structures that may constrain mineral system fluid pathways, coincident deep crustal seismic and magnetotelluric (MT) transects were obtained along a 220 km section that crosses Olympic Dam and the major crustal boundaries. In this paper we present results from 58 long-period (10 104 s) MT sites, with site spacing of 5 10 km. A two-dimensional inversion of MT data from 33 sites to a depth of 100 km shows four notable features: (1) sedimentary cover sequences with low resistivity (1000 Ω·m) Archean crustal core from a more conductive crust and mantle to the north (typically Olympic Dam, the upper-middle crust to ˜20 km is quite resistive (˜1000 Ω·m), but the lower crust is much more conductive (Olympic Dam, we image a low-resistivity region (Olympic Dam may be due to the upward movement of CO2-bearing volatiles near the time of deposit formation that precipitated conductive graphite liberalization along grain boundaries, simultaneously annihilating acoustic impedance boundaries. The source of the volatiles may be from the mantle degassing or retrograde metamorphism of the lower crust associated with Proterozoic crustal deformation.

  17. Compositional Variation of Tourmaline from the Paleoproterozoic Bhukia Gold Prospect of Aravalli Supergroup, Western India: Implications for the Provenance and Gold Metallogeny

    Science.gov (United States)

    Mukherjee, R.; Venkatesh, A. S.; Fareeduddin, F.

    2016-12-01

    Bhukia is a unique gold prospect in terms of its host lithologies such as albitite and carbonates with respect to greenstone hosted Archean gold deposits from India. Tourmaline occurs along with apatite, magnetite, graphite, chalcopyrite and gold-sulfide association in Bhukia gold prospect preserve geochemical record of changing physico-chemical conditions during its growth. Tourmalinization is one of the distinct hydrothermal alterations present in the study area. Chemical composition of two varieties of tourmalines presents as significant amounts within albitite and carbonate rocks from Bhukia gold prospect. EPMA analysis of two varieties of tourmalines viz. 1) rounded to sub-rounded, euhedral, green colored tourmalines and 2) elongated, zoned, brown colored tourmalines unlocks their chemical compositions as well as variations from core to rim. In some albitite litho-units, tourmaline occurs as major constituents (>15%), present as layers, termed as tourmalinites. Al-Fe-Mg and Na/ (Na+Ca) vs Fe/ (Fe+Mg) suggests that tourmalines from the Bhukia gold prospect are Mg-rich dravite to Fe-rich schrol in composition. Tourmalines present within the albitite rocks show variations in iron and sodium content from core to rim whereas similarity exist from core to rim in case of carbonate rocks. Presence of albite confirms the role of Na-rich fluids during the formation of tourmalines. Tourmalines present in Bhukia gold prospect is mainly influenced by boron influx and the source may be boron bearing hydrothermal fluid or boron bearing minerals. Dewatering of original un-metamorphosed rock during progressive metamorphism may remove boron from the metasedimentary rocks. Due to the mobile nature of boron, it dispersed and mixed with hydrothermal fluids and alumina that is required for the formation of the tourmaline might have been leached from metasedimentary rocks present in Bhukia gold prospect. Presence of hydrothermal alterations such as tourmalinization and albitization

  18. Study on the determination of ore-formation age of primary gold ore

    International Nuclear Information System (INIS)

    Ying Junlong; Zhao Puyun; Guo Hong

    1997-01-01

    The accurate determination of gold ore-formation age and ore-source isotope composition are of important significance in the research on gold geology and prospecting. According to the summary of three year indoor and field work, the ore-formation ages and isotope compositions of some typical gold deposits were obtained: The age of gold ore of the Wuhuaaobao deposit in geo-syncline region north to the north margin of North-China paleo-land is 130-120 Ma corresponding to the Late-orogenic stage. The ore-formation age of the Saiwusu gold deposit in the southern platform region is 211 +- 15 Ma, recycling reworking of the old-land. The Hougou-Huangtuliang gold deposit located in the middle of the platform region is 243 +- 7 Ma old attributed to the regeneration ore-formation on the old-land. the age of Jiaojia-Rushan gold deposit in Eastern Shandong is 122.7 +- 3.4 Ma and 128 +- 23 Ma belonging to Yanshanian stage. The Babaoshan gold-silver deposit in Cathaysian old-land is 140 +- 5 Ma old originated from volcanic hydrothermal ore-formation

  19. Oxygen in the Martian atmosphere: Regulation of PO2 by the deposition of iron formations on Mars

    Science.gov (United States)

    Burns, Roger G.

    1992-01-01

    During Earth's early history, and prior to the evolution of its present day oxygenated atmosphere, extensive iron rich siliceous sedimentary rocks were deposited, consisting of alternating layers of silica (chert) and iron oxide minerals (hematite and magnetite). The banding in iron formations recorded changes of atmosphere-hydrosphere interactions near sea level in the ancient ocean, which induced the oxidation of dissolved ferrous iron, precipitation of insoluble ferric oxides and silica, and regulation of oxygen in Earth's early atmosphere. Similarities between the Archean Earth and the composition of the present day atmosphere on Mars, together with the pervasive presence of ferric oxides in the Martian regolith suggest that iron formation might also have been deposited on Mars and influenced the oxygen content of the Martian atmosphere. Such a possibility is discussed here with a view to assessing whether the oxygen content of the Martian atmosphere has been regulated by the chemical precipitation of iron formations on Mars.

  20. Role of Sulfur in the Formation of Magmatic-Hydrothermal Copper-Gold Deposits

    Science.gov (United States)

    Seo, J.; Guillong, M.; Heinrich, C.

    2009-05-01

    Sulfur plays essential roles in hydrothermal ore-forming processes [1], which calls for precise and accurate quantitative sulfur determination in fluid inclusions. Feasibility tests for sulfur quantification by comparing data from both LA-Quadrupole (Q) - ICP-MS and LA-High Resolution (HR) - ICP-MS show that reliable sulfur quantification in fluid inclusions is possible [2], provided that a very careful baseline correction is applied. We investigate the metal transporting capabilities of sulfur by measuring sulfur together with copper and other elements in cogenetic brine and vapor inclusions ('boiling assemblages') in single healed crack hosted by quartz veins. Samples are from high-temperature magmatic-hydrothermal ore deposits and miarolitic cavities of barren granitoid. Clear compositional correlations of sulfur with copper and gold were found. A molar S/Cu ratio commonly close to 2 but never above 2, indicates sulfur-complexed metal transportation in the high-temperature hydrothermal vapor, and probably also in the Na-Fe-K-Cl-enriched brines. Vapor/brine partitioning trends of the S and Cu are shown to be related with the chemistry of the fluids (possibly by various sulfur speciations in varying pH, fO2) and causative magma source. In the boiling hydrothermal environments, higher vapor partitioning of Cu and S is observed at reduced and peraluminous Sn-W granite, whereas oxidized and perakaline porphyry-style deposits have a lower partitioning to the vapor although the total concentration of S, Cu, Au in both fluid phase is higher than in the Sn-W granite [3]. Vapor inclusion in the boiling assemblages from magmatic-hydrothermal ore deposits and granitic intrusions generally contain an excess of sulfur over ore metals such as Cu, Fe, and Mo. This allows efficient sulfide ore precipitation in high-temperature porphyry-type deposits, and complexation of gold by the remaining sulfide down to lower temperatures. The results confirm earlier interpretations [1] and

  1. Chemical fingerprint of iron oxides related to iron enrichment of banded iron formation from the Cauê Formation - Esperança Deposit, Quadrilátero Ferrífero, Brazil: a laser ablation ICP-MS study

    Directory of Open Access Journals (Sweden)

    Lucilia Aparecida Ramos de Oliveira

    Full Text Available Chemical signatures of iron oxides from dolomitic itabirite and high-grade iron ore from the Esperança deposit, located in the Quadrilátero Ferrífero, indicate that polycyclic processes involving changing of chemical and redox conditions are responsible for the iron enrichment on Cauê Formation from Minas Supergroup. Variations of Mn, Mg and Sr content in different generations of iron oxides from dolomitic itabirite, high-grade iron ore and syn-mineralization quartz-carbonate-hematite veins denote the close relationship between high-grade iron ore formation and carbonate alteration. This indicates that dolomitic itabirite is the main precursor of the iron ore in that deposit. Long-lasting percolation of hydrothermal fluids and shifts in the redox conditions have contributed to changes in the Y/Ho ratio, light/heavy rare earth elements ratio and Ce anomaly with successive iron oxide generations (martite-granular hematite, as well as lower abundance of trace elements including rare earth elements in the younger specularite generations.

  2. Constraints on mineralisation and hydrothermal alteration in the Nalunaq gold deposit, South Greenland

    DEFF Research Database (Denmark)

    Bell, Robin-Marie Fairbairn

    Summary: Nalunaq is located in South Greenland and is a small high gold-grade deposit, which for the majority of its operational life was Greenland's only metalliferous mine. Gold is hosted in narrow quartz veins which are cross-cut by late-stage faults. Gold-quartz veins are hosted by fine...

  3. Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling mountains, central China

    Science.gov (United States)

    Mao, J.; Goldfarb, R.J.; Zhang, Z.; Xu, W.; Qiu, Yumin; Deng, J.

    2002-01-01

    The gold-rich Xiaoqinling-Xiong'ershan region in eastern Shaanxi and western Henan provinces, central China, lies about 30-50 km inland of the southern margin of the North China craton. More than 100 gold deposits and occurrences are concentrated in the Xiaoqinling (west), Xiaoshan (middle), and Xiong'ershan (east) areas. Late Archean gneiss of the Taihua Group, and Middle Proterozoic metavolcanic rocks of the Xiong'er Group are the main host rocks for the deposits. Mesozoic granitoids (ca. 178-104 Ma) are present in most gold districts, but deposits are typically hosted in the Precambrian basement rocks hundreds of meters to as far as 10 km from the intrusions and related hornfels zones. Deposits in the Xiaoqinling and Xiaoshan areas are best classified as orogenic gold deposits, with ores occurring in a number of distinct belts both in quartz veins and disseminated in altered metamorphic rocks. Alteration assemblages are dominated by quartz, sericite, pyrite, and carbonate minerals. The ore-forming fluids were low salinity, CO2-rich, and characterized by isotopically heavy ??18O. Four deposits (Dongchuang, Wenyu, Yangzhaiyu, and Dahu) in the Xiaoqinling area each contain resources of about 1 Moz Au. Some of the gold deposits in the Xiong'ershan area represent more shallowly emplaced tellurium-enriched orogenic systems, which include resources of approximately 1-1.5 Moz Au at Shanggong and Beiling (or Tantou). Others are epithermal deposits (e.g., Qiyugou and Dianfang) that are hosted in volcanic breccia pipes. Isotopic dates for all gold deposits, although often contradictory, generally cluster between 172-99 Ma and are coeval with emplacement of the post-kinematic granitoids. The gold deposits formed during a period of relaxation of far-field compressional stresses, clearly subsequent to the extensive Paleozoic-early Mesozoic accretion of are terranes and the Yangtze craton onto the southern margin of the North China craton. Hydrothermal and magmatic events

  4. Self-organized formation of metal-carbon nanostructures by hyperthermal ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hannstein, I.K.

    2006-04-26

    The quasi-simultaneous deposition of mass-selected hyperthermal carbon and metal ions results in a variety of interesting film morphologies, depending on the metal used and the deposition conditions. The observed features are of the order of a few nanometres and are therefore interesting for future potential applications in the various fields of nanotechnology. The present study focuses on the structural analysis of amorphous carbon films containing either copper, silver, gold, or iron using amongst others Rutherford Backscattering Spectroscopy, High Resolution Transmission Electron Microscopy, and Energy Dispersive X-Ray Spectroscopy. The film morphologies found are as follows: copper-containing films consist of copper nanoclusters with sizes ranging from about 3 to 9 nm uniformly distributed throughout the amorphous carbon matrix. The cluster size hereby rises with the copper content of the films. The silver containing films decompose into a pure amorphous carbon film with silver agglomerates at the surface. Both, the gold- and the iron-containing films show a multilayer structure of metal-rich layers with higher cluster density separated by metal-depleted amorphous carbon layers. The layer distances are of the order of up to 15 nm in the case of gold-carbon films and 7 nm in the case of iron-carbon films. The formation of theses different structures cannot be treated in the context of conventional self-organization mechanisms basing upon thermal diffusion and equilibrium thermodynamics. Instead, an ion-induced atomic transport, sputtering effects, and the stability of small metal clusters were taken into account in order to model the structure formation processes. A similar multilayer morphology was recently also reported in the literature for metal-carbon films grown by magnetron sputtering techniques. In order to investigate, whether the mechanisms are the same as in the case of the ion beam deposited films described above, first experiments were conducted

  5. The Krásná Hora, Milešov, and Příčovy Sb-Au ore deposits, Bohemian Massif: mineralogy, fluid inclusions, and stable isotope constraints on the deposit formation

    Science.gov (United States)

    Němec, Matěj; Zachariáš, Jiří

    2018-02-01

    The Krásná Hora-Milešov and Příčovy districts (Czech Republic) are the unique examples of Sb-Au subtype orogenic gold deposits in the Bohemian Massif. They are represented by quartz-stibnite veins and massive stibnite lenses grading into low-grade, disseminated ores in altered host rocks. Gold postdates the stibnite and is often replaced by aurostibite. The ore zones are hosted by hydrothermally altered dikes of lamprophyres (Krásná Hora-Milešov) or are associated with local strike-slip faults (Příčovy). Formation of Sb-Au deposits probably occurred shortly after the main gold-bearing event (348-338 Ma; Au-only deposits) in the central part of the Bohemian Massif. Fluid inclusion analyses suggest that stibnite precipitated at 250 to 130 °C and gold at 200 to 130 °C from low-salinity aqueous fluids. The main quartz gangue hosting the ore precipitated from the same type of fluid at about 300 °C. Early quartz-arsenopyrite veins are not associated with the Sb-Au deposition and formed from low-salinity, aqueous-carbonic fluid at higher pressure and temperature ( 250 MPa, 400 °C). The estimated oxygen isotope composition of the ore-bearing fluid (4 ± 1‰ SMOW; based on post-ore calcite) suggests its metamorphic or mixed magmatic-metamorphic origin and excludes the involvement of meteoric water. Rapid cooling of warm hydrothermal fluids reacting with "cold" host rock was probably the most important factor in the formation of both stibnite and gold.

  6. Microbial involvement in the formation of Cambrian sea-floor silica-iron oxide deposits, Australia

    Science.gov (United States)

    Duhig, Nathan C.; Davidson, Garry J.; Stolz, Joe

    1992-06-01

    The Cambrian-Ordovician Mount Windsor volcanic belt in northern Australia is host to stratiform lenses of massive ferruginous chert that are spatially associated with volcanogenic massive sulfide occurrences, in particular the Thalanga zinc-lead-copper-silver deposit. The rocks are composed principally of Fe2O3 and SiO2, with very low concentrations of alkalic elements, and lithogenous elements such as Al, Zr, and Ti; they are interpreted as nearly pure chemical sediments. Textural evidence is documented of the integral role of filamentous bacteria (and/or fungi) in depositing iron from hydrothermal fluids, and of the inorganic precipitation of silica-iron-oxyhydroxide gels that subsequently matured to subcrystalline and crystalline silica forms. At least three distinct iron-accumulating microbial forms are distinguished: networks of septate filaments, nonseptate filament networks, and extremely coarse branching filaments that do not reconnect. Values for δ34S in disseminated pyrite are up to 50‰ lighter than those of contemporaneous Cambrian seawater, suggesting postdepositional colonization of some ironstones by sulfur-reducing bacteria. The site not only preserves the textural interplay of biological and inorganic depositional processes in exhalites, but also extends the oldest known instance of microbial mediation in vent-proximal hydrothermal iron precipitation to at least 500 Ma.

  7. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits?

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    Full Text Available Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially – associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve metamorphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many

  8. Did the Kiruna iron ores form as a result of a metasomatic or igneous process? New U-Pb and Nd data for the iron oxide apatite ores and their host rocks in the Norrbotten region of northern Sweden

    Science.gov (United States)

    Westhues, A.; Hanchar, J. M.; Whitehouse, M. J.; Fisher, C. M.

    2012-12-01

    A number of iron deposits near Kiruna in the Norrbotten region of northern Sweden are of the iron oxide apatite (IOA) type of deposits; also referred to as Kiruna-type deposits. They are commonly considered a subgroup or end-member of iron oxide copper gold (IOCG) deposits, containing no economic grades of copper or gold. Both IOCG and IOA deposits are characterized by abundant low-Ti Fe oxides, an enrichment in REE, and intense sodium and potassium wall-rock alteration adjacent to the ores. Deposits of these types are of a great economic importance, not only for iron, but also for other elements such as rare earth elements (REE) or uranium. Kiruna, the type locality of the IOA type of mineral deposits, is the focus of this study. Despite a century-long mining history and 2500 Mt of iron ore produced in the region to date (with grades of 30 to 70 wt.% Fe), the genesis of these deposits is poorly understood: theories of a magmatic vs. a hydrothermal or metasomatic origin have been debated, and the timing of mineralization of the ores in the Norbotten region has never been directly dated. The results anticipated from this study will provide a better understanding of the nature of the IOA type of mineral deposits and their relation to IOCG deposits such as Olympic Dam in Australia. An array of geochemical methods is used in order to gain insights on the emplacement history of the host rocks, their subsequent alteration, and the ore genesis of these deposits. This includes in situ U/Pb geochronology of zircon, monazite, and titanite to constrain the timing between host rock emplacement, alteration and mineralization. Isotopic data from whole rocks and in situ at mineral scale will provide constraints on the involvement of hydrothermal fluids and their possible sources, as well as on the sources of Fe, U, and the REE. Newly obtained Sm-Nd isotopic data points to distinct source differences between host rocks, ore and alteration related samples. Preliminary in situ U

  9. Paleozoic–early Mesozoic gold deposits of the Xinjiang Autonomous Region, northwestern China

    Science.gov (United States)

    Rui, Zongyao; Goldfarb, Richard J.; Qiu, Yumin; Zhou, T.; Chen, R.; Pirajno, Franco; Yun, Grace

    2002-01-01

    The late Paleozoic–early Mesozoic tectonic evolution of Xinjiang Autonomous Region, northwestern China provided a favorable geological setting for the formation of lode gold deposits along the sutures between a number of the major Eastern Asia cratonic blocks. These sutures are now represented by the Altay Shan, Tian Shan, and Kunlun Shan ranges, with the former two separated by the Junggar basin and the latter two by the immense Tarim basin. In northernmost Xinjiang, final growth of the Altaid orogen, southward from the Angara craton, is now recorded in the remote mid- to late Paleozoic Altay Shan. Accreted Early to Middle Devonian oceanic rock sequences contain typically small, precious-metal bearing Fe–Cu–Zn VMS deposits (e.g. Ashele). Orogenic gold deposits are widespread along the major Irtysh (e.g. Duyolanasayi, Saidi, Taerde, Kabenbulake, Akexike, Shaerbulake) and Tuergen–Hongshanzui (e.g. Hongshanzui) fault systems, as well as in structurally displaced terrane slivers of the western Junggar (e.g. Hatu) and eastern Junggar areas. Geological and geochronological constraints indicate a generally Late Carboniferous to Early Permian episode of gold deposition, which was coeval with the final stages of Altaid magmatism and large-scale, right-lateral translation along older terrane-bounding faults. The Tian Shan, an exceptionally gold-rich mountain range to the west in the Central Asian republics, is only beginning to be recognized for its gold potential in Xinjiang. In this easternmost part to the range, northerly- and southerly-directed subduction/accretion of early to mid-Paleozoic and mid- to late Paleozoic oceanic terranes, respectively, to the Precambrian Yili block (central Tian Shan) was associated with 400 to 250 Ma arc magmatism and Carboniferous through Early Permian gold-forming hydrothermal events. The more significant resulting deposits in the terranes of the southern Tian Shan include the Sawayaerdun orogenic deposit along the Kyrgyzstan

  10. The dilemma of the Jiaodong gold deposits: Are they unique?

    Science.gov (United States)

    Goldfarb, Richard J.; Santosh, M.

    2013-01-01

    The ca. 126–120 Ma Au deposits of the Jiaodong Peninsula, eastern China, define the country's largest gold province with an overall endowment estimated as >3000 t Au. The vein and disseminated ores are hosted by NE- to NNE-trending brittle normal faults that parallel the margins of ca. 165–150 Ma, deeply emplaced, lower crustal melt granites. The deposits are sited along the faults for many tens of kilometers and the larger orebodies are associated with dilatational jogs. Country rocks to the granites are Precambrian high-grade metamorphic rocks located on both sides of a Triassic suture between the North and South China blocks. During early Mesozoic convergent deformation, the ore-hosting structures developed as ductile thrust faults that were subsequently reactivated during Early Cretaceous “Yanshanian” intracontinental extensional deformation and associated gold formation.Classification of the gold deposits remains problematic. Many features resemble those typical of orogenic Au including the linear structural distribution of the deposits, mineralization style, ore and alteration assemblages, and ore fluid chemistry. However, Phanerozoic orogenic Au deposits are formed by prograde metamorphism of accreted oceanic rocks in Cordilleran-style orogens. The Jiaodong deposits, in contrast, formed within two Precambrian blocks approximately 2 billion years after devolatilization of the country rocks, and thus require a model that involves alternative fluid and metal sources for the ores. A widespread suite of ca. 130–123 Ma granodiorites overlaps temporally with the ores, but shows a poor spatial association with the deposits. Furthermore, the deposit distribution and mineralization style is atypical of ores formed from nearby magmas. The ore concentration requires fluid focusing during some type of sub-crustal thermal event, which could be broadly related to a combination of coeval lithospheric thinning, asthenospheric upwelling, paleo-Pacific plate

  11. Metamorphic Rock-Hosted Orogenic Gold Deposit Type as a Source of Langkowala Placer Gold, Bombana, Southeast Sulawesi

    OpenAIRE

    Idrus, Arifudin; Nur, I; Warmada, I. W; Fadlin, Fadlin

    2011-01-01

    DOI: 10.17014/ijog.v6i1.114In 2008, placer gold was discovered in Langkowala area (Bombana Regency), Southeast Sulawesi, Indonesia, and more than 60,000 traditional gold miners in the early 2009 have been operating by digging vertical pits and panning active stream sediments. The grade of placer gold ranges from 50 to 140 g/t. Local geological framework indicates that the placer gold is not related to volcanic rock-related hydrothermal gold deposit, e.g. epithermal, skarn or porphyry. This pa...

  12. Genesis of the Abu Marawat gold deposit, central Eastern Desert of Egypt

    Science.gov (United States)

    Zoheir, Basem A.; Akawy, Ahmed

    2010-06-01

    Gold mineralisation at the Abu Marawat mine, central Eastern Desert of Egypt, is related to a system of massive and sheared, milky quartz veins cutting a sequence of Neoproterozoic island arc metavolcanic/volcaniclastic rocks and related banded iron formation (BIF). Sulphide-bearing quartz veins and related hydrothermal breccia bodies display a range of textures including sheared, boudinaged and recrystallised quartz, open space filling and microbreccia. These variable textures imply a complex history of crack-seal mechanism characterising the relation between mineral deposition and a major N-S-trending shear zone, during a late brittle-ductile deformation event which affected the area at about 550 Ma. Gold-base metal mineralisation is associated with brecciation and fracturing of the iron ore bands, close to silicified shears and related quartz veins. The auriferous quartz lodes are characterised by the occurrence of visible pyrite-chalcopyrite ± pyrrhotite ± sphalerite ± galena mineralisation. Gold is refractory in pyrite and chalcopyrite, but rare visible gold/electrum and telluride specks were observed in a few samples. Hydrothermal alteration includes pervasive silicification, pyritisation, sericitisation, carbonatisation confined to a delicate set of veins and altered shears, and a more widespread propylitic alteration assemblage (quartz + chlorite + pyrite + calcite ± epidote). Fluid inclusion petrography and microthermometric studies suggest heterogeneous trapping of a low-salinity (1.4-6.7 wt.% eq. NaCl) aqueous solution and a carbonic fluid. Evidence for fluid immiscibility during ore formation includes variable liquid/vapour ratios in inclusions along individual trails and bulk inclusion homogenisation into liquid and occasionally to vapour at comparable temperatures. The trapping conditions of intragranular aqueous-carbonic inclusions approximate 264-378 °C at 700-1300 bar. Similar temperature estimates have been obtained from Al

  13. General geology, alteration, and iron deposits in the Palaeoproterozoic Misi region, northern Finland

    Directory of Open Access Journals (Sweden)

    Tero Niiranen

    2003-01-01

    characteristic for the entire region. The styles of alteration in the region are: scapolitisation, regional and local albitisation, sericitisation and silicification associated with a major shear zone, and late carbonatisation and carbonate veining associated with brecciation of the ores and their wall rocks. Local intense albitisation and formation of skarnoids and magnetite ores took placeduring the pre-D1 or D1 faulting or shearing which postdate the intrusion of 2120 Ma gabbros. The iron was mobilized from the mafic to intermediate country rocks and/or marble sequence which possibly contained sedimentary iron formation. Regional alteration with the local intense albitisation and ore formation show similar features to the iron oxide-copper-gold type deposits, although the known deposits in the Misi region only contain trace amounts of gold and copper.

  14. Gold nanoparticle formation in diamond-like carbon using two different methods: Gold ion implantation and co-deposition of gold and carbon

    International Nuclear Information System (INIS)

    Salvadori, M. C.; Teixeira, F. S.; Araújo, W. W. R.; Sgubin, L. G.; Cattani, M.; Spirin, R. E.; Brown, I. G.

    2012-01-01

    We describe work in which gold nanoparticles were formed in diamond-like carbon (DLC), thereby generating a Au-DLC nanocomposite. A high-quality, hydrogen-free DLC thin film was formed by filtered vacuum arc plasma deposition, into which gold nanoparticles were introduced using two different methods. The first method was gold ion implantation into the DLC film at a number of decreasing ion energies, distributing the gold over a controllable depth range within the DLC. The second method was co-deposition of gold and carbon, using two separate vacuum arc plasma guns with suitably interleaved repetitive pulsing. Transmission electron microscope images show that the size of the gold nanoparticles obtained by ion implantation is 3-5 nm. For the Au-DLC composite obtained by co-deposition, there were two different nanoparticle sizes, most about 2 nm with some 6-7 nm. Raman spectroscopy indicates that the implanted sample contains a smaller fraction of sp 3 bonding for the DLC, demonstrating that some sp 3 bonds are destroyed by the gold implantation.

  15. Basic feature of host rock and its relation to the formation of leachable sandstone type uranium deposit in Shihongtan

    International Nuclear Information System (INIS)

    Quan Zhigao; Zhang Jiamin; Ji Haijun; Sun Yanhuan; Zhang Fa

    2012-01-01

    Basic feature of sedimentology and petrology and lithogeochemistry of middle Jurassic Xishanyao formation were discussed for Shihongtan uranium deposit in the paper. The relation between host rock and ore formation was analysed. It is indicated that the formation of Shihongtan uranium deposit de-ponds on the following host features in sedimentology, petrology, lithogeochemistry and the intense oxidized epigenetic alteration under hot dry climate condition during the formation of peneplain caused by the slow tilting uplift. (authors)

  16. Synthesis and Evaluation of Nanostructured Gold-Iron Oxide Catalysts for the Oxidative Dehydrogenation of Cyclohexane

    Science.gov (United States)

    Wu, Peng

    Shape-controlled iron oxide and gold-iron oxide catalysts with a cubic inverse spinel structure were studied in this thesis for the oxidative dehydrogenation of cyclohexane. The structure of iron oxide and gold-iron oxide catalysts has no major impact on their oxidative dehydrogenation activity. However, the product selectivity is influenced. Both cyclohexene and benzene are formed on bare iron oxide nanoshapes, while benzene is the only dehydrogenation product in the presence of gold. The selectivity of benzene over CO2 depends strongly on the stability of the iron oxide support and the gold-support interaction. The highest benzene yield has been observed on gold-iron oxide octahedra. {111}-bound nanooctahedra are highly stable in reaction conditions at 300 °C, while {100}-bound nanocubes start to sinter above 250 °C. The highest benzene yield has been observed on gold-iron oxide nanooctahedra, which are likely to have gold atoms, and few-atom gold clusters strongly-bound on their surface. Cationic gold appears to be the active site for benzene formation. An all-organic method to prepare Au-FeOx nano-catalysts is needed due to the inconvenience of the half-organic, half-inorganic synthesis process discussed above. Several methods from the literature to prepare gold-iron oxide nanocomposites completely in organic solvents were reviewed and followed. FeOx Au synthesis procedures in literatures are initially designed for a Au content of over 70%. This approach was tried here to prepare composites with a much lower Au content (2-5 atom. %). Heat treatment is required to bond Au and FeOx NPs in the organic-phase syntheses. Au-FeOx-4 was obtained as a selective catalyst for the ODH of cyclohexane. A Audelta+ peak is observed in the UV-Vis spectrum of sample Au-FeOx-4. This different Au delta+ form may be cationic Au nano-clusters interacting with the FeOx support. It has been demonstrated that cationic gold is responsible for dehydrogenation behavior. Furthermore, the

  17. Automated recognition of stratigraphic marker shales from geophysical logs in iron ore deposits

    Science.gov (United States)

    Silversides, Katherine; Melkumyan, Arman; Wyman, Derek; Hatherly, Peter

    2015-04-01

    The mining of stratiform ore deposits requires a means of determining the location of stratigraphic boundaries. A variety of geophysical logs may provide the required data but, in the case of banded iron formation hosted iron ore deposits in the Hamersley Ranges of Western Australia, only one geophysical log type (natural gamma) is collected for this purpose. The information from these logs is currently processed by slow manual interpretation. In this paper we present an alternative method of automatically identifying recurring stratigraphic markers in natural gamma logs from multiple drill holes. Our approach is demonstrated using natural gamma geophysical logs that contain features corresponding to the presence of stratigraphically important marker shales. The host stratigraphic sequence is highly consistent throughout the Hamersley and the marker shales can therefore be used to identify the stratigraphic location of the banded iron formation (BIF) or BIF hosted ore. The marker shales are identified using Gaussian Processes (GP) trained by either manual or active learning methods and the results are compared to the existing geological interpretation. The manual method involves the user selecting the signatures for improving the library, whereas the active learning method uses the measure of uncertainty provided by the GP to select specific examples for the user to consider for addition. The results demonstrate that both GP methods can identify a feature, but the active learning approach has several benefits over the manual method. These benefits include greater accuracy in the identified signatures, faster library building, and an objective approach for selecting signatures that includes the full range of signatures across a deposit in the library. When using the active learning method, it was found that the current manual interpretation could be replaced in 78.4% of the holes with an accuracy of 95.7%.

  18. Petrological and geochemical features of the early Paleozoic granitic gneisses and iron ores in the Tianhu iron deposit, Eastern Tianshan, NW China: Implications for ore genesis

    Science.gov (United States)

    Zheng, Jiahao; Mao, Jingwen; Yang, Fuquan; Chai, Fengmei; Shen, Ping

    2017-08-01

    This paper reports whole-rock geochemical, zircon U-Pb and Hf isotopic data for ore-hosted granitic gneisses, mineral compositions of oxides, and sulfur isotopic data for sulfides in iron ores from the Tianhu deposit, central part of the Eastern Tianshan. Our results can provide crucial constraints on the genesis of granitic gneisses and early Paleozoic tectonic setting of the Eastern Tianshan. LA-ICP-MS U-Pb dating on magmatic zircons yielded weighted mean 206Pb/238U ages of 463 to 438 Ma, interpreted as the crystallization ages of the granitic protoliths and the formation ages of the Tianhu Group. Zircon U-Pb age of ore-hosted granitic gneiss (ca. 459 Ma) can provide reliable constrains on upper limit for iron mineralization age in the Tianhu deposit. Geochemical characteristics suggest that the protoliths of the Tianhu granitic gneisses are metaluminous to weakly peraluminous high-K calc-alkaline granitic rocks, exhibiting typical subduction-related features such as strong enrichment in LREE and LILE and depletion in HFSE. Zircon Hf isotopic compositions show a positive trend from 463 to 438 Ma, indicating that 460 Ma magmas came from both ancient and juvenile sources, whereas 438 Ma magmas involved more juvenile material. Some early Paleozoic granitoids were recently identified in the Eastern Tianshan with the ages between ca. 475 and ca. 425 Ma. The formation of these early Paleozoic granitoids was in response to subduction processes, suggesting that subduction of Junggar Ocean probably began in the Early Ordovician and lasted until Late Silurian. Pyrite and pyrrhotite in iron ores have δ34SCDT values from + 4.6 to + 15.7‰, which are consistent with the marine source, but inconsistent with the magmatic source or those involved evaporites in skarn iron deposit. Geological, geochemical, and isotopic data suggest that the Tianhu iron ores were formed by volcano-sedimentary processes in a subduction environment during the early Paleozoic time, and Tianhu is a

  19. Fault geometry and fluid-rock reaction: Combined controls on mineralization in the Xinli gold deposit, Jiaodong Peninsula, China

    Science.gov (United States)

    Yang, Lin; Zhao, Rui; Wang, Qingfei; Liu, Xuefei; Carranza, Emmanuel John M.

    2018-06-01

    The structures and fluid-rock reaction in the Xinli gold deposit, Jiaodong Peninsula, were investigated to further understand their combined controls on the development of permeability associated with ore-forming fluid migration. Orebodies in this deposit are hosted by the moderately SE-to S-dipping Sanshandao-Cangshang fault (SCF). Variations in both dip direction and dip angle along the SCF plane produced fault bends, which controlled the fluid accumulation and ore-shoot formation. Gold mineralizations occurred in early gold-quartz-pyrite and late gold-quartz-polymetallic sulphide stages following pervasive sericitization and silicification alterations. Theoretical calculation indicates that sericitization caused 8-57% volume decrease resulting in the development/enlargement of voids, further increase of grain-scale permeability, and resultant precipitation of the early gold-quartz-pyrite pods, which destroyed permeability. The rock softening produced by alterations promoted activities of SCF secondary faults and formation of new fractures, which rebuilt the permeability and controlled the late gold-quartz-polymetallic sulfide veins. Quantitative studies on permeability distributions show that the southwestern and northeastern bend areas with similar alteration and mineralization have persistent and anti-persistent permeability networks, respectively. These were likely caused by different processes of rebuilding permeability due to different stress states resulting from changes in fault geometry.

  20. Chemistry of Selected Core Samples, Concentrate, Tailings, and Tailings Pond Waters: Pea Ridge Iron (-Lanthanide-Gold) Deposit, Washington County, Missouri

    Science.gov (United States)

    Grauch, Richard I.; Verplanck, Philip L.; Seeger, Cheryl M.; Budahn, James R.; Van Gosen, Bradley S.

    2010-01-01

    The Minerals at Risk and for Emerging Technologies Project of the U.S. Geological Survey (USGS) Mineral Resources Program is examining potential sources of lanthanide elements (rare earth elements) as part of its objective to provide up-to-date geologic information regarding mineral commodities likely to have increased demand in the near term. As part of the examination effort, a short visit was made to the Pea Ridge iron (-lanthanide-gold) deposit, Washington County, Missouri in October 2008. The deposit, currently owned by Wings Enterprises, Inc. of St. Louis, Missouri (Wings), contains concentrations of lanthanides that may be economic as a primary product or as a byproduct of iron ore production. This report tabulates the results of chemical analyses of the Pea Ridge samples and compares rare earth elements contents for world class lanthanide deposits with those of the Pea Ridge deposit. The data presented for the Pea Ridge deposit are preliminary and include some company data that have not been verified by the USGS or by the Missouri Department of Natural Resources, Division of Geology and Land Survey (DGLS), Geological Survey Program (MGS). The inclusion of company data is for comparative purposes only and does not imply an endorsement by either the USGS or MGS.

  1. Compositional variation of glauconites in Upper Cretaceous-Paleogene sedimentary iron-ore deposits in South-eastern Western Siberia

    Science.gov (United States)

    Rudmin, Maxim; Banerjee, Santanu; Mazurov, Aleksey

    2017-06-01

    Glauconite occurs either as unaltered greenish or as altered brownish variety in Upper Cretaceous-Palaeocene sediments in the southeastern corner of Western Siberia. Studied section within the Bakchar iron-ore deposit includes Ipatovo, Slavgorod, Gan'kino and Lyulinvor formations, which are represented by sandstones, siltstones, claystones and oolitic ironstones of coastal-marine facies. The origin of unaltered glauconite is explained by the ;verdissement theory;. Transgressions during Lower Coniacian, Santonian and Campanian favored the formation of unaltered glauconites in dysoxic to anoxic conditions. Subaerial exposure of glauconite resulted in leaching of potassium, oxidation of iron and formation of iron hydroxides in Upper Coniacian, Maastrichtian and Palaeocene. Glauconite ultimately converts to leptochlorite and hydrogoethite by this alteration. Abundant microscopic gold inclusions, besides sulphides, sulphates, oxides and silicates characterize this glauconite. Mineral inclusions include precious, rare metals and non-ferrous metals. The concentration of gold in glauconite may be as high as 42.9 ppb. Abundant inclusions of various compositions in glauconites indicate enrichment of marine sediments in precious and non-precious metals. While major element composition of glauconites is affected by subaerial exposure, the broadly similar micro-inclusions in both altered and unaltered varieties are possibly related to the comparatively immobile nature of REE and trace elements.

  2. A comparison of iron oxide-rich joint coatings and rock chips as geochemical sampling media in exploration for disseminated gold deposits

    Science.gov (United States)

    Crone, W.; Larson, L.T.; Carpenter, R.H.; Chao, T.T.; Sanzolone, R.F.

    1984-01-01

    We evaluated the effectiveness of iron oxide-rich fracture coatings as a geochemical sampling medium for disseminated gold deposits, as compared with conventional lithogeochemical methods, for samples from the Pinson mine and Preble prospect in southeastern Humboldt County, Nevada. That disseminated gold mineralization is associated with Hg, As, and Sb is clearly demonstrated in these deposits for both fracture coatings and rock chip samples. However, the relationship is more pronounced for fracture coatings. Fracture coatings at Pinson contain an average of 3.61, 5.13, 14.37, and 3.42 times more Au, As, Sb and Hg, respectively, than adjacent rock samples. At Preble, fracture coatings contain 3.13, 9.72, 9.18, and 1.85 times more Au, As, Sb and Hg, respectively, than do adjacent rock samples. Geochemical anomalies determined from fracture coatings are thus typically more intense than those determined from rock samples for these elements. The sizes of anomalies indicated by fracture coatings are also somewhat larger, but this is less obvious. In both areas, Sb anomalies are more extensive in fracture coatings. At Preble, some Hg and Au anomalies are also more extensive in fracture coatings. In addition to halos formed by the Hg, As and Sb, high values for Au/Ag and Zn/(Fe + Mn) are closely associated with gold mineralization at the Pinson mine. The large enhancement in geochemical response afforded by fracture coatings indicates a definite potential in the search for buried disseminated gold deposits. ?? 1984.

  3. The importance of dissolved free oxygen during formation of sandstone-type uranium deposits

    Science.gov (United States)

    Granger, Harry Clifford; Warren, C.G.

    1979-01-01

    One factor which distinguishes t, he genesis of roll-type uranium deposits from the Uravan Mineral Belt and other sandstone-type uranium deposits may be the presence and concentration of dissolved free oxygen in the ore-forming. solutions. Although dissolved oxygen is a necessary prerequisite for the formation of roll-type deposits, it is proposed that a lack of dissolved oxygen is a prerequisite for the Uravan deposits. Solutions that formed both types of deposits probably had a supergene origin and originated as meteoric water in approximate equilibrium with atmospheric oxygen. Roll-type deposits were formed where the Eh dropped abruptly following consumption of the oxygen by iron sulfide minerals and creation of kinetically active sulfur species that could reduce uranium. The solutions that formed the Uravan deposits, on the other hand, probably first equilibrated with sulfide-free ferrous-ferric detrital minerals and fossil organic matter in the host rock. That is, the uraniferous solutions lost their oxygen without lowering their Eh enough to precipitate uranium. Without oxygen, they then. became incapable of oxidizing iron sulfide minerals. Subsequent localization and formation of ore bodies from these oxygen-depleted solutions, therefore, was not necessarily dependent on large reducing capacities.

  4. Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide-copper-gold deposit, Carajás Mineral Province, Brazil: Paragenesis and stable isotope constraints

    Science.gov (United States)

    Monteiro, Lena V.S.; Xavier, R.P.; Carvalho, E.R.; Hitzman, M.W.; Johnson, C.A.; Souza, Filho C.R.; Torresi, I.

    2008-01-01

    The Sossego iron oxide–copper–gold deposit (245 Mt @ 1.1% Cu, 0.28 g/t Au) in the Carajás Mineral Province of Brazil consists of two major groups of orebodies (Pista–Sequeirinho–Baiano and Sossego–Curral) with distinct alteration assemblages that are separated from each other by a major high angle fault. The deposit is located along a regional WNW–ESE-striking shear zone that defines the contact between metavolcano–sedimentary units of the ∼2.76 Ga Itacaiúnas Supergroup and tonalitic to trondhjemitic gneisses and migmatites of the ∼2.8 Ga Xingu Complex. The deposit is hosted by granite, granophyric granite, gabbro, and felsic metavolcanic rocks. The Pista–Sequeirinho–Baiano orebodies have undergone regional sodic (albite–hematite) alteration and later sodic–calcic (actinolite-rich) alteration associated with the formation of massive magnetite–(apatite) bodies. Both these alteration assemblages display ductile to ductile–brittle fabrics. They are cut by spatially restricted zones of potassic (biotite and potassium feldspar) alteration that grades outward to chlorite-rich assemblages. The Sossego–Curral orebodies contain weakly developed early albitic alteration and very poorly developed subsequent calcic–sodic alteration. These orebodies contain well-developed potassic alteration assemblages that were formed during brittle deformation that resulted in the formation of breccia bodies. Breccia matrix commonly displays coarse mineral infill suggestive of growth into open space. Sulfides in both groups of deposits were precipitated first with potassic alteration and more importantly with a later assemblage of calcite–quartz–epidote–chlorite. In the Sequeirinho orebodies, sulfides range from undeformed to deformed; sulfides in the Sossego–Curral orebodies are undeformed. Very late, weakly mineralized hydrolytic alteration is present in the Sossego/Currral orebodies. The sulfide assemblage is dominated by chalcopyrite with

  5. Composition and genesis of the Konevinsky gold deposit, Eastern Sayan, Russia

    Science.gov (United States)

    Damdinov, B. B.; Zhmodik, S. M.; Roshchektaev, P. A.; Damdinova, L. B.

    2016-03-01

    The Konevinsky gold deposit in southeast Eastern Sayan is distinguished from most known deposits in this region (Zun-Kholba, etc.) by the geological setting and composition of mineralization. To elucidate the cause of the peculiar mineralization, we have studied the composition, formation conditions, and origin of this deposit, which is related to the Ordovician granitoid pluton 445-441 Ma in age cut by intermediate and basic dikes spatially associated with metavolcanic rocks of the Devonian-Carboniferous Ilei Sequence. Four mineral assemblages are recognized: (1) quartz-pyrite-molybdenite, (2) quartz-gold-pyrite, (3) gold-polysulfide, and (4) telluride. Certain indications show that the ore was formed as a result of the superposition of two distinct mineral assemblages differing in age. The first stage dated at ~440 Ma is related to intrusions generating Cu-Mo-Au porphyry mineralization and gold-polysulfide veins. The second stage is controlled by dikes pertaining to the Devonian-Carboniferous volcanic-plutonic association. The second stage is characterized by gain of Hg and Te and formation of gold-mercury-telluride paragenesis.

  6. Stable Isotopes (O, H, and S) in the Muteh Gold Deposit, Golpaygan Area, Iran

    International Nuclear Information System (INIS)

    Abdollahi, M. J.; Karimpour, M. H.; Kheradmand, A.; Zarasvandi, A. R.

    2009-01-01

    The Muteh gold district with nine gold deposits is located in the Sanandaj-Sirjan metamorphic zone. Gold mineralization occurs in a pre-Permian complex which mainly consists of green schists, meta-volcanics, and gneiss rocks. Shear zones are the host of gold mineralization. Gold paragenesis minerals include pyrite, chalcopyrite, pyrrhotite, and secondary minerals. Pyrites occur as pre-, syn-, and post-metamorphism minerals. To determine the source of the ore-bearing fluids, fifty samples were selected for petrographical and stable isotope studies. The mean values of 12.4 per mille , and -42 per mille for δ 18 O and δD isotopes, respectively, and a mean value of 7.75 per mille of calculated fractionation factors for δ 18 O H 2 O, from quartz veins indicate that metamorphic host rocks are the most important source for the fluids and gold mineralization. Three generations of pyrite can be distinguished showing a wide range of δ 34 S. Gold mineralization is closely associated with intense hydrothermal alteration along the ductile shear zones. The characteristics of the gold mineralization in the study area are similar to those of orogenic gold deposits elsewhere

  7. Critical elements in Carlin, epithermal, and orogenic gold deposits

    Science.gov (United States)

    Goldfarb, Richard J.; Hofstra, Albert H.; Simmons, Stuart F.

    2016-01-01

    Carlin, epithermal, and orogenic gold deposits, today mined almost exclusively for their gold content, have similar suites of anomalous trace elements that reflect similar low-salinity ore fluids and thermal conditions of metal transport and deposition. Many of these trace elements are commonly referred to as critical or near-critical elements or metals and have been locally recovered, although typically in small amounts, by historic mining activities. These elements include As, Bi, Hg, In, Sb, Se, Te, Tl, and W. Most of these elements are now solely recovered as by-products from the milling of large-tonnage, base metal-rich ore deposits, such as porphyry and volcanogenic massive sulfide deposits.A combination of dominance of the world market by a single country for a single commodity and a growing demand for many of the critical to near-critical elements could lead to future recovery of such elements from select epithermal, orogenic, or Carlin-type gold deposits. Antimony continues to be recovered from some orogenic gold deposits and tellurium could potentially be a primary commodity from some such deposits. Tellurium and indium in sphalerite-rich ores have been recovered in the past and could be future commodities recovered from epithermal ores. Carlin-type gold deposits in Nevada are enriched in and may be a future source for As, Hg, Sb, and/or Tl. Some of the Devonian carbonaceous host rocks in the Carlin districts are sufficiently enriched in many trace elements, including Hg, Se, and V, such that they also could become resources. Thallium may be locally enriched to economic levels in Carlin-type deposits and it has been produced from Carlin-like deposits elsewhere in the world (e.g., Alsar, southern Macedonia; Lanmuchang, Guizhou province, China). Mercury continues to be recovered from shallow-level epithermal deposits, as well as a by-product of many Carlin-type deposits where refractory ore is roasted to oxidize carbon and pyrite, and mercury is then

  8. Geologic field notes and geochemical analyses of outcrop and drill core from Mesoproterozoic rocks and iron-oxide deposits and prospects of southeast Missouri

    Science.gov (United States)

    Day, Warren C.; Granitto, Matthew

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources/Missouri Geological Survey, undertook a study from 1988 to 1994 on the iron-oxide deposits and their host Mesoproterozoic igneous rocks in southeastern Missouri. The project resulted in an improvement of our understanding of the geologic setting, mode of formation, and the composition of many of the known deposits and prospects and the associated rocks of the St. Francois terrane in Missouri. The goal for this earlier work was to allow the comparison of Missouri iron-oxide deposits in context with other iron oxide-copper ± uranium (IOCG) types of mineral deposits observed globally. The raw geochemical analyses were released originally through the USGS National Geochemical Database (NGDB, http://mrdata.usgs.gov). The data presented herein offers all of the field notes, locations, rock descriptions, and geochemical analyses in a coherent package to facilitate new research efforts in IOCG deposit types. The data are provided in both Microsoft Excel (Version Office 2010) spreadsheet format (*.xlsx) and MS-DOS text formats (*.txt) for ease of use by numerous computer programs.

  9. Genesis of the hydrothermal gold deposits in the Canan area, Lepaguare District, Honduras

    Science.gov (United States)

    Mattioli, Michele; Menichetti, Marco; Renzulli, Alberto; Toscani, Lorenzo; Salvioli-Mariani, Emma; Suarez, Pedro; Murroni, Alessandro

    2014-04-01

    The Canan area (Honduras) is characterized by a gold-bearing ore deposit that is associated with quartz-veined shear zones. Gold mineralization occurs in low-to medium-grade metamorphic host-rocks (graphitic and sericitic schists). Hydrothermal fluids, which are associated with the emplacement of Cretaceous-Tertiary granodioritic intrusions, are responsible for the formation of quartz veins and the hydrothermal alteration of wall-rocks. Three main altered zones have been detected in the wall-rocks as far as 150 cm from the quartz veins. The distal zone (up to 50-cm thick) contains quartz, chlorite and illite. The intermediate zone is the thickest (up to 80 cm) and is marked by quartz, muscovite, sulphides, kaolinite and native elements such as Au and Ag. The proximal zone, which is close to the quartz veins, is rather thin (up to 25 cm) and contains clay minerals, Al-oxides-hydroxides and sulphides. The transition from the distal to the proximal zone is accompanied by the enrichment of SiO2 and the depletion of all other major elements, except for Fe2O3(tot). Precious metals occur in the highest concentrations in the intermediate zone (Au up to 7.6 ppm and Ag up to 11 ppm). We suggest that gold was transported as a reduced sulphur complex and was precipitated from the hydrothermal solution by the reaction of the sulphur complexes with Fe2+ from the alteration of the mafic minerals of the host-rock. Fluid-wall-rock interactions seem to be the main cause of gold mineralization. Genetic relationships with a strike-slip fault system, hydrothermal alteration zones within the metamorphic wall-rocks, and an entire set of geochemical anomalies are consistent with orogenic-type gold deposits of the epizonal class.

  10. Carbonate hosted gold deposit in Tasmania, Australia

    International Nuclear Information System (INIS)

    Abadi, M.H.

    1999-01-01

    Full text: This study uses elemental and isotopic composition of carbonates associated with gold from Henty and Beaconsfield in Tasmania, Australia, to illustrate source of gold-bearing fluids, salinity, temperature and dissolution and reprecipitation of carbonate. The Beaconsfield and Henty gold mines are located in northern and western Tasmania respectively. Gold mineralisation in Beaconsfield occurs within the quartz-carbonate Tasmania Reef (Lower to Middle Palaeozoic sequence, Hills, 1998). The Henty gold mine is located at the base of the Cambrian Tyndall Group (volcano-sedimentary succession, White and McPhie, 1996) close to Henty Fault. Gold in carbonate samples from Henty ranges from 7.7 to 9360 ppm and in Beaconsfield ranges from 0.01 to 434 ppm. The amount of carbonate in samples from Henty and Beaconsfield gold mines varies from approximately 24 to 99.8%. Bivariate plot of Ca relative to total amounts of Mg, Fe and Mn illustrates that the major carbonate minerals at Beaconsfield and Henty gold mines are magnesian ankerite and calcite. The difference in carbonate mineralogy, at Henty and Beaconsfield gold mines, is attributed to the composition of fluids responsible for carbonate alteration. Gold and magnesium in Beaconsfield ankerite are derived from the leaching of Cambrian ultramafic rocks during the Devonian by the passage of meteoric fluids through tectonically affected Ordovician carbonates (Rao and Adabi, 1999). The total concentration of Fe and Mn are low (0.5 to 2%) in Henty and high (1 to 17.5%) in Beaconsfield ankerite, possibly due to oxidising conditions at Henty and reducing conditions at Beaconsfield gold mines during gold mineralisation. Variation of Sr values between Beaconsfield ankerite and Henty calcite is related to dissolution of limestone that increase Sr concentrations in gold mineralising fluids. Na values in both Beaconsfield (20 to 1100 ppm) and Henty carbonates (25 to 1650 ppm) suggest low salinity fluids responsible for gold

  11. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization

    Science.gov (United States)

    Henley, R.W.; Berger, B.R.

    2011-01-01

    Large bulk-tonnage high-sulfidation gold deposits, such as Yanacocha, Peru, are the surface expression of structurally-controlled lode gold deposits, such as El Indio, Chile. Both formed in active andesite-dacite volcanic terranes. Fluid inclusion, stable isotope and geologic data show that lode deposits formed within 1500. m of the paleo-surface as a consequence of the expansion of low-salinity, low-density magmatic vapor with very limited, if any, groundwater mixing. They are characterized by an initial 'Sulfate' Stage of advanced argillic wallrock alteration ?? alunite commonly with intense silicification followed by a 'Sulfide' Stage - a succession of discrete sulfide-sulfosalt veins that may be ore grade in gold and silver. Fluid inclusions in quartz formed during wallrock alteration have homogenization temperatures between 100 and over 500 ??C and preserve a record of a vapor-rich environment. Recent data for El Indio and similar deposits show that at the commencement of the Sulfide Stage, 'condensation' of Cu-As-S sulfosalt melts with trace concentrations of Sb, Te, Bi, Ag and Au occurred at > 600 ??C following pyrite deposition. Euhedral quartz crystals were simultaneously deposited from the vapor phase during crystallization of the vapor-saturated melt occurs to Fe-tennantite with progressive non-equilibrium fractionation of heavy metals between melt-vapor and solid. Vugs containing a range of sulfides, sulfosalts and gold record the changing composition of the vapor. Published fluid inclusion and mineralogical data are reviewed in the context of geological relationships to establish boundary conditions through which to trace the expansion of magmatic vapor from source to surface and consequent alteration and mineralization. Initially heat loss from the vapor is high resulting in the formation of acid condensate permeating through the wallrock. This Sulfate Stage alteration effectively isolates the expansion of magmatic vapor in subsurface fracture arrays

  12. Simulating Precambrian banded iron formation diagenesis

    DEFF Research Database (Denmark)

    Posth, Nicole R.; K??hler, Inga; D. Swanner, Elizabeth

    2013-01-01

    Post-depositional diagenetic alteration makes the accurate interpretation of key precipitation processes in ancient sediments, such as Precambrian banded iron formations (BIFs), difficult. While microorganisms are proposed as key contributors to BIF deposition, the diagenetic transformation...

  13. Metal mobility during metamorphism and formation of orogenic gold deposits: Insights from the Dalradian of Scotland

    OpenAIRE

    Engström, Adam

    2013-01-01

    Orogenic gold deposits occur within metamorphic belts throughout the world and have through time represented the source for over 25% of the world’s gold production. Although orogenic gold deposits are of great economic importance, controversies exist on the subject of fluid and metal sources and there have been few studies of gold´s distribution and mobility outside of large economic deposits. Research made by Pitcairn et al. (2006), on the Mesozoic Otago and Alpine schists of New Zealand, ob...

  14. Geochemistry of Gold Deposits in Anka Schist Belt, Northwestern ...

    African Journals Online (AJOL)

    HP USER

    ABSTRACT. Gold quartz veins have been identified associated with the rock formations of the Anka Schist Belt forming eight gold deposits that include Kuba I, Kuba II, Doka, Dumi I, Dumi II, Zurzurfa I, Zurzurfa II, Jameson and Kwali. The present study involves the use of major and trace elements to characterize some of the.

  15. The in vitro formation of placer gold by bacteria

    Science.gov (United States)

    Southam, Gordon; Beveridge, Terrance J.

    1994-10-01

    A laboratory simulation was developed to provide mechanistic information about placer (nugget) gold development in the natural environment. To initiate the simulation, ionic gold was immobilized to a high capacity by Bacillus subtilis 168 (116.2 μg/mg dry weight bacteria) as fine-grained intracellular colloids (5-50 nm). During the low-temperature diagenesis experiment (60°C), the release of organics due to bacterial autolysis coincided with the in vitro formation of hexagonal-octahedral gold crystals (20 μm). This octahedral gold was observed to aggregate, forming fine-grained placer gold (50 μm). In addition to achieving a fundamental understanding into secondary gold deposition, a significant economic benefit could be realized by employing this environmentally safe procedure to concentrate widely dispersed gold in placer deposits to facilitate mining by conventional methodologies.

  16. A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile

    Science.gov (United States)

    Rojas, Paula A.; Barra, Fernando; Reich, Martin; Deditius, Artur; Simon, Adam; Uribe, Francisco; Romero, Rurik; Rojo, Mario

    2018-01-01

    El Romeral is one of the largest iron oxide-apatite (IOA) deposits in the Coastal Cordillera of northern Chile. The Cerro Principal magnetite ore body at El Romeral comprises massive magnetite intergrown with actinolite, with minor apatite, scapolite, and sulfides (pyrite ± chalcopyrite). Several generations of magnetite were identified by using a combination of optical and electron microscopy techniques. The main mineralization event is represented by zoned magnetite grains with inclusion-rich cores and inclusion-poor rims, which form the massive magnetite ore body. This main magnetite stage was followed by two late hydrothermal events that are represented by magnetite veinlets that crosscut the massive ore body and by disseminated magnetite in the andesite host rock and in the Romeral diorite. The sulfur stable isotope signature of the late hydrothermal sulfides indicates a magmatic origin for sulfur (δ34S between - 0.8 and 2.9‰), in agreement with previous δ34S data reported for other Chilean IOA and iron oxide-copper-gold deposits. New 40Ar/39Ar dating of actinolite associated with the main magnetite ore stage yielded ages of ca. 128 Ma, concordant within error with a U-Pb zircon age for the Romeral diorite (129.0 ± 0.9 Ma; mean square weighted deviation = 1.9, n = 28). The late hydrothermal magnetite-biotite mineralization is constrained at ca. 118 Ma by 40Ar/39Ar dating of secondary biotite. This potassic alteration is about 10 Ma younger than the main mineralization episode, and it may be related to post-mineralization dikes that crosscut and remobilize Fe from the main magnetite ore body. These data reveal a clear genetic association between magnetite ore formation, sulfide mineralization, and the diorite intrusion at El Romeral (at 129 Ma), followed by a late and more restricted stage of hydrothermal alteration associated with the emplacement of post-ore dikes at ca. 118 Ma. Therefore, this new evidence supports a magmatic-hydrothermal model for the

  17. Directed deposition of silicon nanowires using neopentasilane as precursor and gold as catalyst

    Directory of Open Access Journals (Sweden)

    Britta Kämpken

    2012-07-01

    Full Text Available In this work the applicability of neopentasilane (Si(SiH34 as a precursor for the formation of silicon nanowires by using gold nanoparticles as a catalyst has been explored. The growth proceeds via the formation of liquid gold/silicon alloy droplets, which excrete the silicon nanowires upon continued decomposition of the precursor. This mechanism determines the diameter of the Si nanowires. Different sources for the gold nanoparticles have been tested: the spontaneous dewetting of gold films, thermally annealed gold films, deposition of preformed gold nanoparticles, and the use of “liquid bright gold”, a material historically used for the gilding of porcelain and glass. The latter does not only form gold nanoparticles when deposited as a thin film and thermally annealed, but can also be patterned by using UV irradiation, providing access to laterally structured layers of silicon nanowires.

  18. A Palaeoproterozoic multi-stage hydrothermal alteration system at Nalunaq gold deposit, South Greenland

    DEFF Research Database (Denmark)

    Bell, Robin-Marie; Kolb, Jochen; Waight, Tod Earle

    2017-01-01

    Nalunaq is an orogenic, high gold grade deposit situated on the Nanortalik Peninsula, South Greenland. Mineralisation is hosted in shear zone-controlled quartz veins, located in fine- and medium-grained amphibolite. The deposit was the site of Greenland’s only operating metalliferous mine until i...

  19. Geochemistry of Gold Deposits in Anka Schist Belt, Northwestern ...

    African Journals Online (AJOL)

    Gold quartz veins have been identified associated with the rock formations of the Anka Schist Belt forming eight gold deposits that include Kuba I, Kuba II, Doka, Dumi I, Dumi II, Zurzurfa I, Zurzurfa II, Jameson and Kwali. The present study involves the use of major and trace elements to characterize some of the features that ...

  20. The gold nuggets of the lower Pliocene Alhambra Formation (Betic Cordillera, Southern Spain)

    Science.gov (United States)

    Somma, Roberta; Bonvegna, Piero; Sanchez-Navas, Antonio

    2017-04-01

    The present research was devoted to the geochemical and textural characterization of gold nuggets extracted from auriferous siliciclastic deposits of the lower Pliocene continental Alhambra Formation (Betic Cordillera, Southern Spain). This Formation is mainly composed of metamorphic lithoclasts deriving both by the erosion of the Mulhacen Unit of the Nevado-Filabride Complex and the reworking of the upper Tortonian marine Dudar-Pinos Genil Formation, on its turn previously formed by erosion of the Veleta Unit of the Nevado-Filabride Complex. Particularly, the studied gold nuggets were separated from 1m3 of auriferous conglomerates sampled along the right side of the Genil River, in the abandoned Lancha de Cenes Mine, exploited since Roman time for gold mining. The recovered gold nuggets were 24 for a total weight of 0.125 g/m3. Textural analysis of gold nuggets was made by means mechanical sieving and visual comparison of roundness and form. They are sand-sized rounded to sub-rounded grains with spheroidal and cubic form. Surface analyses of the nuggets by SEM-EDS indicated that external portions show textures more porous than in the nuggets nuclei. Chemical analyses by EMPA indicated that they are constituted by pure gold with Ag and Hg as trace elements. The gold mine capacity of the studied auriferous deposits is at least of 0.125 g/m3 (lower than 0.5 g/m3; minimum value to be gold mine economically exploitable). Notwithstanding this value, the auriferous conglomerates of the Alhambra Formation reveal to be interesting under a gold mine exploitation point of view because of the gold high pureness degree. Finally, under a geological point of view, considering that the Alhambra Formation is mainly composed of lower Pliocene alluvial fan conglomerates and sandstones formed during the uplift of the Sierra Nevada, the selected gold nuggets are secondary deposits originally derived from primary deposits related to hydrothermal gold-bearing quartz veins included in

  1. Formation of gold nanorods and gold nanorod films for surface-enhanced Raman scattering spectroscopy

    International Nuclear Information System (INIS)

    Trotsyuk, L.L.; Kulakovich, O.S.; Shabunya-Klyachkovskaya, E.V.; Gaponenko, S.V.; Vashchenko, S.V.

    2016-01-01

    The formation of gold nanorods as well as thin films prepared via electrostatic deposition of gold nanorods has been investigated. The obtained gold nanorods films have been used as substrates for the surface-enhanced Raman scattering analysis of sulfur-free organic molecules mitoxantrone and malachite green as well as inorganic malachite microcrystals for the first time. The additional modification of films with L-cysteine allows one to significantly extend the use of gold nanorods for the surface-enhanced Raman scattering analysis. (authors)

  2. Oxygen, hydrogen, sulfur, and carbon isotopes in the Pea Ridge magnetite-apatite deposit, southeast Missouri, and sulfur isotope comparisons to other iron deposits in the region

    Science.gov (United States)

    Johnson, Craig A.; Day, Warren C.; Rye, Robert O.

    2016-01-01

    Oxygen, hydrogen, sulfur, and carbon isotopes have been analyzed in the Pea Ridge magnetite-apatite deposit, the largest historic producer among the known iron deposits in the southeast Missouri portion of the 1.5 to 1.3 Ga eastern granite-rhyolite province. The data were collected to investigate the sources of ore fluids, conditions of ore formation, and provenance of sulfur, and to improve the general understanding of the copper, gold, and rare earth element potential of iron deposits regionally. The δ18O values of Pea Ridge magnetite are 1.9 to 4.0‰, consistent with a model in which some magnetite crystallized from a melt and other magnetite—perhaps the majority—precipitated from an aqueous fluid of magmatic origin. The δ18O values of quartz, apatite, actinolite, K-feldspar, sulfates, and calcite are significantly higher, enough so as to indicate growth or equilibration under cooler conditions than magnetite and/or in the presence of a fluid that was not entirely magmatic. A variety of observations, including stable isotope observations, implicate a second fluid that may ultimately have been meteoric in origin and may have been modified by isotopic exchange with rocks or by evaporation during storage in lakes.Sulfur isotope analyses of sulfides from Pea Ridge and seven other mineral deposits in the region reveal two distinct populations that average 3 and 13‰. Two sulfur sources are implied. One was probably igneous melts or rocks belonging to the mafic- to intermediate-composition volcanic suite that is present at or near most of the iron deposits; the other was either melts or volcanic rocks that had degassed very extensively, or else volcanic lakes that had trapped rising magmatic gases. The higher δ34S values correspond to deposits or prospects where copper is noteworthy—the Central Dome portion of the Boss deposit, the Bourbon deposit, and the Vilander prospective area. The correspondence suggests that (1) sulfur either limited the deposition

  3. The Metamorphic Rocks-Hosted Gold Mineralization At Rumbia Mountains Prospect Area In The Southeastern Arm of Sulawesi Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Hasria Hasria

    2017-09-01

    Full Text Available Recently, in Indonesia gold exploration activities  are not only focused along volcanic-magmatic belts, but also starting to shift along metamorphic and sedimentary terrains. The study area is located in Rumbia mountains, Bombana Regency, Southeast Sulawesi Province. This paper is aimed to describe characteristics of alteration and ore mineralization associated  with metamorphic rock-related gold deposits.  The study area is found the placer and  primary gold hosted by metamorphic rocks. The gold is evidently derived from gold-bearing quartz veins hosted by Pompangeo Metamorphic Complex (PMC. These quartz veins are currently recognized in metamorphic rocks at Rumbia Mountains. The quartz veins are mostly sheared/deformed, brecciated, irregular vein, segmented and  relatively massive and crystalline texture with thickness from 1 cm to 15.7 cm. The wallrock are generally weakly altered. Hydrothermal alteration types include sericitization, argillic, inner propylitic, propylitic, carbonization and carbonatization. There some precious metal identified consist of native gold and ore mineralization including pyrite (FeS2, chalcopyrite (CuFeS2, hematite (Fe2O3, cinnabar (HgS, stibnite (Sb2S3 and goethite (FeHO2. The veins contain erratic gold in various grades from below detection limit <0.0002 ppm to 18.4 ppm. Based on those characteristics, it obviously indicates that the primary gold deposit present in the study area is of orogenic gold deposit type. The orogenic gold deposit is one of the new targets for exploration in Indonesia

  4. Geochemistry and the origin of the Mamouniyeh iron ore-terra rossa deposit, Markazi Province - Iran

    Directory of Open Access Journals (Sweden)

    Marziyeh Mahboubiyan Fard

    2017-11-01

    Full Text Available Introduction Iron is among the metals whose ore deposits are not confined to a specific geologic period of crustal formation and they have formed in various geologic environments during previous periods (Ghorbani, 2007. About 95% of iron ore deposits have sedimentary origin and have formed due to chemical deposition from ancient sea water. The remaining percent is the result of alteration and magmatic activities (Gutzmer and Beukes, 2009. In sedimentary environments, a large amount of sedimentary iron minerals have formed resulting in different iron facies. Iron oxide facies are of the most important facies (James, 1954. The most important Iranian iron deposits are located in Central Iran, Sanandaj- Sirjan and East Iran zones, and the Kordestan area (Ghorbani, 2007. In the Orumiyeh-Dokhtar Zone, many iron ore deposits have been formed in conjunction with granitic and granodioritic plutons related to Oligocene-Miocene plutonic and volcanic activities (Hoshmandzadeh, 1995. The Mamouniyeh iron ore-terra rossa deposit is located in the Orumiyeh-Dokhtar volcanic zone. Iron mineralization have occurred in trachytic-trachyandesitic lavas and pyroclastic rocks of Pliocene age. Materials and methods A total of 28 rock samples were picked up from ore and host rocks during field observations. Petrographical and mineralogical studies were performed on 15 thin sections of ore and host rocks. XRD studies were performed on 3 ore samples. In order to investigate the geochemistry of the ore, 10 samples were analyzed for major, trace and rare earth elements (REEs using the ICP-MS method. Result Field and mineralogical studies reveal that the ore is composed of hematite along with crypto-crystalline silica as alternating layers of various thickness and color. The existence of alternating layers of hematite and quartz implies that the ore is similar to banded iron formations, but on a smaller scale, related to submarine hydrothermal activities. Silica is found as

  5. Geologic characteristics of sediment- and volcanic-hosted disseminated gold deposits - Search for an occurrence model

    Science.gov (United States)

    White, Donald E.; Fournier, Robert O.; Rytuba, James J.; Rye, Robert O.; Cunningham, Charles G.; Berger, Byron R.; Silberman, Miles L.; Bonham, Harold F.; Strachan, Donald G.; Birak, Donald J.; Hawkins, Robert J.; Tooker, Edwin W.; Tooker, Edwin W.

    1985-01-01

    The current expansion of resource information, particularly on "disseminated" gold, and the improved technologies now available for resource investigations should place us in an enhanced position for developing a better predictive methodology for meeting one of the important responsibilities of the U.S. Geological Survey-to examine and assess the mineral resources of the geologic terranes composing the public (and privately owned) lands of the United States. The first step is systematic organization of these data. Geologic-occurrence models are an effective systematic method by which to organize large amounts of resource information into a logical sequence facilitating its use more effectively in meeting several industry and Survey objectives, which include the exploration for resources and the assessment of resource potential for land-use decisions. Such models also provide a scientific basis for metallogenesis research, which considers the observable features or attributes of ore occurrence and their "fit" into the Earth's resource puzzle. The use of models in making resource assessments/appraisals was addressed by Shawe (1981), who reported the results of a workshop on methods for resource appraisal of Wilderness and Conterminous United States Mineral Appraisal Program (CUSMAP; 1:250,000-scale quadrangles) areas. The Survey's main objective in the 1982 workshop was to evaluate the status of knowledge about disseminated or very fine grained gold deposits and, if possible, to develop an occurrence model(s).This report on the workshop proceedings has three main objectives: (1) Education through the publication of a summary review and presentation of new thinking and observations about the scientific bases for those geologic processes and environments that foster disseminated gold-ore formation; (2) systematic organization of available geologic, geochemical, and geophysical information for a range of typical disseminated gold deposits (including recognition of gaps

  6. Direct deposition of gas phase generated aerosol gold nanoparticles into biological fluids--corona formation and particle size shifts.

    Directory of Open Access Journals (Sweden)

    Christian R Svensson

    Full Text Available An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity to a large extent may determine the nanoparticle effects and possible translocation to other organs.

  7. Direct Deposition of Gas Phase Generated Aerosol Gold Nanoparticles into Biological Fluids - Corona Formation and Particle Size Shifts

    Science.gov (United States)

    Svensson, Christian R.; Messing, Maria E.; Lundqvist, Martin; Schollin, Alexander; Deppert, Knut; Pagels, Joakim H.; Rissler, Jenny; Cedervall, Tommy

    2013-01-01

    An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP) are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity) to a large extent may determine the nanoparticle effects and possible translocation to other organs. PMID:24086363

  8. Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits

    Science.gov (United States)

    Kucha, H.; Raith, J.

    2009-04-01

    *Kucha H **Raith J *University of Mining and Metallurgy, Faculty of Geology, Geophysics and Environmental Protection, Mickiewicza 30, PL-30-059 Krakow, Poland. ** University of Leoben, Department of Applied Geosciences and Geophysics, A-8700 Leoben, Peter Tunner Str. 5, Austria Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits To date evaluation of bacterial processes in the formation of carbonate-hosted Zn-Pb deposits is largely based on sulphur isotope evidence. However, during a past few years, textural criteria, have been established, which support the bacterial origin of many of these deposits. This has received a strong support from micro-, and nano-textures of naturally growing bacterial films in a flooded tunnel within carbonates that host the Piquette Zn-Pb deposit (Druschel et al., 2002). Bacterial textures, micro- and nano textures found in carbonate-hosted Zn-Pb deposits are: i)wavy bacterial films up to a few mm thick to up to a few cm long composed of peloids, ii)semimassive agglomeration of peloids in the carbonate matrix, and iii)solitary peloids dispersed in the carbonate matrix. Peloids are usually composed of a distinct 50-90um core most often made up of Zn-bearing calcite surrounded by 30-60um thick dentate rim composed of ZnS. Etching of Zn-carbonate cores reveals 1 - 2um ZnS filaments, and numerous 15 to 90nm large ZnS nano-spheres (Kucha et al., 2005). In massive ore composite Zn-calcite - sphalerite peloids are entirely replaced by zinc sulphide, and form peloids ghosts within banded sulphide layers. Bacterially derived micro- and nano-textures have been observed in the following carbonate-hosted Zn-Pb deposits: 1)Irish-type Zn-Pb deposits. In the Navan deposit the basic sulphur is isotopically light bacteriogenic S (Fallick at al., 2001). This is corroborated by semimassive agglomerations of composite peloids (Zn-calcite-ZnS corona or ZnS core-melnikovite corona). Etching of Zn-calcite core reveals globular

  9. Gold' 82 - technical sessions

    International Nuclear Information System (INIS)

    Viewing, K.

    1983-01-01

    Sulphur-isotope studies had been applied by Dr. I. Lambert to a number of deposits in Western Australia and also to certain samples from Vubachickwe and other deposits in Zimbabwe. A study of the sulphur isotopes at the Dickenson Mine, revealed a wide spread of values in the mineralised zones. Metamorphic processes were likely to be significant in the concentration of gold. The iron formations at the Old Jardine Mine had been unfolded by Dr. W.S. Hallager and the pattern of sedimentation was unraveled. A gold-rich zone was separated by a barren gap from the other part of the mineralised zone. Research was also done on the effects of the metamorphic processes, and the ages of mineralisation

  10. Deposition of functionalized gold nanoparticles onto modified silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Riskin, A.; Dobbelaere, C. de; Elen, K.; Rul, H. van den; Mullens, J.; Hardy, A. [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Diepenbeek (Belgium); D' Haen, J. [Imecvzw Division IMOMEC, Diepenbeek (Belgium); Electrical and Physical Characterization, Institute for Materials Research, Hasselt University, Diepenbeek (Belgium); Bael, M.K. van [Inorganic and Physical Chemistry, Institute for Materials Research, Hasselt University, Diepenbeek (Belgium); Imecvzw Division IMOMEC, Diepenbeek (Belgium)

    2010-04-15

    In this report, an existing phase transfer method for the synthesis of alkylamine- or alkanethiol-functionalized gold nanoparticles (NPs) is investigated. A parameter study shows that the concentration of the gold salt used is important for the stability of the resulting sol, but has little effect on the final average particle size or the size distribution. By adding dodecanethiol before the reduction, the formation of NPs was inhibited, providing evidence for the autocatalytic pathway for the formation of metallic NPs in wet chemical synthesis proposed in the literature. The resulting functionalized gold NPs are deposited onto Si-OH, octadecyltrichlorosilane (OTS) or 3-mercaptopropyltrimethoxysilane modified SiO{sub 2}/Si substrates. scanning electron microscope (SEM) is used to analyze the ordering behavior and surface coverage of the NPs and it is shown that the difference in affinity for the substrate has a profound effect on the deposition behavior. The functionalization of the substrates and of the NPs is confirmed by grazing angle attenuated total reflectance fourier transform infrared spectroscopy (GATR-FTIR). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Alteration zones: are they a good target for gold deposits in Egypt

    International Nuclear Information System (INIS)

    Botros, N.S.

    2002-01-01

    Extensive rock alterations are a clearly visible characteristic of most Egyptian gold deposits and occurrences. The alterations occur either surrounding the auriferous quartz veins and/or structurally controlled by specific structural features, such as fractures and shear surfaces. Some samples of these alteration zones have proved to be anomalously enriched in gold while others are completely barren. Accordingly there is a controversy on the merit of alteration zones as good lead to gold. Here, the various types of wall rocks wall-rock alteration are reviewed with a discussion on the possible reaction that could have generated them. It is concluded that two main styles of alterations could be recognized in the field. The first results during the liberation of gold from the source rocks, and is characterized by being widely distributed and spatial relation to major structures. The second style, however, is related to the deposition of gold and is recognizable only within a few meters of the auriferous quartz veins. The potentiality of each style is discussed and applications of concept are offered. In general, alterations accompanying the liberation of gold are not completely devoid of gold, but may still retain some gold depending on the mineralogical siting of gold in the source rocks. Moreover, this type of alteration is a good criterion for the presence of gold in the nearby sites. Alterations accompanying deposition of gold, on the other hand, constitute a good target for gold particularly the portions that are dissected by minor quartz veins, veinlets and stockworks (silicification) where gold is believed to migrate to such sites with silica liberated during the different types of alterations. The presence of some efficient precipitants, such as sulphides, carbonates, clay minerals, sericites, iron oxides, chlorite and graphite in the alteration zones is a good indicator of the alteration zone. (author)

  12. Geochemical and iron isotopic insights into hydrothermal iron oxyhydroxide deposit formation at Loihi Seamount

    Science.gov (United States)

    Rouxel, Olivier; Toner, Brandy; Germain, Yoan; Glazer, Brian

    2018-01-01

    Low-temperature hydrothermal vents, such as those encountered at Loihi Seamount, harbor abundant microbial communities and provide ideal systems to test hypotheses on biotic versus abiotic formation of hydrous ferric oxide (FeOx) deposits at the seafloor. Hydrothermal activity at Loihi Seamount produces abundant microbial mats associated with rust-colored FeOx deposits and variably encrusted with Mn-oxyhydroxides. Here, we applied Fe isotope systematics together with major and trace element geochemistry to study the formation mechanisms and preservation of such mineralized microbial mats. Iron isotope composition of warm (oxidation of Fe(II) during mixing of the hydrothermal fluid with seawater. By comparing the results with experimentally determined Fe isotope fractionation factors, we determined that less than 20% of Fe(II) is oxidized within active microbial mats, although this number may reach 80% in aged or less active deposits. These results are consistent with Fe(II) oxidation mediated by microbial processes considering the expected slow kinetics of abiotic Fe oxidation in low oxygen bottom water at Loihi Seamount. In contrast, FeOx deposits recovered at extinct sites have distinctly negative Fe-isotope values down to -1.77‰ together with significant enrichment in Mn and occurrence of negative Ce anomalies. These results are best explained by the near-complete oxidation of an isotopically light Fe(II) source produced during the waning stage of hydrothermal activity under more oxidizing conditions. Light Fe isotope values of FeOx are therefore generated by subsurface precipitation of isotopically heavy Fe-oxides rather than by the activity of dissimilatory Fe reduction in the subsurface. Overall, Fe-isotope compositions of microbial mats at Loihi Seamount display a remarkable range between -1.2‰ and +1.6‰ which indicate that Fe isotope compositions of hydrothermal Fe-oxide precipitates are particularly sensitive to local environmental conditions where

  13. Radiation-induced synthesis of gold, iron-oxide composite nanoparticles

    International Nuclear Information System (INIS)

    Seino, Satoshi; Yamamoto, Takao; Nakagawa, Takashi; Kinoshita, Takuya; Kojima, Takao; Taniguchi, Ryoichi; Okuda, Shuichi

    2007-01-01

    Composite nanoparticles consisting of magnetic iron oxide nanoparticles and gold nanoparticles were synthesized using gamma-rays or electron beam. Ionizing irradiation induces the generation of reducing species inside the aqueous solution, and gold ions are reduced to form metallic Au nanoparticles. The size of Au nanoparticles depended on the dose rate and the concentration of support iron oxide. The gold nanoparticles on iron oxide nanoparticles selectively adsorb biomolecules via Au-S bonding. By using magnetic property of the support iron oxide nanoparticles, the composite nanoparticles are expected as a new type of magnetic nanocarrier for biomedical applications. (author)

  14. The Porgera gold deposit, Papua, New Guinea, 2: sources of metals

    International Nuclear Information System (INIS)

    Richards, J.P.; McCulloch, M.T.; Kerrich, R.

    1991-01-01

    Sr and Pb isotopic studies of mineralized rocks and veins from the Porgera gold deposit indicates that these components were derived from a mixture of sedimentary and igneous sources, probably located within the Om Formation which underlies (< 3 km depth) the presently exposed Porgera Intrusive Complex (PIC) and associated ore deposit. Gold abundances in least-altered samples correlate with PGE, and indicate that the parental magma was mil enriched in Au and Pt-group elements relative to the Ir-group. (author)

  15. Iron and manganese deposits in Uruguay

    International Nuclear Information System (INIS)

    Alvarado, B.

    1959-01-01

    This report is the results of the study carried out for the United Nations expert which the main object was: the study of the information available about iron and manganese formation in Uruguay, as well as the main researching deposit to determinate economical possibilities in the exportation.

  16. Decoupling of Neoarchean sulfur sources recorded in Algoma-type banded iron formation

    Science.gov (United States)

    Diekrup, David; Hannington, Mark D.; Strauss, Harald; Ginley, Stephen J.

    2018-05-01

    Neoarchean Algoma-type banded iron formations (BIFs) are widely viewed as direct chemical precipitates from proximal volcanic-hydrothermal vents. However, a systematic multiple sulfur isotope study of oxide-facies BIF from a type locality in the ca. 2.74 Ga Temagami greenstone belt reveals mainly bacterial turnover of atmospheric elemental sulfur in the host basin rather than deposition of hydrothermally cycled seawater sulfate or sulfur from direct volcanic input. Trace amounts of chromium reducible sulfur that were extracted for quadruple sulfur isotope (32S-33S-34S-36S) analysis record the previously known mass-independent fractionation of volcanic SO2 in the Archean atmosphere (S-MIF) and biological sulfur cycling but only minor contributions from juvenile sulfur, despite the proximity of volcanic sources. We show that the dominant bacterial metabolisms were iron reduction and sulfur disproportionation, and not sulfate reduction, consistent with limited availability of organic matter and the abundant ferric iron deposited as Fe(OH)3. That sulfur contained in the BIF was not a direct volcanic-hydrothermal input, as expected, changes the view of an important archive of the Neoarchean sulfur cycle in which the available sulfur pools were strongly decoupled and only species produced photochemically under anoxic atmospheric conditions were deposited in the BIF-forming environment.

  17. Targeting of Gold Deposits in Amazonian Exploration Frontiers using Knowledge- and Data-Driven Spatial Modeling of Geophysical, Geochemical, and Geological Data

    Science.gov (United States)

    Magalhães, Lucíola Alves; Souza Filho, Carlos Roberto

    2012-03-01

    This paper reports the application of weights-of-evidence, artificial neural networks, and fuzzy logic spatial modeling techniques to generate prospectivity maps for gold mineralization in the neighborhood of the Amapari Au mine, Brazil. The study area comprises one of the last Brazilian mineral exploration frontiers. The Amapari mine is located in the Maroni-Itaicaiúnas Province, which regionally hosts important gold, iron, manganese, chromite, diamond, bauxite, kaolinite, and cassiterite deposits. The Amapari Au mine is characterized as of the orogenic gold deposit type. The highest gold grades are associated with highly deformed rocks and are concentrated in sulfide-rich veins mainly composed of pyrrhotite. The data used for the generation of gold prospectivity models include aerogeophysical and geological maps as well as the gold content of stream sediment samples. The prospectivity maps provided by these three methods showed that the Amapari mine stands out as an area of high potential for gold mineralization. The prospectivity maps also highlight new targets for gold exploration. These new targets were validated by means of detailed maps of gold geochemical anomalies in soil and by fieldwork. The identified target areas exhibit good spatial coincidence with the main soil geochemical anomalies and prospects, thus demonstrating that the delineation of exploration targets by analysis and integration of indirect datasets in a geographic information system (GIS) is consistent with direct prospecting. Considering that work of this nature has never been developed in the Amazonian region, this is an important example of the applicability and functionality of geophysical data and prospectivity analysis in regions where geologic and metallogenetic information is scarce.

  18. Cobalt—Styles of deposits and the search for primary deposits

    Science.gov (United States)

    Hitzman, Murray W.; Bookstrom, Arthur A.; Slack, John F.; Zientek, Michael L.

    2017-11-30

    Cobalt (Co) is a potentially critical mineral. The vast majority of cobalt is a byproduct of copper and (or) nickel production. Cobalt is increasingly used in magnets and rechargeable batteries. More than 50 percent of primary cobalt production is from the Central African Copperbelt. The Central African Copperbelt is the only sedimentary rock-hosted stratiform copper district that contains significant cobalt. Its presence may indicate significant mafic-ultramafic rocks in the local basement. The balance of primary cobalt production is from magmatic nickel-copper and nickel laterite deposits. Cobalt is present in several carbonate-hosted lead-zinc and copper districts. It is also variably present in Besshi-type volcanogenic massive sulfide and siliciclastic sedimentary rock-hosted deposits in back arc and rift environments associated with mafic-ultramafic rocks. Metasedimentary cobalt-copper-gold deposits (such as Blackbird, Idaho), iron oxide-copper-gold deposits, and the five-element vein deposits (such as Cobalt, Ontario) contain different amounts of cobalt. None of these deposit types show direct links to mafic-ultramafic rocks; the deposits may result from crustal-scale hydrothermal systems capable of leaching and transporting cobalt from great depths. Hydrothermal deposits associated with ultramafic rocks, typified by the Bou Azzer district of Morocco, represent another type of primary cobalt deposit.In the United States, exploration for cobalt deposits may focus on magmatic nickel-copper deposits in the Archean and Proterozoic rocks of the Midwest and the east coast (Pennsylvania) and younger mafic rocks in southeastern and southern Alaska; also, possibly basement rocks in southeastern Missouri. Other potential exploration targets include—The Belt-Purcell basin of British Columbia (Canada), Idaho, Montana, and Washington for different styles of sedimentary rock-hosted cobalt deposits;Besshi-type VMS deposits, such as the Greens Creek (Alaska) deposit and

  19. Evidence of synsedimentary microbial activity and iron deposition in ferruginous crusts of the Late Cenomanian Utrillas Formation (Iberian Basin, central Spain)

    Science.gov (United States)

    García-Hidalgo, José F.; Elorza, Javier; Gil-Gil, Javier; Herrero, José M.; Segura, Manuel

    2018-02-01

    Ferruginous sandstones and crusts are prominent sedimentary features throughout the continental (braided)-coastal siliciclastic (estuarine-tidal) wedges of the Late Cenomanian Utrillas Formation in the Iberian Basin. Crust types recognized are: Ferruginous sandy crusts (Fsc) with oxides-oxyhydroxides (hematite and goethite) concentrated on sandstone tops presenting a fibro-radial internal structure reminding organic structures that penetrate different mineral phases, suggesting the existence of bacterial activity in crust development; Ferruginous muddy crusts (Fmc) consisting of wavy, laminated, microbial mats, being composed mainly of hematite. On the other hand, a more dispersed and broader mineralization included as Ferruginous sandstones with iron oxides and oxyhydroxides (hematite and goethite) representing a limited cement phase on these sediments. The presence of microbial remains, ferruginous minerals, Microbially-induced sedimentary structures, microbial laminites and vertebrate tracks preserved due to the presence of biofilms suggest firstly a direct evidence of syn-depositional microbial activity in these sediments; and, secondly, that iron accumulation and ferruginous crusts development occurred immediately after deposition of the host, still soft sediments. Ferruginous crusts cap sedimentary cycles and they represent the gradual development of hard substrate conditions, and the development of a discontinuity surface at the top of the parasequence sets, related to very low sedimentary rates; the overlying sediments record subsequent flooding of underlying shallower environments; crusts are, consequently, interpreted as boundaries for these higher-order cycles in the Iberian Basin.

  20. The geology of the gold deposits of Prestea gold belt of Ghana ...

    African Journals Online (AJOL)

    This paper presents the geology of the gold deposits along the Prestea gold belt of Ghana to assist exploration work for new orebodies along the belt. Prestea district is the third largest gold producer in West Africa after Obuasi and Tarkwa districts (over 250 metric tonnes Au during the last century). The gold deposits are ...

  1. A Mesoproterozoic iron formation

    Science.gov (United States)

    Canfield, Donald E.; Zhang, Shuichang; Wang, Huajian; Wang, Xiaomei; Zhao, Wenzhi; Su, Jin; Bjerrum, Christian J.; Haxen, Emma R.; Hammarlund, Emma U.

    2018-04-01

    We describe a 1,400 million-year old (Ma) iron formation (IF) from the Xiamaling Formation of the North China Craton. We estimate this IF to have contained at least 520 gigatons of authigenic Fe, comparable in size to many IFs of the Paleoproterozoic Era (2,500–1,600 Ma). Therefore, substantial IFs formed in the time window between 1,800 and 800 Ma, where they are generally believed to have been absent. The Xiamaling IF is of exceptionally low thermal maturity, allowing the preservation of organic biomarkers and an unprecedented view of iron-cycle dynamics during IF emplacement. We identify tetramethyl aryl isoprenoid (TMAI) biomarkers linked to anoxygenic photosynthetic bacteria and thus phototrophic Fe oxidation. Although we cannot rule out other pathways of Fe oxidation, iron and organic matter likely deposited to the sediment in a ratio similar to that expected for anoxygenic photosynthesis. Fe reduction was likely a dominant and efficient pathway of organic matter mineralization, as indicated by organic matter maturation by Rock Eval pyrolysis combined with carbon isotope analyses: Indeed, Fe reduction was seemingly as efficient as oxic respiration. Overall, this Mesoproterozoic-aged IF shows many similarities to Archean-aged (>2,500 Ma) banded IFs (BIFs), but with an exceptional state of preservation, allowing an unprecedented exploration of Fe-cycle dynamics in IF deposition.

  2. MINERALOGICAL AND GEOCHEMICAL EVIDENCE FOR MULTI-STAGE FORMATION OF THE CHERTOVO KORYTO DEPOSIT

    Directory of Open Access Journals (Sweden)

    Yu. I. Tarasova

    2016-01-01

    Full Text Available Introduction. The Lena gold province is one of the largest known gold resources in the world. The history of its exploration is long, but the genesis of gold mineralization hosted in black shales in the Bodaibo synclinorium still remains unclear. The studies face the challenge of discovering sources for the useful component and mechanisms of its redistribution and concentration. This study aims to clarify the time sequence of the ore mineralization in the Chertovo Koryto deposit on the basis of detailed mineralogical and geochemical characteristics of the ore, wallrock metasomatites and the Early Proterozoic host black shales, and to assess the applicability of the Sukhoi Log model for clarifying the Chertovo Koryto origin.Geological setting. The Lena gold province is located in the junction area of the Siberian platform and the Baikal mountain region (Fig. 1. The main element of its geological structure is the Chuya-Tonoda-Nechera anticline. Its axial segment is marked by horsts composed of the Early Proterozoic rocks with abundant granitoid massifs. The Chertovo Koryto deposit is located within the Kevakta ore complex at the Tonoda uplift, the largest tectonically disturbed block between the Kevakta and Amandrak granitoids massifs. The 150 m thick and 1.5 km long ore zone of the Chertovo Koryto deposit is confined to the hanging wall of the fold-fault zone feathering the Amandrak deep fault (Fig. 2.Composition. In the ore zone, rocks of the Mikhailovsk Formation include carbonaceous shales of the feldspar-chlorite-sericite-quartz composition with nest-shaped ore accumulations of the pyrite-quartz composition and quartz veinlets. In our study, we distinguish five mineral associations resulting from heterochronous processes that sequentially replaced each other:- The earliest association related with the quartz-muscovite-sericite metasomatism and the removal of REE and other elements from the rocks and their partial redeposition;- Metamorphic

  3. Phototrophs in high-iron-concentration microbial mats: physiological ecology of phototrophs in an iron-depositing hot spring

    Science.gov (United States)

    Pierson, B. K.; Parenteau, M. N.; Griffin, B. M.

    1999-01-01

    At Chocolate Pots Hot Springs in Yellowstone National Park the source waters have a pH near neutral, contain high concentrations of reduced iron, and lack sulfide. An iron formation that is associated with cyanobacterial mats is actively deposited. The uptake of [(14)C]bicarbonate was used to assess the impact of ferrous iron on photosynthesis in this environment. Photoautotrophy in some of the mats was stimulated by ferrous iron (1.0 mM). Microelectrodes were used to determine the impact of photosynthetic activity on the oxygen content and the pH in the mat and sediment microenvironments. Photosynthesis increased the oxygen concentration to 200% of air saturation levels in the top millimeter of the mats. The oxygen concentration decreased with depth and in the dark. Light-dependent increases in pH were observed. The penetration of light in the mats and in the sediments was determined. Visible radiation was rapidly attenuated in the top 2 mm of the iron-rich mats. Near-infrared radiation penetrated deeper. Iron was totally oxidized in the top few millimeters, but reduced iron was detected at greater depths. By increasing the pH and the oxygen concentration in the surface sediments, the cyanobacteria could potentially increase the rate of iron oxidation in situ. This high-iron-content hot spring provides a suitable model for studying the interactions of microbial photosynthesis and iron deposition and the role of photosynthesis in microbial iron cycling. This model may help clarify the potential role of photosynthesis in the deposition of Precambrian banded iron formations.

  4. Witwatersrand gold deposits formed by volcanic rain, anoxic rivers and Archaean life

    Science.gov (United States)

    Heinrich, Christoph A.

    2015-03-01

    The Witwatersrand Basin in South Africa is one of the best-preserved records of fluvial sedimentation on an Archaean continent. The basin hosts the worlds biggest gold resource in thin pebble beds, but the process for gold enrichment is debated. Mechanical accumulation of gold particles from flowing river water is the prevailing hypothesis, yet there is evidence for hydrothermal mobilization of gold by fluids invading the metasedimentary rocks after their burial. Earth's atmosphere three billion years ago was oxygen free, but already sustained some of the oldest microbial life on land. Here I use thermodynamic modelling and mass-balance calculations to show that these conditions could have led to the chemical transport and precipitation of gold in anoxic surface waters, reconciling the evidence for fluvial deposition with evidence for hydrothermal-like chemical reactions. I suggest that the release of sulphurous gases from large volcanic eruptions created acid rain that enabled the dissolution and transport of gold in surface waters as sulphur complexes. Precipitation of the richest gold deposits could have been triggered by chemical reduction of the dissolved gold onto organic material in shallow lakes and pools. I conclude that the Witwatersrand gold could have formed only during the Archaean, after the emergence of continental life but before the rise of oxygen in the Earth's atmosphere.

  5. Termination of BIF deposition in the Paleoproterozoic: the Tongwane Formation, South Africa

    OpenAIRE

    Schroeder, Stefan; Warke, Matthew

    2016-01-01

    The Tongwane Formation (~2.4 Ga) conformably overlies banded iron formations (BIF; Penge Iron Formation) on the Kaapvaal Craton, South Africa. As such, it provides a unique window into depositional processes and environmental conditions in the aftermath of major Archean-Paleoproterozoic BIF deposition, and on the eve of irreversible environmental oxygenation in the Great Oxidation Event (GOE, ~2.35 Ga). This study presents the first sedimentological and bulk-rock geochemical characterization ...

  6. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites

    Science.gov (United States)

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.

    2013-01-01

    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V). The origin of these typically discordant ore deposits remains as enigmatic as the magmatic evolution of their host rocks. The deposits clearly have a magmatic origin, hosted by an age-constrained unique suite of rocks that likely are the consequence of a particular combination of tectonic circumstances, rather than any a priori temporal control. Principal ore minerals are ilmenite and hemo-ilmenite (ilmenite with extensive hematite exsolution lamellae); occurrences of titanomagnetite, magnetite, and apatite that are related to this deposit type are currently of less economic importance. Ore-mineral paragenesis is somewhat obscured by complicated solid solution and oxidation behavior within the Fe-Ti-oxide system. Anorthosite suites hosting these deposits require an extensive history of voluminous plagioclase crystallization to develop plagioclase-melt diapirs with entrained Fe-Ti-rich melt rising from the base of the lithosphere to mid- and upper-crustal levels. Timing and style of oxide mineralization are related to magmatic and dynamic evolution of these diapiric systems and to development and movement of oxide cumulates and related melts. Active mines have developed large open pits with extensive waste-rock piles, but

  7. Sedimentology and geochemistry of early Proterozoic storm-dominated deposits in the transition zone from microbanded Kuruman to granular Griquatown iron-formation, Griqualand West

    International Nuclear Information System (INIS)

    Beukes, N.J.; Klein, C.

    1990-01-01

    A transition from microbanded Kuruman to granular Griquatown iron-formation is described in terms of sedimentological, petrographic, and geochemical characteristics, as well as whole rock carbon and oxygen isotopic compositions. Five major lithofacies are present in the Kuruman-Griquatown transition zone. The lithofacies are arranged in an upward coarsening sequence. It is concluded that the coarsening upward microbanded-granular iron-formation units in the Kuruman-Griquatown sequence represent shallowing upward storm-dominated deposits. 2 refs

  8. Geological Structure and Gold Mineralization of Carbonaceous Deposits of the Tyotechnaya Mountain (South Urals

    Directory of Open Access Journals (Sweden)

    A. V. Snachev

    2018-03-01

    Full Text Available This paper considers the geological structure of the northern part of the East-Urals Trough. Particular attention is paid to the Kosobrodskaya Formation, where the carbonaceous deposits are most abundant. It was found that the gold in the black shales of the Tyotechnaya Mountain is associated with the intensively dislocated, silicified and sulfidised rocks struck with the diorite porphyry of the Birgildin-Tomino Complex. Channel sampling on the number of wells showed the gold grades up to 1.5 g/t that allows suggesting the setting up of new gold deposit.

  9. Iron Deposition and Ferritin Heavy Chain (Fth Localization in Rodent Teeth

    Directory of Open Access Journals (Sweden)

    Wen Xin

    2013-01-01

    Full Text Available Abstract Background An iron rich layer on the labial surface is characteristic of the enamel of rodent incisors. In order to address a role for iron content in continuously growing incisors during odontogenesis, we studied iron deposition patterns in enamel and dentine using Perls’ blue staining and ferritin heavy chain (Fth immunolocalization. Fth expression is regulated by iron level; therefore its localization can be used as a sensitive indicator for iron deposition. Results Sagittal sections of 4-week old rat incisors showed a gradual increase in iron level in the enamel organ from secretory to maturation stages. In addition, iron was detected in ameloblasts of erupting third molars of 4-week old rats, suggesting iron plays a role in both incisor and molar development. In odontoblasts, the presence of iron was demonstrated, and this is consistent with iron’s role in collagen synthesis. Using postnatal 3-, 6-, 9-day old mice, the spatial and temporal expression of Fth in tooth development again indicated the presence of iron in mature ameloblasts and odontoblasts. Conclusions While these data do not explain what functional role iron has in tooth formation, it does highlight a significant molecular activity associated with the formation of the rodent dentition.

  10. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa

    Science.gov (United States)

    Beukes, N. J.; Klein, C.; Kaufman, A. J.; Hayes, J. M.

    1990-01-01

    The transition zone comprises Campbellrand microbialaminated (replacing "cryptalgalaminate") limestone and shale, with minor dolomite, conformably overlain by the Kuruman Iron Formation of which the basal part is characterized by siderite-rich microbanded iron-formation with minor magnetite and some hematite-containing units. The iron-formation contains subordinate intraclastic and microbialaminated siderite mesobands and was deposited in deeper water than the limestones. The sequence is virtually unaltered with diagenetic mineral assemblages reflecting a temperature interval of about 110 degrees to 170 degrees C and pressures of 2 kbars. Carbonate minerals in the different rock types are represented by primary micritic precipitates (now recrystallized to microsparite), early precompactional sparry cements and concretions, deep burial limpid euhedral sparites, and spar cements precipitated from metamorphic fluids in close contact with diabase sills. Paragenetic pathways of the carbonate minerals are broadly similar in all lithofacies with kerogen intimately associated with them. Kerogen occurs as pigmentation in carbonate crystals, as reworked organic detritus in clastic-textured carbonate units, and as segregations of kerogen pigment around late diagenetic carbonate crystals. Locally kerogen may also be replaced by carbonate spar. Carbon isotope compositions of the carbonate minerals and kerogen are dependent on their mode of occurrence and on the composition of the dominant carbonate species in a specific lithofacies. Integration of sedimentary, petrographic, geochemical, and isotopic results makes it possible to distinguish between depositional, early diagenetic, deep burial, and metamorphic effects on the isotopic compositions of the carbonate minerals and the kerogen in the sequence. Major conclusions are that deep burial thermal decarboxylation led to 13C depletion in euhedral ferroan sparites and 13C enrichment in kerogen (organic carbon). Metamorphic

  11. Strata-bound Fe-Co-Cu-Au-Bi-Y-REE deposits of the Idaho Cobalt Belt: Multistage hydrothermal mineralization in a magmatic-related iron oxide copper-gold system

    Science.gov (United States)

    Slack, John F.

    2012-01-01

    Mineralogical and geochemical studies of strata-bound Fe-Co-Cu-Au-Bi-Y-rare-earth element (REE) deposits of the Idaho cobalt belt in east-central Idaho provide evidence of multistage epigenetic mineralization by magmatic-hydrothermal processes in an iron oxide copper-gold (IOCG) system. Deposits of the Idaho cobalt belt comprise three types: (1) strata-bound sulfide lenses in the Blackbird district, which are cobaltite and, less commonly, chalcopyrite rich with locally abundant gold, native bismuth, bismuthinite, xenotime, allanite, monazite, and the Be-rich silicate gadolinite-(Y), with sparse uraninite, stannite, and Bi tellurides, in a gangue of quartz, chlorite, biotite, muscovite, garnet, tourmaline, chloritoid, and/or siderite, with locally abundant fluorapatite or magnetite; (2) discordant tourmalinized breccias in the Blackbird district that in places have concentrations of cobaltite, chalcopyrite, gold, and xenotime; and (3) strata-bound magnetite-rich lenses in the Iron Creek area, which contain cobaltiferous pyrite and locally sparse chalcopyrite or xenotime. Most sulfide-rich deposits in the Blackbird district are enclosed by strata-bound lenses composed mainly of Cl-rich Fe biotite; some deposits have quartz-rich envelopes.Whole-rock analyses of 48 Co- and/or Cu-rich samples show high concentrations of Au (up to 26.8 ppm), Bi (up to 9.16 wt %), Y (up to 0.83 wt %), ∑REEs (up to 2.56 wt %), Ni (up to 6,780 ppm), and Be (up to 1,180 ppm), with locally elevated U (up to 124 ppm) and Sn (up to 133 ppm); Zn and Pb contents are uniformly low (≤821 and ≤61 ppm, respectively). Varimax factor analysis of bulk compositions of these samples reveals geochemically distinct element groupings that reflect statistical associations of monazite, allanite, and xenotime; biotite and gold; detrital minerals; chalcopyrite and sparse stannite; quartz; and cobaltite with sparse selenides and tellurides. Significantly, Cu is statistically separate from Co and As

  12. Mineralogical and geochemical studies on apatites and phosphate host rocks of Esfordi deposit, Yazd province, to determine the origin and geological setting of the apatite

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Rajabzadeh

    2014-10-01

    Full Text Available Introduction Iron-apatite ore deposits well known as Kiruna iron type formed in association with calc-alkaline volcanism from Proterozoic to Tertiary (Hitzman et al., 1992. Liquid immiscibility in an igneous system was proposed to explain the formation of the iron oxides accompanying apatite in mineralized zones (Förster and Jafarzadeh, 1994; Daliran, 1999. The mode of ore formation however, is a matter in debate. Bafq region in Central Iran is one of the greatest iron mining regions in Iran with 750 million tons of reservoir. The majority of the iron deposits contains apatite as minor mineral and underwent metamorphism-alteration in varying degrees. The mode of formation and geological setting of Esfordi iron-apatite deposit in this region with an average of 13.9 wt% apatite are discussed using geochemical and mineralogical data along with field description. Materials and methods Fifty-three samples of mineralized zones and host rocks collected from 7 cross sections were studied by conventional microscopic methods. Seven representative samples were determined by XRD at Department of Physics, Shiraz University. Fifteen and six samples were also analyzed for major and trace elements using XRF at Binaloud Co. Iran, and ICP-MS at Labwest Minerals Analysis, Australia, respectively. Microprobe analyses were carried out on apatite in Geo Forschungs Zentrum Telegrafenberg at Potsdam University, Germany. Results Field observation shows that igneous host rocks in Esfordi were intensively altered by hydrothermal fluids. The ores are surrounded by wide altered halos. Petrographic investigation indicated that the most important alterations are of potassic, carbonatitic and silicification types. Magnetite and apatite occur as major minerals, accompanied by minor hematite and goethite in the mineralized zones. Rare Earth Element (REE minerals are present as minor phases in the ores. Three apatite mineralization types (vein, massive, and disseminated were

  13. Origin of sandstone-hosted uranium deposits, Frome Embayment, South Australia

    International Nuclear Information System (INIS)

    Sanford, R.F.

    1985-01-01

    The formation of sandstone-hosted uranium deposits in the Frome Embayment of South Australia is largely a result of tectonic events possibly as old as the Archean. Uranium deposits of several types and ages in the region demonstrate the importance of uranium enrichment in the source area. Mobile zones around the Archean terrane of the Gawler block have been the locus of intermittent tectonic activity from Early Proterozoic to recent time. Vein-type uranium deposits in basement source rocks are concentrated in these zones, because they favor deep crustal partial melting and ascent of Na-rich granitic magmas and hydrothermal solutions. Relatively stable areas bordered by mobile zones, are important for the formation of sandstone-hosted uranium deposits because they act as platforms for terrigenous sedimentation from the surrounding, uplifted, uranium-rich basement rocks. Wet, subtropical conditions prevailing at the time of uplift aided rapid erosion and subaerial deposition of channel sands with intermixed organic detritus. Later uplift accompanied by erosion of the recently deposited sands in the headwater area caused increased recharge of oxygenated uraniferous ground water, which led to the formation of geochemical-cell roll-front type deposits like those in the Wyoming basins. Subsequent arid conditions helped preserve the deposits. (author)

  14. Airborne Thermal Infrared Multispectral Scanner (TIMS) images over disseminated gold deposits, Osgood Mountains, Humboldt County, Nevada

    Science.gov (United States)

    Krohn, M. Dennis

    1986-01-01

    The U.S. Geological Survey (USGS) acquired airborne Thermal Infrared Multispectral Scanner (TIMS) images over several disseminated gold deposits in northern Nevada in 1983. The aerial surveys were flown to determine whether TIMS data could depict jasperoids (siliceous replacement bodies) associated with the gold deposits. The TIMS data were collected over the Pinson and Getchell Mines in the Osgood Mountains, the Carlin, Maggie Creek, Bootstrap, and other mines in the Tuscarora Mountains, and the Jerritt Canyon Mine in the Independence Mountains. The TIMS data seem to be a useful supplement to conventional geochemical exploration for disseminated gold deposits in the western United States. Siliceous outcrops are readily separable in the TIMS image from other types of host rocks. Different forms of silicification are not readily separable, yet, due to limitations of spatial resolution and spectral dynamic range. Features associated with the disseminated gold deposits, such as the large intrusive bodies and fault structures, are also resolvable on TIMS data. Inclusion of high-resolution thermal inertia data would be a useful supplement to the TIMS data.

  15. Formation of albitite-hosted uranium within IOCG systems: the Southern Breccia, Great Bear magmatic zone, Northwest Territories, Canada

    Science.gov (United States)

    Montreuil, Jean-François; Corriveau, Louise; Potter, Eric G.

    2015-03-01

    Uranium and polymetallic U mineralization hosted within brecciated albitites occurs one kilometer south of the magnetite-rich Au-Co-Bi-Cu NICO deposit in the southern Great Bear magmatic zone (GBMZ), Canada. Concentrations up to 1 wt% U are distributed throughout a 3 by 0.5 km albitization corridor defined as the Southern Breccia zone. Two distinct U mineralization events are observed. Primary uraninite precipitated with or without pyrite-chalcopyrite ± molybdenite within magnetite-ilmenite-biotite-K-feldspar-altered breccias during high-temperature potassic-iron alteration. Subsequently, pitchblende precipitated in earthy hematite-specular hematite-chlorite veins associated with a low-temperature iron-magnesium alteration. The uraninite-bearing mineralization postdates sodic (albite) and more localized high-temperature potassic-iron (biotite-magnetite ± K-feldspar) alteration yet predates potassic (K-feldspar), boron (tourmaline) and potassic-iron-magnesium (hematite ± K-feldspar ± chlorite) alteration. The Southern Breccia zone shares attributes of the Valhalla (Australia) and Lagoa Real (Brazil) albitite-hosted U deposits but contains greater iron oxide contents and lower contents of riebeckite and carbonates. Potassium, Ni, and Th are also enriched whereas Zr and Sr are depleted with respect to the aforementioned albitite-hosted U deposits. Field relationships, geochemical signatures and available U-Pb dates on pre-, syn- and post-mineralization intrusions place the development of the Southern Breccia and the NICO deposit as part of a single iron oxide alkali-altered (IOAA) system. In addition, this case example illustrates that albitite-hosted U deposits can form in albitization zones that predate base and precious metal ore zones in a single IOAA system and become traps for U and multiple metals once the tectonic regime favors fluid mixing and oxidation-reduction reactions.

  16. Olympic Dam copper-uranium-gold deposit, South Australia

    International Nuclear Information System (INIS)

    Lalor, J.H.

    1986-01-01

    The Olympic Dam copper-uranium-gold deposit was discovered in July 1975. It is located 650 km north-northwest of Adelaide on Roxby Downs Station in South Australia. The first diamond drill hole, RD1, intersected 38 m of 1.05% copper. A further eight holes were drilled with only marginal encouragement to November 1976, when RD10 cored 170 m of 2.12% copper and 0.06% of uranium oxide, thus confirming an economic discovery. The discovery of Olympic Dam is an excellent example applying broad-scale, scientifically based conceptual studies to area selection. Exploration management supported its exploration scientists in testing their ideas with stratigraphic drilling. Geologic modeling, supported by geophysical interpretations and tectonic studies, was used to site the first hole. The discovery also illustrates the persistence required in mineral exploration. The deposit appears to be a new type of stratabound sediment-hosted ore. It has an areal extent exceeding 20 km 2 with vertical thicknesses of mineralization up to 350 m. It is estimated to contain more than 2000 million MT of mineralized material with an average grade of 1.6% copper, 0.06% uranium oxide, and 0.6 g/MT gold. The deposit occurs in middle Proterozoic basement beneath 350 m of unmineralized, flat upper Proterozoic sediments. The sediments comprising the local basement sequence are predominantly sedimentary breccias controlled by a northwest-trending graben

  17. Late-Hercynian intrusion-related gold deposits: An integrated model on the Tighza polymetallic district, central Morocco

    Science.gov (United States)

    Éric, Marcoux; Khadija, Nerci; Yannick, Branquet; Claire, Ramboz; Gilles, Ruffet; Jean-Jacques, Peucat; Ross, Stevenson; Michel, Jébrak

    2015-07-01

    radiogenic isotope studies. Nd and Sr isotope compositions of scheelite and granites suggest the participation of a juvenile component while lead isotopes demonstrate a major participation of the basement. Both gold mineralization and zoning suggest that the system developed at the end of the magmatic activity, accompanying a major transition in magmatic fluid composition. The morphology of the gold-bearing mineralization is dependent of the permeability and the reactivity of host-rocks: focus circulation of fluids through pre-existing tectonic corridors, reactivated by late-Hercynian intrusions favor the formation of large W-type gold veins, while infiltration of fluid within reactive stratigraphic layers gives rise to skarn mineralization. A 40Ar/39Ar date (W1 north vein: 291.8 ± 0.3 Ma) indicates that hydrothermal circulation predates gold and tungsten deposition in open fractures as well as Mine granite emplacement. The W-Au mineralization preceded the onset of a large convective hydrothermal cell around the intrusion that led to the formation of the Pb-Ag-Zn mined veins. The Tighza polymetallic district displays numerous similarities with the R-IRG model that was defined in the American Cordillera, such as thermal and zonation patterns, carbonic hydrothermal fluids and chronology of intrusion and related deposits, but also provides new insight to the R-IRG model such as wide Au-quartz veins instead of sheeted Au-veins, oxidation state of the magma, and Sr-Nd isotopic data. These results establish a major magmatic contribution and discard a direct genetic relationship between gold mineralization and major neighboring Pb-Ag-Zn veins. A large number of classic Pb-Zn district of the Western Hercynides belong to the same clan.

  18. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites: Chapter K in Mineral Deposit Models for Resource Assessment

    Science.gov (United States)

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.

    2013-01-01

    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V).

  19. The palaeoenvironmental implications of carbonate petrography, kerogen distribution and carbon and oxygen isotope variations in the early Proterozoic transition from Campbellrand limestone to Kuruman iron-formation deposition in Griqualand West

    International Nuclear Information System (INIS)

    Beukes, N.J.; Klein, C.; Kaufman, A.J.; Hayes, J.M.

    1990-01-01

    The Griqualand West area of the Transvaal basin in South Africa offers a unique opportunity to study the relationships between the deposition of limestone and iron-formation. The stratigraphic sequence includes the transition from microbialaminated Campbellrand carbonates to the conformably Kuruman iron formation composed mainly of microbanded iron-formation. The relationships between carbonate mineral paragenesis, kerogen abundance, and isotopic compositions of carbon and oxygen for the same drill core samples are reported. The significance of whole rock carbon-isotopic compositions of iron-formations relative to those of limestones and dolomites are explored. 6 refs

  20. Temporal evolution of the giant Salobo IOCG deposit, Carajás Province (Brazil): constraints from paragenesis of hydrothermal alteration and U-Pb geochronology

    Science.gov (United States)

    deMelo, Gustavo H. C.; Monteiro, Lena V. S.; Xavier, Roberto P.; Moreto, Carolina P. N.; Santiago, Erika S. B.; Dufrane, S. Andrew; Aires, Benevides; Santos, Antonio F. F.

    2017-06-01

    The giant Salobo copper-gold deposit is located in the Carajás Province, Amazon Craton. Detailed drill core description, petrographical studies, and U-Pb SHRIMP IIe and LA-ICP-MS geochronology unravel its evolution regarding the host rocks, hydrothermal alteration and mineralization. Within the Cinzento Shear Zone, the deposit is hosted by orthogneisses of the Mesoarchean Xingu Complex (2950 ± 25 and 2857 ± 6.7 Ma) and of the Neoarchean Igarapé Gelado suite (2763 ± 4.4 Ma), which are crosscut by the Old Salobo granite. Remnants of the Igarapé Salobo metavolcanic-sedimentary sequence are represented by a quartz mylonite with detrital zircon populations (ca. 3.1-3.0, 2.95, 2.86, and 2.74 Ga). High-temperature calcic-sodic hydrothermal alteration (hastingsite-actinolite) was followed by silicification, iron-enrichment (almandine-grunerite-magnetite), tourmaline formation, potassic alteration with biotite, copper-gold ore formation, and later Fe-rich hydrated silicate alteration. Myrmekitic bornite-chalcocite and magnetite comprise the bulk of copper-gold ore. All these alteration assemblages have been overprinted by post-ore hematite-bearing potassic and propylitic alteration, which is also recognized in the Old Salobo granite. In the central zone of the deposit the mylonitized Igarapé Gelado suite rocks yield an age of 2701 ± 30 Ma. Zircon ages of 2547 ± 5.3 and 2535 ± 8.4 Ma were obtained for the Old Salobo granite and for the high-grade copper ore, respectively. A U-Pb LA-ICP-MS monazite age (2452 ± 14 Ma) from the copper-gold ore indicates hydrothermal activity and overprinting in the Siderian. Therefore, a protracted tectono-thermal event due to the reactivation of the Cinzento Shear Zone is proposed for the evolution of the Salobo deposit.

  1. Study of the sulfur mechanism on the formation of coke deposition on iron surfaces; Etude des mecanismes d'action du soufre sur le cokage catalytique du fer

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, F.

    2001-12-01

    The formation of coke deposition which occurs in a range of temperature 500 deg C-650 deg C is a major problem in many chemical and petrochemical processes where hydrocarbons or other strongly carburizing atmospheres are involved. To reduce the rate of coke deposition, sulfur can be added in the gas phase. The topic of this work is to study the sulfur mechanism on the formation of coke deposition on iron surfaces. Firstly, we study the mechanism of graphitic filament formation on reduced and oxidised iron surfaces. A new mechanism of catalytic particle formation is proposed when the surface is initially oxidised. This mechanism is based on thermodynamic, kinetic and structural considerations. The results show that oxide/carbide transitions are involved in the transformation of the oxide layer in catalytic particles. Although the different iron oxides are precursors for the formation of catalytic particles, wustite (FeO) has a better reactivity than magnetite (Fe{sub 3}O{sub 4}) and hematite (Fe{sub 2}O{sub 3}). Sulfur acts on different steps of the coke formation, preventing phase transformations (carburation, graphitization) which occur during the formation of catalytic particles. Sulfur activity required to prevent these transformations changes with the temperature, the chemical state of iron (reduced or oxidised) and the carbon activity in the gas phase. Sulfur/ethylene co-adsorption studies were performed on mono-crystal of iron (110). The results show that sulfur can prevent adsorption and decomposition of this hydrocarbon on metallic surface (Fe) and on magnetite (Fe{sub 3}O{sub 4}). Then, sulfur prevents the reaction leading to the carburation and graphitization of the surface. (author)

  2. Mapping Hydrothermal Alteration Zones at a Sediment-Hosted Gold Deposit - Goldstrike Mining District, Utah, Using Ground-Based Hyperspectral Imaging

    Science.gov (United States)

    Krupnik, D.; Khan, S.; Crockett, M.

    2017-12-01

    Understanding the origin, genesis, as well as depositional and structural mechanisms of gold mineralization as well as detailed mapping of gold-bearing mineral phases at centimeter scale can be useful for exploration. This work was conducted in the Goldstrike mining district near St. George, UT, a structurally complex region which contains Carlin-style disseminated gold deposits in permeable sedimentary layers near high-angle fault zones. These fault zones are likely a conduit for gold-bearing hydrothermal fluids, are silicified, and are frequently gold-bearing. Alteration patterns are complex, difficult to distinguish visually, composed of several phases, and vary significantly over centimeter to meter scale distances. This makes identifying and quantifying the extent of the target zones costly, time consuming, and discontinuous with traditional geochemical methods. A ground-based hyperspectral scanning system with sensors collecting data in the Visible Near Infrared (VNIR) and Short-Wave Infrared (SWIR) portions of the electromagnetic spectrum are utilized for close-range outcrop scanning. Scans were taken of vertical exposures of both gold-bearing and barren silicified rocks (jasperoids), with the intent to produce images which delineate and quantify the extent of each phase of alteration, in combination with discrete geochemical data. This ongoing study produces mineralogical maps of surface minerals at centimeter scale, with the intent of mapping original and alteration minerals. This efficient method of outcrop characterization increases our understanding of fluid flow and alteration of economic deposits.

  3. Application of U-Th-Pb phosphate geochronology to young orogenic gold deposits: New age constraints on the formation of the Grass Valley gold district, Sierra Foothills province, California

    Science.gov (United States)

    Taylor, Ryan D.; Goldfarb, Richard J.; Monecke, Thomas; Fletcher, Ian R.; Cosca, Michael A.; Kelly, Nigel M.

    2015-01-01

    The Grass Valley orogenic gold district in the Sierra Nevada foothills province, central California, the largest historic gold producer of the North American Cordillera, comprises both steeply dipping east-west (E-W) veins located along lithologic contacts in accreted ca. 300 and 200 Ma oceanic rocks and shallowly dipping north-south (N-S) veins hosted by the Grass Valley granodiorite; the latter have yielded about 70 percent of the 13 million ounces of historic lode gold production in the district. The oceanic host rocks were accreted to the western margin of North America between 200 and 170 Ma, metamorphosed to greenschist and amphibolite facies, and uplifted between 175 and 160 Ma. Large-scale magmatism in the Sierra Nevada occurred between 170-140 Ma and 120-80 Ma, with the Grass Valley granodiorite being emplaced during the older episode of magmatism. Uranium-lead isotopic dating of hydrothermal xenotime yielded the first absolute age of 162±5 Ma for the economically more significant N-S veins. The vein-hosted xenotime, as well as associated monazite, are unequivocally of hydrothermal origin as indicated by textural and chemical characteristics, including grain shape, lack of truncated growth banding, lack of a Eu anomaly, and low U and Th concentrations. Furthermore, the crack-seal texture of the veins, with abundant wallrock slivers, suggests their formation as a result of episodic fluid flow possibly related to reoccurring seismic events, rather than a period of fluid exsolution from an evolving magma. The N-S veins are temporally distinct from a younger 153-151 Ma gold event that was previously reported for the E-W veins. Overlapping U-Pb zircon (159.9±2.2 Ma) and 40Ar/39Ar biotite and hornblende (159.7±0.6 to 161.9±1.4 Ma) ages and geothermobarometric calculations indicate that the Grass Valley granodiorite was emplaced at ca. 160 Ma at elevated temperatures (~800°C) within approximately 3 km of the paleosurface and rapidly cooled to the ambient

  4. Banded Iron Formations

    DEFF Research Database (Denmark)

    Posth, Nicole R; Konhauser, Kurt O; Kappler, Andreas

    2011-01-01

    Sedimentary deposits of alternating iron-rich (20–40% Fe) and iron-poor, siliceous (40–50% SiO2) mineral layers that primarily precipitated throughout much of the late Archean (2.7–2.5 Ga) and Paleoproterozoic (2.5– 1.8 Ga), but then remerged in the Neoproterozoic (0.8 Ga).......Sedimentary deposits of alternating iron-rich (20–40% Fe) and iron-poor, siliceous (40–50% SiO2) mineral layers that primarily precipitated throughout much of the late Archean (2.7–2.5 Ga) and Paleoproterozoic (2.5– 1.8 Ga), but then remerged in the Neoproterozoic (0.8 Ga)....

  5. Goudafzettingen in Suriname (Gold deposits in Surinam)

    NARCIS (Netherlands)

    Brinck, J.W.

    1956-01-01

    THE GOLD DEPOSITS IN SURINAM AND THE DISTRIBUTION OF CONCESSIONS THROUGH THE COUNTRY The fieldwork on the occurrence of primary and secondary gold deposits in Surinam on which this thesis is based was carried out by order of the Welfare Fund Surinam (Welvaarts Fonds Suriname) during the periods

  6. Relationship between uranium-molybdenum, fluorite and gold deposits within provinces of continental volcanicity

    International Nuclear Information System (INIS)

    Modnikov, I.S.; Skvortsova, K.V.; Chesnokov, L.V.

    1974-01-01

    The article gives a comparative description of and the age relationships between uranium-molybdenum, gold and fluorite mineralizations in the areas of development of adhesite-diorite and liparite-granite vulcanoplutonic formations, which are most fully and intensively manifest in the intra-anticlinal and median blocks of folded regions in the final stages of geosynclinal development or during the final stages of tectono-magmatic activation. These formations usually fill vulcano-tectonic depression structures - overlaid troughs and inherited delections. The geological and geochemical data are evidence of the close temporal link between the hydrothermal process of ore formation and the type and scale of manifestations of the vulcano-plutonic magmatism that is responsible for the general geochemical features of the ores of deposits of various types. The formation of gold, fluorite and uranium-molybdenum deposits occurred immediately after the completion of effusive and intrusive magmatism during a single metallogenic cycle. The spatial distribution of the ore fields and deposits depends chiefly on the peculiarities of the tectonic make-up of the depression structures, and also on the type and scale of the manifestations of vulcano-plutonic magmatism. (B.Ya.)

  7. Tectonic setting of synorogenic gold deposits of the Pacific Rim

    Science.gov (United States)

    Goldfarb, R.J.; Phillips, G.N.; Nokleberg, W.J.

    1998-01-01

    More than 420 million oz of gold were concentrated in circum-Pacific synorogenic quartz loades mainly during two periods of continental growth, one along the Gondwanan margin in the Palaeozoic and the other in the northern Pacific basin between 170 and 50 Ma. These ores have many features in common and can be grouped into a single type of lode gold deposit widespread throughout clastic sedimentary-rock dominant terranes. The auriferous veins contain only a few percent sulphide minerals, have gold:silver ratios typically greater than 1:1, show a distinct association with medium grade metamorphic rocks, and may be associated with large-scale fault zone. Ore fluids are consistently of low salinity and are CO2-rich. In the early and middle Palaeozoic in the southern Pacific basin, a single immense turbidite sequence was added to the eastern margin of Gondwanaland. Deformation of these rocks in southeastern Australia was accompanied by deposition of at least 80 million oz of gold in the Victorian sector of the Lachlan fold belt mainly during the Middle and Late Devonian. Lesser Devonian gold accumulations characterized the more northerly parts of the Gondwanan margin within the Hodgkinson-Broken River and Thomson fold belts. Additional lodes were emplaced in this flyschoid sequence in Devonian or earlier Palaeozoic times in what is now the Buller Terrane, Westland, New Zealand. Minor post-Devonian growth of Gondwanaland included terrane collision and formation of gold-bearing veins in the Permian in Australia's New England fold belt and in the Jurassic-Early Cretaceous in New Zealand's Otago schists. Collision and accretion of dozens of terranes for a 100-m.y.-long period against the western margin of North America and eastern margin of Eurasia led to widespread, lattest Jurassic to Eocene gold veining in the northern Pacific basin. In the former location, Late Jurassic and Early Cretaceous veins and related placer deposits along the western margin of the Sierra Nevada

  8. Using ASD data to identify the altered minerals for exploring of gold deposit in the Beishan area, North China

    Science.gov (United States)

    Ren, G. L.; Yi, H.; Yang, M.; Liang, N.; Li, J. Q.; Yang, J. L.

    2016-11-01

    Hyperspectral information of altered minerals plays an important role in the identifications of mineralized zones. In this study, the altered minerals of two gold deposits from Fangshankou-Laojinchang regions of Beishan metallogenic belt were measured by ASD field Spectrometer. Many gold deposits would have a close relationship with Variscan magma intrusion, which have been found in study region. The alteration minerals have been divided six types by the spectral results, i.e. sericite, limonite, dolomite, chlorite, epidote and calcite. The distribution characteristics and formations of altered minerals were discussed here. By the ASD, the spectral curve of different geological units in the Jintanzi and Fangshankou gold deposits were analysed and summarized. The results show that the sericite and limonite are mainly related with the gold mineralization and widely occurred in the gold deposits. Therefore, we proposed that the sericite and limonite are the iconic alteration mineral assemblages for gold mineralization and the models of altered minerals for gold deposits could be established in this region.

  9. Mineralogical and geochemical evidence for multi-stage formation of the Chertovo Koryto deposit

    OpenAIRE

    TARASOVA YULIA I.; SOTSKAYA OLGA T.; SKUZOVATOV SERGEI YU.; VANIN VADIM A.; KULIKOVA ZOYA I.; BUDYAK ALEKSANDER E.

    2016-01-01

    Introduction. The Lena gold province is one of the largest known gold resources in the world. The history of its exploration is long, but the genesis of gold mineralization hosted in black shales in the Bodaibo synclinorium still remains unclear. The studies face the challenge of discovering sources for the useful component and mechanisms of its redistribution and concentration. This study aims to clarify the time sequence of the ore mineralization in the Chertovo Koryto deposit on the basis ...

  10. Preliminary protein corona formation stabilizes gold nanoparticles and improves deposition efficiency

    Science.gov (United States)

    Luby, Alexandra O.; Breitner, Emily K.; Comfort, Kristen K.

    2016-08-01

    Due to their advantageous characteristics, gold nanoparticles (AuNPs) are being increasingly utilized in a vast array of biomedical applications. However, the efficacy of these procedures are highly dependent upon strong interactions between AuNPs and the surrounding environment. While the field of nanotechnology has grown exponentially, there is still much to be discovered with regards to the complex interactions between NPs and biological systems. One area of particular interest is the generation of a protein corona, which instantaneously forms when NPs encounter a protein-rich environment. Currently, the corona is viewed as an obstacle and has been identified as the cause for loss of application efficiency in physiological systems. To date, however, no study has explored if the protein corona could be designed and advantageously utilized to improve both NP behavior and application efficacy. Therefore, we sought to identify if the formation of a preliminary protein corona could modify both AuNP characteristics and association with the HaCaT cell model. In this study, a corona comprised solely of epidermal growth factor (EGF) was successfully formed around 10-nm AuNPs. These EGF-AuNPs demonstrated augmented particle stability, a modified corona composition, and increased deposition over stock AuNPs, while remaining biocompatible. Analysis of AuNP dosimetry was repeated under dynamic conditions, with lateral flow significantly disrupting deposition and the nano-cellular interface. Taken together, this study demonstrated the plausibility and potential of utilizing the protein corona as a means to influence NP behavior; however, fluid dynamics remains a major challenge to progressing NP dosimetry.

  11. Gold-coated iron nanoparticles in transparent Si3N4 matrix thin films

    Science.gov (United States)

    Sánchez-Marcos, J.; Céspedes, E.; Jiménez-Villacorta, F.; Muñoz-Martín, A.; Prieto, C.

    2013-06-01

    A new method to prepare thin films containing gold-coated iron nanoparticles is presented. The ternary Fe-Au-Si3N4 system prepared by sequential sputtering has revealed a progressive variation of microstructures from Au/Fe/Au/Si3N4 multilayers to iron nanoparticles. Microstructural characterization by transmission electron microscopy, analysis of the magnetic properties and probing of the iron short-range order by X-ray absorption spectroscopy confirm the existence of a gold-coated iron nanoparticles of 1-2 nm typical size for a specific range of iron and gold contents per layer in the transparent silicon nitride ceramic matrix.

  12. Flash vaporization during earthquakes evidenced by gold deposits

    Science.gov (United States)

    Weatherley, Dion K.; Henley, Richard W.

    2013-04-01

    Much of the world's known gold has been derived from arrays of quartz veins. The veins formed during periods of mountain building that occurred as long as 3 billion years ago, and were deposited by very large volumes of water that flowed along deep, seismically active faults. The veins formed under fluctuating pressures during earthquakes, but the magnitude of the pressure fluctuations and their influence on mineral deposition is not known. Here we use a simple thermo-mechanical piston model to calculate the drop in fluid pressure experienced by a fluid-filled fault cavity during an earthquake. The geometry of the model is constrained using measurements of typical fault jogs, such as those preserved in the Revenge gold deposit in Western Australia, and other gold deposits around the world. We find that cavity expansion generates extreme reductions in pressure that cause the fluid that is trapped in the jog to expand to a very low-density vapour. Such flash vaporization of the fluid results in the rapid co-deposition of silica with a range of trace elements to form gold-enriched quartz veins. Flash vaporization continues as more fluid flows towards the newly expanded cavity, until the pressure in the cavity eventually recovers to ambient conditions. Multiple earthquakes progressively build economic-grade gold deposits.

  13. Physicochemical Properties of Gold Nanostructures Deposited on Glass

    Directory of Open Access Journals (Sweden)

    Zdenka Novotna

    2014-01-01

    Full Text Available Properties of gold films sputtered onto borosilicate glass substrate were studied. UV-Vis absorption spectra were used to investigate optical parameters. XRD analysis provided information about the gold crystalline nanostructure, the texture, and lattice parameter and biaxial tension was also determined by the XRD method. The surface morphology was examined by atomic force microscopy (AFM; chemical structure of sputtered gold nanostructures was examined by X-ray photoelectron spectroscopy (ARXPS. The gold crystallites are preferentially [111] oriented on the sputtered samples. Gold deposition leads to dramatic changes in the surface morphology in comparison to pristine glass substrate. Oxygen is not incorporated into the gold layer during gold deposition. Experimental data on lattice parameter were also confirmed by theoretical investigations of nanoclusters using tight-binding potentials.

  14. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    International Nuclear Information System (INIS)

    Xi Dong; Luo Xiaoping; Lu Qianghua; Yao Kailun; Liu Zuli; Ning Qin

    2008-01-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method

  15. Microstructure evolution in nanoporous gold thin films made from sputter-deposited precursors

    International Nuclear Information System (INIS)

    Gwak, Eun-Ji; Kang, Na-Ri; Baek, Un Bong; Lee, Hae Moo; Nahm, Seung Hoon; Kim, Ju-Young

    2013-01-01

    We fabricate almost crack-free 1.5 μm thick nanoporous gold thin films using free-corrosion dealloying and transfer processes from sputter-deposited precursors. By controlling the temperature and the concentration of the nitric acid solution during free-corrosion dealloying, we obtain ligament sizes in nanoporous gold between 22 and 155 nm. We investigate the effects of dissolution rate of Ag atoms, surface diffusivity of Au atoms and formation of Ag oxide on nanoporosity evolution

  16. Minerals of oxidation zone of the Chokadambulaq iron deposit

    International Nuclear Information System (INIS)

    Safaraliev, N.S.

    2008-01-01

    The zone of oxidation of Chokadambulaq iron deposit has original mineral composition, which characterized specificity of their formation. Here is formed a secondary zone of enrichment marit ores, having practical meaning. In last is concentrated from 0.5 up to 1.0% from total quantities of reserves

  17. Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae

    International Nuclear Information System (INIS)

    Konishi, Y.; Tsukiyama, T.; Tachimi, T.; Saitoh, N.; Nomura, T.; Nagamine, S.

    2007-01-01

    Microbial reduction and deposition of gold nanoparticles was achieved at 25 deg. C over the pH range 2.0-7.0 using the mesophilic bacterium Shewanella algae in the presence of H 2 as the electron donor. The reductive deposition of gold by the resting cells of S. algae was a fast process: 1 mM AuCl 4 - ions were completely reduced to elemental gold within 30 min. At a solution pH of 7, gold nanoparticles 10-20 nm in size were deposited in the periplasmic space of S. algae cells. At pH 2.8, gold nanoparticles 15-200 nm in size were deposited on the bacterial cells, and the biogenic nanoparticles exhibited a variety of shapes that included nanotriangles: in particular, single crystalline gold nanotriangles 100-200 nm in size were microbially deposited. At a solution pH of 2.0, gold nanoparticles about 20 nm in size were deposited intracellularly, and larger gold particles approximately 350 nm in size were deposited extracellularly. The solution pH was an important factor in controlling the morphology of the biogenic gold particles and the location of gold deposition. Microbial deposition of gold nanoparticles is potentially attractive as an environmentally friendly alternative to conventional methods

  18. Mineralogy and fluid inclusion studies in kalchoye Copper- gold deposit, East of Esfahan

    Directory of Open Access Journals (Sweden)

    Rezvan Mehvary

    2009-09-01

    Full Text Available Kalchoye Copper-gold deposit is located about 110 kilometers east of Esfahan province and within the Eocene volcano sedimentary rocks. Sandy tuff and andesite lava are important members of this complex.The form of mineralization in area is vein and veinlet and quartz as the main gangue phase. The main ore minerals are chalcopyrite, chalcocite, galena and weathered minerals such as goethite, iron oxides, malachite and azurite. Studies in area indicate that ore mineralization Kalchoye is low sulfide, quartz type of hydrothermal ore deposits and results of thermometry studies on quartz minerals low- medium fluid with low potential mineralization is responsible for mineralization in this area.

  19. Sedimentary and tectonic history of the Holowilena Ironstone, a Neoproterozoic iron formation in South Australia

    Science.gov (United States)

    Lechte, Maxwell Alexander; Wallace, Malcolm William

    2015-11-01

    The Holowilena Ironstone is a Neoproterozoic iron formation in South Australia associated with glacial deposits of the Sturtian glaciation. Through a comprehensive field study coupled with optical and scanning electron microscopy, X-ray fluorescence, and X-ray diffraction, a detailed description of the stratigraphy, sedimentology, mineralogy, and structure of the Holowilena Ironstone was obtained. The Holowilena Ironstone comprises ferruginous shales, siltstones, diamictites, and is largely made up of hematite and jasper, early diagenetic replacement minerals of precursor iron oxyhydroxides, and silica. These chemical precipitates are variably influenced by turbidites and debris flows contributing clastic detritus to the depositional system. Structural and stratigraphic evidence suggests deposition within a synsedimentary half-graben. A model for the Holowilena Ironstone is proposed, in which dense oxic fluids expelled during sea ice formation in the Cryogenian pool in the depression of the half-graben, allowing for long-lived mixing with the ferruginous seawater and the deposition of iron oxides. This combination of glacial dynamics, tectonism, and ocean chemistry may explain the return of iron formations in the Neoproterozoic.

  20. Mineralogy, geochemistry and origin of Zafarabad iron deposit based on REE and trace elements of magnetite

    Directory of Open Access Journals (Sweden)

    Mehrdad Barati

    2013-10-01

    Full Text Available Zafarabad iron deposit is located northwest of Divandareh, in the northern margin of Sanandaj-Sirjan plutonic-metamorphic zone. The deposit is in lentoid to tubular shape, within a shear zone and occrrued in host rocks of calc-schist and limestone. Magnetite with massive, cataclastic and replacement textures are the main phases, while pyrite and other sulfide minerals are found. Major and trace elements are measured by ICP-MS and ICP-AES methods. Based on some ratios of trace elements in the ore samples and (Ti+V vs. Cal+Al+Mn and Ti+V vs. Ni/(Cr+Mn diagrams which are used for classification of iron deposit types, Zafarabad iron deposit fall in the range of skarn deposits. Spider diagrams show a steady decline from LREE to HREE elements with Eu (mean value of 0.06 ppm and Ce (mean value of 0.94 ppm negative anomalies. Comparing the distribution patterns of REE for the Zafarabad magnetites with those of various types of iron deposits shows that the REE pattern for Zafarabad is similar to these deposits. Analysis of calculated parameters for REE shows that the hydrothermal fluids responsible for mineralization are mainly of magmatic origin through fractionation and crystallization processes of a deep iron rich fluid phase and its emplacement within the carbonate rocks, forming iron skarn.

  1. Visualizing Iron Deposition in Multiple Sclerosis Cadaver Brains

    International Nuclear Information System (INIS)

    Habib, Charbel A.; Zheng Weili; Mark Haacke, E.; Webb, Sam; Nichol, Helen

    2010-01-01

    Aim: To visualize and validate iron deposition in two cases of multiple sclerosis using rapid scanning X-Ray Fluorescence (RS-XRF) and Susceptibility Weighted Imaging (SWI). Material and Methods: Two (2) coronal cadaver brain slices from patients clinically diagnosed with multiple sclerosis underwent magnetic resonance imaging (MRI), specifically SWI to image iron content. To confirm the presence of iron deposits and the absence of zinc-rich myelin in lesions, iron and zinc were mapped using RS-XRF. Results: MS lesions were visualized using FLAIR and correlated with the absence of zinc by XRF. XRF and SWI showed that in the first MS case, there were large iron deposits proximal to the draining vein of the caudate nucleus as well as iron deposits associated with blood vessels throughout the globus pallidus. Less iron was seen in association with lesions than in the basal ganglia. The presence of larger amounts of iron correlated reasonably well between RS-XRF and SWI. In the second case, the basal ganglia appeared normal and acute perivascular iron deposition was absent. Conclusion: Perivascular iron deposition is seen in some but not all MS cases, giving credence to the use of SWI to assess iron involvement in MS pathology in vivo.

  2. Occurrences of dendritic gold at the McLaughlin Mine hot-spring gold deposit

    Science.gov (United States)

    Sherlock, R. L.; Lehrman, N. J.

    1995-06-01

    Two styles of gold dendrites are variably developed at the McLaughlin Mine. The most abundant occurrence is hosted by amber-coloured hydrocarbon-rich opal. Silica likely precipitated from a boiling hydrothermal fluid and complexed with immiscible hydrocarbons forming an amorphous hydrocarbon-silica phase. This phase likely scavenged particulate gold by electrostatic attraction to the hydrocarbon-silica phase. The dendritic nature of the gold is secondary and is the result of dewatering of the amorphous hydrocarbon-silica phase and crystallization of gold into syneresis fractures. The second style of dendritic gold is hosted within vein swarms that focused large volumes of fluid flow. The dendrites occur along with hydrocarbon-rich silica at the upper contact of the vein margins which isolated the dendrites allowing sufficient time for them to grow. In a manner similar to the amber-coloured opal, the dendrites may have formed by scavenging particulate gold by electrostatic attraction to the hydrocarbon-silica phase.

  3. Lithogeochemistry of Carlin-type gold mineralization in the Gold Bar district, Battle Mountain-Eureka trend, Nevada

    Science.gov (United States)

    Yigit, O.; Hofstra, A.H.

    2003-01-01

    The Gold Bar district contains five Carlin-type gold deposits and four resources for a combined gold endowment of 1.6 M oz [50 t]. The gold deposits are hosted in Devonian carbonate rocks below parautochthonous and allochthonous Paleozoic siliciclastic rocks emplaced during the Early Mississippian Antler orogeny. The district is in the Battle Mountain-Eureka trend, a long-lived structural feature that localized intrusions and ore deposits of different types and ages. The whole-rock geochemistry of four different mineralized and unmineralized Devonian carbonate rock units (two favorable and two unfavorable) were determined and interpreted in the context of the regional geology. A combination of basic statistics, R-mode factor analysis, isocon plots, and alteration diagrams were utilized to (1) identify favorable geochemical attributes of the host rocks, (2) characterize alteration and associated element enrichments and depletions, and (3) identify the mechanism of gold precipitation. This approach also led to the recognition of other types of alteration and mineralization in host rocks previously thought to be solely affected by Carlin-type mineralization. Unit 2 of the Upper Member of the Denay Formation, with the highest Al2O3, Fe2O3 and SiO2 contents and the lowest CaO content, is the most favorable host rock. Based on the high regression coefficients of data arrays on X-Y plots that project toward the origin, Al2O3 and TiO2 were immobile and K2O and Fe2O3 were relatively immobile during alteration and mineralization. Specific element associations identified by factor analysis are also prominent on isocon diagrams that compare the composition of fresh and altered equivalents of the same rock units. The most prominent associations are: Au, As, Sb, SiO2, TI, -CaO and -LOI, the main gold mineralizing event and related silicification and decalcification; Cd, Zn, Ag, P, Ni and Tl, an early base metal event; and MgO, early dolomitization. Alteration diagrams

  4. Ironstone deposits hosted in Eocene carbonates from Bahariya (Egypt)-New perspective on cherty ironstone occurrences

    Science.gov (United States)

    Afify, A. M.; Sanz-Montero, M. E.; Calvo, J. P.

    2015-11-01

    This paper gives new insight into the genesis of cherty ironstone deposits. The research was centered on well-exposed, unique cherty ironstone mineralization associated with Eocene carbonates from the northern part of the Bahariya Depression (Egypt). The economically important ironstones occur in the Naqb Formation (Early Eocene), which is mainly formed of shallow marine carbonate deposits. Periods of lowstand sea-level caused extensive early dissolution (karstification) of the depositional carbonates and dolomitization associated with mixing zones of fresh and marine pore-water. In faulted areas, the Eocene carbonate deposits were transformed into cherty ironstone with preservation of the precursor carbonate sedimentary features, i.e. skeletal and non-skeletal grain types, thickness, bedding, lateral and vertical sequential arrangement, and karst profiles. The ore deposits are composed of iron oxyhydroxides, mainly hematite and goethite, chert in the form of micro- to macro-quartz and chalcedony, various manganese minerals, barite, and a number of subordinate sulfate and clay minerals. Detailed petrographic analysis shows that quartz and iron oxides were coetaneous and selectively replaced carbonates, the coarse dolomite crystals having been preferentially transformed into quartz whereas the micro-crystalline carbonates were replaced by the iron oxyhydroxides. A number of petrographic, sedimentological and structural features including the presence of hydrothermal-mediated minerals (e.g., jacobsite), the geochemistry of the ore minerals as well as the structure-controlled location of the mineralization suggest a hydrothermal source for the ore-bearing fluids circulating through major faults and reflect their proximity to centers of magmatism. The proposed formation model can contribute to better understanding of the genetic mechanisms of formation of banded iron formations (BIFs) that were abundant during the Precambrian.

  5. Geochemistry and genesis of apatite bearing Fe oxide Dizdaj deposit, SE Zanjan

    Directory of Open Access Journals (Sweden)

    Ghasem Nabatian

    2009-09-01

    magnetites. Fluid inclusion studies were conducted on two generations of apatite in the deposit. Based on the studies, the temperature and salinity of the first generation apatites are higher than those for the second generation apatites. The most important characteristics of the Sorkheh-Dizaj iron-oxide apatite deposit indicated magmatic Fe-P-REE-rich fluids source for the mineralization. Comparison of the most important characteristics of the Sorkheh-Dizaj iron-oxide apatite deposit (including tectonic setting, host rock, mineralogy, alteration, structure and texture and geochemistry with those of various types of iron mineralization in the world suggest that Sorkheh-Dizaj iron-oxide apatite deposit shows the most similarity with the Kiruna type iron-oxide apatite deposits classified as a subgroup of hydrothermal Iron Oxide Copper Gold (IOCG deposits.

  6. On the formation of protected gold nanoparticles from AuCl4- by the reduction using aromatic amines

    International Nuclear Information System (INIS)

    Subramaniam, Chandramouli; Tom, Renjis T.; Pradeep, T.

    2005-01-01

    Amines are used extensively as reductants and subsequent capping agents in the synthesis of metal nanoparticles, especially gold, due to its affinity to nitrogen. Taking 2-methyl aniline as an example, we show that metal reduction is followed by polymerization of the amine, while part of it covers the nanoparticle surface another fraction deposits in the solution. It is found that the oxidative polymerization of the amine goes in step with the formation of gold nanoparticles. The gold nanoparticles thus formed have a mean diameter of 20 nm. The polymerized amine encapsulates the gold nanoparticle forming a robust shell of about 5 nm thickness, making the gold core inert towards mineralizing agents such as chloroform, bromoform, sodium cyanide, benzylchloride, etc. which react with the naked gold nanoparticles. The deposited polymer is largely protonated, taking up protons from the medium during its formation. Similar results have been observed in the case of aniline also. The materials have been fully characterized by spectroscopy and microscopy

  7. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes

    Science.gov (United States)

    Knipping, Jaayke L.; Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Barra, Fernando; Deditius, Artur P.; Wälle, Markus; Heinrich, Christoph A.; Holtz, François; Munizaga, Rodrigo

    2015-12-01

    Iron oxide-apatite (IOA) deposits are an important source of iron and other elements (e.g., REE, P, U, Ag and Co) vital to modern society. However, their formation, including the namesake Kiruna-type IOA deposit (Sweden), remains controversial. Working hypotheses include a purely magmatic origin involving separation of an Fe-, P-rich, volatile-rich oxide melt from a Si-rich silicate melt, and precipitation of magnetite from an aqueous ore fluid, which is either of magmatic-hydrothermal or non-magmatic surface or metamorphic origin. In this study, we focus on the geochemistry of magnetite from the Cretaceous Kiruna-type Los Colorados IOA deposit (∼350 Mt Fe) located in the northern Chilean Iron Belt. Los Colorados has experienced minimal hydrothermal alteration that commonly obscures primary features in IOA deposits. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) transects and electron probe micro-analyzer (EPMA) wavelength-dispersive X-ray (WDX) spectrometry mapping demonstrate distinct chemical zoning in magnetite grains, wherein cores are enriched in Ti, Al, Mn and Mg. The concentrations of these trace elements in magnetite cores are consistent with igneous magnetite crystallized from a silicate melt, whereas magnetite rims show a pronounced depletion in these elements, consistent with magnetite grown from an Fe-rich magmatic-hydrothermal aqueous fluid. Further, magnetite grains contain polycrystalline inclusions that re-homogenize at magmatic temperatures (>850 °C). Smaller inclusions (500 ppm) concentrations.

  8. The Yatela gold deposit in Mali, West Africa: The final product of a long-lived history of hydrothermal alteration and weathering

    Science.gov (United States)

    Masurel, Quentin; Miller, John; Hein, Kim A. A.; Hanssen, Eric; Thébaud, Nicolas; Ulrich, Stanislav; Kaisin, Jean; Tessougue, Samuel

    2016-01-01

    The Yatela gold deposit is located in the Kédougou-Kénieba inlier (KKI), a window of ca. 2200-2050 Ma rocks that are exposed in eastern Senegal and western Mali. The geology of the KKI differs from other Paleoproterozoic granite-greenstone belts and sedimentary basins by the abundance of carbonate rocks. The Yatela deposit occurs within 8 km of the regional-scale Senegal-Mali Shear Zone. Country rocks in the Yatela region have been subjected to polycyclic deformation and regional greenschist-facies metamorphism. A syn-kinematic diorite stock has intruded the metasedimentary sequences in the open pit and is associated with a hornblende-hornfels contact aureole. Field relationships and micro-textural data indicate that the primary gold mineralisation is shear-hosted. The similar relative timing and structural setting between the Yatela primary gold mineralisation and other world-class deposits in the region (e.g., Loulo, Lawrence et al., 2013a; Massawa, Treloar et al., 2014; Sadiola Hill, Masurel et al., in press) suggest that regional orogenic gold mineralisation occurred during a period of transcurrent tectonics, after the cessation of regional compressional deformation. The primary gold mineralisation at Yatela, however, is low-grade and sub-economic. It is hosted by marbles and, to a lesser extent, diorite. The primary ore is pyrite-rich, with abundant chalcopyrite, minor arsenopyrite and accessory Zn-Pb-Sb-Fe-Ag-Co-Ni-bearing mineral species. Post-Birimian surficial dissolution of hydrothermally altered and mineralised host marbles resulted in the creation of troughs, which were draped and infilled with a ferruginous dissolution residue enriched in gold. This auriferous residuum formed the economic resource mined at Yatela until decommissioning in 2013. The Yatela gold deposit is unique with respect to mineralisation types encountered in West Africa because an auriferous residuum of economic interest (>1 Moz) derives from an underlying sub-economic Birimian

  9. Alteration and petrology of Intrusive Rocks associated with Gold Mineralization at Kuh-E-Zar Gold Deposit, Torbat-e-Heydaryeh

    Directory of Open Access Journals (Sweden)

    Alireza Mazloumi Bajestani

    2009-09-01

    Full Text Available Kuh- e -Zar gold deposit located 35 km west of Torbat-e-Heydaryeh, (Khorassan e- Razavi province, East of Iran. This deposit is a specularite-rich Iron oxide type (IOCG. This mine is situated within Khaf-Bardascan volcanic plutonic belt. Based on recent exploration along this belt, several IOCG type system plus Kuh-e-Zar deposit are discovered. In the study area, several type of tuff and lava having acid to intermediate composition are identified (upper Eocene. Oligo-Miocene granite, granodiorite, synogranite and monzonite intruded upper Eocene andesite-dacite-rhyolite. Intrusive rocks are meta-aluminous, medium to high-K series I-type. Based on spider diagram, intrusive rocks show enrichment in LILE = K, Th, Rb and depletion in HFSE = Nb, Sr, Ti. Based geochemistry of igneous rock, they formed in continental margin subduction zone. Propylitic (chlorite alteration is dominated and covers large area. Silicification is restricted only to mineralized zones. Argillic and albitization is found in certain location and cover small areas. The style of mineralization was controlled by the type and geometry of fault zones. Mineralization is found as vein, stockwork and breccias. Hypogene mineral Paragenesis include: specularite-quartz-gold-chlorite ± chalcopyrite ± pyrite ± galena ± barite. Secondary minerals formed due to oxidation are: goethite, limonite, lepidocrucite, Malachite, Azurite, Covelite, Cerucite, hydrocerucite, Pyrolusite and Smitsonite. In a few localities, chalcopyrite and minor pyrite and galena are found. Based on SEM analysis gold is present as electrum. Mineralization appeared in different type such as vein, stockwork and Hydrothermal breccia in strike sleep fault zone which are hidden inside volcano plutonic rocks. The average gold grade is between 3.02 ppm and ore reserve is estimated more than 3 million tons (cut off grade = 0.7 ppm.

  10. Iron isotope fractionation during hydrothermal ore deposition and alteration

    Science.gov (United States)

    Markl, Gregor; von Blanckenburg, Friedhelm; Wagner, Thomas

    2006-06-01

    Iron isotopes fractionate during hydrothermal processes. Therefore, the Fe isotope composition of ore-forming minerals characterizes either iron sources or fluid histories. The former potentially serves to distinguish between sedimentary, magmatic or metamorphic iron sources, and the latter allows the reconstruction of precipitation and redox processes. These processes take place during ore formation or alteration. The aim of this contribution is to investigate the suitability of this new isotope method as a probe of ore-related processes. For this purpose 51 samples of iron ores and iron mineral separates from the Schwarzwald region, southwest Germany, were analyzed for their iron isotope composition using multicollector ICP-MS. Further, the ore-forming and ore-altering processes were quantitatively modeled using reaction path calculations. The Schwarzwald mining district hosts mineralizations that formed discontinuously over almost 300 Ma of hydrothermal activity. Primary hematite, siderite and sulfides formed from mixing of meteoric fluids with deeper crustal brines. Later, these minerals were partly dissolved and oxidized, and secondary hematite, goethite and iron arsenates were precipitated. Two types of alteration products formed: (1) primary and high-temperature secondary Fe minerals formed between 120 and 300 °C, and (2) low-temperature secondary Fe minerals formed under supergene conditions (illustrates the potential of the new technique in deciphering ore formation and alteration processes. Isotope ratios are strongly dependent on and highly characteristic of fluid and precipitation histories. Therefore, they are less suitable to provide information on Fe sources. However, it will be possible to unravel the physico-chemical processes leading to the formation, dissolution and redeposition of ores in great detail.

  11. A special issue devoted to gold deposits in northern Nevada: Part 2. Carlin-type Deposits

    Science.gov (United States)

    Hofstra, Albert H.; John, David A.; Theodore, Ted G.

    2003-01-01

    This is the second of two special issues of Economic Geology devoted to gold deposits in northern Nevada. Readers interested in a general overview of these deposits, their economic significance, their context within the tectonic evolution of the region, and synoptic references on each gold deposit type are directed to the preface of the first special issue (John et al., 2003). Volume 98, issue 2, contains five papers that address regional aspects important to the genesis of gold deposits in northern Nevada and five papers that present detailed studies of epithermal deposits and districts. All of the regional papers are pertinent to Carlin-type gold deposits, because they address the age of mineralization (Arehart et al., 2003), origin and evolutionary history of the northwest-striking mineral belts that localize many deposits (Grauch et al., 2003), nature of the middle and lower crust below these mineral belts (Howard, 2003), district- to deposit-scale stream sediment and lithogeochemical anomalies (Theodore et al., 2003), and stratigraphy and structure of a district located along a northeast-striking lineament (Peters et al., 2003).

  12. Scanning probe microscopy investigation of gold clusters deposited on atomically flat substrates

    International Nuclear Information System (INIS)

    Vandamme, N; Janssens, E; Vanhoutte, F; Lievens, P; Haesendonck, C van

    2003-01-01

    We systematically studied the influence of the substrate on the shape, mobility, and stability of deposited gold clusters. The Au n clusters were produced in a laser vaporization source and deposited with low kinetic energy (∼0.4 eV/atom) on atomically flat substrates (graphite, mica, and gold and silver films on mica) under UHV conditions. Their size distribution is probed with time-of-flight mass spectrometry and ranges from dimers to several hundreds of atoms. Scanning probe microscopy is used to characterize the deposited clusters and the formation of islands by cluster aggregation. On all substrates, Au n islands can be clearly distinguished and the islands are flattened despite the small impact energy. The shape and size of the island configurations are strongly system dependent. Gold clusters deposited on Au(111) and Ag(111) films grown on mica do not aggregate, but deform due to strong cluster-substrate interactions. The clusters tend to grow epitaxially on these surfaces. On graphite and on mica, deposited clusters do diffuse and aggregate. On the graphite surface, large ramified islands are formed by juxtaposition of small islands and trapping of the clusters at the step edges. On the other hand, the diffusion of the clusters on mica results in a total coalescence of the Au n clusters into compact islands

  13. Burial history of two potential clay host formations in Belgium

    International Nuclear Information System (INIS)

    Mertens, J.; Wouters, L.; Van Marcke, Ph.

    2004-01-01

    When dealing with long term stability of repository host rocks, it is important to consider and learn from all past geological events since the deposition of the formations. The burial history of the Boom Clay and Ypresian Clays, both considered as potential host rocks in Belgium, illustrates that the North Belgian region was tectonically relatively stable since deposition. In Northern Belgium, where both formations are located at a few hundreds meters of depth, tectonic movements were relatively small and no significant uplifts took place. The burial history of the Boom Clay in Mol, where the HADES underground research facility is located illustrates this. On the poster, the burial history for both formations is presented at two locations each: one location in the outcrop region and one research site location, where the formation is currently buried under a few 100 metres of sediment. (authors)

  14. Effect of the hybrid composition on the physicochemical properties and morphology of iron oxide–gold nanoparticles

    International Nuclear Information System (INIS)

    Barnett, C. M.; Gueorguieva, M.; Lees, M. R.; McGarvey, D. J.; Darton, R. J.; Hoskins, C.

    2012-01-01

    Hybrid nanoparticles (HNPs) formed from iron oxide cores and gold nano-shells are becoming increasingly applicable in biomedicine. However, little investigation has been carried out on the effects of the constituent components on their physical characteristics. Here we determine the effect of polymer intermediate, gold nano-shell thickness and magnetic iron oxide core diameter on the morphological and physical properties of these nano-hybrids. Our findings suggest that the use of polymer intermediate directly impacts the morphology of the nanostructure formed. Here, we observed the formation of nano-sphere and nano-star structures by varying the cationic polymer intermediate. The nano-stars formed have a larger magnetic coercivity, T 2 relaxivity and exhibited a unique characteristic nano-heating pattern upon laser irradiation. Increasing the iron oxide core diameter resulted in a greater T 2 relaxivity enhanced and nano-heating capabilities due to increased surface area. Increasing the gold nano-shell thickness resulted in a decreased efficiency as a nano-heater along with a decrease in T 2 relaxivity. These results highlight the importance of identifying the key traits required when fabricating HNPs in order to tailor them to specific applications.

  15. Some Key Features and Possible Origin of the Metamorphic Rock-Hosted Gold Mineralization in Buru Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v1i1.172This paper discusses characteristics of some key features of the primary Buru gold deposit as a tool for a better understanding of the deposit genesis. Currently, about 105,000 artisanal and small-scale gold miners (ASGM are operating in two main localities, i.e. Gogorea and Gunung Botak by digging pits/shafts following gold-bearing quartz vein orientation. The gold extraction uses mercury (amalgamation and cyanide processing. The field study identifies two types/generations of quartz veins namely (1 Early quartz veins which are segmented, sigmoidal, dis­continous, and parallel to the foliation of host rock. The quartz vein is lack of sulfides, weak mineralized, crystalline, relatively clear, and maybe poor in gold, and (2 Quartz veins occurred within a ‘mineralized zone’ of about 100 m in width and ~1,000 m in length. The gold mineralization is strongly overprinted by an argillic alteration zone. The mineralization-alteration zone is probably parallel to the mica schist foliation and strongly controlled by N-S or NE-SW-trending structures. The gold-bearing quartz veins are characterized by banded texture particularly colloform following host rock foliation and sulphide banding, brecciated, and rare bladed-like texture. The alteration types consist of propylitic (chlorite, calcite, sericite, argillic, and carbonation represented by graphite banding and carbon flakes. The ore mineralization is characterized by pyrite, native gold, pyrrhotite, and arsenopyrite. Cinnabar, stibnite, chalcopyrite, galena, and sphalerite are rare or maybe absent. In general, sulphide minerals are rare (<3%. Fifteen rock samples were collected in Wamsaid area for geochemical assaying for Au, Ag, As, Sb, Hg, Cu, Pb, and Zn. Eleven of fifteen samples yielded more than 1.00 g/t Au, in which six of them are in excess of 3.00 g/t Au. It can be noted that all high-grade samples are originally or containing limonitic materials, that suggest

  16. Sulfur and lead isotope geochemistry of the orogenic gold deposits in the eastern Kunlun area, Qinghai province

    International Nuclear Information System (INIS)

    Feng Chengyou; Zhang Dequan; Li Daxin; She Hongquan; Zhu Huaping

    2003-01-01

    Based on researches on the basic geological characteristics and sulfur and lead isotopic geochemistry of four typical gold deposits, it is considered that they have many similar geo-geochemical characteristics and are all related genetically to orogenic process. Therefore, they should belong to a type of orogenic gold deposits according to the newest classification of gold deposits provided by Kerrich et al. (2000). There is a big change in the average 34 S values of the sulfides selected from different deposits, varying from -3.7‰-4.4‰ and tower-shape distribution is apparent. The lead isotope in four gold deposits is characterized by high compositions and minor changes, with 206 Pb/ 204 Pb > 18.3380, 207 Pb/ 204 Pb > 15.5555, 208 Pb/ 204 Pb >38.1796 in ores and wall-rocks, it can be concluded that the ore-forming material consisting of sulfur and lead are mainly derived from wall-rocks. Intensive subduction and collision during late Paleozoic and early Mesozoic not only formed deep faults, large-scale shear belt, and low-order folds and faults but also induced fluidization and mineralization, and resulted in formation and zonal distribution of several large or medium gold deposits in this area. (authors)

  17. Some aspects of the genesis of heavy mineral assemblages in Lower Proterozoic uranium-gold conglomerates

    International Nuclear Information System (INIS)

    Clemmey, H.

    1982-01-01

    Some genetic models for Lower Proterozoic gold- and uranium-bearing pyritic conglomerates favour a modified placer origin in which low levels of atmospheric oxygen are used to account for the survival of uraninite and pyrite. There are many difficulties with such models. New evidence concerning the genesis of the deposits is derived from a clast of ferric iron clay thought to represent a precursor sediment of the Witwatersrand Basin. Reworking of such clays and transport of a magnetite and ferric clay assemblage with subsequent sulphidation, could account for the porous pyrites, the absence of magnetite and the lack of hydraulic equivalence of the mineral grains in the conglomerates. The presence of oxygen, as indicated by the ferric iron clasts, would account for the evidence of mobility of uranium and of gold and would enhance their extraction from source rocks; particularly the release of gold from a precursor auriferous iron formation source. It is suggested that some aspects of the genesis of uranium deposits of the Witwatersrand and Elliott Lake may be similar to those of the Phanerozoic 'Roll Front' ores involving interaction between oxidizing uraniferous groundwaters and previously sulphidized and reduzate facies sediments. (author)

  18. Source of boron in the Palokas gold deposit, northern Finland: evidence from boron isotopes and major element composition of tourmaline

    Science.gov (United States)

    Ranta, Jukka-Pekka; Hanski, Eero; Cook, Nick; Lahaye, Yann

    2017-06-01

    The recently discovered Palokas gold deposit is part of the larger Rompas-Rajapalot gold-mineralized system located in the Paleoproterozoic Peräpohja Belt, northern Finland. Tourmaline is an important gangue mineral in the Palokas gold mineralization. It occurs as tourmalinite veins and as tourmaline crystals in sulfide-rich metasomatized gold-bearing rocks. In order to understand the origin of tourmaline in the gold-mineralized rocks, we have investigated the major element chemistry and boron isotope composition of tourmaline from three areas: (1) the Palokas gold mineralization, (2) a pegmatitic tourmaline granite, and (3) the evaporitic Petäjäskoski Formation. Based on textural evidence, tourmaline in gold mineralization is divided into two different types. Type 1 is located within the host rock and is cut by rock-forming anthophyllite crystals. Type 2 occurs in late veins and/or breccia zones consisting of approximately 80% tourmaline and 20% sulfides, commonly adjacent to quartz veins. All the studied tourmaline samples belong to the alkali-group tourmaline and can be classified as dravite and schorl. The δ11B values of the three localities lie in the same range, from 0 to -4‰. Tourmaline from the Au mineralization and from the Petäjäskoski Formation has similar compositional trends. Mg is the major substituent for Al; inferred low Fe3+/Fe2+ ratios and Na values (molybdenite related to the tourmaline-sulfide-quartz veins, we propose that the tourmaline-forming process is a result of a single magmatic-hydrothermal event related to the extensive granite magmatism at around 1.79-1.77 Ga. Tourmaline was crystallized throughout the hydrothermal process, which resulted in the paragenetic variation between type 1 and type 2. The close association of tourmaline and gold suggests that the gold precipitated from the same boron-rich source as tourmaline.

  19. Geochemistry of the Dashui gold deposit in west Qinling mountains, Gansu

    International Nuclear Information System (INIS)

    Han Chunming; Yuan Wanming; Yu Fusheng; Tang Yunhui; Bao Zengkuan

    2003-01-01

    Dashui large gold deposit is located in the south of western Qinling Moutains between Qinling orogenic zone and Songpan-Ganzi orogenic zone. It was controlled by NWW-trending fault zone. The host rocks of the gold mineralization is mainly Triassic altered limestone and adamellite dikes. The σ 34 S values of pyrite range from -1.8 to +4.5 per mil with a mean of 2.40‰, reflecting a deep source of sulfur. Oxygen isotope data of calcite in ores indicates that calcite has σ 18 O values ranging from -22.4 to -11.1 per mil The calculated σ 18 O water values of calcite range from -4.32 to +8.33 per mil and the σD values range from -61.1 to -101 per mil, σD and σ 18 O water values suggesting that the ore fluids were mainly derived from magma in the early stage of mineralization. However, the values in the late mineralization stage decrease, indicating mixing of meteoric waters at the time of the mineralization. Homogenization temperatures of fluid inclusions are relatively low, falling between 100 and 400℃ and mostly between 150 and 200℃, with a peak value of 175℃. Salinities exhibit a wide range from 2.70 to 9.10 wt.% NaCl equiv , with a mean of 4.88 wt.% NaCl equiv In addition, the early gold mineralization occurred from 196 Ma to 182.8 Ma, and late gold mineralization took place range from 72.15 Ma to 41.21 Ma, based on the Rb-Sr isochron dating of inclusions from calcite in ores, it means that the Dashui gold deposit at least has twice gold mineralization. (authors)

  20. Gold deposits in the western sector of the Central Spanish System

    International Nuclear Information System (INIS)

    Barrios, S.; Florido, P.; Reguilon, R.

    2010-01-01

    The gold deposits in the western sector of the Central Spanish System can be grouped in: (1) gold quartz veins type (El Chivote, La Pedrera), (2) paleoplacers: gold nuggets in tertiary alluvial deposits (Las Cavenes, Sierro de Coria), (3) quaternary placers (Rio Erjas), (4) gold nuggets in a regolith developed on the Schist and Graywacke Complex (CEG) (Casillas de Coria). The morphological study of gold nuggets will provide physical, chemical, bacteriological and climatic characteristics. Mining works are located on these deposits from roman time to the present day. (Author)

  1. The Kharapeh orogenic gold deposit: Geological, structural, and geochemical controls on epizonal ore formation in West Azerbaijan Province, Northwestern Iran

    Science.gov (United States)

    Niroomand, Shojaeddin; Goldfarb, Richard J.; Moore, Farib; Mohajjel, Mohammad; Marsh, Erin E.

    2011-01-01

    The Kharapeh gold deposit is located along the northwestern margin of the Sanandaj–Sirjan Zone (SSZ) in the West Azerbaijan province, Iran. It is an epizonal orogenic gold deposit formed within the deformed zone between central Iran and the Arabian plate during the Cretaceous–Tertiary Zagros orogeny. The deposit area is underlain by Cretaceous schist and marble, as well as altered andesite and dacite dikes. Structural analysis indicates that the rocks underwent tight to isoclinal recumbent folding and were subsequently co-axially refolded to upright open folds during a second deformation. Late- to post-tectonic Cenozoic granites and granodiorites occur northeast of the deposit area. Mineralization mainly is recognized within NW-trending extensional structures as veins and breccia zones. Normal faults, intermediate dikes, and quartz veins, oriented subparallel to the axial surface of the Kharapeh antiform, indicate synchronous extension perpendicular to the fold axis during the second folding event. The gold-bearing quartz veins are >1 km in length and average about 6 m in width; breccia zones are 10–50 m in length and ≤1 m in width. Hydrothermal alteration mainly consists of silicification, sulfidation, chloritization, sericitization, and carbonatization. Paragenetic relationships indicate three distinct stages—replacement and silicification, brecciation and fracture filling, and cataclastic brecciation—with the latter two being gold-rich. Fluid inclusion data suggest mineral deposition at temperatures of at least 220–255°C and depths of at least 1.4–1.8 km, from a H2O–CO2±CH4 fluid of relatively high salinity (12–14 wt.% NaCl equiv.), which may reflect metamorphism of passive margin carbonate sequences. Ore fluid δ18O values between about 7‰ and 9‰ suggest no significant meteoric water input, despite gold deposition in a relatively shallow epizonal environment. Similarities to other deposits in the SSZ suggest that the deposit formed as

  2. Archaean Gold Mineralization in an Extensional Setting: The Structural History of the Kukuluma and Matandani Deposits, Geita Greenstone Belt, Tanzania

    Directory of Open Access Journals (Sweden)

    Shimba D. Kwelwa

    2018-04-01

    Full Text Available Three major gold deposits, Matandani, Kukuluma, and Area 3, host several million ouncez (Moz of gold, along a ~5 km long, WNW trend in the E part of the Geita Greenstone Belt, NW Tanzania. The deposits are hosted in Archaean volcanoclastic sediment and intrusive diorite. The geological evolution of the deposits involved three separate stages: (1 an early stage of syn-sedimentary extensional deformation (D1 around 2715 Ma; (2 a second stage involving overprinting ductile folding (D2–4 and shearing (D5–6 events during N-S compression between 2700 and 2665 Ma, coeval with the emplacement of the Kukuluma Intrusive Complex; and (3 a final stage of extensional deformation (D7 accommodated by minor, broadly east-trending normal faults, preceded by the intrusion of felsic porphyritic dykes at ~2650 Ma. The geometry of the ore bodies at Kukuluma and Matandani is controlled by the distribution of magnetite-rich meta-ironstone, near the margins of monzonite-diorite bodies of the Kukuluma Intrusive Complex. The lithological contacts acted as redox boundaries, where high-grade mineralization was enhanced in damage zones with higher permeability, including syn-D3 hydrothermal breccia, D2–D3 fold hinges, and D6 shears. The actual mineralizing event was syn-D7, and occurred in an extensional setting that facilitated the infiltration of mineralizing fluids. Thus, whilst gold mineralization is late-tectonic, ore zone geometries are linked to older structures and lithological boundaries that formed before gold was introduced. The deformation-intrusive history of the Kukuluma and Matandani deposits is near identical to the geological history of the world-class Nyankanga and Geita Hill deposits in the central part of the Geita Greenstone Belt. This similarity suggests that the geological history of much of the greenstone belt is similar. All major gold deposits in the Geita Greenstone Belt lack close proximity to crustal-scale shear zones; they are associated

  3. Formation of hybrid gold nanoparticle network aggregates by specific host-guest interactions in a turbulent flow reactor

    NARCIS (Netherlands)

    Weinhart-Mejia, R.; Huskens, Jurriaan

    2014-01-01

    A multi-inlet vortex mixer (MIVM) was used to investigate the formation of hybrid gold nanoparticle network aggregates under highly turbulent flow conditions. To form aggregates, gold nanoparticles were functionalized with β-cyclodextrin (CD) and mixed with adamantyl (Ad)-terminated

  4. Magnetite-apatite mineralization in Khanlogh iron deposit, northwest of Neyshaboor, NE Iran

    Science.gov (United States)

    Najafzadeh Tehrani, Parvin; Asghar Calagari, Ali; Velasco Roldan, Francisco; Simmonds, Vartan; Siahcheshm, Kamal

    2016-04-01

    Khanlogh iron deposit lies on Sabzehvar-Ghoochan Cenozoic magmatic belt in northwest of Neyshaboor, NE Iran. The lithologic units in this area include a series of sub-volcanic intrusive rocks like diorite porphyry, quartz-diorite porphyry, and micro-granodiorite of Oligocene age. Mineralization in this area occurred as veins, dissemination, and open space filling in brecciated zones within the host sub-volcanic intrusive bodies. Three distinct types of mineral associations can be distinguished, (1) diopside-magnetite, (2) magnetite-apatite, and (3) apatite-calcite. Microscopic examinations along with SEM and EPMA studies demonstrated that magnetite is the most common ore mineral occurring as solitary crystals. The euhedral magnetite crystals are accompanied by lamellar destabilized ilmenite and granular fluorapatite in magnetite-apatite ores. The results of EPMA revealed that the lamellar ilmenite, relative to host magnetite crystal, is notably enriched in MgO and MnO (average of 3.3 and 2.6 wt%, respectively; n=5), whereas magnetite is slighter enriched in Ti (TiO2 around 1.8 wt%) being average of MgO, MnO and V2O3 of 0.6wt%, 0.2wt%, and 0.6 wt% (respectively; n=20). Minerals such as chlorapatite, calcite, and chalcedony are also present in the magnetite-apatite ores. The samples from apatite-calcite ores contain coarse crystals of apatite and rhomboedral calcite. The plot of the EPMA data of Khanlogh iron ore samples on diagram of TiO2-V2O5 (Hou et al, 2011) illustrated that the data points lies between the well-known Kiruna and El Laco (Chile) iron deposits. The magnetite crystals in the sub-volcanic host rocks were possibly formed by immiscible iron oxide fluids during magmatic stage. However, the magnetite and apatite existing in the veins and breccia zones may have developed by high temperature hydrothermal fluids. Studies done by Purtov and Kotelnikova (1993) proved that the proportion of Ti in magnetite is related to fluoride complex in the hydrothermal

  5. Mineralogical and geochemical characteristics of the Noamundi-Koira basin iron ore deposits (India)

    Science.gov (United States)

    Mirza, Azimuddin; Alvi, Shabbar Habib; Ilbeyli, Nurdane

    2015-04-01

    India is one of the richest sources of iron ore deposits in the world; and one of them is located in the Noamundi-Koira basin, Singhbhum-Orissa craton. The geological comparative studies of banded iron formation (BIF) and associated iron ores of Noamundi-Koira iron ore deposits, belonging to the iron ore group in eastern India, focus on the study of mineralogy and major elemental compositions along with the geological evaluation of different iron ores. The basement of the Singhbhum-Orissa craton is metasedimentary rocks which can be traced in a broadly elliptical pattern of granitoids, surrounded by metasediments and metavolcanics of Greenstone Belt association. The Singhbhum granitoid is intrusive into these old rocks and to younger, mid Archaean metasediments, including iron formations, schists and metaquartzites and siliciclastics of the Precambrian Iron Ore Group (Saha et al., 1994; Sharma, 1994). The iron ore of Noamundi-Koira can be divided into seven categories (Van Schalkwyk and Beukes 1986). They are massive, hard laminated, soft laminated, martite-goethite, powdery blue dust and lateritic ore. Although it is more or less accepted that the parent rock of iron ore is banded hematite jasper (BHJ), the presence of disseminated martite in BHJ suggests that the magnetite of protore was converted to martite. In the study area, possible genesis of high-grade hematite ore could have occurred in two steps. In the first stage, shallow, meteoric fluids affect primary, unaltered BIF by simultaneously oxidizing magnetite to martite and replacing quartz with hydrous iron oxides. In the second stage of supergene processes, deep burial upgrades the hydrous iron oxides to microplaty hematite. Removal of silica from BIF and successive precipitation of iron resulted in the formation of martite- goethite ore. Soft laminated ores were formed where precipitation of iron was partial or absent. The leached out space remains with time and the interstitial space is generally filled

  6. Gold-coated iron nanoparticles in transparent Si{sub 3}N{sub 4} matrix thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Marcos, J. [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid (Spain); Cespedes, E. [Keele University, Institute for Science and Technology in Medicine, Guy Hilton Research Centre (United Kingdom); Jimenez-Villacorta, F. [Northeastern University, Department of Chemical Engineering (United States); Munoz-Martin, A. [Universidad Autonoma de Madrid, Centro de Microanalisis de Materiales (Spain); Prieto, C., E-mail: cprieto@icmm.csic.es [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid (Spain)

    2013-06-15

    A new method to prepare thin films containing gold-coated iron nanoparticles is presented. The ternary Fe-Au-Si{sub 3}N{sub 4} system prepared by sequential sputtering has revealed a progressive variation of microstructures from Au/Fe/Au/Si{sub 3}N{sub 4} multilayers to iron nanoparticles. Microstructural characterization by transmission electron microscopy, analysis of the magnetic properties and probing of the iron short-range order by X-ray absorption spectroscopy confirm the existence of a gold-coated iron nanoparticles of 1-2 nm typical size for a specific range of iron and gold contents per layer in the transparent silicon nitride ceramic matrix.

  7. Experimental constraints on gold and silver solubility in iron sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Pal' yanova, Galina [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Russia, 2, Pirogova, Novosibirsk, 630090 (Russian Federation); Mikhlin, Yuri [Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk, 660036 (Russian Federation); Kokh, Konstantin, E-mail: k.a.kokh@gmail.com [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Russia, 2, Pirogova, Novosibirsk, 630090 (Russian Federation); Siberian Physical–Technical Institute of Tomsk State University, 1, Novosobornaya, Tomsk, 634050 (Russian Federation); Karmanov, Nick [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Seryotkin, Yurii [Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, 3, Koptyuga, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, Russia, 2, Pirogova, Novosibirsk, 630090 (Russian Federation)

    2015-11-15

    Experiments were performed to determine crystallization of Fe,S-melts (pyriti≿ and troilitic with molar ratio S/Fe ratios of 2 and 1, respectively) containing traces of gold and silver at (Ag/Au){sub wt} ratios varying from 10 to 0.1. The solid products were studied by optical microscopy, scanning electron microscopy, X-ray powder diffraction (XRD), microprobe analysis, and X-ray photoelectron spectroscopy (XPS) in order to reveal the concentration limits of “invisible” gold and silver in magmatic iron sulfides, and to determine the influence of sulfur on forms of precious metals in the Fe–S system with different Ag/Au ratios. Au–Ag phases do not form inclusions but instead concentrate on the grain boundaries in the synthetic pyrrhotite and troilite, while pyrite comprises micro- (1–5 μm) and macroinclusions of Au–Ag alloys and Au–Ag sulfides. In “pyriti≿” systems, the fineness of alloys increases from 650 to 970‰ and the composition of sulfides changes from acanthite (Ag{sub 2}S) to uytenbogaardtite (Ag{sub 3}AuS{sub 2}) and petrovskaite (AgAuS) as the Ag/Au ratio decreases. The concentrations of “invisible” precious metals revealed in troilite were 0.040 ± 0.013 wt.% Au and 0.079 ± 0.016 wt.% Ag. Measured concentrations in pyrite and pyrrhotite were <0.024 wt.% Au and <0.030 wt.% Ag. The surface layers of iron sulfides probed with XPS were enriched in the precious metals, and in silver relative to gold, especially in the systems with Fe/S = 1, probably, due to depletion of the metallic alloy surfaces with gold. Au- and Ag-bearing iron sulfides crystallized primarily from melts may be the source of redeposited phases in hydrothermal and hypergene processes. - Highlights: • The samples of Fe–S–Au–Ag system were synthesized. • Coupled solubility of gold and silver in iron sulfides was specified. • Ag–Au inclusions on surfaces of iron sulfides are likely to be enriched in silver. • Au–Ag sulfides can exist along with

  8. The geochemistry of banded iron formations in the sukumaland ...

    African Journals Online (AJOL)

    The geochemistry of banded iron formations in the sukumaland greenstone belt of Geita, northern Tanzania: evidence for mixing of hydrothermal and clastic ... the hydrothermal deposits have been contaminated, by up to 20% by weight, with detrital material having a composition similar to modern deep-sea pelagic clays.

  9. Petrography, Geochemistry and Proposed Genesis of Ordovician Oolitic Iron Formation Members of the Lashkarak Formation, Eastern Alborz

    Directory of Open Access Journals (Sweden)

    Mansoore Maghsoudloo Mahalli

    2016-07-01

    Full Text Available Introduction Oolitic iron formations are sedimentary rocks with >5 vol.% oolites and >15 wt.% iron, corresponding to 21.4 wt.% Fe2O3 (Young, 1989; Petranek and Van Houten, 1997; Mucke and Farshad, 2005. In Iran, new iron oolite-bearing members have been identified in the Lashkarak Formation (lower-middle Ordovician in the Abarsej, Dehmola and Simehkuh sections, eastern Alborz (Ghobadi Pour et al., 2011. At present, the mineralogy and geochemistry of these members are not known. Consequently, research reported here was conducted to reveal the mineralogical and geochemical characteristics of Ordovician oolitic iron formationmembers and to discuss their genesis and economic importance. Materials and Analyses Field geology and sampling was carried out to collect 25 samples from the ooliticiron formation members in the Abarsej, Dehmola and Simehkuh section in eastern Alborz. Samples were prepared for polished-thin sections (n=10, XRD analysis (n=15. Whole-rock chemical analysis (n=15 by XRF for major elements and by ICP-ES for trace elements was performed by laboratories at the SarCheshmeh copper mine complex, Kerman, Iran. One sample was analyzed by SEM at the Wales Museum, UK. Results Microscopic studies show that the oolitic iron formation members are hosted by carbonate argillite rocks. They are mainly composed of oolites rather than pisoliths (small bodies somewhat larger and more irregular than oolites, whereas oolites have mainly ellipsoidal forms and locally spherical shapes. Most (6 oolites show banding with a central core. Simple oolites without a core are scarce. Mineralogically, oolites are mainly chamositic and hematitic in composition; goethite, pyrite and glauconite occur in traces and siderite is absent. Quartz, calcite and zircon are accessory minerals which are present in the groundmass. Geochemically, TFeO % of the oolitic iron formation horizons ranges from 8 to 48 % with an average of 21%. The CaO content ranges from 2 to 37% and

  10. Geological Structure and Gold Mineralization of Carbonaceous Deposits of the Tyotechnaya Mountain (South Urals)

    OpenAIRE

    A. V. Snachev; E. P. Shchulkin

    2018-01-01

    This paper considers the geological structure of the northern part of the East-Urals Trough. Particular attention is paid to the Kosobrodskaya Formation, where the carbonaceous deposits are most abundant. It was found that the gold in the black shales of the Tyotechnaya Mountain is associated with the intensively dislocated, silicified and sulfidised rocks struck with the diorite porphyry of the Birgildin-Tomino Complex. Channel sampling on the number of wells showed the gold grades up to 1.5...

  11. Use of structural geology in exploration for and mining of sedimentary rock-hosted Au deposits

    Science.gov (United States)

    Peters, Stephen G.

    2001-01-01

    Structural geology is an important component in regional-, district- and orebody-scale exploration and development of sedimentary rock-hosted Au deposits.Identification of timing of important structural events in an ore district allows analysis and classification of fluid conduits and construction of genetic models for ore formation.The most practical uses of structural geology deal with measurement and definition of various elements that comprise orebodies, which can then be directly applied to ore-reserve estimation,ground control,grade control, safety issues,and mine planning.District- and regional-scale structural studies are directly applicable to long-term strategic planning,economic analysis,and land ownership. Orebodies in sedimentary rock-hosted Au deposits are discrete, hypogene, epigenetic masses usually hosted in a fault zone,breccia mass, or lithologic bed or unit. These attributes allow structural geology to be directly applied to the mining and exploration of sedimentary rock-hosted Au deposits. Internal constituents in orebodies reflect unique episodes relating to ore formation.The main internal constituents in orebodies are ore minerals, gangue, and alteration minerals that usually are mixed with one another in complex patterns, the relations among which may be used to interpret the processes of orebody formation and control.Controls of orebody location and shape usually are due to structural dilatant zones caused by changes in attitude, splays, lithologic contacts,and intersections of the host conduit or unit.In addition,conceptual parameters such as district fabric,predictable distances, and stacking also are used to understand the geometry of orebodies.Controls in ore districts and location and geometry of orebodies in ore districts can be predicted to various degrees by using a number of qualitative concepts such as internal and external orebody plunges,district plunge, district stacking, conduit classification, geochemical, geobarometric and

  12. Petrogenesis, detrital zircon SHRIMP U-Pb geochronology, and tectonic implications of the Upper Paleoproterozoic Seosan iron formation, western Gyeonggi Massif, Korea

    Science.gov (United States)

    Kim, Chang Seong; Jang, Yirang; Samuel, Vinod O.; Kwon, Sanghoon; Park, Jung-Woo; Yi, Keewook; Choi, Seon-Gyu

    2018-05-01

    This study involves investigations on the Upper Paleoproterozoic iron formation (viz., Seosan iron formation) from the Seosan Group, Gyeonggi Massif of the southwestern Korean Peninsula. It occurs as thin banded layers within meta-arkosic sandstone, formed by alternating processes of chemical (hydrothermal) and detrital depositions under a shallow marine environment. It mainly consists of alternating layers of iron oxides, mostly hematite, and quartz. Minor amounts of magnetite surrounded by muscovite, clinopyroxene and amphibole indicate hydrothermal alteration since its formation. Meta-arkosic sandstone is composed of recrystallized or porphyroclastic quartz and microcline, with small amounts of hematite and pyrite clusters. The Seosan iron formation has high contents of total Fe2O3 and SiO2 with positive Eu anomalies similar to those of other Precambrian banded iron formations, and its formation is clearly related to hydrothermal alteration since its deposition. Detrital zircon SHRIMP U-Pb geochronology data from a meta-arkosic sandstone (SN-1) and an iron formation (SN-2) show mainly two age groups of ca. 2.5 Ga and ca. 1.9-1.75 Ga. This together with intrusion age of the granite gneiss (ca. 1.70-1.65 Ga) clearly indicate that the iron formations were deposited during the Upper Paleoproterozoic. The dominant Paleoproterozoic detrital zircon bimodal age peaks preserved in the Seosan iron formation compare well with those from the South China Craton sedimentary basins, reflecting global tectonic events related to the Columbia supercontinent in East Asia.

  13. Surface vertical deposition for gold nanoparticle film

    International Nuclear Information System (INIS)

    Diao, J J; Qiu, F S; Chen, G D; Reeves, M E

    2003-01-01

    In this rapid communication, we present the surface vertical deposition (SVD) method to synthesize the gold nanoparticle films. Under conditions where the surface of the gold nanoparticle suspension descends slowly by evaporation, the gold nanoparticles in the solid-liquid-gas junction of the suspension aggregate together on the substrate by the force of solid and liquid interface. When the surface properties of the substrate and colloidal nanoparticle suspension define for the SVD, the density of gold nanoparticles in the thin film made by SVD only depends on the descending velocity of the suspension surface and on the concentration of the gold nanoparticle suspension. (rapid communication)

  14. The long term tsunami impact: Evolution of iron speciation and major elements concentration in tsunami deposits from Thailand.

    Science.gov (United States)

    Kozak, Lidia; Niedzielski, Przemyslaw

    2017-08-01

    The article describes the unique studies of the chemical composition changes of new geological object (tsunami deposits in south Thailand - Andaman Sea Coast) during four years (2005-2008) from the beginning of formation of it (deposition of tsunami transported material, 26 December 2004). The chemical composition of the acid leachable fraction of the tsunami deposits has been studied in the scope of concentration macrocompounds - concentration of calcium, magnesium, iron, manganese and iron speciation - the occurrence of Fe(II), Fe(III) and non-ionic iron species described as complexed iron (Fe complex). The changes of chemical composition and iron speciation in the acid leachable fraction of tsunami deposits have been observed with not clear tendencies of changes direction. For iron speciation changes the transformation of the Fe complex to Fe(III) has been recorded with no significant changes of the level of Fe(II). Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Fluid Inclusion Study of The Tumpangpitu High Sulfidation Epithermal Gold Deposit in Banyuwangi District, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Yu Yu Myaing

    2018-03-01

    Full Text Available The Tumpangpitu high sulfidation (HS epithermal gold deposit is located in the south coast of East Java, Banyuwangi District, East Java Province, Indonesia. This area lies within the central portion of the Cenozoic Sunda‐Banda magmatic arc which trends southeast from northern Sumatra to west Java then eastward through east Java, Bali, Lombok, Sumbawa and terminating at Banda sea. The geology of the Tumpangpitu is predominantly occupied by Late Oligocene to Middle Miocene low-K calc-alkaline to alkaline andesitic volcanic rocks and interbedded with volcaniclastic rock sequences, which are associated with low-K intermediate intrusions. The mineralization style at the Tumpangpitu area is composed of a high‐sulfidation (HS epithermal gold-copper system which is typically associated with concealed gold-rich porphyry copper system. The HS epithermal mineralization is hosted by volcanic and volcaniclastic rocks in this research area. The mineralization domains are divided into Zone A, Zone B and Zone C which are situated along NW-SE-trending silica ledges zones. The HS epithermal mineralization is texturally occurs as vuggy replacements mineralization as well as stockworks, disseminated forms, fractures and veins. Fluid inclusion study was conducted for 6 quartz vein samples which petrographically entrapped fluid inclusions. Homogenization temperature (Th and melting temperature (Tm can microthermometrically be determined by fluid inclusion analysis. The average homogenization temperature (Th of the fluid inclusions gives 180˚C to 342˚C and melting temperature are from -0.1 ˚C to -1.4˚C. Tm corresponds to the salinities ranging from 0.1 to 4.5 wt% NaCl equivalent. The paleodepth of ore formation can be estimated from the salinity of fluid. Since the deposit was not formed at boiling condition, the minimum paleodepth of ore (quartz samples taken from both shallow level (53.35 m and deep level (135.15 m is determined at 650m and 1,220 m

  16. Peralkaline- and calc-alkaline-hosted volcanogenic massive sulfide deposits of the Bonnifield District, East-Central Alaska

    Science.gov (United States)

    Dusel-Bacon, Cynthia; Foley, Nora K.; Slack, John E.; Koenig, Alan E.; Oscarson, Robert L.

    2012-01-01

    Volcanogenic massive sulfide (VMS) Zn-Pb-Cu-Ag-Au deposits of the Bonnifield mining district formed during Late Devonian-Early Mississippian magmatism along the western edge of Laurentia. The largest deposits, Dry Creek and WTF, have a combined resource of 5.7 million tonnes at 10% Zn, 4% Pb, 0.3% Cu, 300 grams per tonne (g/t) Ag, and 1.6 g/t Au. These polymetallic deposits are hosted in high field strength element (HFSE)- and rare-earth element (REE)-rich peralkaline (pantelleritic) metarhyolite, and interlayered pyritic argillite and mudstone of the Mystic Creek Member of the Totatlanika Schist Formation. Mystic Creek metarhyolite and alkali basalt (Chute Creek Member) constitute a bimodal pair that formed in an extensional environment. A synvolcanic peralkaline quartz porphyry containing veins of fluorite, sphalerite, pyrite, and quartz intrudes the central footwall at Dry Creek. The Anderson Mountain deposit, located ~32 km to the southwest, occurs within calc-alkaline felsic to intermediate-composition metavolcanic rocks and associated graphitic argillite of the Wood River assemblage. Felsic metavolcanic rocks there have only slightly elevated HFSEs and REEs. The association of abundant graphitic and siliceous argillite with the felsic volcanic rocks together with low Cu contents in the Bonnifield deposits suggests classification as a siliciclastic-felsic type of VMS deposit. Bonnifield massive sulfides and host rocks were metamorphosed and deformed under greenschist-facies conditions in the Mesozoic. Primary depositional textures, generally uncommon, consist of framboids, framboidal aggregates, and spongy masses of pyrite. Sphalerite, the predominant base metal sulfide, encloses early pyrite framboids. Galena and chalcopyrite accompanied early pyrite formation but primarily formed late in the paragenetic sequence. Silver-rich tetrahedrite is a minor late phase at the Dry Creek deposit. Gold and Ag are present in low to moderate amounts in pyrite from all of

  17. Mineralogy of Copper-Gold Deposit, Masjid Daghi Area, Jolfa, IRAN

    Science.gov (United States)

    Zenoozi, Roya

    2010-05-01

    The Copper-Gold deposit of Masjid Daghi area is located in the Jolfa quadrangle (scale 1:100,000), East Azerbaijan Province, north-west Iran. The deposit, hosting by sub-volcanic bodies comprise of quartz monzonite composition whose intruded the Tertiary volcanic and volcanic-sedimentary rocks and turbidities. The Tertiary volcanic rocks consist of andesite, trachy andesite and quartz andesite. These mineral-bearing bodies related to Late Eocene sub-volcanic activities which intrudded the Eocene volcanic rocks. Mineralography, XRD and SEM studies showed that the variations in mineralization of the area. The main agent of mineralization is the intrusion of Late Eocene sub volcanic bodies inside the Tertiary volcanic units. The mineralography studies revealed two main groups of mineralization as oxides and sulfides. The sulfide minerals formed as veins, vein lets and stock work.The economic minerals comprise of native gold, copper sulfides. The native gold occurring in siliceous veins and almost as inclusions inside the sulfides minerals such as chalcopyrite. The copper sulfides, contain pyrite, chalcopyrite and chalco-pyrrhoyite. Pyrite is main sulfide in the area and formed as disseminations, cavity filling and colloform. The amount of pyrite, chalcopyrite and chalco-pyrrhoyite increases with depth. Supergene alteration produced digenite, covellite, bornite, and malachite. The alteration occurred as potassic, phyllic, argillic and propylitic minerals. Furthermore, selective sercitic, sericitic-chloritic and alunitic alterations are seen around the mineralized veins. The mineralography studies indicate that pyrite is main mineral phase and native gold occurred in silicious vein almost as inclusions inside the sulfide mineral. Most of economic mineral formed as veins, vein lets, disseminated, cavity filling and colloform which related to intrusions of Late Eocene quartz monzonite bodies into the Eocene volcanic rocks and turbiditse. Some types of alterations such as

  18. The mineralogy and geochemistry of some of the iron-formations of Bushmanland

    International Nuclear Information System (INIS)

    Meyer, T.Q.

    1986-01-01

    A great diversity of metasedimentary and metavolcanic rock types form inselbergs on the sandcovered plains of Bushmanland in the north-western Cape Province. Algoma-type iron-formation occurs as isolated units in the Proterozoic metasediments of Namaqualand and Bushmanland, varying in size and stratigraphical position. In many cases, the iron-formations are closely associated with base metal mineralization. Examples are the huge base metal deposits at Black Mountain, Gamsberg and Broken Hill in the Aggeneys area. The oxidation zones are expressed as black magnetite-rich outcrops which can in some cases be traced for as much as a kilometre. This study was undertaken to investigate the mineralogy and geochemistry of a selection of the iron-formations of Bushmanland. Some of the iron-formations, associated ferriferous metasediments and gossans contain a wide variety of secondary minerals. These minerals were examined by X-ray diffraction and analyses were obtained by means of an electron microprobe

  19. Magmatic-dominated fluid evolution in the Jurassic Nambija gold skarn deposits (southeastern Ecuador)

    Science.gov (United States)

    Vallance, Jean; Fontboté, Lluís; Chiaradia, Massimo; Markowski, Agnès; Schmidt, Susanne; Vennemann, Torsten

    2009-05-01

    and the compositional variability of chlorite, essentially controlled by host rock compositions. Gold was precipitated at this stage as a result of cooling and pH increase related to CO2 effervescence, which both result in destabilization of gold-bearing chloride complexes. Significant ingression of external fluids took place after gold deposition only, as recorded by δ18O values of 0.4‰ to 6.2‰ for fluids depositing quartz (below 350°C) in sulfide-rich barren veins. Low-temperature (bearing skarn deposits, not only the prograde stage but also the gold-precipitating retrograde stage is dominated by fluids of magmatic origin.

  20. Geology, geochemistry, and geochronology of the East Bay gold trend, Red Lake, Ontario, Canada

    Science.gov (United States)

    Gallagher, Shaun; Camacho, Alfredo; Fayek, Mostafa; Epp, Mark; Spell, Terry L.; Armstrong, Richard

    2018-01-01

    The Red Lake greenstone belt is situated in northwestern Ontario within the Uchi Subprovince, Superior Province. Most gold deposits therein are associated with major deformation corridors; the east-west oriented "Mine trend" hosts most of the large deposits and the northeast-southwest "East Bay trend" hosts several small deposits and showings. Gold along the East Bay trend typically occurs in quartz replacement veins that were emplaced into pre-existing quartz-carbonate veins. Gold can occur as free gold or along vein margins associated with pyrite and pyrrhotite. Most primary fluid inclusions, preserved in relatively undeformed portions of veins, are carbonaceous with lesser quantities of aqueous inclusions. The average homogenization temperature of aqueous fluids is 250 °C; however, the abundance of three-phase inclusions, variation in liquid-vapor ratios, and a wide range in homogenization temperatures indicate that immiscibility, effervescence, and fluid mixing are mechanisms associated with gold deposition. The age ( 2550 Ma) of alteration minerals in the Abino area is considerably younger (by 100 Myr) than alteration minerals in other deposits in the Red Lake district, indicating that the mineralizing fluid history was more protracted than previously thought. Along the East Bay trend, barren veins generally have lower δ18OVSMOW values (0.0 to 8.5‰) relative to auriferous veins (9.6 and 13.1‰). Consequently, the oxygen isotopic composition of quartz could be used as a vector for gold mineralization. The genetic model for the East Bay trend involves several stages of vein formation. Auriferous veins formed near the upper boundary of the mesozonal regime (depth of 5-6 km).

  1. Metagenomic Study of Iron Homeostasis in Iron Depositing Hot Spring Cyanobacterial Community

    Science.gov (United States)

    Brown, I.; Franklin H.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    Introduction: It is not clear how an iron-rich thermal hydrosphere could be hospitable to cyanobacteria, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, metagenomic study of cyanobacterial community in iron-depositing hot springs may help elucidate how oxygenic prokaryotes can withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe2+ and O2. Method: Anchor proteins from various species of cyanobacteria and some anoxygenic phototrophs were selected on the basis of their hypothetical role in Fe homeostasis and the suppression of oxidative stress and were BLASTed against the metagenomes of iron-depositing Chocolate Pots and freshwater Mushroom hot springs. Results: BLASTing proteins hypothesized to be involved in Fe homeostasis against the microbiomes from the two springs revealed that iron-depositing hot spring has a greater abundance of defensive proteins such as bacterioferritin comigratory protein (Bcp) and DNA-binding Ferritin like protein (Dps) than a fresh-water hot spring. One may speculate that the abundance of Bcp and Dps in an iron-depositing hot spring is connected to the need to suppress oxidative stress in bacteria inhabiting environments with high Fe2+ concnetration. In both springs, Bcp and Dps are concentrated within the cyanobacterial fractions of the microbial community (regardless of abundance). Fe3+ siderophore transport (from the transport system permease protein query) may be less essential to the microbial community of CP because of the high [Fe]. Conclusion: Further research is needed to confirm that these proteins are unique to photoautotrophs such as those living in iron-depositing hot spring.

  2. Metallogenesis of the lode gold deposit in Ilesha area of southwestern Nigeria: inferences from lead isotope systematics

    International Nuclear Information System (INIS)

    Oyinloye, A.O.

    2006-01-01

    Studies were carried out on the geochemistry of 18 representative samples of the granite gneiss host rock, common Pb dates on six granite gneiss whole rock samples, six feldspar sample separates, and six samples from the lode gold deposit in the Ilesha schist belt. The AFM plot for the biotite granite gneiss indicated that its potlatch was derived from a subduction related tectonic setting. The granite gneiss had low U/Pb and Th/Pb ratios (0.10 to 0.31 and 0.33 to 1.31, respectively), and upper crystal Pb content of 30-47 ppm. The /sup 207/Pb/sup 204/Pb, /sup 206/Pb /sup 204/Pb, /sup 208/Pb/sup 204/Pb, were extremely homogeneous in the host rock, the feldspar, and the pyrite indicating derivation from a subduction related environment like a back arc or island arc. The two-stage Stacy and Kramers (1975) Pb-Pb model dating method of interpretation adopted in this study indicated that the granite gneiss was emplaced at 2750 +- 25 Ma in an orogen. On analysis, common Pb in pyrite yielded an average model age of 550 Ma. This Pb systematic indicated that Au was derived from the volcanics in the lIesha schist belt by hydrothermal leaching, transported through the same medium and deposited in the massive quartz veins as thio-complexes from which native gold was liberated through interaction of the ore fluid and spinals in the host rock. Studies were carried out on the geochemistry of 18 representative samples of the granite gneiss host rock, common Pb dates on six granite gneiss whole rock samples, six feldspar sample separates, and six samples from the lode gold deposit in the Ilesha schist belt. The AFM plot for the biotite granite gneiss indicated that its potlatch was derived from a subduction related tectonic setting. The granite gneiss had low U/Pb and Th/Pb ratios (0.10 to 0.31 and 0.33 to 1.31, respectively), and upper crustal Pb content of 30-47 ppm. The /sup 207/Pb /sup 204/Pb, /sup 206/Pb /sup 204/Pb, /sup 208/Pb /sup 204/Pb, were extremely homogeneous in the

  3. On the crypto-explosive crater and its relation with gold mineralization in larma Au-U deposit

    International Nuclear Information System (INIS)

    Chen Guohua; Jing Hongxiang; Huang Shutao

    1998-01-01

    A new type of gold mineralization-controlling structure-hydrothermal crypto-explosive crater was identified at the Larma gold-uranium deposit in the border regions between Gansu and Sichuan provinces, western China. The hydrothermal crypto-explosive crater is ellipse-shaped at the surface, while funnel-like in profile. A silica-cap composed of hydrothermal siliceous breccia is distributed at the top of the crater, while hydrothermal crypto-explosive breccia are in the centre. The configuration of the crater is roughly consistent with the distribution of gold ore bodies. The formation mechanism of the crater is: first, a silica cap composed of hydrothermal siliceous metasomatic rock was formed at the contact area between the siliceous rock and the slate, and blocked the movement of hydrothermal fluid and resulted in the appearance of over-pressed geothermal environment. Then, at 49.5 Ma, the rejuvenation of the EW-striking faults in larma area resulted in the breaking of the brittle silica cap, followed by the crypto-explosion of hydrothermal fluid. In Larma gold-uranium deposit, the hydrothermal crypto-explosion gave rise to the precipitation of gold from the hydrothermal fluid, while the crypto-explosive crater provided the space for gold mineralization

  4. Halogen Chemistry of Hydrothermal Micas: a Possible Geochemical Tool in Vectoring to Ore for Porphyry Copper-Gold Deposit

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2018-03-01

    Full Text Available Porphyry copper-gold deposit commonly exhibits an extensive alteration zone of hydrothermal micas particularly biotite and sericite. This study is aimed to analyze and utilize the chemistry of halogen fluorine and chlorine of biotite and sericite to be a possible tool in vectoring to ore for copper porphyry deposits. To achieve the objectives, several selected altered rock samples were taken crossing the Batu Hijau copper-gold mine from inner to outer of the deposit, and hydrothermal micas contained by the rocks were analyzed petrographically and chemically. Mineral chemistry was detected by electron microprobe analyzer, whilst biotite is petrographically classified as either magmatic or hydrothermal types. Sericite replacing plagioclase occurred as fine-grained mineral and predominantly associated with argillic-related alteration types. Biotites in the Batu Hijau deposit are classified as phlogopite with a relatively low mole fraction magnesium (XMg (~0.75 compared to the “typical” copper porphyry deposit (~0.82. The relationship between the XMg and halogen contents are generally consistent with “Fe-F and Mg-Cl avoidance rules”.  F content in biotite and sericite decrease systematically from inner part of the deposit which is represented by early biotite (potassic zone where the main copper-gold hosted, to the outer part of the deposit. However, chlorine in both biotite and sericite from each of the alteration zones shows a relative similar concentration, which suggests that it is not suitable to be used in identification of the alteration zones associated with strong copper-gold mineralization. H2O content of the biotite and sericite also exhibits a systematic increase outward which may also provide a possible geochemical vector to ore for the copper porphyry deposits. This is well correlated with fluorine content of biotite in rocks and bulk concentration of copper from the corresponding rocks.

  5. Sources of metals in the Porgera gold deposit, Papua New Guinea: Evidence from alteration, isotope, and noble metal geochemistry

    Science.gov (United States)

    Richards, Jeremy P.; McCulloch, Malcolm T.; Chappell, Bruce W.; Kerrich, Robert

    1991-02-01

    The Porgera gold deposit is spatially and temporally associated with the Late Miocene, mafic, alkalic, epizonal Porgera Intrusive Complex (PIC), located in the highlands of Papua New Guinea (PNG). The highlands region marks the site of a Tertiary age continent-island-arc collision zone, located on the northeastern edge of the Australasian craton. The PIC was emplaced within continental crust near the Lagaip Fault Zone, which represents an Oligocene suture between the craton and volcano-sedimentary rocks of the Sepik terrane. Magmatism at Porgera probably occurred in response to the Late Miocene elimination of an oceanic microplate, and subsequent Early Pliocene collision between the craton margin and an arc system located on the Bismarck Sea plate. Gold mineralization occurred within 1 Ma of the time of magmatism. Metasomatism accompanying early disseminated Au mineralization in igneous host rocks resulted in additions of K, Rb, Mn, S, and CO 2, and depletions of Fe, Mg, Ca, Na, Ba, and Sr; rare-earth and high-field-strength elements remained largely immobile. Pervasive development of illite-K-feldspar-quartz-carbonate alteration assemblages suggests alteration by mildly acidic, 200 to 350°C fluids, at high water/ rock ratios. Strontium and lead isotopic compositions of minerals from early base-metal sulphide veins associated with K-metasomatism, and later quartz-roscoelite veins carrying abundant free gold and tellurides, are remarkably uniform (e.g., 87Sr /86Sr = 0.70745 ± 0.00044 [n = 10] , 207Pb /204Pb = 15.603 ± 0.004 [n = 15] ). These compositions fall between those of unaltered igneous and sedimentary host rocks, and specifically sedimentary rocks from the Jurassic Om Formation which underlies the deposit (igneous rocks: 87Sr /86Sr ≈ 0.7035 , 207Pb /204Pb ≈ 15.560 ; Om Formation: 87Sr /86Sr |t~ 0.7153 , 207Pb /204Pb ≈ 15.636 ). It is therefore suggested that the hydrothermal fluids acquired their Sr and Pb isotopic signatures by interaction with, or

  6. Evidence for de-sulfidation to form native electrum in the Fire Creek epithermal gold-silver deposit, north-central Nevada

    Science.gov (United States)

    Perez, J.; Day, J. M.; Cook, G. W.

    2012-12-01

    The Fire Creek property is a newly developed and previously unstudied epithermal Au-Ag deposit located in the Northern Shoshone range of north central Nevada. The mineralization occurs within and above en echelon N-NW trending basaltic dykes that are hosted within a co-genetic and bimodal suite of mid-Miocene basalts and andesites formed in association with the Yellowstone hotspot-track. Previous studies of Au-Ag mineralization in the Great Basin have focused primarily on extensively mined and/or low-grade deposits. Therefore, the ability for unrestricted sampling of a major Au-Ag deposit early in its exploration and development represents an opportunity for refined understanding of epithermal ore genesis processes. New petrology reveals at least two distinct pulses of mineralization that in relative order of timing are: 1) S-rich veins which are associated with initial host-rock alteration; 2) quartz- and/or calcite-rich veins which vary from fine-grained to lath-like quartz crystals with large calcite crystals in vein centers. Native electrum occurs only within the second phase of mineralization and typically occurs within quartz and adjacent to cross-cut first-phase S-rich veins. In places the electrum appears to replace or form overgrowths around existing sulfide phases. High levels of gold and silver are found in both the first (0.8 g Au/tonne) and second-phase pulses (37 g Au/tonne). Fire Creek shares many similarities with its northern neighbor, the Mule Canyon Au-Ag deposit, with high Fe sulfide contents for some of the ores, altered wall-rocks and the presence of narrow and discontinuous gold-bearing siliceous veins. Like Fire Creek, Mule Canyon possesses two distinct mineralizing phases, a sulfide rich and a late stage calcite/silica assemblage. The first pulse appears to be identical in both locations with a variation of disseminated to euhedral iron-sulfides and associated intense alteration of host rock. However, Fire Creek differs from Mule Canyon in

  7. GOLD-BEARING MINERALIZED ZONES OF THE YUZHNOE ORE OCCURRENCE AND ITS COMPARISON WITH LODE GOLD DEPOSITS OF YENISEI RIDGE

    OpenAIRE

    MANSUROV R.KH.

    2016-01-01

    The relevance of the discussed issue is caused by the need to detect a new gold ore deposits within the Yenisei ridge to replenish the mineral resources of gold ore in Russia. The main aim of the study is to explore the features of geological structure and gold ore mineralized zones of ore occurrence Yuzhnoe in order to forecast gold ore bodies, and to substantiate the continuation of geological exploration. The prospecting is realized by the express method of prospecting of gold ore deposits...

  8. Iron oxi-hydroxides characterization and associated elements (S, Se, As, Mo, V, Zr) in the redox environments favorable for uranium deposits

    International Nuclear Information System (INIS)

    Pons, Tony

    2015-01-01

    This work presents a multi-scale and a multi-technical study for the characterization of iron oxi-hydroxides in three uranium-type deposits and host rock. The choice of sites has focused on a roll front deposit: Zoovch Ovoo in a Cretaceous basin of East Gobi (Mongolia); a tectonic-lithological type: Akola/Ebba in Tim Mersoi basin (Niger) and a Proterozoic unconformity type: Kiggavik in Thelon basin (Canada). A new approach has been implemented to characterize the iron oxi-hydroxides on macroscopic samples: field infrared spectroscopy using the ASD TerraSpec spectrometer. From the original indexes calculated on the spectra, it was possible both to characterize the iron oxi-hydroxides; only hematite and goethite were identified in the different parts of oxidized uranium fronts, and visualize the alteration zonation along the redox front. In addition, the visible part of spectrum was used to quantify the color of samples through the IHS system parameters (Intensity - Hue - Saturation) and the Munsell system. The color setting of the study identified a specific hue for mineralized samples studied: a mixture of yellow and red (2.5 to 10 Yr in Munsell notation). At the crystals scale, the iron-hydroxides were characterized by μ-Raman spectroscopy. The study highlighted a difference in crystallinity of hematite crystals in different fields. From a morphological point of view, the crystals of goethite in the Zoovch Ovoo deposit, is only authigenic iron oxi-hydroxides described in this uranium front, are twinned in the form of six-pointed star, reflecting a low crystallization temperature, compared to Niger and Kiggavik deposits. This crystallization is mainly controlled by the availability of Fe(III) ions in the fluid, released by pyrite dissolution in an oxidizing environment and pH. From a chemical point of view, iron oxi-hydroxides record the fluid passage owing their uranium content. Secondly, the composition in trace elements marks the type of deposit, for example

  9. Age, sedimentary environments, and other aspects of sandstone and related host rocks for uranium deposits

    International Nuclear Information System (INIS)

    1983-01-01

    Project II of the Uranium Geology Working Group was assigned to the study of sedimentary basins and sandstone - type uranium deposits. About 40% of the worlds's uranium resources are contained in sandstone-type deposits, which has led to extensive research. The research was carried out mainly by correspondence, and the results reported by 21 geologists from 10 nations are summarized in this report. It investigated five topics dealing with important aspects of the geology of uranium ores in sandstone host formations: age of host rock; partitioning of uranium between continental and marine sediments; latitude limitation on formation of sandstone deposits; effect of rock formation dip on sandstone ores; usefulness of stable isotope and fluid inclusion studies. The results of studies on these subjects form part of a wider programme of the Working Group, whose final results will be presented at the 27th International Geological Congress in Moscow in 1984

  10. Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing.

    Science.gov (United States)

    Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Baker, Alex R; Jickells, Timothy D; Benning, Liane G

    2009-09-01

    The formation of iron (Fe) nanoperticles and increase in Fe reactivity in mineral dust during simulated cloud processing was investigated using high-resolution microscopy and chemical extraction methods. Cloud processing of dust was experimentally simulated via an alternation of acidic (pH 2) and circumneutral conditions (pH 5-6) over periods of 24 h each on presieved (formation of Fe-rich nanoparticle aggregates, which were not found initially. Similar Fe-rich nanoparticles were also observed in wet-deposited Saharen dusts from the western Mediterranean but not in dry-deposited dust from the eastern Mediterranean. Sequential Fe extraction of the soil samples indicated an increase in the proportion of chemically reactive Fe extractable by an ascorbate solution after simulated cloud processing. In addition, the sequential extractions on the Mediterranean dust samples revealed a higher content of reactive Fe in the wet-deposited dust compared to that of the dry-deposited dust These results suggestthat large variations of pH commonly reported in aerosol and cloud waters can trigger neo-formation of nanosize Fe particles and an increase in Fe reactivity in the dust

  11. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California

    Science.gov (United States)

    Sobron, Pablo; Alpers, Charles N.

    2013-01-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  12. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California.

    Science.gov (United States)

    Sobron, Pablo; Alpers, Charles N

    2013-03-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  13. Selective electrochemical gold deposition onto p-Si (1 0 0) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Santinacci, L; Etcheberry, A [Institut Lavoisier de Versailles (UMR CNRS 8180), University of Versailles-Saint-Quentin, 45 avenue des Etats-Unis, F-78035 Versailles cedex (France); Djenizian, T [Laboratoire Chimie Provence (UMR CNRS 6264), University of Aix-Marseille I-II-III, Centre Saint-Jerome, F-13397 Marseille Cedex 20 (France); Schwaller, P [Laboratory for Mechanics of Materials and Nanostructures, Swiss Federal Laboratory for Materials Testing and Research, Feuerwerkstr. 39, CH-3602 Thun (Switzerland); Suter, T [Laboratory for Corrosion and Materials Integrity, Swiss Federal Laboratory for Materials Testing and Research, Ueberlandstr. 129, CH-8600 Duebendorf (Switzerland); Schmuki, P [Department of Materials Science, LKO-WW4, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, D-91058 Erlangen (Germany)], E-mail: lionel.santinacci@uvsq.fr

    2008-09-07

    In this paper, we report selective electrochemical gold deposition onto p-type Si (1 0 0) into nanoscratches produced through a thin oxide layer using an atomic force microscope. A detailed description of the substrate engraving process is presented. The influence of the main scratching parameters such as the normal applied force, the number of scans and the scanning velocity are investigated as well as the mechanical properties of the substrate. Gold deposition is carried out in a KAu(CN){sub 2} + KCN solution by applying cathodic voltages for various durations. The gold deposition process is investigated by cyclic voltammetry. Reactivity enhancement at the scratched locations was studied by comparing the electrochemical behaviour of intact and engraved surfaces using a micro-electrochemical setup. Selective electrochemical gold deposition is achieved: metallic patterns with a sub-500 nm lateral resolution are obtained demonstrating, therefore, the bearing potential of this patterning technique.

  14. isotopic chronological study on gold-stibium deposits in Bayinbuluke area of Tianshan mountains

    International Nuclear Information System (INIS)

    Chen Fuwen; Li Huaqin

    2003-01-01

    Several gold-stibium deposits have recently been found in Bayinbuluke area of Tianshan Mountains, such as the Dashankou gold deposit and Chahansala stibium deposit. isotopic chronological study of mineralization show that the fluid inclusion Rb-Sr isochron age for gold-bearing pyrite-quartz veins and pyrite-limonite-quartz veins from the Dashankou gold mine are 354 ± 8.1 Ma (2 σ) and 344 ± 21 Ma (2 σ), respectively. The two ages are consistent in test errors, indicating the gold deposit was formed in early Carboniferous and related to regional shearing; the fluid inclusion Rb-Sr isochron age for quartz-stibnite veins and quartz-tetrahedrite-bismuthinite-stibnite veins from the Chahansala stibium mine is 257 ± 23 Ma (2 σ), indicating the deposit was formed during the late Hercynian-Early Indosinian Period and related to intracontinental deformation. (authors)

  15. The Tintina Gold Belt - A global perspective

    Science.gov (United States)

    Goldfarb, Richard J.; Hart, Craig J.R.; Miller, Marti L.; Miller, Lance D.; Farmer, G. Lang; Groves, David I.; Tucker, Terry L.; Smith, Moira T.

    2000-01-01

    The so-called Tintina Gold Belt extends for more than 1000 km along the length of the northern North American Cordillera. Middle to Late Cretaceous Au deposits within the belt have various similar characteristics, among which are a spatial and temporal association with magmatism; Bi-W-Te signatures in deposits hosted by granitod stocks and As-Sb signatures where hosted by sedimentary rocks and dyke systems; and δ180 values consistently > 12 per mil for Au-bearing quartz. Nevertheless significant differences in structural styles, levels of deposit emplacement, ore-fluid chemistry, and Au grades suggest that the characteristics represent a broad range of deposit types. Many of these are best classified as orogenic Au deposits in the Yukon-Tanana terrane, as epithermal and porphyry-style Au deposits in the Kuskokwim region, and as Au-bearing, granite-related veins and stockworks, replacements, and skarns, as well as associated polymetallic lodes, in central Yukon. The diverse types of Au deposits and associated plutons of the Tintina Gold Belt collectively define a 45-m.y.-long period of arc magmatism that migrated northwesterly, for about 1000 km, across the active collisional margin of Cretaceous northwestern North America. The initiation of fluid flow and plutonism in Albian time seems to correlate with the onset of oblique subduction and dextral strike-slip on the Denali-Farewell, Tintina-Kaltag, and related fault systems. Initial Au-vein formation and subduction-related magmatism at about 115-110 Ma (e.g., including the Goodpaster and Fortymile districts), within the seaward side of the Yukon-Tanana terrane, correlate with the arrival of the Wrangellia superterrane off the continental margin. Dextral translation of the allochthonous Wrangellia block was associated with the migration of the thermal pulse to the northwest at about 95-90 Ma. Orogenic (or so­ called mesotherrnal) and granitoid-related Au deposits formed across the width of the Yukon

  16. Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration.

    Science.gov (United States)

    Andersen, Hjalte Holm; Johnsen, Kasper Bendix; Moos, Torben

    2014-05-01

    Neurodegenerative disorders are characterized by the presence of inflammation in areas with neuronal cell death and a regional increase in iron that exceeds what occurs during normal aging. The inflammatory process accompanying the neuronal degeneration involves glial cells of the central nervous system (CNS) and monocytes of the circulation that migrate into the CNS while transforming into phagocytic macrophages. This review outlines the possible mechanisms responsible for deposition of iron in neurodegenerative disorders with a main emphasis on how iron-containing monocytes may migrate into the CNS, transform into macrophages, and die out subsequently to their phagocytosis of damaged and dying neuronal cells. The dying macrophages may in turn release their iron, which enters the pool of labile iron to catalytically promote formation of free-radical-mediated stress and oxidative damage to adjacent cells, including neurons. Healthy neurons may also chronically acquire iron from the extracellular space as another principle mechanism for oxidative stress-mediated damage. Pharmacological handling of monocyte migration into the CNS combined with chelators that neutralize the effects of extracellular iron occurring due to the release from dying macrophages as well as intraneuronal chelation may denote good possibilities for reducing the deleterious consequences of iron deposition in the CNS.

  17. Possible genetic link between I-type granite and orogenic gold deposits in Egypt (metamorphic-magmatic interaction?)

    Science.gov (United States)

    Abd El Monsef, Mohamed

    2015-04-01

    The orogenic gold deposits are a distinctive type of deposits that revealed unique temporal and spatial association with an orogeny. Where, the system of gold veins and related ore minerals was confined to hydrothermal solutions formed during compressional to transpressional deformation processes at convergent plate margins in accretionary and collisional orogens, with the respect to ongoing deep-crustal, subduction-related thermal processes. In Egypt, most of vein-type and dyke-type gold mineralization are restricted to granitic rocks or at least near of granitic intrusion that seems to have had an important influence on gold mineralization. Shear zone-related, mesothermal gold deposits of Fatira and Gidami mines in the northern Eastern Desert of Egypt are found within granitic bodies or at the contact between granites and metavolcanic rocks. The hosting-granitic rocks in Fatira and Gidami areas are mainly of granodioritic composition (I-Type granite) which is related to calc-alkaline magmatic series. However, Fatira granitoids were developed within island arc tectonic settings related to mature island arc system (Late-orogenic stage), at relatively low temperature (around 660° C) and medium pressure between (5 - 10 Kbar). On the other hand, Gidami granitoids were developed during the collision stage in continental arc regime related to active continental margin (Syn-orogeny), which were crystallized at relatively high temperature (700-720° C) and low pressure (around 0.1 Kbar). The ore mineralogy includes pyrite, chalcopyrite, sphalerite, covellite, ilmenite, goethite ± pyrrhotite ± pentlandite ± galena ± molybdenite. Native gold is detected only in Gidami mineralization as small inclusions within pyrite and goethite or as tiny grains scattered within quartz vein (in close proximity to the sulfides). In Fatira deposits, it is detected only by microprobe analysis within the crystal lattice of pyrite and jarosite. Fluid inclusions study for the mineralized

  18. Deposition kinetics of nanocolloidal gold particles

    NARCIS (Netherlands)

    Brouwer, E.A.M.; Kooij, Ernst S.; Hakbijl, Mark; Wormeester, Herbert; Poelsema, Bene

    2005-01-01

    The deposition kinetics of the irreversible adsorption of citrate-stabilized, nanocolloidal gold particles on Si/SiO2 surfaces, derivatized with (aminopropyl)triethoxysilane (APTES), is investigated in situ using single wavelength optical reflectometry. A well-defined flow of colloids towards the

  19. Formation of iron disilicide on amorphous silicon

    Science.gov (United States)

    Erlesand, U.; Östling, M.; Bodén, K.

    1991-11-01

    Thin films of iron disilicide, β-FeSi 2 were formed on both amorphous silicon and on crystalline silicon. The β-phase is reported to be semiconducting with a direct band-gap of about 0.85-0.89 eV. This phase is known to form via a nucleation-controlled growth process on crystalline silicon and as a consequence a rather rough silicon/silicide interface is usually formed. In order to improve the interface a bilayer structure of amorphous silicon and iron was sequentially deposited on Czochralski silicon in an e-gun evaporation system. Secondary ion mass spectrometry profiling (SIMS) and scanning electron micrographs revealed an improvement of the interface sharpness. Rutherford backscattering spectrometry (RBS) and X-ray diffractiometry showed β-FeSi 2 formation already at 525°C. It was also observed that the silicide growth was diffusion-controlled, similar to what has been reported for example in the formation of NiSi 2 for the reaction of nickel on amorphous silicon. The kinetics of the FeSi 2 formation in the temperature range 525-625°C was studied by RBS and the activation energy was found to be 1.5 ± 0.1 eV.

  20. Nanotoxicity of gold and iron nanoparticles.

    Science.gov (United States)

    Maiti, Souvik

    2011-02-01

    The extensive use of potentially hazardous nanoparticles in industrial applications suggest that their biological effects need to be evaluated following clinical testing practices as applicable for any new pharmaceutical. It was rationalized that a non hypothesis-driven approach is best suited for discovering the biological effects of nanoparticles. Gold nanoparticles (approximately 18 nm), showed no drastic effect on gene expression in cells but iron nanoparticles showed perturbations in the expression of a set of functional genes.

  1. Hydrothermal oxidation in the Biwabik Iron Formation, MN, USA

    Science.gov (United States)

    Losh, Steven; Rague, Ryan

    2018-02-01

    Precambrian iron formations throughout the world, notably in Australia, Brazil, and South Africa, show evidence of hypogene (≥ 110 °C, mostly > 250 °C) oxidation, alteration, and silica dissolution as a result of tectonic or magmatic activity. Although hydrothermal oxidation has been proposed for the prototype Lake Superior-type iron formation, the Biwabik Iron Formation in Minnesota (USA), it has not been documented there. By examining oxidized and unoxidized Biwabik Iron Formation in three mines, including material from high-angle faults that are associated with oxidation, we document an early hypogene oxidation event ( 175 °C) involving medium-salinity aqueous fluids (8.4 ± 4.9 wt% NaCl equiv) that infiltrated iron formation along high-angle faults. At the Hibbing Taconite Mine, hydrothermal fluids oxidized iron carbonates and silicates near faults, producing goethite ± quartz. In contrast with much of the oxidized iron ores on the Mesabi Range, silica was not removed but rather recrystallized during this event, perhaps lying in a rock-dominated system at low cumulative fluid flux. During the hydrothermal oxidation event in the Hibbing Taconite deposit, quartz-filled microfractures and irregular inclusions commonly formed in coarse variably oxidized magnetite, currently the ore mineral: these inclusions degrade the ore by introducing excess silica in magnetic concentrate. Hydrothermal oxidation at Hibbing Taconite Mine is overprinted by later, relatively minor supergene oxidation both along faults and near the surface, which locally dissolved quartz. At the Fayal Reserve Mine, widespread silicate and carbonate gangue dissolution and iron oxidation was followed by precipitation of pyrite, Mn-siderite, apatite, and other minerals in void spaces, which prevented post-oxidation compaction and significant volume loss in the sampled rocks. Although definitive temperature data for this assemblage are needed, the weight of evidence indicates that this

  2. Magmatism and Epithermal Gold-Silver Deposits of the Southern Ancestral Cascade Arc, Western Nevada and Eastern California

    Science.gov (United States)

    John, David A.; du Bray, Edward A.; Henry, Christopher D.; Vikre, Peter

    2015-01-01

    hornblende, biotite, and pyroxene phenocrysts. Seven epithermal gold-silver deposits with >1 Moz gold production, several large elemental sulfur deposits, and many large areas (10s to >100 km2) of hydrothermally altered rocks are present in the southern ancestral arc, especially south of latitude 40°N. These deposits are principally hosted by intermediate to silicic lava dome complexes; only a few deposits are associated with mafic- to intermediate-composition stratovolcanoes. Large deposits are most abundant and well developed in volcanic fields whose evolution spanned millions of years. Most deposits are hundreds of thousands to several million years younger than their host rocks, although some quartz-alunite deposits are essentially coeval with their host rocks. Variable composition and thickness of crustal basement is the primary control on mineralization along the length of the southern ancestral arc; most deposits and large alteration zones are localized in basement rock terranes with a strong continental affinity, either along the edge of the North American craton (Goldfield, Tonopah) or in an accreted terrane with continental affinities (Walker Lake terrane; Aurora, Bodie, Comstock Lode, Paradise Peak). Epithermal deposits and quartz-alunite alteration zones are scarce to absent in the northern part of the ancestral arc above an accreted island arc (Black Rock terrane) or unknown basement rocks (Modoc Plateau). Walker Lane structures and areas that underwent large magnitude extension during the Late Cenozoic (areas with Oligocene-early Miocene volcanic rocks dipping >40°) do not provide regional control on mineralization. Instead, these features may have served as local-scale conduits for mineralizing fluids.

  3. Ironing Out the Wrinkles in Host Defense: Interactions between Iron Homeostasis and Innate Immunity

    Science.gov (United States)

    Wang, Lijian; Cherayil, Bobby J.

    2009-01-01

    Iron is an essential micronutrient for both microbial pathogens and their mammalian hosts. Changes in iron availability and distribution have significant effects on pathogen virulence and on the immune response to infection. Recent advances in our understanding of the molecular regulation of iron metabolism have shed new light on how alterations in iron homeostasis both contribute to and influence innate immunity. In this article, we review what is currently known about the role of iron in the response to infection. PMID:20375603

  4. Characteristics of the streak clays of the hyacinth gold deposit by the techniques of DRX and AT

    International Nuclear Information System (INIS)

    Trueba Gaetano, R.; Cabrera Diaz, I.; Casanova Gomez, A.; Aguila Terry, A.; Martinez Montalvo, A.; Canel Carreras, L.; Rodriguez Garcia, J. C.; Alonso Perez, J. A.

    2016-01-01

    It is exposed the investigative work of the mineralogical characteristics of different types of clays present in the veins of the Oro Jacinto deposit through the use of XRD and TA analytical techniques, supported by a study of particle size in the range of 2 mm to 63 μm. Significant feature of these samples is that being crushed they generated high content of fine material below 0.074 mm. This size particles range is presented between 17.68% and 50.78% of samples volume, majority particles being smaller than 0.063 mm, this interstratificated fine material with different types of clay makes the fraction below 74 μm present characteristics of clayey material. The results of XRD analysis and comparative Thermo gravimetric that are achieved for samples of 'Jacinto' gold vein deposit indicate that the clays presented in the fine fractions are: chlorite-montmorillonite; illite; hidromoscovite and muscovite, which turned out to be higher in samples of the grain B eatriz . During the ores formation process of the veins S ur Elena , it is evident that the hydrothermal fluids that led to the formation of the rocks, experienced greater degree of alteration during its transformation into argillite, which is manifested in three mineralogical regularities: Low crystallinity of the chlorite-montmorillonite clay. Transformation of muscovite - hidromoscovite into illite. Presence of abundant calcite in some samples. Higher concentrations of iron oxides (goethite). (Author)

  5. Mineral potential tracts for orogenic, Carlin-like, and epithermal gold deposits in the Islamic Republic of Mauritania, (phase V, deliverable 69): Chapter H in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    Science.gov (United States)

    Goldfarb, Richard J.; Marsh, Erin; Anderson, Eric D.; Horton, John D.; Finn, Carol A.; Beaudoin, Georges

    2015-01-01

    The gold resources of Mauritania presently include two important deposits and a series of poorly studied prospects. The Tasiast belt of deposits, which came into production in 2007, is located in the southwestern corner of the Rgueïbat Shield and defines a world-class Paleoproterozoic(?) orogenic gold ore system. The producing Guelb Moghrein deposit occurs along a shear zone in Middle Archean rocks at the bend in the Northern Mauritanides and is most commonly stated to be an iron oxide-copper-gold (IOCG) type of deposit, although it also has some important characteristics of orogenic gold and skarn deposits. Both major deposits are surrounded by numerous prospects that show similar mineralization styles. The Guelb Moghrein deposit, and IOCG deposit types in general are discussed in greater detail in a companion report by Fernette (2015). In addition, many small gold prospects, which are probably orogenic gold occurrences and are suggested to be early Paleozoic in age, occur along the length of Southern Mauritanides. Existing data indicate the gold deposits and prospects in Mauritania have a sulfide assemblage most commonly dominated by pyrrhotite and chalcopyrite, and have ore-related fluids with apparently high salinities.

  6. Formation, surface characterization, and electrocatalytic application of self-assembled monolayer films of tetra-substituted manganese, iron, and cobalt benzylthio phthalocyanine complexes

    CSIR Research Space (South Africa)

    Akinbulu, IA

    2011-10-01

    Full Text Available characteristics of the films were interrogated by cyclic voltammetry. Significant passivation of voltammetry processes associated with bare gold surface (gold oxidation and underpotential deposition of copper) confirmed formation of the films. Electrocatalytic...

  7. Complex processing of antimony-mercury gold concentrates of Dzhizhikrut Deposit

    International Nuclear Information System (INIS)

    Abdusalyamova, M.N.; Gadoev, S.A.; Dreisinger, D.; Solozhenkin, P.M.

    2013-01-01

    Present article is devoted to complex processing of antimony-mercury gold concentrates of Dzhizhikrut Deposit. The purpose of research was obtaining the metallic mercury and antimony with further gold and thallium extraction.

  8. Relantionships between gold mineralization and granite - Discussion with the support of a pluridisciplinary study of the Passa Tres gold deposit (South Brazil)

    Science.gov (United States)

    Dressel, Bárbara; Chauvet, Alain; Trzaskos, Barbara; Biondi, Joao Carlos; Bruguier, Olivier; Monie, Patrick; Villanova, Sandro; Bazille, Jose

    2016-04-01

    represent the early stage of vein formation. These observations favor the link between late-magmatic fluids and veins formation. In order to constrain this assumption, a campaign of absolute dating has been undertaken. Zircons from granite and aplite for the magmatic feature and adularia, muscovite, sericite and molybdenite grains for the hydrothermal ones were selected and will be dated by, respectively U-Pb, Ar-Ar and Re-Os methods. Preliminary field results may suggest that gold-quartz veins may formed during the magmatic-hydrothermal transition and that mineralizing fluids possibly represent the late stages of magmatic fluid. Their mode of formation looks to be consistent with an extensional setting. With the help of all these new data, a discussion will be initiated about the genetic model of granite-hosted gold deposits and particularly on this specific case represented by the Passa Três deposit in which huge quartz veins, and no stockwork, are only formed inside the granite and not in surrounding rocks.

  9. Post-depositional formation of vivianite-type minerals alters sediment phosphorus records

    Directory of Open Access Journals (Sweden)

    N. Dijkstra

    2018-02-01

    Full Text Available Phosphorus (P concentrations in sediments are frequently used to reconstruct past environmental conditions in freshwater and marine systems, with high values thought to be indicative of a high biological productivity. Recent studies suggest that the post-depositional formation of vivianite, an iron(II-phosphate mineral, might significantly alter trends in P with sediment depth. To assess its importance, we investigate a sediment record from the Bornholm Basin that was retrieved during the Integrated Ocean Drilling Program (IODP Baltic Sea Paleoenvironment Expedition 347 in 2013, consisting of lake sediments overlain by brackish–marine deposits. Combining bulk sediment geochemistry with microanalysis using scanning electron microscope energy dispersive spectroscopy (SEM-EDS and synchrotron-based X-ray absorption spectroscopy (XAS, we demonstrate that vivianite-type minerals rich in manganese and magnesium are present in the lake deposits just below the transition to the brackish–marine sediments (at 11.5 to 12 m sediment depth. In this depth interval, phosphate that diffuses down from the organic-rich, brackish–marine sediments meets porewaters rich in dissolved iron in the lake sediments, resulting in the precipitation of iron(II phosphate. Results from a reactive transport model suggest that the peak in iron(II phosphate originally occurred at the lake–marine transition (9 to 10 m and moved downwards due to changes in the depth of a sulfidization front. However, its current position relative to the lake–marine transition is stable as the vivianite-type minerals and active sulfidization fronts have been spatially separated over time. Experiments in which vivianite was subjected to sulfidic conditions demonstrate that incorporation of manganese or magnesium in vivianite does not affect its susceptibility to sulfide-induced dissolution. Our work highlights that post-depositional formation of iron(II phosphates such as vivianite has

  10. Post-depositional formation of vivianite-type minerals alters sediment phosphorus records

    Science.gov (United States)

    Dijkstra, Nikki; Hagens, Mathilde; Egger, Matthias; Slomp, Caroline P.

    2018-02-01

    Phosphorus (P) concentrations in sediments are frequently used to reconstruct past environmental conditions in freshwater and marine systems, with high values thought to be indicative of a high biological productivity. Recent studies suggest that the post-depositional formation of vivianite, an iron(II)-phosphate mineral, might significantly alter trends in P with sediment depth. To assess its importance, we investigate a sediment record from the Bornholm Basin that was retrieved during the Integrated Ocean Drilling Program (IODP) Baltic Sea Paleoenvironment Expedition 347 in 2013, consisting of lake sediments overlain by brackish-marine deposits. Combining bulk sediment geochemistry with microanalysis using scanning electron microscope energy dispersive spectroscopy (SEM-EDS) and synchrotron-based X-ray absorption spectroscopy (XAS), we demonstrate that vivianite-type minerals rich in manganese and magnesium are present in the lake deposits just below the transition to the brackish-marine sediments (at 11.5 to 12 m sediment depth). In this depth interval, phosphate that diffuses down from the organic-rich, brackish-marine sediments meets porewaters rich in dissolved iron in the lake sediments, resulting in the precipitation of iron(II) phosphate. Results from a reactive transport model suggest that the peak in iron(II) phosphate originally occurred at the lake-marine transition (9 to 10 m) and moved downwards due to changes in the depth of a sulfidization front. However, its current position relative to the lake-marine transition is stable as the vivianite-type minerals and active sulfidization fronts have been spatially separated over time. Experiments in which vivianite was subjected to sulfidic conditions demonstrate that incorporation of manganese or magnesium in vivianite does not affect its susceptibility to sulfide-induced dissolution. Our work highlights that post-depositional formation of iron(II) phosphates such as vivianite has the potential to strongly

  11. Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles.

    Science.gov (United States)

    Arcibar-Orozco, Javier A; Rangel-Mendez, J Rene; Bandosz, Teresa J

    2013-02-15

    The effect of iron particle size anchored on the surface of commercial activated carbon on the removal of SO(2) from a gas phase was studied. Nanosize iron particles were deposited using forced hydrolysis of FeCl(3) with or without H(3)PO(4) as a capping agent. Dynamic adsorption experiments were carried out on either dry or pre-humidified materials and the adsorption capacities were calculated. The surface of the initial and exhausted materials was extensively characterized by microscopic, porosity, thermogravimetric and surface chemistry. The results indicate that the SO(2) adsorption capacity increased two and half times after the prehumidification process owing to the formation of H(2)SO(4) in the porous system. Iron species enhance the SO(2) adsorption capacity only when very small nanoparticles are deposited on the pore walls as a thin layer. Large iron nanoparticles block the ultramicropores decreasing the accessibility of the active sites and consuming oxygen that rest adsorption centers for SO(2) molecules. Iron nanoparticles of about 3-4 nm provide highly dispersed adsorption sites for SO(2) molecules and thus increase the adsorption capacity of about 80%. Fe(2)(SO(4))(3) was detected on the surface of exhausted samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Detrital zircon without detritus: a result of 496-Ma-old fluid-rock interaction during the gold-lode formation of Passagem, Minas Gerais, Brazil

    Science.gov (United States)

    Cabral, Alexandre Raphael; Zeh, Armin

    2015-01-01

    Zircon and xenotime occur in tourmaline-rich hydrothermal pockets in the auriferous lode of Passagem de Mariana, a world-class gold deposit. Zircon grains show pristine oscillatory zoning, but many of them are altered, exhibiting porous domains filled with graphite. Uranium-Pb dating of zircon, using in-situ laser ablation-inductively coupled plasma-mass spectrometry, yields ages between 3.2 and 2.65 Ga, which match those for detrital zircon of the footwall quartzite of the > 2.65-Ga-old Moeda Formation. Discordant analyses point to zircon-age resetting during the Brasiliano orogeny at ca. 500 Ma. This interpretation is supported by U-Pb dating of euhedral xenotime immediately adjacent to altered zircon within the same tourmaline pocket. The xenotime grains give a Concordia age of 496.3 ± 2.0 Ma, which is identical to that determined for monazite of a quartz-hematite vein-type deposit (i.e., jacutinga lode) in the region (Itabira), another important mineralisation style of gold. The occurrence of relatively abundant inherited detrital zircon, but absence of rock fragments in the tourmaline pocket investigated here, implies that detrital material was completely replaced by tourmaline. The graphite overprint on the altered detrital zircon attests to a reducing fluid, which was likely formed by fluid-rock interaction with carbonaceous phyllite of the Batatal Formation, the host rock of the Passagem lode.

  13. Fundamental study of ash formation and deposition: Effect of reducing stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J.; Bool, L.E.; Kang, S.G. [and others

    1995-11-01

    This project is designed to examine the effects of combustion stoichiometry on the fundamental aspects of ash formation and ash deposit initiation. Emphasis is being placed on reducing stoichiometries associated with low-NOx combustion, although a range of oxidant/fuel ratios are being considered. Previous work has demonstrated that ash formation depends strongly upon coal mineralogy, including mineral type, size, amount, and the presence of organically associated inorganic species. Combustion temperature and the oxidation state of iron also play a significant role. As these latter items will vary with changes in stoichiometry, research to determine the net effect on deposition is required.

  14. Preliminary report on the geology and gold mineralization of the South Pass granite-greenstone terrain, Wind River Mountains, western Wyoming (US)

    Science.gov (United States)

    Hausel, W. D.

    1986-01-01

    The South Pass granite-greenstone terrain lies near the southern tip of the Wind River Mountains of western Wyoming. This Archean supracrustal pile has been Wyoming's most prolific source of gold and iron ore. From 1962 to 1983, more than 90 million tons of iron ore were recovered from oxide-facies banded iron formation, and an estimated 325,000 ounces of gold were mined from metagreywacke-hosted shears and associated placers. Precambrian rocks at South Pass are unconformably overlain by Paleozoic sediments along the northeast flank, and a Tertiary pediment buries Archean supracrustals on the west and south. To the northwest, the supracrustals terminate against granodiorite of the Louis Lake batholith; to the east, the supracrustals terminate against granite of the Granite Mountains batholith. The Louis Lake granodiorite is approximately 2,630 + or - 20 m.y. old, and the Granite Mountains granite averages 2,600 m.y. old. The geometry of the greenstone belt is best expressed as a synform that has been modified by complex faulting and folding. Metamorphism is amphibolite grade surrounding a small island of greenschist facies rocks. The younger of the Archean supracrustal successions is the Miners Delight Formation. This unit yielded a Rb-Sr isochron of 2,800 m.y. A sample of galena from the Snowbird Mine within the Miners Delight Formation yielded a model age averaging 2,750 m.y. The Snowbird mineralization appears to be syngenetic and is hosted by metavolcanics of calc-alkaline affinity. Discussion follows.

  15. Single molecular switch based on thiol tethered iron(II)clathrochelate on gold

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Subramanian [Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn (Poland); Voloshin, Yan Z. [Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 119991 Moscow (Russian Federation); Radecka, Hanna [Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn (Poland); Radecki, Jerzy [Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn (Poland)], E-mail: radecki@pan.olsztyn.pl

    2009-09-30

    Molecular electronics has been associated with high density nano-electronic devices. Developments of molecular electronic devices were based on reversible switching of molecules between the two conductive states. In this paper, self-assembled monolayers of dodecanethiol (DDT) and thiol tethered iron(II)clathrochelate (IC) have been prepared on gold film. The electrochemical and electronic properties of IC molecules inserted into the dodecanethiol monolayer (IC-DDT SAM) were investigated using voltammetric, electrochemical impedance spectroscopy (EIS), scanning tunneling microscopy (STM) and cross-wire tunneling measurements. The voltage triggered switching behaviour of IC molecules on mixed SAM was demonstrated. Deposition of polyaniline on the redox sites of IC-DDT SAM using electrochemical polymerization of aniline was performed in order to confirm that this monolayer acts as nano-patterned semiconducting electrode surface.

  16. Iron films deposited on porous alumina substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yasuhiro, E-mail: yyasu@rs.kagu.tus.ac.jp; Tanabe, Kenichi; Nishida, Naoki [Tokyo University of Science (Japan); Kobayashi, Yoshio [The University of Electro-Communications (Japan)

    2016-12-15

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 – 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  17. Trace element mapping of pyrite from Archean gold deposits – A comparison between PIXE and EPMA

    Energy Technology Data Exchange (ETDEWEB)

    Agangi, A., E-mail: aagangi@uj.ac.za [University of Johannesburg, Department of Geology, Auckland Park 2006 (South Africa); Przybyłowicz, W., E-mail: przybylowicz@tlabs.ac.za [Materials Research Department, iThemba LABS, National Research Foundation, Somerset West 7129 (South Africa); AGH University of Science and Technology, Faculty of Physics & Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow (Poland); Hofmann, A., E-mail: ahofmann@uj.ac.za [University of Johannesburg, Department of Geology, Auckland Park 2006 (South Africa)

    2015-04-01

    Chemical zoning of pyrites can record the evolution of mineralising fluids at widely varying P–T conditions ranging from diagenesis to medium-grade metamorphism. If preserved, zoning can reveal growth textures, brecciation and veining, resorption and recrystallisation events, thus shedding light on the processes that contributed to ore formation. Chemical zoning of sulfides is invisible in optical microscopy, but can be studied by chemical etching, high-contrast back-scattering electron images, and elemental imaging. In this study we compared micro-PIXE and WDS-EPMA elemental maps on the chemically zoned pyrites in mineralised vein-bearing samples from the Sheba and Fairview gold mines in the Barberton Greenstone Belt, South Africa. Elemental images show complex distribution of trace elements, suggesting multiple events of pyrite crystallisation and gold deposition. EPMA maps show fine-scale variations reflecting growth and recrystallisation textures marked, in particular, by variations of As, Ni, and Co. In PIXE maps, gold occurs both as finely-distributed and discrete inclusions, suggesting incorporation in the pyrite structure as solid solution, and deposition as electrum inclusions, respectively. Micro-PIXE and EPMA provide complementary information, forming together a powerful tool to obtain information on chemical zoning of pyrites in ore deposits.

  18. Marble-hosted ruby deposits of the Morogoro Region, Tanzania

    Science.gov (United States)

    Balmer, Walter A.; Hauzenberger, Christoph A.; Fritz, Harald; Sutthirat, Chakkaphan

    2017-10-01

    The ruby deposits of the Uluguru and Mahenge Mts, Morogoro Region, are related to marbles which represent the cover sequence of the Eastern Granulites in Tanzania. In both localities the cover sequences define a tectonic unit which is present as a nappe structure thrusted onto the gneissic basement in a north-western direction. Based on structural geological observations the ruby deposits are bound to mica-rich boudins in fold hinges where fluids interacted with the marble-host rock in zones of higher permeability. Petrographic observations revealed that the Uluguru Mts deposits occur within calcite-dominated marbles whereas deposits in the Mahenge Mts are found in dolomite-dominated marbles. The mineral assemblage describing the marble-hosted ruby deposit in the Uluguru Mts is characterised by corundum-dolomite-phlogopite ± spinel, calcite, pargasite, scapolite, plagioclase, margarite, chlorite, tourmaline whereas the assemblage corundum-calcite-plagioclase-phlogopite ± dolomite, pargasite, sapphirine, titanite, tourmaline is present in samples from the Mahenge Mts. Although slightly different in mineral assemblage it was possible to draw a similar ruby formation history for both localities. Two ruby forming events were distinguished by textural differences, which could also be modeled by thermodynamic T-XCO2 calculations using non-ideal mixing models of essential minerals. A first formation of ruby appears to have taken place during the prograde path (M1) either by the breakdown of diaspore which was present in the original sedimentary precursor rock or by the breakdown of margarite to corundum and plagioclase. The conditions for M1 metamorphism was estimated at ∼750 °C at 10 kbar, which represents granulite facies conditions. A change in fluid composition towards a CO2 dominated fluid triggered a second ruby generation to form. Subsequently, the examined units underwent a late greenschist facies overprint. In the framework of the East African Orogen we

  19. Cripple Creek and other alkaline-related gold deposits in the Southern Rocky Mountains, USA: Influence of regional tectonics

    Science.gov (United States)

    Kelley, K.D.; Ludington, S.

    2002-01-01

    Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as

  20. REVIEW OF COASTAL CHARACTERISTICS OF IRON SAND DEPOSITS IN CILACAP CENTRAL JAVA

    Directory of Open Access Journals (Sweden)

    Hananto Kurnio

    2017-07-01

    Full Text Available Mineable iron sand deposits in Cilacap – southern coastal area of Central Java have certain coastal characteristics that need to be studied in order to understand its depositional environment. With the knowledge of such environment, it can be applied to look for other places prospective of iron sand deposits that have the same characteristics especially recently when Cilacap’s deposits were almost depleted. Coastal characteristics of iron sand deposit in Cilacap is shown by successive sandy beach ridges separated by marshy valleys typical of prograded coasts and by dunes of sand elongated parallel to the shore line with elevation varies from 0 m to 15 m above sea level. The iron sand deposit was derived from denudation of andesite and “Old Andesite Formation” enriched in magnetite and ilmenite minerals in the steep elevated and deeply weathered rock hinterlands of Cilacap. High sediment loads of Serayu Basin in the hinterland (3,500-4,500 ton/km2/year; Citarum River basin only 800-1,200 ton/km2/year was causing extensive deposition of iron sand in the coastal zone. Key words: coast, characteristic, iron sand, Cilacap Endapan pasir besi yang dapat ditambang di Cilacap – pesisir selatan Jawa Tengah memiliki karakteristik pantai tertentu yang perlu dikaji agar dapat dipahami lingkungan pengendapannya. Dengan pengetahuan tentang lingkungan pengendapan tersebut, dapat diterapkan untuk mencari daerah-daerah lain prospek endapan pasir besi yang memiliki karakteristik yang sama terutama pada akhir-akhir ini ketika endapan Cilacap akan habis. Karakteristik pantai endapan pasir besi di Cilacap dicirikan oleh urutan pematang pantai berpasir yang dipisahkan oleh lembah-lembah berawa khas pantai maju dan oleh gumuk-gumuk pasir memanjang sejajar dengan garis pantai dengan ketinggian bervariasi dari 0 m hingga 15 m dari muka laut. Endapan pasir besi di daerah ini berasal dari proses denudasi andesit dan “Formasi Andesit

  1. Geology and climatic indicators in the Westphalian A New Glasgow formation, Nova Scotia, Canada: implications for the genesis of coal and of sandstone-hosted lead deposits

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, F.W. [Geological Survey of Canada, Ottawa, ON (Canada)

    1998-03-01

    Disagreement exists on whether the early Pennsylvanian climate of the Euramerican coal province was everwet or seasonal. Abundant paleopedological evidence, including calcrete-bearing vertisols, shows that during formation of Westphalian C to Stephanian coals in Nova Scotia, the climate was tropical and seasonal with a pronounced by dry season; but interpretation of Westphalian A-B coal-bearing sequences lacks this form of evidence. Development of calcrete-bearing vertisols in alluvial fan deposits of the Westphalian A New Glasgow formation indicate that a tropical climate with a pronounced dry season was already in force by early Westphalian time. During the dry season, the coal swamps of the early Westphalian Joggins and Springhill Mines formations were fed by groundwater from coeval alluvial fan deposits of the Polly Brook Formation at the basin margin. Sedimentological evidence indicates that, similarly, groundwater flowed northward from the toe of the New Glasgow alluvial fan, but correlative palustrine sediments have not been found on land in the New Glasgow area. The possibility remains of an early Westphalian coalfield associated with the New Glasgow formation to the north under the Northumberland Strait and Gulf of St. Lawrence. Formation of the Yava sandstone-hosted lead deposit in the fluvial Silver Mine Formation of Cape Breton Island, a stratigraphic equivalent of the Cumberland Basin coal swamps, indicates that such deposits can form in fluvial strata deposited under a tropical seasonal climate with a pronounced dry season.

  2. Sedimentary mechanisms of a modern banded iron formation on Milos Island, Greece

    Directory of Open Access Journals (Sweden)

    E. Chi Fru

    2018-05-01

    Full Text Available An early Quaternary shallow submarine hydrothermal iron formation (IF in the Cape Vani sedimentary basin (CVSB on Milos Island, Greece, displays banded rhythmicity similar to Precambrian banded iron formation (BIF. Field-wide stratigraphic and biogeochemical reconstructions show two temporal and spatially isolated iron deposits in the CVSB with distinct sedimentological character. Petrographic screening suggests the presence of a photoferrotrophic-like microfossil-rich IF (MFIF, accumulated on a basement consisting of andesites in a ∼ 150 m wide basin in the SW margin of the basin. A banded nonfossiliferous IF (NFIF sits on top of the Mn-rich sandstones at the transition to the renowned Mn-rich formation, capping the NFIF unit. Geochemical data relate the origin of the NFIF to periodic submarine volcanism and water column oxidation of released Fe(II in conditions predominated by anoxia, similar to the MFIF. Raman spectroscopy pairs hematite-rich grains in the NFIF with relics of a carbonaceous material carrying an average δ13Corg signature of ∼ −25‰. A similar δ13Corg signature in the MFIF could not be directly coupled to hematite by mineralogy. The NFIF, which postdates large-scale Mn deposition in the CVSB, is composed primarily of amorphous Si (opal-SiO2 ⋅ nH2O while crystalline quartz (SiO2 predominates the MFIF. An intricate interaction between tectonic processes, changing redox, biological activity, and abiotic Si precipitation are proposed to have collectively formed the unmetamorphosed BIF-type deposits in a shallow submarine volcanic center. Despite the differences in Precambrian ocean–atmosphere chemistry and the present geologic time, these formation mechanisms coincide with those believed to have formed Algoma-type BIFs proximal to active seafloor volcanic centers.

  3. Role of nanostructured gold surfaces on monocyte activation and Staphylococcus epidermidis biofilm formation

    Directory of Open Access Journals (Sweden)

    Svensson S

    2014-02-01

    Full Text Available Sara Svensson,1,2 Magnus Forsberg,1,2 Mats Hulander,1,2 Forugh Vazirisani,1,2 Anders Palmquist,1,2 Jukka Lausmaa,2,3 Peter Thomsen,1,2 Margarita Trobos1,21Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; 2BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden; 3SP Technical Research Institute of Sweden, Borås, SwedenAbstract: The role of material surface properties in the direct interaction with bacteria and the indirect route via host defense cells is not fully understood. Recently, it was suggested that nanostructured implant surfaces possess antimicrobial properties. In the current study, the adhesion and biofilm formation of Staphylococcus epidermidis and human monocyte adhesion and activation were studied separately and in coculture in different in vitro models using smooth gold and well-defined nanostructured gold surfaces. Two polystyrene surfaces were used as controls in the monocyte experiments. Fluorescent viability staining demonstrated a reduction in the viability of S. epidermidis close to the nanostructured gold surface, whereas the smooth gold correlated with more live biofilm. The results were supported by scanning electron microscopy observations, showing higher biofilm tower formations and more mature biofilms on smooth gold compared with nanostructured gold. Unstimulated monocytes on the different substrates demonstrated low activation, reduced gene expression of pro- and anti-inflammatory cytokines, and low cytokine secretion. In contrast, stimulation with opsonized zymosan or opsonized live S. epidermidis for 1 hour significantly increased the production of reactive oxygen species, the gene expression of tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, IL-6, and IL-10, as well as the secretion of TNF-α, demonstrating the ability of the cells to elicit a response and actively phagocytose prey. In addition, cells cultured on the smooth

  4. Mineralogy and geochemistry of banded iron formation and iron ...

    Indian Academy of Sciences (India)

    The geological complexities of banded iron formation (BIF) and associated iron ores of Jilling–. Langalata iron ore ...... sure to sea water. Uranium in these samples varies ..... Ce oxidation and removal (Elderfield and Greaves. 1982; De Baar et ...

  5. Results of LA-ICP-MS sulfide mapping from Algoma-type BIF gold systems with implications for the nature of mineralizing fluids, metal sources, and deposit models

    Science.gov (United States)

    Gourcerol, B.; Kontak, D. J.; Thurston, P. C.; Petrus, J. A.

    2018-01-01

    Quantitative laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) element distribution maps combined with traverse mode analyses have been acquired on various sulfides (pyrite, pyrrhotite, arsenopyrite) from three Canadian Algoma-type BIF-hosted gold deposits ( 4 Moz Au Meadowbank, ≥ 2.8 Moz Au Meliadine district, 6 Moz Au Musselwhite). These data, in conjunction with detailed petrographic and SEM-EDS observations, provide insight into the nature and relative timing of gold events, the presence and implication of trace element zoning regarding crystallization processes, and elemental associations that fingerprint gold events. Furthermore, the use of an innovative method of processing the LA-ICP-MS data in map and traverse modes, whereby the results are fragmented into time-slice data, to generate various binary plots (Ag versus Ni) provides a means to identify elemental associations (Te, Bi) not otherwise apparent. This integrated means of treating geochemical data, along with petrography, allows multiple gold events and remobilization processes to be recognized and their elemental associations determined. The main gold event in each of these deposits is characterized by the coupling of an As-Se-Te-Ag element association coincident with intense stratabound sulfide-replacement of the Fe-rich host rock. Additionally, the data indicate presence of a later remobilization event, which upgraded the Au tenor, as either non-refractory or refractory type, along fracture networks due to the ingress of subsequent base metal-bearing metamorphic fluids (mainly a Pb-Bi association). Furthermore, the data reveal a stratigraphic influence, as reflected in the elemental associations and the elemental enrichments observed and the nature of the sulfide phase hosting the gold mineralization (arsenopyrite versus pyrite).

  6. A synthesis of mineralization styles and geodynamic settings of the Paleozoic and Mesozoic metallic ore deposits in the Altay Mountains, NW China

    Science.gov (United States)

    Yang, Fuquan; Geng, Xinxia; Wang, Rui; Zhang, Zhixin; Guo, Xuji

    2018-06-01

    The Altay Mountains within the Xinjiang region of northwestern China hosts major metallic ore deposits. Here we review the geological characteristics, metallogenic features and tectonic settings of these deposits. The metallic ore deposits in the Altay Mountains occur mainly within four regions: North Altay, Central Altay, South Altay and Erqis. We recognize seven types of metallic ore deposits in the Altay Mountains: VMS, submarine volcanogenic iron, magmatic, skarn, pegmatite, hydrothermal vein (Cu-Zn, Fe) and orogenic gold. Among these types, the VMS, pegmatite, orogenic gold and skarn deposits are the most common. Most of the rare metal pegmatite deposits are distributed in Central Altay, with only a few in South Altay. The VMS, submarine volcanogenic type iron and skarn-type deposits are distributed in South Altay, whereas the orogenic-type gold deposits are distributed in the Erqis Fault belt. The hydrothermal vein-type deposits occur in the Erqis Fault belt and Chonghu'er Basin in South Altay. Magmatic-type deposits are mostly in the Erqis Fault belt and Central Altay. Based on isotopic age data, the VMS, submarine volcanogenic-type Fe and skarn-type Cu, Pb, Zn, Fe mineralization occurred during Early-Middle Devonian (∼410-377 Ma), orogenic-type Au, magmatic-type Cu-Ni, and a small number of skarn-type Fe, hydrothermal vein-type Cu-Zn, pegmatite-type rare-metal deposits in Early-Middle Permian (293-261 Ma), pegmatite-type rare-metal deposits, few skarn-type Fe deposit in Early-Middle Triassic (248-232 Ma), and dominantly represented by pegmatite-type rare-metal deposits in Late Triassic-Early Jurassic (223-180 Ma). The metallic ore deposits in the Altay Mountains formed in various tectonic settings, such as the Early-Middle Devonian continental arc and oceanic island arc, Early-Middle Permian post-collisional extensional setting, and Triassic-Early Jurassic intracontinental setting.

  7. Iron deposition in skin of patients with haemochromatosis

    International Nuclear Information System (INIS)

    Pinheiro, T.; Silva, J.N.; Alves, L.C.; Filipe, P.

    2003-01-01

    Haemochromatosis is the most common inherited liver disease in Caucasians and the most common autosomal recessive genetic disorder. It is characterized by inappropriately high iron absorption resulting in progressive iron overload in parenchymal organs such as liver, heart, pancreas, pituitary, joints, and skin. Upon early detection, haemochromatosis can be a manageable chronic disease but, if undetected, is potentially fatal. Skin biopsies were obtained from patients and from healthy donors. Images of the elemental distributions in skin were obtained using nuclear microscopy techniques (nuclear microprobe, NMP). Elemental profiles along skin, and intra-, and extra-cellular iron concentrations, were determined. Results for patients with haemochromatosis were cross-examined with morphologic features and with data obtained for healthy skin. Skin iron content is much increased in patients with haemochromatosis when compared with healthy subjects. Extensive iron deposits are observed at dermis, at the dermo-epidermal interface, at upper epidermis layers and at stratum corneum. Iron deposition was observed preferentially at cell boundaries or at the interstitial matrix

  8. Multiple sulfur isotopes monitor fluid evolution of an Archean orogenic gold deposit

    Science.gov (United States)

    LaFlamme, Crystal; Sugiono, Dennis; Thébaud, Nicolas; Caruso, Stefano; Fiorentini, Marco; Selvaraja, Vikraman; Jeon, Heejin; Voute, François; Martin, Laure

    2018-02-01

    The evolution of a gold-bearing hydrothermal fluid from its source to the locus of gold deposition is complex as it experiences rapid changes in thermochemical conditions during ascent through the crust. Although it is well established that orogenic gold deposits are generated during time periods of abundant crustal growth and/or reworking, the source of fluid and the thermochemical processes that control gold precipitation remain poorly understood. In situ analyses of multiple sulfur isotopes offer a new window into the relationship between source reservoirs of Au-bearing fluids and the thermochemical processes that occur along their pathway to the final site of mineralisation. Whereas δ34S is able to track changes in the evolution of the thermodynamic conditions of ore-forming fluids, Δ33S is virtually indelible and can uniquely fingerprint an Archean sedimentary reservoir that has undergone mass independent fractionation of sulfur (MIF-S). We combine these two tracers (δ34S and Δ33S) to characterise a gold-bearing laminated quartz breccia ore zone and its sulfide-bearing alteration halo in the (+6 Moz Au) structurally-controlled Archean Waroonga deposit located in the Eastern Goldfields Superterrane of the Yilgarn Craton, Western Australia. Over 250 analyses of gold-associated sulfides yield a δ34S shift from what is interpreted as an early pre-mineralisation phase, with chalcopyrite-pyrrhotite (δ34S = +0.7‰ to +2.9‰) and arsenopyrite cores (δ34S = ∼-0.5‰), to a syn-mineralisation stage, reflected in Au-bearing arsenopyrite rims (δ34S = -7.6‰ to +1.5‰). This shift coincides with an unchanging Δ33S value (Δ33S = +0.3‰), both temporally throughout the Au-hosting hydrothermal sulfide paragenesis and spatially across the Au ore zone. These results indicate that sulfur is at least partially recycled from MIF-S-bearing Archean sediments. Further, the invariant nature of the observed MIF-S signature demonstrates that sulfur is derived from a

  9. Microstructure and geochemical evidences for genesis of the Gol-Gohar iron deposit

    Directory of Open Access Journals (Sweden)

    Shahryar Mahmoudi

    2017-11-01

    analyses (XRF, four sample from two ore types and metamorphic host rock were examined by EPMA. The analytical examination were carried out in the Iranian Mineral Processing Research Center (IMPRC using PW2404 Philips XRF and Cameca X-100 EPMA. Discussion Based on microstructural observations of the metamorphic host rocks of the Gol-Gohar deposit, two main deformation phases were recognized which caused two distinctive foliations, S1 and S2. S1 is a continuous foliation with N18W to N24W general trend and average of 45 to 60 degrees slope toward the East. S2 is with 15-30 ° deviation from S1 and N9E to N17E general trend overprinted on the S1. Granite emplacement has caused deformation phases and magnetite crystals (Which Type just oriented within the first deformation phase (S1. The second deformation phase (S2 is recognized by fish shapes and pressure shadows around the minerals. The preferred orientation of magnetite in S1 and growth with biotite and garnet in the biotite, garnet and staurolite zones suggests that the early stage of mineralization in Gol-Gohar is contemporaneous with progressive metamorphism. Type1 magnetite does not show any margin thermal reactions. EPMA analysis of type 2 magnetite indicates a distinctive enrichment of high mobile elements. The distribution and frequency diagram (Celine and Beaudoin, 2011; Tong et al., 2011 shows that skarnisation is the main process in the genesis of the Gol-Gohar iron ore. Also, a comparison of the chemical composition of type 1 and 2 magnetite shows similar values of Ti, Cu, Si and Mg while metamorphic magnetite (type2 specifically show higher concentrations of Al and Mg. The metamorphism-related deformation history of the study area based on magnetite fabrics, mineralogy and metamorphic evolution implies a new model for the Gol-Gohar mineralization. Penetrative NS- to NW/SE dipping fabric is represented by S1 foliation hosted type1 magnetite, which was formed in the prevailing NW–SE shortening event during the

  10. Direct formation of gold nanorods on surfaces using polymer-immobilised gold seeds

    Directory of Open Access Journals (Sweden)

    Majid K. Abyaneh

    2016-06-01

    Full Text Available Herein, we present the formation of gold nanorods (GNRs on novel gold–poly(methyl methacrylate (Au–PMMA nanocomposite substrates with unprecedented growth control through the polymer molecular weight (Mw and gold-salt-to-polymer weight ratio. For the first time, GNRs have been produced by seed-mediated direct growth on surfaces that were pre-coated with polymer-immobilised gold seeds. A Au–PMMA nanocomposite formed by UV photoreduction has been used as the gold seed. The influence of polymer Mw and gold concentration on the formation of GNRs has been investigated and discussed. The polymer nanocomposite formed with a lower Mw PMMA and 20 wt % gold salt provides a suitable medium for growing well-dispersed GNRs. In this sample, the average dimension of produced GNRs is 200 nm in length with aspect ratios up to 10 and a distribution of GNRs to nanoparticles of nearly 22%. Suitable characterization techniques such as AFM and SEM have been used to support concept of the proposed growth method.

  11. Origin of ore-forming fluids of the Haigou gold deposit in the eastern Central Asian Orogenic belt, NE China: Constraints from H-O-He-Ar isotopes

    Science.gov (United States)

    Zeng, Qingdong; He, Huaiyu; Zhu, Rixiang; Zhang, Song; Wang, Yongbin; Su, Fei

    2017-08-01

    The Haigou lode deposit contains 40 t of gold at an average grade of 3.5 g/t, and is one of the largest deposits in the Jiapigou gold belt located along the eastern segment of the northern margin of the North China Craton. The deposit comprises 15 gold-bearing quartz veins hosted in a Carboniferous monzonite-monzogranite stock. Cretaceous dikes consisting of diorite, diabase, and granodiorite porphyries are well developed in the deposit. The diorite porphyry dikes (130.4 ± 6.3 Ma) occur together with gold-bearing quartz veins in NNE- and NE-striking faults. Gold-bearing quartz veins crosscut the diorite porphyry dikes, and the veins are in turn crosscut by E-W-striking 124.6 ± 2.2 Ma granodiorite porphyry dikes. The mineralization mainly occurs as auriferous quartz veins with minor amounts of sulfide minerals, including pyrite, galena, chalcopyrite, and molybdenite. Gold occurs as either native gold or calaverite. Common gangue minerals in the deposit include quartz, sericite, and calcite. The deposit is characterized by various types of hydrothermal alteration, including silicification, sericitization, chloritization, potassic alteration, and carbonatization. Three stages of hydrothermal activity have been recognized in the deposit: (1) a barren quartz stage; (2) a polymetallic sulfide (gold) stage; (3) a calcite stage. Fluid inclusions in hydrothermal pyrites have 3He/4He ratios of 0.3 to 3.3 Ra and 40Ar/36Ar ratios of 351 to 1353, indicating mixing of fluids of mantle and crustal origin. Hydrothermal quartz yielded δ18O values of -1.3‰ to +7.2‰ and δD values of fluid inclusions in the quartz vary between -80‰ and -104‰. These stable isotope data also suggest mixing of magmatic and meteoric fluids. Noble gas and stable isotopic data suggest that the ore fluids have a predominant mantle source with a significant crustal component. Based on the spatial association of gold-bearing quartz veins with early Cretaceous intrusions, and the H-O-He-Ar isotopic

  12. Within-host evolution of Pseudomonas aeruginosa toward iron acquisition from hemoglobin in polymicrobial CF infections

    DEFF Research Database (Denmark)

    Khademi, Seyed Mohammad Hossein; Marvig, Rasmus Lykke; Pedersen, Søren Damkiær

    2014-01-01

    Bacterial pathogens require iron to survive and colonize a human host but their access to free iron is often limited by iron-withholding process where free iron is bound by proteins such as hemoglobin. Although most pathogens have developed tactics to acquire iron from host proteins, little is kn...

  13. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    Energy Technology Data Exchange (ETDEWEB)

    Ruffino, F., E-mail: francesco.ruffino@ct.infn.it; Grimaldi, M.G.

    2013-06-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced.

  14. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    International Nuclear Information System (INIS)

    Ruffino, F.; Grimaldi, M.G.

    2013-01-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced

  15. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  16. Gold and radioactive elements in the bauxite deposits of Shevaroy hills, Tamil Nadu

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, B K; Sengupta, D K

    1982-11-01

    The presence of gold and radioactive elements in the bauxite deposits of Shevaroy Hills has been determined by neutron activation technique. The behaviour of uranium supports the theoretical findings. The higher concentration of gold (<10/sup 3/%) indicates that the deposits are auriferous.

  17. Gold and radioactive elements in the bauxite deposits of Shevaroy hills, Tamil Nadu

    International Nuclear Information System (INIS)

    Mukherjee, B.K.; Sengupta, D.K.

    1982-01-01

    The presence of gold and radioactive elements in the bauxite deposits of Shevaroy Hills has been determined by neutron activation technique. The behaviour of uranium supports the theoretical findings. The higher concentration of gold ( -3 %) indicates that the deposits are auriferous. (author)

  18. Host iron binding proteins acting as niche indicators for Neisseria meningitidis.

    Directory of Open Access Journals (Sweden)

    Philip W Jordan

    Full Text Available Neisseria meningitidis requires iron, and in the absence of iron alters its gene expression to increase iron acquisition and to make the best use of the iron it has. During different stages of colonization and infection available iron sources differ, particularly the host iron-binding proteins haemoglobin, transferrin, and lactoferrin. This study compared the transcriptional responses of N. meningitidis, when grown in the presence of these iron donors and ferric iron, using microarrays.Specific transcriptional responses to the different iron sources were observed, including genes that are not part of the response to iron restriction. Comparisons between growth on haemoglobin and either transferrin or lactoferrin identified changes in 124 and 114 genes, respectively, and 33 genes differed between growth on transferrin or lactoferrin. Comparison of gene expression from growth on haemoglobin or ferric iron showed that transcription is also affected by the entry of either haem or ferric iron into the cytoplasm. This is consistent with a model in which N. meningitidis uses the relative availability of host iron donor proteins as niche indicators.Growth in the presence of haemoglobin is associated with a response likely to be adaptive to survival within the bloodstream, which is supported by serum killing assays that indicate growth on haemoglobin significantly increases survival, and the response to lactoferrin is associated with increased expression of epithelial cell adhesins and oxidative stress response molecules. The transferrin receptor is the most highly transcribed receptor and has the fewest genes specifically induced in its presence, suggesting this is the favoured iron source for the bacterium. Most strikingly, the responses to haemoglobin, which is associated with unrestricted growth, indicates a low iron transcriptional profile, associated with an aggressive phenotype that may be adaptive to access host iron sources but which may also

  19. Usability of #betta#-spectrometric method to prospecting for copper-porphyric skarn and gold-quartz-sulfide deposits

    International Nuclear Information System (INIS)

    Syromyatnikov, N.G.; Ivanova, Eh.I.; Karpukhin, V.G.; Trofimova, L.A.; Tolmachev, I.I.

    1982-01-01

    Possibility of the prospecting for non-radioactive element deposits by means of radioactive elements as indicators is studied. Radioactive elements (uranium, thorium and potassium) were determined by gamma spectroscopy. Radiometric methods of prospecting are effective and economical. Clark contents of radioelements in rocks were determined in situ by field gamma spectrometers. It is established that copper-porphyric deposits are regularly controlled from the surface by aureoles of increased uranium contents, which sizes reach 400x500 m and can be revealed by gamma spectroscopy during 1:25000 and more large-scale survey. Skarn-ore zones of deposits of different mineral types (copper, polymetallic, iron ore ones) are fixed on the surface by increased radioactivity; this fact can be used as search criterion. Gold-bearing quartz veins differ from barren lodes by a higher level of total radioactivity and high potassium content. Top walls of ore-bearing quartz veins are mainly enriched by radioelements

  20. Age of mineralization of the Nansatsu type gold deposits, Kagoshima, Japan

    International Nuclear Information System (INIS)

    Izawa, Eiji; Urashima, Yukitoshi; Okubo, Yoshikazu.

    1984-01-01

    Gold-bearing massive silicified rocks occur in the volcanic piles of the Neogene Tertiary age in the Makurazaki district, southern Kyushu and are termed as the Nansatsu type gold deposits. Currently three mines, Kasuga, Iwato and Akeshi, are operating. The argillized zones consisting mainly of quartz, kaolinite and minor goethite surround the silicified rocks. Alunite series minerals occur in and around the silicified rocks. Ages of mineralization have been discussed for many years but were unanswered. K-Ar dating of selected alunite and alunite-bearing rocks from three mines yields ages of 5.5 - 3.7 m.y. K-Ar ages at Mt. Sonomi of the Kasuga mine (5.5 +- 0.4 m.y.) and at the Arabira orebody of the Iwato mine (4.7 +- 1.0 m.y.) probably represent the ages of gold mineralization. Slightly younger ages at Mt. Iwato of the Iwato mine (4.4 +- 0.7 m.y.) and at the No. 1 orebody of the Akeshi mine (3.7 +- 1.1 m.y.) might reflect possible changes in chemical composition of alunite during weathering after mineralization. Gold-silver mineralization in southern Kyushu took place in the Pliocene to early Pleistocene, except minor silver-rich vein type deposits in the middle Miocene time. This study shows that four values are concordant with each other and indicate the latest Miocene to early Pliocene ages for mineralization of the Nansatsu type gold deposits in the Makurazaki district. The ages are comparable with the vein type gold deposits of the early Pliocene time such as Kushikino (4.0 +- 0.3 m.y.) and Hanakago (4.8 +- 2.9 m.y.). Another gold mineralization were known in the early Pleistocene time such as Hishikari (1.5 +- 0.3 m.y.) and Ora (1.8 +- 0.2 m.y.). At present there seems to be only minor gold mineralization between 4 and 2 m.y. (author)

  1. Ultra-small platinum and gold nanoparticles by arc plasma deposition

    International Nuclear Information System (INIS)

    Kim, Sang Hoon; Jeong, Young Eun; Ha, Heonphil; Byun, Ji Young; Kim, Young Dok

    2014-01-01

    Highlights: • Ultra-small (<2 nm) and bigger platinum and gold nanoparticles were produced by arc plasma deposition (APD). • Size and coverage of deposited nanoparticles were easily controlled with APD parameters. • Crystalline structures of deposited nanoparticles emerged only when the particle size was bigger than ∼2 nm. - Abstract: Ultra-small (<2 nm) nanoparticles of platinum and gold were produced by arc plasma deposition (APD) in a systematic way and the deposition behavior was studied. Nanoparticles were deposited on two dimensional amorphous carbon and amorphous titania thin films and characterized by transmission electron microscopy (TEM). Deposition behavior of nanoparticles by APD was studied with discharge voltage (V), discharge condenser capacitance (C), and the number of plasma pulse shots (n) as controllable parameters. The average size of intrinsic nanoparticles generated by APD process was as small as 0.9 nm and deposited nanoparticles began to have crystal structures from the particle size of about 2 nm. V was the most sensitive parameter to control the size and coverage of generated nanoparticles compared to C and n. Size of APD deposited nanoparticles was also influenced by the nature of evaporating materials and substrates

  2. Iron deposition is independent of cellular inflammation in a cerebral model of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Lee Phil

    2011-06-01

    Full Text Available Abstract Background Perivenular inflammation is a common early pathological feature in multiple sclerosis (MS. A recent hypothesis stated that CNS inflammation is induced by perivenular iron deposits that occur in response to altered blood flow in MS subjects. In order to evaluate this hypothesis, an animal model was developed, called cerebral experimental autoimmune encephalomyelitis (cEAE, which presents with CNS perivascular iron deposits. This model was used to investigate the relationship of iron deposition to inflammation. Methods In order to generate cEAE, mice were given an encephalitogen injection followed by a stereotactic intracerebral injection of TNF-α and IFN-γ. Control animals received encephalitogen followed by an intracerebral injection of saline, or no encephalitogen plus an intracerebral injection of saline or cytokines. Laser Doppler was used to measure cerebral blood flow. MRI and iron histochemistry were used to localize iron deposits. Additional histological procedures were used to localize inflammatory cell infiltrates, microgliosis and astrogliosis. Results Doppler analysis revealed that cEAE mice had a reduction in cerebral blood flow compared to controls. MRI revealed T2 hypointense areas in cEAE animals that spatially correlated with iron deposition around vessels and at some sites of inflammation as detected by iron histochemistry. Vessels with associated iron deposits were distributed across both hemispheres. Mice with cEAE had more iron-labeled vessels compared to controls, but these vessels were not commonly associated with inflammatory cell infiltrates. Some iron-laden vessels had associated microgliosis that was above the background microglial response, and iron deposits were observed within reactive microglia. Vessels with associated astrogliosis were more commonly observed without colocalization of iron deposits. Conclusion The findings indicate that iron deposition around vessels can occur independently of

  3. Geological setting, isotope studies (C, O and Pb) and associated metals in the Tocantinzinho gold deposit, Tapajos domain, Tapajos-Parima Province

    International Nuclear Information System (INIS)

    Villas, Raimundo Netuno Nobre; Santiago, Erika Suellen Barbosa; Castilho, Marilia Portela

    2013-01-01

    The Tocantinzinho ore deposit is located along a NW-SE-trending lineament, southwestern of Itaituba (Para, Brazil), and is the largest known gold deposit of the Tapajos Province. The host Tocantinzinho granite is essentially isotropic and dominated by syenogranites and monzogranites that have been weakly to moderately altered by hydrothermal fluids. Microclinization (earliest), chloritization, sericitization, silicification and carbonatization (latest) are the main types of alteration. Most mineralization was contemporaneous with the sericitization/silicification and is represented by sulfide- and gold-bearing veinlets which locally occur as stockwork. Pyrite, chalcopyrite, sphalerite and galena are the most common sulfides. Among the ore metals, Cu, Pb and Zn present the highest contents, but Mo, As and Bi locally show anomalous concentrations. The relationship of Au with Cu, Pb or Zn is at random and the Au/Ag ratios range from 0.05 to 0.5. The higher the sulfide contents, the higher the Au concentrations, though it occurs mainly included in pyrite. Zircon monocrystals from the Tocantinzinho granite yielded an average Pb-Pb age of 1982 ±8Ma and may represent an earlier event of the Creporizao magmatic arc. δ 13 C PDB values for calcite from the carbonatization stage fall dominantly between -3.45 and -2.29‰, being compatible with a deep crustal source that may include carbonatite reservoirs. In turn, δ 18 O SMOW values vary from +5.97 to +14.10‰, being indicative of magmatic derivation, although the less positive values suggest contribution from surficial waters. Unpublished fluid inclusion study reveals the presence of aquo-carbonic fluids, whose CO 2 could have been dissolved in the granitic magma rather than being related to the shear zone. The available data allow the Tocantinzinho deposit to be classified as a granite-hosted, intrusion-related gold deposit. (author)

  4. Iron and manganese deposits in Uruguay; Los yacimientos de hierro y manganeso en el Uruguay

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, B

    1959-07-01

    This report is the results of the study carried out for the United Nations expert which the main object was: the study of the information available about iron and manganese formation in Uruguay, as well as the main researching deposit to determinate economical possibilities in the exportation.

  5. Structure and nanotribology of thermally deposited gold nanoparticles on graphite

    Energy Technology Data Exchange (ETDEWEB)

    Cihan, Ebru [UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Özoğul, Alper [Department of Mechanical Engineering, Bilkent University, Ankara 06800 (Turkey); Baykara, Mehmet Z., E-mail: mehmet.baykara@bilkent.edu.tr [UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Department of Mechanical Engineering, Bilkent University, Ankara 06800 (Turkey)

    2015-11-01

    Graphical abstract: - Highlights: • Structure and tribology of thermally deposited AuNPs on HOPG have been studied. • Well-faceted, hexagonal AuNPs are formed on HOPG upon post-deposition annealing. • The crystalline character of the AuNPs is confirmed via TEM measurements. • AFM measurements reveal a “2/3” power law dependence of friction on load on AuNPs. • Friction forces at AuNP edges evolve linearly with increasing height and load. - Abstract: We present experiments involving the structural and frictional characterization of gold nanoparticles (AuNP) thermally deposited on highly oriented pyrolytic graphite (HOPG). The effect of thermal deposition amount, as well as post-deposition annealing on the morphology and distribution of gold on HOPG is studied via scanning electron microscopy (SEM) measurements, while transmission electron microscopy (TEM) is utilized to confirm the crystalline character of the nanoparticles. Lateral force measurements conducted via atomic force microscopy (AFM) under ambient conditions are employed to investigate the nanotribological properties of the gold nanoparticles as a function of normal load. Finally, the increase in lateral force experienced at the edges of the nanoparticles is studied as a function of normal load, as well as nanoparticle height. As a whole, our results constitute a comprehensive structural and frictional characterization of the AuNP/HOPG material system, forming the basis for nanotribology experiments involving the lateral manipulation of thermally deposited AuNPs on HOPG via AFM under ambient conditions.

  6. Structure and nanotribology of thermally deposited gold nanoparticles on graphite

    International Nuclear Information System (INIS)

    Cihan, Ebru; Özoğul, Alper; Baykara, Mehmet Z.

    2015-01-01

    Graphical abstract: - Highlights: • Structure and tribology of thermally deposited AuNPs on HOPG have been studied. • Well-faceted, hexagonal AuNPs are formed on HOPG upon post-deposition annealing. • The crystalline character of the AuNPs is confirmed via TEM measurements. • AFM measurements reveal a “2/3” power law dependence of friction on load on AuNPs. • Friction forces at AuNP edges evolve linearly with increasing height and load. - Abstract: We present experiments involving the structural and frictional characterization of gold nanoparticles (AuNP) thermally deposited on highly oriented pyrolytic graphite (HOPG). The effect of thermal deposition amount, as well as post-deposition annealing on the morphology and distribution of gold on HOPG is studied via scanning electron microscopy (SEM) measurements, while transmission electron microscopy (TEM) is utilized to confirm the crystalline character of the nanoparticles. Lateral force measurements conducted via atomic force microscopy (AFM) under ambient conditions are employed to investigate the nanotribological properties of the gold nanoparticles as a function of normal load. Finally, the increase in lateral force experienced at the edges of the nanoparticles is studied as a function of normal load, as well as nanoparticle height. As a whole, our results constitute a comprehensive structural and frictional characterization of the AuNP/HOPG material system, forming the basis for nanotribology experiments involving the lateral manipulation of thermally deposited AuNPs on HOPG via AFM under ambient conditions.

  7. Iron-sulfide crystals in probe deposits

    DEFF Research Database (Denmark)

    Laursen, Karin; Frandsen, Flemming

    1998-01-01

    Iron-sulfides were observed in deposits collected on a probe inserted at the top of the furnace of a coal-fired power station in Denmark. The chemical composition of the iron-sulfides is equivalent to pyrrhotite (FeS). The pyrrhotites are present as crystals and, based on the shape of the crystals......: (1) impact of low viscous droplets of iron sulfide; and (2) sulfur diffusion. Previous research on the influence of pyrite on slagging focused on the decomposition of pyrite into pyrrhotite and especially on the oxidation stage of this product during impact on the heat transfer surfaces...

  8. Sediment-hosted micro-disseminated gold mineralization constrained by basin paleo-topographic highs in the Youjiang basin, South China

    Science.gov (United States)

    Liu, Jianming; Ye, Jie; Ying, Hanlong; Liu, Jiajun; Zheng, Minghua; Gu, Xuexiang

    2002-06-01

    The Youjiang basin is a Devonian-Triassic rift basin on the southern margin of the Yangtze Craton in South China. Strong syndepositional faulting defined the basin-and-range style paleo-topography that further developed into isolated carbonate platforms surrounded by siliciclastic filled depressions. Finally, thick Triassic siliciclastic deposits covered the platforms completely. In the Youjiang basin, numerous sediment-hosted, micro-disseminated gold (SMG) deposits occur mainly in Permian-Triassic chert and siliciclastic rocks. SMG ores are often auriferous sedimentary rocks with relatively low sulfide contents and moderate to weak alteration. Similar to Carlin-type gold ores in North America, SMG ores in the Youjiang basin are characterized by low-temperature mineral assemblages of pyrite, arsenopyrite, realgar, stibnite, cinnabar, marcasite, chalcedony and carbonate. Most of the SMG deposits are remarkably distributed around the carbonate platforms. Accordingly, there are platform-proximal and platform-distal SMG deposits. Platform-proximal SMG deposits often occur in the facies transition zone between the underlying platform carbonate rocks and the overlying siliciclastic rocks with an unconformity (often a paleo-karst surface) in between. In the ores and hostrocks there are abundant synsedimentary-syndiagenetic fabrics such as lamination, convolute bedding, slump texture, soft-sediment deformation etc. indicating submarine hydrothermal deposition and syndepositional faulting. Numerous fluid-escape and liquefaction fabrics imply strong fluid migration during sediment basin evolution. Such large-scale geological and fabric evidence implies that SMG ores were formed during basin evolution, probably in connection with basinal fluids. It is well known that basinal fluids (especially sediment-sourced fluids) will migrate generally (1) upwards, (2) towards basin margins or basin topographic highs, (3) and from thicker towards thinner deposits during basin evolution

  9. K-Ar age for alunite-bearing rock from the Iwato gold deposit, Kagoshima Prefecture, southern Japan

    International Nuclear Information System (INIS)

    Togashi, Yukio; Shibata, Ken

    1984-01-01

    K-Ar age determination was made on a whole rock sample of the alunite-bearing silicified rock from the Iwato gold deposit, Kagoshima Prefecture, southern Japan. The sample is from one of the Nansatsu-type gold deposits, whose mineralization is characterized by the occurrence of leaching-type massive silicified rocks with gold dissemination. The result, 4.15 +- 0.78 Ma, is interpreted to be the age of the mineralization at the Iwato gold deposit. It also suggests that the Nansatsu-type deposits were formed in close association with andesitic volcanism in the early Pliocene age. (author)

  10. Native gold from the Inagli Pt-Au placer deposit (the Aldan Shield, Russia): geochemical characteristics and implications for possible bedrock sources

    Science.gov (United States)

    Svetlitskaya, Tatyana V.; Nevolko, Peter A.; Kolpakov, Vladislav V.; Tolstykh, Nadezhda D.

    2018-03-01

    The Inagli alluvial Pt-Au placer deposit in the Republic of Sakha (Yakutia), Russia, is linked to the Inagli massif, one of the several Uralian-Alaskan-type alkaline-ultrabasic complexes in the Aldan Shield. Gold from the placer is heterogeneous in composition and is represented by three types. Type 1 gold is the most abundant and is characterized by simple Au-Ag alloys with 4-34 wt% Ag, low Cu (up to 0.08 wt%) and negligible Hg, Pt, and Pd contents, and silver-tellurium sulfosalts (Ag-Cu-Te-S-As compounds) in the inclusion suite. Silicate inclusions are biotite, K-feldspar, Fe-Mg amphibole, chlorite, plagioclase, Fe-Mg pyroxene, zircon, and titanite. Distinctive features of this gold type are most similar to those derived from low-sulfidation systems linked to iron oxide copper-gold or iron skarn types of mineralization. The bedrock source of type 1 gold could be related with monzonite to syenite intrusions surrounding the Inagli massif. Distinctive features of type 2 gold include a wide discontinuous range of Ag content (1-18 wt%), elevated Cu (up to 0.5 wt%), and occasional Pd (up to 0.3 wt%) levels, non-detectable Pt and Hg contents, and rare inclusions of simple sulfides (digenite, pyrrhotite) and Na amphibole. Type 3 gold is distinguished by a narrow range in Ag content (5-8 wt%), elevated Hg (0.5-1 wt%) contents, negligible Cu, Pt and Pd levels, and Au-Pb compounds + K-feldspar inclusions. Microchemical characteristics of type 2 and type 3 gold are interpreted as suggestive of an alkaline-magmatic-related fluid. Based on the grain morphology and microchemical signatures, potential bedrock sources for both gold types could be related to the numerous alkaline veins and potassic alteration zones within the dunite core. A comparison of the Inagli and the Kondyor placer gold allows to generate distinctive generic signatures for gold from Uralian-Alaskan-type alkaline-ultrabasic complexes in the Aldan Shield.

  11. 94423-6883 Evaluation of Iron Ore Deposits in Elayiram Pannai

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: 2D Electrical Resistivity Imaging (ERI) investigation is suitable method to determine the geotechnical problems and it is used to identify the iron ore deposits. 2D. Electrical Resistivity Imaging with Wenner array was conducted within the iron ore deposits area in Elayiram Pannai, Virudhunagar District, ...

  12. Illumination wavelength and time dependent nano gold photo-deposition and CO oxidation

    Directory of Open Access Journals (Sweden)

    Siewhui Chong

    Full Text Available In this study, nano gold (Au was deposited on titanium dioxide (TiO2 of different morphologies and crystallinities by photo-deposition method under LED irradiation with various wavelengths and irradiation times. The reactivity of carbon monoxide (CO oxidation of the as-prepared catalysts was examined and correlated with the characteristics of TiO2 support and gold particles. Characterization and activity tests showed that the effective illumination wavelength of photo-deposition is strongly determined by the band-gap of TiO2. Au/Cubic-TiO2 (450 nm, 5 min yielded comparatively highest CO conversion of 71%, followed by Au/P25 (375 nm, 1 min and Au/ST21 (340 nm, 1 min. When the photon energy of the LED is lower than the band-gap of TiO2, CO conversion rate increases with the irradiation time due to the decrease in gold particle size which could possibly due to the lower speed of photo-deposition compared to that of concentration diffusion. Keywords: Gold, Catalyst, TiO2, Photodeposition, Carbon monoxide, Oxidation

  13. Chemical Compositions of Fluid Inclusions in the Jalal –Abad iron oxide deposit, North West of Zarand, Using LA-ICP-MS Microanalysis

    Directory of Open Access Journals (Sweden)

    Behrouz Karimi Shahraki

    2017-07-01

    forms being massive, disseminated, replacement, open space filling, veins and breccias. Immediate host rocks include sandy siltstone, acidic volcanic rocks and dolomite. The Jalal Abad deposit mainly consists of iron oxides (magnetite, hematite and goethite, pyrite, chalcopyrite, and malachite that occur in massive, brecciated, open space filling, disseminated and vein forms. Hematite mostly occurs close to the surface and along fractured zones, formed as a secondary mineral due to magnetite oxidation and it is rare at depth. Pyrite is the most important sulphide mineral and is associated with magnetite, calcite, quartz, talc, dolomite, actinolite and chlorite. Copper mineralization at shallow levels is mainly in oxides formed from sulphide oxidation and at deeper levels primary chalcopyrite is also associated with magnetite. Cu mineralization is formed as disseminated or in veins form. Native gold was detected as inclusions smaller than 50 µm in chalcopyrite. Common alteration minerals are goethite, pyrite, talc, actinolite, chlorite, tremolite, dolomite, quartz, calcite, albite and sericite. The earliest hydrothermal alteration includes Na-Ca alteration which is associated with actinolite, magnetite and pyrite. Multiphase fluid inclusions (L+V+S in quartz are abundant and homogenization temperatures are in the range of 260 to 440◦C. Salinities vary between 30 to 52 wt% NaCl equivalents. The concentrations of Na and K are in the range 26906 to 140716 ppm and 2372 to 70484 ppm, respectively. Fe content varies from 576 to16076 ppm with an average of 6914 ppm and Cu contents vary from 51 to 3204 ppm with a mean of 792 ppm. The Na/Ca values for fluid inclusions vary from 0.38 to 37.51 with a mean of 3.79. The average content of Na is 61511 ppm which is in agreement with salinity of fluid inclusions measured by microthermometry techniques. Magmatic fluids normally yield K > Ca, with Ca/K ratios between 0.01 to 1, whereas non magmatic fluids are often richer in Ca with Ca

  14. Significant deposits of gold, silver, copper, lead, and zinc in the United States

    Science.gov (United States)

    Long, K.R.; DeYoung, J.H.; Ludington, S.

    2000-01-01

    Approximately 99 percent of past production and remaining identified resources of gold, silver, copper, lead, and zinc in the United States are accounted for by deposits that originally contained at least 2 metric tonnes (t) gold, 85 t silver, 50,000 t copper, 30,000 t lead, or 50,000 t zinc. The U.S. Geological Survey, beginning with the 1996 National Mineral Resource Assessment, is systematically compiling data on these deposits, collectively known as 'significant' deposits. As of December 31, 1996, the significant deposits database contained 1,118 entries corresponding to individual deposits or mining districts. Maintaining, updating and analyzing a database of this size is much easier than managing the more than 100,000 records in the Mineral Resource Data System and Minerals Availability System/Minerals Industry Location System, yet the significant deposits database accounts for almost all past production and remaining identified resources of these metals in the United States. About 33 percent of gold, 22 percent of silver, 42 percent of copper, 39 percent of lead, and 46 percent of zinc are contained in or were produced from deposits discovered after World War II. Even within a database of significant deposits, a disproportionate share of past production and remaining resources is accounted for by a very small number of deposits. The largest 10 producers for each metal account for one third of the gold, 60 percent of the silver, 68 percent of the copper, 85 percent of the lead, and 75 percent of the zinc produced in the United States. The 10 largest deposits in terms of identified remaining resources of each of the five metals contain 43 percent of the gold, 56 percent of the silver, 48 percent of the copper, 94 percent of the lead, and 72 percent of the zinc. Identified resources in significant deposits for each metal are less than the mean estimates of resources in undiscovered deposits from the 1996 U.S. National Mineral Resource Assessment. Identified

  15. Sulphur isotopes in a metamorphogenic gold deposit, Macraes mine, Otago Schist, New Zealand

    International Nuclear Information System (INIS)

    Craw, D.; Hall, A.J.; Fallick, A.E.; Boyce, A.J.

    1995-01-01

    The Macraes gold quartz vein deposit, New Zealand, is located in a shear zone cutting greenschist facies metasediments of the Otago Schist. The deposit has been interpreted as being metamorphogenic in origin as there is no evidence for coeval magmatic activity in the Otago Schist orogen. The immediate host rock at the Macraes deposit is pyritic (δ 34 S = -2.7 to -1.3 per mil ) and locally weakly graphitic schist, a rare rock type in the Otago Schist. Sulphur isotope analyses of pyrite and arsenopyrite extracts from auriferous veins and wall-rock schist provide a similar narrow range in δ 34 S values, from -3.0 to -1.0 per mil (n=9). The lack of isotopically depleted sulphur, the narrow range in values, and the replacement sulphide textures help discount a primary bacteriogenic origin for host-rock sulphide. Sulphide in both veins and wall rock is of hydrothermal origin. Sulphides in metasediments and metavolcanics elsewhere in the Otago Schist have δ 34 S in the narrow range -6 to +6 per mil. The sulphur isotope data are consistent with origin of hydrothermal sulphur within the metamorphic pile but provide no constraint on specific rock types which contributed the sulphur to the hydrothermal fluid. The study demonstrates that sulphur isotopic signatures near zero per mil can arise without any direct magmatic input into the mineralisation process. (author). 34 refs., 2 figs., 1 tab

  16. Geological factors of deposit formation

    International Nuclear Information System (INIS)

    Grushevoj, G.V.

    1980-01-01

    Geologic factors of hydrogenic uranium deposit formation are considered. Structural, formation and lithological-facies factors of deposit formation, connected with zones of stratal oxidation, are characterized. Peculiarities of deposit localization, connected with orogenic structures of Mesozoic and lenozoic age, are described. It is noted that deposits of anagenous group are widely spread in Paleozoic formations, infiltration uranium deposits are localized mainly in Cenozoic sediments, while uranium mineralization both anagenous and infiltration groups are widely developed in Mesozoic sediments. Anagenous deposits were formed in non-oxygen situation, their age varies from 200 to 55 mln years. Infiltration deposit formation is determined by asymmetric oxidation zonation, their age varies from 10 - 40 mln years to dozens of thousand years [ru

  17. APPLICATION OF MAGNETIC SURVEY TO EXPLORE THE IRON ORE DEPOSITS IN THE NUSAWUNGU COASTAL REGENCY OF CILACAP CENTRAL JAVA

    Directory of Open Access Journals (Sweden)

    S Sehah

    2017-12-01

    Full Text Available The research aiming to explore the iron ore deposits in the Nusawungu coastal Regency of Cilacap has been conducted using the magnetic survey. The acquisition of magnetic data was conducted in April – Mei 2017, covering the area in the ranges of 109.314° – 109.345°E and 7.691° – 7.709°S. The obtained magnetic field strength data were corrected, reduced, and mapped to obtain the contour map of local magnetic anomaly. The modeling process was carried out along the path extending over the map from the positions of 109.314°E and 7.695°S to 109.335°E and 7.699°S, so that some subsurface anomalous objects are obtained. The lithological interpretation was performed to identify the types of subsurface rocks and their formations based on the magnetic susceptibility value of each anomalous objects and supported by the geological information of the research area. Based on the interpretation results, three rocks deposits of alluvium formations were obtained, which are estimated to contain iron ore. The first deposit has a length of 164.85 m, a depth of 0.57 – 8.43 m, and a magnetic susceptibility value of 0.0097 cgs. The second deposit has a length of 376.28 m, a depth of 2.56 – 19.66 m, and a magnetic susceptibility value of 0.0108 cgs. The third deposit has a length of 1,306.26 m, a depth of 3.70 – 58.69 m, and a magnetic susceptibility value of 0.0235 cgs. Out of the whole rocks deposits, the third rock deposit is interpreted to have the most prospective iron ore. This interpretation based on its high magnetic susceptibility value, which indicates the presence of many magnetic minerals (i.e. iron ores in the rock.

  18. Hereditary iron and copper deposition

    DEFF Research Database (Denmark)

    Aaseth, Jan; Flaten, Trond Peder; Andersen, Ole

    2007-01-01

    Hereditary deposition of iron (primary haemochromatosis) or copper (Wilson's disease) are autosomal recessive metabolic disease characterized by progressive liver pathology and subsequent involvement of various other organs. The prevalence of primary haemochromatosis is approximately 0.5%, about......, they may be inadequate in patients diagnosed so late that extensive body deposits of metal have been developed. The main research needs in this field are to further clarify molecular mechanisms of disease progression and to develop new chelators that are more effective and less toxic than those presently...

  19. Mineralogy and electron microprobe studies of magnetite in the Sarab-3 iron Ore deposit, southwest of the Shahrak mining region (east Takab

    Directory of Open Access Journals (Sweden)

    Mohammad Maanijou

    2018-04-01

    Full Text Available Introduction There is an iron mining complex called Shahrak 60 km east of the Takab town, NW Iran. The exploration in the Shahrak deposit (general name for all iron deposits of the area started in 1992 by the Foolad Saba Noor Co. and continued in several periods until 2008. The Shahrak deposit is comprised of 10 ore deposits including Sarab-1, Sarab-2, Sarab-3, Korkora-1, Korkora-2, Shahrak-1, Shahrak-2, Shahrak-3, Cheshmeh and Golezar deposits (Sheikhi, 1995 with a total 60 million tons of proven ore reserves. The Fe grade ranges from 45 to 65% (average 50%. The ore reserves of these deposits are different. Sarab-3 ore deposit with 9 million tons of 54% Fe and 8.95% S is located at the northeast of Kurdistan and in the Sanandaj-Sirjan structural zone at the latitude of 36°20´ and longitude of 47°32´. Materials and methods Sixty thin-polished, polished and thin sections are made for the study of mineralogy and petrology, and among them six thin-polished sections were selected for EPMA (Electron Probe Micro Analysis on magnetite and hematite. EPMA was performed using the Cameca Sx100 electron microprobe at the Iran Mineral Processing Research Center (IMPRC with wavelength-dispersive spectrometers. Results and discussion Based on field observations and petrographic studies, lithologic composition of intrusion (Miocene age ranges within the diorite-leucodiorite, monzodiorite-quartz monzodiorite, granodiorite-granite. With the intrusion of those igneous bodies into carbonate rocks of the Qom Formation, contact metamorphism was formed. The formation of Sarab-3 iron deposit occurred at the three stages of metamorphism, skarnification and supergene. Based on field geology of the deposit, it is composed of endoskarn, exoskarn including Fe ore±sulfides. At the metamorphic stage, after intrusion of intrusive bodies in carbonate rocks, recrystallization took place and marble was formed. With more crystallization of magma, evolved hydrothermal fluids

  20. Visible light activity of pulsed layer deposited BiVO{sub 4}/MnO{sub 2} films decorated with gold nanoparticles: The evidence for hydroxyl radicals formation

    Energy Technology Data Exchange (ETDEWEB)

    Trzciński, Konrad, E-mail: trzcinskikonrad@gmail.com [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Szkoda, Mariusz [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Sawczak, Mirosław [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid Flow Machinery, Fiszera 14, 80-231 Gdansk (Poland); Karczewski, Jakub [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Lisowska-Oleksiak, Anna [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2016-11-01

    Highlights: • The BiVO{sub 4} + MnO{sub 2} photoactive layers were prepared by pulsed laser deposition method. • Prepared layers can act as photoanodes for water splitting. • The thin BiVO{sub 4} + MnO{sub 2} film can be used as photocatalyst for methylene blue degradation. • The formation of hydroxyl radicals during photocatalys illumination has been proved. • The dropcasted GNP improved significantly photocatalytic properties of tested layers. - Abstract: Thin films containing BiVO{sub 4} and MnO{sub 2} deposited on FTO and modified by Au nanoparticles were studied towards their photoelectrochemical and photocatalytical activities in an aqueous electrolyte. Electrodes were prepared by the pulsed laser deposition (PLD) method. The surfactant-free ablation process was used for preparation of the gold nanoparticles (GNP) water suspension. Obtained layers of varied thicknesses (27–115 nm) were characterized using Raman spectroscopy, UV–vis spectroscopy and scanning electron microscopy. Electrochemical methods such as electrochemical impedance spectroscopy, linear voltammetry and chronoamperometry under visible light illumination and in the dark were applied to characterize layers as photoanodes. Simple modification of the BiVO{sub 4} + MnO{sub 2} layer by drop-casting of small amount of colloidal gold (1.5 × 10{sup −14} mol of GNP on 1 cm{sup 2}) leads to enhancement of the generated photocurrent recorded at E = 0.5 V vs. Ag/AgCl (0.1 M KCl) from 63 μA/cm{sup 2} to 280 μA/cm{sup 2}. Photocatalytical studies were also exploited towards decomposition of methylene blue (MB). A possible mechanism of MB photodegradation was proposed. The formation of hydroxyl radicals was detected by photoluminescence spectra using terephthalic acid as the probe molecule.

  1. GEOLOGY OF THE FLORENCIA GOLD – TELLURIDE DEPOSIT (CAMAGÜEY, CUBA AND SOME METALLURGICAL CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    López K Jesús M.

    2006-12-01

    Full Text Available This paper describes the results from a study of the Florencia gold-telluride deposit in Central Cuba, including mineralogical, petrographical, microprobe and chemical analysis. Valuable information is provided for the exploration, mining and processing of gold ores from other nearby deposits with similar characteristics. Results highlight changes in the mineralogical composition of the ores between the north and south sectors of the deposit, as reflected in metallurgical concentrates after beneficiation and flotation of samples from these sectors.
    It is shown that gold deposits of the Cretaceous Volcanic Arc of Cuba largely consist of native gold, telluride and pyrite, where arsenopyrite is almost absent. Traces of lead, zinc and cadmium are present in the periphery of the main ore zones.

  2. Formation of self-assembled monolayer of curcuminoid molecules on gold surfaces

    International Nuclear Information System (INIS)

    Berlanga, Isadora; Etcheverry-Berríos, Álvaro; Mella, Andy; Jullian, Domingo; Gómez, Victoria Alejandra; Aliaga-Alcalde, Núria; Fuenzalida, Victor; Flores, Marcos

    2017-01-01

    Highlights: • Thiophene curcuminoid molecules deposited on a gold surface by immersion. • Molecular dynamic studies of the molecular arrangement approaching the surface. • XPS and STM studies showing different arrangement of the molecules on the surface. • Molecular Interaction with surface depends on the sulfur position in thiophene rings. • Temporal evolution of the molecular arrangement on the surface. - Abstract: We investigated the formation of self-assembled monolayers of two thiophene curcuminoid molecules, 2-thphCCM (1) and 3-thphCCM (2), on polycrystalline gold substrates prepared by immersion of the surfaces in a solution of the molecules during 24 h. The functionalized surfaces were studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Despite the fact that both molecules have the same composition and almost the same structure, these molecules exhibit different behavior on the gold surface, which can be explained by the different positions of the sulfur atoms in the terminal aromatic rings. In the case of molecule 1, the complete formation of a SAM can be observed after 24 h of immersion. In the case of molecule 2, the transition from flat-lying to upright configuration on the surface is still in process after 24 h of immersion. This is attributed to the fact that molecule 2 have the sulfur atoms more exposed than molecule 1.

  3. Formation of self-assembled monolayer of curcuminoid molecules on gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Berlanga, Isadora [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); Etcheverry-Berríos, Álvaro; Mella, Andy; Jullian, Domingo [Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beaucheff 851, Santiago (Chile); Gómez, Victoria Alejandra [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); Aliaga-Alcalde, Núria [ICREA (Institució Catalana de Recerca i Estudis Avançats), Passeig Lluís Companys, 23, 08018, Barcelona (Spain); CSIC-ICMAB (Institut de Ciència dels Materials de Barcelona), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain); Fuenzalida, Victor [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); Flores, Marcos, E-mail: mflorescarra@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); and others

    2017-01-15

    Highlights: • Thiophene curcuminoid molecules deposited on a gold surface by immersion. • Molecular dynamic studies of the molecular arrangement approaching the surface. • XPS and STM studies showing different arrangement of the molecules on the surface. • Molecular Interaction with surface depends on the sulfur position in thiophene rings. • Temporal evolution of the molecular arrangement on the surface. - Abstract: We investigated the formation of self-assembled monolayers of two thiophene curcuminoid molecules, 2-thphCCM (1) and 3-thphCCM (2), on polycrystalline gold substrates prepared by immersion of the surfaces in a solution of the molecules during 24 h. The functionalized surfaces were studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Despite the fact that both molecules have the same composition and almost the same structure, these molecules exhibit different behavior on the gold surface, which can be explained by the different positions of the sulfur atoms in the terminal aromatic rings. In the case of molecule 1, the complete formation of a SAM can be observed after 24 h of immersion. In the case of molecule 2, the transition from flat-lying to upright configuration on the surface is still in process after 24 h of immersion. This is attributed to the fact that molecule 2 have the sulfur atoms more exposed than molecule 1.

  4. Moessbauer and XRD Comparative Study of Host Rock and Iron Rich Mineral Samples from Paz del Rio Iron Ore Mineral Mine in Colombia

    International Nuclear Information System (INIS)

    Fajardo, M.; Perez Alcazar, G. A.; Moreira, A. M.; Speziali, N. L.

    2004-01-01

    A comparative study between the host rock and the iron rich mineral samples from the Paz del Rio iron ore mineral mine in Colombia was performed using X-ray diffraction and Moessbauer spectroscopy. Diffraction results of the iron rich mineral sample show that goethite, hematite, quartz, kaolinite and siderite are the main phases, and that a small amount of illite is also present. By Moessbauer spectroscopy at room temperature (RT) the presence of all the above mentioned phases was detected except quartz as well as an additional presence of small amount of biotite. The goethite, which appears as four sextets with hyperfine fields of 33.5, 30.5, 27.5 and 18.5 T, respectively, is the majority phase. This result shows the different grades of formation of this oxyhydroxide. The Moessbauer spectrum of this sample at 80 K presents the same phases obtained at RT without any superparamagnetic effect. In this case the goethite appears as two sextets. Diffraction results of the host rock sample show a large amount of quartz and kaolinite and small amounts of illite and biotite, whereas by Moessbauer spectroscopy illite, kaolinite and biotite were detected.

  5. Importance of dewetting in organic molecular-beam deposition: Pentacene on gold

    International Nuclear Information System (INIS)

    Beernink, G.; Strunskus, T.; Witte, G.; Woell, Ch.

    2004-01-01

    Organic molecular-beam deposition of pentacene on gold substrates has been investigated using a multitechnique approach. The morphology of the organic thin films depends strongly on the substrate temperature. Pronounced dewetting and island formation are observed at room temperature. Whereas pentacene molecules adopt a planar monolayer structure, they continue to grow in an upright orientation in multilayer films as inferred from x-ray absorption spectroscopy and atomic force microscopy. These results are in pronounced contrast to a recent scanning tunneling microscopy (STM) study by Kang and Zhu [Appl. Phys. Lett. 82, 3248 (2003)] and indicate fundamental problems in the interpretation of STM measurements for organic thin films

  6. Deposition of plasmon gold-fluoropolymer nanocomposites

    Science.gov (United States)

    Safonov, Alexey I.; Sulyaeva, Veronica S.; Timoshenko, Nikolay I.; Kubrak, Konstantin V.; Starinskiy, Sergey V.

    2016-12-01

    Degradation-resistant two-dimensional metal-fluoropolymer composites consisting of gold nanoparticles coated with a thin fluoropolymer film were deposited on a substrate by hot wire chemical vapour deposition (HWCVD) and ion sputtering. The morphology and optical properties of the obtained coatings were determined. The thickness of the thin fluoropolymer film was found to influence the position of the surface plasmon resonance peak. Numerical calculations of the optical properties of the deposited materials were performed using Mie theory and the finite-difference time-domain (FDTD) method. The calculation results are consistent with the experimental data. The study shows that the position of the resonance peak can be controlled by changing the surface concentration of particles and the thickness of the fluoropolymer coating. The protective coating was found to prevent the plasmonic properties of the nanoparticles from changing for several months.

  7. Molecular dynamics simulation of gold cluster growth during sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, J. W., E-mail: abraham@theo-physik.uni-kiel.de; Bonitz, M., E-mail: bonitz@theo-physik.uni-kiel.de [Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel (Germany); Strunskus, T.; Faupel, F. [Institut für Materialwissenschaft, Lehrstuhl für Materialverbunde, Christian-Albrechts-Universität zu Kiel, Kaiserstraße 2, D-24143 Kiel (Germany)

    2016-05-14

    We present a molecular dynamics simulation scheme that we apply to study the time evolution of the self-organized growth process of metal cluster assemblies formed by sputter-deposited gold atoms on a planar surface. The simulation model incorporates the characteristics of the plasma-assisted deposition process and allows for an investigation over a wide range of deposition parameters. It is used to obtain data for the cluster properties which can directly be compared with recently published experimental data for gold on polystyrene [M. Schwartzkopf et al., ACS Appl. Mater. Interfaces 7, 13547 (2015)]. While good agreement is found between the two, the simulations additionally provide valuable time-dependent real-space data of the surface morphology, some of whose details are hidden in the reciprocal-space scattering images that were used for the experimental analysis.

  8. Depositional characteristics of cretaceous cover in Xiangyangshan area of Heilongjiang province and analysis on prospect for sandstone hosted interlayer oxidation zone type uranium deposits

    International Nuclear Information System (INIS)

    Cai Yuqi; Li Shengxiang; Dong Wenming

    2003-01-01

    The depositional systems and characteristics of Cretaceous Cover depositional facies are discussed. In combination with logging curves in Xiangyangshan area, two depositional systems (namely, alluvial fan depositional system and alluvial plain depositional system) and five types of depositional facies are distinguished. Results of detailed research are given for each depositional facies in aspects of lithology, depositional structure, logging curve and grain size distribution pattern. Temporal and spatial distribution features of the depositional facies and the development features of interlayer oxidation zones of the second member of Quantou Formation are analyzed. Finally, conclusions on prospects for sandstone-hosted interlayer oxidation zone type uranium deposits in the study area are given in the aspect of depositional facies. (authors)

  9. Fractal dimension and energetic heterogeneity of gold-modified Al-Fe-Ce pilc's

    International Nuclear Information System (INIS)

    Carriazo, J.G.; Molina, R.; Moreno, S.

    2008-01-01

    This paper studies the energetic and topographical changes that occur on the surface of a series of clays pillared with the mixed Al-Fe-Ce system and on the surface of solids synthesized by the deposition of gold nanoparticles over these pillared clays. The energetic heterogeneity of the solids was analyzed by means of the distribution of the adsorption potential, while the variations in the fractal dimension were determined from the nitrogen adsorption isotherms at 77 K, using the equation proposed by Avnir-Jaroniec. Results show the generation of microporous structures with important topographical modifications indicating an increase in the roughness (fractal geometry) of the surface of the solids as a consequence of the pillaring, revealing a positive effect of cerium addition in the synthesis process and the possible formation of nanoparticles of iron species and gold on the surface of pillared clays. The solids were also analyzed by transmission electron microscopy (TEM), confirming the formation of nanoparticles on the surface.

  10. Kinetic Study on the Removal of Iron from Gold Mine Tailings by Citric Acid

    Science.gov (United States)

    Mashifana, T.; Mavimbela, N.; Sithole, N.

    2018-03-01

    The Gold mining generates large volumes of tailings, with consequent disposal and environmental problems. Iron tends to react with sulphur to form pyrite and pyrrhotite which then react with rain water forming acid rain. The study focuses on the removal of iron (Fe) from Gold Mine tailings; Fe was leached using citric acid as a leaching reagent. Three parameters which have an effect on the removal of Fe from the gold mine tailings, namely; temperature (25 °C and 50 °C), reagent concentration (0.25 M, 0.5 M, 0.75 M and 1 M) and solid loading ratio (20 %, 30 % and 40 %) were investigated. It was found that the recovery of Fe from gold mine tailings increased with increasing temperature and reagent concentration, but decreased with increasing solid loading ratio. The optimum conditions for the recovery of Fe from gold mine tailings was found to be at a temperature of 50 ºC, reagent concentration of 1 M and solid loading of 20 %. Three linear kinetic models were investigated and Prout-Tompkins kinetic model was the best fit yielding linear graphs with the highest R2 values.

  11. An evolving magmatic-hydrothermal system in the formation of the Mesozoic Meishan magnetite-apatite deposit in the Ningwu volcanic basin, eastern China

    Science.gov (United States)

    Liu, Wen-Hao; Jiang, Man-Rong; Zhang, Xiao-Jun; Xia, Yan; Algeo, Thomas J.; Li, Huan

    2018-06-01

    The Meishan iron deposit contains 338 Mt of iron-ore reserves at 39% Fe and represents the largest magnetite-apatite deposit in the Ningwu Basin of eastern China. Controversy has long existed about whether this deposit had a hydrothermal or iron-oxide melt origin. Iron mineralization is genetically related to plutons that are composed of gabbro-diorite, which were emplaced at 130 ± 1 Ma. These rocks have SiO2 contents of 51.72-54.60 wt%, Na2O contents of 3.47-4.04 wt%, K2O contents of 2.02-2.69 wt%, and K2O/Na2O ratios of 0.51-0.73. These rocks are enriched in LILEs and LREEs and depleted in Nb, Ta, and Ti, which indicates that the magma originated through partial melting of an enriched lithospheric mantle source in a subduction environment. A pattern of decreasing initial Sr isotopic ratios and increasing εNd(t) values with time in Early Cretaceous magmatic rocks of the Ningwu Basin may indicate incorporation of increasing proportions of asthenospheric mantle material into the source magma, which is consistent with the processes of lithospheric thinning and asthenospheric upwelling in eastern China related to Mesozoic subduction of the Paleo-Pacific Plate. Two stages of magnetite are found in the gabbro-diorite: (1) early-crystallized magnetite as euhedral-subhedral crystals in larger clinopyroxene crystals, and (2) later-crystallized magnetite and accompanying ilmenite grains in the voids between plagioclase and clinopyroxene crystals. The formation of magnetite before clinopyroxene, combined with the results of Fe-Ti oxide geothermometry and analysis of magnetite V content, indicates that the oxygen fugacity of the source magma was greater than ΔFMQ +2.2 at an early stage (>640 °C) but decreased to ΔFMQ -2.66 as abundant magnetite crystallized at a later stage (∼489 °C). The early crystallization of magnetite at a high oxygen fugacity does not support a Fenner evolution trend for the primitive magma and diminishes the likelihood of liquid immiscibility

  12. Geology of the Biwabik Iron Formation and Duluth Complex.

    Science.gov (United States)

    Jirsa, Mark A; Miller, James D; Morey, G B

    2008-10-01

    The Biwabik Iron Formation is a approximately 1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by approximately 1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact.

  13. Ionic Strength Dependent Kinetics of Nanocolloidal Gold Deposition

    NARCIS (Netherlands)

    Brouwer, E.A.M.; Kooij, Ernst S.; Wormeester, Herbert; Poelsema, Bene

    2003-01-01

    The deposition kinetics of the irreversible adsorption of citrate-stabilized, nanocolloidal gold particles on Si/SiO2 surfaces, derivatized with (aminopropyl)triethoxysilane, is investigated in situ using single wavelength reflectometry. A well-defined flow of colloids toward the surface is realized

  14. Young (gold deposits and active geothermal systems of the Great Basin: Enigmas, questions, and exploration potential

    Science.gov (United States)

    Coolbaugh, Mark F.; Vikre, Peter G.; Faulds, James E.

    2011-01-01

    Young gold systems in the Great Basin (£ 7 Ma), though not as well studied as their older counterparts, comprise a rapidly growing and in some ways controversial group. The gold inventory for these systems has more than doubled in the last 5 years from roughly 370 tonnes (12 Moz) to 890 tonnes (29 Moz). Although these deposits are characterized by low grades, tonnages can be high and stripping ratios low, and they have been mined profitably, as exemplified by Florida Canyon and Hycroft. Active geothermal systems in the Great Basin also comprise a rapidly growing group, as evidenced by a number of recent discoveries of geothermal groundwater and a more than 50% increase in electricity production capacity from these systems in the last 5 years. Many young gold deposits are closely associated with active geothermal systems, suggesting that gold deposits may be forming today in the Great Basin. Measured or estimated geothermal reservoir temperatures commonly approach or exceed 200∞C, and other characteristics and processes (advanced argillic caps, hydrothermal eruption breccias) of these young deposits resemble those of nearby Tertiary precious metal deposits. Nonetheless, many young gold systems, especially in Nevada, are not associated with coeval igneous rocks. Similarly, almost all electricity-grade geothermal systems in Nevada are not associated with Quaternary silicic volcanic rocks, and have lower temperature gradients, lower 3He/4He ratios, and lower dissolved trace element concentrations than most magmatic-heated geothermal systems elsewhere in the world. The increasing economic significance of young gold deposits and active geothermal systems justifies more research to better understand their origins, particularly because in some aspects they remain enigmatic and controversial. Are young gold deposits in Nevada truly amagmatic, or have they received metal and fluid contributions from magmas deeper within the crust? Has gold in these deposits been

  15. The effect of gold kiwifruit consumed with an iron fortified breakfast cereal meal on iron status in women with low iron stores: A 16 week randomised controlled intervention study

    Directory of Open Access Journals (Sweden)

    Coad Jane

    2010-01-01

    Full Text Available Abstract Background Dietary treatment is often recommended as the first line of treatment for women with mild iron deficiency. Although it is well established that ascorbic acid enhances iron absorption, it is less clear whether the consumption of ascorbic acid rich foods (such as kiwifruit with meals fortified with iron improves iron status. The aim of this study is to investigate whether the consumption of ZESPRI® GOLD kiwifruit (a fruit high in ascorbic acid and carotenoids with an iron fortified breakfast cereal meal increases iron status in women with low iron stores. Methods/Design Eighty nine healthy women aged 18-44 years with low iron stores (serum ferritin (SF ≤ 25 μg/L, haemoglobin (Hb ≥ 115 g/L living in Auckland, New Zealand were randomised to receive an iron fortified breakfast cereal (16 mg iron per serve and either two ZESPRI® GOLD kiwifruit or a banana (low ascorbic acid and carotenoid content to eat at breakfast time every day for 16 weeks. Iron status (SF, Hb, C-reactive protein (CRP and soluble transferrin receptor (sTfR, ascorbic acid and carotenoid status were measured at baseline and after 16 weeks. Anthropometric measures, dietary intake, physical activity and blood loss were measured before and after the 16 week intervention. Discussion This randomised controlled intervention study will be the first study to investigate the effect of a dietary based intervention of an iron fortified breakfast cereal meal combined with an ascorbic acid and carotenoid rich fruit on improving iron status in women with low iron stores. Trial registration ACTRN12608000360314

  16. Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry

    Science.gov (United States)

    Mokhtari, Mir Ali Asghar; Zadeh, Ghader Hossein; Emami, Mohamad Hashem

    2013-06-01

    Rare earth elements in apatites of different ore types show characteristic patterns which are related to different modes of formation of the ores. Most of the apatite-bearing iron ores are associated with alkaline magmas with LREE/HREE fractionation varying from moderate to steep. Iron-apatite deposits in Posht-e-Badam Block (Central Iran) have a high concentration of REE (more than 1000 ppm up to 2.5%), and show a strong LREE/HREE ratio with a pronounced negative Eu anomaly. This REE pattern is typical of magmatic apatite and quiet distinct from sedimentary apatites (phosphorites) which have a low REE contents and Ce negative anomalies. On the other hand, they are comparable to the REE patterns of apatites in Kiruna-type iron ores in different parts of the world. The REE patterns of apatites, iron-apatite ores and iron ores are similar and only have different REE contents. This similarity indicates a genetic relation for these rocks. Most of the iron-apatite deposits in Central Iran have similar REE patterns too, which in turn show a genetic relation for all of these deposits. This similarity indicates a similar origin and processes in their genesis. There are some small intrusions around some of the iron-apatite deposits that are petrographically identified as syenite and gabbro. These intrusions also have REE patterns similar to that of iron-apatite ores. This demonstrates a genetic relation between these intrusions and iron-apatite ores. The REE patterns of apatites in different deposits of Posht-e-Badam Block iron-apatite ores show an affinity to alkaline to sub-alkaline magmas and rifting environment. The alkaline host rocks of Central Iran iron-apatite ores are clearly related to an extensional setting where rifting was important (SSE-NNW fault lines). A probable source for this large scale ore forming processes is relatively low partial melting of mantle rocks. The ores have originated by magmatic differentiation as a late phase in the volcanic cycle

  17. Gold in primary high thermal transformations of the Au porphyry deposit Biely vrch

    International Nuclear Information System (INIS)

    Kozak, J.; Kodera, P.; Lexa, J.; Chovan, M.

    2014-01-01

    Porphyry gold deposit Biely vrch is situated in northern part of the Javorie stratovolcano in eastern part of Central Slovakia Volcanic Field. Intrusion of diorite to andesite porphyry with andesites is affected by hydrothermal alterations with dominant intermediate argillic alteration. Accumulations of gold are spatially associated with stockwork, formed by different types of quartz veinlets. Gold grains occur in altered rocks in the vicinity of quartz veinlets and rarely also as inclusions in vein. Analysed gold grains are chemically very homogenous and have fineness between 87 to 99.50 wt % Au while silver is the only significant element in addition to gold. In deeper parts of the deposit gold also occurs associated with K and Ca-Na silicate alteration which confirms precipitation of gold already in early stages of the hydrothermal system from high salinity Fe-K rich salt melt based on analyses of corresponding fluid inclusions. Difference in the fineness of gold is not significant between primary and secondary hydrothermal alterations. The highest fineness of gold (more than 99 wt %) in advanced argillic alteration is probably caused by remobilisation by acidic hydrothermal fluids. (authors)

  18. Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy, Manjunath; Vehkamäki, Marko [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Kukli, Kaupo, E-mail: kaupo.kukli@helsinki.fi [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); University of Tartu, Institute of Physics, W. Ostwald 1, EE-50411 Tartu (Estonia); Dimri, Mukesh Chandra [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Kemell, Marianna; Hatanpää, Timo; Heikkilä, Mikko J. [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Mizohata, Kenichiro [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 Helsinki (Finland); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Ritala, Mikko; Leskelä, Markku [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-07-29

    Bismuth iron oxide films with varying contributions from Fe{sub 2}O{sub 3} or Bi{sub 2}O{sub 3} were prepared using atomic layer deposition. Bismuth (III) 2,3-dimethyl-2-butoxide, was used as the bismuth source, iron(III) tert-butoxide as the iron source and water vapor as the oxygen source. The films were deposited as stacks of alternate Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} layers. Films grown at 140 °C to the thickness of 200–220 nm were amorphous, but crystallized upon post-deposition annealing at 500 °C in nitrogen. Annealing of films with intermittent bismuth and iron oxide layers grown to different thicknesses influenced their surface morphology, crystal structure, composition, electrical and magnetic properties. Implications of multiferroic performance were recognized in the films with the remanent charge polarization varying from 1 to 5 μC/cm{sup 2} and magnetic coercivity varying from a few up to 8000 A/m. - Highlights: • Bismuth iron oxide thin films were grown by atomic layer deposition at 140 °C. • The major phase formed in the films upon annealing at 500 °C was BiFeO{sub 3}. • BiFeO{sub 3} films and films containing excess Bi favored electrical charge polarization. • Slight excess of iron oxide enhanced saturative magnetization behavior.

  19. Shelf-to-basin iron shuttling enhances vivianite formation in deep Baltic Sea sediments

    Science.gov (United States)

    Reed, Daniel C.; Gustafsson, Bo G.; Slomp, Caroline P.

    2016-01-01

    Coastal hypoxia is a growing and persistent problem largely attributable to enhanced terrestrial nutrient (i.e., nitrogen and phosphorus) loading. Recent studies suggest phosphorus removal through burial of iron (II) phosphates, putatively vivianite, plays an important role in nutrient cycling in the Baltic Sea - the world's largest anthropogenic dead zone - yet the dynamics of iron (II) phosphate formation are poorly constrained. To address this, a reactive-transport model was used to reconstruct the diagenetic and depositional history of sediments in the Fårö basin, a deep anoxic and sulphidic region of the Baltic Sea where iron (II) phosphates have been observed. Simulations demonstrate that transport of iron from shelf sediments to deep basins enhances vivianite formation while sulphide concentrations are low, but that pyrite forms preferentially over vivianite when sulphate reduction intensifies due to elevated organic loading. Episodic reoxygenation events, associated with major inflows of oxic waters, encourage the retention of iron oxyhydroxides and iron-bound phosphorus in sediments, increasing vivianite precipitation as a result. Results suggest that artificial reoxygenation of the Baltic Sea bottom waters could sequester up to 3% of the annual external phosphorus loads as iron (II) phosphates, but this is negligible when compared to potential internal phosphorus loads due to dissolution of iron oxyhydroxides when low oxygen conditions prevail. Thus, enhancing vivianite formation through artificial reoxygenation of deep waters is not a viable engineering solution to eutrophication in the Baltic Sea. Finally, simulations suggest that regions with limited sulphate reduction and hypoxic intervals, such as eutrophic estuaries, could act as important phosphorus sinks by sequestering vivianite. This could potentially alleviate eutrophication in shelf and slope environments.

  20. Characterization of primary geochemical haloes for gold exploration at the Huanxiangwa gold deposit, China

    NARCIS (Netherlands)

    Wang, Changming; Carranza, E.J.M; Zhang, Shouting; Zhang, Jing; Liu, Xiaoji Liu; Zhang, Da; Sun, Xiang; Duan, Cunji

    2013-01-01

    Recognition of primary geochemical haloes is one of the most important tools for exploring undiscovered mineral resources. This tool is being routinely applied in exploration programs at the Huanxiangwa gold deposit, Xiong'er Mountains, China. Sampling of unweathered rock for multi-element analysis

  1. PREPARATION AND CHARACTERIZATION OF IRON SULPHIDE THIN FILMS BY CHEMICAL BATH DEPOSITION METHOD

    Directory of Open Access Journals (Sweden)

    Anuar Kassim

    2010-06-01

    Full Text Available FeS2 thin films have been deposited by using low cost chemical bath deposition technique. The films obtained under deposition parameters such as bath temperature (90 °C, deposition period (90 min, electrolyte concentration (0.15 M and pH of the reactive mixture (pH 2.5. The thin films were characterized using X-ray diffraction and atomic force microscopy in order to study the structural and morphological properties. The band gap energy, transition type and absorption properties were determined using UV-Vis Spectrophotometer. X-ray diffraction displayed a pattern consistent with the formation of an orthorhombic structure, with a strong (110 preferred orientation. Atomic force microscopy image showed the substrate surface is well covered with irregular grains. A direct band gap of 1.85 eV was obtained according to optical absorption studies.   Keywords: Iron sulfide, X-ray diffraction, chemical bath deposition, thin films

  2. Pb isotope investigations on Cu-Au deposits from Carajas Province, Amazonian craton, Brazil

    International Nuclear Information System (INIS)

    Macambira, M.J.B.; Galarza, M.A.T.; Souza, S.R.B.; Silva, C.M.G

    2001-01-01

    The Carajas Province is the most important mineral province of Brazil hosting deposits of iron, copper, gold, manganese, nickel and others. In the last years, discoveries of large Cu-Au deposits in Carajas Province have demonstrated the vocation of this region for such deposits, which are, in general, associated with volcanosedimentary sequences and, in some cases, with Archean and/or Paleoproterozoic granitic instrusions. The age and nature of the deposits, as well as the metal source, are still not well understood. Someone believe that these deposits are volcano-exhalant in nature (e.g. Ferreira Filho, 1985; Vieira et al., 1988; Almada and Villas, 1999), while others propose a hydrothermal source for the ore associated with granitic intrusions (e.g. Winter, 1994; Lindenmayer et al., 1998; Tallarico et al., 2000). This work presents a brief discussion about three Cu-Au deposits from Carajas Basin (Bahia, Aguas Claras, and Pojuca deposits) based on new Pb isotope data on zircon and sulfides carried out in the Para-Iso Laboratory of the University of Para, Brazil (au)

  3. Potential for Sulfide Mineral Deposits in Australian Waters

    Science.gov (United States)

    McConachy, Timothy F.

    The world is witnessing a paradigm shift in relation to marine mineral resources. High-value seafloor massive sulfides at active convergent plate boundaries are attracting serious commercial attention. Under the United Nations Convention on the Law of the Sea, maritime jurisdictional zones will increase by extending over continental margins and ocean basins. For Australia, this means a possible additional 3.37 million km2 of seabed. Australia's sovereign responsibility includes, amongst other roles, the management of the exploitation of nonliving resources and sea-bed mining. What, therefore, is the potential in Australia's marine jurisdiction for similar deposits to those currently attracting commercial attention in neighboring nations and for other types/styles of sulfide deposits? A preliminary review of opportunities suggests the following: (i) volcanogenic copper—lead—zinc—silver—gold mineralization in fossil arcs and back arcs in eastern waters Norfolk Ridge and the Three Kings Ridge; (ii) Mississippi Valley-type lead—zinc—silver mineralization in the NW Shelf area; (iii) ophiolite-hosted copper mineralization in the Macquarie Ridge Complex in the Southern Ocean; and (iv) submerged extensions of prospective land-based terranes, one example being offshore Gawler Craton for iron oxide—copper—gold deposits. These areas would benefit from pre-competitive surveys of detailed swath bathymetry mapping, geophysical surveys, and sampling to help build a strategic inventory of future seafloor mineral resources for Australia.

  4. Iron oxide and gold nanoparticles in cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gotman, Irena, E-mail: gotman@technion.ac.il; Gutmanas, Elazar Y., E-mail: gutmanas@technion.ac.il [Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 32000 Israel (Israel); Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Psakhie, Sergey G. [Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Lozhkomoev, Aleksandr S. [Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2016-08-02

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  5. Sulfur Cycling in an Iron Oxide-Dominated, Dynamic Marine Depositional System: The Argentine Continental Margin

    Directory of Open Access Journals (Sweden)

    Natascha Riedinger

    2017-05-01

    Full Text Available The interplay between sediment deposition patterns, organic matter type and the quantity and quality of reactive mineral phases determines the accumulation, speciation, and isotope composition of pore water and solid phase sulfur constituents in marine sediments. Here, we present the sulfur geochemistry of siliciclastic sediments from two sites along the Argentine continental slope—a system characterized by dynamic deposition and reworking, which result in non-steady state conditions. The two investigated sites have different depositional histories but have in common that reactive iron phases are abundant and that organic matter is refractory—conditions that result in low organoclastic sulfate reduction rates (SRR. Deposition of reworked, isotopically light pyrite and sulfurized organic matter appear to be important contributors to the sulfur inventory, with only minor addition of pyrite from organoclastic sulfate reduction above the sulfate-methane transition (SMT. Pore-water sulfide is limited to a narrow zone at the SMT. The core of that zone is dominated by pyrite accumulation. Iron monosulfide and elemental sulfur accumulate above and below this zone. Iron monosulfide precipitation is driven by the reaction of low amounts of hydrogen sulfide with ferrous iron and is in competition with the oxidation of sulfide by iron (oxyhydroxides to form elemental sulfur. The intervals marked by precipitation of intermediate sulfur phases at the margin of the zone with free sulfide are bordered by two distinct peaks in total organic sulfur (TOS. Organic matter sulfurization appears to precede pyrite formation in the iron-dominated margins of the sulfide zone, potentially linked to the presence of polysulfides formed by reaction between dissolved sulfide and elemental sulfur. Thus, SMTs can be hotspots for organic matter sulfurization in sulfide-limited, reactive iron-rich marine sedimentary systems. Furthermore, existence of elemental sulfur and iron

  6. Spatial Databases of Geological, Geophysical, and Mineral Resource Data Relevant to Sandstone-Hosted Copper Deposits in Central Kazakhstan

    Science.gov (United States)

    Syusyura, Boris; Box, Stephen E.; Wallis, John C.

    2010-01-01

    Central Kazakhstan is host to one of the world's giant sandstone-hosted copper deposits, the Dzhezkazgan deposit, and several similar, smaller deposits. The United Stated Geological Survey (USGS) is assessing the potential for other, undiscovered deposits of this type in the surrounding region of central Kazakhstan. As part of this effort, Syusyura compiled and partially translated an array of mostly unpublished geologic, geophysical, and mineral resource data for this region in digital format from the archives of the former Union of Soviet Socialists Republics (of which Kazakhstan was one of the member republics until its dissolution in 1991), as well as from later archives of the Republic of Kazakhstan or of the Kazakhstan consulting firm Mining Economic Consulting (MEC). These digital data are primarily map-based displays of information that were transmitted either in ESRI ArcGIS, georeferenced format, or non-georeferenced map image files. Box and Wallis reviewed all the data, translated Cyrillic text where necessary, inspected the maps for consistency, georeferenced the unprojected map images, and reorganized the data into the filename and folder structure of this publication.

  7. Deposition of gold nanoparticles on glass substrate by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Garza, Maria de la; Hernandez, Tomas; Colas, Rafael; Gomez, Idalia

    2010-01-01

    Ultrasonic spray pyrolysis was used to deposit gold nanoparticles on a glass substrate using ZrO 2 as a surrounding medium. The deposition was made using three flow rates of caring gas. The characterization was made by UV-Vis spectroscopy, X-ray diffraction, scanning electronic microscopy and atomic force microscopy. The UV-Vis spectra showed that the surface plasmon resonance peak, indicative of the presence of gold nanoparticles, was shown to shift towards the red spectrum as the flow rate increased; this shift can be associated to the change in size of the particles, which are assumed to grow on a {1 1 1} planes, as was detected by X-ray diffraction. Gold nanoparticles of spheroidal morphology with a relation of around 2:1 were detected by scanning electron microscopy, these observations were confirmed by atomic force microscopy.

  8. Deposition of gold nanoparticles on glass substrate by ultrasonic spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Garza, Maria de la; Hernandez, Tomas [Laboratorio de Materiales I, Centro de Laboratorios Especializados, Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon. Av. Universidad s/n Cd. Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon (Mexico); Colas, Rafael [Programa Doctoral en Ingenieria de Materiales, Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon. Av. Universidad s/n Cd. Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon (Mexico); Gomez, Idalia, E-mail: mgomez@fcq.uanl.mx [Laboratorio de Materiales I, Centro de Laboratorios Especializados, Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon. Av. Universidad s/n Cd. Universitaria, C.P. 66451, San Nicolas de los Garza, Nuevo Leon (Mexico)

    2010-10-25

    Ultrasonic spray pyrolysis was used to deposit gold nanoparticles on a glass substrate using ZrO{sub 2} as a surrounding medium. The deposition was made using three flow rates of caring gas. The characterization was made by UV-Vis spectroscopy, X-ray diffraction, scanning electronic microscopy and atomic force microscopy. The UV-Vis spectra showed that the surface plasmon resonance peak, indicative of the presence of gold nanoparticles, was shown to shift towards the red spectrum as the flow rate increased; this shift can be associated to the change in size of the particles, which are assumed to grow on a {l_brace}1 1 1{r_brace} planes, as was detected by X-ray diffraction. Gold nanoparticles of spheroidal morphology with a relation of around 2:1 were detected by scanning electron microscopy, these observations were confirmed by atomic force microscopy.

  9. Genetic Affiliation of Gold and Uranium Mineralization in El-Missikat Granite, Central Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    Ammar, F.A.; Omar, S.A.M.; El Sawey, El.H.

    2016-01-01

    Gabal El-Missikat granitic pluton is affected by two fault systems trending NW-SE (the oldest) and ENE-WSW directions. It is one of the uranium occurrences in the Eastern Desert of Egypt. The northwestern margins of El-Missikat pluton, along its contact with the gneissose quartz diorite, are dissected by numerous reactivated fractured shear zones running generally ENE-WSW to NE-SW and dipping about 60°-70° to SE. Many white (oldest), smoky or black and jasperoid (youngest) silica veinlets fill the fractures of these shear zones. These veins are of irregular shape and variable thickness ranging from few centimeters to about three meters. They are chiefly affected by silicification, sericitization, hematitization , kaolinization and hydrothermal alterations processes. The smoky black veins are hosting secondary uranium and fluorite-, sulphide-gold mineralizations. Polished surface studies, ICP-ES and Atomic Absorption as well as Scanning Electron Microscope measurements recorded galena, pyrite chalcopyrite, sphalerite and molybdenite in the black and jasperoid mineralized veins. Gold associated with ore mineral assemblage as pyrite, chalcopyrite, sphalerite, galena, sheelite and iron oxides. The identified sulphide minerals not bearing gold are recorded. Gold are relatively coarse-grained, massive and metallic yellow or stretched bronze colored particles. The recorded secondary U minerals associates the sulphide gold-mineralization in the black and jasperoid silica veins. Regarding the mobility of both uranium and gold, U 4+ mobilized in oxidizing medium and migrate and transport as U 6+ , then deposited later as U 4+ when the medium changes to be reducing characterized by high /O 2 . On contrary, gold mobilized when the medium is complex AuCl 3- ion bearing. Consequently, El- Missikat granitic pluton affected by oxidizing Au and Cl 3- bearing high temperature hydrothermal solutions that leached U 4+ , W and Mo from the granitic mass as U 6 + , later decrease of

  10. Phanerozoic Rifting Phases And Mineral Deposits

    Science.gov (United States)

    Hassaan, Mahmoud

    2016-04-01

    connected with NW,WNW and N-S faults genetically related to volcano-hydrothermal activity associated the Red Sea rifting. At Sherm EL-Sheikh hydrothermal manganese deposit occurs in Oligocene clastics within fault zone. Four iron-manganese-barite mineralization in Esh-Elmellaha plateau are controlled by faults trending NW,NE and nearly E-W intersecting Miocene carbonate rocks. Barite exists disseminated in the ores and as a vein in NW fault. In Shalatee - Halaib district 24 manganese deposits and barite veins with sulphide patches occur within Miocene carbonates distributed along two NW fault planes,trending 240°and 310° and occur in granite and basalt . Uranium -lead-zinc sulfide mineralization occur in Late Proterozoic granite, Late Cretaceous sandstones, and chiefly in Miocene clastic-carbonate-evaporate rocks. The occurrences of uranium- lead-zinc and iron-manganese-barite mineralization have the characteristic features of hypogene cavity filling and replacement deposits correlated with Miocene- Recent Aden volcanic rocks rifting. In western Saudi Arabia barite-lead-zinc mineralization occurs at Lat. 25° 45' and 25° 50'N hosted by Tertiary sediments in limestone nearby basaltic flows and NE-SW fault system. The mineralized hot brines in the Red Sea deeps considered by the author a part of this province. The author considers the constant rifting phases of Pangea and then progressive fragmentation of Western Gondwana during the Late Carboniferous-Lias, Late Jurassic-Early Aptian, Late Aptian - Albian and Late Eocene-Early Miocene and Oligocene-Miocene, responsible for formation of the mineral deposits constituting the M provinces. During these events, rifting, magmatism and hydrothermal activities took place in different peri-continental margins.

  11. Fluid inclusion and noble gas studies of the Dongping gold deposit, Hebei Province, China: A mantle connection for mineralization?

    Science.gov (United States)

    Mao, J.; Li, Y.; Goldfarb, R.; He, Y.; Zaw, K.

    2003-01-01

    The Dongping gold deposit (>100 t Au) occurs about 200 km inboard of the northern margin of the North China craton. The deposit is mainly hosted by syenite of a middle Paleozoic alkalic intrusive complex that was emplaced into Late Archean basement rocks. Both groups of rocks are intruded by Late Jurassic to Early Cretaceous crustal-melt granite dikes and stocks, some within a few kilometers of the deposit. The gold ores were deposited during this latter magmatic period at about 150 Ma, a time that was characterized by widespread regional north-south compression that formed the east-west-trending Yanshan deformational belt. The ores include both the telluride mineral-bearing, low sulfide quartz veins and the highly K-feldspar-altered syenite, with most of the resource concentrated in two orebodies (1 and 70). Fluid inclusion microthermometry indicates heterogeneous trapping of low-salinity (e.g., 5-7 wt % NaCl equiv) fluids that varied from a few to 60 mole percent nonaqueous volatile species. Laser Raman spectroscopy confirms that the vapor phase in these inclusions is dominated by CO2, but may be comprised of as much as 9 mole percent H2S and 20 mole percent N2; methane concentrations in the vapor phase are consistently interaction of ore fluids with surrounding crustal rocks, which may have contributed additional He to the fluids. A mantle source for at least some of the components of the gold-forming fluid is consistent with upwelling of hot asthenosphere and erosion of as much as 100 to 150 km of cool Archean lithosphere beneath the craton during this time. The Dongping deposit is located along the 100-km-wide north-south gravity lineament, which marks the western border of the thinned crust. As both regional metamorphism of Mesoproterozoic and younger cover rocks, and widespread granite magmatism, also occurred at ca. 150 Ma, it is unclear as to whether one or both of these also contributed fluid and/or metals to the hydrothermal system. Importantly, these

  12. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications

    Science.gov (United States)

    Maleki, H.; Simchi, A.; Imani, M.; Costa, B. F. O.

    2012-11-01

    The size mono-dispersity, saturation magnetization, and surface chemistry of magnetic nanoparticles (NPs) are recognized as critical factors for efficient biomedical applications. Here, we performed modified water-in-oil inverse nano-emulsion procedure for preparation of stable colloidal superparamagnetic iron oxide NPs (SPIONs) with high saturation magnetization. To achieve mono-dispersed SPIONs, optimization process was probed on several important factors including molar ratio of iron salts [Fe3+ and Fe2+], the concentration of ammonium hydroxide as reducing agent, and molar ratio of water to surfactant. The biocompatibility of the obtained NPs, at various concentrations, was evaluated via MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and the results showed that the NPs were non-toxic at concentrations gold (˜4 nm) through chemical reduction of attached gold salts at the surface of the SPIONs. The Fe3O4 core/Au shell particles demonstrate strong plasmon resonance absorption and can be separated from solution using an external magnetic field. Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, phase components, core-shell surface composition, and magnetic properties have confirmed the formation of the mono-dispersed core-shell nanostructure.

  13. An Early Permian epithermal gold system in the Tulasu Basin in North Xinjiang, NW China: Constraints from in situ oxygen-sulfur isotopes and geochronology

    Science.gov (United States)

    Dong, Leilei; Wan, Bo; Deng, Chen; Cai, Keda; Xiao, Wenjiao

    2018-03-01

    The Axi and Jingxi-Yelmand gold deposits, being the largest gold deposits in the Chinese North Tianshan, NW China, are located ca. l0 km apart in the Tulasu Basin, and are hosted by the Late Devonian - Early Carboniferous Dahalajunshan Formation. In situ LA-ICP-MS titanium analyses on quartz from the Axi and Jingxi-Yelmand deposits are broadly identical. Accordingly, the calculated ore-forming temperatures by Ti-in-quartz thermometer give average temperatures of 279 °C and 294 °C, respectively. Results of in situ SIMS analyses of oxygen and sulfur isotopes on quartz and pyrite from these two deposits are similar. Temperature-corrected fluids of the Axi deposit have δ18O values of 2.6-8.1‰ and δ34S values of 0.8-2.4‰, whereas the fluids of the Jingxi-Yelmand deposit have δ18O of 6.4-8.9‰ and δ34S of -0.4 to 4.0‰. The oxygen and sulfur isotopes from the two deposits indicate a magmatic origin. LA-ICP-MS zircon U-Pb ages of Aqialehe Formation sandstone provided a lower limit for the mineralization timing of the Axi deposit (288 Ma). In situ SIMS U-Pb analyses on entrapped zircon (297 Ma) and newly recognized 284.5 Ma columnar rhyolite implies that the Jingxi-Yelmand deposit formed in the Early Permian. Based on the magmatic affinity of the ore fluids, similar age and ore-formation temperatures, we propose that the Axi and Jingxi-Yelmand deposits comprise an epithermal gold system, which was driven by the same Permian magma in the Tulasu Basin. The ore geological features together with our new results indicate that the Axi and Jingxi-Yelmand deposits are intermediate and high sulfidation type epithermal deposits, respectively.

  14. Determination of gold of No. 501 uranium deposits and soil samples by cold leaching gold in dilute aqua regia and collection on activated charcoal

    International Nuclear Information System (INIS)

    Shen Maogen; Yao Liying.

    1989-01-01

    The gold determination method is described by cold leaching gold in dilute aqua regia and collection on activated charcoal and presents the results obtained in determining gold of uranium deposits and soil samples

  15. Isotopic characteristics of two kinds of hydrothermal carbonation in the Maria Lazara gold deposit. Goias Estate of Central Brazil

    International Nuclear Information System (INIS)

    Pulz, G.; Fuck, R.

    1998-01-01

    In the hydrothermal halo of the Maria Lazara gold deposit, two kinds of carbonation were identified: pervasive carbonation, which corresponds to the disseminations of calcite in the hydrothermal halo represented by the biotite-sulfide and carbonate-chlorite zones and, venular carbonation expressed by quartz and calcite veins inserted in the inner biotite-sulfide zone show an organic carbon component depleted in C. In the carbonate-chlorite zone the calcite isotopic behavior reflects the Co2 derived from the metamorphism o the basic host-rocks. (author)

  16. Porous Gold Films Fabricated by Wet-Chemistry Processes

    Directory of Open Access Journals (Sweden)

    Aymeric Pastre

    2016-01-01

    Full Text Available Porous gold films presented in this paper are formed by combining gold electroless deposition and polystyrene beads templating methods. This original approach allows the formation of conductive films (2 × 106 (Ω·cm−1 with tailored and interconnected porosity. The porous gold film was deposited up to 1.2 μm on the silicon substrate without delamination. An original zirconia gel matrix containing gold nanoparticles deposited on the substrate acts both as an adhesion layer through the creation of covalent bonds and as a seed layer for the metallic gold film growth. Dip-coating parameters and gold electroless deposition kinetics have been optimized in order to create a three-dimensional network of 20 nm wide pores separated by 20 nm thick continuous gold layers. The resulting porous gold films were characterized by GIXRD, SEM, krypton adsorption-desorption, and 4-point probes method. The process is adaptable to different pore sizes and based on wet-chemistry. Consequently, the porous gold films presented in this paper can be used in a wide range of applications such as sensing, catalysis, optics, or electronics.

  17. Are modern geothermal waters in northwest Nevada forming epithermal gold deposits?

    Science.gov (United States)

    Breit, George N.; Hunt, Andrew G.; Wolf, Ruth E.; Koenig, Alan E.; Fifarek, Richard; Coolbaugh, Mark F.

    2010-01-01

    Hydrothermal systems currently are active near some gold deposits in northwestern Nevada. Possible links of these modern systems to gold mineralization were evaluated by chemically and isotopically analyzing water samples from the Brady, Dixie Valley, Humboldt House, San Emidio-Empire, Soda Lake, and Wabuska geothermal areas. In addition, quartz veins from Humboldt House and the adjacent Florida Canyon Mine were analyzed to compare ore and gangue phases with those predicted to form from proximal hydrothermal fluids.Nearly all water samples are alkali-chloride-type. Total dissolved solids range from 800 to 3900 mg/L, and pH varies from 5.6 to 7.8. Geochemical modeling with SOLVEQ, WATCH, and CHILLER predict the precipitation of silica in all systems during cooling. Anhydrite, calcite, barite, pyrite, base-metal sulfides, and alumino-silicates are variably saturated at calculated reservoir temperatures and also precipitate during boiling/cooling of some fluids. Measured dissolved gold concentrations are low (<0.2μg/L), but are generally consistent with contents predicted by equilibrium of sampled solutions with elemental gold at reservoir temperatures.  Although the modern geothermal waters can precipitate ore minerals, the low gold and other ore metal concentrations require very large fluid volumes to form a deposit of economic interest.

  18. Direct sputtering- and electro-deposition of gold coating onto the closed surface of ultralow-density carbon-hydrogen foam cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jiaqiu; Yin, Jialing; Zhang, Hao; Yao, Mengqi; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-12-15

    Highlights: • The surface pores of P(DVB/St) foam cylinder are sealed by CVD method. • Gold film was deposited on the surface of foam cylinder by magnetron sputtering. • Electroless plating was excluded in the present experiments. • The gold coatings were thickened through the electrodeposition process. - Abstract: This work aimed to fabricate a gold coating on the surface of ultralow-density carbon-hydrogen foam cylinder without electroless plating. Poly (divinylbenzene/styrene) foam cylinder was synthetized by high internal phase emulsion, and chemical vapor deposition polymerization approach was used to form a compact poly-p-xylylene film on the foam cylinder. Conducting gold thin films were directly deposited onto the poly-p-xylylene-modified foam cylinder by magnetron sputtering, and electrochemical deposition was adopted to thicken the gold coatings. The micro-structures and morphologies of poly (divinylbenzene/styrene) foam cylinder and gold coating were observed by field-emission scanning electron microscopy. The gold coating content was investigated by energy-dispersive X-ray. The thicknesses of poly-p-xylylene coating and sputtered gold thin-film were approximately 500 and 100 nm, respectively. After electrochemical deposition, the thickness of gold coating increased to 522 nm, and the gold coating achieved a compact and uniform structure.

  19. Laser-Induced Formation and Disintegration of Gold Nanopeanuts and Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Shin; Yoon, Jun Hee; Kim, Hyung Jun; Huh, Young Duk; Yoon, Sang Woon [Dankook University, Yongin (Korea, Republic of)

    2010-04-15

    We report the laser-induced formation of peanut-shaped gold nanoparticles (Au nanopeanuts) and gold nanowires (AuNWs), and their morphological properties. Pulsed laser irradiation of citrate-capped gold nanoparticles at 532 nm induces fragmentation, spherical growth, the formation of Au nanopeanuts, and the formation of AuNWs, sequentially. High-resolution transmission electron microscopy images reveal that the Au nanopeanuts are formed by instantaneous fusion of spherical nanoparticles in random orientation by laser heating. Furthermore, Au nanopeanuts are bridged in a linear direction to form AuNWs by an amorphous accumulation of gold atoms in the junction. The laser-produced Au nanopeanuts and AuNWs slowly disintegrate, restoring the spherical shape of the original Au nanoparticles when the laser irradiation is stopped. The addition of citrate effectively prevents them from transforming back to the nanospheres.

  20. Iron oxide deposits associated with the ectosymbiotic bacteria in the hydrothermal vent shrimp Rimicaris exoculata

    Directory of Open Access Journals (Sweden)

    P. Compère

    2008-09-01

    Full Text Available The Rimicaris exoculata shrimp is considered as a primary consumer that dominates the fauna of most Mid-Atlantic Ridge (MAR hydrothermal ecosystems. These shrimps harbour in their gill chambers an important ectosymbiotic community of chemoautotrophic bacteria associated with iron oxide deposits. The structure and elemental composition of the mineral concretions associated with these bacteria have been investigated by using LM, ESEM, TEM STEM and EDX microanalyses. The nature of the iron oxides in shrimps obtained from the Rainbow vent field has also been determined by Mössbauer spectroscopy. This multidisciplinary approach has revealed that the three layers of mineral crust in the Rimicaris exoculata shrimps consist of large concretions formed by aggregated nanoparticles of two-line ferrihydrite and include other minor elements as Si, Ca, Mg, S and P, probably present as silicates cations, sulphates or phosphates respectively that may contribute to stabilise the ferrihydrite form of iron oxides. TEM-observations on the bacteria have revealed their close interactions with these minerals. Abiotic and biotic precipitation could occur within the gill chamber of Rimicaris exoculata, suggesting the biologically-mediated formation of the iron oxide deposits. The difference of the bacterial density in the three-mineral crust layers could be correlated to the importance of the iron oxide concretions and suggest that the first mineral particles precipitates on the lower layer which could be considered as the most likely location of iron-oxidizing bacteria.

  1. Gold contents of sulfide minerals in granitoids from southwestern New Brunswick, Canada

    Science.gov (United States)

    Yang, Xue-Ming; Lentz, David R.; Sylvester, Paul J.

    2006-07-01

    The abundance of gold and selected trace elements in magmatic sulfide and rock-forming minerals from Silurian-Devonian granitoids in southwestern New Brunswick were quantitatively analyzed by laser-ablation inductively coupled plasma mass-spectrometry. Gold is mainly hosted in sulfide minerals (i.e., chalcopyrite, pyrrhotite, and pyrite), in some cases perhaps as submicron inclusions (nanonuggets). Gold is below detection (caca % qGTbGaaeyzaiaabYgacaqG0baaaOGaeyypa0JaaGymaiaaiwdacaaI % WaGaeyySaeRaaGioaiaaiodacaGGSaGaaeiiaiaabggacaqGUbGaae % izaiaabccacaWGebWaa0baaSqaaiaabgeacaqG1baabaGaaeiCaiaa % bMhacaqGVaGaaeyBaiaabwgacaqGSbGaaeiDaaaakiabg2da9iaaio % dacaaI2aGaaGOmaiabgglaXkaaiMdacaaI2aaaaa!6E8F! D^{{{text{cpy/melt}}}}_{{{text{Au}}}}= 948 ± 269,{text{ }}D^{{{text{po/melt}}}}_{{{text{Au}}}} = 150 ± 83,{text{ and }}D^{{{text{py/melt}}}}_{{{text{Au}}}} = 362 ± 96. This result suggests that gold behavior in the granitoid systems is controlled by the conditions of sulfur saturation during magmatic evolution; the threshold of physiochemical conditions for sulfur saturation in the melts is a key factor affecting gold activity. Gold behaves incompatibly prior to the formation of sulfide liquids or minerals, but it becomes compatible at their appearance. Gold would be enriched in sulfur-undersaturated granitoid magmas during fractionation, partitioning into evolved magmatic fluids and favoring the formation of intrusion-related gold deposits. However, gold becomes depleted in residual melts if these melts become sulfur-saturated during differentiation, leading to gold precipitation in the early sulfide phases of a granitoid suite. Late-stage Cl-bearing magmatic-hydrothermal fluids with low pH and relatively high oxidation state derived from either progressively cooling magmas at depth or convective circulation of meteoric water buffered by reduced carbon-bearing sediments, may scavenge gold from early sulfide minerals. If a significant amount of gold produced in this

  2. Formation of different gold nanostructures by silk nanofibrils

    International Nuclear Information System (INIS)

    Fang, Guangqiang; Yang, Yuhong; Yao, Jinrong; Shao, Zhengzhong; Chen, Xin

    2016-01-01

    Metal nanostructures that have unique size- and shape-dependent electronic, optical and chemical properties gain more and more attention in modern science and technology. In this article, we show the possibility that we are able to obtain different gold nanostructures simply with the help of silk nanofibrils. We demonstrate that only by varying the pH of the reaction solution, we get gold nanoparticles, nano-icosahedrons, nanocubes, and even microplates. Particularly, we develop a practical method for the preparation of gold microplates in acid condition in the presence of silk nanofibrils, which is impossible by using other forms of silk protein. We attribute the role of silk nanofibrils in the formation of gold nanostructure to their reduction ability from several specific amino acid residues, and the suitable structural anisotropic features to sustain the crystal growth after the reduction process. Although the main purpose of this article is to demonstrate that silk nanofibrils are able to mediate the formation of different gold nanostructure, we show the potential applications of these resulting gold nanostructures, such as surface-enhanced Raman scattering (SERS) and photothermal transformation effect, as same as those produced by other methods. In conclusion, we present in this communication a facile and green synthesis route to prepare various gold nanostructures with silk nanofibrils by simply varying pH in the reaction system, which has remarkable advantages in future biomedical applications. - Highlights: • Different Au nanostructures can be obtained by a facile and green protein reduction method. • Silk nanofibrils serve as both reductant and template in the formation of Au nanostructures. • Different Au nanostructures can be obtained simply by regulating the pH in the medium. • Large Au microplates can be obtained with a cheap, abundant, sustainable silk protein. • Silk/Au hybrid nanocomposites show potential application in SERS and

  3. Formation of different gold nanostructures by silk nanofibrils

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Guangqiang [State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433 (China); Yang, Yuhong [Research Centre for Analysis and Measurement, Fudan University, Shanghai 200433 (China); Yao, Jinrong; Shao, Zhengzhong [State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433 (China); Chen, Xin, E-mail: chenx@fudan.edu.cn [State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433 (China)

    2016-07-01

    Metal nanostructures that have unique size- and shape-dependent electronic, optical and chemical properties gain more and more attention in modern science and technology. In this article, we show the possibility that we are able to obtain different gold nanostructures simply with the help of silk nanofibrils. We demonstrate that only by varying the pH of the reaction solution, we get gold nanoparticles, nano-icosahedrons, nanocubes, and even microplates. Particularly, we develop a practical method for the preparation of gold microplates in acid condition in the presence of silk nanofibrils, which is impossible by using other forms of silk protein. We attribute the role of silk nanofibrils in the formation of gold nanostructure to their reduction ability from several specific amino acid residues, and the suitable structural anisotropic features to sustain the crystal growth after the reduction process. Although the main purpose of this article is to demonstrate that silk nanofibrils are able to mediate the formation of different gold nanostructure, we show the potential applications of these resulting gold nanostructures, such as surface-enhanced Raman scattering (SERS) and photothermal transformation effect, as same as those produced by other methods. In conclusion, we present in this communication a facile and green synthesis route to prepare various gold nanostructures with silk nanofibrils by simply varying pH in the reaction system, which has remarkable advantages in future biomedical applications. - Highlights: • Different Au nanostructures can be obtained by a facile and green protein reduction method. • Silk nanofibrils serve as both reductant and template in the formation of Au nanostructures. • Different Au nanostructures can be obtained simply by regulating the pH in the medium. • Large Au microplates can be obtained with a cheap, abundant, sustainable silk protein. • Silk/Au hybrid nanocomposites show potential application in SERS and

  4. Gold and copper deposits in Central Lapland, Northern Finland, with special reference to their exploration and exploitation

    OpenAIRE

    Korkalo, T. (Tuomo)

    2006-01-01

    Abstract At least 30 gold deposits verified by means of one or more notable diamond drill hole results have been discovered in Central Lapland in the last 20 years, and these can be divided spatially into groups, between which the metal composition varies. The deposits contain varying amounts of sulphides and sulpharsenides as well as gold. Pyrite is the most common sulphide mineral in the gold deposits associated with volcanic rocks, and usually pyrrhotite in those associated with sedimen...

  5. Non cardiopatic and cardiopatic beta thalassaemic patients: quantitative and qualitative cardiac iron deposition evaluation with MRI

    International Nuclear Information System (INIS)

    Macarini, Luca; Marini, Stefania; Scardapane, Arnaldo; Pietrapertosa, Anna; Ettore, Giovanni Carlo

    2005-01-01

    Purpose: Cardiomyopathy is one of the major complications of β thalassaemia major as a result of transfusion iron overload. The aim of our study is to evaluate with MR if there is any difference of iron deposition signal intensity (SI) or distribution between non-cardiopatic and cardiopatic thalassaemic patients in order to establish if there is a relationship between cardiopathy and iron deposition. Materials and methods: We studied 20 patients affected by β thalassaemia major, of whom 10 cardiopatic and 10 non-cardiopatic, and 10 healthy volunteers as control group. Serum ferritin and left ventricular ejection fraction were calculated in thalassaemic patients. All patients were examinated using a 1.5 MR unit with ECG-gated GE cine-MR T2*-weighted, SE T1-weighted and GE T2*-weighted sequences. In all cases, using an adequate ROI, the myocardial and skeletal muscle signal intensity (SI), the myocardial/skeletal muscle signal intensity radio (SIR) and the SI average of the myocardium and skeletal muscle were calculated for every study group. The qualitative evaluation of iron deposition distribution was independently performed by three radiologists who analysed the extension, the site and the morphology of iron deposition on the MR images and reported their observations on the basis of a four-level rating scale: 0 (absent), 1 (limited), 2 (partial), 3 (widespread deposition). The results of quantitative and qualitative evaluation were analysed with statistical tests. Results: Cardiac iron deposition was found in 8/10 non-cardiopatic thalassaemic patients and in all cardiopatic thalassaemic patients. We noticed a significant SI difference (p>0.05) between the healthy volunteer control group and the thalassaemic patients with iron deposition, but no significant SI difference in iron deposition between non-cardiopatic thalassaemic patients in the areas evaluated. The qualitative evaluation revealed a different distribution of iron deposition between the two

  6. MRI in haemochromatosis: pituitary versus testicular iron deposition in five patients with hypogonadism

    International Nuclear Information System (INIS)

    Miaux, Y.; Daurelle, P.; Zagdanski, A.M.; Passa, P.; Bourrier, P.; Frija, J.

    1995-01-01

    Haemochromatosis is a disease characterised by iron deposition in the liver and other organs. Hypogonadism is a commonly associated condition and may be either primary due to testicular lesions or secondary due to pituitary dysfunction. Hypogonadism secondary to pituitary dysfunction is more frequent and is thought to be related to iron deposition in the anterior pituitary. Increased iron content decreases signal intensity of spin-echo MRI images because T2 values are significantly shortened. Our purpose in this study was to evaluate by MRI iron deposition in the liver, testis and pituitary of 6 patients with haemochromatosis and severe hypogonadotrophic hypogonadism. Six subjects served as controls. There was a significant T2 shortening of the liver and pituitary in patients with haemochromatosis compared with control patients. Therefore MRI detected iron overload in the pituitary and no iron in the testis, supporting the hypothesis of hypogonadotrophic pituitary insufficiency due to cellular damage induced by iron overload in the anterior pituitary gland. (orig.)

  7. Host rock characteristics of uranium deposits of cataclastic-altered granite type

    International Nuclear Information System (INIS)

    Feng Mingyue

    1997-01-01

    The author expounds the host rock characteristics of uranium deposits of cataclastic-altered granite type, i.e., the high initial content of uranium, the high cataclasis of host rocks, the strong alteration of host rocks, the simple composition of host rocks favourable for the leaching of uranium, as well as the low content of harmful associated elements. These characteristics may be regarded as petrological criteria for recognition and prospecting for such type of uranium deposits

  8. Host rock characteristics of uranium deposits of cataclastic-altered granite type

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng [Beijing Research Inst. of Uranium Geology (China)

    1997-03-01

    The author expounds the host rock characteristics of uranium deposits of cataclastic-altered granite type, i.e., the high initial content of uranium, the high cataclasis of host rocks, the strong alteration of host rocks, the simple composition of host rocks favourable for the leaching of uranium, as well as the low content of harmful associated elements. These characteristics may be regarded as petrological criteria for recognition and prospecting for such type of uranium deposits.

  9. Gold nanoparticles and films produced by a laser ablation/gas deposition (LAGD) method

    International Nuclear Information System (INIS)

    Kawakami, Yuji; Seto, Takafumi; Yoshida, Toshinobu; Ozawa, Eiichi

    2002-01-01

    Gold nanoparticles have great potential for various nanoelectronic applications such as single electron transistors, an infrared absorption sensor and so on. It is very important to understand and control the size distribution of the particles for such a variety of applications. In this paper, we report the size distribution of gold nanoparticles and the relationship between the nanoparticle-films and the electrical property produced by a laser ablation method. Gold nanoparticle-films were prepared by a technique, which sprays nanoparticles on the substrate through a nozzle. We call it a gas deposition method. The nanoparticles were generated by the nanosecond pulsed Nd:YAG laser ablation of a gold substrate under a low-pressure inert gas atmosphere. The ambient pressure was changed to control the average size and their distribution. The particles produced in the generation chamber were transported by a helium carrier gas to the deposition chamber and deposited on a substrate to form the films composed of gold nanoparticles. The electrical resistivity of the generated gold nanoparticle-films on the glass substrates was measured using a four-probe method. The size distribution of the nanoparticles was examined using transmission electron microscopy (TEM) and a low-pressure differential mobility analyzer (LP-DMA). The relationship between the particle size and the electrical properties of each film made by the different synthesis conditions were analyzed. The electrical resistivity changed from the order of 10 -5 to 10 -1 Ω cm depending on the ambient pressure and the size distribution

  10. Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets.

    Science.gov (United States)

    Northup, D E; Melim, L A; Spilde, M N; Hathaway, J J M; Garcia, M G; Moya, M; Stone, F D; Boston, P J; Dapkevicius, M L N E; Riquelme, C

    2011-09-01

    Lava caves contain a wealth of yellow, white, pink, tan, and gold-colored microbial mats; but in addition to these clearly biological mats, there are many secondary mineral deposits that are nonbiological in appearance. Secondary mineral deposits examined include an amorphous copper-silicate deposit (Hawai'i) that is blue-green in color and contains reticulated and fuzzy filament morphologies. In the Azores, lava tubes contain iron-oxide formations, a soft ooze-like coating, and pink hexagons on basaltic glass, while gold-colored deposits are found in lava caves in New Mexico and Hawai'i. A combination of scanning electron microscopy (SEM) and molecular techniques was used to analyze these communities. Molecular analyses of the microbial mats and secondary mineral deposits revealed a community that contains 14 phyla of bacteria across three locations: the Azores, New Mexico, and Hawai'i. Similarities exist between bacterial phyla found in microbial mats and secondary minerals, but marked differences also occur, such as the lack of Actinobacteria in two-thirds of the secondary mineral deposits. The discovery that such deposits contain abundant life can help guide our detection of life on extraterrestrial bodies.

  11. GEOLOGICAL FEATURES OF NEOGENE BASINS HOSTING BORATE DEPOSITS: AN OVERVIEW OF DEPOSITS AND FUTURE FORECAST, TURKEY

    Directory of Open Access Journals (Sweden)

    Cahit HELVACI

    2015-12-01

    hydroboracite are present in west Anatolia, Death Valley, California, and Sijes (Argentina. Quaternary borates are present in salars (Andes and playa- lakes and salt pans (USA-Tibet. Boron is a rare element in the Earth’s crust, but extraordinary concentrations can be found in limited places. The formation of borate deposits can be classified as follows: a skarn group associated with intrusives and consisting of silicates and iron oxides; a magnesium oxide group hosted by marine evaporitic sediments; and a sodium– and calcium–borate hydrates group associated with playa-lake sediments and explosive volcanic activity. Some conditions are essential for the formation of economically viable borate deposits in playa-lake volcano-sedimentary sequences: formation of playa-lake environment; concentration of boron in the playa lake, sourced from andesitic to rhyolitic volcanics, direct ash fall into the basin, or hydrothermal solutions along graben faults; thermal springs near the area of volcanism; arid to semi-arid climatic conditions; and lake water with a pH of between 8.5 and 11. A borate is defined as any compound that contains or supplies boric oxide (B2O3. A large number of minerals contain boric oxide, but the three that are most important from a worldwide commercial standpoint are borax, ulexite, and colemanite, which are produced in a limited number of countries. Turkey has the largest borax, ulexite and colemanite reserves in the world and all the world’s countries are dependent upon the colemanite and ulexite reserves of Turkey. Most of the world’s commercial borate deposits are mined by open pit methods. Brines from Searles Lake, and presumably the Chinese sources, are recovered by either controlled evaporation or carbonation. Boric acid is one of the final products produced from most of the processes. Further research on the mineralogy and chemistry of borate minerals and associated minerals will the production and utilization of borate end-products.

  12. Iron deposition in modern and archaeological teeth

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.-M.M., E-mail: AnneMarie.Williams@utas.edu.au [School of Medicine, Private Bag 34, University of Tasmania, Hobart 7001 (Australia); Siegele, R. [Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234 (Australia)

    2014-09-15

    Iron surface concentrations and profile maps were measured on the enamel of archaeological and modern teeth to determine how iron is deposited in tooth enamel and if it was affected by the post-mortem environment. Teeth from Australian children who died in the second half of the 19th century were compared with contemporary teeth extracted for orthodontic purposes. Surface analysis of the teeth was performed using the 3 MV Van Der Graff Accelerator at The Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia. A small sample of teeth were then cut in the mid sagittal plane and analysed using ANSTO High Energy Heavy Ion Microprobe. Maps and linear profiles were produced showing the distribution of iron across the enamel. Results show that both the levels and distribution of iron in archaeological teeth is quite different to contemporary teeth, raising the suggestion that iron has been significantly altered by the post-mortem environment.

  13. Iron deposition in modern and archaeological teeth

    International Nuclear Information System (INIS)

    Williams, A.-M.M.; Siegele, R.

    2014-01-01

    Iron surface concentrations and profile maps were measured on the enamel of archaeological and modern teeth to determine how iron is deposited in tooth enamel and if it was affected by the post-mortem environment. Teeth from Australian children who died in the second half of the 19th century were compared with contemporary teeth extracted for orthodontic purposes. Surface analysis of the teeth was performed using the 3 MV Van Der Graff Accelerator at The Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia. A small sample of teeth were then cut in the mid sagittal plane and analysed using ANSTO High Energy Heavy Ion Microprobe. Maps and linear profiles were produced showing the distribution of iron across the enamel. Results show that both the levels and distribution of iron in archaeological teeth is quite different to contemporary teeth, raising the suggestion that iron has been significantly altered by the post-mortem environment

  14. Formation of oriented nitrides by N+ ion implantation in iron single crystals

    International Nuclear Information System (INIS)

    Costa, A.R.G.; Silva, R.C. da; Ferreira, L.P.; Carvalho, M.D.; Silva, C.; Franco, N.; Godinho, M.

    2014-01-01

    Iron single crystals were implanted with nitrogen at room temperature, with a fluence of 5×10 17 cm −2 and 50 keV energy, to produce iron nitride phases and characterize the influence of the crystal orientation. The stability and evolution of the nitride phases and diffusion of implanted nitrogen were studied as a function of successive annealing treatments at 250 °C in vacuum. The composition, structure and magnetic properties were characterized using RBS/channeling, X-Ray Diffraction, Magnetic Force Microscopy, Magneto-optical Kerr Effect and Conversion Electron Mössbauer Spectroscopy. In the as-implanted state the formation of Fe 2 N phase was clearly identified in all single crystals. This phase is not stable at 250 °C and annealing at this temperature promotes the formation of ε-Fe 3 N, or γ′-Fe 4 N, depending on the orientation of the substrate. - Highlights: • Oriented magnetic iron nitrides were obtained by nitrogen implantation into iron single crystals. • The stable magnetic nitride phase at 250 °C depends on the orientation of the host single crystal, being γ'-Fe 4 N or ε-Fe 3 N. • The easy magnetization axis was found to lay in the (100) plane for cubic γ'-Fe 4 N and out of (100) plane for hexagonal ε-Fe 3 N

  15. Gold Leaching Characteristics and Intensification of a High S and As-Bearing Gold Concentrate

    Science.gov (United States)

    Yang, Yong-bin; Liu, Xiao-liang; Jiang, Tao; Li, Qian; Xu, Bin; Zhang, Yan

    Some high sulfur and arsenic-bearing gold concentrate has a gold leaching rate less than 80% by oxidation roasting-pickling-cyanidation process. The characteristics and intensification of gold leaching were studied systemically. By combining chemical composition and phase analysis, the low gold leaching rate was found to lie in the capsulation of gold by iron-containing phases including iron oxides, arsenopyrite and pyrite. 96.66% of gold in the industrial leaching residue was capsulated and 95.88% of the capsulated turned out to be in the iron-containing phases. The results of laboratory pickling-cyanidation experiments on the calcine and industrial leaching residue presented further demonstration for the fact that gold capsulated in the iron-containing phases was hard to be leached. However, the gold cyanide leaching rate of calcine could be raised over 95% by a reduction roasting-pickling pretreatment which played such a significant role in exposing the capsulated gold that gold leaching was intensified remarkably.

  16. Mineralogical study of zard koh and kulli koh iron ore deposits of pakistan

    International Nuclear Information System (INIS)

    Khoso, S.A.; Abro, M.I.

    2017-01-01

    Zard Koh and Kulli Koh are two recently discovered iron ore deposits, existing in the Chagai district, Balochistan, Pakistan. PSM (Pakistan Steel Mill Limited) is interested to utilize these ore deposits at priority. Purpose of the present study was to assess the mineralogy of the Zard Koh and Kulli Koh iron ore deposits, as it plays a vital role in the selection of an appropriate processing method. The mineralogical study of ore deposits was carried out by XRD (X-Ray Diffraction), XRF (X-Ray Fluorescence), SEM (Scanning Electron Microscope) attached with EDS (Energy Dispersive Spectroscope) and SM (Stereomicroscope) techniques. Results indicated that the Zard Koh ore is mainly composed of 60.15% maghemite, 23.57% pyrite, 4.07% chlorite, 10.30% grossular and 1.65% admontite minerals. The chemical analysis revealed that Zard Koh iron ore contains an average of 54.27% Fe, 12.73% S, 8.70% Si, 3.07% Al, 4.07% Ca, and 2.16% Mg. Similarly, the mineralogical study of the Kulli Koh iron ore indicated that, ore is containing 51.16% hematite, 29.24% quartz, 8.89% dravite, and 8.76% kaolinite minerals. Elemental analysis of different samples indicated that Kulli Koh iron ore contains an average composition of 40.23% Fe, 20.67% Si, 3.44% Ca, 3.81% Al and 3.25% Mg. Mineralogical study of the Zard Koh and Kulli Koh iron ore deposits suggested that these ore deposits can be beneficiated costeffectively by using magnetic separation techniques. (author)

  17. Formation and optical characterisation of colloidal gold monolayers

    NARCIS (Netherlands)

    Kooij, Ernst S.; Brouwer, E.A.M.; Wormeester, Herbert; Poelsema, Bene

    2003-01-01

    We study the deposition of charge-stabilised gold nanocolloids on silicon substrates, which have been derivatised with (aminopropyl)triethoxysilane. Atomic force microscopy (AFM) and spectroscopic ellipsometry are employed to investigate the nanocrystal monolayers ex situ. Analysis of AFM images

  18. Direct deposition of gold on silicon with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Irradiation with ions at very low energies (below 500 eV) no longer induces a removal of substrate material, but the ions are directly deposited on the surface. In this way, gold has been deposited on silicon with focused ion beam exposure and the properties of the film have been investigated with atomic force microscopy and Auger electron spectroscopy. (author) 3 figs., 1 ref.

  19. Rare Earths in fluorite deposits of Elika Formation (East of Mazandaran Province

    Directory of Open Access Journals (Sweden)

    Zahra Mehraban

    2016-07-01

    Full Text Available Introduction The Central Alborz in eastern Mazandaran province is host to the most important carbonate-hosted fluorite deposits in Iran, such as Pachi-Miana, Sheshroodbar, Era and Kamarposht. In these deposits, mineralization occurs in the upper parts of the middle Triassic Elika formation (Vahabzadeh et al., 2009 and references therein. These deposits have long been studied, and various models are presented for ore genesis. Nevertheless, ore genesis in these deposits is still unclear. The present study of the geochemistry of the REEs of these deposits is intended to improve genetic models. Materials and methods Three hundred samples were taken from above mentioned deposits. Samples were categorized into 5 groups: (1 fluorite ore types, (2 ore-stage calcite, (3 carbonate host rocks, (4 basaltic rock around the deposits, and (5 shale of the Shemshak formation. Fourteen pure fluorite samples, 4 samples of pure calcite, 4 samples of carbonate host rock, 1 sample of basalt and 1 sample of shale were analyzed for REEs by ICP-MS at West Lab in Australia. Results Analytical data on fluorite from the Elika deposits show very low REE concentrations (0.5-18ppm, in calcite(0.5-3ppm in carbonate host rocks – limestone (1.8-7ppm, and in dolomitic limestone 6.5ppm, compared with upper Triassic basalt (43ppm and shale (261ppm. REE in fluorite of these deposits are strongly enriched (10 3 to 10 6 times relative to normal sea water, ore stage calcite and carbonate host rocks, especially for mid-REEs (Eu, Gd and heavy REEs (Lu, Yb, La/Yb=~0.05. Also, LREEs depletion (La/Sm= 2-10 and HREEs (La/Yb=0.01-0.08 relatively enrichment of fluorites compared with limestone (La/Sm=2.5-4, La/Yb=0.1-1.5 and dolomitic limestone (La/Sm=4.28, La/Yb=0.07-0.4 host rocks as well as positive Eu anomaly are the most important REEs signatures in fluorites. Fluorite elsewhere in the world with low total REE conten thas been interpreted to have a sedimentary origin (Ronchi et al

  20. The relationship between depositional system and ore-formation of sandstone-type uranium deposits in Dongsheng area, Ordos basin

    International Nuclear Information System (INIS)

    Zhao Honggang; Ou Guangxi

    2006-01-01

    The analysis on depositional system plays a very important role in studying sandstone-type uranium deposits. Based on depositional system analysis and sequence stratigraphy, and through the study of depositional system characteristics and the spatial distribution of sedimentary facies, the evolution of sedimentary environments as well as the sequence stratigraphy of Zhiluo Formation in Dongsheng area, Ordos basin, authors have come to the following conclusions, (1) the spatial distribution of sand bodies is controlled by the planar distribution of sedimentary facies, which, in turn, affects the spatial distribution of ore-hosting sand bodies; (2) the evolution of sedimentary facies and sedimentary environments creates good lithofacies and lithological conditions favorable for interlayer oxidation; (3) the spatial lithologic combination of 'three layer structure' is controlled by sedimentary sequence. (authors)

  1. Spatio-selective surface modification of glass assisted by laser-induced deposition of gold nanoparticles

    International Nuclear Information System (INIS)

    Takahashi, Hironobu; Niidome, Yasuro; Hisanabe, Hideyuki; Kuroiwa, Keita; Kimizuka, Nobuo; Yamada, Sunao

    2006-01-01

    Using pulsed laser irradiation (532 nm), dodecanethiol-capped gold nanoparticles (DT-Au) were deposited on the laser-irradiated region of a hydrophobic glass substrate modified with dimethyloctadecylchlorosilane (DMOS). After removal of deposited DT-Au, the laser-deposited region on the substrate was hydrophilic, as verified by static water contact angles. X-ray photoelectron spectroscopy suggested that the naked glass surface was not exposed at the hydrophilic region. Immersion of the substrate into gold nanorod (NR) solution selectively immobilized NRs on the hydrophilic surface via electrostatic interactions, indicating that the hydrophilic region was an anionic surface. From these results, it is expected that some immobilized DMOS groups on the laser-irradiated region of the substrate were oxidized during DT-Au deposition and fragmentation of the deposited DT-Au

  2. Comparison of the surfaces and interfaces formed for sputter and electroless deposited gold contacts on CdZnTe

    Science.gov (United States)

    Bell, Steven J.; Baker, Mark A.; Duarte, Diana D.; Schneider, Andreas; Seller, Paul; Sellin, Paul J.; Veale, Matthew C.; Wilson, Matthew D.

    2018-01-01

    Cadmium zinc telluride (CdZnTe) is a leading sensor material for spectroscopic X/γ-ray imaging in the fields of homeland security, medical imaging, industrial analysis and astrophysics. The metal-semiconductor interface formed during contact deposition is of fundamental importance to the spectroscopic performance of the detector and is primarily determined by the deposition method. A multi-technique analysis of the metal-semiconductor interface formed by sputter and electroless deposition of gold onto (111) aligned CdZnTe is presented. Focused ion beam (FIB) cross section imaging, X-ray photoelectron spectroscopy (XPS) depth profiling and current-voltage (IV) analysis have been applied to determine the structural, chemical and electronic properties of the gold contacts. In a novel approach, principal component analysis has been employed on the XPS depth profiles to extract detailed chemical state information from different depths within the profile. It was found that electroless deposition forms a complicated, graded interface comprised of tellurium oxide, gold/gold telluride particulates, and cadmium chloride. This compared with a sharp transition from surface gold to bulk CdZnTe observed for the interface formed by sputter deposition. The electronic (IV) response for the detector with electroless deposited contacts was symmetric, but was asymmetric for the detector with sputtered gold contacts. This is due to the electroless deposition degrading the difference between the Cd- and Te-faces of the CdZnTe (111) crystal, whilst these differences are maintained for the sputter deposited gold contacts. This work represents an important step in the optimisation of the metal-semiconductor interface which currently is a limiting factor in the development of high resolution CdZnTe detectors.

  3. Correlations in distribution and concentration of calcium, copper and iron with zinc in isolated extracellular deposits associated with age-related macular degeneration

    Science.gov (United States)

    Flinn, Jane M; Kakalec, Peter; Tappero, Ryan; Jones, Blair F.; Lengyel, Imre

    2014-01-01

    Zinc (Zn) is abundantly enriched in sub-retinal pigment epithelial (RPE) deposits, the hallmarks of age-related macular degeneration (AMD), and is thought to play a role in the formation of these deposits. However, it is not known whether Zn is the only metal relevant for sub-RPE deposit formation. Because of their involvement in the pathogenesis of AMD, we determined the concentration and distribution of calcium (Ca), iron (Fe) and copper (Cu) and compared these with Zn in isolated and sectioned macular (MSD), equatorial (PHD) and far peripheral (FPD) sub-RPE deposits from an 86 year old donor eye with post mortem diagnosis of early AMD. The sections were mounted on Zn free microscopy slides and analyzed by microprobe synchrotron X-ray fluorescence (μSXRF). Metal concentrations were determined using spiked sectioned sheep brain matrix standards, prepared the same way as the samples. The heterogeneity of metal distributions was examined using pixel by pixel comparison. The orders of metal concentrations were Ca ⋙ Zn > Fe in all three types of deposits but Cu levels were not distinguishable from background values. Zinc and Ca were consistently present in all deposits but reached highest concentration in MSD. Iron was present in some but not all deposits and was especially enriched in FPD. Correlation analysis indicated considerable variation in metal distribution within and between sub-RPE deposits. The results suggest that Zn and Ca are the most likely contributors to deposit formation especially in MSD, the characteristic risk factor for the development of AMD in the human eye.

  4. Two-stage structural development of a Paleozoic auriferous shear zone at the Globe-Progress deposit, Reefton, New Zealand

    International Nuclear Information System (INIS)

    Milham, L.; Craw, D.

    2009-01-01

    The Globe-Progress gold deposit at Reefton is hosted in a curvilinear mineralised zone that cuts Paleozoic Greenland Group basement metagreywackes. Two discrete phases of mineralisation have resulted in the formation of five different ore types along the shear. An initial phase of mineralisation formed hydrothermal quartz veins and associated Au, As, and S enrichment, with low-grade mineralised host rock. These quartz veins and mineralised host rocks form the outer regions of the mineralised zone. A second hydrothermal phase introduced Sb, Au, As, and S during brittle shear deformation focused on the pre-existing mineralised rocks. This deformation and mineralisation resulted in the formation of metre-scale cataclasite ore and quartz breccia from mineralised host rock and hydrothermal quartz veins, respectively. Cataclasite was derived from argillite layers in the host rock, from which Na, Fe, and Mg have been leached during mineralisation; Al, Ti, and Cr have been conserved; and there has been minor enrichment in Sr, Pb, Zn, and Cu. No quartz was added to the cataclasite or quartz breccia during mineralisation, but some quartz recrystallisation occurred locally, and quartz clasts were physically incorporated into the cataclasite during deformation. The presence of euhedral sulfides in the cataclasite (40% of total sulfides), late-stage undeformed stibnite veins infilling breccia (1-5 cm 3 scale), and undeformed free gold in quartz breccia, imply that the second phase of mineralisation persisted both during and after cataclasis and brecciation. Antimony deposition is greatest in the central cataclasite, up to 6 wt%, and locally in the quartz breccia where stibnite veins are present. Concentrations of Sb decrease with distance from the shear zone. The second, Sb-rich phase of mineralisation in the Globe-Progress deposit resembles similar Sb-rich overprints in the correlative Victorian goldfield of Australia. (author). 38 refs., 10 figs., 1 tab.

  5. Isotopic data from proterozoic sediment-hosted sulfide deposits of Brazil: Implications for their metallogenic evolution and for mineral exploration

    International Nuclear Information System (INIS)

    Misi, Aroldo; Coelho, Carlos E.S.; Franca Rocha, Washington J.S.; Gomez, Adriana S.R.; Cunha, Iona A.; Iyer, Sundaram S.; Tassinari, Colombo C.G.; Kyle, J. Richard

    1998-01-01

    Geological, petrographic, fluid inclusions studies and isotopic data of seven Proterozoic sediment-hosted Pb-Zn-Ag sulfide deposits of Brazil, permit the estimation of the age of the hosting sequence and the mineralization, the nature of the sulfur and metal sources, the temperature range of sulfide formation and the environment of deposition of the mineral deposits. The studies suggest that they were formed during periods of extensional tectonics: Growth faults or reactivated basement faults were responsible for localized circulation of metal-bearing fluids within the sedimentary sequences. In most cases, sulfides were formed by the reduction of sedimentary sulfates. Linear structures are important controls for sulfide concentration in these Proterozoic basins. (author)

  6. Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization

    International Nuclear Information System (INIS)

    Neri, G.; Visco, A.M.; Galvagno, S.; Donato, A.; Panzalorto, M.

    1999-01-01

    Gold on iron oxides catalysts have been characterized by temperature programmed reduction (TPR) and X-ray diffraction spectroscopy (XRD). The influence of preparation method, gold loading and pretreatment conditions on the reducibility of iron oxides have been investigated. On the impregnated Au/iron oxide catalysts as well as on the support alone the partial reduction of Fe(III) oxy(hydroxides) to Fe 3 O 4 starts in the 550 and 700 K temperature range. On the coprecipitated samples, the temperature of formation of Fe 3 O 4 is strongly dependent on the presence of gold. The reduction temperature is lowered as the gold loading is increased. The reduction of Fe 3 O 4 to FeO occurs at about 900 K and is not dependent on the presence of gold and the preparation method. It is suggested that the effect of gold on the reducibility of the iron oxides is related to an increase of the structural defects and/or of the surface hydroxyl groups. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. The Geometry and Structural Analysis of the Gold Deposits of ...

    African Journals Online (AJOL)

    Michael

    2016-12-02

    Dec 2, 2016 ... 1Chirano Gold Mines Limited, Kinross Company, Chirano, Ghana .... the Tarkwaian sedimentary rocks, comprises open, gently N-S ... from 2006 – 2010, deposit scale pit maps, trench .... 12 Plan Section of Akoti Fault showing.

  8. Mineralogical Study of Zard Koh and Kulli Koh Iron Ore Deposits of Pakistan

    Directory of Open Access Journals (Sweden)

    SULTAN AHMED KHOSO

    2017-10-01

    Full Text Available Zard Koh and Kulli Koh are two recently discovered iron ore deposits, existing in the Chagai district, Balochistan, Pakistan. PSM (Pakistan Steel Mill Limited is interested to utilize these ore deposits at priority. Purpose of the present study was to assess the mineralogy of the Zard Koh and Kulli Koh iron ore deposits, as it plays a vital role in the selection of an appropriate processing method. The mineralogical study of ore deposits was carried out by XRD (X-Ray Diffraction, XRF (X-Ray Fluorescence, SEM (Scanning Electron Microscope attached with EDS (Energy Dispersive Spectroscope and SM (Stereomicroscope techniques. Results indicated that the Zard Koh ore is mainly composed of 60.15% maghemite, 23.57% pyrite, 4.07% chlorite, 10.30% grossular and 1.65% admontite minerals. The chemical analysis revealed that Zard Koh iron ore contains an average of 54.27% Fe, 12.73% S, 8.70% Si, 3.07% Al, 4.07% Ca, and 2.16% Mg. Similarly, the mineralogical study of the Kulli Koh iron ore indicated that, ore is containing 51.16% hematite, 29.24% quartz, 8.89% dravite, and 8.76% kaolinite minerals. Elemental analysis of different samples indicated that Kulli Koh iron ore contains an average composition of 40.23% Fe, 20.67% Si, 3.44% Ca, 3.81% Al and 3.25% Mg. Mineralogical study of the Zard Koh and Kulli Koh iron ore deposits suggested that these ore deposits can be beneficiated costeffectively by using magnetic separation techniques.

  9. The Archaean Granny Smith gold deposit, western Australia: age and Pb-isotope tracer studies

    International Nuclear Information System (INIS)

    Ojala, V.J.; McNaughton, N.J.; Groves, D.I.; Ridley, J.R.; Fanning, C.M.

    1997-01-01

    The Granny Smith gold deposits are situated within a greenstone sequence in the Laverton-Leonora area of the Northeastern Goldfields Province of the Archaean Yilgarn Block, Western Australia. The greenstone sequence (U-Pb zircon age of 2677±6 Ma, felsic pyroclastic rock) was intruded by the Granny Smith Granodiorite at 2665±4 Ma. Gold mineralisation is located along a reactivated N-S Stricking, thrust which wraps around the granitoid intrusion, and within the granitoid intrusion. Initial lead-isotope compositions of the Granny Smith Granodiorite and ore-fluid Pb, estimated from K-feldspar and galena and lead tellurides, respectively, are slightly different. Calculations based on Pb isotope data for the host rocks, and the U-Pb zircon age of the Granny Smith Granodiorite, suggest that ore-fluid Pb was derived from a source with a similar initial lead-isotopic composition to the source of the Granny Smith Granodiorite but about 30 million years after the intrusion of the granitoid. The Pb-isotope data for granitoids of the Northeastern Goldfields fall in a distinct field different to that of the granitoids of the Norseman area and those from Kambalda to Menzies. (authors)

  10. Deposition of gold nanoparticles from colloid on TiO2 surface

    Science.gov (United States)

    Rehacek, Vlastimil; Hotovy, Ivan

    2017-11-01

    In this paper, experimental results are presented on the deposition of colloidal gold nanoparticles on the surfaces of TiO2 prepared on silicon/silicon dioxide. Important procedures, such as titanium dioxide surface hydrophilization as well as functionalization by an organosilane coupling agent (3-aminopropyl) trimethoxysilane and (3-mercaptopropyl) trimethoxysilane were investigated in order to obtain a metal oxide surface with the most convenient properties for immobilization of gold nanoparticles having a dense and uniform distribution. TiO2 nanotips prepared by reactive ion etching of oxide surface covered with self-mask gold nanoparticles are demonstrated.

  11. The effects of metamorphism on iron mineralogy and the iron speciation redox proxy

    Science.gov (United States)

    Slotznick, Sarah P.; Eiler, John M.; Fischer, Woodward W.

    2018-03-01

    As the most abundant transition metal in the Earth's crust, iron is a key player in the planetary redox budget. Observations of iron minerals in the sedimentary record have been used to describe atmospheric and aqueous redox environments over the evolution of our planet; the most common method applied is iron speciation, a geochemical sequential extraction method in which proportions of different iron minerals are compared to calibrations from modern sediments to determine water-column redox state. Less is known about how this proxy records information through post-depositional processes, including diagenesis and metamorphism. To get insight into this, we examined how the iron mineral groups/pools (silicates, oxides, sulfides, etc.) and paleoredox proxy interpretations can be affected by known metamorphic processes. Well-known metamorphic reactions occurring in sub-chlorite to kyanite rocks are able to move iron between different iron pools along a range of proxy vectors, potentially affecting paleoredox results. To quantify the effect strength of these reactions, we examined mineralogical and geochemical data from two classic localities where Silurian-Devonian shales, sandstones, and carbonates deposited in a marine sedimentary basin with oxygenated seawater (based on global and local biological constraints) have been regionally metamorphosed from lower-greenschist facies to granulite facies: Waits River and Gile Mountain Formations, Vermont, USA and the Waterville and Sangerville-Vassalboro Formations, Maine, USA. Plotting iron speciation ratios determined for samples from these localities revealed apparent paleoredox conditions of the depositional water column spanning the entire range from oxic to ferruginous (anoxic) to euxinic (anoxic and sulfidic). Pyrrhotite formation in samples highlighted problems within the proxy as iron pool assignment required assumptions about metamorphic reactions and pyrrhotite's identification depended on the extraction techniques

  12. Genetic Aspects of Gold Mineralization at Some Occurrences in the Eastern Desert of Egypt

    Science.gov (United States)

    Abd El Monsef, M.; Slobodník, M.; Salem, I. A.

    2012-04-01

    The Eastern Desert of Egypt is well known as a gold-mining area since ancient times, there're more than 95 gold deposits and occurrences spread the whole area covered by the basement rocks of Precambrian age. The basement rocks of the Eastern Desert of Egypt constitute the Nubian Shield that has formed a continuous part of the Arabian-Nubian Shield before the opening of Red Sea (Oligocene-Early Miocene). Commonly, the system of gold-bearing quartz veins in the Eastern Desert is clearly structural controlled related to brittle-ductile shear zones that mostly developed during late deformational stages of the evolution history for basement rocks in the Eastern Desert. This running study principally aims to contribute the mineral resource potential of the gold deposits in Egypt, so particularly Fatira, Gidami and Atalla occurrences have been involved into a comprehensive study based on field, structural, mineralogical, geochemical and genetic investigations. It is intended to better understanding for the characteristics, distribution controls, conditions and age of mineralization in relation to the age of the hosting rocks intrusion to find if there're genetic links between the gold mineralization and the evolution of the host intrusive complex. Several authors suggested that the gold mineralization was related to the intrusion of the (postorogenic) Younger granites. Other authors interpret these deposits as products of hydrothermal activity induced either by metamorphism or cooling effects of early Paleozoic magmatism or as combined metamorphic/magmatic episodes. The prime focus will be directed to the ore itself and the associated hydrothermal alteration zones based on detailed maps and well-distributed samples network and geochemical anomalies distribution. The laboratory studies included microscopic examination (reflecting and transmitting microscopy) to allow for determination of the hosting rocks types and mineralogical changes related to the gold mineralization

  13. Multiple fluid sources/pathways and severe thermal gradients during formation of the Jílové orogenic gold deposit, Bohemian Massif, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Zachariáš, J.; Žák, Karel; Pudilová, M.; Snee, L. W.

    2013-01-01

    Roč. 54, October (2013), s. 81-109 ISSN 0169-1368 Institutional research plan: CEZ:AV0Z30130516 Institutional support: RVO:67985831 Keywords : Orogenic gold deposits * Carbon isotopes * Oxygen isotopes * Bismuth * Age * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.383, year: 2013

  14. Gold coated metal nanostructures grown by glancing angle deposition and pulsed electroplating

    Science.gov (United States)

    Grüner, Christoph; Reeck, Pascal; Jacobs, Paul-Philipp; Liedtke, Susann; Lotnyk, Andriy; Rauschenbach, Bernd

    2018-05-01

    Nickel based nanostructures are grown by glancing angle deposition (GLAD) on flat and pre-patterned substrates. These fabricated porous thin films were subsequently coated by pulsed electroplating with gold. The morphology and conformity of the gold coating were investigated by scanning electron microscopy and X-ray diffraction. Controlled growth of closed gold layers on the nanostructures could be achieved, while the open-pore structure of the nanosculptured thin films was preserved. Such gold coated nanostructures are a candidate for optical sensing and catalysis applications. The demonstrated method can be applied for numerous material combinations, allowing to provide GLAD thin films with new surface properties.

  15. Increased iron sequestration in alveolar macrophages in chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Quentin Philippot

    Full Text Available Free iron in lung can cause the generation of reactive oxygen species, an important factor in chronic obstructive pulmonary disease (COPD pathogenesis. Iron accumulation has been implicated in oxidative stress in other diseases, such as Alzheimer's and Parkinson's diseases, but little is known about iron accumulation in COPD. We sought to determine if iron content and the expression of iron transport and/or storage genes in lung differ between controls and COPD subjects, and whether changes in these correlate with airway obstruction. Explanted lung tissue was obtained from transplant donors, GOLD 2-3 COPD subjects, and GOLD 4 lung transplant recipients, and bronchoalveolar lavage (BAL cells were obtained from non-smokers, healthy smokers, and GOLD 1-3 COPD subjects. Iron-positive cells were quantified histologically, and the expression of iron uptake (transferrin and transferrin receptor, storage (ferritin and export (ferroportin genes was examined by real-time RT-PCR assay. Percentage of iron-positive cells and expression levels of iron metabolism genes were examined for correlations with airflow limitation indices (forced expiratory volume in the first second (FEV1 and the ratio between FEV1 and forced vital capacity (FEV1/FVC. The alveolar macrophage was identified as the predominant iron-positive cell type in lung tissues. Furthermore, the quantity of iron deposit and the percentage of iron positive macrophages were increased with COPD and emphysema severity. The mRNA expression of iron uptake and storage genes transferrin and ferritin were significantly increased in GOLD 4 COPD lungs compared to donors (6.9 and 3.22 fold increase, respectively. In BAL cells, the mRNA expression of transferrin, transferrin receptor and ferritin correlated with airway obstruction. These results support activation of an iron sequestration mechanism by alveolar macrophages in COPD, which we postulate is a protective mechanism against iron induced oxidative

  16. Evaluation of Uranium depositional system in sedimentary rocks of Sibolga formation, Tapanuli Tengah

    International Nuclear Information System (INIS)

    I Gde Sukadana; Heri Syaeful

    2016-01-01

    Uranium in nature formed in various deposit type, depends on its sources, process, and depositional environments. Uranium occurrence in Sibolga, hosted in sedimentary rocks of Sibolga Formation, is properly potential to develop; nevertheless, the depositional pattern and uranium mineralization process so far had not been recognized. The research aim is to determine the rock distribution patterns and the existence of uranium grade anomalies based on surface geology and borehole log data. Mineralization occurrences from borehole log data distributed from basalt conglomerate unit (Kgl 1), sandstone 1 unit (Bp 1), conglomerate 2 unit (Kgl 2), and sandstone 2 unit (Bp 2) with their distribution and thickness are thinning to the top. Mineralization distribution in the eastern area, mainly on Kgl 1 unit, dominated by detritus materials from epi-genetic depositional in the form of monazite which is formed along with the formation of granite as its source rock. Meanwhile, mineralization on the upper rocks units formed a channel pattern trending northeast-southwest, which formed in syn-genetic process consist of uraninite, carnotite, and coffinite. Sibolga Formation deposition originated from east to west and uranium deposit formed because of the differences of depositional environment from oxidation in the east to the more reductive in the southwest. The increasing of organic materials in southwest basin caused the reduction condition of depositional environment. (author)

  17. Rapid Nanoprobe Signal Enhancement by In Situ Gold Nanoparticle Synthesis.

    Science.gov (United States)

    Dias, Jorge T; Svedberg, Gustav; Nystrand, Mats; Andersson-Svahn, Helene; Gantelius, Jesper

    2018-03-07

    The use of nanoprobes such as gold, silver, silica or iron-oxide nanoparticles as detection reagents in bioanalytical assays can enable high sensitivity and convenient colorimetric readout. However, high densities of nanoparticles are typically needed for detection. The available synthesis-based enhancement protocols are either limited to gold and silver nanoparticles or rely on precise enzymatic control and optimization. Here, we present a protocol to enhance the colorimetric readout of gold, silver, silica, and iron oxide nanoprobes. It was observed that the colorimetric signal can be improved by up to a 10000-fold factor. The basis for such signal enhancement strategies is the chemical reduction of Au 3+ to Au 0 . There are several chemical reactions that enable the reduction of Au 3+ to Au 0 . In the protocol, Good's buffers and H2O2 are used and it is possible to favor the deposition of Au 0 onto the surface of existing nanoprobes, in detriment of the formation of new gold nanoparticles. The protocol consists of the incubation of the microarray with a solution consisting of chloroauric acid and H2O2 in 2-(N-morpholino)ethanesulfonic acid pH 6 buffer following the nanoprobe-based detection assay. The enhancement solution can be applied to paper and glass-based sensors. Moreover, it can be used in commercially available immunoassays as demonstrated by the application of the method to a commercial allergen microarray. The signal development requires less than 5 min of incubation with the enhancement solution and the readout can be assessed by naked eye or low-end image acquisition devices such as a table-top scanner or a digital camera.

  18. Corneal iron ring after conductive keratoplasty.

    Science.gov (United States)

    Kymionis, George D; Naoumidi, Tatiana L; Aslanides, Ioannis M; Pallikaris, Ioannis G

    2003-08-01

    To report formation of corneal iron ring deposits after conductive keratoplasty. Observational case report. Case report. A 54-year-old woman underwent conductive keratoplasty for hyperopia. One year after conductive keratoplasty, iron ring pattern pigmentation was detected at the corneal epithelium of both eyes. This is the first report of the appearance of corneal iron ring deposits following conductive keratoplasty treatment in a patient. It is suggested that alterations in tear film stability, resulting from conductive keratoplasty-induced changes in corneal curvature, constitute the contributory factor for these deposits.

  19. Magnetic, radiometric and gravity signatures of localities of epithermal gold deposits in Fiji

    International Nuclear Information System (INIS)

    Gunn, Peter J.; Mackey, Tim; Meixner, Tony J.

    1998-01-01

    Fiji contains several epithermal gold deposits and by studying the geophysical responses in the vicinity of these deposits it is possible to identify a set of geophysical characteristics which indicate localities where such deposits may be located. Epithermal gold deposits are formed above intrusive stocks resulting from subduction processes. The source intrusions for the deposits are normally covered by lavas and pyroclastic rocks and the irregular magnetic effects of these units obscure the magnetic effects of the intrusions. In Fiji however the source intrusions can be recognized as causing gravity highs and magnetic highs in upward continued magnetic data in which the magnetic effects of volcanic rocks are suppressed. Vents associated with the intrusions can be recognized as magnetic lows which sometimes contain a central high. Some vents and calderas can be recognized in digital elevation data. Increased potassium concentrations ca be interpreted to indicate potassium alteration associated with mineralizing processes. Fractures that may localize epithermal deposits can be recognized in the magnetic data and enhancements of the data such as produced by derivative operations. (author)

  20. Depositional environments of the uranium bearing Cutler Formations, Lisbon Valley, Utah

    International Nuclear Information System (INIS)

    Campbell, J.A.; Steele-Mallory, B.A.

    1979-01-01

    The Cutler Formation in Lisbon Valley, San Juan County, Utah, is composed predominantly of fluvial arkosic sandstones, siltstones, shales, and mudstones that were deposited by meandering streams that flowed across a flood plain and tidal flat close to sea level. Two types of channel deposits are recognized from their sedimentary structures: meandering and distributary. The flood plain was occasionally transgressed by a shallow sea from the west, resulting in the deposition of several thin limestones and marine sandstones. The marine sandstones were deposited as longshore bars. Wind transported sand along the shoreline of the shallow sea, forming a coastal dune field. Marine sandstones and eolian sandstones are more common in the upper Cutler in the southern part of the area, whereas in the central and northern part of the area the formation is predominantly fluvial. Crossbed orientation indicates that Cutler streams flowed S. 67 0 W. on the average, whereas marine currents moved sediment S. 36 0 E. and N. 24 0 W., and wind transported sand S. 80 0 E. The uranium in the Cutler is found in the central and northern part of the area, in the upper part of the formation, in small fluvial sandstone bodies that were deposited predominantly in a distributary environment. No uranium is known in the marine or eolian sandstones. Petrographically, the uranium-bearing sandstones are identical to other Cutler fluvial sandstones except that they contain less calcite and more clay and are slightly coarser grained. Ore formation has modified the host sandstones very little

  1. Depositional environments of the uranium-bearing Cutler Formations, Lisbon Valley, Utah

    Science.gov (United States)

    Campbell, John A.; Steele-Mallory, Brenda A.

    1979-01-01

    The Cutler Formation in Lisbon Valley, San Juan County, Utah, is composed predominantly of fluvial arkosic sandstones, siltstones, shales, and mudstones that were deposited by meandering streams that flowed across a flood plain and tidal flat close to sea level. Two types of channel deposits are recognized from their sedimentary structures: meandering and distributary. The flood plain was occasionally transgressed by a shallow sea from the west, resulting in the deposition of several thin limestones and marine sandstones. The marine sandstones were deposited as longshore bars. Wind transported sand along the shoreline of the shallow sea, forming a coastal dune field. Marine sandstones and eolian sandstones are more common in the upper Cutler in the southern part of the area, whereas in the central and northern part of the area the formation is predominantly fluvial. Crossbed orientation indicates that Cutler streams flowed S. 67? W. on the the average, whereas marine currents moved sediment S. 36? E. and N. 24? W., and wind transported sand S. 800 E. The uranium in the Cutler is found in the central and northern part of the area, in the upper part of the formation, in small fluvial sandstone bodies that were deposited predominantly in a distributary environment. No uranium is known in the marine or eolian sandstones. Petrographically, the uranium-bearing sandstones are identical to other Cutler fluvial sandstones except that they contain less calcite and more clay and are slightly coarser grained. Ore formation has modified the host sandstones very little.

  2. Effects of the thickness of gold deposited on a source backing film in the 4πβ-counting

    International Nuclear Information System (INIS)

    Miyahara, Hiroshi; Yoshida, Makoto; Watanabe, Tamaki

    1976-01-01

    A gold deposited VYNS film as a source backing in the 4πβ-counting has generally been used for reducing the absorption of β-rays. The thickness of the film with the gold is usually a few times thicker than the VYNS film itself. However, Because the appropriate thickness of gold has not yet been determined, the effects of gold thickness on electrical resistivity, plateau characteristics and β-ray counting efficiency were studied. 198 Au (960 keV), 60 Co(315 keV), 59 Fe(273 keV) and 95 Nb(160 keV), which were prepared as sources by the aluminium chloride treatment method, were used. Gold was evaporated under a deposition rate of 1 - 5 μg/cm 2 /min at a pressure less than 1 x 10 -5 Torr. Results show that the gold deposition on the side opposite the source after source preparation is essential. In this case, a maximum counting efficiency is obtained at the mean thickness of 2 μg/cm 2 . When gold is deposited only on the same side as the source, a maximum counting efficiency, which is less than that in the former case, is obtained at the mean thickness of 20 μg/cm 2 . (Evans, J.)

  3. Fe-O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits

    Science.gov (United States)

    Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Lundstrom, Craig C.; Gajos, Norbert; Bindeman, Ilya; Barra, Fernando; Munizaga, Rodrigo

    2016-03-01

    Iron oxide-apatite (IOA) ore deposits occur globally and can host millions to billions of tons of Fe in addition to economic reserves of other metals such as rare earth elements, which are critical for the expected growth of technology and renewable energy resources. In this study, we pair the stable Fe and O isotope compositions of magnetite samples from several IOA deposits to constrain the source reservoir of these elements in IOAs. Since magnetite constitutes up to 90 modal% of many IOAs, identifying the source of Fe and O within the magnetite may elucidate high-temperature and/or lower-temperature processes responsible for their formation. Here, we focus on the world-class Los Colorados IOA in the Chilean iron belt (CIB), and present data for magnetite from other Fe oxide deposits in the CIB (El Laco, Mariela). We also report Fe and O isotopic values for other IOA deposits, including Mineville, New York (USA) and the type locale, Kiruna (Sweden). The ranges of Fe isotopic composition (δ56Fe, 56Fe/54Fe relative to IRMM-14) of magnetite from the Chilean deposits are: Los Colorados, δ56Fe (±2σ) = 0.08 ± 0.03‰ to 0.24 ± 0.08‰; El Laco, δ56Fe = 0.20 ± 0.03‰ to 0.53 ± 0.03‰; Mariela, δ56Fe = 0.13 ± 0.03‰. The O isotopic composition (δ18O, 18O/16O relative to VSMOW) of the same Chilean magnetite samples are: Los Colorados, δ18O (±2σ) = 1.92 ± 0.08‰ to 3.17 ± 0.03‰; El Laco, δ18O = 4.00 ± 0.10‰ to 4.34 ± 0.10‰; Mariela, δ18O = (1.48 ± 0.04‰). The δ18O and δ56Fe values for Kiruna magnetite yield an average of 1.76 ± 0.25‰ and 0.16 ± 0.07‰, respectively. The Fe and O isotope data from the Chilean IOAs fit unequivocally within the range of magnetite formed by high-temperature magmatic or magmatic-hydrothermal processes (i.e., δ56Fe 0.06-0.49‰ and δ18O = 1.0-4.5‰), consistent with a high-temperature origin for Chilean IOA deposits. Additionally, minimum formation temperatures calculated by using the measured Δ18O

  4. Nature, diversity of deposit types and metallogenic relations of South China

    Science.gov (United States)

    Zaw, K.; Peters, S.G.; Cromie, P.; Burrett, C.; Hou, Z.

    2007-01-01

    The South China Region is rich in mineral resources and has a wide diversity of deposit types. The region has undergone multiple tectonic and magmatic events and related metallogenic processes throughout the earth history. These tectonic and metallogenic processes were responsible for the formation of the diverse styles of base and precious metal deposits in South China making it one of the resource-rich regions in the world. During the Proterozoic, the South China Craton was characterised by rifting of continental margin before eruption of submarine volcanics and development of platform carbonate rocks, and the formation of VHMS, stratabound copper and MVT deposits. The Phanerozoic metallogeny of South China was related to opening and closing of the Tethyan Ocean involving multiple orogenies by subduction, back-arc rifting, arc-continent collision and post-collisional extension during the Indosinian (Triassic), Yanshanian (Jurassic to Cretaceous) and Himalayan (Tertiary) Orogenies. The Late Palaeozoic was a productive metallogenic period for South China resulting from break-up and rifting of Gondwana. Significant stratabound base and precious metal deposits were formed during the Devonian and Carboniferous (e.g., Fankou and Dabaoshan deposits). These Late Palaeozoic SEDEX-style deposits have been often overprinted by skarn systems associated with Yanshanian magmatism (e.g., Chengmenshan, Dongguashan and Qixiashan). A number of Late Palaeozoic to Early Mesozoic VHMS deposits also developed in the Sanjiang fold belt in the western part of South China (e.g., Laochang and Gacun). South China has significant sedimentary rock-hosted Carlin-like deposits, which occur in the Devonian- to Triassic-aged accretionary wedge or rift basins at the margin of the South China Craton. They are present in a region at the junction of Yunnan, Guizhou, and Guangxi Provinces called the 'Southern Golden Triangle', and are also present in NW Sichuan, Gansu and Shaanxi, in an area known as

  5. Methods of preparing deposits containing iron oxides for recycling

    Directory of Open Access Journals (Sweden)

    T. Lis

    2013-04-01

    Full Text Available The metallurgical industry is one of the largest sources of wastes. Some of them, however, owing to their content of metals such as zinc or iron, may become valuable secondary raw materials. In order to achieve that purpose, they require appropriate preparation. This article provides a discussion on the methods of preparation of scrap from steelworks, namely deposits containing iron oxides, enabling their recycling.

  6. High density gold nanoparticles immobilized on surface via plasma deposited APTES film for decomposing organic compounds in microchannels

    Science.gov (United States)

    Rao, Xi; Guyon, Cédric; Ognier, Stephanie; Da Silva, Bradley; Chu, Chenglin; Tatoulian, Michaël; Hassan, Ali Abou

    2018-05-01

    Immobilization of colloidal particles (e.g. gold nanoparticles (AuNps)) on the inner surface of micro-/nano- channels has received a great interest for catalysis. A novel catalytic ozonation setup using a gold-immobilized microchannel reactor was developed in this work. To anchor AuNps, (3-aminopropyl) triethoxysilane (APTES) with functional amine groups was deposited using plasma enhanced chemical vapor deposition (PECVD) process. The results clearly evidenced that PECVD processing exhibited relatively high efficiency for grafting amine groups and further immobilizing AuNPs. The catalytic activity of gold immobilized microchannel was evaluated by pyruvic acid ozonation. The decomposition rate calculated from High Performance Liquid Chromatography (HPLC) indicated a much better catalytic performance of gold in microchannel than that in batch. The results confirmed immobilizing gold nanoparticles on plasma deposited APTES for preparing catalytic microreactors is promising for the wastewater treatment in the future.

  7. Reconnaissance investigation of the placer gold deposits in the Zarkashan Area of Interest, Ghazni Province, Afghanistan

    Science.gov (United States)

    Malpeli, Katherine C.; Chirico, Peter G.; McLoughlin, Isabel H.

    2013-01-01

    This study is a reconnaissance investigation of the placer gold deposits in the Zarkashan Area of Interest (AOI) in Ghazni Province, Afghanistan. Detailed investigations of the Zarkashan gold deposits were conducted by Soviet and Afghan geologists in the 1960s and 1970s, prior to the development of satellite-based remote-sensing platforms and new methods of geomorphic mapping. The purpose of this study was to integrate new mapping techniques with previously collected concentration and borehole sampling data and geomorphologic interpretations to reassess the placer gold deposits in the Zarkashan AOI. A methodology combining the collection and analysis of historical sampling data, digital database development, hydrologic analysis, and geomorphic modeling was used. The analysis led to the reinterpretation of four gold-bearing seams along the Zarkashan River, and the calculation of an estimated gold reserve of approximately 3,000 kilograms (kg). This estimate is approximately 1,500 kg greater than the Soviet estimate. The result differs in large part due to the reinterpretation of the seams based on a much lower cutoff grade of 100 mg/m3. Because cutoff grade is dependent in part on the price of gold, the sevenfold increase in the price of gold since the undertaking of the Soviet investigation warranted our re-evaluation of their 500 mg/m3 cutoff grade.

  8. Visualization of red-ox proteins on the gold surface using enzymatic polypyrrole formation

    International Nuclear Information System (INIS)

    Ramanaviciene, A.; Kausaite-Minkstimiene, A.; Voronovic, J.; Ramanavicius, A.; Oztekin, Y.; Carac, G.; German, N.

    2011-01-01

    We describe a new method for the visualization of the activity of red-ox proteins on a gold interface. Glucose oxidase was selected as a model system. Surfaces were modified by adhesion of glucose oxidase on (a) electrochemically cleaned gold; (b) gold films modified with gold nanoparticles, (c) a gold surface modified with self-assembled monolayer, and (d) covalent immobilization of protein on the gold surface modified with a self-assembled monolayer. The simple optical method for the visualization of enzyme on the surfaces is based on the enzymatic formation of polypyrrole. The activity of the enzyme was quantified via enzymatic formation of polypyrrole, which was detected and investigated by quartz microbalance and amperometric techniques. The experimental data suggest that the enzymatic formation of the polymer may serve as a method to indicate the adhesion of active redox enzyme on such surfaces. (author)

  9. Interaction between gold (III) chloride and potassium hexacyanoferrate (II/III)-Does it lead to gold analogue of Prussian blue?

    Energy Technology Data Exchange (ETDEWEB)

    Harish, S. [Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu (India); Joseph, James, E-mail: jameskavlam@yahoo.com [Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu (India); Phani, K.L.N. [Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu (India)

    2011-06-30

    Highlights: > In group IB, Cu and Ag form Prussian blue analogues but similar formation of gold hexacyanoferrate was not found in the literature and non-existence of gold hexacyanoferrate remains a mystery. > Potential cycling of gold chloride and potassium ferro/ferri cyanide was resulted in the formation of Au-PB nano-composite. > Redox reaction between gold chloride and potassium ferrocyanide ion is spontaneous but no reaction occurs when gold chloride and potassium ferricyanide is mixed. > We are proposing the formation of a compound with general formula 'KFe{sub x}[Au(CN){sub 2}]{sub y}' and discussing the formation of gold hexacyanoferrate is not feasible by simple chemical or electrochemical reaction in contrast to other PB analogues. - Abstract: Prussian blue analogues are a class of compounds formed by the reaction between metal salt and potassium hexacyanoferrate (II/III). In our earlier report, the formation of Au-Prussian blue nano-composite was noticed on potential cycling the glassy carbon electrode in a medium containing gold (III) chloride and potassium hexacyanoferrate (III). Hence in this work, the formation of gold hexacyanoferrate was attempted by a simple chemical reaction. The reaction of gold (III) chloride with potassium hexacyanoferrate (II/III) was examined by UV-Vis spectroscopy and found that there is no redox reaction between gold (III) chloride and potassium hexacyanoferrate (III). However, the redox reaction occurs between gold (III) chloride and potassium hexacyanoferrate (II) leading to the formation of charge transfer band and the conversion of hexacyanoferrate (II) to hexacyanoferrate (III) was evidenced by the emergence of new absorption peaks in UV-Vis spectra. The oxidation state of gold in Au-Fe complex was found to be +1 from X-ray photoelectron spectroscopy. The stability of the Au-Fe complex was also studied by cyclic voltammetry. Cyclic voltammetric results indicated the presence of high spin iron in Au

  10. Interaction between gold (III) chloride and potassium hexacyanoferrate (II/III)-Does it lead to gold analogue of Prussian blue?

    International Nuclear Information System (INIS)

    Harish, S.; Joseph, James; Phani, K.L.N.

    2011-01-01

    Highlights: → In group IB, Cu and Ag form Prussian blue analogues but similar formation of gold hexacyanoferrate was not found in the literature and non-existence of gold hexacyanoferrate remains a mystery. → Potential cycling of gold chloride and potassium ferro/ferri cyanide was resulted in the formation of Au-PB nano-composite. → Redox reaction between gold chloride and potassium ferrocyanide ion is spontaneous but no reaction occurs when gold chloride and potassium ferricyanide is mixed. → We are proposing the formation of a compound with general formula 'KFe x [Au(CN) 2 ] y ' and discussing the formation of gold hexacyanoferrate is not feasible by simple chemical or electrochemical reaction in contrast to other PB analogues. - Abstract: Prussian blue analogues are a class of compounds formed by the reaction between metal salt and potassium hexacyanoferrate (II/III). In our earlier report, the formation of Au-Prussian blue nano-composite was noticed on potential cycling the glassy carbon electrode in a medium containing gold (III) chloride and potassium hexacyanoferrate (III). Hence in this work, the formation of gold hexacyanoferrate was attempted by a simple chemical reaction. The reaction of gold (III) chloride with potassium hexacyanoferrate (II/III) was examined by UV-Vis spectroscopy and found that there is no redox reaction between gold (III) chloride and potassium hexacyanoferrate (III). However, the redox reaction occurs between gold (III) chloride and potassium hexacyanoferrate (II) leading to the formation of charge transfer band and the conversion of hexacyanoferrate (II) to hexacyanoferrate (III) was evidenced by the emergence of new absorption peaks in UV-Vis spectra. The oxidation state of gold in Au-Fe complex was found to be +1 from X-ray photoelectron spectroscopy. The stability of the Au-Fe complex was also studied by cyclic voltammetry. Cyclic voltammetric results indicated the presence of high spin iron in Au-Fe complex. Hence 'as

  11. Characteristics of uranium mineralization and depositional system of host sediments, Bayantala basin, Inner Mongolia autonomous region

    International Nuclear Information System (INIS)

    Zhu Minqiang; Wu Rengui; Yu Dagan; Chen Anping; Shen Kefeng

    2003-01-01

    Based upon the research of basin fills at the Bayantala basin, the genetic facies of host sediments have been ascertained and the target beds and their range are delineated. The sand bodies of the Upper Member of Tengge'er Formation deposited in fan delta front is favorable to the formation of uranium mineralization of phreatic-interlayer oxidation. The Saihantala Fm deposited in fluvial system can be divided into Lower Member and Upper Member based on depositional microfacies and paleoclimate. The Lower Member of braided system is the most important target bed enriched in organic matter where basal-channel-type uranium mineralization occurs. Features of alteration and mineralization suggest that the early-stage and the late-stage uranium mineralization are related to phreatic oxidation and interlayer oxidation (roll-type) respectively. Meanwhile, the secondary reduction has superimposed over the earlier mineralization in the area caused by hydrocarbons raising along faults

  12. Polymeric precursors method for obtaining pigments based on Inorganic oxides of chromium and iron deposited on TiO2

    International Nuclear Information System (INIS)

    Silva, Everlania M. da; Galvao, Sheila B.; Paskocimas, C.A.

    2011-01-01

    The case study was the use of chromium oxides and iron, as a precursor in the synthesis of inorganic pigments. The synthesis was based on the dissolution of citric acid as a complexing agent, addition of metal oxides, such as ion chromophores; polymerization with ethylene glycol and doping with titanium oxide. Going through pre-calcination, breakdown, calcination at different temperatures (700, 900 and 1100 deg C resulting in pigments: green for pigment and chromium deposited on TiO2, orange for iron on TiO2. The thermal analysis (TG and DTA), evaluated their thermal decompositions, the XRD revealed the formation of crystalline phases such as iron titanate and chrome titanate; SEM showed the formation of hexagonal particles for both oxides. Under the different analysis, one can see the potential stability of pigments and powders, can be proposed its use as pigments in polymers. (author)

  13. Formation, Sintering and Removal of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi

    conditions in laboratory-scale setups. Deposit formation was simulated in an Entrained Flow Reactor, to investigate the effect of operating conditions and ash chemistry on the rate of deposit formation. Experiments were performed using model biomass fly ash, prepared from mixtures of K2Si4O9, KCl, K2SO4, Ca....... Moreover, biomass ash deposits may cause severe corrosion of boiler surfaces. Therefore, reducing deposit formation and timely deposit removal are essential for optimal boiler operation. The formation, sintering and removal of boiler deposits has been investigated in this PhD project, by simulating boiler...... temperature increased the sticking probability of the fly ash particles/deposit surface, thereby increasing the rate of deposit formation. However, increasing flue gas velocity resulted in a decrease in the deposit formation rate, due to increased particle rebound. Furthermore, it was observed...

  14. Province-scale commonalities of some world-class gold deposits: Implications for mineral exploration

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2015-05-01

    Here we promote the concept that mineral explorers need to carefully consider the scale at which their exploration targets are viewed. It is necessary to carefully assess the potential of drill targets in terms of terrane to province to district scale, rather than deposit scale, where most current economic geology research and conceptual thinking is concentrated. If orogenic, IRGD, Carlin-style and IOCG gold-rich systems are viewed at the deposit scale, they appear quite different in terms of conventionally adopted research parameters. However, recent models for these deposit styles show increasingly similar source-region parameters when viewed at the lithosphere scale, suggesting common tectonic settings. It is only by assessing individual targets in their tectonic context that they can be more reliably ranked in terms of potential to provide a significant drill discovery. Targets adjacent to craton margins, other lithosphere boundaries, and suture zones are clearly favoured for all of these gold deposit styles, and such exploration could lead to incidental discovery of major deposits of other metals sited along the same tectonic boundaries.

  15. CORRELATION OF GALLSTONE FORMATION WITH SERUM IRON LEVELS

    Directory of Open Access Journals (Sweden)

    Rohini Bipin Bhadre

    2016-07-01

    Full Text Available INTRODUCTION Gallstones are one of the most common problem associated with the gallbladder, affecting millions of people throughout the world. Bile is excreted from liver and gallbladder into Duodenum for digestion. After digestion, if the gallbladder is not emptied out completely, the Bile Juice that remains in the gallbladder can become too concentrated with cholesterol leading to gallstone formation. Cholesterol and calcium bilirubinate are the two main substances involved in gallstone formation. Gallstones derived from bile consists of mixture of cholesterol, bilirubin with or without calcium. Based on their chemical composition, gallstones found in the gallbladder are classified as cholesterol, pigmented or mixed stones. Iron deficiency has been shown to alter the activity of several hepatic enzymes, leading to increased gallbladder bile cholesterol saturation and promotion of cholesterol crystal formation. AIMS & OBJECTIVE Attempt to establish a correlation with gallstones and decreased serum iron levels. MATERIAL & METHODS This study was a prospective cohort study which included 100 consecutive patients with imaging studies suggestive of Cholelithiasis. The Gallstone surgically removed was crushed with mortar and pestle and then analysed for cholesterol, calcium, phosphate and bilirubin (pigment. Serum samples were analysed for Cholesterol, iron and iron binding capacity. RESULTS 86% patients had increased cholesterol levels (p=0.04 and 93% had decreased serum Iron levels (p=0.96. The most common type of gallstone was found to be Cholesterol type of gallstone followed by Mixed and Pigment gallstones. CONCLUSION Serum cholesterol levels were found to be raised in majority of the patients and serum iron was found to be low in these majority of the patients indicating iron deficiency may play a role in gallstone formation.

  16. Depositing Nickel-based Hardfacing to Join Carbon Steel and Cast Iron

    Directory of Open Access Journals (Sweden)

    Tomás Fernández-Columbié

    2016-10-01

    Full Text Available The objective of this investigation is to determine the micro-structural behavior of a joint between cast iron and carbon steel by depositing a nickel-based substrate in the carbon steel. The filler was added through Shielded Metal Arc Welding using Castec 3099 (UTP 8 electrodes while the base materials were joined through Gas Tungsten Arc Welding with ER 70S – A1 bare electrodes. The Schaeffler diagram was used to analyze the chemical composition of the resulting weld beads. The results of the analysis performed on the welded area and the heat influence zone indicated the formation of acicular structures near the welded line when Castec 3099 electrodes are used and the formation of skeletal ferrite on the heat influence zone during the application of this welding process. An austenitic mixture is formed when ER 70S – A1 electrodes are used.

  17. Geochemistry, Nd-Pb Isotopes, and Pb-Pb Ages of the Mesoproterozoic Pea Ridge Iron Oxide-Apatite–Rare Earth Element Deposit, Southeast Missouri

    Science.gov (United States)

    Ayuso, Robert A.; Slack, John F.; Day, Warren C.; McCafferty, Anne E.

    2016-01-01

    Iron oxide-apatite and iron oxide-copper-gold deposits occur within ~1.48 to 1.47 Ga volcanic rocks of the St. Francois Mountains terrane near a regional boundary separating crustal blocks having contrasting depleted-mantle Sm-Nd model ages (TDM). Major and trace element analyses and Nd and Pb isotope data were obtained to characterize the Pea Ridge deposit, improve identification of exploration targets, and better understand the regional distribution of mineralization with respect to crustal blocks. The Pea Ridge deposit is spatially associated with felsic volcanic rocks and plutons. Mafic to intermediate-composition rocks are volumetrically minor. Data for major element variations are commonly scattered and strongly suggest element mobility. Ratios of relatively immobile elements indicate that the felsic rocks are evolved subalkaline dacite and rhyolite; the mafic rocks are basalt to basaltic andesite. Granites and rhyolites display geochemical features typical of rocks produced by subduction. Rare earth element (REE) variations for the rhyolites are diagnostic of rocks affected by hydrothermal alteration and associated REE mineralization. The magnetite-rich rocks and REE-rich breccias show similar REE and mantle-normalized trace element patterns.Nd isotope compositions (age corrected) show that: (1) host rhyolites have ɛNd from 3.44 to 4.25 and TDM from 1.51 to 1.59 Ga; (2) magnetite ore and specular hematite rocks display ɛNd from 3.04 to 4.21 and TDM from 1.6 to 1.51 Ga, and ɛNd from 2.23 to 2.81, respectively; (3) REE-rich breccias have ɛNd from 3.04 to 4.11 and TDM from 1.6 to 1.51 Ga; and (4) mafic to intermediate-composition rocks range in ɛNd from 2.35 to 3.66 and in TDM from 1.66 to 1.56. The ɛNd values of the magnetite and specular hematite samples show that the REE mineralization is magmatic; no evidence exists for major overprinting by younger, crustal meteoric fluids, or by externally derived Nd. Host rocks, breccias, and

  18. Absolute timing of sulfide and gold mineralization: A comparison of Re-Os molybdenite and Ar-Ar mica methods from the Tintina Gold Belt, Alaska

    Science.gov (United States)

    Selby, D.; Creaser, R.A.; Hart, C.J.R.; Rombach, C.S.; Thompson, J.F.H.; Smith, Moira T.; Bakke, A.A.; Goldfarb, R.J.

    2002-01-01

    New Re-Os molybdenite dates from two lode gold deposits of the Tintina Gold Belt, Alaska, provide direct timing constraints for sulfide and gold mineralization. At Fort Knox, the Re-Os molybdenite date is identical to the U-Pb zircon age for the host intrusion, supporting an intrusive-related origin for the deposit. However, 40Ar/39Ar dates from hydrothermal and igneous mica are considerably younger. At the Pogo deposit, Re-Os molybdenite dates are also much older than 40Ar/39Ar dates from hydrothermal mica, but dissimilar to the age of local granites. These age relationships indicate that the Re-Os molybdenite method records the timing of sulfide and gold mineralization, whereas much younger 40Ar/39Ar dates are affected by post-ore thermal events, slow cooling, and/or systemic analytical effects. The results of this study complement a growing body of evidence to indicate that the Re-Os chronometer in molybdenite can be an accurate and robust tool for establishing timing relations in ore systems.

  19. The giant Carlin gold province: A protracted interplay of orogenic, basinal, and hydrothermal processes above a lithospheric boundary

    Science.gov (United States)

    Emsbo, P.; Groves, D.I.; Hofstra, A.H.; Bierlein, F.P.

    2006-01-01

    Northern Nevada hosts the only province that contains multiple world-class Carlin-type gold deposits. The first-order control on the uniqueness of this province is its anomalous far back-arc tectonic setting over the rifted North American paleocontinental margin that separates Precambrian from Phanerozoic subcontinental lithospheric mantle. Globally, most other significant gold provinces form in volcanic arcs and accreted terranes proximal to convergent margins. In northern Nevada, periodic reactivation of basement faults along this margin focused and amplified subsequent geological events. Early basement faults localized Devonian synsedimentary extension and normal faulting. These controlled the geometry of the Devonian sedimentary basin architecture and focused the discharge of basinal brines that deposited syngenetic gold along the basin margins. Inversion of these basins and faults during subsequent contraction produced the complex elongate structural culminations that characterize the anomalous mineral deposit "trends." Subsequently, these features localized repeated episodes of shallow magmatic and hydrothermal activity that also deposited some gold. During a pulse of Eocene extension, these faults focused advection of Carlin-type fluids, which had the opportunity to leach gold from gold-enriched sequences and deposit it in reactive miogeoclinal host rocks below the hydrologic seal at the Roberts Mountain thrust contact. Hence, the vast endowment of the Carlin province resulted from the conjunction of spatially superposed events localized by long-lived basement structures in a highly anomalous tectonic setting, rather than by the sole operation of special magmatic or fluid-related processes. An important indicator of the longevity of this basement control is the superposition of different gold deposit types (e.g., Sedex, porphyry, Carlin-type, epithermal, and hot spring deposits) that formed repeatedly between the Devonian and Miocene time along the trends

  20. The deposition of gold nanoparticles in MWCNT forests

    Science.gov (United States)

    de Jong, Franciscus; Buffet, Adeline; Schlueter, Michael

    2015-11-01

    The deposition, i.e. transport and attachment, of small-sized particles is a basic process, on which many applications are based. The innumerable applications range from biology and medicine to engineering. Due to their promising mechanical properties multi-walled carbon nanotubes (MWCNTs) have gained increasing popularity in the past decade. A large number of dense packed vertically aligned MWCNTs form a so-called MWCNT forest. In our study we functionalized the MWCNT forest to filter gold nanoparticles from a colloidal suspension. An experimental investigation was carried out in which the particle deposition kinetics was locally determined with small-angle X-ray scattering (SAXS). Furthermore, inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used to verify the local observations. It was concluded that both, SAXS and ICP-AES investigations shows very good agreement. Furthermore, an analytical deposition model was developed based on the DLVO-theory. The experimental and theoretical investigation presented here give insight in the deposition kinetics within a MWCNT forest. The results open up pathways to optimize MWCNT forests for filtering purposes.

  1. Sulfur and lead isotope characteristics of the Pontes e Lacerda gold deposits, SW Amazonian Craton Brazil

    International Nuclear Information System (INIS)

    Geraldes, M.C.; Tassinari, C.C.G.; Babinski; M; Iyer, S

    2001-01-01

    This work deals with the characterization of the S and Pb isotope signatures in sulfides from the Pontes e Lacerda mesothermal gold deposits located in the SW sector of Amazonian craton. Stable and radiogenic isotopes have played an important role in the study of ore deposited and hydrothermal processes and they are most useful when can be used together. The purpose of this study is to constrain the sources and the mechanisms of gold deposition in Pontes e Lacerda region which may be a helpful contribution to an exploratory model in the area (au)

  2. Geophysical signature recognition of aquifuge and relatively impermeable interbed in ore-hosting sandstone layer at sandstone-type uranium deposit

    International Nuclear Information System (INIS)

    Zhao Xigang; Wu Hanning; Bai Guanjun; Zhu Huanqiao; Jia Heng

    2006-01-01

    Geophysical signature recognition of aquifuge and relatively impermeable interbed in ore-hosting aquifer has been carried out a Shihongtan uranium deposit by using comprehensive logging data. The spatial distribution of above aquifuge and impermeable interbed is discussed, and the relation of these layers to sandstone-type uranium deposit, and their impact to in-situ leach mining technology are discussed. It is suggested that the aquifuge and relatively impermeable interbed bring about significant effect to the formation of interlayer oxidation zone sandstone-type uranium deposit, as well as to in-situ leach mining of the deposit. (authors)

  3. How Gold Deposition Affects Anatase Performance in the Photo-catalytic Oxidation of Cyclohexane

    NARCIS (Netherlands)

    Carneiro, J.T.; Carneiro, Joana T.; Yang, Chieh-Chao; Moma, John A.; Moulijn, Jacob A.; Mul, Guido

    2009-01-01

    Gold deposition on Hombikat UV100 was found to negatively affect the activity of this Anatase catalyst in selective photo-oxidation of cyclohexane. By ammonia TPD and DRIFT spectroscopy it was determined that the Au deposition procedure leads to a significant decrease in OH-group density (mol m−2

  4. Investigations on the genesis of syngenetic gold-uranium deposits in conglomerates of the Precambrian Pongola Supergroup and Moodies Group including a contribution on the genesis of the epigenetic gold deposits of Klipwal, Kaapvaal Kraton, South Africa

    International Nuclear Information System (INIS)

    Stupp, H.D.

    1984-01-01

    The terrain diagnostics and the results of mineralogical and geochemical investigations are presented and discussed. The gold and uranium deposits in the Pongola rocks are described extensively. The orogeneses are characterized and their enrichment processes interpreted. The obtained results imply application possibilities for the exploration of gold-uranium placers and hydrothermal gold orogenesis. (DG) [de

  5. Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin

    DEFF Research Database (Denmark)

    Marvig, Rasmus Lykke; Pedersen, Søren Damkiær; Khademi, Seyed Mohammad Hossein

    2014-01-01

    the within-host evolution of the transmissible P. aeruginosa DK2 lineage. We found positive selection for promoter mutations leading to increased expression of the phu system. By mimicking conditions of the CF airways in vitro, we experimentally demonstrate that increased expression of phuR confers a growth...... advantage in the presence of hemoglobin, thus suggesting that P. aeruginosa evolves toward iron acquisition from hemoglobin. To rule out that this adaptive trait is specific to the DK2 lineage, we inspected the genomes of additional P. aeruginosa lineages isolated from CF airways and found similar adaptive...... might therefore be a promising strategy for the treatment of P. aeruginosa infections in CF patients. IMPORTANCE Most bacterial pathogens depend on scavenging iron within their hosts, which makes the battle for iron between pathogens and hosts a hallmark of infection. Accordingly, the ability...

  6. Iron plaque formation and morphoanatomy of roots from species of restinga subjected to excess iron.

    Science.gov (United States)

    Siqueira-Silva, Advanio Inácio; da Silva, Luzimar Campos; Azevedo, Aristéa Alves; Oliva, Marco Antonio

    2012-04-01

    The restingas, a sandy coastal plain ecosystem of Brazil, have received an additional amount of iron due to the activity of mining industries. The present study aims to characterize morphoanatomically and histochemically the iron plaque formation on roots of Ipomoea pes-caprae L. and Canavalia rosea DC, cultivated in hydroponic solution with and without excess iron. The iron plaque formation as well as changes in the external morphology of the lateral roots of both species were observed after the subjection to excess iron. Changes in the nutrient uptake, and in the organization and form of the pericycle and cortex cells were observed for both species. Scanning electron microscopy showed evident iron plaques on the whole surface of the root. The iron was histolocalized in all root tissues of both species. The species of restinga studied here formed iron plaque in their roots when exposed to excess of this element, which may compromise their development in environments polluted by particulated iron. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. A ground electromagnetic survey used to map sulfides and acid sulfate ground waters at the abandoned Cabin Branch Mine, Prince William Forest Park, northern Virginia gold-pyrite belt

    Science.gov (United States)

    Wynn, Jeffrey C.

    2000-01-01

    gold and silver. The environmental impact of massive sulfide deposits can be substantial. These deposits are characterized by high concentrations of heavy-metal sulfide minerals, hosted by silicate rocks. Thus, weathering of these deposits and their mine wastes has the potential to generate heavy-metal laden sulfuric acid that can have negative impacts on aquatic ecosystems. In addition, lead associated with solid mine wastes has the potential for human health impacts through ingestion. The heavy metals that are encountered in these deposits and are most likely to cause environmental impacts include copper, zinc, lead, cadmium, and arsenic. In addition, the weathering of pyrite releases large amounts of iron, and the acid generated attacks the country rocks and causes the release of large amounts of aluminum, which also can severely impact aquatic ecosystems. A reclamation attempt was made at the site in 1995, including construction of storm-water diversion trenches around the abandoned mine area, grading tailings away from the stream bank, addition of pulverized limestone and topsoil, and revegetation. The post-reclamation chemistry of shallow groundwaters (soil conductivity derived from the survey could provide insight into the distribution of the mobilized sulfides present under the ground. This study was conducted in cooperation with the National Park Service

  8. Depositional conditions for the Kuna Formation, Red Dog Zn-PB-Ag-Barite District, Alaska, inferred from isotopic and chemical proxies

    Science.gov (United States)

    Johnson, Craig A.; Dumoulin, Julie A.; Burruss, Robert A.; Slack, John F.

    2015-01-01

    Water column redox conditions, degree of restriction of the depositional basin, and other paleoenvironmental parameters have been determined for the Mississippian Kuna Formation of northwestern Alaska from stratigraphic profiles of Mo, Fe/Al, and S isotopes in pyrite, C isotopes in organic matter, and N isotopes in bulk rock. This unit is important because it hosts the Red Dog and Anarraaq Zn-Pb-Ag ± barite deposits, which together constitute one of the largest zinc resources in the world. The isotopic and chemical proxies record a deep basin environment that became isolated from the open ocean, became increasingly reducing, and ultimately became euxinic. The basin was ventilated briefly and then became isolated again just prior to its demise as a discrete depocenter with the transition to the overlying Siksikpuk Formation. Ventilation corresponded approximately to the initiation of bedded barite deposition in the district, whereas the demise of the basin corresponded approximately to the formation of the massive sulfide deposits. The changes in basin circulation during deposition of the upper Kuna Formation may have had multiple immediate causes, but the underlying driver was probably extensional tectonic activity that also facilitated fluid flow beneath the basin floor. Although the formation of sediment-hosted sulfide deposits is generally favored by highly reducing conditions, the Zn-Pb deposits of the Red Dog district are not found in the major euxinic facies of the Kuna basin, nor did they form during the main period of euxinia. Rather, the deposits occur where strata were permeable to migrating fluids and where excess H2S was available beyond what was produced in situ by decomposition of local sedimentary organic matter. The known deposits formed mainly by replacement of calcareous strata that gained H2S from nearby highly carbonaceous beds (Anarraaq deposit) or by fracturing and vein formation in strata that produced excess H2S by reductive dissolution of

  9. A model for the biological precipitation of Precambrian iron-formation

    Science.gov (United States)

    Laberge, G. L.

    1986-01-01

    A biological model for the precipitation of Precambrian iron formations is presented. Assuming an oxygen deficient atmosphere and water column to allow sufficient Fe solubility, it is proposed that local oxidizing environments, produced biologically, led to precipitation of iron formations. It is further suggested that spheroidal structures about 30 mm in diameter, which are widespread in low grade cherty rion formations, are relict forms of the organic walled microfossil Eosphaera tylerii. The presence of these structures suggests that the organism may have had a siliceous test, which allowed sufficient rigidity for accumulation and preservation. The model involves precipitation of ferric hydrates by oxidation of iron in the photic zone by a variety of photosynthetic organisms. Silica may have formed in the frustules of silica secreting organisms, including Eosphaera tylerii. Iron formates formed, therefore, by a sediment rain of biologically produced ferric hydrates and silica and other organic material. Siderite and hematite formed diagenetically on basin floors, and subsequent metamorphism produced magnetite and iron silicates.

  10. Petrology and geochemistry of REE-rich Mafé banded iron formations (Bafia group, Cameroon)

    Science.gov (United States)

    Nkoumbou, Charles; Gentry, Fuh Calistus; Tchakounte Numbem, Jacqueline; Belle Ekwe Lobé, Yolande Vanessa; Nwagoum Keyamfé, Christin Steve

    2017-07-01

    Archaean-Paleoproterozoic foliated amphibole-gneisses and migmatites interstratified with amphibolites, pyroxeno-amphibolites and REE-rich banded-iron formations outcrop at Mafé, Ndikinimeki area. The foliation is nearly vertical due to tight folds. Flat-lying quartz-rich mica schists and quartzites, likely of Pan-African age, partly cover the formations. Among the Mafé BIFs, the oxide BIF facies shows white layers of quartz and black layers of magnetite and accessory hematite, whereas the silicate BIF facies is made up of thin discontinuous quartz layers alternating with larger garnet (almandine-spessartine) + chamosite + ilmenite ± Fe-talc layers. REE-rich oxide BIFs compositions are close to the East Pacific Rise (EPR) hydrothermal deposit; silicate BIFs plot midway between EPR and the associated amphibolite, accounting for a contamination by volcanic materials, in addition to the hydrothermal influence during their oceanic deposition. The association of an oceanic setting with alkaline and tholeiitic magmatism is typical of the Algoma-type BIF deposit. The REE-rich BIFs indices recorded at Mafé are interpreted as resulting from an Archaean-Paleoproterozoic mineralization.

  11. The shear zone-related gold mineralization at the Turmalina deposit, Quadrilátero Ferrífero, Brazil: structural evolution and the two stages of mineralization

    Science.gov (United States)

    Fabricio-Silva, Wendell; Rosière, Carlos Alberto; Bühn, Bernhard

    2018-05-01

    Turmalina is an important orogenic gold deposit located in the NW region of the Quadrilátero Ferrífero. The deposit is hosted in an Archean greenstone belt composed of ortho-amphibolites and pelites with interleaved tuffs metamorphosed under amphibolite facies conditions and intruded by a granite stock. The orebodies are controlled by WNW-ESE-trending shear zones, associated with hydrothermal alteration. Three deformation events are recognized in the Turmalina gold deposit: D1 and D2 are the result of a progressive Archean deformation under ductile conditions between 2749 ± 7 and 2664 ± 35 Ma; D3 is characterized by a transpressional event under ductile-brittle conditions with the age still unclear. The three generations of garnet observed show that Grt1 blastesis is pre- to syn-D1 and Grt2 growth during the late to post-deformation stages of the D2 event. The initial temperature (Grt1 core) is around 548-600 °C, whereas during late D2, the temperatures reached 633 °C (metamorphic peak-Grt2 rim), likely as a result of granite intrusion. The Grt3 resulted from re-equilibration under retrograde conditions. Two gold-bearing sulfide stages were identified: pyrrhotite-arsenopyrite ± löllingite ± chalcopyrite ± gold stage I precipitated below a metamorphic peak temperature of 598 ± 19 °C associated with S1 foliation (D1), and pyrrhotite-pyrite-arsenopyrite ± chalcopyrite ± gold stage II is located commonly along V3 quartz-carbonate veinlets with a temperature range between 442 ± 9 and 510 ± 30 °C. We suggest that the granite intrusion imposed an additional thermal effect that promoted further dehydration of country rocks. The Au derived mainly from a metamorphic fluid source but potentially mixed with magmatic fluids from the granite.

  12. Formation of Silver and Gold Dendrimer Nanocomposites

    International Nuclear Information System (INIS)

    Balogh, Lajos; Valluzzi, Regina; Laverdure, Kenneth S.; Gido, Samuel P.; Hagnauer, Gary L.; Tomalia, Donald A.

    1999-01-01

    Structural types of dendrimer nanocomposites have been studied and the respective formation mechanisms have been described, with illustration of nanocomposites formed from poly(amidoamine) PAMAM dendrimers and zerovalent metals, such as gold and silver. Structure of {(Au(0)) n- PAMAM} and {(Ag(0)) n- PAMAM} gold and silver dendrimer nanocomposites was found to be the function of the dendrimer structure and surface groups as well as the formation mechanism and the chemistry involved. Three different types of single nanocomposite architectures have been identified, such as internal ('I'), external ('E') and mixed ('M') type nanocomposites. Both the organic and inorganic phase could form nanosized pseudo-continuous phases while the other components are dispersed at the molecular or atomic level either in the interior or on the surface of the template/container. Single units of these nanocomposites may be used as building blocks in the synthesis of nanostructured materials

  13. Coal-gold agglomeration: an alternative separation process in gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Akcil, A.; Wu, X.Q.; Aksay, E.K. [Suleyman Demirel University, Isparta (Turkey). Dept. of Mining Engineering

    2009-07-01

    Considering the increasing environmental concerns and the potential for small gold deposits to be exploited in the future, the uses of environmentally friendly processes are essential. Recent developments point to the potential for greatly increased plant performance through a separation process that combines the cyanide and flotation processes. In addition, this kind of alternative treatment processes to the traditional gold recovery processes may reduce the environmental risks of present small-scale gold mining. Gold recovery processes that applied to different types of gold bearing ore deposits show that the type of deposits plays an important role for the selection of mineral processing technologies in the production of gold and other precious metals. In the last 25 years, different alternative processes have been investigated on gold deposits located in areas where environmental issues are a great concern. In 1988, gold particles were first recovered by successful pilot trial of coal-gold agglomeration (CGA) process in Australia. The current paper reviews the importance of CGA in the production of gold ore and identifies areas for further development work.

  14. Trace elements and isotope data of the Um Garayat gold deposit, Wadi Allaqi district, Egypt

    Science.gov (United States)

    Zoheir, Basem; Emam, Ashraf; Pitcairn, Iain K.; Boskabadi, Arman; Lehaye, Yann; Cooper, Matthew J.

    2018-04-01

    Trace element composition of sulfides and O, C, Sr and S isotopic data are assessed to constrain the evolution and potential fluid and metal sources of the Um Garayat gold deposit. Ore microscopy and BSE investigations of quartz veins show blocky arsenopyrite and pyrite replaced in part by pyrrhotite, chalcopyrite, sphalerite, galena, and gersdorffite. Free-milling gold occurs commonly in close association with the late sulfides, and along fractures in pyrite. On the other hand, recrystallized pyrite is disseminated in host metavolcaniclastic/metasedimentary rocks that commonly contain carbonaceous material. In situ LA-ICP-MS analysis of sulfides shows the recrystallized pyrite enriched in most trace elements, while blocky pyrite contains only some traces of arsenic. Detected concentrations of gold (up to 17 ppm) were only reported in arsenopyrite disseminated in quartz veins. The δ34S values of blocky pyrite and pyrrhotite in quartz veins define a narrow range (1.6 to 3.7‰), suggesting a homogenous sulfur source which is consistent with the dominantly mafic host rocks. The recrystallized pyrite has a distinctive sulfur isotope composition (δ34S - 9.3 to - 10.6‰), which is rather comparable to diagenetic sulfides. Hydrothermal carbonate in quartz veins and wallrock have nearly constant values of δ18O (10.5 to 11.9‰) and δ13C (- 4.2 to - 5.5‰). Based on constraints from mineral assemblages and chlorite thermometry, data of six samples indicate that carbonate precipitation occurred at 280 °C from a homogenous hydrothermal fluid with δ18OH2O 4.4 ± 0.7‰ and δ13C = 3.7 ± 0.8‰. Strontium isotope values of two samples (87Sr/86Sr = 0.7024 and 0.7025) are similar to the initial 87Sr/86Sr ratios of island arc metabasalts ( 710 Ma) in the South Eastern Desert. The generally homogenous sulfur, C, O, Sr isotope data are suggestive of metamorphogenic fluids, likely produced from dominantly mafic volcanic rocks at the greenschist-amphibolite facies transition.

  15. Iron deposits in the knee joints of a thalassemic patient

    Directory of Open Access Journals (Sweden)

    Charalambos P Economides

    2013-02-01

    Full Text Available The overall prognosis for patients with ß-thalassemia has improved considerably during the past decades mainly due to regular blood transfusions, improvements in chelation therapy, and enhanced surveillance with imaging studies examining iron overload and other clinical complications. However, the prolonged survival of these patients leads to the development of other health problems including degenerative diseases such as arthropathies, which require further attention since they have a significant impact on the quality of life. In the current case report, we present a 45-year-old white man with ß-thalassemia complaining of non-traumatic pain and restriction in the range of motion of both knees. Magnetic resonance imaging (MRI revealed a tear in the medial meniscus of the left knee as well as iron deposits in both knees. Histological findings confirmed the presence of hemosiderin in both joints. To our knowledge, this is the first reported case of macroscopically documented iron deposits in the knee joints of a patient with ß-thalassemia using MRI.

  16. High spatial resolution U-Pb geochronology and Pb isotope geochemistry of magnetite-apatite ore from the Pea Ridge iron oxide-apatite deposit, St. Francois Mountains, southeast Missouri, USA

    Science.gov (United States)

    Neymark, Leonid; Holm-Denoma, Christopher S.; Pietruszka, Aaron; Aleinikoff, John N.; Fanning, C. Mark; Pillers, Renee M.; Moscati, Richard J.

    2016-01-01

    The Pea Ridge iron oxide-apatite (IOA) deposit is one of the major rhyolite-hosted magnetite deposits of the St. Francois Mountains terrane, which is located within the Mesoproterozoic (1.5–1.3 Ga) Granite-Rhyolite province in the U.S. Midcontinent. Precise and accurate determination of the timing and duration of oreforming processes in this deposit is crucial for understanding its origin and placing it within a deposit-scale and regional geologic context. Apatite and monazite, well-established U-Pb mineral geochronometers, are abundant in the Pea Ridge orebody. However, the potential presence of multiple generations of dateable minerals, processes of dissolution-reprecipitation, and occurrence of micrometer-sized intergrowths and inclusions complicate measurements and interpretations of the geochronological results. Here, we employ a combination of several techniques, including ID-TIMS and high spatial resolution geochronology of apatite and monazite using LA-SC-ICPMS and SHRIMP, and Pb isotope geochemistry of pyrite and magnetite to obtain the first direct age constraints on the formation and alteration history of the Pea Ridge IOA deposit. The oldest apatite TIMS 207Pb*/206Pb* dates are 1471 ± 1 and 1468 ± 1 Ma, slightly younger than (but within error of) the ~1474 to ~1473 Ma U-Pb zircon ages of the host rhyolites. Dating of apatite and monazite inclusions within apatite provides evidence for at least one younger metasomatic event at ~1.44 Ga, and possibly multiple superimposed metasomatic events between 1.47 and 1.44 Ga. Lead isotop analyses of pyrite show extremely radiogenic 206Pb/204Pb ratios up to ~80 unsupported by in situ U decay. This excess radiogenic Pb in pyrite may have been derived from the spatially associated apatite as apatite recrystallized several tens of million years after its formation. The low initial 206Pb/204Pb ratio of ~16.5 and 207Pb/204Pb ratio of ~15.4 for individual magnetite grains indicate closed U-Pb system behavior in

  17. Star Formation Quenching in Quasar Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carniani, Stefano, E-mail: sc888@mrao.cam.ac.uk [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Kavli Institute for Cosmology, University of Cambridge, Cambridge (United Kingdom)

    2017-10-16

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M{sub ⊙} yr{sup −1}, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  18. Star Formation Quenching in Quasar Host Galaxies

    International Nuclear Information System (INIS)

    Carniani, Stefano

    2017-01-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M ⊙ yr −1 , has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  19. Star Formation Quenching in Quasar Host Galaxies

    Directory of Open Access Journals (Sweden)

    Stefano Carniani

    2017-10-01

    Full Text Available Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN. In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s, which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M⊙ yr−1, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2 ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2 transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  20. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, H. [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Simchi, A., E-mail: simchi@sharif.edu [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Department of Material Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Imani, M. [Novel Drug Delivery Systems Department, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Costa, B.F.O. [CEMDRX, Department of Physics, University of Coimbra, P-3004-516 Coimbra (Portugal)

    2012-11-15

    The size mono-dispersity, saturation magnetization, and surface chemistry of magnetic nanoparticles (NPs) are recognized as critical factors for efficient biomedical applications. Here, we performed modified water-in-oil inverse nano-emulsion procedure for preparation of stable colloidal superparamagnetic iron oxide NPs (SPIONs) with high saturation magnetization. To achieve mono-dispersed SPIONs, optimization process was probed on several important factors including molar ratio of iron salts [Fe{sup 3+} and Fe{sup 2+}], the concentration of ammonium hydroxide as reducing agent, and molar ratio of water to surfactant. The biocompatibility of the obtained NPs, at various concentrations, was evaluated via MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and the results showed that the NPs were non-toxic at concentrations <0.1 mg/mL. Surface functionalization was performed by conformal coating of the NPs with a thin shell of gold ({approx}4 nm) through chemical reduction of attached gold salts at the surface of the SPIONs. The Fe{sub 3}O{sub 4} core/Au shell particles demonstrate strong plasmon resonance absorption and can be separated from solution using an external magnetic field. Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, phase components, core-shell surface composition, and magnetic properties have confirmed the formation of the mono-dispersed core-shell nanostructure. - Highlights: Black-Right-Pointing-Pointer Increasing the concentration of iron salts, cubic-shape SPION NPs were formed. The magnetic saturation of the SPIONs was also increased. Black-Right-Pointing-Pointer The concentration of reducing agent exhibited marginal effect on the size of SPIONs but influenced the crystallinity of the NPs. A lower magnetic saturation was obtained at higher NH{sub 4}OH concentrations. Black-Right-Pointing-Pointer Mono-dispersed SPIONs can be prepared

  1. The Orosirian-Statherian banded iron formation-bearing sequences of the southern border of the Espinhaço Range, Southeast Brazil

    Science.gov (United States)

    Rolim, Vassily Khoury; Rosière, Carlos A.; Santos, João Orestes Schneider; McNaughton, Neal J.

    2016-01-01

    The Serra da Serpentina and the Serra de São José groups are two distinct banded iron formation-bearing metasedimentary sequences along the eastern border of the southern Espinhaço Range that were deposited on the boundary between the Orosirian and Statherian periods. The Serra da Serpentina Group (SSG) has an Orosirian maximum depositional age (youngest detrital zircon grain age = 1990 ± 16 Ma) and consists of fine clastic metasediments at the base and chemical sediments, including banded iron formations (BIFs), on the top, corresponding to the Meloso and Serra do Sapo formations, respectively, and correlating with the pre-Espinhaço Costa Sena Group. The SSG represents sedimentary deposition on an epicontinental-epeiric, slow downwarping sag basin with little tectonic activity. The younger Serra de São José Group (SJG) is separated from the older SSG by an erosional unconformity and was deposited in a tectonically active continental rift-basin in the early stages of the opening of the Espinhaço Trough. The Serra do São José sediments stretch along the north-south axis of the rift and comprise a complete cycle of transgressive sedimentary deposits, which were subdivided, from base to top, into the Lapão, Itapanhoacanga, Jacém and Canjica formations. The Itapanhoacanga Formation has a maximum depositional age of 1666 ± 32 Ma (Statherian), which coincides with the maximum depositional age (i.e., 1683 ± 11 Ma) of the São João da Chapada Formation, one of the Espinhaço Supergroup's basal units. The Serra de São José Rift and the Espinhaço Rift likely represent the same system, with basal units that are facies variations of the same sequence. The supracrustal rocks have undergone two stages of deformation during the west-verging Brasiliano orogeny that affected the eastern margin of the São Francisco Craton and generated a regional-scale, foreland N-S trending fold-thrust belt, which partially involved the crystalline basement. Thrust faults have

  2. Quantitative analysis of gold nanorod alignment after electric field assisted deposition

    NARCIS (Netherlands)

    Ahmed, W.; Ahmed, Waqqar; Kooij, Ernst S.; van Silfhout, Arend; Poelsema, Bene

    2009-01-01

    We have studied the alignment of colloidal gold nanorods, deposited from solution onto well-defined substrates in the presence of an AC electric field generated by micrometer spaced electrodes. The field strengths employed in our experiments are sufficiently large to overcome Brownian motion and

  3. Synthesis and magnetic property of T4 virus-supported gold-coated iron ternary nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Xu Ziming; Sun Hongjing; Gao Faming, E-mail: fmgao@ysu.edu.cn; Hou Li; Li Na [Yanshan University, Key Laboratory of Applied Chemistry (China)

    2012-12-15

    Herein, we present a novel method based on the use of the symmetrical T4 bacteriophage capsid as a scaffold for preparing the gold-coated iron ternary core/shell nanostructure. Results showed that the thick gold shell was obtained to effectively protect Fe core from oxidation. Magnetic measurements showed that the nanocomposites were superparamagnetic at room temperature with a blocking temperature of about 35 K. At 3 K, its coercivity of 1142.86 Oe was larger than the existing experimental values. The magnetic property of Au/T4 was also tested, demonstrating the source of the magnetic sample arising from the Fe core only. The absorption spectrum of the Fe-Au/T4 complex was measured and compared with gold/virus. Different thickness gold shells were controlled in the synthesis by tuning the Au salt addition. On the basis of results and discussion, we further speculated the general growing mechanism of the template-supported Fe-Au process.

  4. Synthesis and magnetic property of T4 virus-supported gold-coated iron ternary nanocomposite

    Science.gov (United States)

    Xu, Ziming; Sun, Hongjing; Gao, Faming; Hou, Li; Li, Na

    2012-12-01

    Herein, we present a novel method based on the use of the symmetrical T4 bacteriophage capsid as a scaffold for preparing the gold-coated iron ternary core/shell nanostructure. Results showed that the thick gold shell was obtained to effectively protect Fe core from oxidation. Magnetic measurements showed that the nanocomposites were superparamagnetic at room temperature with a blocking temperature of about 35 K. At 3 K, its coercivity of 1142.86 Oe was larger than the existing experimental values. The magnetic property of Au/T4 was also tested, demonstrating the source of the magnetic sample arising from the Fe core only. The absorption spectrum of the Fe@Au/T4 complex was measured and compared with gold/virus. Different thickness gold shells were controlled in the synthesis by tuning the Au salt addition. On the basis of results and discussion, we further speculated the general growing mechanism of the template-supported Fe@Au process.

  5. Spontaneous formation of gold nanostructures in aqueous microdroplets.

    Science.gov (United States)

    Lee, Jae Kyoo; Samanta, Devleena; Nam, Hong Gil; Zare, Richard N

    2018-04-19

    The synthesis of gold nanostructures has received widespread attention owing to many important applications. We report the accelerated synthesis of gold nanoparticles (AuNPs), as well as the reducing-agent-free and template-free synthesis of gold nanoparticles and nanowires in aerosol microdroplets. At first, the AuNP synthesis are carried out by fusing two aqueous microdroplet streams containing chloroauric acid and sodium borohydride. The AuNPs (~7 nm in diameter) are produced within 60 µs at the rate of 0.24 nm µs -1 . Compared to bulk solution, microdroplets enhance the size and the growth rate of AuNPs by factors of about 2.1 and 1.2 × 10 5 , respectively. Later, we find that gold nanoparticles and nanowires (~7 nm wide and >2000 nm long) are also formed in microdroplets in the absence of any added reducing agent, template, or externally applied charge. Thus, water microdroplets not only accelerate the synthesis of AuNPs by orders of magnitude, but they also cause spontaneous formation of gold nanostructures.

  6. Application status and vistas of sequence stratigraphy to the exploration of sandstone-hosted uranium deposits

    International Nuclear Information System (INIS)

    Guo Qingyin; Chen Zuyi; Yu Jinshui; Han Shuqin

    2008-01-01

    Sequence stratigraphy is a newly developed subject based on seismostratigraphy, and has been widely applied in the exploration of hydrocarbon and other sedimentogenic mineral deposits and great achievements have been obtained. However, the application of sequence stratigraphy to the exploration of sandstone-hosted uranium deposits is just at the beginning. In this paper, some primary research achievements of sequence stratigraphy to the exploration of sandstone-hosted uranium deposits are summarized, and problems and their reasons of the application of sequence stratigraphy are discussed. Further more, according to characteristics of sandstone-hosted uranium deposits and the development of sequence stratigraphy, the application vistas of sequence stratigraphy to the exploration of sandstone-hosted uranium deposits are estimated. Finally, application directions are proposed, and some specific suggestions are given. (authors)

  7. Halogen Chemistry of Hydrothermal Micas: a Possible Geochemical Tool in Vectoring to Ore for Porphyry Copper-Gold Deposit

    OpenAIRE

    Arifudin Idrus

    2018-01-01

    Porphyry copper-gold deposit commonly exhibits an extensive alteration zone of hydrothermal micas particularly biotite and sericite. This study is aimed to analyze and utilize the chemistry of halogen fluorine and chlorine of biotite and sericite to be a possible tool in vectoring to ore for copper porphyry deposits. To achieve the objectives, several selected altered rock samples were taken crossing the Batu Hijau copper-gold mine from inner to outer of the deposit, and hydrothermal micas co...

  8. Phanerozoic continental growth and gold metallogeny of Asia

    Science.gov (United States)

    Goldfarb, Richard J.; Taylor, Ryan D.; Collins, Gregory S.; Goryachev, Nicolay A.; Orlandini, Omero Felipe

    2014-01-01

    ; and (8) Jurassic(?) ores on the margins of the Subumusu block in Myanmar and Malaysia. Circum-Pacific tectonism led to major orogenic gold province formation along the length of the eastern side of Asia between ca. 135 and 120 Ma, although such deposits are slightly older in South Korea and slightly younger in the Amur region of the Russian Southeast. Deformation related to collision of the Kolyma–Omolon microcontinent with the Pacific margin of the Siberia craton led to formation of 136–125 Ma ores of the Yana–Kolyma belt (Natalka, Sarylakh) and 125–119 Ma ores of the South Verkhoyansk synclinorium (Nezhdaninskoe). Giant ca. 125 Ma gold provinces developed in the Late Archean uplifted basement of the decratonized North China block, within its NE edge and into adjacent North Korea, in the Jiaodong Peninsula, and in the Qinling Mountains. The oldest gold-bearing magmatic–hydrothermal deposits of Asia include the ca. 485 Ma Duobaoshan porphyry within a part of the Tuva–Mongol arc, ca. 355 Ma low-sulfidation epithermal deposits (Kubaka) of the Omolon terrane accreted to eastern Russia, and porphyries (Bozshakol, Taldy Bulak) within Ordovican to Early Devonian oceanic arcs formed off the Kazakhstan microcontinent. The Late Devonian to Carboniferous was marked by widespread gold-rich porphyry development along the margins of the closing Ob–Zaisan, Junggar–Balkhash, and Turkestan basins (Amalyk, Oyu Tolgoi); most were formed in continental arcs, although the giant Oyu Tolgoi porphyry was part of a near-shore oceanic arc. Permian subduction-related deformation along the east side of the Indochina block led to ca. 300 Ma gold-bearing skarn and disseminated gold ore formation in the Truong Son fold belt of Laos, and along the west side to ca. 250 Ma gold-bearing skarns and epithermal deposits in the Loei fold belt of Laos and Thailand. In the Mesozoic Transbaikal region, extension along the basin margins subsequent to Mongol–Okhotsk closure was

  9. Mesoarchean Banded Iron Formation sequences in Dixon Island-Cleaverville Formation, Pilbara Australia: Oxygenic signal from DXCL project

    Science.gov (United States)

    Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Naraoka, H.; Onoue, T.; Horie, K.; Sakamoto, R.; Aihara, Y.; Miki, T.

    2013-12-01

    The 3.2-3.1 Ga Dixon island-Cleaverville formations are well-preserved Banded Iron Formation (BIF) within hydrothermal oceanic sequence at oceanic island arc setting (Kiyokawa et al., 2002, 2006, 2012). The stratigraphy of the Dixon Island (3195+15Ma) -Cleaverville (3108+13Ma) formations shows the well preserved environmental condition at the Mesoarchean ocean floor. The stratigraphy of these formations are formed about volcano-sedimentary sequences with hydrothermal chert, black shale and banded iron formation to the top. Based on the scientific drilling of DXCL project at 2007 and 2011, detail lithology between BIF sequence was clearly understood. Four drilling holes had been done at coastal sites; the Dixon Island Formation is DX site (100m) and the Cleaverville Formation is CL2 (40m), CL1 (60m) and CL3 (200m) sites and from stratigraphic bottom to top. Coarsening and thickening upward black shale-BIF sequences are well preserved of the stratigraphy form the core samples. The Dixon Island Formation consists komatiite-rhyolite sequences with many hydrothermal veins and very fine laminated cherty rocks above them. The Cleaverville Formation contains black shale, fragments-bearing pyroclastic beds, white chert, greenish shale and BIF. The CL3 core, which drilled through BIF, shows siderite-chert beds above black shale identified before magnetite lamination bed. U-Pb SHRIMP data of the tuff in lower Dixon Island Formation is 3195+15 Ma and the pyroclastic sequence below the Cleaverville BIF is 3108+13 Ma. Sedimentation rate of these sequence is 2-8 cm/ 1000year. The hole section of the organic carbon rich black shales below BIF are similar amount of organic content and 13C isotope (around -30per mill). There are very weak sulfur MIF signal (less 0.2%) in these black shale sequence. Our result show that thick organic rich sediments may be triggered to form iron rich siderite and magnetite iron beds. The stratigraphy in this sequence quite resemble to other Iron

  10. A model for Cryogenian iron formation

    Science.gov (United States)

    Cox, Grant M.; Halverson, Galen P.; Poirier, André; Le Heron, Daniel; Strauss, Justin V.; Stevenson, Ross

    2016-01-01

    The Neoproterozoic Tatonduk (Alaska) and Holowilena (South Australia) iron formations share many characteristics including their broadly coeval (Sturtian) ages, intimate association with glaciogenic sediments, and mineralogy. We show that these shared characteristics extend to their neodymium (εNd) and iron isotope (δ56Fe) systematics. In both regions δ56Fe values display a distinct up-section trend to isotopically heavier values, while εNd values are primitive and similar to non-ferruginous mudstones within these successions. The δ56Fe profiles are consistent with oxidation of ferruginous waters during marine transgression, and the εNd values imply that much of this iron was sourced from the leaching of continental margin sediments largely derived from continental flood basalts. Rare earth element data indicate a secondary hydrothermal source for this iron.

  11. High-grade iron ore at Windarling, Yilgarn Craton: a product of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy

    Science.gov (United States)

    Angerer, Thomas; Hagemann, Steffen G.; Danyushevsky, Leonid

    2013-08-01

    Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda-Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite-martite-goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in `least-altered' hematite-magnetite-metachert-BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe-Ca-Mg-Ni-Co-P-REE metasomatism that produced local Ni-REE-rich Fe-dolomite-magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle-ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni-Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite-hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)-Fe-dolomite-quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides

  12. Reconnaissance investigation of the alluvial gold deposits in the North Takhar Area of Interest, Takhar Province, Afghanistan

    Science.gov (United States)

    Chirico, Peter G.; Malpeli, Katherine C.; Moran, Thomas W.

    2013-01-01

    This study is a reconnaissance assessment of the alluvial gold deposits of the North Takhar Area of Interest (AOI) in Takhar Province, Afghanistan. Soviet and Afghan geologists collected data and calculated the gold deposit reserves in Takhar Province in the 1970s, prior to the development of satellite-based remote-sensing platforms and new methods of geomorphic mapping. The purpose of this study was to integrate new mapping techniques with previously collected borehole sampling and concentration sampling data and geomorphologic interpretations to reassess the alluvial gold placer deposits in the North Takhar AOI. Through a combination of historical borehole and cross-section data and digital terrain modeling, the Samti, Nooraba-Khasar-Anjir, and Kocha River placer deposits were reassessed. Resource estimates were calculated to be 20,927 kilograms (kg) for Samti, 7,626 kg for Nooraba-Khasar-Anjir, 160 kg for the mouth of the Kocha, 1,047 kg for the lower Kocha, 113 kg for the middle Kocha, and 168 kg for the upper Kocha. Previous resource estimates conducted by the Soviets for the Samti and Nooraba-Khasar-Anjir deposits estimated 30,062 kg and 802 kg of gold, respectively. This difference between the new estimates and previous estimates results from the higher resolution geomorphic model and the interpretation of areas outside of the initial work zone studied by Soviet and Afghan geologists.

  13. Adsorption Mechanisms of Trivalent Gold onto Iron Oxy-Hydroxides: From the Molecular Scale to the Model

    International Nuclear Information System (INIS)

    Cances, Benjamin; Benedetti, Marc; Farges, Francois; Brown, Gordon E. Jr.

    2007-01-01

    Gold is a highly valuable metal that can concentrate in iron-rich exogenetic horizons such as laterites. An improved knowledge of the retention mechanisms of gold onto highly reactive soil components such as iron oxy-hydroxides is therefore needed to better understand and predict the geochemical behavior of this element. In this study, we use EXAFS information and titration experiments to provide a realistic thermochemical description of the sorption of trivalent gold onto iron oxy-hydroxides. Analysis of Au LIII-edge XAFS spectra shows that aqueous Au(III) adsorbs from chloride solutions onto goethite surfaces as inner-sphere square-planar complexes (Au(III)(OH,Cl)4), with dominantly OH ligands at pH > 6 and mixed OH/Cl ligands at lower pH values. In combination with these spectroscopic results, Reverse Monte Carlo simulations were used to constraint the possible sorption sites on the surface of goethite. Based on this structural information, we calculated sorption isotherms of Au(III) on Fe oxy-hydroxides surfaces, using the CD-MUSIC (Charge Distribution - MUlti SIte Complexation) model. The various Au(III)-sorbed species were identified as a function of pH, and the results of these EXAFS+CD-MUSIC models are compared with titration experiments. The overall good agreement between the predicted and measured structural models shows the potential of this combined approach to better model sorption processes of transition elements onto highly reactive solid surfaces such as goethite and ferrihydrite

  14. HO-1-mediated macroautophagy: a mechanism for unregulated iron deposition in aging and degenerating neural tissues.

    Science.gov (United States)

    Zukor, Hillel; Song, Wei; Liberman, Adrienne; Mui, Jeannie; Vali, Hojatollah; Fillebeen, Carine; Pantopoulos, Kostas; Wu, Ting-Di; Guerquin-Kern, Jean-Luc; Schipper, Hyman M

    2009-05-01

    Oxidative stress, deposition of non-transferrin iron, and mitochondrial insufficiency occur in the brains of patients with Alzheimer disease (AD) and Parkinson disease (PD). We previously demonstrated that heme oxygenase-1 (HO-1) is up-regulated in AD and PD brain and promotes the accumulation of non-transferrin iron in astroglial mitochondria. Herein, dynamic secondary ion mass spectrometry (SIMS) and other techniques were employed to ascertain (i) the impact of HO-1 over-expression on astroglial mitochondrial morphology in vitro, (ii) the topography of aberrant iron sequestration in astrocytes over-expressing HO-1, and (iii) the role of iron regulatory proteins (IRP) in HO-1-mediated iron deposition. Astroglial hHO-1 over-expression induced cytoplasmic vacuolation, mitochondrial membrane damage, and macroautophagy. HO-1 promoted trapping of redox-active iron and sulfur within many cytopathological profiles without impacting ferroportin, transferrin receptor, ferritin, and IRP2 protein levels or IRP1 activity. Thus, HO-1 activity promotes mitochondrial macroautophagy and sequestration of redox-active iron in astroglia independently of classical iron mobilization pathways. Glial HO-1 may be a rational therapeutic target in AD, PD, and other human CNS conditions characterized by the unregulated deposition of brain iron.

  15. Granite-related Yangjiashan tungsten deposit, southern China

    Science.gov (United States)

    Xie, Guiqing; Mao, Jingwen; Li, Wei; Fu, Bin; Zhang, Zhiyuan

    2018-04-01

    The Yangjiashan scheelite-bearing deposit (38,663 metric tons of WO3 with an average ore grade of 0.70% WO3) is hosted in quartz veins in a biotite monzogranite intrusion and surrounding slate in the Xiangzhong Metallogenic Province of southern China. The monzogranite has a zircon SHRIMP U-Pb age of 406.6 ± 2.8 Ma (2σ, n = 20, MSWD = 1.4). Cassiterite coexisting with scheelite yields a weighted mean 206Pb/238U age of 409.8 ± 5.9 Ma (2σ, n = 30, MSWD = 0.20), and molybdenite intergrown with scheelite yields a weighted mean Re-Os age of 404.2 ± 3.2 Ma (2σ, n = 3, MSWD = 0.10). These results suggest that the Yangjiashan tungsten deposit is temporally related to the Devonian intrusion. The δD and calculated δ18OH2O values of quartz intergrown with scheelite range from - 87 to - 68‰, and - 1.2 to 3.4‰, respectively. Sulfides have a narrow range of δ34S values of - 2.9 to - 0.7‰ with an average value of - 1.6‰ (n = 16). The integration of geological, stable isotope, and geochronological data, combined with the quartz-muscovite greisen style of ore, supports a magmatic-hydrothermal origin for the tungsten mineralization. Compared to the more common tungsten skarn, quartz-wolframite vein, and porphyry tungsten deposits, as well as orogenic gold deposits worldwide, the Yangjiashan tungsten deposit is an unusual example of a granite-related, gold-poor, scheelite-bearing quartz vein type of deposit. The calcium needed for the formation of scheelite is derived from the sericitization of calcic plagioclase in the monzogranite and Ca-bearing psammitic country rocks, and the relatively high pH, reduced and Ca-rich mineralizing fluid may be the main reasons for the formation of scheelite rather than wolframite at Yangjiashan.

  16. Sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Austin, S.R.; D'Andrea, R.F. Jr.

    1978-01-01

    Three overall factors are necessary for formation of uranium deposits in sandstone: a source of uranium, host rocks capable of transmitting uranium-bearing solutions, and a precipitant. Possible sources of uranium in sandstone-type deposits include groundwaters emanating from granitic highlands, arkosic sediments, tuffaceous material within or overlying the host rocks, connate fluids, and overlying black shales. The first three sources are considered the most likely. Host rocks are generally immature sandstones deposited in alluvial-fan, intermontane-basin or marginal-marine environments, but uranium deposits do occur in well-winnowed barrier-bar or eolian sands. Host rocks for uranium deposits generally show coefficients of permeability on the order of 1 to 100 gal/day/ft 2 . Precipitants are normally agents capable of reducing uranium from the uranyl to the uranous state. The association of uranium with organic matter is unequivocal; H 2 S, a powerful reductant, may have been present at the time of formation of some deposits but may go unnoticed today. Vanadium can serve to preserve the tabular characteristics of some deposits in the near-surface environment, but is considered an unlikely primary precipitant for uranium. Uranium deposits in sandstone are divided into two overall types: peneconcordant deposits, which occur in locally reducing environments in otherwise oxidized sandstones; and roll-type deposits, which occur at the margin of an area where an oxidized groundwater has permeated an otherwise reduced sandstone. Uranium deposits are further broken down into four subclasses; these are described

  17. Synthesis and analysis of gold nanoclusters on silicon substrates by ion beams

    International Nuclear Information System (INIS)

    Sood, D.K.; Venkatachalam, D.K.; Bhargava, S.K.; Evans, P.J.

    2005-01-01

    To facilitate the growth of silica nanowires on silicon substrates, two different seeding techniques: 1) ion implantation and 2) chemical deposition of as-synthesised gold colloids have been compared for the formation of catalysing gold nanoclusters. The prepared substrates of both types were analysed using Rutherford backscattering spectrometry at ANSTO to determine the amount of gold and its depth distribution. The topography of the substrates deposited with chemically synthesised gold nanoparticles were studied under SEM. The preliminary ion beam (RBS) analysis has shown ion implantation as a novel technique for seeding Au nanoclusters on silicon substrates facilitating growth of nanowires. This method holds a great potential for using any metal across the periodic table that can act as catalysing seed nanoclusters for nanowire growth. The use of chemical deposition as a seeding technique to deposit as-synthesised gold nanoparticles requires further investigations. RBS results show significant difference in the depth distribution of the gold nanoparticles on silicon substrates seeded by two different techniques. (author). 6 refs., 4 figs

  18. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold.

    Directory of Open Access Journals (Sweden)

    Andrew F Taylor

    Full Text Available We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake.

  19. Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold

    Science.gov (United States)

    Taylor, Andrew F.; Rylott, Elizabeth L.; Anderson, Christopher W. N.; Bruce, Neil C.

    2014-01-01

    We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold) were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa) to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake. PMID:24736522

  20. Deferoxamine inhibition of malaria is independent of host iron status

    International Nuclear Information System (INIS)

    Hershko, C.; Peto, T.E.

    1988-01-01

    The mechanism whereby deferoxamine (DF) inhibits the growth of malaria parasites was studied in rats infected with Plasmodium berghei. Peak parasitemia was 32.6% (day 14) in untreated controls and 0.15% (day 7) in rats receiving 0.33 mg/g in 8 hourly DF injections, subcutaneously. DF inhibition of parasite growth was achieved without any reduction in transferrin saturation or hemoglobin synthesis and with only a partial (56%) depletion of hepatic iron stores. Dietary iron depletion resulted in anemia (hematocrit 25 vs. 46%), microcytosis (MCV 54 vs. 60 fl), and reduced transferrin saturation (17 vs. 96%) without any effect on infection (peak parasitemia 30 vs. 36%). Similarly, parenteral iron loading with ferric citrate over 10 d (75 mg iron/kg) failed to aggravate infection. In a search for evidence of direct interaction between DF and parasitized erythrocytes, gel filtration and ultrafiltration was performed on hemolysates obtained from in vivo 59 Fe-labeled parasitized erythrocytes. This showed that 1.1-1.9% of the intracellular radioiron was located in a chelatable, labile iron pool. Incubation of intact cells with 0-500 microM DF resulted in a proportional increase in intracellular iron chelation, and the chelation of all available labile intracellular iron was completed within 6 h. These observations indicate that the severity of P. berghei infection in rats and its in vivo suppression by DF are independent of host iron status and suggest that DF inhibition of malaria involves intracellular chelation of a labile iron pool in parasitized erythrocytes

  1. Study of dithiol monolayer as the interface for controlled deposition of gold nanoparticles

    International Nuclear Information System (INIS)

    Cichomski, M.; Tomaszewska, E.; Kosla, K.; Kozlowski, W.; Kowalczyk, P.J.; Grobelny, J.

    2011-01-01

    Self-assembled monolayer of dithiol molecules, deposited on polycrystalline Au (111), prepared at room atmosphere, was studied using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Dithiols were used as interface, which chemically bonds to the deposited gold nanoparticles through strong covalent bonds. The size and size distribution of the deposited nanoparticles were measured using dynamic light scattering (DLS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The AFM results showed that nanoparticles are immobilized and stable during scanning procedure and do not contaminate the AFM tip. The size of monodisperse nanoparticles obtained from the DLS measurements is slightly higher than that obtained from the AFM and SEM measurements. This is due to the fact that the DLS measures the hydrodynamic radius, dependent on the protective chemical layer on nanoparticles. - Research Highlights: → Dithiols molecules create chemically bounded layers on a Au (111) surface. → Gold nanoparticles can be chemically bounded to a self-assembled monolayer. → Nanoparticles are stable during AFM probe interactions.

  2. Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue

    Science.gov (United States)

    Rolison, John M.; Stirling, Claudine H.; Middag, Rob; Gault-Ringold, Melanie; George, Ejin; Rijkenberg, Micha J. A.

    2018-04-01

    The chemical response of the Precambrian oceans to rising atmospheric O2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shift in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the 'Great Oxidation Event' around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in parallel with the permanent rise

  3. Mineralogical variations across Mariano Lake roll-type uranium deposits, McKinley County

    International Nuclear Information System (INIS)

    Sachdev, S.C.

    1980-01-01

    Mineralogy of core samples from the Mariano orebody was determined. The data obtained were used to develop exploration tools for roll-type uranium deposits. Preliminary interpretations of the physical and chemical conditions of ore deposition were made on the basis of paragenetic relationships. The host sandstones occur between the bentonitic rock units and contain scattered intercalations of detrital montmorillonitic material in the form of clay galls, stringers, and lenses derived from these bentonites. Authigenic clay minerals identified in the host rocks include cellular montmorillonite, platy chlorite, and pseudohexagonal books of kaolinite. The cellular montmorillonite is concentrated in the oxidized zone and appears to have formed prior to ore deposition. Authigenic chlorite is most abundant in the ore zone and has formed at the expense of cellular montmorillonite; its formation is interpreted as being related to the ore-forming processes. Kaolinite in sandstones is the last clay mineral to form and is enriched in the reduced zone. Calcite, considered typical of such deposits, is not found in this orebody. Iron-titanium oxides and their alteration products are the most abundant heavy-mineral species in the host rocks. In addition to anatase and rutile, the alteration products include hematite in the oxidized zone and pyrite in the ore and reduced zones. Carbonaceous material introudced later into the potential ore zone appears to have been responsible for the decomposition of Fe-Ti oxides and the formation of pyrite. The paragenetic relationship indicates oxidation of pyrite by mineralizing solutions, resulting in reduction and subsequent deposition of uranium. The positive correlation between organic carbon and uranium suggests that carbonaceous material also acted as a reductant for uranium

  4. Organic SIMS: the influence of time on the ion yield enhancement by silver and gold deposition

    Science.gov (United States)

    Adriaensen, L.; Vangaever, F.; Gijbels, R.

    2004-06-01

    A series of organic dyes and pharmaceuticals was used to study the secondary ion yield enhancement by metal deposition. The molecules were dissolved in methanol and spincasted on silicon substrates. Subsequently, silver or gold was evaporated on the samples to produce a very thin coating. The coated samples, when measured with TOF-SIMS, showed a considerable increase in characteristic secondary ion intensity. Gold-evaporated samples appear to exhibit the highest signal enhancement. These observations apply to organic samples in general, an advantage that allows to use the technique of metal deposition on real-world samples. However, the observed signal increase does not occur at any given moment. The time between metal deposition on the sample surface and the measuring of the sample with TOF-SIMS appears to have an important influence on the enhancement of the secondary ion intensities. In consideration of these observations several experiments were carried out, in which the spincasted samples were measured at different times after sample preparation, i.e., after gold or silver was deposited on the sample surface. The results show that, depending on the sample and the metal deposited, the secondary ion signals reach their maximum at different times. Further study will be necessary to detect the mechanism responsible for the observed enhancement effect.

  5. Experience in studying of the iron mineralogy in the oxidation zone of uranium deposits by physical methods

    International Nuclear Information System (INIS)

    Kochenov, A.V.; Dobrovol'skaya, N.V.; Zajtseva, G.M.; Korovushkin, V.V.; Moiseev, V.M.; Yakubovskaya, N.Yu.

    1977-01-01

    Possibilities are considered of increasing the reliability of the diagnostics and the resolving power of the procedure for the determination of the minaral forms and percentage of iron oxides and hydroxides in the oxidized zone of uranium deposits using a combination of methods of nuclear gamma resonance, thermomagnetic analysis and the Faraday method. The apparatus used included a YaGRS-4 spectrometer in combination with an AI-236 analyzer and a vibration magnetometer. The essence of the methods and of the procedure of analyses is presented. Parameters of reference samples of goethite, maghemite, etc. which emerged from their analysis by the above combination of methods are given. The established diagnostic features have been used in the study of iron mineralogy of oxidized zones, uranium deposits of sedimantarycoal and sandstone types, as well as crusts of weathering of sedimentary rocks. It has been found that in zone of epigenetically altered rocks iron minerals are of mixed multicomponent composition reflecting the fact that the processes of formation of oxidized zones are multistage and not unidirectional in character. The procedure proposed allows one to diagnose finely dispersed, roentgenoamorphous or poorly crystallized minerals, to discover ferruginous minerals in complex multiphase systems and determine their percentages

  6. Star formation quenching in quasar host galaxies

    Science.gov (United States)

    Carniani, Stefano

    2017-10-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionised and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ˜2.4 obtained with SINFONI in the H- and K-band. All the quasars show [OIII]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM anti-correlated with star-formation powered emission, i.e. star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50 - 100 M⊙/yr, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  7. Immunity to plant pathogens and iron homeostasis.

    Science.gov (United States)

    Aznar, Aude; Chen, Nicolas W G; Thomine, Sebastien; Dellagi, Alia

    2015-11-01

    Iron is essential for metabolic processes in most living organisms. Pathogens and their hosts often compete for the acquisition of this nutrient. However, iron can catalyze the formation of deleterious reactive oxygen species. Hosts may use iron to increase local oxidative stress in defense responses against pathogens. Due to this duality, iron plays a complex role in plant-pathogen interactions. Plant defenses against pathogens and plant response to iron deficiency share several features, such as secretion of phenolic compounds, and use common hormone signaling pathways. Moreover, fine tuning of iron localization during infection involves genes coding iron transport and iron storage proteins, which have been shown to contribute to immunity. The influence of the plant iron status on the outcome of a given pathogen attack is strongly dependent on the nature of the pathogen infection strategy and on the host species. Microbial siderophores emerged as important factors as they have the ability to trigger plant defense responses. Depending on the plant species, siderophore perception can be mediated by their strong iron scavenging capacity or possibly via specific recognition as pathogen associated molecular patterns. This review highlights that iron has a key role in several plant-pathogen interactions by modulating immunity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. A comparative study of electrochemical and optical properties of rhenium deposited on gold and platinum

    Energy Technology Data Exchange (ETDEWEB)

    Zerbino, Jorge O.; Castro Luna, Ana M.; Martins, M. E. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina). Inst. de Investigaciones Fisico-Quimicas, Teoricas y Aplicadas (INIFTA)]. E-mail: mmartins@inifta.unlp.edu.ar; Zinola, Carlos F.; Mendez, Eduardo [Universidad de la Republica, Montevideo (Uruguay). Facultad de Ciencias. Lab. de Electroquimica Fundamental

    2002-08-01

    Rhenium-containing films were grown on gold and platinum after different potentiostatic and potentiodynamic polarizations in the - 0.20 V to 0.70 V range (vs rhe) in aqueous acid perrhenate. Experimental data were obtained using cyclic voltammetry and ellipsometry, from which the thickness and optical indices of the electrodeposited rhenium layer were calculated. Metallic rhenium deposition on gold takes place at potentials within the hydrogen evolution reaction. Rhenium oxide on platinum is formed in the hydrogen adatom potential domain, whereas metallic rhenium is deposited concurrently with the hydrogen adsorption and evolution reactions on the same metal. (author)

  9. A comparative study of electrochemical and optical properties of rhenium deposited on gold and platinum

    Directory of Open Access Journals (Sweden)

    Zerbino Jorge O.

    2002-01-01

    Full Text Available Rhenium-containing films were grown on gold and platinum after different potentiostatic and potentiodynamic polarizations in the - 0.20 V to 0.70 V range (vs rhe in aqueous acid perrhenate. Experimental data were obtained using cyclic voltammetry and ellipsometry, from which the thickness and optical indices of the electrodeposited rhenium layer were calculated. Metallic rhenium deposition on gold takes place at potentials within the hydrogen evolution reaction. Rhenium oxide on platinum is formed in the hydrogen adatom potential domain, whereas metallic rhenium is deposited concurrently with the hydrogen adsorption and evolution reactions on the same metal.

  10. Research on geochronology and uranium source of sandstone-hosted uranium ore-formation in major uranium-productive basins, Northern-China

    International Nuclear Information System (INIS)

    Xia Yuliang; Liu Hanbin; Lin Jinrong; Fan Guang; Hou Yanxian

    2004-12-01

    A method is developed for correcting uranium content in uranium ore samples by considering the U-Ra equilibrium coefficient, then a U-Pb isochron is drawn up. By performing the above correction ore-formation ages of sandstone-hosted uranium mineralization which may be more realistic have been obtained. The comparative research on U-Pb isotopic ages of detritic zircon in ore-hosting sandstone and zircon in intermediate-acid igneous rocks in corresponding provenance area indicates that the ore-hosting sandstone is originated from the erosion of intermediate-acid igneous rocks and the latters are the material basis for the formation of the uranium-rich sandstone beds. On the basis of the study on U-Pb isotopic system evolution of the provenance rocks and sandstones from ore-hosting series, it is verified that the uranium sources of the sandstone-hosted uranium deposit are: the intermediate-acid igneous rocks with high content of mobile uranium, and the sandstone bodies pre-concentrated uranium. (authors)

  11. Raman and micro-thermometric investigation of the fluid inclusions in quartz in a gold-rich formation from Lepaguare mining district (Honduras, Central America).

    Science.gov (United States)

    Bersani, D; Salvioli-Mariani, E; Mattioli, M; Menichetti, M; Lottici, P P

    2009-08-01

    Fluid inclusions in the quartz crystals present in gold-rich veins from central Honduras have been studied by means of micro-thermometry and micro-Raman spectroscopy in order to provide information on the physico-chemical conditions and chemical composition of the mineralizing fluids. The use of a confocal micro-Raman apparatus allowed to obtain information on the fluid composition, in particular on the gas phase, minimizing the contributions of the host matrix to the Raman signal. The samples studied were collected from an area (Lepaguare mining district, Northern-Central Honduras) rich in ore deposits due to the Cenozoic magmatic activity, where the gold and sulphide mineralization is connected with a system of quartz veins (few decimetres thick) occurring in low-grade metamorphic rocks and produced by hydrothermal fluids. The quartz crystals present in the gold-rich veins often contain fluid inclusions. Four types of fluid inclusions have been observed, but their assemblage in the same clusters and fracture systems, as well as their comparable salinity and homogenization data, suggest that they have the same origin. Micro-thermometry and Raman spectroscopy provide a composition of the mineralizing fluids attributable to the system H(2)O-NaCl-KCl-CO(2)-CH(4), with temperature and pressure intervals of 210-413 degrees C and 1050-3850 bar, respectively. These data agree with an epigenetic origin of the gold deposit (depth < 6 km) related to granitoid or granodiorite intrusions associated to orogenic environments.

  12. Gold mineralisation near the Main Divide, upper Wilberforce valley, Southern Alps, New Zealand

    International Nuclear Information System (INIS)

    Becker, J.A.; Craw, D.; Horton, T.; Chamberlain, C.P.

    2000-01-01

    Veins up to 8 m wide fill extensional fractures in Torlesse Terrane metasediments near the Main Divide in the upper Wilberforce valley, Canterbury, New Zealand. The upper Wilberforce veins are part of a prominent 40 km long, NNE-trending swarm of gold-bearing veins formed across the Main Divide during the Late Cenozoic rise of the Southern Alps. The veins occur within, and near, a prominent set of faults which constitute the Main Divide Fault Zone. The veins are irregular in shape due to contrasting host rock properties, and have been only weakly sheared and deformed. Veins cut across greywacke beds and follow irregularly along argillite beds, on the 1-10 m scale. Quartz dominates vein mineralogy, but albite forms up to 45% of some veins, and minor chlorite, pyrite, arsenopyrite, chalcopyrite, and gold occur sporadically, especially in breccias near vein margins. Fluid inclusions in vein quartz homogenise at 180-253 degrees C, and arsenopyrite composition (28.3-30.8 at.% As) suggest formation temperatures of 250-350 degrees C. Elevated arsenic levels (up to 200 ppm above a background of 10 ppm) in some host greywackes and argellites suggest that hydrothermal activity pervaded host rocks as well as forming veins, but there is no textural evidence for this fluid flow. Late-stage carbonates in faults adjacent to the quartz veins, but which postdate the quartz veins, have δ 18 O ranging from 11.1 to 25.6 per thousand, and δ 13 C ranging from -12.5 to -1.1 per thousand. These carbonates were deposited by a mixture of meteoric and crustally isotopically exchanged fluid as a shallow-level manifestation of the same hydrothermal system which deposited the quartz veins. The upper Wilberforce veins structurally and mineralogically resemble some Late Cenozoic gold-bearing vein systems in the Mt Cook area, 100 km to the southwest along the Southern Alps. (author). 52 refs., 9 figs., 3 tabs

  13. Gold finger formation studied by high-resolution mass spectrometry and in silico methods

    NARCIS (Netherlands)

    Laskay, Ü.A.; Garino, C.; Tsybin, Y.O.; Salassa, L.; Casini, A.

    2015-01-01

    High-resolution mass spectrometry and quantum mechanics/molecular mechanics studies were employed for characterizing the formation of two gold finger (GF) domains from the reaction of zinc fingers (ZF) with gold complexes. The influence of both the gold oxidation state and the ZF coordination sphere

  14. Mineralogy, chemistry of magnetite and genesis of Korkora-1 iron deposit, east of Takab, NW Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Maanijou

    2014-10-01

    Full Text Available Introduction There is an iron mining complex called Shahrak 60 km east of Takab town, NW Iran. The exploration in the Shahrak deposit (general name for all iron deposits of the area started in 1992 by Foolad Saba Noor Co. and continued in several periods until 2008. The Shahrak deposit comprising 10 ore deposits including Korkora-1, Korkora-2, Shahrak-1, Shahrak-2, Shahrak-3, Cheshmeh, Golezar, Sarab-1, Sarab-2, and Sarab-3 deposits Sheikhi, 1995 with total 60 million tons of proved ore reserves. The Fe grade ranges from 45 to 65% (average 50%. The ore reserves of these deposits vary and the largest one is Korkora-1 with 15 million tons of 55% Fe and 0.64% S. The Korkora-1 ore deposit is located in western Azarbaijan and Urumieh-Dokhtar volcanic zone, at the latitude of 36°21.8´, and longitude of 47°32´. Materials and methods Six thin-polished sections were made on magnetite, garnet, and amphibole for EPMA (Electron Probe Micro Analysis. EPMA was performed using a JEOL JXA-733 electron microprobe at the University of New Brunswick, Canada, with wavelength-dispersive spectrometers. Results and discussion Outcropped units of the area are calc-alkaline volcanics of rhyolite, andesite and dacite and carbonate rocks of Qom Formation in which intrusion of diorite to granodiorite and quartzdoirite caused contact metamorphism, alteration plus skarnization and formation of actinolite, talc, chlorite, phlogopite, quartz, calcite, epidote and marblization in the vicinity of the ore deposit. Iron mineralization formed at the contacts of andesite and dacite with carbonates in Oligo-Miocene. The study area consists of skarn, metamorphic rocks, and iron ore zones. The shape of the deposit is lentoid to horizontal with some alteration halos. The ore occurred as replacement, massive, disseminated, open-space filling and breccia. The ore minerals of the deposit include low Ti-magnetite (0.04 to 0.2 wt % Ti, minor apatite, and sulfide minerals such as pyrite

  15. Definition of Iron Deficiency Based on the Gold Standard of Bone Marrow Iron Staining in Heart Failure Patients.

    Science.gov (United States)

    Grote Beverborg, Niels; Klip, IJsbrand T; Meijers, Wouter C; Voors, Adriaan A; Vegter, Eline L; van der Wal, Haye H; Swinkels, Dorine W; van Pelt, Joost; Mulder, Andre B; Bulstra, Sjoerd K; Vellenga, Edo; Mariani, Massimo A; de Boer, Rudolf A; van Veldhuisen, Dirk J; van der Meer, Peter

    2018-02-01

    The most commonly used definition of iron deficiency (ID; ferritin the biomarker-based definition of ID in HF, using bone marrow iron staining as the gold standard. Second, we aimed to assess the prognostic value of the optimized definition. Bone marrow aspiration with iron staining was performed in 42 patients with HF and a reduced left ventricular ejection fraction (≤45%) undergoing median sternotomy for coronary artery bypass grafting. Patients were mostly male (76%) with mild-to-moderate HF and a mean age of 68±10 years. Bone marrow ID was found in 17 (40%) of the HF patients. The most commonly used definition of ID had a sensitivity of 82% and a specificity of 72%. A definition solely based on TSAT ≤19.8% or serum iron ≤13 µmol/L had a sensitivity of 94% and specificity of 84% and 88%, respectively ( P the former definition). Subsequently, we assessed the incidence of all-cause mortality in 387 consecutive outpatient HF patients (left ventricular ejection fraction ≤45%). In these patients, TSAT ≤19.8% and serum iron ≤13 µmol/L, and not ferritin, were independently associated with mortality. A TSAT ≤19.8% or a serum iron ≤13 µmol/L shows the best performance in selecting patients with ID and identifies HF patients at the highest risk of death. Our findings validate the currently used TSAT cutoff of the identification of ID in HF patients, but question the diagnostic value of ferritin. © 2018 American Heart Association, Inc.

  16. Four magnetite generations in the Precambrian Varena Iron Ore deposit, SE Lithuania, as a result of rock-fluid interactions

    Science.gov (United States)

    Skridlaite, Grazina; Prusinskiene, Sabina; Siliauskas, Laurynas

    2017-04-01

    (2011). They have similar trace element abundances as skarn magnetites, e.g. are in general Ti-poor. The Mag-1 is more than twice richer in Mg than the porphyry and Kiruna type iron ores. A slight enrichment in Al, Ti and V because of spinel and ilmenite inclusions may have caused the earliest Mag-1 to resemble the porphyry type ores, while the secondary Mag-2 has Al, Ca and Mn contents as low as the Kiruna type ores. Thus, we can consider that fluid-rock interactions have strongly affected chemical compositions of the studied magnetites. Even though there are no precise age constructions for the metamorphic, metasomatic and hydrothermal iron ore formation process, they likely started later than 1.80 Ga (metamorphism of the host rocks; Bogdanova et al., 2015) and lasted until c. 1.50 Ga, when the rocks were intruded by the within-plate AMCG magmatic bodies. Bogdanova, S., Gorbatschev, R., Skridlaite, G., Soesoo, A., Taran, L., Kurlovich, D., 2015. Precambrian Research, 259, 5-33. Dupuis, C., Beaudoin, G., 2011. Mineral Deposita 46, 319-335. Marfinas, S., 1996. Report on the results of the evaluation of the Varena Iron Ore deposit, 2nd book, Vilnius.

  17. Granitoid-associated gold mineralization in Egypt: a case study from the Atalla mine

    Science.gov (United States)

    Zoheir, Basem; Deshesh, Fatma; Broman, Curt; Pitcairn, Iain; El-Metwally, Ahmed; Mashaal, Shabaan

    2018-06-01

    Gold-bearing sulfide-quartz veins cutting mainly through the Atalla monzogranite intrusion in the Eastern Desert of Egypt are controlled by subparallel NE-trending brittle shear zones. These veins are associated with pervasive sericite-altered, silicified, and ferruginated rocks. The hosting shear zones are presumed as high-order structures of the Najd-style faults in the Central Eastern Desert ( 615-585 Ma). Ore minerals include an early pyrite-arsenopyrite (±pyrrhotite) mineralization, partly replaced by a late pyrite-galena-sphalerite-chalcopyrite (±gold/electrum ± tetrahedrite ± hessite) assemblage. Gold occurs as small inclusions in pyrite and arsenopyrite, or more commonly as intergrowths with galena and sphalerite/tetrahedrite in microfractures. Arsenopyrite geothermometry suggests formation of the early Fe-As-sulfide mineralization at 380-340 °C, while conditions of deposition of the late base metal-gold assemblage are assumed to be below 300 °C. Rare hessite, electrum, and Bi-galena are associated with sphalerite and gold in the late assemblage. The early and late sulfide minerals show consistently a narrow range of δ34S ‰ (3.4-6.5) that overlaps with sulfur isotopic values in ophiolitic rocks. The Au-quartz veins are characterized by abundant CO2 and H2O ± CO2 ± NaCl inclusions, where three-dimensional clusters of inclusions show variable aqueous/carbonic proportions and broad range of total (bimodal) homogenization temperatures. Heterogeneous entrapment of immiscible fluids is interpreted to be caused by unmixing of an originally homogenous, low salinity ( 2 eq. mass % NaCl) aqueous-carbonic fluid, during transition from lithostatic to hydrostatic conditions. Gold deposition occurred generally under mesothermal conditions, i.e., 1.3 kbar and 280 °C, and continued during system cooling to chemistry of the ore fluids.

  18. The genesis of the slab window-related Arzular low-sulfidation epithermal gold mineralization (eastern Pontides, NE Turkey

    Directory of Open Access Journals (Sweden)

    Enver Akaryalı

    2013-07-01

    Full Text Available The Arzular mineralization is one of the best examples of epithermal gold deposits in the eastern Pontides orogenic belt. The mineralization is hosted by the subduction-related basaltic andesites and is mainly controlled by E–W and NE–SW trending fracture zones. The main ore minerals are galena, sphalerite, pyrite, chalcopyrite, tetrahedrite and gold. Homogenization temperatures of fluid inclusions are between 130 and 295 °C for quartz and between 90 and 133 °C for sphalerite. Sulphur isotope values obtained from pyrite, galena and sphalerite vary between −1.2‰ and 3‰, indicating that sulphur belongs to magmatic origin and was derived from the Lutetian non-adakitic granitic intrusions in the region. Oxygen isotope values are between 15.0‰ and 16.7‰, and hydrogen isotope values are between −87‰ and −91‰. The sulphur isotope thermometer yielded temperatures in the range of 244–291 °C for the ore formation. Our results support the hypothesis that the Arzular mineralization is a low-sulfidation epithermal gold deposit associated with non-adakitic subduction-related granitic magmas that were generated by slab window-related processes in a south-dipping subduction zone during the Lutetian.

  19. In situ X-ray study of the structural evolution of gold nano-domains by spray deposition on thin conductive P3HT films.

    Science.gov (United States)

    Al-Hussein, M; Schindler, M; Ruderer, M A; Perlich, J; Schwartzkopf, M; Herzog, G; Heidmann, B; Buffet, A; Roth, S V; Müller-Buschbaum, P

    2013-02-26

    Gold (Au) nanoparticles are deposited from aqueous solution onto one of the most used conductive polymers, namely poly(3-hexylthiophene) (P3HT), using airbrush deposition. We report on the structure formation and packing of the Au nanoparticles after a 5 s spray cycle. In situ grazing incidence small-angle X-ray scattering (GISAXS) measurements with 20 ms time resolution allow a real-time observation of the emergence and evolution of the microstructure during a spray cycle and subsequent solvent evaporation. The results reveal multistage nanoscale ordering of the Au nanoparticles during the spray cycle. Further ex situ atomic force microscopy measurements of the sprayed films showed the formation of Au monolayer islands on top of the polymer film. Our study suggests that the solvent-substrate interaction as well as solvent evaporation kinetics are important factors that need to be taken into consideration in order to grow a compact uniform monolayer film for the fabrication of ultrathin films using airbrush deposition.

  20. Thiol-modified gold nanoparticles deposited on silica support using dip coating

    International Nuclear Information System (INIS)

    Magura, Jozef; Zeleňáková, Adriana; Zeleňák, Vladimír; Kaňuchová, Maria

    2014-01-01

    Graphical abstract: - Highlights: • Thin layers of gold were deposited on glass substrate. • Layers were modified by two different ligands, 1,4-dithiothreitol and L-glutathione. • Red shift of SPR band was observed in spectra after modification of Au by thiols. • Charge transfer between Au and S atoms leads to ferromagnetic behaviour of samples. - Abstract: In our work, we have prepared thin layers of gold nanoparticles deposited via dip coating technique on silica glass substrate. The prepared thin layers were modified by two different ligands, namely 1,4-dithiothreitol (sample Au-DTT NPs) and L-glutathione (sample Au-GSH NPs). The spectral, structural and magnetic properties of the prepared samples were investigated. The modification of Au nanoparticles with thiol ligands leads to change of their plasmon resonance fields, as indicated by UV–vis spectra. The magnetic measurements showed that the magnetization of the samples is composed from two magnetic contributions: diamagnetic contribution and low field ferromagnetic contribution. Our experimental results show that the charge transfer between Au and S atoms gives rise to the ferromagnetic behaviour of prepared thin layers

  1. Mineralization, geochemistry, fluid inclusion and sulfur stable isotope studies in the carbonate hosted Baqoroq Cu-Zn-As deposit (NE Anarak

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Jazi

    2015-10-01

    , crustification banding,andbotryoidaltexture. The host rock has undergone dolomitization alteration Hypogene minerals include chalcopyrite, pyrite, sphalerite, galena, enargite, barite, and calcite. Supergene minerals include malachite, azurite, covellite, chrysocolla, chalcocite, cerussite, smithsonite, native copper and iron oxide minerals. Sulfantimonides and sulfardenides are abundant in low- and moderate temperature stages of the deposit, while bismuth sulfides generally occur in higher temperature ores, according to Malakhov, 1968. Analysis of rich ore samples indicates copper is the most abundant heavy metal in the ore (average 20.28 wt%, followed by zinc (average ~ 1 wt% and arsenic (average ~ 1 wt%, respectively. Thepresence of many trace elements in the ore, such as Sb, Pb, Ag and V, are very important. Element pairs such as Ag-Cu, Zn-Cd, Zn-Sb, Fe-V and Pb-Mo are correlated with each other. The Baqoroq ore minerals are rich in As, Sb and poor in Bi. Highamountsof antimony usually occur in a low temperature stage (Marshall and Joensuu, 1961. Malakhov (1968 suggested thata high Sb/Biratio in the ore indicates a low temperature of formation for the Baqoroq deposit. Sulfide mineralization fluids were found to have homogenization temperatures between 259 and 354°C and salinities between 8.37 and 13.18 wt% NaCl eq. Surface water apparently diluted theore-bearing fluids in the final stages and deposited sulfide-freecalcite veins at relatively low temperatures (78 to 112 °C and low salinities (3.59 to 6.07 wt% NaCl eq.. The δ34S values of barite of the Baqoroq deposit range from +13.1 to +14.37‰from whichδ34S values of ore fluids were calculated to vary between -8.57‰ and -7.23‰. Sulfur within natural environments is derived ultimately from either igneous or seawater sources (Ohmoto and Rye, 1979. Barite δ34S values of Baqoroq deposit lie within the range of Cretaceous-age oceanic sulfate values. The reduction of sulfate to sulfide couldhave been caused either by

  2. Native gold and gold-rich sulfide deposits in a submarine basaltic caldera, Higashi-Aogashima hydrothermal field, Izu-Ogasawara frontal arc, Japan

    Science.gov (United States)

    Iizasa, Kokichi; Asada, Akira; Mizuno, Katsunori; Katase, Fuyuki; Lee, Sangkyun; Kojima, Mitsuhiro; Ogawa, Nobuhiro

    2018-04-01

    Sulfide deposits with extremely high Au concentrations (up to 275 ppm; avg. 102 ppm, n = 15), high Au/Ag ratios (0.24, n = 15), and low Cu/(Cu + Zn) ratios (0.03, n = 15) were discovered in 2015 in active hydrothermal fields at a water depth of 760 m in a basalt-dominated submarine caldera in the Izu-Ogasawara frontal arc, Japan. Native gold grains occur in massive sulfide fragments, concretions, and metalliferous sediments from a sulfide mound (40 m across and 20 m high) with up to 30-m-high black smoker chimneys. Tiny native gold grains up to 14 μm in diameter are mainly present in sulfide fallouts from chimney orifices and plumes. Larger native gold grains up to 150 μm long occur mostly as discrete particles and/or with amorphous silica and sulfides. The larger gold grains are interpreted to represent direct precipitation from Au-bearing hydrothermal fluids circulating in and/or beneath the unconsolidated sulfide mound deposits. Sulfur isotope compositions from a limited number of sulfide separates (n = 4) range from 4.3 to 5.8‰ δ34S, similar to the quaternary volcanic rocks of the arc. Barite separates have values of 22.2 and 23.1‰, close to modern seawater values, and indicate probable seawater sulfate origin. The Cu, Zn, and Pb concentrations in bulk samples of sulfide-rich rocks are similar to those of volcanogenic massive sulfides formed in continental crustal environments. The gold is interpreted to have formed by low-temperature hydrothermal activity, perhaps genetically different from systems with documented magmatic contributions or from seafloor hydrothermal systems in other island arc settings. Its presence suggests that basalt-dominated submarine calderas situated on relatively thick continental crust in an intraoceanic arc setting such as the Higashi-Aogashima knoll caldera may be perspective for gold mineralization.

  3. Analysis of Characteristics of Ore about Iron Deposit of Da Hong Mountain in Yun Nan Province

    Directory of Open Access Journals (Sweden)

    Zhang Yuefeng

    2016-01-01

    Full Text Available This thesis aims to analyse the deposit characteristics about Da Hong Mountains Iron ore in Yunnan province. The texture and structure, especially the chemical composition, is different in every section of deposit after comparing. Moreover, the content of SiO2 is much higher than general iron ore. However, the content of other noble metals cannot reach the lowest industrial grade. Da Hong Mountains Iron ore has unique features because of metallogenic periods.

  4. Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers

    DEFF Research Database (Denmark)

    Huang, Li‐Zhi; Ayala‐Luis, Karina B.; Fang, Liping

    2013-01-01

    hydroxide planar layer were preserved during the oxidation, as shown by FTIR spectroscopy. The high positive charge in the hydroxide layer produced by the oxidation of iron(II) to iron(III) is partially compensated by the deprotonation of hydroxy groups, as shown by X‐ray photoelectron spectroscopy...... between the alkyl chains of the intercalated dodecanoate anions play a crucial role in stabilizing the structure and hindering the collapse of the iron(II)–iron(III) (hydr)oxide structure during oxidation. This is the first report describing the formation of a stable planar layered octahedral iron......(III) (hydr)oxide. oxGRC12 shows promise as a sorbent and host for hydrophobic reagents, and as a possible source of single planar layers of iron(III) (hydr)oxide....

  5. ∼2.5 Ga late cratonisation events in Dharwar craton: insights from the gold mineralisation ages

    International Nuclear Information System (INIS)

    Srinivasa Sarma, D.; Ram Mohan, M.; McNaughton, Neal

    2013-01-01

    The history of volcanism, granitic magmatism, and gold mineralization is defined by U-Pb geochronology of magmatic zircons and hydrothermal monazite and xenotime respectively. The felsic volcanic host rocks from Hutti greenstone belt have a U-Pb zircon age of 258 ±7 Ma, about 40 m.y. older than the age of gold mineralization at 2547±10 Ma determined from hydrothermal monazite in the Hutti gold deposit. The syntectonic Kavital granitoid in the Hutti greenstone belt has a U-Pb zircon age of 2545±7 Ma, which overlaps with the timing of gold deposition and is consistent with structural interpretations. Zircon U-Pb ages for a felsic volcanic rock (2,588±10 Ma) and an intrusive granite (e''2,555±6 Ma) in the Gadag greenstone belt in the Western Dharwar Craton. In situ U-Pb dating of monazite and xenotime in gold reefs of the Gadag (2,522±6 Ma) and Ajjanahalli (2,520±9 Ma) gold deposits reveal a previously undated episode of gold mineralization at 2.52 Ga, substantially younger than the 2.55 Ga Hutti deposit in the eastern Dharwar Craton. The Hutti, Gadag and Ajjanahalli gold geochronology suggests that gold mineralization occurred throughout the Dharwar craton some 80 to 120 m.y. later than the major peak of Late Archean world-class orogenic gold mineralization in most other Archean cratons. Although gold mineralization across the craton postdates most of the magmatic activity and metamorphism at upper crustal levels, widespread thermal reworking of the lower middle crust, involving partial melting, metamorphism, and lower crustal granitoid intrusion, occurred concurrently with gold mineralization. It is likely that the large-scale hydrothermal fluid flow that produced widespread gold deposition was also part of this tectono-thermal event during the final stages of cratonization of the Dharwar Craton in southern India. (author)

  6. Iron-clay interactions under a thermal gradient

    International Nuclear Information System (INIS)

    Jodin-Caumon, Marie-Camille; Mosser-Ruck, Regine; Randi, Aurelien; Cathelineau, Michel; Michau, Nicolas

    2010-01-01

    Document available in extended abstract form only. Repository in deep geological formations is considered as a possible solution for long-term high-level nuclear waste (HLW) management. The concept generally consists in a multiple barriers system including steel canister in a clay host rock. Heat and radiation emissions by HLW, corrosion of the canister and desaturation/re-saturation of the clay may affect the properties of the geological formation. In this context, the possible mineralogical evolutions of clays in contact with metal iron were studied in various conditions simulating those of HLW repository. Most of these studies were carried out at a constant temperature whereas the system will undergo a thermal gradient in time (progressive decrease of the temperature of the HLW with the decrease of its activity) and space (from the waste to the host rock). A thermal gradient may imply mass transport phenomena by convection and diffusion processes as a function of temperature, gradient intensity and the nature of the chemical elements. Here we show the effect of a thermal gradient in space on the interaction between the argillite from the ANDRA underground laboratory at Bure (Meuse/Haute-Marne) and metal iron. Tube-in-tube experiments were carried out. Argillite was put in two previously drilled platinum capsules (Diam. holes: 200 μm). Metal iron (powder and plate) was added in one of the Pt capsule. The Pt capsules were then loaded at the two ends of a gold tube. A fluid (H 2 O or a saline solution) was added and the gold tube was sealed and regularly pinched to form 5 precipitation niches. The iron/argillite mass ratio ranged between 0.3 and 0.5 and the fluid/argillite mass ratio was around 10. A thermal gradient 80 deg. C-150 deg. C or 150 deg. C-300 deg. C was applied to the tube during 3 and 6 months. The end of the gold tube with the Pt capsule containing iron was placed at the hot point (max. temperature 150 deg. C or 300 deg. C) or at the cold point (min

  7. Continuously increasing δ98Mo values in Neoarchean black shales and iron formations from the Hamersley Basin

    Science.gov (United States)

    Kurzweil, Florian; Wille, Martin; Schoenberg, Ronny; Taubald, Heinrich; Van Kranendonk, Martin J.

    2015-09-01

    We present Mo-, C- and O-isotope data from black shales, carbonate- and oxide facies iron formations from the Hamersley Group, Western Australia, that range in age from 2.6 to 2.5 billion years. The data show a continuous increase from near crustal δ98Mo values of around 0.50‰ for the oldest Marra Mamba and Wittenoom formations towards higher values of up to 1.51‰ for the youngest sample of the Brockman Iron Formation. Thereby, the trend in increasing δ98Mo values is portrayed by both carbonate facies iron formations and black shales. Considering the positive correlation between Mo concentration and total organic carbon, we argue that this uniformity is best explained by molybdate adsorption onto organic matter in carbonate iron formations and scavenging of thiomolybdate onto sulfurized organic matter in black shales. A temporal increase in the seawater δ98Mo over the period 2.6-2.5 Ga is observed assuming an overall low Mo isotope fractionation during both Mo removal processes. Oxide facies iron formations show lowest Mo concentrations, lowest total organic carbon and slightly lower δ98Mo compared to nearly contemporaneous black shales. This may indicate that in iron formation settings with very low organic matter burial rates, the preferential adsorption of light Mo isotopes onto Fe-(oxyhydr)oxides becomes more relevant. A similar Mo-isotope pattern was previously found in contemporaneous black shales and carbonates of the Griqualand West Basin, South Africa. The consistent and concomitant increase in δ98Mo after 2.54 billion years ago suggests a more homogenous distribution of seawater molybdate with uniform isotopic composition in various depositional settings within the Hamersley Basin and the Griqualand West Basin. The modeling of the oceanic Mo inventory in relation to the Mo in- and outflux suggests that the long-term build-up of an isotopically heavy seawater Mo reservoir requires a sedimentary sink for isotopically light Mo. The search for this

  8. Erosion-corrosion entrainment of iron-containing compounds as a source of deposits in steam generators used at nuclear power plants equipped with VVER reactors

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.

    2011-03-01

    The main stages and processes through which deposits are generated, migrate, and precipitate in the metal-secondary coolant system of power units at nuclear power plants are analyzed and determined. It is shown that substances produced by the mechanism of general erosion-corrosion are the main source of the ionic-colloid form of iron, which is the main component of deposits in a steam generator. Ways for controlling the formation of deposits in a nuclear power plant's steam generator are proposed together with methods for estimating their efficiency.

  9. Geostatistical Approach to Estimating the Gold Ore Characteristics and Gold Reserves: A Case Study Daksa Area, Quang Nam Province, Viet Nam

    Science.gov (United States)

    Luan Truong, Xuan; Luong Le, Van; Quang Truong, Xuan

    2015-04-01

    Daksa gold deposit is the biggest gold deposits in Vietnam. The Daksa geological structure complicated, distributed mainly metamorphosed sedimentary NuiVu formation (PR3-?1nv2). The sulfide gold ore bodies distributed in quartz schist, quartz - biotite related to faut and distribution wing anticline. The gold ore bodies form circuits, network circuits, circuits lenses; fill the cup surface layer of the developing northeast - southwest; is the less than or west longitude north - SE. The results show that, Au and accompanying elements (Ag, Pb and Zn) have correlated pretty closely. All of its consistent with the logarithmic distribution standard, in accordance with the law of distribution of content mineral rare. The structure functions have nugget effect and spherical models with show that Au and accompanying elements special variation are changes. Au contents shown local anisotropy, no clearly anisotropy (K=1,17) and weakly anisotropy (K=1,4). Intensity mineralization of the ore bodies are quite high with demand spherical conversion coefficient ranging from 0.49 to 0.75 and from 0.66 to 0.97 (for other body). With nugget effects, ore bodies shown that it is consistent with mineralization in the ore bodies study, ore erasable, micro vein, infilling fractures in quartz vein. All of variogram presents local anisotropy, indicated gold mineralization at study area has least two-mineralization stages, consistent with the analysis of mineralography samples. By the results of the structure function study, the authors present the system optimization for exploration deposit and used to evaluate gold reserves by Ordinary Kriging. High accuracy of Kriging estimation results are expressed in the minimum Kriging variance, by compare the results calculated by some other methods (such as distance inverse weighting method, ..) and specially compare to the results of a some blocks have been exploited. Key words: Geostat and gold deposits VN. Daksa and gold mineralization. Geostat

  10. Investigation of cerebral iron deposition in aged patients with ischemic cerebrovascular disease using susceptibility-weighted imaging

    Directory of Open Access Journals (Sweden)

    Liu Y

    2016-08-01

    Full Text Available Yin Liu, Jun Liu, Huanghui Liu, Yunjie Liao, Lu Cao, Bin Ye, Wei Wang Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China Objective: The aim of this study was to investigate focal iron deposition level in the brain in patients with ischemic cerebrovascular disease and its correlation with cerebral small vessel disease imaging markers.Patients and methods: Seventy-four patients with first-ever transient ischemic attack (median age: 69 years; 30 males and 44 females and 77 patients with positive ischemic stroke history (median age: 72 years; 43 males and 34 females were studied retrospectively. On phase image of susceptibility-weighted imaging and regions of interest were manually drawn at the bilateral head of the caudate nucleus, lenticular nucleus (LN, thalamus (TH, frontal white matter, and occipital white matter. The correlation between iron deposition level and the clinical and imaging variables was also investigated.Results: Iron deposition level at LN was significantly higher in patients with previous stroke history. It linearly correlated with the presence and number of cerebral microbleeds (CMBs but not with white matter hyperintensity and lacunar infarct. Multiple linear regression analysis showed that deep structure CMBs were the most relevant in terms of iron deposition at LN.Conclusion: Iron deposition at LN may increase in cases of more severe ischemia in aged patients with transient ischemic attack, and it may be an imaging marker for CMB of ischemic origin. Keywords: cerebral microbleed, ischemia, susceptibility-weighted imaging, iron, lenticular nucleus

  11. The depositional and hydrogeologic environment of tertiary uranium deposits, South Texas uranium province

    International Nuclear Information System (INIS)

    Galloway, W.E.

    1985-01-01

    Uranium ore bodies of the South Texas Uranium Province occur within the most transmissive sand facies of coastal-plain fluvial and shore-zone depositional systems. Host strata range in age from Eocene through Miocene. Ore bodies formed at the fringes of epigenetic oxidation tongues near intrinsic organic debris or iron-disulfide mineral reductants. Mineralized Eocene units, which include the Carrizo and Whitsett Sandstones, subcropped beneath tuffaceous Oligocene through early Miocene coastal plain sediments. Roll-front mineralization occurred because of this direct hydrologic continuity between an aquifer and a uranium source. Most ore occurs within coarse, sand-rich, arid-region, bed-load fluvial systems of the Oligocene through Miocene Catahoula, Oakville, and Goliad Formations. Host sediments were syndepositionally oxidized and leached. Reductant consists predominantly of epigenetic pyrite precipitated from deep, sulfide-rich thermobaric waters introduced into the shallow aquifers along fault zones. Mineralization fronts are commonly entombed within reduced ground. Modern ground waters are locally oxidizing and redistributing some ore but appear incapable of forming new mineralization fronts. (author)

  12. A novel nanostructured iron oxide-gold bioelectrode for hydrogen peroxide sensing

    Energy Technology Data Exchange (ETDEWEB)

    Thandavan, Kavitha; Gandhi, Sakthivel; Sethuraman, Swaminathan; Krishnan, Uma Maheswari [Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401 (India); Rayappan, John Bosco Balaguru, E-mail: umakrishnan@sastra.edu [Centre for Nanotechnology and Advanced Biomaterials, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401 (India)

    2011-07-01

    Fe{sub 3}O{sub 4} nanoparticles covalently linked to a gold electrode have been used for immobilizing catalase (CAT) enzyme to sense the presence of various concentrations of H{sub 2}O{sub 2}. These nanoparticles ranging from 20 to 30 nm were synthesized by thermal co-precipitation of ferric and ferrous chlorides. SEM and XRD have been used for morphological and structural characterization of Fe{sub 3}O{sub 4} nanoparticles. CAT enzyme was linked covalently to the surface of iron oxide using carbodiimide in phosphate buffer (pH 7.4) at 4 deg. C. The enzyme-iron oxide link was confirmed by FT-IR spectroscopy. Sensing studies carried out using cyclic voltammetry showed a linear response of the CAT/nano Fe{sub 3}O{sub 4}/Au bioelectrode towards H{sub 2}O{sub 2} between 1.5 and 13.5 {mu}M with a very sharp response time of 2 s.

  13. Preparation and characterization of nano gold supported over montmorillonite clays

    International Nuclear Information System (INIS)

    Suraja, P.V.; Binitha, N.N.; Yaakob, Z.; Silija, P.P.

    2009-01-01

    Full text: The use of montmorillonite clays as a matrix, or as a host, for obtaining intercalated/supported metal particles has potential applications in catalysis and other areas. The gold nanoparticles were obtained from the most common anionic gold precursor HAuCl 4 ·3H 2 O by deposition-precipitation (DP) methods. However, it is difficult to prepare nano scale gold catalysts supported on silica surfaces with lower isoelectric point (IEP). Homogeneous precipitation method using urea also fails on silica surfaces. Reasons for the inefficiency of these methods are the negative charge of the metal precursor as well as the support surface and the high pH required for depositing gold nanoparticles. In the present work, we use glucose as the reductant in the presence of stabilizer for preparation of nano gold supported on montmorillonite clay. Here there is no need of increasing the pH of the solution to reduce the Au 3+ ions. The prepared systems are characterized using various techniques such as using X-ray fluorescence (XRF), UV-Vis Diffuse reflectance spectra (DRS) and Fourier Transform infra red spectra (FTIR) to prove the efficiency of the present method. (author)

  14. Preparation and Characterization of Nano Gold Supported over Montmorillonite Clays

    Energy Technology Data Exchange (ETDEWEB)

    Suraja, P V; Binitha, N N; Yaakob, Z; Silija, P P, E-mail: binithann@yahoo.co.in [Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2011-02-15

    The use of montmorillonite clays as a matrix, or as a host, for obtaining intercalated/supported metal particles has potential applications in catalysis and other areas. The gold nanoparticles were obtained from the most common anionic gold precursor HAuCl4{center_dot}3H2O by deposition-precipitation (DP) methods. However, it is difficult to prepare nanoscale gold catalysts supported on silica surfaces with lower isoelectric point (IEP). Homogeneous precipitation method using urea also fails on silica surfaces. Reasons for the inefficiency of these methods are the negative charge of the metal precursor as well as the support surface and the high pH required for depositing gold nanoparticles. In the present work, we use glucose as the reductant in the presence of stabilizer for preparation of nano gold supported on montmorillonite clay. There is no need of increasing the pH of the solution to reduce the Au3+ ions. The prepared systems are characterized using various techniques such as using X-ray fluorescence (XRF), UV-VIS Diffuse reflectance spectra (DRS) and Fourier Transform infra red spectra (FTIR) to prove the efficiency of the present method.

  15. SPHERICAL MICROPARTICLES FROM GOLD–BEARING QUARTZ VEINS OF THE IROKINDA DEPOSIT, WESTERN TRANSBAIKALIA

    Directory of Open Access Journals (Sweden)

    A. V. Tatarinov

    2016-01-01

    Full Text Available We have studied the material composition of ore microparticles extracted from gold concentrates of operating quartz vein No. 30 located in the Irokinda deposit, Western Transbaikalia. We consider the origin of such microparticles in connection with our observation data and the previously published structural and geological features revealed in formation of the ore field, as well as tectonophysical conditions of formation of many gold-bearing quartz veins, including vein No. 30.Gold-quartz veins, located in the allochthonous plate thrusted onto the Kelyano-Irokinda belt (Fig. 1, infill the NE-striking fault zones. E.A. Namolov conducted the tectonophysical analysis of the “elementary fracture – ore-bearing suture/joint” system, which provided a genetic explanation of the morphology of ore quartz veins (including vein No. 30 and conditions for formation of their host fault zones. Ore-bearing fractures are combinations of shear and cleavage cracks that occur in case of certain positions of the strain ellipsoid in conditions of horizontal compression. Due to repeated intra-mineralization displacements, the texture of the ores is strappy, and the quartz matrix of the veins contains numerous inclusions of host rocks.The spherical particles have zonal structures and consist of metal nodes and external continuous or discontinuous shells, which thickness ranges from 10 to 400 microns (Fig. 2, Fig. 3. The nodes are composed mainly of native Fe with admixtures of Fe, Mn, Al (Table, the contents of which are typically less than 1.0–1.5 wt %.Characteristic features of the mineral composition of shells of the spheroidal microparticles:– The widespread graphite matrix consisting of minerals of different classes, except for native;– Pyrite in the group of ore oxides of Fe, Mn, Cr, Ti;– A large group of carbonate minerals;– Feldspars and natrosilite among silicates;– The mineral with CaBr2 composition;– Mono-mineral quartz rims

  16. The Paleo-environmental significance of the iron-formations and iron-rich mudstones of the Mesoarchean Witwatersrand-Mozaan Basin, South Africa

    OpenAIRE

    2009-01-01

    M.Sc. The Mesoarchean Witwatersrand and Pongola Supergroups of South Africa are the oldest, well preserved supracratonic successions worldwide. Various banded iron formation (BIF) and iron-rich mudstone units occur within the West Rand Group of the Witwatersrand Supergroup and the Mozaan Group of the Pongola Supergroup. A granular iron formation (GIF) occurs in a single unit in the Nconga Formation of the Mozaan Group. The Witwatersrand Supergroup and Mozaan Group have been lithostratigrap...

  17. Stratigraphy and environments of deposition of the Cretaceous Hell Creek Formation (reconnaissance) and the Paleocene Ludlow Formation (detailed), southwestern North Dakota. Report of investigations No. 56

    International Nuclear Information System (INIS)

    Moore, W.L.

    1976-01-01

    The Cretaceous Hell Creek and Paleocene Ludlow Formations of southwestern North Dakota, with the exception of the included lignite beds and minor amounts of concretions and nodules, are almost exclusively clastic sediments and sedimentary rocks. Massive clays, clays alternating with silts and sands, sandstones filling channels and other depressions, sheet sandstones, and lignites are the dominant sediment and rock types present. These sediments and sedimentary rocks were mostly deposited in a continental environment and were largely alluvial, lacustrine or paludal in origin; though marginal marine deposition, in part, is indicated by the occurrence of brackish water faunas in portions of the upper Ludlow Formation. With the possible exception of a persistent lignite near the base, persistent lignites are not present in the Hell Creek Formation. The Ludlow can be subdivided into several informal units, typically coal-bounded, which can be traced laterally over large areas. This informal subdivision permits isolation of stratigraphic units for the study of local environments of deposition. Channel and depression fill sandstones of the Ludlow Formation have a relatively low permeability and a high organic content at the surface and, for this reason, are considered poor prospective uranium host rocks. The lighter colored yellow winnowed sheet sandstones of the Ludlow are more permeable and relatively free of organic matter. They are considered as possible host rocks for uranium occurring in association with an oxidation/reduction interface at shallow depths. The uranium potential is enhanced where the latter sandstones occur along paleodivides which have been overlain by the Oligocene White River Formation, or in local areas where the latter formation is still preserved. Light yellow winnowed sheet sandstones are rare in the Hell Creek Formation, and the chances for uranium prospects in this interval seem correspondingly reduced

  18. DNA-length-dependent quenching of fluorescently labeled iron oxide nanoparticles with gold, graphene oxide and MoS2 nanostructures.

    Science.gov (United States)

    Balcioglu, Mustafa; Rana, Muhit; Robertson, Neil; Yigit, Mehmet V

    2014-08-13

    We controlled the fluorescence emission of a fluorescently labeled iron oxide nanoparticle using three different nanomaterials with ultraefficient quenching capabilities. The control over the fluorescence emission was investigated via spacing introduced by the surface-functionalized single-stranded DNA molecules. DNA molecules were conjugated on different templates, either on the surface of the fluorescently labeled iron oxide nanoparticles or gold and nanographene oxide. The efficiency of the quenching was determined and compared with various fluorescently labeled iron oxide nanoparticle and nanoquencher combinations using DNA molecules with three different lengths. We have found that the template for DNA conjugation plays significant role on quenching the fluorescence emission of the fluorescently labeled iron oxide nanoparticles. We have observed that the size of the DNA controls the quenching efficiency when conjugated only on the fluorescently labeled iron oxide nanoparticles by setting a spacer between the surfaces and resulting change in the hydrodynamic size. The quenching efficiency with 12mer, 23mer and 36mer oligonucleotides decreased to 56%, 54% and 53% with gold nanoparticles, 58%, 38% and 32% with nanographene oxide, 46%, 38% and 35% with MoS2, respectively. On the other hand, the presence, not the size, of the DNA molecules on the other surfaces quenched the fluorescence significantly with different degrees. To understand the effect of the mobility of the DNA molecules on the nanoparticle surface, DNA molecules were attached to the surface with two different approaches. Covalently immobilized oligonucleotides decreased the quenching efficiency of nanographene oxide and gold nanoparticles to ∼22% and ∼21%, respectively, whereas noncovalently adsorbed oligonucleotides decreased it to ∼25% and ∼55%, respectively. As a result, we have found that each nanoquencher has a powerful quenching capability against a fluorescent nanoparticle, which can be

  19. Model for UV induced formation of gold nanoparticles in solid polymeric matrices

    Science.gov (United States)

    Sapogova, N.; Bityurin, N.

    2009-09-01

    UV irradiation of polymeric PMMA films containing HAuCl 4 followed by annealing at 60-80 °C forms gold nanoparticles directly within the bulk material. The kinetics of nanoparticle formation was traced by extinction spectra of nanocomposite film changes vs annealing time. We propose that UV irradiation causes HAuCl 4 dissociation and thus provides a polymeric matrix with atomic gold. The presence of an oversaturated solid solution of atomic gold in the polymeric matrix leads to Au nanoparticle formation during annealing. This process can be understood as a phase transition of the first order. In this paper we apply several common kinetic models of the phase transition for describing Au nanoparticle formation inside the solid polymer matrix. We compare predictions of these models with the experimental data and show that these models cannot describe the process. We propose that the stabilization effect of the matrix on the growing gold nanoparticles is important. The simplest model introducing some probability for the transition from growing nanoparticle to the non-growing, stabilized form is suggested. It is shown that this model satisfactorily describes the experimentally observed evolution of the extinction spectrum of Au nanoparticles forming in a polymer matrix.

  20. Formation of fouling deposits on a carbon steel surface from Colombian heavy crude oil under preheating conditions

    Science.gov (United States)

    Muñoz Pinto, D. A.; Cuervo Camargo, S. M.; Orozco Parra, M.; Laverde, D.; García Vergara, S.; Blanco Pinzon, C.

    2016-02-01

    Fouling in heat exchangers is produced by the deposition of undesired materials on metal surfaces. As fouling progresses, pressure drop and heat transfer resistance is observed and therefore the overall thermal efficiency of the equipment diminishes. Fouling is mainly caused by the deposition of suspended particles, such as those from chemical reactions, crystallization of certain salts, and some corrosion processes. In order to understand the formation of fouling deposits from Colombian heavy oil (API≈12.3) on carbon steel SA 516 Gr 70, a batch stirred tank reactor was used. The reactor was operated at a constant pressure of 340psi while varying the temperature and reaction times. To evaluate the formation of deposits on the metal surfaces, the steel samples were characterized by gravimetric analysis and Scanning Electron Microscopy (SEM). On the exposed surfaces, the results revealed an increase in the total mass derived from the deposition of salt compounds, iron oxides and alkaline metals. In general, fouling was modulated by both the temperature and the reaction time, but under the experimental conditions, the temperature seems to be the predominant variable that controls and accelerates fouling.

  1. Controls on the Mobility of Antimony in Mine Waste from Three Deposit Types

    Science.gov (United States)

    Jamieson, H.; Radková, A. B.; Fawcett, S.

    2017-12-01

    Antimony can be considered both a critical metal and an environmental hazard, with a toxicity similar to arsenic. It is concentrated in stibnite deposits, but also present in polymetallic and precious metal ores, frequently accompanied by arsenic. We have studied the mineralogical controls on the mobility of antimony in three types of mine waste: stibnite tailings from an antimony mine, tetrahedrite-bearing waste rock from copper mining, and gold mine tailings and ore roaster waste. Our results demonstrate that the tendency of antimony to leach into the aqueous environment or remain sequestered in solid phases depends on the primary host minerals and conditions governing the precipitation of secondary antimony-hosting phases. In tailings at the Beaver Brook antimony mine in Newfoundland, Canada, stibnite oxidizes rapidly, and secondary minerals such as the relatively insoluble Sb-Fe tripuhyite-like phase and Sb-bearing goethite. However, under dry conditions, the most important secondary Sb host is the Mg-Sb hydroxide brandholzite, but this easily soluble mineral disappears when it rains. Antimony that was originally hosted in tetrahedrite, a complex multi-element sulfosalt, in the historic waste rock piles at Špania Dolina-Piesky, Slovakia, is not as mobile as Cu and As during weathering but reprecipiates to a mixture of tripuhyite and romeite. Finally, the original antimony-hosting minerals, both stibnite and sulphosalts, in the gold ore at Giant Mine, Yellowknife, Canada were completely destroyed during ore roasting. In tailings-contaminated sediments, antimony persists in roaster-generated iron oxide phases, except under reducing conditions where some of the antimony forms a Sb-S phase. The combined presence of antimony and arsenic in mine waste complicates risk assessment but in general, our findings suggest that antimony is less mobile than arsenic in the environment.

  2. Testing Timescales for Rhythms Recorded in the 2.5 Ga Banded Iron Formation of the Dales Gorge Member (Brockman Iron Formation, Hamersley Group, Australia)

    Science.gov (United States)

    Hinnov, L. A.; de Oliveira Carvalho Rodrigues, P.; Franco, D.

    2017-12-01

    The classic, Superior-type banded iron formation (BIF) of the Precambrian Dales Gorge Member (DGM) of the Brockman Iron Formation, Hamersley Basin, Western Australia consists of a succession of micro- (millimeter-scale) and meso- (centimeter to decimeter-scale) bands of primarily iron-silica chemical sediment alternations, separated into macro- (meter to decameter-scale) bands by shales (1). Here, we present a time-frequency analysis of a gray-scale scan of the DGM "type section core" Hole 47A with small contributions from Hole EC10 (1) to provide a comprehensive characterization of banding patterns and periodicity throughout the 140 m section. SHRIMP zircon ages (2) indicate that the DGM was deposited over approximately 30 myr during the Archean-Proterozoic transition just prior to the Great Oxidation Event. This suggests that the banding patterns recorded Milankovitch cycles, although with orbital-rotational parameters significantly different from present-day due to Earth's tidal dissipation and chaotic episodes in the Solar System since 2.5 Ga. Banding patterns change systematically within the formation in response to slowly varying environmental conditions, which have been interpreted previously to be related to sea level change and basin evolution (3). Researchers, including (2), have questioned the 30 myr duration, suggesting instead that the micro-bands may be annual in scale. This would indicate a much shorter duration of less than 150 kyr for the DGM. In an attempt to determine whether Milankovitch cycles could have generated the meso-band patterns, we present detailed studies of BIF0 and BIF12, which typify the marked changes in meso-banding along the section. Objective procedures are also applied, including ASM (4) and TIMEOPT (5) to test for a range of potential alternative timescales assuming orbital-rotational parameter values modeled for 2.5 Ga. References: (1) Trendall, A.K., Blockley, J.G., GSWA Ann. Rep. 1967, 48, 1968; (2) Trendall, A.K., et al

  3. Oligothia dendrimers for the formation of gold nanoparticles

    NARCIS (Netherlands)

    d'Aleo, A.; Williams, R.M.; Osswald, F.; Edamana, P.; Hahn, U.; van Heyst, J.; Tichelaar, F.D.; Voegtle, F.; De Cola, L.

    2004-01-01

    The synthesis and characterization of oligothia dendrimers and their use for the formation of gold nanoparticles is described. The role played by these dendrimers in controlling the stability and size of the particles is discussed. It is shown that the generation of the dendrimers, as well as the

  4. Geology and geochemistry of epithermal precious metal vein systems in the intra-oceanic arcs of Palau and Yap, western Pacific

    Science.gov (United States)

    Rytuba, J.J.; Miller, W.R.

    1990-01-01

    The Palau and Yap arcs are part of an intra-oceanic island-arc-trench system which separates the Pacific and Philippine plates in the western Pacific Ocean. The 350-km-long Palau arc consists of over 200 islands while the 400-km-long Yap arc located to the north has only four major islands exposed. Four of the largest islands in Palau are composed primarily of early Eocene to mid-Miocene volcanic rocks and the four islands comprising Yap contain only Miocene volcanic rocks. Basalt and basaltic andesites of the Babelthuap Formation are the oldest volcanic rocks in Palau and are characterized by high MgO, Ni and Cr and low TiO2 and have a boninitic affinity. They form the central and southeastern parts of Babelthuap Island. Oligocene arc tholeiite flows having an age of 34-35.5 Ma comprise most of the three smaller volcanic islands in Palau and the western part of Babelthuap. The youngest volcanic rocks are dacitic intrusions having an age of 22.7-23.2 Ma. The Yap arc is unusual in that metamorphic rocks up to amphibolite grade form most of the islands. These are underlain by a melange composed of igneous and volcanic clasts as well as clasts from a dismembered copper-gold skarn deposit. Miocene volcanic rocks consisting of flows and volcaniclastic deposits overlie the melange and metamorphic complex. An epithermal precious-metal vein system hosted by flows and flow breccias of the Babelthuap Formation occurs in an area 1.5 km by 1 km on the southeast side of Babelthuap Island. Over 50 veins and mineralized breccias ranging up to 2 m in width and having a strike length up to 500 m contain from trace to 13.0 ppm gold. The veins consist of quartz with varying amounts of sulfides and iron oxides after sulfides and the mineralized breccias consist of brecciated country rock cemented by quartz and iron oxides after sulfides. The veins and mineralized breccias generally dip within 15?? of vertical and have two preferred orientations, north-northwest and north

  5. Gold and gold working in Late Bronze Age Northern Greece

    Science.gov (United States)

    Vavelidis, M.; Andreou, S.

    2008-04-01

    Numerous objects of gold displaying an impressive variety of types and manufacturing techniques are known from the Late Bronze Age (LBA) contexts of Mycenaean Greece, but very little is known about the origin and processing of gold during the second millennium b.c. Ancient literature and recent research indicate that northern Greece is probably the richest gold-bearing region in Greece, and yet, very little evidence exists regarding the exploitation of its deposits and the production as well as use of gold in the area during prehistory. The unusual find of a group of small stone crucibles at the prehistoric settlement of Thessaloniki Toumba, one with visible traces of gold melting, proves local production and offers a rare opportunity to examine the process of on-site gold working. Furthermore, the comparison of the chemical composition of prehistoric artefacts from two settlements with those of gold deposits in their immediate areas supports the local extraction of gold and opens up the prospect for some of the Mycenaean gold to have originated in northern Greece. The scarcity of gold items in northern Greek LBA contexts may not represent the actual amount of gold produced and consumed, but could be a result of the local social attitudes towards the circulation and deposition of artefacts from precious metals.

  6. Host-race formation: promoted by phenology, constrained by heritability.

    Science.gov (United States)

    Whipple, A V; Abrahamson, W G; Khamiss, M A; Heinrich, P L; Urian, A G; Northridge, E M

    2009-04-01

    Host-race formation is promoted by genetic trade-offs in the ability of herbivores to use alternate hosts, including trade-offs due to differential timing of host-plant availability. We examined the role of phenology in limiting host-plant use in the goldenrod gall fly (Eurosta solidaginis) by determining: (1) whether phenology limits alternate host use, leading to a trade-off that could cause divergent selection on Eurosta emergence time and (2) whether Eurosta has the genetic capacity to respond to such selection in the face of existing environmental variation. Experiments demonstrated that oviposition and gall induction on the alternate host, Solidago canadensis, were the highest on young plants, whereas the highest levels of gall induction on the normal host, Solidago gigantea, occurred on intermediate-age plants. These findings indicate a phenological trade-off for host-plant use that sets up the possibility of divergent selection on emergence time. Heritability, estimated by parent-offspring regression, indicated that host-race formation is impeded by the amount of genetic variation, relative to environmental, for emergence time.

  7. Solid-State Dewetting of Gold Aggregates/Islands on TiO2 Nanorod Structures Grown by Oblique Angle Deposition.

    Science.gov (United States)

    Liu, Shizhao; Plawsky, Joel L

    2017-12-12

    A composite film made of a stable gold nanoparticle (NP) array with well-controlled separation and size atop a TiO 2 nanorod film was fabricated via the oblique angle deposition (OAD) technique. The fabrication of the NP array is based on controlled, Rayleigh-instability-induced, solid-state dewetting of as-deposited gold aggregates on the TiO 2 nanorods. It was found that the initial spacing between as-deposited gold aggregates along the vapor flux direction should be greater than the TiO 2 interrod spacing created by 80° OAD to control dewetting and produce NP arrays. A numerical investigation of the process was conducted using a phase-field modeling approach. Simulation results showed that coalescence between neighboring gold aggregates is likely to have caused the uncontrolled dewetting in the 80° deposition, and this could be circumvented if the initial spacing between gold aggregates is larger than a critical value s min . We also found that TiO 2 nanorod tips affect dewetting dynamics differently than planar TiO 2 . The topology of the tips can induce contact line pinning and an increase in the contact angle along the vapor flux direction to the supported gold aggregates. These two effects are beneficial for the fabrication of monodisperse NPs based on Rayleigh-instability-governed self-assembly of materials, as they help to circumvent the undesired coalescence and facilitate the instability growth on the supported material. The findings uncover the application potential of OAD as a new method to fabricate structured films as template substrates to mediate dewetting. The reported composite films would have uses in optical coatings and photocatalytic systems, taking advantage of their ability to combine plasmonic nanostructures within a nanostructured dielectric film.

  8. Influence of reactive oxygen species during deposition of iron oxide films by high power impulse magnetron sputtering

    Science.gov (United States)

    Stranak, V.; Hubicka, Z.; Cada, M.; Bogdanowicz, R.; Wulff, H.; Helm, C. A.; Hippler, R.

    2018-03-01

    Iron oxide films were deposited using high power impulse magnetron sputtering (HiPIMS) of an iron cathode in an argon/oxygen gas mixture at different gas pressures (0.5 Pa, 1.5 Pa, and 5.0 Pa). The HiPIMS system was operated at a repetition frequency f  =  100 Hz with a duty cycle of 1%. A main goal is a comparison of film growth during conventional and electron cyclotron wave resonance-assisted HiPIMS. The deposition plasma was investigated by means of optical emission spectroscopy and energy-resolved mass spectrometry. Active oxygen species were detected and their kinetic energy was found to depend on the gas pressure. Deposited films were characterized by means of spectroscopic ellipsometry and grazing incidence x-ray diffraction. Optical properties and crystallinity of as-deposited films were found to depend on the deposition conditions. Deposition of hematite iron oxide films with the HiPIMS-ECWR discharge is attributed to the enhanced production of reactive oxygen species.

  9. Electrochemical and morphological characterization of gold nanoparticles deposited on boron-doped diamond electrode

    Energy Technology Data Exchange (ETDEWEB)

    Limat, Meriadec; El Roustom, Bahaa [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland); Jotterand, Henri [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Physics of the Complex Matter, CH-1015 Lausanne (Switzerland); Foti, Gyoergy [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland)], E-mail: gyorgy.foti@epfl.ch; Comninellis, Christos [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland)

    2009-03-30

    A novel two-step method was employed to synthesize gold nanoparticles dispersed on boron-doped diamond (BDD) electrode. It consisted of sputter deposition at ambient temperature of maximum 15 equivalent monolayers of gold, followed by a heat treatment in air at 600 deg. C. Gold nanoparticles with an average diameter between 7 and 30 nm could be prepared by this method on polycrystalline BDD film electrode. The obtained Au/BDD composite electrode appeared stable under conditions of electrochemical characterization performed using ferri-/ferrocyanide and benzoquinone/hydroquinone redox couples in acidic medium. The electrochemical behavior of Au/BDD was compared to that of bulk Au and BDD electrodes. Finally, the Au/BDD composite electrode was regarded as an array of Au microelectrodes dispersed on BDD substrate.

  10. Electrochemical and morphological characterization of gold nanoparticles deposited on boron-doped diamond electrode

    International Nuclear Information System (INIS)

    Limat, Meriadec; El Roustom, Bahaa; Jotterand, Henri; Foti, Gyoergy; Comninellis, Christos

    2009-01-01

    A novel two-step method was employed to synthesize gold nanoparticles dispersed on boron-doped diamond (BDD) electrode. It consisted of sputter deposition at ambient temperature of maximum 15 equivalent monolayers of gold, followed by a heat treatment in air at 600 deg. C. Gold nanoparticles with an average diameter between 7 and 30 nm could be prepared by this method on polycrystalline BDD film electrode. The obtained Au/BDD composite electrode appeared stable under conditions of electrochemical characterization performed using ferri-/ferrocyanide and benzoquinone/hydroquinone redox couples in acidic medium. The electrochemical behavior of Au/BDD was compared to that of bulk Au and BDD electrodes. Finally, the Au/BDD composite electrode was regarded as an array of Au microelectrodes dispersed on BDD substrate

  11. Petrography, Geochemistry and Proposed Genesis of Ordovician Oolitic Iron Formation Members of the Lashkarak Formation, Eastern Alborz

    International Nuclear Information System (INIS)

    Maghsoudloo Mahalli, M.; Shafiei Bafti, B.

    2016-01-01

    Mineralogical characteristics combined with geochemical data show that anomalous values of Fe in studied carbonate argillite formations with respect to common sedimentary rocks are related to the abundance of iron-bearing oolites as oxides such as hematite and goethite, and the clay mineral chamosite. Based on Fe, Mg and Ca concentrations, oolitic iron formations can be divided into low-grade and high-grade iron formations. The former is characterized by chamosite and calcite, whereas the latter consists ofhematite and calcite. This research, along with available paleo-geographic and sedimentological information suggests that the iron for the formation of iron oolites was available from normal sea water and Fe could be carried as clastic particles along with clays or coating of clay particles derived from weathering and erosion of shales from adjacent land. High contents of K and Si in oolitic iron horizons, the presence of detrital zircon, quartz and clay minerals within oolites and also in the matrix of these rocks confirm the proposed model and show the important role of Fe-bearing clay minerals in the genesis of the primary chamositic oolites in an environment with p H=5-9 and medium-weak redox conditions (Maynard, 1983; Maynard, 1986). The abundance of hematite relative to goethite in the Fe-oolites, dense and elliptical oolites as well as the frequent occurrence of calcite veinlets cutting oolite beds has been attributed to diagenetic processes and the modification of chamosite and goethite to hematite. Our findings indicate that the studied members can be classified as low-grade oolitic iron formation (average 21 wt.% Fe) which do not have economic importance at present.

  12. Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Won; Kim, Jeong Jin; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, Dong Woo [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2016-03-15

    There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

  13. Metallogenic characteristics, model and exploration prospect for the paleo-interlayer-oxidation type sandstone-hosted uranium deposits in China

    International Nuclear Information System (INIS)

    Huang Jingbai; Li Shengxiang

    2007-01-01

    In this paper, the paleo-interlayer-oxidation type sandstone-hosted uranium deposits occurred in the Meso-Cenozoic continental basins in China are divided into 3 subtype, they are stratum over lapping buried subtype, structure-uplifting destroy subtype and faulted-folding conserved subtype. The metallogenic characteristics, metallogenic model and exploration prospect for these 3 subtypes uranium deposits are discussed. It is proposed that the paleo-interlayer-oxidation type sandstone-hosted uranium deposits, besides the recent interlayer oxidation type sandstone-hosted uranium deposits, are of great prospecting potential in the Meso-Cenozoic continental basins in China. Therefore, the metallogenic theory of these types uranium deposits should be conscientiously summarized and replenished continuously so as to propel forward the exploration of the sandstone-hosted uranium deposits in China. (authors)

  14. The contribution of lateritization processes to the formation of the kaolin deposits from eastern Amazon

    Science.gov (United States)

    da Costa, Marcondes Lima; Sousa, Daniel José Lima; Angélica, Rômulo Simões

    The eastern region of the Amazon is home to the most important kaolin bauxite producing district in Brazil, referred to as the Paragominas-Capim kaolin bauxite district, which has a reserve of at least 1.0 billion tons of high-quality kaolin used in the paper coating industry. The kaolin deposits are closely related to sedimentary rocks of the Parnaíba basin and their lateritic cover. Two large deposits are already being mined: IRCC (Ipixuna) and PPSA (Paragominas). The geology of the IRCC mine is comprised of the kaolin-bearing lower unit (truncated mature laterite succession derived from the Ipixuna/Itapecuru formation) and the upper unit (immature lateritized Barreiras formation). The lower kaolin unit is characterized by a sandy facies at the bottom and a soft (ore) with flint facies at the top. It is formed by kaolinite, quartz, some iron oxi-hydroxides, mica and several accessories and heavy minerals. The mangrove covering; and immature lateritization - partial kaolin ferruginization during the Pleistocene.

  15. Iron-catalyzed intermolecular cycloaddition of diazo surrogates with hexahydro-1,3,5-triazines.

    Science.gov (United States)

    Liu, Pei; Zhu, Chenghao; Xu, Guangyang; Sun, Jiangtao

    2017-09-26

    We report here an unprecedented iron-catalyzed cycloaddition reaction of diazo surrogates with hexahydro-1,3,5-triazines, providing five-membered heterocycles in moderate to high yields under mild reaction conditions. This cycloaddition features C-N and C-C bond formation using a cheap iron catalyst. Importantly, different to our former report on a gold-catalyzed system, both donor/donor and donor/acceptor diazo substrates are tolerated in this iron-catalyzed protocol.

  16. Gold nano-particles fixed on glass

    International Nuclear Information System (INIS)

    Worsch, Christian; Wisniewski, Wolfgang; Kracker, Michael; Rüssel, Christian

    2012-01-01

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above T g of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO 2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  17. Geodynamic condition of formation of favorable structural positions for ore-grade gold placement in auminzatau-beltau ore area (the central kyzyl kum, western uzbekistan)

    Science.gov (United States)

    Janibekov, Bobir Omonovich; Turapov, M. K.

    2017-09-01

    Work is directed on studying of a geodynamic condition under which the structural positions controlling process of endogenous ore formation were formed. It is shown that explosive region tectonics under the influence of regional tectonic efforts formed structural elements (positions) which controlled formation of gold deposits. It is recognized that structural positions are defined by variety of systems of disjunctive dislocation and their relationship among themselves. Formation of favorable positions depends as well on morphology of ore controlling structures, on degree of their tectonic activity and spatial situation in relation to the direction of tectonic (geodynamic) efforts.

  18. Quantification of ant manure deposition in a tropical agroecosystem: Implications for host plant nitrogen acquisition

    DEFF Research Database (Denmark)

    Pinkalski, Christian Alexander Stidsen; Damgaard, Christian; Jensen, Karl-Martin Vagn

    2015-01-01

    of ant manure may augment the host plants’ acquisition of nitrogen. In this study, we quantified the manure deposited by colonies of the Asian weaver ant Oecophylla smaragdina. We developed a method to estimate the amount of manure deposited in host trees (Mangifera indica) based on the trail activity...

  19. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation

    OpenAIRE

    Schröfel, Adam; Kratošová, Gabriela; Bohunická, Markéta; Dobročka, Edmund; Vávra, Ivo

    2011-01-01

    Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron m...

  20. Lithium deposits hosted in intracontinental rhyolite calderas

    Science.gov (United States)

    Benson, T. R.; Coble, M. A.; Mahood, G. A.

    2017-12-01

    Lithium (Li) is classified as a technology-critical element due to the increasing demand for Li-ion batteries, which have a high power density and a relatively low cost that make them optimal for energy storage in mobile electronics, the electrical power grid, and hybrid and electric vehicles. Given that many projections for Li demand exceed current economic reserves and the market is dominated by Australia and Chile, discovery of new domestic Li resources will help diversify the supply chain and keep future technology costs down. Here we show that lake sediments preserved within intracontinental rhyolite calderas have the potential to host Li deposits on par with some of the largest Li brine deposits in the world. We compare Li concentrations of rhyolite magmas formed in a variety of tectonic settings using in situ SHRIMP-RG measurements of homogenized quartz-hosted melt inclusions. Rhyolite magmas that formed within thick, felsic continental crust (e.g., Yellowstone and Hideaway Park, United States) display moderate to extreme Li enrichment (1,500 - 9,000 ppm), whereas magmas formed in thin crust or crust comprised of accreted arc terranes (e.g., Pantelleria, Italy and High Rock, Nevada) contain Li concentrations less than 500 ppm. When the Li-enriched magmas erupt to form calderas, the cauldron depression serves as an ideal catchment within which meteoric water that leached Li from intracaldera ignimbrite, nearby outflow ignimbrite, and caldera-related lavas can accumulate. Additional Li is concentrated in the system through near-neutral, low-temperature hydrothermal fluids circulated along ring fractures as remnant magma solidifies and degasses. Li-bearing hectorite and illite clays form in this alteration zone, and when preserved in the geological record, can lead to a large Li deposit like the 2 Mt Kings Valley Li deposit in the McDermitt Caldera, Nevada. Because more than 100 large Cenozoic calderas occur in the western United States that formed on eruption

  1. Geological principles of exploration for sandstone-hosted uranium deposits

    International Nuclear Information System (INIS)

    Le Roux, J.P.

    1982-10-01

    Although the importance of sandstone-hosted uranium deposits has seemingly faded in recent years due to the discovery of large, high -grade deposits elsewhere, a forecasted energy shortage in the near future will probably necessitate a new look at sedimentary basins as a source of uranium. Back-arc basins adjacent to calcalkaline source areas are especially favourable if they are filled with fluvial, post-Devonian sediments. Syn- and post-depositional tectonics play an important role in the sedimentation-mineralisation process and should be investigated. The oxidation-reduction state of the sandstones is a valid prospecting tool. Sedimentological environments govern the permeability and vegetal matter content of sandstones and directly control uranium mineralisation

  2. Chemical environment of iron atoms in iron oxynitride films synthesized by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Grafoute, M.; Petitjean, C.; Rousselot, C.; Pierson, J.F.; Greneche, J.M.

    2007-01-01

    An iron oxynitride film was deposited on silicon and glass substrates by magnetron sputtering in an Ar-N 2 -O 2 reactive mixture. Rutherford back-scattering spectrometry was used to determine the film composition (Fe 1.06 O 0.35 N 0.65 ). X-ray diffraction revealed the formation of a face-centred cubic (fcc) structure with a lattice parameter close to that of γ'''-FeN. X-ray photoelectron spectroscopy showed the occurrence of Fe-N and Fe-O bonds in the film. The local environment of iron atoms studied by 57 Fe Moessbauer spectrometry at both 300 and 77 K gives clear evidence that the Fe 1.06 O 0.35 N 0.65 is not a mixture of iron oxide and iron nitride phases. Despite a small amount of an iron nitride phase, the main sample consists of an iron oxynitride phase with an NaCl-type structure where oxygen atoms partially substitute for nitrogen atoms, thus indicating the formation of a iron oxynitride with an fcc structure

  3. Gold-Decorated Supraspheres of Block Copolymer Micelles

    Science.gov (United States)

    Kim, M. P.; Kang, D. J.; Kannon, A. G.; Jung, D.-W.; Yi, G. R.; Kim, B. J.

    2012-02-01

    Gold-decorated supraspheres displaying various surface morphologies were prepared by infiltration of gold precursor into polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) supraspheres under acidic condition. The supraspheres were fabricated by emulsifying PS-b-P2VP polymer solution into surfactant solution. Selective swelling of P2VP in the suprasphere by gold precursor under acidic condition resulted in the formation of gold-decorated supraspheres with various surface structures. As evidenced by TEM and SEM images, dot pattern was formed in the case of smaller supraspheres than 800 nm; whereas fingerprint-like pattern was observed in larger supraspheres than 800 nm. Gold nanoparticles were located inside P2VP domains near the surface of prepared supraspheres as confirmed by TEM. The optical property of the supraspheres was characterized using UV-vis absorption spectroscopy and the maximum absorption peak at around 580 nm was observed, which means that gold nanoparticles densely packed into P2VP domain on the suprasphere. Our approach to prepare gold-decorated supraspheres can be extended to other metallic particles such as iron oxide or platinum nanoparticles, and those precursors can be also selectively incorporated into the P2VP domain.

  4. A mesoproterozoic iron formation

    DEFF Research Database (Denmark)

    Canfield, Donald E; Zhang, Shuichang; Wang, Huajian

    2018-01-01

    formed in the time window between 1,800 and 800 Ma, where they are generally believed to have been absent. The Xiamaling IF is of exceptionally low thermal maturity, allowing the preservation of organic biomarkers and an unprecedented view of iron-cycle dynamics during IF emplacement. We identify....... Fe reduction was likely a dominant and efficient pathway of organic matter mineralization, as indicated by organic matter maturation by Rock Eval pyrolysis combined with carbon isotope analyses: Indeed, Fe reduction was seemingly as efficient as oxic respiration. Overall, this Mesoproterozoic......-aged IF shows many similarities to Archean-aged (>2,500 Ma) banded IFs (BIFs), but with an exceptional state of preservation, allowing an unprecedented exploration of Fe-cycle dynamics in IF deposition....

  5. Iron deposition in cranial bone marrow with sickle cell disease: MR assessment using a fat suppression technique

    International Nuclear Information System (INIS)

    Kaneko, K.; Humbert, J.H.; Kogutt, M.S.; Robinson, A.E.

    1993-01-01

    Thirteen patients with sickle cell disease (SCD) undergoing transfusion therapy and 8 control patients were examined by magnetic resonance imaging to discriminate bone marrow change due to iron deposition from hematologic marrow hyperplasia. Using T1-weighted spin echo images, only two subjects showed extremely low signal intensity marrow compatible with iron deposition. However, using T2-weighted fast spin echo images with fat suppression, cranial bone marrow in SCD patients with transfusion therapy showed considerably lower signal than that of controls. The main cause of marrow signal decrease in SCD patients with transfusion therapy was considered to be iron deposition due to repeated transfusion therapy rather than red marrow hyperplasia. (orig.)

  6. Nanoscale Soldering of Positioned Carbon Nanotubes using Highly Conductive Electron Beam Induced Gold Deposition

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E...... in a carbon matrix. Nanoscale soldering of multi-walled carbon nanotubes (MWNT) onto microelectrodes was achieved by deposition of a conducting gold line across a contact point between nanotube and electrode. The solderings were found to be mechanically stronger than the carbon nanotubes. We have positioned...... MWNTs to bridge the gap between two electrodes, and formed soldering bonds between the tube and each of the electrodes. All nanotube bridges showed ohmic resistances in the range 10-30 kΩ. We observed no increase in resistance after exposing the MWNT bridge to air for days....

  7. Corrosion Behavior of Pipeline Carbon Steel under Different Iron Oxide Deposits in the District Heating System

    Directory of Open Access Journals (Sweden)

    Yong-Sang Kim

    2017-05-01

    Full Text Available The corrosion behavior of pipeline steel covered by iron oxides (α-FeOOH; Fe3O4 and Fe2O3 was investigated in simulated district heating water. In potentiodynamic polarization tests; the corrosion rate of pipeline steel is increased under the iron oxide but the increaseing rate is different due to the differnet chemical reactions of the covered iron oxides. Pitting corrosion was only observed on the α-FeOOH-covered specimen; which is caused by the crevice corrosion under the α-FeOOH. From Mott-Schottky and X-ray diffraction results; the surface reaction and oxide layer were dependent on the kind of iron oxides. The iron oxides deposit increases the failure risk of the pipeline and localized corrosion can be occurred under the α-FeOOH-covered region of the pipeline. Thus, prevention methods for the iron oxide deposit in the district pipeline system such as filtering or periodic chemical cleaning are needed.

  8. Gold nanorod@iron oxide core-shell heterostructures: synthesis, characterization, and photocatalytic performance.

    Science.gov (United States)

    Li, Yue; Zhao, Junwei; You, Wenlong; Cheng, Danhong; Ni, Weihai

    2017-03-17

    Iron oxides are directly coated on the surface of cetyl-trimethylammonium bromide (CTAB)-capped gold nanorods (AuNRs) in aqueous solutions at room temperature, which results in AuNR@Fe 2 O 3 , AuNR@Fe 3 O 4 , and AuNR@Fe 2 O 3 @Fe 3 O 4 core-shell heterostructures. The iron oxide shells are uniform, smooth, with characteristic porous structure, and their thickness can be readily tuned. The shell formation is highly dependent on the reaction parameters including pH and CTAB concentration. The Fe 2 O 3 shell is amorphous and exhibits nearly zero remanence and coercivity, while the Fe 3 O 4 shell is ferromagnetic with a low saturation magnetization of about 0.5 emu g -1 due to its low crystallinity and the porous structure. At elevated temperatures achieved by plasmonic heating of the Au core, the Fe 2 O 3 shell transforms from amorphous to γ-Fe 2 O 3 and α-Fe 2 O 3 phases, while the Fe 3 O 4 phase disappears because of the oxidation of Fe 2+ . A 1.4-fold increase of photocatalytic performance is observed due to the plasmonic resonance provided by the Au core. The photocatalytic efficiency of Fe 3 O 4 is about 1.7-fold higher than Fe 2 O 3 as more surface defects are present on the Fe 3 O 4 shell, promoting the adsorption and activation of reagents on the surface during the catalytic reactions. This approach can be readily extended to other nanostructures including Au spherical nanoparticles and nanostars. These highly uniform and multifunctional core-shell heterostructures can be of great potential in a variety of energy, magnetic, and environment applications.

  9. Electrochemical deposition of iron sulfide thin films and heterojunction diodes with zinc oxide

    Directory of Open Access Journals (Sweden)

    Shoichi Kawai

    2014-03-01

    Full Text Available Iron sulfide thin films were fabricated by the electrochemical deposition method from an aqueous solution containing FeSO4 and Na2S2O3. The composition ratio obtained was Fe:S:O = 36:56:8. In the photoelectrochemical measurement, a weak negative photo-current was observed for the iron sulfide films, which indicates that its conduction type is p-type. No peaks were observed in X-ray diffraction pattern, and thus the deposited films were considered to be amorphous. For a heterojunction with ZnO, rectification properties were confirmed in the current-voltage characteristics. Moreover, the current was clearly enhanced under AM1.5 illumination.

  10. Occurrence modes of As, Sb, Te, Bi, Ag in sulfide assemblages of gold deposits of the Urals

    Science.gov (United States)

    Vikent'eva, O.; Vikentev, I.

    2016-04-01

    Review of occurrence modes of trace toxic elements ("potential pollutants") in ores from large gold deposits (the Urals) of different genetic types is presented. Mineral forms of these elements as well as their presence in main minerals from gold-bearing sulfide assemblages according to SEM, EPMA, INAA, ICP-MS and LA-ICP-MS are demonstrated.

  11. Characteristics of a Low-Sulfidation Epithermal Deposit in the River Reef Zone and the Watuputih Hill, the Poboya Gold Prospect, Central Sulawesi, Indonesia: Host Rocks and Hydrothermal Alteration

    Directory of Open Access Journals (Sweden)

    Syafrizal

    2017-07-01

    Full Text Available Systematic exploration has delineated significant gold mineralization in the River Reef Zone and the presence of a siliceous body at Watuputih Hill, which is a Poboya gold prospect in Central Sulawesi, Indonesia. The mineralization is hosted within the Palu Metamorphic Complex. The host rocks consist of granite, biotite gneiss, and biotite schist, which is intercalated by feldspar porphyroblastic biotite schist and amphibolitic schist. The X-ray fluorescence (XRF analysis of the granite and biotite gneiss suggests that the granitic rocks can be characterized as magnesian arc calc-alkaline rocks, with a weakly peraluminous composition. Alteration minerals were analyzed by a combination of petrographic and X-ray diffraction (XRD. In the River Reef Zone, the hydrothermal alteration zones can be sorted by their proximity to the primary fluid conduit and divided into inner, high-T, and low-T propylitic zones. In Watuputih Hill, the hydrothermal alteration can be divided into advanced argillic and argillic zones. The hydrothermal alteration assemblages indicated that the fluid was at a near-neutral pH in the River Reef Zone, whereas the fluid was acidic within Watuputih Hill. Because the hill is relatively distant from the River Reef Zone, the presence of these zones at Watuputih Hill may be indicative of another mineralization system beneath the hill.

  12. Geochemistry of vanadium in an epigenetic, sandstone-hosted vanadium- uranium deposit, Henry Basin, Utah

    Science.gov (United States)

    Wanty, R.B.; Goldhaber, M.B.; Northrop, H.R.

    1990-01-01

    The epigenetic Tony M vanadium-uranium orebody in south-central Utah is hosted in fluvial sandstones of the Morrison Formation (Upper Jurassic). Measurements of the relative amounts of V+3 and V +4 in ore minerals show that V+3 is more abundant. Thermodynamic calculations show that vanadium was more likely transported to the site of mineralization as V+4. The ore formed as V+4 was reduced by hydrogen sulfide, followed by hydrolysis and precipitation of V+3 in oxide minerals or chlorite. Uranium was transported as uranyl ion (U+6), or some complex thereof, and reduced by hydrogen sulfide, forming coffinite. Detrital organic matter in the rocks served as the carbon source for sulfate-reducing bacteria. Vanadium most likely was derived from the dissolution of iron-titanium oxides. Uranium probably was derived from the overlying Brushy Basin Member of the Morrison Formation. Previous studies have shown that the ore formed at the density-stratified interface between a basinal brine and dilute meteoric water. The mineralization processes described above occurred within the mixing zone between these two fluids. -from Authors

  13. Evolution in action : host race formation in Galerucella nymphaeae

    NARCIS (Netherlands)

    Pappers, Stephanie Maria

    2001-01-01

    A host race is a population which is partially reproductively isolated as a direct consequence of adaptation to a certain host. For host race formation to occur five conditions should be met. First of all, the populations should occur in sympatry, which means that they co-occur within the normal

  14. Electrodeposition of gold thin films with controlled morphologies and their applications in electrocatalysis and SERS

    International Nuclear Information System (INIS)

    Elias, Jamil; Brodard, Pierre; Michler, Johann; Philippe, Laetitia; Gizowska, Magdalena; DeHazan, Yoram; Graule, Thomas; Widmer, Roland

    2012-01-01

    Here, an easy and effective electrochemical route towards the synthesis of gold thin films with well-controlled roughness, morphology and crystallographic orientation is reported. To control these different factors, the applied potential during deposition played a major role. A tentative nucleation and growth mechanism is demonstrated by means of electrochemical characterizations and a formation mechanism is proposed. Interestingly, the differences in geometry and orientation of the different gold deposits have shown a clear correlation with the electrocatalytical activity in the case of oxygen sensing. In addition, not only the electrocatalytical activity but also the surface-enhanced Raman scattering of the gold deposits have been found to depend both on the roughness and on the size of the surface nanostructures, allowing a fine tuning by controlling these two parameters during deposition. (paper)

  15. Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans

    DEFF Research Database (Denmark)

    Posth, Nicole; Hegler, Florian; Konhauser, Kurt

    2008-01-01

    and geochemical modelling to study the potential for a microbial mechanism in the formation of alternating iron–silica bands. We find that the rate of biogenic iron(III) mineral formation by iron-oxidizing microbes reaches a maximum between 20 and 25 °C. Decreasing or increasing water temperatures slow microbial......Precambrian banded iron formations provide an extensive archive of pivotal environmental changes and the evolution of biological processes on early Earth. The formations are characterized by bands ranging from micrometre- to metre-scale layers of alternating iron- and silica-rich minerals. However...... iron mineral formation while promoting abiotic silica precipitation. We suggest that natural fluctuations in the temperature of the ocean photic zone during the period when banded iron formations were deposited could have led to the primary layering observed in these formations by successive cycles...

  16. Unexpected formation by pulsed laser deposition of nanostructured Fe/olivine thin films on MgO substrates

    International Nuclear Information System (INIS)

    Legrand, C.; Dupont, L.; Davoisne, C.; Le Marrec, F.; Perriere, J.; Baudrin, E.

    2011-01-01

    Olivine-type LiFePO 4 thin films were grown on MgO (1 0 0) substrates by pulsed laser deposition (PLD). The formation of an original nanostructure is evidenced by transmission electron microscopy measurements. Indeed, on focused ion beam prepared cross sections of the thin film, we observe, the amazing formation of metallic iron/olivine nanostructures. The appearance of such a structure is explained owing to a topotactic relation between the two phases as well as a strong Mg diffusion from the substrate to the film surface. Magnesium migration is thus concomitant with the creation of metallic iron domains that grow from the core of the film to the surface leading to large protuberances. To the best of our knowledge, this is the first report on iron extrusion from the olivine-type LiFePO 4 . -- Graphical Abstract: HRTEM image of olivine/Fe nanostructure obtained by PLD. Display Omitted Research highlights: → This manuscript describes the attempt to prepare textured LiFePO 4 by PLD. This is presently a challenge to better understand the physical properties of the material, used as cathode in lithium ion batteries. → We describe for the first time the iron extrusion from this material. Indeed, there were recent reports on the possible non-stoichiometry, i.e. lithium or oxygen. However, on the iron side, only some defect were observed for hydrothermally prepared material but the extrusion is new in this paper. → We prepared interesting nanostructures which could be used for different fundamental studies: electric and magnetic measurements.

  17. The Application of Artificial Neural Networks to Ore Reserve Estimation at Choghart Iron Ore Deposit

    Directory of Open Access Journals (Sweden)

    Seyyed Ali Nezamolhosseini

    2017-01-01

    Full Text Available Geo-statistical methods for reserve estimation are difficult to use when stationary conditions are not satisfied. Artificial Neural Networks (ANNs provide an alternative to geo-statistical techniques while considerably reducing the processing time required for development and application. In this paper the ANNs was applied to the Choghart iron ore deposit in Yazd province of Iran. Initially, an optimum Multi Layer Perceptron (MLP was constructed to estimate the Fe grade within orebody using the whole ore data of the deposit. Sensitivity analysis was applied for a number of hidden layers and neurons, different types of activation functions and learning rules. Optimal architectures for iron grade estimation were 3-20-10-1. In order to improve the network performance, the deposit was divided into four homogenous zones. Subsequently, all sensitivity analyses were carried out on each zone.  Finally, a different optimum network was trained and Fe was estimated separately for each zone. Comparison of correlation coefficient (R and least mean squared error (MSE showed that the ANNs performed on four homogenous zones were far better than the nets applied to the overall ore body. Therefore, these optimized neural networks were used to estimate the distribution of iron grades and the iron resource in Choghart deposit. As a result of applying ANNs, the tonnage of ore for Choghart deposit is approximately estimated at 135.8 million tones with average grade of Fe at 56.14 percent. Results of reserve estimation using ANNs showed a good agreement with the geo-statistical methods applied to this ore body in another work.

  18. Templated synthesis of gold-iron alloy nanoparticles using pulsed laser deposition

    International Nuclear Information System (INIS)

    Chang, Won-Suk; Park, Jin-Won; Rawat, Vijay; Sands, Timothy; Lee, Gil U

    2006-01-01

    A means for synthesizing paramagnetic nanoparticles composed of an Au-Fe alloy is described using pulsed laser deposition (PLD) of the alloy into a mesoporous alumina membrane template. Nanoparticles 46 ± 13 nm in diameter and composed of a 17% Fe alloy have been created by depositing a 35% Fe alloy into a template with 65 nm diameter pores. These paramagnetic nanoparticles had a saturation magnetization of 11.5 emu g -1 at 2000 G, and their UV-visible extinction spectrum was dominated by strong absorption similar to that of Fe 3 O 4 nanoparticles. The surfaces of these nanoparticles were readily functionalized with a dense monolayer of DNA oligonucleotides that had a 5' thiol group. The Au-Fe nanoparticles appear to be well suited for biotechnological applications and single molecule measurements as they can be synthesized in a specific size range, are strongly paramagnetic, and may be easily functionalized with biological macromolecules

  19. A preliminary report on settlement layout and gold melting at Thula Mela, a Late Iron Age site in the Kruger National Park

    Directory of Open Access Journals (Sweden)

    M.M. Kusel

    1992-09-01

    Full Text Available Archaeological investigations at a Late Iron Age stone-walled hill site, Thula Mela, near the Luvuvhu River in the Pafuri area of the Kruger National Park, have produced evidence of gold melting. The recovery of two fragments of pottery crucibles with the remains of slag and gold globules and three gold beads from a test trench in a midden at Thula Mela represents the first direct evidence of indigenous gold melting in South Africa. From radiocarbon dates it was established that this site was occupied between the fifteenth and early seventeenth century AD.

  20. The economic efficiency of investment in the development of reserves of small groups of geographically contiguous gold deposits

    Directory of Open Access Journals (Sweden)

    Evdokimov S.I.

    2017-01-01

    Full Text Available The object of the research is a group of geographically contiguous low volume gold deposits. The subject of the study is an economic justification for a way to involve economic turnover to get a positive commercial result on a specially formed group of gold deposits, in which individual field development is unprofitable. A small production volume, combined with high capital and operating costs are objective reasons for the reduction in investment attractiveness of the deposits which have reserves of gold of 50%, equipped with a mobile processing complex with deep processing technology on highly liquid commodity products on site. An economic-mathematical model was devised to determine the rational placement of the processing capacity of the group.A simulation was conducted and an economic evaluation was performed on the effectiveness of investments in individual and group mining projects. The simulation results show that the joint exploitation of the reserves of the group of deposits, the internal rate of return on investments exceed the rate of return of funds to the bank deposit, the return on investment is above the level of inflation. The group project complies with the strategic line of small mining companies in terms of cost recovery terms, availability of financial sources to cover expenses, provision of stable means of income and obtaining competitive advantage.

  1. In situ gold nanoparticles formation: contrast agent for dental optical coherence tomography

    Science.gov (United States)

    Braz, Ana K. S.; Araujo, Renato E. de; Ohulchanskyy, Tymish Y.; Shukla, Shoba; Bergey, Earl J.; Gomes, Anderson S. L.; Prasad, Paras N.

    2012-06-01

    In this work we demonstrate the potential use of gold nanoparticles as contrast agents for the optical coherence tomography (OCT) imaging technique in dentistry. Here, a new in situ photothermal reduction procedure was developed, producing spherical gold nanoparticles inside dentinal layers and tubules. Gold ions were dispersed in the primer of commercially available dental bonding systems. After the application and permeation in dentin by the modified adhesive systems, the dental bonding materials were photopolymerized concurrently with the formation of gold nanoparticles. The gold nanoparticles were visualized by scanning electron microscopy (SEM). The SEM images show the presence of gold nanospheres in the hybrid layer and dentinal tubules. The diameter of the gold nanoparticles was determined to be in the range of 40 to 120 nm. Optical coherence tomography images were obtained in two- and three-dimensions. The distribution of nanoparticles was analyzed and the extended depth of nanosphere production was determined. The results show that the OCT technique, using in situ formed gold nanoparticles as contrast enhancers, can be used to visualize dentin structures in a non-invasive and non-destructive way.

  2. The formation mechanism and prognosis on the prospect of pegmatite type uranium deposit in Eastern Qinling of China

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng; Jiashu, Rong; Zhifu, Sun; Ziyang, Xu; Hongjie, Xie [Beijing Research Inst. of Uranium Geology (China); Qifeng, Liu [North-West of Geologic Exploration of Nuclear Industry, Xi` an (China)

    1996-12-01

    Lithologies of Qinling Group are composed of pelite-felsic metamorphic rocks, basic metamorphic rocks and calcareous metamorphic rocks. The Pelite-felsic metamorphic rocks account for the most part of the sequence and the bulk of the Qinling Group. The Pelite-felsic metamorphic rocks associated with uranium-hosting pegmatite are characterized by high content of SiO{sub 2} and alkali, higher content of potassium than that of sodium, and moderate content of uranium. The granites in Eastern Qinling can be divided into two genetic types, i.e. I-type and S-type. Three types of pegmatites located in the study region can be attributed to one series of unified evolution of remelting magma and are connected with each other, as well as differ from each other. They resulted from partial melting of Qinling Group. Uhosting pegmatite is the new U-hosting body. The pegmatite-type uranium deposit are of new type too. The formation of such deposit is attributed to gaseous transfer differentiation. The plate subduction of recent tectonic regime, the dome-formed granite Massif, the pegmatite vein system that resulted from the metamorphism of Qinling Group occurred in Qinling during Early Paleozoic are the main conditions for the formation of pegmatite-type uranium deposits. (5 refs., 10 tabs.).

  3. The formation mechanism and prognosis on the prospect of pegmatite type uranium deposit in Eastern Qinling of China

    International Nuclear Information System (INIS)

    Feng Mingyue; Rong Jiashu; Sun Zhifu; Xu Ziyang; Xie Hongjie; Liu Qifeng

    1996-12-01

    Lithologies of Qinling Group are composed of pelite-felsic metamorphic rocks, basic metamorphic rocks and calcareous metamorphic rocks. The Pelite-felsic metamorphic rocks account for the most part of the sequence and the bulk of the Qinling Group. The Pelite-felsic metamorphic rocks associated with uranium-hosting pegmatite are characterized by high content of SiO 2 and alkali, higher content of potassium than that of sodium, and moderate content of uranium. The granites in Eastern Qinling can be divided into two genetic types, i.e. I-type and S-type. Three types of pegmatites located in the study region can be attributed to one series of unified evolution of remelting magma and are connected with each other, as well as differ from each other. They resulted from partial melting of Qinling Group. Uhosting pegmatite is the new U-hosting body. The pegmatite-type uranium deposit are of new type too. The formation of such deposit is attributed to gaseous transfer differentiation. The plate subduction of recent tectonic regime, the dome-formed granite Massif, the pegmatite vein system that resulted from the metamorphism of Qinling Group occurred in Qinling during Early Paleozoic are the main conditions for the formation of pegmatite-type uranium deposits. (5 refs., 10 tabs.)

  4. Multiple sources of selenium in ancient seafloor hydrothermal systems: Compositional and Se, S, and Pb isotopic evidence from volcanic-hosted and volcanic-sediment-hosted massive sulfide deposits of the Finlayson Lake District, Yukon, Canada

    Science.gov (United States)

    Layton-Matthews, Daniel; Leybourne, Matthew I.; Peter, Jan M.; Scott, Steven D.; Cousens, Brian; Eglington, Bruce M.

    2013-09-01

    Volcanic-hosted massive sulfide (VHMS) and volcanic-sediment-hosted massive sulfide (VSHMS; i.e., hosted by both volcanic and sedimentary rocks) deposits in the Finlayson Lake District, Yukon, Canada, provide a unique opportunity to study the influence of seafloor and sub-seafloor hydrothermal processes on the formation of Se-poor (GP4F VHMS deposit; 7 ppm Se average), intermediate (Kudz Ze Kayah—KZK VHMS deposit; 200 ppm Se average), and Se-enriched (Wolverine VSHMS deposit; 1100 ppm Se average) mineralization. All three deposits are hosted by mid-Paleozoic (˜360-346 Ma) felsic volcanic rocks, but only the Wolverine deposit has voluminous coeval carbonaceous argillites (black shales) in the host rock package. Here we report the first application of Se isotope analyses to ancient seafloor mineralization and use these data, in conjunction with Pb and S isotope analyses, to better understand the source(s) and depositional process(es) of Se within VHMS and VSHMS systems. The wide range of δ82Se (-10.2‰ to 1.3‰, relative to NIST 3149), δ34S (+2.0‰ to +12.8‰ CDT), and elevated Se contents (up to 5865 ppm) within the Wolverine deposit contrast with the narrower range of δ82Se (-3.8‰ to -0.5‰), δ34S (9.8‰ to 13.0‰), and lower Se contents (200 ppm average) of the KZK deposit. The Wolverine and KZK deposits have similar sulfide depositional histories (i.e., deposition at the seafloor, with concomitant zone refining). The Se in the KZK deposit is magmatic (leaching or degassing) in origin, whereas the Wolverine deposit requires an additional large isotopically negative Se source (i.e. ˜-15‰ δ82Se). The negative δ82Se values for the Wolverine deposit are at the extreme light end for measured terrestrial samples, and the lightest observed for hypogene sulfide minerals, but are within calculated equilibrium values of δ82Se relative to NIST 3149 (˜30‰ at 25 °C between SeO4 and Se2-). We propose that the most negative Se isotope values at the

  5. Geochemistry of some banded iron-formations of the archean ...

    Indian Academy of Sciences (India)

    Diagenetic fluids from the sea floor sediments and river water might have played .... (in wt%) of the banded iron-formations of Archaean supracrustal belts (Iron Ore Group) of Jharkhand–Orissa region. Gandhamardan. Deo river section. H/1/1 H/1/2 H/1/3 H/1/4 H/1/5 .... indicate that contamination by pyroclastic debris.

  6. Direct hydrothermal synthesis of iron-containing mesoporous silica SBA-15 : potential as a support for gold nanoparticles

    NARCIS (Netherlands)

    Li, Y.; Guan, Y.; Santen, van R.A.; Kooyman, P.J.; Dugulan, A.I.; Li, C.; Hensen, E.J.M.

    2009-01-01

    The preparation of mesoporous silica SBA-15 with high iron loadings (14-90 wt % Fe2O3) as a suitable support for gold nanoparticles to be used in CO oxidation catalysis has been investigated. The support materials were prepared by a direct hydrothermal two-step pH adjusting method which consisted of

  7. Subsurface aeration of anaerobic groundwater : iron colloid formation and the nitrification process

    NARCIS (Netherlands)

    Wolthoorn, A.

    2003-01-01

    Keywords: Iron, anaerobic groundwater, groundwater purification, heterogeneous oxidation, iron colloid formation, electron microscopy, nitrification In anaerobic groundwater iron and ammonium can be found in relatively high concentrations. These substances need to be removed when groundwater is used

  8. Restraint deformation and corrosion protection of gold deposited aluminum mirrors for cold optics of mid-infrared instruments

    Science.gov (United States)

    Uchiyama, Mizuho; Miyata, Takashi; Sako, Shigeyuki; Kamizuka, Takafumi; Nakamura, Tomohiko; Asano, Kentaro; Okada, Kazushi; Onaka, Takashi; Sakon, Itsuki; Kataza, Hirokazu; Sarugaku, Yuki; Kirino, Okiharu; Nakagawa, Hiroyuki; Okada, Norio; Mitsui, Kenji

    2014-07-01

    We report the restraint deformation and the corrosion protection of gold deposited aluminum mirrors for mid-infrared instruments. To evaluate the deformation of the aluminum mirrors by thermal shrinkage, monitoring measurement of the surface of a mirror has been carried out in the cooling cycles from the room temperature to 100 K. The result showed that the effect of the deformation was reduced to one fourth if the mirror was screwed with spring washers. We have explored an effective way to prevent the mirror from being galvanically corroded. A number of samples have been prepared by changing the coating conditions, such as inserting an insulation layer, making a multi-layer and overcoating water blocking layer, or carrying out precision cleaning before coating. Precision cleaning before the deposition and protecting coat with SiO over the gold layer seemed to be effective in blocking corrosion of the aluminum. The SiO over-coated mirror has survived the cooling test for the mid-infrared use and approximately 1 percent decrease in the reflectance has been detected at 6-25 microns compared to gold deposited mirror without coating.

  9. Morphologic study of the effect of iron on pseudocyst formation in Trichomonas vaginalis and its interaction with human epithelial cells.

    Science.gov (United States)

    Dias-Lopes, Geovane; Saboia-Vahia, Leonardo; Margotti, Eliane Trindade; Fernandes, Nilma de Souza; Castro, Cássia Luana de Faria; Oliveira, Francisco Odencio; Peixoto, Juliana Figueiredo; Britto, Constança; Silva, Fernando Costa E; Cuervo, Patricia; Jesus, José Batista de

    2017-10-01

    Trichomonas vaginalis is the aetiological agent of human trichomoniasis, which is one of the most prevalent sexually transmitted diseases in humans. Iron is an important element for the survival of this parasite and the colonisation of the host urogenital tract. In this study, we investigated the effects of iron on parasite proliferation in the dynamics of pseudocyst formation and morphologically characterised iron depletion-induced pseudocysts. We performed structural and ultrastructural analyses using light microscopy, scanning electron microscopy and transmission electron microscopy. It was observed that iron depletion (i) interrupts the proliferation of T. vaginalis, (ii) induces morphological changes in typical multiplicative trophozoites to spherical non-proliferative, non-motile pseudocysts, and (iii) induces the arrest of cell division at different stages of the cell cycle; (iv) iron is the fundamental element for the maintenance of typical trophozoite morphology; (v) pseudocysts induced by iron depletion are viable and reversible forms; and, finally, (vi) we demonstrated that pseudocysts induced by iron depletion are able to interact with human epithelial cells maintaining their spherical forms. Together, these data suggest that pseudocysts could be induced as a response to iron nutritional stress and could have a potential role in the transmission and infection of T. vaginalis.

  10. Geophysical prospecting for iron ore deposit around Tajimi village, Lokoja, North–Central Nigeria

    Directory of Open Access Journals (Sweden)

    Bayowa Oyelowo

    2016-09-01

    Full Text Available Ground magnetic and electrical resistivity survey were undertaken to investigate the occurrence and geometry of iron ore deposit around Tajimi village, Lokoja, North-Central Nigeria. The generated residual map of the ground-magnetic data acquired at 250 stations along 15 traverses revealed numerous prominent anomalies, mostly trending in the N-S direction. The radial power spectrum revealed the depth to magnetic sources between 6 m to 20 m. The interpreted VES data characterized the area into three subsurface layers: top soil, presumably iron ore layer and weathered/fresh basement. The result of vertical electrical sounding curves showed a sudden drop in resistivity (42-241 Ωm over high magnetic response. The geo-electric section revealed that the study area is generally characterized with thin overburden (0.5-1.7 m and the thickness of the second layer (presumed to be the iron ore layer ranged between 6.2-25.1 m. The study concluded that areas of high magnetic intensity showed a sudden drop in resistivity value for the VES points, which give an indication of the presence of an electrically conductive structure presumed to be iron ore deposits.

  11. Fabrication of black-gold coatings by glancing angle deposition with sputtering

    Directory of Open Access Journals (Sweden)

    Alan Vitrey

    2017-02-01

    Full Text Available The fabrication of black-gold coatings using sputtering is reported here. Glancing angle deposition with a rotating substrate is needed to obtain vertical nanostructures. Enhanced light absorption is obtained in the samples prepared in the ballistic regime with high tilt angles. Under these conditions the diameter distribution of the nanostructures is centered at about 60 nm and the standard deviation is large enough to obtain black-metal behavior in the visible range.

  12. Constraining the role of anoxygenic phototrophic Fe(II)-oxidizing bacteria in deposition of BIFs

    Science.gov (United States)

    Kappler, A.; Posth, N. R.; Hegler, F.; Wartha, E.; Huelin, S.

    2007-12-01

    Banded Iron Formations (BIFs) are Precambrian sedimentary deposits of alternating iron oxide and silica mineral layers. Their presence in the rock record ca.3.8-2.2 Ga makes them particularly intriguing formations for the debate over when oxygen became dominant on Earth. The mechanism(s) of BIF deposition is still unclear; suggestions including both abiotic and biotic processes. We are interested in constraining one of these proposed mechanisms; the direct biological oxidation of Fe(II) via anoxygenic Fe(II)-oxidizing autophototrophs. In order to find the limitations of photoferrotrophic BIF deposition, we take a holistic approach, investigating the oxidation of Fe(II) by modern Fe(II)-oxidizing phototrophs, the precipitation of Fe(III) (hydr)oxides, and the fate of the cell-mineral aggregates in the water column and at the basin floor. Specifically, physiology experiments with Fe(II)-oxidizing phototrophs under various conditions of light intensity, pH, Fe(II) concentration and temperature allow us to determine the environmental limits of such organisms. We carry out precipitation experiments to characterize the sedimentation rates, aggregate size and composition in order to resolve the effect of reactions in the water column. Finally, we simulate the diagenetic fate of these aggregates on the basin floor by placing them in gold capsules under T and P conditions relevant for the Transvaal Supergroup BIFs of South Africa. Recently, we have developed a tank simulating the Archean ocean in which the strains grow in continuous culture and collect the aggregates formed under various geochemical conditions. We aim to model the extent of and limitations to photoferrotrophs in BIF deposition. This information will help constrain whether biotic processes were dominant in the Archean ocean and will offer insight to the evolution of the early biogeosphere.

  13. The emerald deposits of ultramafic rocks of Capoeirana and Belmont, State of Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Abreu Machado, G.; Schorscher, H.

    1998-01-01

    The emerald deposits of Capoeirana and Belmont, State of Minas Gerais (MG), Brazil, occur vithin an area comprising a deeply weathered Archean Metavulcano-Sedimentary Sequence (SVS) in tectonic contact with the Borrachudos Metagranitoids (GB) and Fluorite bearing Foliated Metagranitoids (MGF). The SVS is formed by intercalation s of ultramafic schists and amphibolites, basic to intermediate amphibolites, vulcanoclastic, metapelitic and calcsilicate schists and gneisses, banded iron formation and metacherts. The metaultramafic rocks include minor chromitite cumulates and occur at the base of the SVS. When metasomatized in the shear zones adjoining GB and MGF they host emerald mineralizations. (author)

  14. From atoms to layers: in situ gold cluster growth kinetics during sputter deposition

    Science.gov (United States)

    Schwartzkopf, Matthias; Buffet, Adeline; Körstgens, Volker; Metwalli, Ezzeldin; Schlage, Kai; Benecke, Gunthard; Perlich, Jan; Rawolle, Monika; Rothkirch, André; Heidmann, Berit; Herzog, Gerd; Müller-Buschbaum, Peter; Röhlsberger, Ralf; Gehrke, Rainer; Stribeck, Norbert; Roth, Stephan V.

    2013-05-01

    The adjustment of size-dependent catalytic, electrical and optical properties of gold cluster assemblies is a very significant issue in modern applied nanotechnology. We present a real-time investigation of the growth kinetics of gold nanostructures from small nuclei to a complete gold layer during magnetron sputter deposition with high time resolution by means of in situ microbeam grazing incidence small-angle X-ray scattering (μGISAXS). We specify the four-stage growth including their thresholds with sub-monolayer resolution and identify phase transitions monitored in Yoneda intensity as a material-specific characteristic. An innovative and flexible geometrical model enables the extraction of morphological real space parameters, such as cluster size and shape, correlation distance, layer porosity and surface coverage, directly from reciprocal space scattering data. This approach enables a large variety of future investigations of the influence of different process parameters on the thin metal film morphology. Furthermore, our study allows for deducing the wetting behavior of gold cluster films on solid substrates and provides a better understanding of the growth kinetics in general, which is essential for optimization of manufacturing parameters, saving energy and resources.The adjustment of size-dependent catalytic, electrical and optical properties of gold cluster assemblies is a very significant issue in modern applied nanotechnology. We present a real-time investigation of the growth kinetics of gold nanostructures from small nuclei to a complete gold layer during magnetron sputter deposition with high time resolution by means of in situ microbeam grazing incidence small-angle X-ray scattering (μGISAXS). We specify the four-stage growth including their thresholds with sub-monolayer resolution and identify phase transitions monitored in Yoneda intensity as a material-specific characteristic. An innovative and flexible geometrical model enables the extraction

  15. Bacterial leaching of pyritic gold ores

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Cashion, J.D.; Brown, J.; Jay, W.H.

    1998-01-01

    Full text: Pyritic ores (pyrite and arsenopyrite) containing gold concentrations in excess of 50g Au/t can be processed to recover the gold by the removal of the sulphur from the ore. This may be achieved by roasting (producing sulphur dioxide emissions), pressure oxidation (expensive and suitable for large high grade deposits), pressure leaching (still currently being developed) or bacterial oxidation. The bacterial oxidation process is a well known process in nature but has only recently come under investigation as a economically viable and relatively clean method of gold recovery from deep low grade sulphidic ores. Samples were obtained from the Wiluna Gold Mine in Western Australia consisting of the original ore, six successive bacterial reactors and the final products. Moessbauer experiments have been performed at room temperature, liquid nitrogen and liquid helium temperatures, and in applied magnetic fields. The main components of the iron phases which were present during the bacterial treatment were pyrite and arsenopyrite which were readily oxidised by the bacteria. Ferric sulfates and ferric arsenates were identified as by-products of the process with a small amount of the oxyhydroxide goethite. These results are in contrast to the similar study of the Fairview Mine in South Africa where principally Fe(II) species were observed

  16. New insights into the extraction of invisible gold in a low-grade high-sulfur Carlin-type gold concentrate by bio-pretreatment

    Science.gov (United States)

    Qiu, Xiao-bin; Wen, Jian-kang; Huang, Song-tao; Yang, Hong-ying; Liu, Mei-lin; Wu, Biao

    2017-10-01

    To extract gold from a low-grade (13.43 g/t) and high-sulfur (39.94wt% sulfide sulfur) Carlin-type gold concentrate from the Nibao deposit, Guizhou, a bio-pretreatment followed by carbon-in-pulp (CIP) cyanide leaching process was used. Various methods were used to detect the low-grade gold in the concentrate; however, only time-of-flight secondary-ion mass spectrometry (TOF-SIMS) was successful. With bio-pretreatment, the gold recovery rate increased by approximately 70.16% compared with that obtained by direct cyanide leaching of the concentrate. Various attempts were made to increase the final gold recovery rate. However, approximately 20wt% of the gold was non-extractable. To determine the nature of this non-extractable gold, mineralogy liberation analysis (MLA), formation of secondary product during the bio-pretreatment, and the preg-robbing capacity of the carbonaceous matter in the ore were investigated. The results indicated that at least four factors affected the gold recovery rate: gold occurrence, tight junctions of gold-bearing pyrite with gangue minerals, jarosite coating of the ore, and the carbonaceous matter content.

  17. The Chahnaly low sulfidation epithermal gold deposit, western Makran volcanic arc, southeastern Iran

    Science.gov (United States)

    Sholeh, Ali; Rastad, Ebrahim; Huston, David L.; Gemmell, J. Bruce; Taylor, Ryan D.

    2016-01-01

    The Chahnaly low-sulfidation epithermal Au deposit and nearby Au prospects are located northwest of the intermittently active Bazman stratovolcano on the western end of the Makran volcanic arc, which formed as the result of subduction of the remnant Neo-Tethyan oceanic crust beneath the Lut block. The arc hosts the Siah Jangal epithermal and Kharestan porphyry prospects, near Taftan volcano, as well as the Saindak Cu-Au porphyry deposit and world-class Reko Diq Cu-Au porphyry deposit, near Koh-i-Sultan volcano to the east-northeast in Pakistan. The host rocks for the Chahnaly deposit include early Miocene andesite and andesitic volcaniclastic rocks that are intruded by younger dacitic domes. Unaltered late Miocene dacitic ignimbrites overlie these rocks. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb zircon geochronology data yield ages between 21.8 and 9.9 Ma for the acidic-intermediate regional volcanism. The most recent volcanic activity of the Bazman stratovolcano involved extrusion of an olivine basalt during Pliocene to Quaternary times. Interpretation of geochemical data indicate that the volcanic rocks are synsubduction and calc-alkaline to subalkaline. The lack of a significant negative Eu anomaly, a listric-shaped rare earth element pattern, and moderate La/Yb ratios of host suites indicate a high water content of the source magma.

  18. The Berezitovoe gold-polymetallic deposit (Upper Amur region, Russia: Structure, mineralogy and genetic aspects

    Directory of Open Access Journals (Sweden)

    Alexandr S. Vakh

    2016-05-01

    Full Text Available The Berezitovoe deposit in the Sergachi volcano-plutonic and metallogenic belt preserves evidence for polymetallic mineralization of multiple stages. The steeply dipping garnet-tourmaline-muscovite-quartz metasomatites (with K-Ar ages of 132 ± 2.9 and 127 ± 4.4 Ma carry two distinct stages of mineralization developed at different times: (1 polymetallic mineralization and (2 gold-quartz. The deposit is located within Paleozoic gneissose granitoids of the Pikansky complex (dated as 379 ± 1.1 Ma by zircon U-Pb method intruded by early Cretaceous porphyry-like granites of the Haikta pluton (dated as 137 ± 0.67 Ma by zircon U-Pb method and late Cretaceous dikes of porphyrites, porphyries, and lamprophyres. Evidence suggests the action of late gold-bearing hydrothermal fluids on the early polymetallic ores and the selective mobilization of some elements from these lead to redeposition together with complex sulphosalts.

  19. The role of microbial iron reduction in the formation of Proterozoic molar tooth structures

    Science.gov (United States)

    Hodgskiss, Malcolm S. W.; Kunzmann, Marcus; Poirier, André; Halverson, Galen P.

    2018-01-01

    Molar tooth structures are poorly understood early diagenetic, microspar-filled voids in clay-rich carbonate sediments. They are a common structure in sedimentary successions dating from 2600-720 Ma, but do not occur in rocks older or younger, with the exception of two isolated Ediacaran occurrences. Despite being locally volumetrically significant in carbonate rocks of this age, their formation and disappearance in the geological record remain enigmatic. Here we present iron isotope data, supported by carbon and oxygen isotopes, major and minor element concentrations, and total organic carbon and sulphur contents for 87 samples from units in ten different basins spanning ca. 1900-635 Ma. The iron isotope composition of molar tooth structures is almost always lighter (modal depletion of 2‰) than the carbonate or residue components in the host sediment. We interpret the isotopically light iron in molar tooth structures to have been produced by dissimilatory iron reduction utilising Fe-rich smectites and Fe-oxyhydroxides in the upper sediment column. The microbial conversion of smectite to illite results in a volume reduction of clay minerals (∼30%) while simultaneously increasing pore water alkalinity. When coupled with wave loading, this biogeochemical process is a viable mechanism to produce voids and subsequently precipitate carbonate minerals. The disappearance of molar tooth structures in the mid-Neoproterozoic is likely linked to a combination of a decrease in smectite abundance, a decline in the marine DIC reservoir, and an increase in the concentration of O2 in shallow seawater.

  20. Sediment-Hosted Zinc-Lead Deposits of the World - Database and Grade and Tonnage Models

    Science.gov (United States)

    Singer, Donald A.; Berger, Vladimir I.; Moring, Barry C.

    2009-01-01

    This report provides information on sediment-hosted zinc-lead mineral deposits based on the geologic settings that are observed on regional geologic maps. The foundation of mineral-deposit models is information about known deposits. The purpose of this publication is to make this kind of information available in digital form for sediment-hosted zinc-lead deposits. Mineral-deposit models are important in exploration planning and quantitative resource assessments: Grades and tonnages among deposit types are significantly different, and many types occur in different geologic settings that can be identified from geologic maps. Mineral-deposit models are the keystone in combining the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Too few thoroughly explored mineral deposits are available in most local areas for reliable identification of the important geoscience variables, or for robust estimation of undiscovered deposits - thus, we need mineral-deposit models. Globally based deposit models allow recognition of important features because the global models demonstrate how common different features are. Well-designed and -constructed deposit models allow geologists to know from observed geologic environments the possible mineral-deposit types that might exist, and allow economists to determine the possible economic viability of these resources in the region. Thus, mineral-deposit models play the central role in transforming geoscience information to a form useful to policy makers. This publication contains a computer file of information on sediment-hosted zinc-lead deposits from around the world. It also presents new grade and tonnage models for nine types of these deposits and a file allowing locations of all deposits to be plotted in Google Earth. The data are presented in FileMaker Pro, Excel and text files to make the information available to as many as possible. The