WorldWideScience

Sample records for iron-containing mineral alluaudite

  1. Effects of iron-containing minerals on hydrothermal reactions of ketones

    Science.gov (United States)

    Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.

    2018-02-01

    Hydrothermal organic transformations occurring in geochemical processes are influenced by the surrounding environments including rocks and minerals. This work is focused on the effects of five common minerals on reactions of a model ketone substrate, dibenzylketone (DBK), in an experimental hydrothermal system. Ketones play a central role in many hydrothermal organic functional group transformations, such as those converting hydrocarbons to oxygenated compounds; however, how these minerals control the hydrothermal chemistry of ketones is poorly understood. Under the hydrothermal conditions of 300 °C and 70 MPa for up to 168 h, we observed that, while quartz (SiO2) and corundum (Al2O3) had no detectable effect on the hydrothermal reactions of DBK, iron-containing minerals, such as hematite (Fe2O3), magnetite (Fe3O4), and troilite (synthetic FeS), accelerated the reaction of DBK by up to an order of magnitude. We observed that fragmentation products, such as toluene and bibenzyl, dominated in the presence of hematite or magnetite, while use of troilite gave primarily the reduction products, e.g., 1, 3-diphenyl-propane and 1, 3-diphenyl-2-propanol. The roles of the three iron minerals in these transformations were further explored by (1) control experiments with various mineral surface areas, (2) measuring H2 in hydrothermal solutions, and (3) determining hydrogen balance among the organic products. These results suggest the reactions catalyzed by iron oxides (hematite and magnetite) are promoted mainly by the mineral surfaces, whereas the sulfide mineral (troilite) facilitated the reduction of ketone in the reaction solution. Therefore, this work not only provides a useful chemical approach to study and uncover complicated hydrothermal organic-mineral interactions, but also fosters a mechanistic understanding of ketone reactions in the deep carbon cycle.

  2. Kinetics and Efficiency of H2O2 Activation by Iron-Containing Minerals and Aquifer Materials

    Science.gov (United States)

    Pham, Anh Le-Tuan; Doyle, Fiona M.; Sedlak, David L.

    2014-01-01

    To gain insight into factors that control H2O2 persistence and ˙OH yield in H2O2-based in situ chemical oxidation systems, the decomposition of H2O2 and transformation of phenol were investigated in the presence of iron-containing minerals and aquifer materials. Under conditions expected during remediation of soil and groundwater, the stoichiometric efficiency, defined as the amount of phenol transformed per mole of H2O2 decomposed, varied from 0.005 to 0.28%. Among the iron-containing minerals, iron oxides were 2 to 10 times less efficient in transforming phenol than iron-containing clays and synthetic iron-containing catalysts. In both iron-containing mineral and aquifer materials systems, the stoichiometric efficiency was inversely correlated with the rate of H2O2 decomposition. In aquifer materials systems, the stoichiometric efficiency was also inversely correlated with the Mn content, consistent with the fact that the decomposition of H2O2 on manganese oxides does not produce ˙OH. Removal of iron and manganese oxide coatings from the surface of aquifer materials by extraction with citrate-bicarbonate-dithionite slowed the rate of H2O2 decomposition on aquifer materials and increased the stoichiometric efficiency. In addition, the presence of 2 mM of dissolved SiO2 slowed the rate of H2O2 decomposition on aquifer materials by over 80% without affecting the stoichiometric efficiency. PMID:23047055

  3. Review of Abiotic Degradation of Chlorinated Solvents by Reactive Iron Minerals

    Science.gov (United States)

    Abiotic degradation of chlorinated solvents by reactive iron minerals such as iron sulfides, magnetite, green rust, and other Fe(II)-containing minerals has been observed in both laboratory and field conditions. These reactive iron minerals typically form under iron and sulfate ...

  4. The nanosphere iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these 'Mars-soil analogs' were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxyl mineral such as 'green rust', or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable meaghemite (gamma-Fe203) by mild heat treatment and then to nanophase hematite (aplha-Fe203) by extensive heat treatment. Their chemical reactivity offers a plausible mechanism for the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxide and silicate phase surfaces. The mode of formation of these (nanophase) iron oxides on Mars is still unknown.

  5. The nanophase iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron oxide/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these "Mars-soil analogs" were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging, specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The clay acted as an effective matrix, both chemically and sterically, preventing the major part of the synthesized iron oxides from ripening, i.e., growing and developing larger crystals. The precipitated iron oxides appear as isodiametric or slightly elongated particles in the size range 1-10 nm, having large specific surface area. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxy mineral such as "green rust," or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable maghemite (gamma-Fe2O3) by mild heat treatment and then to nanophase hematite (alpha-Fe2O3) by extensive heat treatment. After mild heating, the iron-enriched clay became slightly magnetic, to the extent that it adheres to a hand-held magnet, as was observed with Mars soil. The chemical reactivity of the iron-enriched clays strongly resembles, and offers a plausible mechanism

  6. Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds.

    Science.gov (United States)

    Falkenberg, Gerald; Fleissner, Gerta; Schuchardt, Kirsten; Kuehbacher, Markus; Thalau, Peter; Mouritsen, Henrik; Heyers, Dominik; Wellenreuther, Gerd; Fleissner, Guenther

    2010-02-16

    The magnetic field sensors enabling birds to extract orientational information from the Earth's magnetic field have remained enigmatic. Our previously published results from homing pigeons have made us suggest that the iron containing sensory dendrites in the inner dermal lining of the upper beak are a candidate structure for such an avian magnetometer system. Here we show that similar structures occur in two species of migratory birds (garden warbler, Sylvia borin and European robin, Erithacus rubecula) and a non-migratory bird, the domestic chicken (Gallus gallus). In all these bird species, histological data have revealed dendrites of similar shape and size, all containing iron minerals within distinct subcellular compartments of nervous terminals of the median branch of the Nervus ophthalmicus. We also used microscopic X-ray absorption spectroscopy analyses to identify the involved iron minerals to be almost completely Fe III-oxides. Magnetite (Fe II/III) may also occur in these structures, but not as a major Fe constituent. Our data suggest that this complex dendritic system in the beak is a common feature of birds, and that it may form an essential sensory basis for the evolution of at least certain types of magnetic field guided behavior.

  7. Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds.

    Directory of Open Access Journals (Sweden)

    Gerald Falkenberg

    Full Text Available The magnetic field sensors enabling birds to extract orientational information from the Earth's magnetic field have remained enigmatic. Our previously published results from homing pigeons have made us suggest that the iron containing sensory dendrites in the inner dermal lining of the upper beak are a candidate structure for such an avian magnetometer system. Here we show that similar structures occur in two species of migratory birds (garden warbler, Sylvia borin and European robin, Erithacus rubecula and a non-migratory bird, the domestic chicken (Gallus gallus. In all these bird species, histological data have revealed dendrites of similar shape and size, all containing iron minerals within distinct subcellular compartments of nervous terminals of the median branch of the Nervus ophthalmicus. We also used microscopic X-ray absorption spectroscopy analyses to identify the involved iron minerals to be almost completely Fe III-oxides. Magnetite (Fe II/III may also occur in these structures, but not as a major Fe constituent. Our data suggest that this complex dendritic system in the beak is a common feature of birds, and that it may form an essential sensory basis for the evolution of at least certain types of magnetic field guided behavior.

  8. Crystal structure of alluaudite-type Na4Co(MoO4)3.

    Science.gov (United States)

    Nasri, Rawia; Fakhar Bourguiba, Noura; Zid, Mohamed Faouzi; Driss, Ahmed

    2014-09-01

    The title compound, tetra-sodium cobalt(II) tris-[molyb-date(IV)], was prepared by solid-state reactions. The structure is isotypic with Na3In2(AsO4)3 and Na3In2(PO4)3. The main structural feature is the presence of infinite chains of edge-sharing X 2O10 (X = Co/Na) dimers, which are linked by MoO4 tetra-hedra, forming a three-dimensional framework enclosing two types of hexa-gonal tunnels in which Na(+) cations reside. In this alluaudite structure, Co and Na atoms are located at the same general site with occupancies of 0.503 (5) and 0.497 (6), respectively. The other three Na and one of the two Mo atoms lie on special positions (site symmetries 2, -1, 2 and 2, respectively). The structure is compared with similar structures and other members of alluaudite family.

  9. Crystal structure of a silver-, cobalt- and iron-based phosphate with an alluaudite-like structure: Ag1.655Co1.64Fe1.36(PO43

    Directory of Open Access Journals (Sweden)

    Adam Bouraima

    2017-06-01

    Full Text Available The new silver-, cobalt- and iron-based phosphate, silver cobalt iron tris(orthophosphate, Ag1.655Co1.64Fe1.36(PO43, was synthesized by solid-state reactions. Its structure is isotypic to that of Na2Co2Fe(PO43, and belongs to the alluaudite family, with a partial cationic disorder, the AgI atoms being located on an inversion centre and twofold rotation axis sites (Wyckoff positions 4a and 4e, with partial occupancies of 0.885 (2 and 0.7688 (19, respectively. One of the two P atoms in the asymmetric unit completely fills one 4e site while the Co and Fe atoms fill another 4e site, with partial occupancies of 0.86 (5 and 0.14 (5, respectively. The remaining Co2+ and Fe3+ cations are distributed on a general position, 8f, in a 0.39 (4:0.61 (4 ratio. All O atoms and the other P atoms are in general positions. The structure is built up from zigzag chains of edge-sharing [MO6] (M = Fe/Co octahedra stacked parallel to [101]. These chains are linked together through PO4 tetrahedra, forming polyhedral sheets perpendicular to [010]. The resulting framework displays two types of channels running along [001], in which the AgI atoms (coordination number eight are located.

  10. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Clara S.; Fakra, Sirine C.; Edwards, David C.; Emerson, David; Banfield, Jillian F.

    2010-06-22

    Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence ({mu}XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.

  11. Iron utilization and liver mineral concentrations in rats fed safflower oil, flaxseed oil, olive oil, or beef tallow in combination with different concentrations of dietary iron.

    Science.gov (United States)

    Shotton, Andrea D; Droke, Elizabeth A

    2004-03-01

    Diets with a higher proportion of polyunsaturated fatty acids (i.e., linoleic acid) have decreased iron absorption and utilization compared with diets containing a higher proportion of the saturated fatty acid stearic acid (e.g., beef tallow). However, less is known regarding the influence of other polyunsaturated or monounsaturated fatty acids, along with higher dietary iron, on iron absorption and utilization. The present study was conducted to compare the effects of dietary fat sources known to vary in (n-3), (n-6), and (n-9) fatty acids on iron utilization and liver mineral concentrations. Male weanling rats were fed a diet containing 10, 35, or 100 microg/g iron in combination with safflower oil, flaxseed oil, olive oil, or beef tallow for 8 wk. Indicators of iron status, iron utilization, and liver iron concentrations were unaffected by an interaction between the fat source and iron concentration. Plasma copper was the only variable affected by an interaction between the fat source and dietary iron. Findings of this study demonstrate that flaxseed oil and olive oil may alter tissue minerals and affect iron utilization. Further studies should be conducted to establish the effect of varying (n-3), (n-6), and (n-9) fatty acids on trace mineral status and iron utilization.

  12. Biogenic iron mineralization at Iron Mountain, CA with implications for detection with the Mars Curiosity rover

    Science.gov (United States)

    Williams, Amy J.; Sumner, Dawn Y.; Alpers, Charles N.; Campbell, Kate M.; Nordstrom, D. Kirk

    2014-01-01

    (Introduction) Microbe-mineral interactions and biosignature preservation in oxidized sulfidic ore bodies (gossans) are prime candidates for astrobiological study. Such oxidized iron systems have been proposed as analogs for some Martian environments. Recent studies identified microbial fossils preserved as mineral-coated filaments. This study documents microbially-mediated mineral biosignatures in hydrous ferric oxide (HFO) and ferric oxyhydroxysulfates (FOHS) in three environments at Iron Mountain, CA. We investigated microbial community preservation via HFO and FOHS precipitation and the formation of filamentous mineral biosignatures. These environments included 1) actively precipitating (1000's yrs), naturally weathered HFO from in situ gossan, and 3) remobilized iron deposits, which contained lithified clastics and zones of HFO precipitate. We used published biogenicity criteria as guidelines to characterize the biogenicity of mineral filaments. These criteria included A) an actively precipitating environment where microbes are known to be coated in minerals, B) presence of extant microbial communities with carbon signatures, C) structures observable as a part of the host rock, and D) biological morphology, including cellular lumina, multiple member population, numerous taxa, variable and 3-D preservation, biological size ranges, uniform diameter, and evidence of flexibility. This study explores the relevance and detection of these biosignatures to possible Martian biosignatures. Similar filamentous biosignatures are resolvable by the Mars Hand Lens Imager (MAHLI) onboard the Mars Science Laboratory (MSL) rover, Curiosity, and may be identifiable as biogenic if present on Mars.

  13. Alteration mineral mapping for iron prospecting using ETM+ data, Tonkolili iron field, northern Sierra Leone

    Science.gov (United States)

    Mansaray, Lamin R.; Liu, Lei; Zhou, Jun; Ma, Zhimin

    2013-10-01

    The Tonkolili iron field in northern Sierra Leone has the largest known iron ore deposit in Africa. It occurs in a greenstone belt in an Achaean granitic basement. This study focused mainly on mapping areas with iron-oxide and hydroxyl bearing minerals, and identifying potential areas for haematite mineralization and banded iron formations (BIFs) in Tonkolili. The predominant mineral assemblage at the surface (laterite duricrust) of this iron field is haematitegoethite- limonite ±magnetite. The mineralization occurs in quartzitic banded ironstones, layered amphibolites, granites, schists and hornblendites. In this study, Crosta techniques were applied on Enhanced Thematic Mapper (ETM+) data to enhance areas with alteration minerals and target potential areas of haematite and BIF units in the Tonkolili iron field. Synthetic analysis shows that alteration zones mapped herein are consistent with the already discovered magnetite BIFs in Tonkolili. Based on the overlaps of the simplified geological map and the remote sensing-based alteration mineral maps obtained in this study, three new haematite prospects were inferred within, and one new haematite prospect was inferred outside the tenement boundary of the Tonkolili exploration license. As the primary iron mineral in Tonkolili is magnetite, the study concludes that, these haematite prospects could also be underlain by magnetite BIFs. This study also concludes that, the application of Crosta techniques on ETM+ data is effective not only in mapping iron-oxide and hydroxyl alterations but can also provide a basis for inferring areas of potential iron resources in Algoma-type banded iron formations (BIFs), such as those in the Tonkolili field.

  14. Environmental association of iron minerals and iron concentrations ...

    African Journals Online (AJOL)

    Environmental association of iron (Fe) minerals and Fe concentrations in soils close to the Kgwakgwe Mn oxide ore abandoned mine, Botswana are investigated in this study. Four hundred soil samples were obtained from a 4 km2 area close to the abandoned mine. The Fe minerals in the soil samples were identified by ...

  15. Influence of iron redox cycling on organo-mineral associations in Arctic tundra soil

    Science.gov (United States)

    Herndon, Elizabeth; AlBashaireh, Amineh; Singer, David; Roy Chowdhury, Taniya; Gu, Baohua; Graham, David

    2017-06-01

    carbon in the organic horizons (28 ± 5 wt.% C) were approximately twice the concentrations in the mineral horizons (14 ± 2 wt.% C), and organic matter was dominated by base-extractable and insoluble organics enriched in aromatic and aliphatic moieties. Conversely, water-soluble organic molecules and organics solubilized through acid-dissolution of iron oxides comprised soil organic C and were consistent with a mixture of alcohols, sugars, and small molecular weight organic acids and aromatics released through decomposition of larger molecules. Integrated over the entire depth of the active layer, soils contained 11 ± 4 kg m-2 low-density, particulate organic C and 19 ± 6 kg m-2 high-density, mineral-associated organic C, indicating that 63 ± 19% of organic C in the active layer was associated with the mineral fraction. We conclude that organic horizons were enriched in poorly crystalline and crystalline iron oxide phases derived from upward translocation of dissolved Fe(II) and Fe(III) from mineral horizons. Precipitation of iron oxides at the redox interface has the potential to contribute to mineral protection of organic matter and increase the residence time of organic carbon in arctic soils. Our results suggest that iron oxides may inhibit organic carbon degradation by binding low-molecular-weight organic compounds, stabilizing soil aggregates, and forming thick coatings around particulate organic matter. Organic matter released through acid-dissolution of iron oxides could represent a small pool of readily-degradable organic molecules temporarily stabilized by sorption to iron oxyhydroxide surfaces. The distribution of iron in organic complexes and inorganic phases throughout the soil column constrains Fe(III) availability to anaerobic iron-reducing microorganisms that oxidize organic matter to produce CO2 and CH4 in these anoxic environments. Future predictions of carbon storage and respiration in the arctic tundra should consider such influences of mineral

  16. Physicochemical characterization of mineral (iron/zinc) bound caseinate and their mineral uptake in Caco-2 cells.

    Science.gov (United States)

    Shilpashree, B G; Arora, Sumit; Kapila, Suman; Sharma, Vivek

    2018-08-15

    Milk proteins (especially caseins) are widely accepted as good vehicle for the delivery of various bioactive compounds including minerals. Succinylation is one of the most acceptable chemical modification techniques to enhance the mineral binding ability of caseins. Addition of minerals to succinylated proteins may alter their physicochemical and biochemical properties. Physicochemical characteristics of succinylated sodium caseinate (S.NaCN)-mineral (iron/zinc) complexes were elucidated. Chromatographic behaviour and fluorescence intensity confirmed the structural modification of S.NaCN upon binding with minerals. The bound mineral from protein complexes showed significantly higher (P < 0.05) in vitro bioavailability (mineral uptake) than mineral salts in Caco-2 cells. Also, iron bound S.NaCN showed higher cellular ferritin formation than iron in its free form. These mineral bound protein complexes with improved bioavailability could safely replace inorganic fortificants in various functional food formulations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Iron Mineral Catalyzed C-H Activation As a Potential Pathway for Halogenation Processes

    Science.gov (United States)

    Tubbesing, C.; Schoeler, H. F.; Benzing, K.; Krause, T.; Lippe, S.; Rudloff, M.

    2014-12-01

    Due to increasing drinking water demand of mankind and an expected climate change the impact of salt lakes and salt deserts will increase within the next decades. Furthermore, a rising sea level influences coastal areas like salt marshes and abets processes which will lead to elevated organohalogen formation. An additional increase of the global warming potential, of particle formation and stratospheric ozone depletion is expected. Understanding these multifaceted processes is essential for mankind to be prepared for these alterations of the atmosphere. For example, Keppler et al. (2000) described the production of volatile halogenated organic compounds via oxidation of organic matter driven by ferric iron. However, the formation of long-chained alkyl halides in salt lakes is yet undisclosed. Despite the relative "inertness" of alkanes a direct halogenation of these compounds might be envisaged. In 2005 Vaillancourt et al. discovered a nonheme iron enzyme which is able to halogenate organic compounds via generating the high valent ferryl cation as reaction center. Based on various publications about C-H activation (Bergman, 2007) we postulate a halogenation process in which an iron containing minerals catalyse the C-H bond cleavage of organic compounds in soils. The generated organic radicals are highly reactive towards halides connected to the iron complex. We suggest that next to diagenetically altered iron containing enzymes, minerals such as oxides, hydroxides and sulfides are involved in abiotic halogenation processes. We applied the amino acid methionine as organic model compound and soluble iron species as reactants. All samples were incubated in aqueous phases containing various NaCl concentrations. As a result various halogenated ethanes and ethenes were identified as reaction products. References Bergman, R. G. (2007) Nature, 446(7134) 391-393 Keppler, F., et al. (2000) Nature, 403(6767) 298-301 Vaillancourt, F. H., et al. (2005) Nature, 436(7054) 1191-1194

  18. Petrography, alteration and genesis of iron mineralization in Roshtkhar

    Directory of Open Access Journals (Sweden)

    Habib Biabangard

    2017-07-01

    Full Text Available Introduction Iron mineralization in Roshtkhar is located in 48 Km east of the city of Roshtkhar and south of the Khorasan Razavi province. It is geologically located in the north east of the Lut block and the Khaf-Bardeskan volcano-plutonic belt. The Khaf-Bardeskan belt is an important metallogenic province since it is a host of valuable ore deposits such as the Kuh-e-Zar Au-Spicularite, the Tanourcheh and the Khaf Iron ore deposits (Karimpour and Malekzadeh Shafaroudi, 2007. Iron and Copper mineralization in this belt are known as the hydrothermal, skarn and IOCG types (Karimpour and Malekzadeh Shafaroudi, 2007. IOCG deposits are a new type of magmatic to hydrothermal mineralization in the continental crust (Hitzman et al., 1992. Precambrian marble, Lower Paleozoic schist and metavolcanics are the oldest rocks of the area. The younger units are Oligocene conglomerate, shale and sandstone, Miocene marl and Quaternary deposits. Iron oxides and Cu sulfides are associated with igneous rocks. Fe and Cu mineralization in Roshtkhar has been subject of a few studies such as Yousefi Surani (2006. This study describes the petrography of the host rocks, ore paragenesis, alteration types, geochemistry, genesis and other features of the Fe and Cu mineralization in the Roshtkhar iron. Methods After detailed field studies and sampling, 30 thin sections and 20 polished sections that were prepared from host rocks and ores were studied by conventional petrographic and mineraloghraphic methods in the geology department of the University of Sistan and Baluchestan. 5 samples from the alteration zones were examined by XRD in the Yamagata University in Japan, and 8 samples from the less altered ones were analyzed by XRF and ICP-OES in the Kharazmi University and the Iranian mineral processing research center (IMPRC in Karaj, respectively. The XRF and ICP-OES data are presented in Table 1. Result and discussion The host rocks of the Roshtkhar Iron deposit are diorite

  19. Antioxidant mechanism of milk mineral-high-affinity iron binding.

    Science.gov (United States)

    Allen, K; Cornforth, D

    2007-01-01

    Milk mineral (MM), a by-product of whey processing, is an effective antioxidant in meat systems, but the antioxidant mechanism has not been established. MM has been postulated to chelate iron and prevent iron-catalysis of lipid oxidation. The objective of this research was to examine this putative mechanism. MM was compared to sodium tripolyphosphate (STPP), calcium phosphate monobasic (CPM), and calcium pyrophosphate (CPP) to determine iron-binding capacity, sample solubility, and eluate soluble phosphorus after treating samples with a ferrous chloride standard. Scanning electron microscopy with energy-dispersive X-ray analysis was used to localize minerals on iron-treated MM particle surfaces. Histochemical staining for calcium was performed on raw and cooked ground beef samples with added MM. MM bound more iron per gram (P compounds, and was much less soluble (P iron across the MM particle surface, directly demonstrating iron binding to MM particles. Unlike other common chelating agents, such as STPP and citrate, histochemical staining demonstrated that MM remained insoluble in ground beef, even after cooking. The ability of MM to bind iron and remain insoluble may enhance its antioxidant effect by removing iron ions from solution. However, MM particles must be small and well distributed in order to adequately bind iron throughout the food system.

  20. Dirt in the Wound: Evaluating the Role of Iron in Antibacterial Minerals

    Science.gov (United States)

    Morrison, K. D.; Williams, L. B.

    2013-12-01

    The recent discovery of antibacterial clay deposits which are effective in killing antibiotic resistant bacteria may lead to the discovery of mineral based antibacterial mechanisms. These antibacterial clays have been shown to prevent the growth of a broad spectrum of bacteria, including methicillin-resistant Staphylococcus aureus MRSA and extended-spectrum beta lactamase (ESBL) Escherichia coli (antibiotic resistant strains) when tested in vitro. This study investigates the first antibacterial mineral deposit identified in the United States, the Oregon Mineral Technologies (OMT) mine, which formed from the hydrothermal alteration of porphyry andesites. Our hypothesis is that mixed-layered clay minerals containing nano-iron sulfides can release soluble transition metals at low pH which are antibacterial due to the rapid influx and precipitation of intracellular metal-oxides while generating reactive oxygen species (ROS) and damaging bacterial membranes. To test this hypothesis, E. coli (ATCC 25922) was reacted with clay suspensions and clay leachates (solutions equilibrated with clays for 24 hrs). Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the soluble transition metals that are leaching from the clays. Bioimaging using scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) and scanning transmission X-ray microscopy (STXM) were used to investigate the precipitation of intracellular mineral particles and redox state of the soluble metals reacting with the bacteria. Reactive oxygen species (ROS) were measured using a spectrophotometric hydrogen peroxide assay (H2O2) assay. Aldehydes were measured using HPLC-UV-Vis (high-performance liquid chromatography-ultraviolet-visible). Antibacterial susceptibility testing and ICP-MS elemental analysis of the leachates reveals that low pH (2.5-3.1) samples containing mM levels of soluble Fe, Al and Ca are antibacterial. All other potential toxins are below the

  1. Reduction of iron-bearing lunar minerals for the production of oxygen

    Science.gov (United States)

    Massieon, Charles; Cutler, Andrew; Shadman, Farhang

    1992-01-01

    The kinetics and mechanism of the reduction of simulants of the iron-bearing lunar minerals olivine ((Fe,Mg)2SiO4), pyroxene ((Fe,Mg,Ca)SiO3), and ilmenite (FeTiO3) are investigated, extending previous work with ilmenite. Fayalite is reduced by H2 at 1070 K to 1480 K. A layer of mixed silica glass and iron forms around an unreacted core. Reaction kinetics are influenced by permeation of hydrogen through this layer and a reaction step involving dissociated hydrogen. Reaction mechanisms are independent of Mg content. Augite, hypersthene, and hedenbergite are reduced in H2 at the same temperatures. The products are iron metal and lower iron silicates mixed throughout the mineral. Activation energy rises with calcium content. Ilmenite and fayalite are reduced with carbon deposited on partially reduced minerals via the CO disproportionation reaction. Reduction with carbon is rapid, showing the carbothermal reduction of lunar minerals is possible.

  2. Seal welded cast iron nuclear waste container

    International Nuclear Information System (INIS)

    Filippi, A.M.; Sprecace, R.P.

    1987-01-01

    An article of manufacture is described comprising a cast iron container having an opening at one end and a cast iron plug; a first nickel-carbon alloy fusion weldable insert surrounding the opening and metallurgically bonded to the cast iron container at the one end of the container; a second nickel-carbon alloy insert metallurgically bonded to the cast iron plug located within the opening and surrounded by the first insert the inserts being jointed by a fusion bond in the opening without heating the cast iron container to an austenite formation temperature thereby sealing the interior of the container from the exterior ambient outside the opening; the nickel-carbon alloy containing about 2 to 5 w% carbon; and both the nickel-carbon alloy insert and the cast iron container have a microstructure containing a graphite phase

  3. Hydrothermal titanite from the Chengchao iron skarn deposit: temporal constraints on iron mineralization, and its potential as a reference material for titanite U-Pb dating

    Science.gov (United States)

    Hu, Hao; Li, Jian-Wei; McFarlane, Christopher R. M.

    2017-09-01

    Uranium-lead isotopes and trace elements of titanite from the Chengchao iron skarn deposit (Daye district, Eastern China), located along the contact zones between Triassic marine carbonates and an early Cretaceous intrusive complex consisting of granite and quartz diorite, were analyzed using laser ablation inductively coupled plasma mass spectrometry to provide temporal constraints on iron mineralization and to evaluate its potential as a reference material for titanite U-Pb geochronology. Titanite grains from mineralized endoskarn have simple growth zoning patterns, exhibit intergrowth with magnetite, diopside, K-feldspar, albite and actinolite, and typically contain abundant primary two-phase fluid inclusions. These paragenetic and textural features suggest that these titanite grains are of hydrothermal origin. Hydrothermal titanite is distinct from the magmatic variety from the ore-related granitic intrusion in that it contains unusually high concentrations of U (up to 2995 ppm), low levels of Th (12.5-453 ppm), and virtually no common Pb. The REE concentrations are much lower, as are the Th/U and Lu/Hf ratios. The hydrothermal titanite grains yield reproducible uncorrected U-Pb ages ranging from 129.7 ± 0.7 to 132.1 ± 2.7 Ma (2σ), with a weighted mean of 131.2 ± 0.2 Ma [mean standard weighted deviation (MSWD) = 1.7] that is interpreted as the timing of iron skarn mineralization. This age closely corresponds to the zircon U-Pb age of 130.9 ± 0.7 Ma (MSWD = 0.7) determined for the quartz diorite, and the U-Pb ages for zircon and titanite (130.1 ± 1.0 Ma and 131.3 ± 0.3 Ma) in the granite, confirming a close temporal and likely genetic relationship between granitic magmatism and iron mineralization. Different hydrothermal titanite grains have virtually identical uncorrected U-Pb ratios suggestive of negligible common Pb in the mineral. The homogeneous textures and U-Pb characteristics of Chengchao hydrothermal titanite suggest that the mineral might be a

  4. Spectral variations in rocks and soils containing ferric iron hydroxide and(or) sulfate minerals as seen by AVIRIS and laboratory spectroscopy

    Science.gov (United States)

    Rockwell, Barnaby W.

    2004-01-01

    with AVIRIS data, a laboratory experiment was performed in which spectra were acquired of a goethite-bearing rock while progressively decreasing the areal abundance of the rock with respect to a background of white, fine-grained quartz sand. This experiment found that, with decreasing material abundance, the crystal field absorption feature of goethite near 1.0 micron decreases in depth and narrows more from the long wavelength side of the feature than from the short wavelength side, as is the case in goethite reference spectra as grain size decreases from coarse to fine. In the Marysvale study area, goethite-bearing alluvium downgradient from source outcrops tends to be identified as finer-grained or thin coatings of goethite due to the minerals presence in lesser abundance. The goethite-bearing alluvium is a closer match to reference spectra of thin coatings of goethite even though the actual grain size of the contained goethite fragments is medium to coarse grained, the same on average as that from the source outcrops. Coarser-grained goethite most likely will be correctly identified in areas of greater goethite abundance proximal to jarosite-bearing source rock where the surface is relatively free of goethite-free soil components and vegetation that corrupt the goethite spectral response. When analysis of imaging spectroscopy data is performed using reference spectra of iron minerals of varying grain sizes and mixed compositions, the results are useful not only for purposes of mineral identification, but also for distinguishing goethite-bearing outcrop from alluvial surfaces with similar mineralogy, providing valuable information for geologic, geomorphologic, mineral exploration, and environmental assessment studies.

  5. Thermomagnetic identification of manganese and iron minerals present in soils and industrial dusts

    Science.gov (United States)

    Wawer, Małgorzata; Rachwał, Marzena; Jabłońska, Mariola; Krzykawski, Tomasz; Magiera, Tadeusz

    2017-04-01

    Many industries (e.g. metallurgy, power, cement, and coking plants) constitute a sources of industrial dusts containing technogenic magnetic particles (TMP). TMP are mostly iron oxides with ferrimagnetic or antiferromagnetic properties, therefore their presence in dusts, soils and sediments can be easily detected by magnetic susceptibility measurements. TMP, thanks their specific mineral and magnetic properties, and well developed specific surface area, are characterized by a chemical affinity for some elements like heavy metals. The main objective of this study was identification of manganese and iron (hydro)oxides occurring in industrial dusts and soils being under their deposition for long time period. In principle, Mn and Fe (hydro)oxides present in these samples originate from high-temperature technological processes. Soils samples (collected from different soil horizons) taken from surroundings of power station, iron/steel and non-ferrous plants as well as metallurgical dusts and fly ashes from power stations were subjected to investigation. During the studies temperature dependent magnetic susceptibility measurements and X-ray powder diffraction analyses were applied. Thermomagnetic analyses (K-T) revealed differences between samples from particular industries, however an inflexion at 450-500°C of all curves was observed indicating a probable occurrence of maghemite- or titanomagnetite-like phases. The curves of TMP emitted by power plants have inflection at 580 °C indicating that magnetite was the main magnetic phase. In case of TMP originated from non-ferrous metal smelting additional curve deflection at 130 and 210 °C occurred relating to intermediate titanomagnetite or iron sulfides. X-ray diffraction proved the occurrence of magnetite and maghemite in almost all samples, especially connected with power industry and iron/steel metallurgy. Mineral analysis revealed that kind of industrial process influenced on the dominating mineral forms found in

  6. Crystal chemistry of KCuMn_3(VO_4)_3 in the context of detailed systematics of the alluaudite family

    International Nuclear Information System (INIS)

    Yakubovich, O. V.; Kiryukhina, G. V.; Dimitrova, O. V.

    2016-01-01

    The crystal structure of new manganese potassium copper vanadate KCuMn_3(VO_4)_3, which was prepared by the hydrothermal synthesis in the K_2CO_3–CuO–MnCl_2–V_2O_5–H_2O system, was studied by X-ray diffraction (R = 0.0355): a = 12.396(1) Å, b = 12.944(1) Å, c = 6.9786(5) Å, β = 112.723(1)°, sp. gr. C2/c, Z = 4, ρ_c_a_l_c = 3.938 g/cm"3. A comparative analysis of the crystal-chemical features of the new representative of the alluaudite family and related structures of minerals and synthetic phosphates, arsenates, and vanadates of the general formula A(1)A(1)′A(1)″A(2)A(2)′M(1)M(2)_2(TO_4)_3 (where A are sites in the channels of the framework composed of MO_6 octahedra and TO_4 tetrahedra) was performed. A classification of these structures into subgroups according to the occupancy of A sites is suggested.

  7. Crystal chemistry of KCuMn3(VO4)3 in the context of detailed systematics of the alluaudite family

    Science.gov (United States)

    Yakubovich, O. V.; Kiryukhina, G. V.; Dimitrova, O. V.

    2016-07-01

    The crystal structure of new manganese potassium copper vanadate KCuMn3(VO4)3, which was prepared by the hydrothermal synthesis in the K2CO3-CuO-MnCl2-V2O5-H2O system, was studied by X-ray diffraction ( R = 0.0355): a = 12.396(1) Å, b = 12.944(1) Å, c = 6.9786(5) Å, β = 112.723(1)°, sp. gr. C2/ c, Z = 4, ρcalc = 3.938 g/cm3. A comparative analysis of the crystal-chemical features of the new representative of the alluaudite family and related structures of minerals and synthetic phosphates, arsenates, and vanadates of the general formula A(1) A(1)' A(1)″ A(2) A(2)' M(1) M(2)2( TO4)3 (where A are sites in the channels of the framework composed of MO6 octahedra and TO4 tetrahedra) was performed. A classification of these structures into subgroups according to the occupancy of A sites is suggested.

  8. Intravenous iron-containing products: EMA procrastination.

    Science.gov (United States)

    2014-07-01

    A European reassessment has led to identical changes in the summaries of product characteristics (SPCs) for all intravenous iron-containing products: the risk of serious adverse effects is now highlighted, underlining the fact that intravenous iron-containing products should only be used when the benefits clearly outweigh the harms. Unfortunately, iron dextran still remains on the market despite a higher risk of hypersensitivity reactions than with iron sucrose.

  9. Influence of iron redox cycling on organo-mineral associations in arctic tundra soils

    Science.gov (United States)

    Herndon, E.; AlBashaireh, A.; Duroe, K.; Singer, D. M.

    2016-12-01

    Geochemical interactions between soil organic matter and minerals influence decomposition in many environments but remain poorly understood in arctic tundra systems. In tundra soils that are periodically to persistently saturated, the accumulation of iron oxyhydroxides and organo-iron precipitates at redox interfaces may inhibit decomposition by binding organic molecules and protecting them from microbial degradation. Here, we couple synchrotron-source spectroscopic techniques with chemical sequential extractions and physical density fractionations to evaluate the spatial distribution and speciation of Fe-bearing phases and associated organic matter in organic and mineral horizons of the seasonally thawed active layer in tundra soils from northern Alaska. Mineral-associated organic matter comprised 63 ± 9% of soil organic carbon stored in the active layer of ice wedge polygons. Ferrous iron produced in anoxic mineral horizons diffused upwards and precipitated as poorly-crystalline oxyhydroxides and organic-bound Fe(III) in the organic horizons. Ferrihydrite and goethite were present as coatings on mineral grains and plant debris and in aggregates with clays and particulate organic matter. Organic matter released through acid-dissolution of iron oxides may represent a small pool of readily-degradable organic molecules temporarily stabilized by sorption to iron oxyhydroxide surfaces, while larger quantities of particulate organic carbon and humic-like substances may be physically protected from decomposition by Fe-oxide coatings and aggregation. We conclude that formation of poorly-crystalline and crystalline iron oxides at redox interfaces contributes to mineral protection of organic matter through sorption, aggregation, and co-precipitation reactions. Further study of organo-mineral associations is necessary to determine the net impact of mineral-stabilization on carbon storage in rapidly warming arctic ecosystems.

  10. Atmospheric delivery of anthropogenic bioavailable iron from mineral dust to the ocean

    OpenAIRE

    伊藤, 彰記; 時, 宗波; ITO, Akinori; SHI, Zongbo

    2015-01-01

    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. Here, we...

  11. Investigation into the dehydration of selenate doped Na2M(SO4)2·2H2O (M = Mn, Fe, Co and Ni): Stabilisation of the high Na content alluaudite phases Na3M1.5(SO4)3-1.5x(SeO4)1.5x (M = Mn, Co and Ni) through selenate incorporation

    Science.gov (United States)

    Driscoll, L. L.; Kendrick, E.; Knight, K. S.; Wright, A. J.; Slater, P. R.

    2018-02-01

    In this paper we report an investigation into the phases formed on dehydration of Na2M(SO4)2-x(SeO4)x·2H2O (0 ≤ x ≤ 1; M = Mn, Fe, Co and Ni). For the Fe series, all attempts to dehydrate the samples doped with selenate resulted in amorphous products, and it is suspected that a side redox reaction involving the Fe and selenate may be occurring leading to phase decomposition and hence the lack of a crystalline product on dehydration. For M = Mn, Co, Ni, the structure observed was shown to depend upon the transition metal cation and level of selenate doping. An alluaudite phase, Na3M1.5(SO4)3-1.5x(SeO4)1.5x, was observed for the selenate doped compositions, with this phase forming as a single phase for x ≥ 0.5 M = Co, and x = 1.0 M = Ni. For M = Mn, the alluaudite structure is obtained across the series, albeit with small impurities for lower selenate content samples. Although the alluaudite-type phases Na2+2y(Mn/Co)2-y(SO4)3 have recently been reported [1,2], doping with selenate appears to increase the maximum sodium content within the structure. Moreover, the selenate doped Ni based samples reported here are the first examples of a Ni sulfate/selenate containing system exhibiting the alluaudite structure.

  12. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Li; Tang, Jia; Wang, Yueqiang; Hu, Min; Zhou, Shungui, E-mail: sgzhou@soil.gd.cn

    2015-08-15

    Highlights: • Paddy soil contaminated with benzoate incubated with hematite and magnetite. • Iron oxides addition enhanced methanogenic benzoate degradation by 25–53%. • The facilitated syntrophy might involve direct interspecies electron transfer. • Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved. - Abstract: Recent studies have suggested that conductive iron oxide minerals can facilitate syntrophic metabolism of the methanogenic degradation of organic matter, such as ethanol, propionate and butyrate, in natural and engineered microbial ecosystems. This enhanced syntrophy involves direct interspecies electron transfer (DIET) powered by microorganisms exchanging metabolic electrons through electrically conductive minerals. Here, we evaluated the possibility that conductive iron oxides (hematite and magnetite) can stimulate the methanogenic degradation of benzoate, which is a common intermediate in the anaerobic metabolism of aromatic compounds. The results showed that 89–94% of the electrons released from benzoate oxidation were recovered in CH{sub 4} production, and acetate was identified as the only carbon-bearing intermediate during benzoate degradation. Compared with the iron-free controls, the rates of methanogenic benzoate degradation were enhanced by 25% and 53% in the presence of hematite and magnetite, respectively. This stimulatory effect probably resulted from DIET-mediated methanogenesis in which electrons transfer between syntrophic partners via conductive iron minerals. Phylogenetic analyses revealed that Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved in the functioning of syntrophic DIET. Considering the ubiquitous presence of iron minerals within soils and sediments, the findings of this study will increase the current understanding of the natural biological attenuation of aromatic hydrocarbons in anaerobic environments.

  13. Moessbauer and XRD Comparative Study of Host Rock and Iron Rich Mineral Samples from Paz del Rio Iron Ore Mineral Mine in Colombia

    International Nuclear Information System (INIS)

    Fajardo, M.; Perez Alcazar, G. A.; Moreira, A. M.; Speziali, N. L.

    2004-01-01

    A comparative study between the host rock and the iron rich mineral samples from the Paz del Rio iron ore mineral mine in Colombia was performed using X-ray diffraction and Moessbauer spectroscopy. Diffraction results of the iron rich mineral sample show that goethite, hematite, quartz, kaolinite and siderite are the main phases, and that a small amount of illite is also present. By Moessbauer spectroscopy at room temperature (RT) the presence of all the above mentioned phases was detected except quartz as well as an additional presence of small amount of biotite. The goethite, which appears as four sextets with hyperfine fields of 33.5, 30.5, 27.5 and 18.5 T, respectively, is the majority phase. This result shows the different grades of formation of this oxyhydroxide. The Moessbauer spectrum of this sample at 80 K presents the same phases obtained at RT without any superparamagnetic effect. In this case the goethite appears as two sextets. Diffraction results of the host rock sample show a large amount of quartz and kaolinite and small amounts of illite and biotite, whereas by Moessbauer spectroscopy illite, kaolinite and biotite were detected.

  14. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    DEFF Research Database (Denmark)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume

    2009-01-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent ......Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate...... precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria...... and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All...

  15. High pressure structural investigation on alluaudites Na{sub 2}Fe{sub 3}(PO{sub 4}){sub 3}-Na{sub 2}FeMn{sub 2}(PO{sub 4}){sub 3} system

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jing [Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Huang, Weifeng [College of Engineering, Peking University, Beijing 100871 (China); Qin, Shan [Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Wu, Xiang, E-mail: wuxiang@cug.edu.cn [State key laboratory of geological processes and mineral resources, China University of Geosciences, Wuhan 430074 (China)

    2017-03-15

    Alluaudites are promising electrochemical materials benefited from the open structure. Structural variations of alluaudites Na{sub 2}M{sub 3}(PO{sub 4}){sub 3} (M{sub 3}=Fe{sub 3}, Fe{sub 2}Mn and FeMn{sub 2}) system have been studied by synchrotron radiation X-ray diffraction combined with diamond anvil cell technique up to ~10 GPa at room temperature. No phase transition is observed. The excellent structural stability is mainly due to the flexible framework plus strong covalent P-O bond. Mn{sup 2+} instead of Fe can be described as Na{sup +}+2Fe{sup 2+}→Mn{sup 2+}+Fe{sup 3+}+□ where □ represents a lattice vacancy. The replacement of Fe with larger Mn{sup 2+} is equivalent to applying negative chemical pressure to the material. And it causes a more compressible b-axis, lattice expansion, structural compressibility and intensifies the core/electron-electron interactions of Fe. External pressure effect produces anisotropic lattice shrinkage. Structural considerations related to these variations and promising application prospects are discussed. - Graphical abstract: Figure 1 The crystal structure of alluaudites Na{sub 2}M{sub 3}(PO{sub 4}){sub 3} (M{sub 3}=Fe{sub 3}, Fe{sub 2}Mn and FeMn{sub 2}) projected along the c-axis. Alluaudites adopt a flexible framework plus strong covalent P-O bond, which contribute to excellent structural stability up to ~10 GPa. Mn{sup 2+} instead of Fe can be described as Na{sup ++}2Fe{sup 2+}→Mn{sup 2+}+Fe{sup 3+}+□ where □ represents a lattice vacancy, and it is equivalent to applying negative chemical pressure to the host. The substitution causes a more compressible b-axis, lattice expansion, structural compressibility and intensifies the core/electron-electron interactions of Fe.

  16. What do we really know about the role of microorganisms in iron sulfide mineral formation?

    Science.gov (United States)

    Picard, Aude A.; Gartman, Amy; Girguis, Peter R.

    2016-01-01

    Iron sulfide mineralization in low-temperature systems is a result of biotic and abiotic processes, though the delineation between these two modes of formation is not always straightforward. Here we review the role of microorganisms in the precipitation of extracellular iron sulfide minerals. We summarize the evidence that links sulfur-metabolizing microorganisms and sulfide minerals in nature and we present a critical overview of laboratory-based studies of the nucleation and growth of iron sulfide minerals in microbial cultures. We discuss whether biologically derived minerals are distinguishable from abiotic minerals, possessing attributes that are uniquely diagnostic of biomineralization. These inquiries have revealed the need for additional thorough, mechanistic and high-resolution studies to understand microbially mediated formation of a variety of sulfide minerals across a range of natural environments.

  17. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean

    OpenAIRE

    伊藤, 彰記; 時, 宗波; ITO, Akinori; SHI, Zongbo

    2016-01-01

    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. In this ...

  18. Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite.

    Science.gov (United States)

    Zegeye, A; Mustin, C; Jorand, F

    2010-06-01

    In the presence of methanoate as electron donor, Shewanella putrefaciens, a Gram-negative, facultative anaerobe, is able to transform lepidocrocite (gamma-FeOOH) to secondary Fe (II-III) minerals such as carbonated green rust (GR1) and magnetite. When bacterial cells were added to a gamma-FeOOH suspension, aggregates were produced consisting of both bacteria and gamma-FeOOH particles. Recently, we showed that the production of secondary minerals (GR1 vs. magnetite) was dependent on bacterial cell density and not only on iron reduction rates. Thus, gamma-FeOOH and S. putrefaciens aggregation pattern was suggested as the main mechanism driving mineralization. In this study, lepidocrocite bioreduction experiments, in the presence of anthraquinone disulfonate, were conducted by varying the [cell]/[lepidocrocite] ratio in order to determine whether different types of aggregate are formed, which may facilitate precipitation of GR1 as opposed to magnetite. Confocal laser scanning microscopy was used to analyze the relative cell surface area and lepidocrocite concentration within the aggregates and captured images were characterized by statistical methods for spatial data (i.e. variograms). These results suggest that the [cell]/[lepidocrocite] ratio influenced both the aggregate structure and the nature of the secondary iron mineral formed. Subsequently, a [cell]/[lepidocrocite] ratio above 1 x 10(7) cells mmol(-1) leads to densely packed aggregates and to the formation of GR1. Below this ratio, looser aggregates are formed and magnetite was systematically produced. The data presented in this study bring us closer to a more comprehensive understanding of the parameters governing the formation of minerals in dense bacterial suspensions and suggest that screening mineral-bacteria aggregate structure is critical to understanding (bio)mineralization pathways.

  19. Determination of iron in natural and mineral waters by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    ROLANDAS KAZLAUSKAS

    2004-05-01

    Full Text Available Simple methods for the determination of Fe in natural and mineral waters by flame atomic absorption spectrometry (AAS are suggested. The results of the investigation of selectivity of the proposed AAS method proved that this procedure is not affected by high concentrations of other metals. The calibration graph for iron was linear at levels near the detection limit up to at least 0.10 mg ml-1. For the determination of microamounts of iron in mineral waters, an extraction AAS technique was developed. Iron was retained as Fe-8-oxyquinoline complex and extracted into chloroform. The optimal conditions for the extraction of the iron complex were determined. The AAS method was applied to the determination of Fe in mineral waters and natural waters from different areas of Lithuania. The accuracy of the developed method was sufficient and evaluated in comparison with a photometric method. The obtained results demonstrated that the procedure could be successfully applied for the analysis of water samples with satisfactory accuracy.

  20. Iron Hydroxide Minerals Drive Organic and Phosphorus Chemistry in Subsurface Redox / pH Gradients

    Science.gov (United States)

    Flores, E.; Barge, L. M.; VanderVelde, D.; Baum, M.

    2017-12-01

    Iron minerals, particularly iron oxides and oxyhydroxides, are prevalent on Mars and may exist in mixed valence or even reduced states beneath the oxidized surface. Iron (II,III) hydroxides, including green rust, are reactive and potentially catalytic minerals that can absorb and concentrate charged species, while also driving chemical reactions. These minerals are highly redox-sensitive and the presence of organics and/or phosphorus species could affect their mineralogy and/or stability. Conversely, the minerals might be able to drive chemical processes such as amino acid formation, phosphorus oxyanion reactions, or could simply selectively preserve organic species via surface adsorption. In an open aqueous sediment column, soluble products of mineral-driven reactions could also diffuse to sites of different chemical conditions to react even further. We synthesized Fe-hydroxide minerals under various conditions relevant to early Earth and ancient Mars (>3.0 Gyr), anoxically and in the presence of salts likely to have been present in surface or ground waters. Using these minerals we conducted experiments to test whether iron hydroxides could promote amino acid formation, and how the reaction is affected by subsurface gradients of redox, pH, and temperature. We also tested the adsorption of organic and phosphorus species onto Fe-hydroxide minerals at different conditions within the gradients. The suite of organic or phosphorus signatures that may be found in a particular mineral system is a combination of what is synthesized there, what is preferentially concentrated / retained there, and what is preserved against degradation. Further work is needed to determine how these processes could have proceeded on Mars and what mineral-organic signatures, abiotic or otherwise, would be produced from such processes.

  1. Getting rid of the unwanted: highlights of developments and challenges of biobeneficiation of iron ore minerals-a review.

    Science.gov (United States)

    Adeleke, Rasheed A

    2014-12-01

    The quest for quality mineral resources has led to the development of many technologies that can be used to refine minerals. Biohydrometallurgy is becoming an increasingly acceptable technology worldwide because it is cheap and environmentally friendly. This technology has been successfully developed for some sulphidic minerals such as gold and copper. In spite of wide acceptability of this technology, there are limitations to its applications especially in the treatment of non-sulphidic minerals such as iron ore minerals. High levels of elements such as potassium (K) and phosphorus (P) in iron ore minerals are known to reduce the quality and price of these minerals. Hydrometallurgical methods that are non-biological involving the use of chemicals are usually used to deal with this problem. However, recent advances in mining technologies favour green technologies, known as biohydrometallurgy, with minimal impact on the environment. This technology can be divided into two, namely bioleaching and biobeneficiation. This review focuses on Biobeneficiation of iron ore minerals. Biobeneficiation of iron ore is very challenging due to the low price and chemical constitution of the ore. There are substantial interests in the exploration of this technology for improving the quality of iron ore minerals. In this review, current developments in the biobeneficiation of iron ore minerals are considered, and potential solutions to challenges faced in the wider adoption of this technology are proposed.

  2. Charge state mapping of mixed valent iron and manganese mineral particles using Scanning Transmission X-ray Microscopy (STXM)

    International Nuclear Information System (INIS)

    Pecher, K.; Nealson, K.; Kneedler, E.; Rothe, J.; Meigs, G.; Warwick, T.; Tonner, B.

    2000-01-01

    The interfaces between solid mineral particles and water play a crucial role in partitioning and chemical transformation of many inorganic as well as organic pollutants in environmental systems. Among environmentally significant minerals, mixed-valent oxides and hydroxides of iron (e.g. magnetite, green rusts) and manganese (hausmanite, birnessite) have been recognized as particularly strong sorbents for metal ions. In addition, minerals containing Fe(II) have recently been proven to be powerful reductants for a wide range of pollutants. Chemical properties of these minerals strongly depend on the distribution and availability of reactive sites and little is known quantitatively about the nature of these sites. We have investigated the bulk distribution of charge states of manganese (Mn (II, III, IV)) and iron (Fe(II, III)) in single particles of natural manganese nodules and synthetic green rusts using Scanning Transmission X-ray SpectroMicroscopy (STXM). Pixel resolved spectra (XANES) extracted from stacks of images taken at different wave lengths across the metal absorption edge were fitted to total electron yield (TEY) spectra of single valent reference compounds. Two dimensional maps of bulk charge state distributions clearly reveal domains of different oxidation states within single particles of Mn-nodules and green rust precipitates. Changes of oxidation states of iron were followed as a result of reductive transformation of an environmental contaminant (CCl 4 ) using green rust as the only reductant

  3. Sedimentary and mineral dust sources of dissolved iron to the world ocean

    Directory of Open Access Journals (Sweden)

    J. K. Moore

    2008-05-01

    Full Text Available Analysis of a global compilation of dissolved-iron observations provides insights into the processes controlling iron distributions and some constraints for ocean biogeochemical models. The distribution of dissolved iron appears consistent with the conceptual model developed for Th isotopes, whereby particle scavenging is a two-step process of scavenging mainly by colloidal and small particulates, followed by aggregation and removal on larger sinking particles. Much of the dissolved iron (<0.4 μm is present as small colloids (>~0.02 μm and, thus, is subject to aggregation and scavenging removal. This implies distinct scavenging regimes for dissolved iron consistent with the observations: 1 a high scavenging regime – where dissolved-iron concentrations exceed the concentrations of strongly binding organic ligands; and 2 a moderate scavenging regime – where dissolved iron is bound to both colloidal and soluble ligands. Within the moderate scavenging regime, biological uptake and particle scavenging decrease surface iron concentrations to low levels (<0.2 nM over a wide range of low to moderate iron input levels. Removal rates are also highly nonlinear in areas with higher iron inputs. Thus, observed surface-iron concentrations exhibit a bi-modal distribution and are a poor proxy for iron input rates. Our results suggest that there is substantial removal of dissolved iron from subsurface waters (where iron concentrations are often well below 0.6 nM, most likely due to aggregation and removal on sinking particles of Fe bound to organic colloids.

    We use the observational database to improve simulation of the iron cycle within a global-scale, Biogeochemical Elemental Cycling (BEC ocean model. Modifications to the model include: 1 an improved particle scavenging parameterization, based on the sinking mass flux of particulate organic material, biogenic silica, calcium carbonate, and mineral dust particles; 2 desorption of dissolved iron

  4. Surface materials map of Afghanistan: iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Kokaly, Raymond F.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.

    2012-01-01

    This map shows the distribution of selected iron-bearing minerals and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of iron-bearing minerals and other materials having diagnostic absorptions at visible and near-infrared wavelengths. These absorptions result from electronic processes in the minerals. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.

  5. Atomic absorption assessment of mineral iron quantity in ferritin

    International Nuclear Information System (INIS)

    Marinova, M.; Vladimirova, L.

    2009-01-01

    Possibilities for quantitative determination of the number of iron atoms in the mineral core of ferritin by atomic absorption spectroscopy (AAS) are investigated in the work. Different measurements with AAS show an iron content from 1000 up to 4500 atoms per molecule ferritin. This motivated us to investigate the amount of iron in the Horse Spleen Ferritin with atomic absorption spectroscopy under application of the Bulgarian standard BDS EN 14082/2003 Foodstuffs - Determination of trace elements - Determination of lead, cadmium, zinc, copper, iron and chromium by atomic absorption spectrometry (AAS) after dry ashing. The obtained results give approx. 1800 atoms per molecule Ferritin. It is in accordance with previous results, published by leading researchers. The investigation of the iron content with AAS under the use of the Bulgarian standard is a good opportunity to study many other objects of biological interest. (authors)

  6. Siderophore-mediated iron dissolution from nontronites is controlled by mineral cristallochemistry

    Directory of Open Access Journals (Sweden)

    Damien eParrello

    2016-03-01

    Full Text Available Bacteria living in oxic environments experience iron deficiency due to limited solubility and slow dissolution kinetics of iron-bearing minerals. To cope with iron deprivation, aerobic bacteria have evolved various strategies, including release of siderophores or other organic acids that scavenge external Fe(III and deliver it to the cells. This research investigated the role of siderophores produced by Pseudomonas aeruginosa in the acquisition of Fe(III from two iron-bearing colloidal nontronites (NAu-1 and NAu-2, comparing differences in bioavailability related with site occupancy and distribution of Fe(III in the two lattices. To avoid both the direct contact of the mineral colloids with the bacterial cells and the uncontrolled particle aggregation, nontronite suspensions were homogenously dispersed in a porous silica gel before the dissolution experiments. A multiparametric approach coupling UV-vis spectroscopy and spectral decomposition algorithm was implemented to monitor simultaneously the solubilisation of Fe and the production of pyoverdine in microplate-based batch experiments. Both nontronites released Fe in a particle concentration-dependent manner when incubated with the wild-type P. aeruginosa strain, however iron released from NAu-2 was substantially greater than from NAu-1. The profile of organic acids produced in both cases was similar and may not account for the difference in the iron dissolution efficiency. In contrast, a pyoverdine-deficient mutant was unable to mobilise Fe(III from either nontronite, whereas iron dissolution occurred in abiotic experiments conducted with purified pyoverdine. Overall, our data provide evidence that P. aeruginosa indirectly mobilise Fe from nontronites primarily through the production of pyoverdine. The structural Fe present on the edges of Nau-2 rather than Nau-1 particles appears to be more bio-accessible, indicating that the distribution of Fe, in the tetrahedron and/or in the octahedron

  7. Mineral resource of the month: vermiculite

    Science.gov (United States)

    Tanner, Arnold O.

    2014-01-01

    Vermiculite comprises a group of hydrated, laminar magnesium-aluminum-iron silicate minerals resembling mica. They are secondary minerals, typically altered biotite, iron-rich phlogopite or other micas or clay-like minerals that are themselves sometimes alteration products of amphibole, chlorite, olivine and pyroxene. Vermiculite deposits are associated with volcanic ultramafic rocks rich in magnesium silicate minerals, and flakes of the mineral range in color from black to shades of brown and yellow. The crystal structure of vermiculite contains water molecules, a property that is critical to its processing for common uses.

  8. Iron minerals formed by dissimilatory iron-and sulfur reducing bacteria studied by Moessbauer spectrometry

    International Nuclear Information System (INIS)

    Chistyakova, N. I.; Rusakov, V. S.; Nazarova, K. A.; Koksharov, Yu. A.; Zavarzina, D. G.; Greneche, J.-M.

    2008-01-01

    Zero-field and in-field Moessbauer investigations and electron paramagnetic resonance (EPR) measurements to follow the kinetics of the iron mineral formation by thermophilic dissimilatory anaerobic Fe(III)-reducing bacteria (strain Z-0001) and anaerobic alkaliphilic bacteria (strain Z-0531) were carried out.

  9. Minerals

    Directory of Open Access Journals (Sweden)

    Vaquero, M. P.

    1998-08-01

    Full Text Available The possible changes in the mineral composition of food during frying could be the consequence of losses by leaching, or changes in concentrations caused by exchanges between the food and culinary fat of other compounds. The net result depends on the type of food, the frying fat used and the frying process. Moreover, the modifications that frying produces in other nutrients could indirectly affect the availability of dietary minerals. The most outstanding ones are those that can take place in the fat or in the protein. With respect to the interactions between frying oils and minerals, we have recent knowledge concerning the effects of consuming vegetable oils used in repeated fryings of potatoes without turnover, on the nutritive utilization of dietary minerals. The experiments have been carried out in pregnant and growing rats, which consumed diets containing, as a sole source of fat, the testing frying oils or unused oils. It seems that the consumption of various frying oils, with a polar compound content lower or close to the maximum limit of 25% accepted for human consumption, does not alter the absorption and metabolism of calcium, phosphorous, iron or copper. Magnesium absorption from diets containing frying oils tends to increase but the urinary excretion of this element increases, resulting imperceptible the variations in the magnesium balance. The urinary excretion of Zn also increased although its balance remained unchanged. Different studies referring to the effects of consuming fried fatty fish on mineral bioavailability will also be presented. On one hand, frying can cause structural changes in fish protein, which are associated with an increase in iron absorption and a decrease in body zinc retention. The nutritive utilization of other elements such as magnesium, calcium and copper seems to be unaffected. On the other hand; it has been described that an excess of fish fatty acids in the diet produces iron depletion, but when fatty

  10. Point-of-use fortification of foods with micronutrient powders containing iron in children of preschool and school-age.

    Science.gov (United States)

    De-Regil, Luz Maria; Jefferds, Maria Elena D; Peña-Rosas, Juan Pablo

    2017-11-23

    Approximately 600 million children of preschool and school age are anaemic worldwide. It is estimated that at least half of the cases are due to iron deficiency. Point-of-use fortification of foods with micronutrient powders (MNP) has been proposed as a feasible intervention to prevent and treat anaemia. It refers to the addition of iron alone or in combination with other vitamins and minerals in powder form, to energy-containing foods (excluding beverages) at home or in any other place where meals are to be consumed. MNPs can be added to foods either during or after cooking or immediately before consumption without the explicit purpose of improving the flavour or colour. To assess the effects of point-of-use fortification of foods with iron-containing MNP alone, or in combination with other vitamins and minerals on nutrition, health and development among children at preschool (24 to 59 months) and school (five to 12 years) age, compared with no intervention, a placebo or iron-containing supplements. In December 2016, we searched the following databases: CENTRAL, MEDLINE, Embase, BIOSIS, Science Citation Index, Social Science Citation Index, CINAHL, LILACS, IBECS, Popline and SciELO. We also searched two trials registers in April 2017, and contacted relevant organisations to identify ongoing and unpublished trials. Randomised controlled trials (RCTs) and quasi-RCTs trials with either individual or cluster randomisation. Participants were children aged between 24 months and 12 years at the time of intervention. For trials with children outside this age range, we included studies where we were able to disaggregate the data for children aged 24 months to 12 years, or when more than half of the participants were within the requisite age range. We included trials with apparently healthy children; however, we included studies carried out in settings where anaemia and iron deficiency are prevalent, and thus participants may have had these conditions at baseline. Two

  11. A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast.

    Directory of Open Access Journals (Sweden)

    Javier Encinar del Dedo

    2015-03-01

    Full Text Available Iron is an essential cofactor, but it is also toxic at high levels. In Schizosaccharomyces pombe, the sensor glutaredoxin Grx4 guides the activity of the repressors Php4 and Fep1 to mediate a complex transcriptional response to iron deprivation: activation of Php4 and inactivation of Fep1 leads to inhibition of iron usage/storage, and to promotion of iron import, respectively. However, the molecular events ruling the activity of this double-branched pathway remained elusive. We show here that Grx4 incorporates a glutathione-containing iron-sulfur cluster, alone or forming a heterodimer with the BolA-like protein Fra2. Our genetic study demonstrates that Grx4-Fra2, but not Fep1 nor Php4, participates not only in iron starvation signaling but also in iron-related aerobic metabolism. Iron-containing Grx4 binds and inactivates the Php4 repressor; upon iron deprivation, the cluster in Grx4 is probably disassembled, the proteins dissociate, and Php4 accumulates at the nucleus and represses iron consumption genes. Fep1 is also an iron-containing protein, and the tightly bound iron is required for transcriptional repression. Our data suggest that the cluster-containing Grx4-Fra2 heterodimer constitutively binds to Fep1, and upon iron deprivation the disassembly of the iron cluster between Grx4 and Fra2 promotes reverse metal transfer from Fep1 to Grx4-Fra2, and de-repression of iron-import genes. Our genetic and biochemical study demonstrates that the glutaredoxin Grx4 independently governs the Php4 and Fep1 repressors through metal transfer. Whereas iron loss from Grx4 seems to be sufficient to release Php4 and allow its nuclear accumulation, total or partial disassembly of the Grx4-Fra2 cluster actively participates in iron-containing Fep1 activation by sequestering its iron and decreasing its interaction with promoters.

  12. Effect of iron containing supplements on rats' dental caries progression.

    Science.gov (United States)

    Eshghi, Ar; Kowsari-Isfahan, R; Rezaiefar, M; Razavi, M; Zeighami, S

    2012-01-01

    Iron deficiency is the most common form of malnutrition in developing countries. Iron containing supplements have been used effectively to solve this problem. In children, because of teeth staining after taking iron drops, parents have the idea that iron drops are the cause of tooth decay; therefore, they limit this vital supplement in their children's diet. Hereby, we evaluate the histologic effect of iron containing supplements on tooth caries in rice rats with cariogenic or non-cariogenic diet. Twelve rats were selected and divided into four groups for this interventional experimental study. Four different types of dietary regimens were used for four months; group A, cariogenic diet with iron containing supplements; group B, cariogenic diet without iron containing supplements; group C, non-cariogenic diet with iron containing supplements; group D, non-cariogenic diet without iron containing supplements. After sacrificing the rats, 20-micron histological sections of their posterior teeth were prepared using the Ground Section method, then they were studied under polarized light microscopy. In order to compare the progression of caries in different samples, the depth of the lesions in the enamel was measured as three grades I, II and III. The mean grade value of A, B, C and D groups were 1.61, 2.61, 1.37 and 1.80, respectively. Statistical analysis revealed that significantly fewer caries were seen in the group which had received iron containing supplements and cariogenic diet compared with cariogenic diet without iron supplements (pcariogenic dietary regimen.

  13. Crystal chemistry of KCuMn{sub 3}(VO{sub 4}){sub 3} in the context of detailed systematics of the alluaudite family

    Energy Technology Data Exchange (ETDEWEB)

    Yakubovich, O. V., E-mail: yakubol@geol.msu.ru; Kiryukhina, G. V.; Dimitrova, O. V. [Moscow State University, Faculty of Geology (Russian Federation)

    2016-07-15

    The crystal structure of new manganese potassium copper vanadate KCuMn{sub 3}(VO{sub 4}){sub 3}, which was prepared by the hydrothermal synthesis in the K{sub 2}CO{sub 3}–CuO–MnCl{sub 2}–V{sub 2}O{sub 5}–H{sub 2}O system, was studied by X-ray diffraction (R = 0.0355): a = 12.396(1) Å, b = 12.944(1) Å, c = 6.9786(5) Å, β = 112.723(1)°, sp. gr. C2/c, Z = 4, ρ{sub calc} = 3.938 g/cm{sup 3}. A comparative analysis of the crystal-chemical features of the new representative of the alluaudite family and related structures of minerals and synthetic phosphates, arsenates, and vanadates of the general formula A(1)A(1)′A(1)″A(2)A(2)′M(1)M(2){sub 2}(TO{sub 4}){sub 3} (where A are sites in the channels of the framework composed of MO{sub 6} octahedra and TO{sub 4} tetrahedra) was performed. A classification of these structures into subgroups according to the occupancy of A sites is suggested.

  14. Crystal structure of a sodium, zinc and iron(III-based non-stoichiometric phosphate with an alluaudite-like structure: Na1.67Zn1.67Fe1.33(PO43

    Directory of Open Access Journals (Sweden)

    Jamal Khmiyas

    2015-06-01

    Full Text Available The new title compound, disodium dizinc iron(III tris(phosphate, Na1.67Zn1.67Fe1.33(PO43, which belongs to the alluaudite family, has been synthesized by solid-state reactions. In this structure, all atoms are in general positions except for four, which are located on special positions of the C2/c space group. This structure is characterized by cation substitutional disorder at two sites, one situated on the special position 4e (2 and the other on the general position 8f. The 4e site is partially occupied by Na+ [0.332 (3], whereas the 8f site is entirely filled by a mixture of Fe and Zn. The full-occupancy sodium and zinc atoms are located at the Wyckoff positions on the inversion center 4a (-1 and on the twofold rotation axis 4e, respectively. Refinement of the occupancy ratios, bond-valence analysis and the electrical neutrality requirement of the structure lead to the given composition for the title compound. The three-dimensional framework of this structure consists of kinked chains of edge-sharing octahedra stacked parallel to [10-1]. The chains are formed by a succession of trimers based on [ZnO6] octahedra and the mixed-cation FeIII/ZnII [(Fe/ZnO6] octahedra [FeIII:ZnIII ratio 0.668 (3/0.332 (3]. Continuous chains are held together by PO4 phosphate groups, forming polyhedral sheets perpendicular to [010]. The stacked sheets delimit two types of tunnels parallel to the c axis in which the sodium cations are located. Each Na+ cation is coordinated by eight O atoms. The disorder of Na in the tunnel might presage ionic mobility for this material.

  15. Effect of Iron Containing Supplements on Rats' Dental Caries Progression

    Directory of Open Access Journals (Sweden)

    AR. Eshghi

    2012-01-01

    Full Text Available Objective: Iron deficiency is the most common form of malnutrition in developing countries. Iron containing supplements have been used effectively to solve this problem. In children, because of teeth staining after taking iron drops, parents have the idea that iron drops are the cause of tooth decay; therefore, they limit thisvital supplement in their children’s diet. Hereby, we evaluate the histologic effect of iron containing supplements on tooth caries in rice rats with cariogenic or noncariogenic diet.Materials and Methods: Twelve rats were selected and divided into four groups for this interventional experimental study. Four different types of dietary regimens were used for four months; group A, cariogenic diet with iron containing supplements; group B, cariogenic diet without iron containing supplements; groupC, non-cariogenic diet with iron containing supplements; group D, non-cariogenic diet without iron containing supplements. After sacrificing the rats, 20-micron histological sections of their posterior teeth were prepared using the Ground Sectionmethod, then they were studied under polarized light microscopy. In order to compare the progression of caries in different samples, the depth of the lesions in the enamel was measured as three grades I, II and III.Results: The mean grade value of A, B, C and D groups were 1.61, 2.61, 1.37 and 1.80, respectively. Statistical analysis revealed that significantly fewer caries were seen in the group which had received iron containing supplements and cariogenicdiet compared with cariogenic diet without iron supplements (p<0.05.Conclusion: Ferrous sulfate reduces the progression of dental caries in the cariogenic dietary regimen.

  16. Magnetite-apatite mineralization in Khanlogh iron deposit, northwest of Neyshaboor, NE Iran

    Science.gov (United States)

    Najafzadeh Tehrani, Parvin; Asghar Calagari, Ali; Velasco Roldan, Francisco; Simmonds, Vartan; Siahcheshm, Kamal

    2016-04-01

    Khanlogh iron deposit lies on Sabzehvar-Ghoochan Cenozoic magmatic belt in northwest of Neyshaboor, NE Iran. The lithologic units in this area include a series of sub-volcanic intrusive rocks like diorite porphyry, quartz-diorite porphyry, and micro-granodiorite of Oligocene age. Mineralization in this area occurred as veins, dissemination, and open space filling in brecciated zones within the host sub-volcanic intrusive bodies. Three distinct types of mineral associations can be distinguished, (1) diopside-magnetite, (2) magnetite-apatite, and (3) apatite-calcite. Microscopic examinations along with SEM and EPMA studies demonstrated that magnetite is the most common ore mineral occurring as solitary crystals. The euhedral magnetite crystals are accompanied by lamellar destabilized ilmenite and granular fluorapatite in magnetite-apatite ores. The results of EPMA revealed that the lamellar ilmenite, relative to host magnetite crystal, is notably enriched in MgO and MnO (average of 3.3 and 2.6 wt%, respectively; n=5), whereas magnetite is slighter enriched in Ti (TiO2 around 1.8 wt%) being average of MgO, MnO and V2O3 of 0.6wt%, 0.2wt%, and 0.6 wt% (respectively; n=20). Minerals such as chlorapatite, calcite, and chalcedony are also present in the magnetite-apatite ores. The samples from apatite-calcite ores contain coarse crystals of apatite and rhomboedral calcite. The plot of the EPMA data of Khanlogh iron ore samples on diagram of TiO2-V2O5 (Hou et al, 2011) illustrated that the data points lies between the well-known Kiruna and El Laco (Chile) iron deposits. The magnetite crystals in the sub-volcanic host rocks were possibly formed by immiscible iron oxide fluids during magmatic stage. However, the magnetite and apatite existing in the veins and breccia zones may have developed by high temperature hydrothermal fluids. Studies done by Purtov and Kotelnikova (1993) proved that the proportion of Ti in magnetite is related to fluoride complex in the hydrothermal

  17. Minerals of oxidation zone of the Chokadambulaq iron deposit

    International Nuclear Information System (INIS)

    Safaraliev, N.S.

    2008-01-01

    The zone of oxidation of Chokadambulaq iron deposit has original mineral composition, which characterized specificity of their formation. Here is formed a secondary zone of enrichment marit ores, having practical meaning. In last is concentrated from 0.5 up to 1.0% from total quantities of reserves

  18. Formation and Reactivity of Biogenic Iron Minerals

    International Nuclear Information System (INIS)

    Ferris, F. Grant

    2002-01-01

    Dissimilatory iron-reducing bacteria (DIRB) play an important role in regulating the aqueous geochemistry of iron and other metals in anaerobic, non-sulfidogenic groundwater environments; however, little work has directly assessed the cell surface electrochemistry of DIRB, or the nature of the interfacial environment around individual cells. The electrochemical properties of particulate solids are often inferred from titrations in which net surface charge is determined, assuming electroneutrality, as the difference between known added amounts of acid and base and measured proton concentration. The resultant titration curve can then be fit to a speciation model for the system to determine pKa values and site densities of reactive surface sites. Moreover, with the development of non-contact electrostatic force microscopy (EFM), it is now possible to directly inspect and quantify charge development on surfaces. A combination of acid-base titrations and EFM are being used to assess the electrochemical surface properties of the groundwater DIRB, Shewanella putrefaciens. The pKa spectra and EFM data show together that a high degree of electrochemical heterogeneity exists within the cell wall and at the cell surface of S. putrefaciens. Recognition of variations in the nature and spatial distribution of reactive sites that contribute to charge development on these bacteria implies further that the cell surface of these Fe(III)-reducing bacteria functions as a highly differentiated interfacial system capable of supporting multiple intermolecular interactions with both solutes and solids. These include surface complexation reactions involving dissolved metals, as well as adherence to mineral substrates such as hydrous ferric oxide through longer-range electrostatic interactions, and surface precipitation of secondary reduced-iron minerals

  19. Adsorption of Trametes versicolor laccase to soil iron and aluminum minerals: enzyme activity, kinetics and stability studies.

    Science.gov (United States)

    Wu, Yue; Jiang, Ying; Jiao, Jiaguo; Liu, Manqiang; Hu, Feng; Griffiths, Bryan S; Li, Huixin

    2014-02-01

    Laccases play an important role in the degradation of soil phenol or phenol-like substance and can be potentially used in soil remediation through immobilization. Iron and aluminum minerals can adsorb extracellular enzymes in soil environment. In the present study, we investigated the adsorptive interaction of laccase, from the white-rot fungus Trametes versicolor, with soil iron and aluminum minerals and characterized the properties of the enzyme after adsorption to minerals. Results showed that both soil iron and aluminum minerals adsorbed great amount of laccase, independent of the mineral specific surface areas. Adsorbed laccases retained 26-64% of the activity of the free enzyme. Compared to the free laccase, all adsorbed laccases showed higher Km values and lower Vmax values, indicating a reduced enzyme-substrate affinity and a lower rate of substrate conversion in reactions catalyzed by the adsorbed laccase. Adsorbed laccases exhibited increased catalytic activities compared to the free laccase at low pH, implying the suitable application of iron and aluminum mineral-adsorbed T. versicolor laccase in soil bioremediation, especially in acid soils. In terms of the thermal profiles, adsorbed laccases showed decreased thermal stability and higher temperature sensitivity relative to the free laccase. Moreover, adsorption improved the resistance of laccase to proteolysis and extended the lifespan of laccase. Our results implied that adsorbed T. versicolor laccase on soil iron and aluminum minerals had promising potential in soil remediation. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  20. Liquid-Liquid Extraction and Determination of Trace Elements in Iron Minerals by Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Taseska, Milena; Stafilov, Trajche; Makreski, Petre; Jacimovic, Radojko; Jovanovski, Gligor

    2006-01-01

    Various trace elements (cadmium, chromium, cobalt, nickel, manganese) in some iron minerals were determined by flame (FAAS) and electrothermal atomic absorption spectrometry (ETAAS). The studied minerals were chalcopyrite (CuFeS 2 ), hematite (Fe 2 O 3 ) and pyrite (FeS 2 ). To avoid the interference of iron, a method for liquid-liquid extraction of iron and determination of investigated elements in the inorganic phase was proposed. Iron was extracted by diisopropyl ether in hydrochloride acid solution and the extraction method was optimized. Some parameters were obtained to be significantly important: Fe mass in the sample should not exceed 0.3 g, the optimal concentration of HCI should be 7.8 mol 1 -1 and ratio of the inorganic and organic phase should be 1: 1. The procedure was verified by the method of standard additions and by its applications to reference standard samples. The investigated minerals originate from various mines in the Republic of Macedonia. (Author)

  1. Radium Adsorption to Iron Bearing Minerals in Variable Salinity Waters

    Science.gov (United States)

    Chen, M.; Kocar, B. D.

    2014-12-01

    Radium is a common, naturally occurring radioactive metal found in many subsurface environments. Radium isotopes are a product of natural uranium and thorium decay, and are particularly abundant within groundwaters where minimal flux leads to accumulation within porewaters. Radium has been used as a natural tracer to estimate submarine groundwater discharge (SGD) [1], where the ratios of various radium isotopes are used to estimate total groundwater flux to and from the ocean [2]. Further, it represents a substantial hazard in waste water produced after hydraulic fracturing for natural gas extraction [3], resulting in a significant risk of environmental release and increased cost for water treatment or disposal. Adsorption to mineral surfaces represents a primary pathway of radium retention within subsurface environments. For SGD studies, it is important to understand adsorption processes to correctly estimate GW fluxes, while in hydraulic fracturing, radium adsorption to aquifer solids will mediate the activities of radium within produced water. While some studies of radium adsorption to various minerals have been performed [4], there is a limited understanding of the surface chemistry of radium adsorption, particularly to iron-bearing minerals such as pyrite, goethite and ferrihydrite. Accordingly, we present the results of sorption experiments of radium to a suite of iron-bearing minerals representative of those found within deep saline and near-surface (freshwater) aquifers, and evaluate impacts of varying salinity solutions through the use of artificial groundwater, seawater, and shale formation brine. Further, we explore the impacts of pyrite oxidation and ferrihydrite transformation to other iron-bearing secondary minerals on the retention of radium. This work lays the groundwork for further study of radium use as a tracer for SGD, as well as understanding mechanisms of radium retention and release from deep aquifer materials following hydraulic fracturing

  2. Role of dust alkalinity in acid mobilization of iron

    Directory of Open Access Journals (Sweden)

    A. Ito

    2010-10-01

    Full Text Available Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl may play a key role in the transformation of insoluble iron (Fe in the oxidized or ferric (III form to soluble forms (e.g., Fe(II, inorganic soluble species of Fe(III, and organic complexes of iron. On the other hand, mineral dust particles have a potential of neutralizing the acidic species due to the alkaline buffer ability of carbonate minerals (e.g., CaCO3 and MgCO3. Here we demonstrate the impact of dust alkalinity on the acid mobilization of iron in a three-dimensional aerosol chemistry transport model that includes a mineral dissolution scheme. In our model simulations, most of the alkaline dust minerals cannot be entirely consumed by inorganic acids during the transport across the North Pacific Ocean. As a result, the inclusion of alkaline compounds in aqueous chemistry substantially limits the iron dissolution during the long-range transport to the North Pacific Ocean: only a small fraction of iron (<0.2% dissolves from hematite in the coarse-mode dust aerosols with 0.45% soluble iron initially. On the other hand, a significant fraction of iron (1–2% dissolves in the fine-mode dust aerosols due to the acid mobilization of the iron-containing minerals externally mixed with carbonate minerals. Consequently, the model quantitatively reproduces higher iron solubility in smaller particles as suggested by measurements over the Pacific Ocean. It implies that the buffering effect of alkaline content in dust aerosols might help to explain the inverse relationship between aerosol iron solubility and particle size. We also demonstrate that the iron solubility is sensitive to the chemical specification of iron-containing minerals in dust. Compared with the dust sources, soluble iron from combustion sources contributes to a relatively marginal effect for deposition of soluble iron over the North

  3. Geology of the Biwabik Iron Formation and Duluth Complex.

    Science.gov (United States)

    Jirsa, Mark A; Miller, James D; Morey, G B

    2008-10-01

    The Biwabik Iron Formation is a approximately 1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by approximately 1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact.

  4. Effect of Iron Containing Supplements on Rats' Dental Caries Progression

    OpenAIRE

    AR. Eshghi; R. Kowsari-Isfahan; M. Rezaiefar; M. Razavi; S. Zeighami

    2012-01-01

    Objective: Iron deficiency is the most common form of malnutrition in developing countries. Iron containing supplements have been used effectively to solve this problem. In children, because of teeth staining after taking iron drops, parents have the idea that iron drops are the cause of tooth decay; therefore, they limit this vital supplement in their children’s diet. Hereby, we evaluate the histologic effect of iron containing supplements on tooth caries in rice rats with cariogenic or non-...

  5. Mineral chemical and petrographic occurrences os iron of the south east of Uruguay (Nico Pere z terrane)

    International Nuclear Information System (INIS)

    Oyhantcabal, P.; Sanchez Bettucci, L.; Siegesmund, S.; Pineyro, D.

    2007-01-01

    Two iron-formation deposits from S E Uruguay were petrographic ally and mineralogically investigated (including microprobe mineral chemistry). The deposit from Piedra de Gigante (ANCAP) quarry is related to tectonic slivers of a platform succession in ortho gneiss of ca. 1750 Ma. Data of detrital zircon in this platform succession point to Meso- to Neo proterozoic age.The iron deposit of Piedra del Gigante (ANCAP) quarry belongs to a succession of mica schists, quartz-muscovite schists, marbles and basic rocks. Magnetite rich layers alternate with banded rocks rich in hematite, carbonate and amphibole. Carbonate is dolomite (Mg0.7Ca1.08Mn0.05Fe0.11(CO3)2) and the amphibole is a pale green tremolite (Na0,18Ca1,68Mn0,07Mg4,16Fe+++0,2Fe++0,55Al0,03(Si7,86Al0,13)O22(OH)2). This iron deposit shows strong deformation associated with martitization of magnetite and formation of specularite rich layers where relicts of magnetite (partly martitized) are occasionally observed. Available data are not conclusive about the genesis. The low iron-content of the amphibole together with dolomite in the mineral association cast doubts on a BIF-type origin, but low contents of Al2O3, V2O3, MnO and ZnO in magnetite do not indicate an igneous origin. High oxygen fugacity during martitization in medium-T metamorphic conditions could have determined that iron rich amphiboles were not formed as is normally expected in iron-formations. In the outcrop of Cerro la Higuerita (Grupo Arroyo del Soldado; Ediacaran) a succession of metapelites (bottom), iron rich pelites and iron formations (top) is observed. The metapelites contain evidences of volcanic contribution (phenochrysts of quartz and alkali feldspar as well as shards in the matrix) suggesting a volcanic source for the iron. This iron-formation contains magnetite pheno blasts (partly martitized) and fine disseminated laths of hematite in the matrix, together with grunerite (Na0,04Ca0,17 Mn0,02Mg1,36Fe5,35Al0,07(Si7,97Al0,03)O22(OH)2

  6. Trend overtime of total haemoglobin, iron metabolism and trace minerals in veal calves fed high amounts of two different solid feeds

    Directory of Open Access Journals (Sweden)

    Anna-Lisa Stefani

    2010-01-01

    Full Text Available Fifty Polish Friesian veal calves were administrated high amounts of two different solid feeds (maize grain and a mix diet containing 10% of straw and 8% of soy in addition to the traditional milk replacer diet. Compared to the mix diet, maize grain had a lower content of iron, copper and zinc and a minor fibre level. Effects of the two diets on calves’ blood haemoglobin, iron, iron metabolism parameters, copper and zinc concentrations were studied. Haemoglobin concentration resulted higher at the end of the fattening for calves fed the mix diet, as expected. Values remained, however, within ranges that allowed acceptable carcass paleness. Haematic iron, unsaturated iron binding capacity (UIBC and total iron binding capacity (TIBC levels were not significantly different between the two solid feeds. Lower copper and zinc blood concentrations resulted for calves fed the mix diet were likely due to the feed fibre interfering with the bioavailability of the two minerals, according to what happens for iron.

  7. Neyshabour turquoise mine: the first Iron Oxide Cu-Au-U-LREE (IOCG mineralized system in Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Hasan Karimpour

    2011-11-01

    Full Text Available Neyshabour turquoise mine is located in northwest of Neyshabour, southern Quchan volcanic belt. Eocene andesite and dacite forming as lava and pyroclastic rocks cover most of the area. Subvolcanic diorite to syenite porphyry (granitoids of magnetite series intruded the volcanic rocks. Both volcanic and subvolcanic rocks are highly altered. Four types of alteration are recognized including: silicification, argillic, calcification and propylitic. Silicification is dominant followed by argillic alteration. Mineralization is present as stockwork, disseminated and hydrothermal breccia. Hypogene minerals are pyrite, magnetite, specularite, chalcopyrite, and bornite. Secondary minerals are turquoise, chalcocite, covellite, and iron oxides. A broad zone of gossan has developed in the area. Oxidized zone has a thickness of about 80 m. Mineralized samples show high anomalies of Cu, Au, Zn, As, Mo, Co, U, LREE, Nb, and Th. Both aeromagnetic and radiometric (U and Th maps show very strong anomalies (10 × 5km within the mineralized area. Based on geology, alteration, mineralization, geochemistry, and geophysics, Neyshabour turquoise mine is a large Iron oxide Cu-Au-U-LREE (IOCG mineralized system. In comparison with other IOCG deposits, it has some similarities with Olympic Dam (Australia and Candelaria (Chile. In comparison with Qaleh Zari and Kuh Zar mines, Neyshabour turquoise mine is the first Iron oxide Cu-Au-U-LREE (IOCG mineralized system discovered in Iran.

  8. Polymersomes containing iron sulfide (FeS) as primordial cell model : for the investigation of energy providing redox reactions.

    Science.gov (United States)

    Alpermann, Theodor; Rüdel, Kristin; Rüger, Ronny; Steiniger, Frank; Nietzsche, Sandor; Filiz, Volkan; Förster, Stephan; Fahr, Alfred; Weigand, Wolfgang

    2011-04-01

    According to Wächtershäuser's "Iron-Sulfur-World" one major requirement for the development of life on the prebiotic Earth is compartmentalization. Vesicles spontaneously formed from amphiphilic components containing a specific set of molecules including sulfide minerals may have lead to the first autotrophic prebiotic units. The iron sulfide minerals may have been formed by geological conversions in the environment of deep-sea volcanos (black smokers), which can be observed even today. Wächtershäuser postulated the evolution of chemical pathways as fundamentals of the origin of life on earth. In contrast to the classical Miller-Urey experiment, depending on external energy sources, the "Iron-Sulfur-World" is based on the catalytic and energy reproducing redox system FeS+H2S-->FeS2+H2. The energy release out of this redox reaction (∆RG°=-38 kJ/mol, pH 0) could be the cause for the subsequent synthesis of complex organic molecules and the precondition for the development of more complex units similar to cells known today. Here we show the possibility for precipitating iron sulfide inside vesicles composed of amphiphilic block-copolymers as a model system for a first prebiotic unit. Our findings could be an indication for a chemoautotrophic FeS based origin of life.

  9. A microbial-mineralization approach for syntheses of iron oxides with a high specific surface area.

    Science.gov (United States)

    Yagita, Naoki; Oaki, Yuya; Imai, Hiroaki

    2013-04-02

    Of minerals and microbes: A microbial-mineralization-inspired approach was used to facilitate the syntheses of iron oxides with a high specific surface area, such as 253 m(2)g(-1) for maghemite (γ-Fe(2)O(3)) and 148 m(2)g(-1) for hematite (α-Fe(2)O(3)). These iron oxides can be applied to electrode material of lithium-ion batteries, adsorbents, and catalysts. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Red Dawn: Characterizing Iron Oxide Minerals in Atmospheric Dust

    Science.gov (United States)

    Yauk, K.; Ottenfeld, C. F.; Reynolds, R. L.; Goldstein, H.; Cattle, S.; Berquo, T. S.; Moskowitz, B. M.

    2012-12-01

    Atmospheric dust is comprised of many components including small amounts of iron oxide minerals. Although the iron oxides make up a small weight percent of the bulk dust, they are important because of their roles in ocean fertilization, controls on climate, and as a potential health hazard to humans. Here we report on the iron oxide mineralogy in dust from a large dust storm, dubbed Red Dawn, which engulfed eastern Australia along a 3000 km front on 23 September 2009. Red Dawn originated from the lower Lake Eyre Basin of South Australia, western New South Wales (NSW) and southwestern Queensland and was the worst dust storm to have hit the city of Sydney in more than 60 years. Dust samples were collected from various locations across eastern Australia (Lake Cowal, Orange, Hornsby, Sydney) following the Red Dawn event. Our dust collection provides a good opportunity to study the physical and mineralogical properties of iron oxides from Red Dawn using a combination of reflectance spectroscopy, Mössbauer spectroscopy (MB), and magnetic measurements. Magnetization measurements from 20-400 K reveal that magnetite/maghemite, hematite and goethite are present in all samples with magnetite occurring in trace amounts (effects (d< 100 nm). Finally, we compared reflectance with a magnetic parameter (hard isothermal remanent magnetization, HIRM) for ferric oxide abundance to assess the degree to which ferric oxide in these samples might absorb solar radiation. In samples for which both parameters were obtained, HIRM and average reflectance over the visible wavelengths are correlated as a group (r2=0.24). These results indicate that the ferric oxide minerals in Red Dawn dust absorb solar radiation. Much of this ferric oxide occurs likely as grain coatings of nanohematite and nanogoethite, thereby providing high surface area to enhance absorption of solar radiation.

  11. Crystal structure of the alluaudite Ag{sub 2}Mn{sub 3}(VO{sub 4}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yahia, Hamdi Ben; Essehli, Rachid; Belharouak, Ilias [Hamad Bin Khalifa Univ., Doha (Qatar). Qatar Environment and Energy Research Inst.; Shikano, Masahiro [National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka (Japan). Research Inst. of Electrochemical Energy

    2016-07-01

    The new compound Ag{sub 2}Mn{sub 3}(VO4){sub 3} was synthesized by hydrothermal and solid state reaction routes, and its crystal structure was determined from single-crystal X-ray diffraction data. Ag{sub 2}Mn{sub 3}(VO4){sub 3} crystallizes with a monoclinic symmetry, space group C2/c, with a=11.8968(11) Aa, b=13.2057(13) Aa, c=6.8132(7) Aa, β=111.3166(15) ( ) and V=997.16(17) Aa{sup 3} (Z=4). Its crystal refinement yielded the residual factors R(F)=0.0249 and wR(F{sup 2})=0.0704 for 95 parameters and 1029 independent reflections at a 3σ(I) level. Ag{sub 2}Mn{sub 3}(VO4){sub 3} can be considered as a new member of the AA{sup '}MM{sup '}{sub 2}(XO4){sub 3} alluaudite family. The specific arrangement of M and M{sup '} octahedral sites and of X tetrahedral sites gives rise to two different channels aligned along the crystallographic c-axis and containing the A and A{sup '} sites. The A, A{sup '}, M, and X sites are fully occupied by Ag{sup +}, Mn{sup 2+}, and V{sup 5+}, respectively; whereas a Mn{sup 2+}/Mn{sup 3+} mixture is observed in the M{sup '} site.

  12. Enlightening mineral iron sensing in Pseudomonas fluorescens by surface active maghemite nanoparticles: Involvement of the OprF porin.

    Science.gov (United States)

    Magro, Massimiliano; Fasolato, Luca; Bonaiuto, Emanuela; Andreani, Nadia Andrea; Baratella, Davide; Corraducci, Vittorino; Miotto, Giovanni; Cardazzo, Barbara; Vianello, Fabio

    2016-10-01

    Mineral iron(III) recognition by bacteria is considered a matter of debate. The peculiar surface chemistry of novel naked magnetic nanoparticles, called SAMNs (surface active maghemite nanoparticles) characterized by solvent exposed Fe(3+) sites on their surface, was exploited for studying mineral iron sensing in Pseudomonas fluorescens. SAMNs were applied for mimicking Fe(3+) ions in solution, acting as magnetically drivable probes to evaluate putative Fe(3+) recognition sites on the microorganism surface. Culture broths and nano-bio-conjugates were characterized by UV-Vis spectroscopy and mass spectrometry. The whole heritage of a membrane porin (OprF) of P. fluorescens Ps_22 cells was recognized and firmly bound by SAMNs. The binding of nanoparticles to OprF porin was correlated to a drastic inhibition of a siderophore (pyoverdine) biosynthesis and to the stimulation of the production and rate of formation of a secondary siderophore. The analysis of metabolic pathways, based on P. fluorescens Ps_22 genomic information, evidenced that this putative secondary siderophore does not belong to a selection of the most common siderophores. In the scenario of an adhesion mechanism, it is plausible to consider OprF as the biological component deputed to the mineral iron sensing in P. fluorescens Ps_22, as well as one key of siderophore regulation. The present work sheds light on mineral iron sensing in microorganisms. Peculiar colloidal naked iron oxide nanoparticles offer a useful approach for probing the adhesion of bacterial surface on mineral iron for the identification of the specific recognition site for this iron uptake regulation in microorganisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Recent advances in clay mineral-containing nanocomposite hydrogels.

    Science.gov (United States)

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao

    2015-12-28

    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.

  14. Evaluation of Soils Contained in Mineral Tailings at Junin Lake

    International Nuclear Information System (INIS)

    Gomez, Javier; Fabian, Julio; Vela, Mariano

    2008-01-01

    The Junin National Reserve is located between the provinces of Junin and Pasco, Sierra Central, high land of Peru. It was analyzed 20 samples from different geographic locations soil of the Reserve. The results showed us that there are pollutants minerals very harmful to the environment because of some of the centers miners deposited the tailings in the vicinity of the nature reserve. The techniques used for characterization of mineralogical soil were: neutron activation analysis, x-ray fluorescence and spectroscopy Moessbauer by transmission. The analysis done by the method of X-ray fluorescence indicate the presence of Rubidium, tungsten, calcium, iron, nickel, copper, zinc, gold and zirconium. With spectroscopy Moessbauer technique was observed the presence a higher proportion of paramagnetic iron; while thanks to neutron activation analysis, besides these elements, it was observed the presence of Molybdenum, Manganese and a high concentration of arsenic. (authors)

  15. Evaluation of Soils Contained in Mineral Tailings at Junin Lake

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Javier [Instituto de Investigacion de Fisica, Av. Universitaria s/n, Lima (Peru); Fabian, Julio; Vela, Mariano [Instituto Peruano de Energia Nuclear, Av. Canada 1470, San Borja, Lima (Peru)

    2008-07-01

    The Junin National Reserve is located between the provinces of Junin and Pasco, Sierra Central, high land of Peru. It was analyzed 20 samples from different geographic locations soil of the Reserve. The results showed us that there are pollutants minerals very harmful to the environment because of some of the centers miners deposited the tailings in the vicinity of the nature reserve. The techniques used for characterization of mineralogical soil were: neutron activation analysis, x-ray fluorescence and spectroscopy Moessbauer by transmission. The analysis done by the method of X-ray fluorescence indicate the presence of Rubidium, tungsten, calcium, iron, nickel, copper, zinc, gold and zirconium. With spectroscopy Moessbauer technique was observed the presence a higher proportion of paramagnetic iron; while thanks to neutron activation analysis, besides these elements, it was observed the presence of Molybdenum, Manganese and a high concentration of arsenic. (authors)

  16. Evaluation of the bleaching flux in clays containing hematite and different clay minerals

    International Nuclear Information System (INIS)

    Silva Junior, E.M.; Lusa, T.; Silva, T.M.; Medeiros, B.B.; Santos, G.R. dos; Morelli, M.R.

    2016-01-01

    Previous studies have shown that the addition of a synthetic flux in a clay mineral constituted by illite phase in the presence of iron oxide with the hematite, promotes color change of the firing products, making the reddish color firing into whiteness. This flow is constituted of a vitreous phase of the silicates family obtained by fusion/solidification of oxides and carbonates. Thus, the objective of this work was that of studying the interaction of the iron element in the final color mechanism of the different types of mineral crystal phase of the clays. In order to study the phenomenon, we obtained different compositions between the select clays and the synthetic flow, and characterization using X-ray diffraction (XRD) and visual analysis. The results showed that the action of the synthetic flow as a modifying agent for color depends on the mineral crystal phase of the clays. The color firing modification does not occur in the clays content high levels of kaolinite mineral phase. (author)

  17. Complex electrical monitoring of biopolymer and iron mineral precipitation for microbial enhanced hydrocarbon recovery

    Science.gov (United States)

    Wu, Y.; Hubbard, C. G.; Dong, W.; Hubbard, S. S.

    2011-12-01

    Microbially enhanced hydrocarbon recovery (MEHR) mechanisms are expected to be impacted by processes and properties that occur over a wide range of scales, ranging from surface interactions and microbial metabolism at the submicron scale to changes in wettability and pore geometry at the pore scale to geological heterogeneities at the petroleum reservoir scale. To eventually ensure successful, production-scale implementation of laboratory-developed MEHR procedures under field conditions, it is necessary to develop approaches that can remotely monitor and accurately predict the complex microbially-facilitated transformations that are expected to occur during MEHR treatments in reservoirs (such as the evolution of redox profiles, oil viscosity or matrix porosity/permeability modifications). Our initial studies are focused on laboratory experiments to assess the geophysical signatures of MEHR-induced biogeochemical transformations, with an ultimate goal of using these approaches to monitor field treatments. Here, we explore the electrical signatures of two MEHR processes that are designed to produce end-products that will plug high permeability zones in reservoirs and thus enhance sweep efficiency. The MEHR experiments to induce biopolymers (in this case dextran) and iron mineral precipitates were conducted using flow-through columns. Leuconostoc mesenteroides, a facultative anaerobe, known to produce dextran from sucrose was used in the biopolymer experiments. Paused injection of sucrose, following inoculation and initial microbial attachment, was carried out on daily basis, allowing enough time for dextran production to occur based on batch experiment observations. Electrical data were collected on daily basis and fluid samples were extracted from the column for characterization. Changes in electrical signal were not observed during initial microbial inoculation. Increase of electrical resistivity and decrease of electrical phase response were observed during the

  18. Evaluation of constitutive iron reductase (AtFRO2 expression on mineral accumulation and distribution in soybean (Glycine max. L

    Directory of Open Access Journals (Sweden)

    Marta Wilton Vasconcelos

    2014-04-01

    Full Text Available Iron is an important micronutrient in human and plant nutrition. Adequate iron nutrition during crop production is central for assuring appropriate iron concentrations in the harvestable organs, for human food or animal feed. The whole-plant movement of iron involves several processes, including the reduction of ferric to ferrous iron at several locations throughout the plant, prior to transmembrane trafficking of ferrous iron. In this study, soybean plants that constitutively expressed the AtFRO2 iron reductase gene were analyzed for leaf iron reductase activity, as well as the effect of this transgene's expression on root, leaf, pod wall, and seed mineral concentrations. High Fe supply, in combination with the constitutive expression of AtFRO2, resulted in significantly higher concentrations of different minerals in roots (K, P, Zn, Ca, Ni, Mg and Mo, pod walls (Fe, K, P, Cu and Ni, leaves (Fe, P, Cu, Ca, Ni and Mg and seeds (Fe, Zn, Cu and Ni. Leaf and pod wall iron concentrations increased as much as 500% in transgenic plants, while seed iron concentrations only increased by 10%, suggesting that factors other than leaf and pod wall reductase activity were limiting the translocation of iron to seeds. Protoplasts isolated from transgenic leaves had three-fold higher reductase activity than controls. Expression levels of the iron storage protein, ferritin, were higher in the transgenic leaves than in wild-type, suggesting that the excess iron may be stored as ferritin in the leaves and therefore unavailable for phloem loading and delivery to the seeds. Also, citrate and malate levels in the roots and leaves of transgenic plants were significantly higher than in wild-type, suggesting that organic acid production could be related to the increased accumulation of minerals in roots, leaves and pod walls, but not in the seeds. All together, these results suggest a more ubiquitous role for the iron reductase in whole-plant mineral accumulation and

  19. Sequestration of non-pure carbon dioxide streams in iron oxyhydroxide-containing saline repositories

    Science.gov (United States)

    Garcia, S.; Rosenbauer, Robert J.; Palandri, James L.; Maroto-Valer, M. Mercedes

    2012-01-01

    Iron oxyhydroxide, goethite (α-FeOOH), was evaluated as a potential formation mineral reactant for trapping CO2 in a mineral phase such as siderite (FeCO3), when a mixture of CO2-SO 2 flue gas is injected into a saline aquifer. Two thermodynamic simulations were conducted, equilibrating a CO2-SO2 fluid mixture with a NaCl-brine and Fe-rich rocks at 150 °C and 300 bar. The modeling studies evaluated mineral and fluid composition at equilibrium and the influence of pH buffering in the system. Results show siderite precipitates both in the buffered and unbuffered system; however, the presence of an alkaline pH buffer enhances the stability of the carbonate. Based on the model, an experiment was designed to compare with thermodynamic predictions. A CO2-SO2 gas mixture was reacted in 150 ml of NaCl-NaOH brine containing 10 g of goethite at 150 °C and 300 bar for 24 days. Mineralogical and brine chemistry confirmed siderite as the predominant reaction product in the system. Seventy-six mg of CO2 are sequestered in siderite per 10 g of goethite.

  20. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Clara S; Fakra, Sirine C; Emerson, David; Fleming, Emily J; Edwards, Katrina J

    2011-07-01

    Neutrophilic Fe-oxidizing bacteria (FeOB) are often identified by their distinctive morphologies, such as the extracellular twisted ribbon-like stalks formed by Gallionella ferruginea or Mariprofundus ferrooxydans. Similar filaments preserved in silica are often identified as FeOB fossils in rocks. Although it is assumed that twisted iron stalks are indicative of FeOB, the stalk's metabolic role has not been established. To this end, we studied the marine FeOB M. ferrooxydans by light, X-ray and electron microscopy. Using time-lapse light microscopy, we observed cells excreting stalks during growth (averaging 2.2 {micro}m h(-1)). Scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy show that stalks are Fe(III)-rich, whereas cells are low in Fe. Transmission electron microscopy reveals that stalks are composed of several fibrils, which contain few-nanometer-sized iron oxyhydroxide crystals. Lepidocrocite crystals that nucleated on the fibril surface are much larger ({approx}100 nm), suggesting that mineral growth within fibrils is retarded, relative to sites surrounding fibrils. C and N 1s NEXAFS spectroscopy and fluorescence probing show that stalks primarily contain carboxyl-rich polysaccharides. On the basis of these results, we suggest a physiological model for Fe oxidation in which cells excrete oxidized Fe bound to organic polymers. These organic molecules retard mineral growth, preventing cell encrustation. This model describes an essential role for stalk formation in FeOB growth. We suggest that stalk-like morphologies observed in modern and ancient samples may be correlated confidently with the Fe-oxidizing metabolism as a robust biosignature.

  1. The Supplementation Effects of Iron and Folic Acid Compared with the Multivitamin and Mineral on Female Workers of Childbearing Age in the Pineapple Agribusiness

    Directory of Open Access Journals (Sweden)

    Yaktiworo Indriani

    2013-06-01

    Full Text Available Female workers of childbearing age (WUS as a major of human resources in many agribusiness exposed to anemia. This study aims to improve the iron status of anemic WUS workers with low hemoglobin (Hb levels, who work in a pineapple agribusiness by iron supplementation. This study was conducted two periods, using a double-blind randomized trial design. Subjects were divided into two treatment groups supplements, namely IF that was given iron + folic acid and MVM that was given multi vitamin and mineral containing 15 different vitamins and minerals including iron and folic acid. The subjects of period-1 were 25 married WUS (IF=13, MVM=12 and of period-2 were 15 single WUS (BF=7, MVM=8. Supplementation performed three times weekly for 10 weeks. After supplementation, the levels of Hb, haematocrit (Hc and serum ferritin of BF-group increased, whereas there were declines in MVM-group. The increase in Hb and Hc in married WUS was higher than the single. However, their Hb was fallen down when supplementation was continued without supervision and getting down when not given the supplements anymore. Supplementation with iron is a must for WUS workers, because they are not able to increase their Hb if only rely on their food.

  2. Nuclear resonance vibrational spectroscopic studies of iron-containing biomolecules

    International Nuclear Information System (INIS)

    Ohta, Takehiro; Seto, Makoto

    2014-01-01

    In this review, we report recent nuclear resonance vibrational spectroscopic (NRVS) studies of iron-containing biomolecules and their model complexes. The NRVS is synchrotron-based element-specific vibrational spectroscopic methods. Unlike Raman and infrared spectroscopy, the NRVS can investigate all iron motions without selection rules, which provide atomic level insights into the structure/reactivity correlation of biologically relevant iron complexes. (author)

  3. Crystal structure of (Na0.70(Na0.70,Mn0.30(Fe3+,Fe2+2Fe2+(VO43, a sodium-, iron- and manganese-based vanadate with the alluaudite-type structure

    Directory of Open Access Journals (Sweden)

    Elhassan Benhsina

    2016-02-01

    Full Text Available The title compound, sodium (sodium,manganese triiron(II,III tris[vanadate(V], (Na0.70(Na0.70,Mn0.30(Fe3+,Fe2+2Fe2+(VO43, was prepared by solid-state reactions. It crystallizes in an alluaudite-like structure, characterized by a partial cationic disorder. In the structure, four of the 12 sites in the asymmetric unit are located on special positions, three on a twofold rotation axis (Wyckoff position 4e and one on an inversion centre (4b. Two sites on the twofold rotation axis are entirely filled by Fe2+ and V5+, whereas the third site has a partial occupancy of 70% by Na+. The site on the inversion centre is occupied by Na+ and Mn2+ cations in a 0.7:0.3 ratio. The remaining Fe2+ and Fe3+ atoms are statistically distributed on a general position. The three-dimensional framework of this structure is made up of kinked chains of edge-sharing [FeO6] octahedra stacked parallel to [10-1]. These chains are held together by VO4 tetrahedral groups, forming polyhedral sheets perpendicular to [010]. Within this framework, two types of channels extending along [001] are present. One is occupied by (Na+/Mn2+ while the second is partially occupied by Na+. The mixed site containing (Na+/Mn2+ has an octahedral coordination sphere, while the Na+ cations in the second channel are coordinated by eight O atoms.

  4. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    KAUST Repository

    Chassé , Alexander W.; Ohno, Tsutomu; Higgins, Steven R.; Amirbahman, Aria; Yildirim, Nadir; Parr, Thomas B.

    2015-01-01

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  5. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    KAUST Repository

    Chassé, Alexander W.

    2015-08-18

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  6. Controls on radium transport by adsorption to iron minerals

    Science.gov (United States)

    Chen, M.; Wang, T.; Kocar, B. D.

    2015-12-01

    Radium is a naturally occurring radioactive metal found in many subsurface environments. Radium isotopes are generated by uranium and thorium decay, and are particularly abundant within groundwaters where minimal porewater flux leads to accumulation. These isotopes are used as natural tracers for estimating submarine groundwater discharge (SGD) [1], allowing for large scale estimation of GW fluxes into and out of the ocean [2]. They also represent a substantial hazard in wastewater produced after hydraulic fracturing for natural gas extraction [3], resulting in a significant risk of environmental release to surface and near-surface waters, and increased cost for water treatment or disposal. Adsorption to mineral surfaces represents a dominant pathway of radium retention in subsurface environments. For SGD studies, adsorption processes impact estimates of GW fluxes, while in hydraulic fracturing, radium adsorption to aquifer solids mediates wastewater radium activities. Analysis of past sorption studies revealed large variability in partition coefficients [4], while examination of radium adsorption kinetics and surface complexation have only recently started [5]. Accordingly, we present the results of sorption and column experiments of radium with a suite of iron minerals representative of those found within deep saline and near-surface (freshwater) aquifers, and evaluate impacts of varying salinity solutions through artificial waters. Further, we explore the impacts of pyrite oxidation and ferrihydrite transformation to other iron-bearing secondary minerals on the transport and retention of radium. These results will provide critical information on the mineralogical controls on radium retention in subsurface environments, and will therefore improve predictions of radium groundwater transport in natural and contaminated systems. [1] Charette, M.A., Buesseler, K.O. & Andrews, J.E., Limnol. Oceanogr. (2001). [2] Moore, W.S., Ann. Rev. Mar. Sci. (2010). [3] Vengosh, A

  7. Investigation on type and origin of iron mineralization at Mesgar occurrence, south of Zanjan, using petrological, mineralogical and geochemical data

    Directory of Open Access Journals (Sweden)

    Mohammad Ebrahimi

    2015-04-01

    150 m in length and average 1.5 m in width, reaching a maximum of 3 m. Two stages of mineralization identified at Mesgar. Stage-1 mineralization formed before the hydrothermal brecciation events. This stage is characterized by disseminated fine-grained hematite in the andesitic basalt lavas. Clasts of stage-1 mineralization have been recognized in the hydrothermal breccias of stage-2. Stage-2 is represented by quartz, hematite and chlorite veins and breccias cement. This stage contains abundant hematite, together with minor magnetite and chalcopyrite. The hydrothermal alteration assemblages at Mesgar grade from proximal quartz and chlorite to distal sericite and chlorite-calcite. The quartz and chlorite alteration types are spatially and temporally closely associated with iron mineralization. The sericite and chlorite-calcite alterations mark the outer limit of the hydrothermal system. Supergene alteration (kaolinite is commonly focused along joints and fractures. The ore minerals at Mesgar formed as vein and hydrothermal breccia cements, and show vein-veinlet, massive, brecciated, clastic and disseminated textures. Hematite is the main ore which is accompanied by minor magnetite and chalcopyrite. Goethite is a supergene mineral. Quartz and chlorite are present in the gangue minerals that represent vein-veinlet, vug infill, colloform, cockade and crustiform textures. The Mesgar volcanic host rocks are characterized by LILE and LREE enrichment coupled with HFSE depletion. They have positive U, Th and Pb and negative Ba, Nb, P and Ti anomalies. Our geochemical data indicate a calc-alkaline affinity for the volcanic rocks (Kuster and Harms, 1998; Ulmer, 2001, and suggest that they originated from mantle melts contaminated by the crustal materials (Chappell and White, 1974; Miyashiro, 1977; Harris et al., 1986. The ore zones show lower concentrations of REE, except Ce, relative to fresh volcanic host rocks. LREE are more depleted than HREE. These signatures indicate high

  8. Iron alteration minerals in the visible and near-infrared spectra of low-albedo asteroids

    Science.gov (United States)

    Vilas, Faith; Jarvis, Kandy S.; Gaffey, Michael J.

    1994-01-01

    Absorption features centered near 0.60-0.65 and 0.80-0.90 micrometers have been identified in the spectra of five low-albedo main-belt and outer-belt asteroids. These absorption features are attributed respectively to the (6)A(sub 1) goes to (4)T(sub 2)(G) and (6)A(sub 1) goes to (4)T(sub 1)(G) charge transfer transitions in minerals such as goethite, hematite, and jarosite that are products of the aqueous alteration of anhydrous silicates. A shoulder near 0.63 micrometers has also been identified in the absorption feature centered near 0.7 micrometers attributed to oxidized iron in phyllosilicates found predominantly in C- and G-class asteroids reflectance spectra. The coexistence of iron oxides with phyllosilicates in asteroids believed to have undergone aqueous alteration would be expected based upon analogy with terrestrial aqueous alteration and the observed mineralogy of carbonaceous chondrites. The number of low-albedo asteroids having only iron alteration absorption features compared to the number of low-albedo asteroids having spectral characteristics indicative of phyllosilicates is small. Either the conditions under which these asteroids formed are rare, or the iron alteration minerals could be formed in the interiors of objects where phyllosilicates dominate the surface mineralogy.

  9. The Moessbauer effect used to study iron minerals in Brazil

    International Nuclear Information System (INIS)

    Kunrath, J.I.

    1975-01-01

    The Moessbauer effect in Fe 57 was used to study iron minerals in Brazil. More than 50 samples were analyzed in this preliminary work. Although many minerals present complex spectra, it was possible to find a number of samples with relatively pure natural materials, which may be considered representative of the simple compounds that enter as constituents in the more complex cases. Important and, in some cases, drastic differences were found between spectra at room and liquid nitrogen temperatures. These differences are reported and in some cases explained. Another feature was the difference in the Moessbauer effect spectra, observable when some crystallization water is present. This phenomenon is correlated to the previous one. The methodology of this study is also reported [pt

  10. Lulak Abad Iron Occurrence, Northwest of Zanjan: Metamorphosed and Deformed Volcano-Sedimentary Type of Mineralization in Central Iran

    Directory of Open Access Journals (Sweden)

    Mehri Karami

    2016-07-01

    Full Text Available Keywords: Iron mineralization, hydrothermal vein, alteration, Lulak Abad, Zanjan, Central Iran Introduction The Lulak Abad iron occurrence is located in the northwestern part of the Central Iran, 55 km west of Zanjan. Mineralization at the Lulak Abad area was originally identified by Zamin Gostar Company (2007, during a geophysical exploration. The present paper provides an overview of the geological framework, the mineralization characteristics, and the results of a geochemical study of the Lulak Abad iron occurrence with an application to the ore genesis. Identification of these characteristics can be used as a model for exploration of this type of iron mineralization in the Central Iran and elsewhere. Materials and methods Detailed field work was carried out at different scales (give scales in parentheses in the Lulak Abad area. About 16 polished thin and thin sections from host rocks and mineralized and altered zones were studied by conventional petrographic and mineralogical methods at the Department of Geology, University of Zanjan. In addition, a total of 7 samples from ore zones at the Lulak Abad occurrence were analyzed by ICP-OES for minor and trace elements and REE compositions at Geological Survey of Iran, Tehran, Iran. Result Rock units exposed in the Lulak Abad area consist of schists and metavolcanic units the Kahar Formation; Lotfi, 2001 that were intruded by granite and microdiorite bodies. The schist units consist of chlorite-biotite-muscovite schist and muscovite schist that show granolepidoblastic texture with foliation-parallel disseminated magnetite. The metavolcanic units consist of metadacite, rhyolitic metatuff and meta-andesite with porphyritic textures. They are marked by dominant mylonitic foliation surrounding feldspar and quartz porphyroclasts. Alkali feldspar and quartz are the principal minerals of the granite. The intrusion is characterized by intense deformation features and is highly mylonitized. Based on field

  11. The effect of sedimentation background of depression target stratum containing mineral in Erlian basin, Ulanqab to uranium mineralization type

    International Nuclear Information System (INIS)

    Kang Shihu; Jiao Yangquan; Men Hong; Kuang Wenzhan

    2012-01-01

    The ore bearing stratum in depression of Ulanqab contains target stratum of lower cretaceous Saihan formation, upper cretaceous Erlian formation, paleogene system etc. The uranium mineralization type which have found by now contains sandstone type, mudstone type and coal petrography. The genetic type of mineral deposit contains paleovalley-type, reformed type after superposition with sedimentation and diagenesis by sedimentation. Uranium mineralization of both the natural type and genetic type have close relationship with its ore bearing stratum. Different geological background forms different sedimentary system combination, and different sedimentary system combination forms different uranium mineralization type. (authors)

  12. Testing the Prediction of Iron Alteration Minerals on Low Albedo Asteroids

    Science.gov (United States)

    Jarvis, K. S.; Vilas, Faith; Howell, E.; Kelley, M.; Cochran, A.

    1999-01-01

    Absorption features centered near 0.60 - 0.65 and 0.80 - 0.90 micron were identified in the spectra of three low-albedo main-belt (165, 368, 877) and two low-albedo outer-belt (225, 334) asteroids (Vilas et al., Icarus, v. 109,274,1994). The absorption features were attributed to charge transfer transitions in iron alteration minerals such as goethite, hematite, and jarosite, all products of aqueous alteration. Concurrently, Jarvis et al. (LPSC XXIV, 715, 1993) presented additional spectra of low-albedo asteroids that had absorption features centered near 0.60 - 0.65 micron without the longer wavelength feature. Since these two features in iron oxides originate from the same ground state, and the longer wavelength feature requires less energy to exist, the single shorter wavelength feature cannot be caused by the iron alteration minerals. In addition, spectra of minerals such as hematite and goethite show a rapid increase in reflectance beginning near 0.5 micron absent in the low-albedo asteroid spectra. The absence of this rise has been attributed to its suppresion from opaques in the surface material. Spectra on more than one night were available for only one of these five asteroids, 225 Henrietta, and showed good repeatability of the 0.65-micron feature. We have acquired additional spectra of all five asteroids in order to test the repeatability of the 0.65-micron feature, and the presence and repeatability of the features centered near 0.8 - 0.9 micron. We specifically will test the possibility that longer wavelength features could be caused by incomplete removal of telluric water. Asteroid 877 Walkure is a member of the Nysa-Hertha family, and will be compared to spectra of other members of that family. Data were acquired in 1996 and 1999 on the 2.1-m telescope with a facility cassegrain spectrograph, McDonald Observatory, Univ. Of Texas, and the 1.5-m telescope with facility cassegrain spectrograph at CTIO. This research is supported by the NASA Planetary

  13. Formation of secondary minerals in a lysimeter approach - A mineral-microbe interaction

    Science.gov (United States)

    Schäffner, F.; Merten, D.; De Giudici, G.; Beyer, A.; Akob, D. M.; Ricci, P. C.; Küsel, K.; Büchel, G.

    2012-04-01

    Heavy metal contamination of large areas due to uranium mining operations poses a serious long-term environmental problem. In the Ronneburg district (eastern Thuringia, Germany), leaching of low grade uranium bearing ores (uranium content metals, especially Cd, Ni, Co, Cu and Zn due to a residual contamination even after remediation efforts. To reveal the processes of secondary mineral precipitation in the field a laboratory lysimeter approach was set up under in situ-like conditions. Homogenized soil from the field site and pure quartz sand were used as substrates. In general, in situ measurements of redox potentials in the substrates showed highly oxidizing conditions (200-750 mV). Water was supplied to the lysimeter from below via a mariottés bottle containing contaminated groundwater from the field. Evaporation processes were allowed, providing a continuous flow of water. This led to precipitation of epsomite and probably aplowite on the top layer of substrate, similar to what is observed in field investigations. After 4 weeks, the first iron and manganese bearing secondary minerals became visible. Soil water samples were used to monitor the behaviour of metals within the lysimeter. Saturation indices (SI) for different secondary minerals were calculated with PHREEQC. The SI of goethite showed oversaturation with respect to the soil solution. SEM-EDX analyses and IR spectroscopy confirmed the formation of goethite. Geochemical data revealed that goethite formation was mainly dominated by Eh/pH processes and that heavy metals, e.g. Zn and U, could be enriched in this phase. Although Eh/pH data does not support formation of manganese minerals, Mn(II)-oxidizing bacteria (MOB) could be isolated from field soil samples, supporting the fact that microorganisms may influence this natural attenuation process. Laser ablation ICP-MS data reveal accumulation of manganese in MOB biomass on Mn(II)-containing agar plates. Furthermore, it was possible to show the importance

  14. Mineral content of traditional leafy vegetables from western Kenya

    DEFF Research Database (Denmark)

    Orech, F.O.; Christensen, Dirk Lund; Larsen, T.

    2007-01-01

    and diseases. This paper describes the mineral (calcium, iron and zinc) contents in some 54 traditional vegetable species collected from Nyang'oma area of Bondo district, western Kenya. Atomic absorption spectroscopy was used to determine the mineral content. We found that most traditional leafy vegetables......, domesticated and wild, generally contain higher levels of calcium, iron and zinc compared with the introduced varieties such as spinach (Spanacia oleracea), kale (Brassica oleracea var. acephala) and cabbage (Brassica oleracea var. capitata). The results of this study could contribute towards identification...

  15. Mid-infrared and near-infrared spectroscopic study of selected magnesium carbonate minerals containing ferric iron-Implications for the geosequestration of greenhouse gases.

    Science.gov (United States)

    Frost, Ray L; Reddy, B Jagannadha; Bahfenne, Silmarilly; Graham, Jessica

    2009-04-01

    The proposal to remove greenhouse gases by pumping liquefied CO(2) several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals brugnatellite and coalingite are probable. Two ferric ion bearing minerals brugnatellite and coalingite with a hydrotalcite-like structure have been characterised by a combination of infrared and near-infrared (NIR) spectroscopy. The infrared spectra of the OH stretching region are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030-7235 cm(-1) and 10,490-10,570 cm(-1) regions. Intense (CO(3))(2-) symmetric and antisymmetric stretching vibrations support the concept that the carbonate ion is distorted. The position of the water bending vibration indicates the water is strongly hydrogen bonded in the mineral structure. Split NIR bands at around 8675 and 11,100 cm(-1) indicate that some replacement of magnesium ions by ferrous ions in the mineral structure has occurred. Near-infrared spectroscopy is ideal for the assessment of the formation of carbonate minerals.

  16. Methods of preparing deposits containing iron oxides for recycling

    Directory of Open Access Journals (Sweden)

    T. Lis

    2013-04-01

    Full Text Available The metallurgical industry is one of the largest sources of wastes. Some of them, however, owing to their content of metals such as zinc or iron, may become valuable secondary raw materials. In order to achieve that purpose, they require appropriate preparation. This article provides a discussion on the methods of preparation of scrap from steelworks, namely deposits containing iron oxides, enabling their recycling.

  17. An investigation into mineral processing of north Semnan refractory earth

    International Nuclear Information System (INIS)

    Aslani, S.; Samin-Bani-Hashemi, H.R.; Taghi-Zadeh, O.

    2002-01-01

    This paper is dealing with refractory earth of North Semnan. Having an area of 2000 square kilometers, Semnan province is mainly formed by sedimentary rocks with a verity of refractory earth, red earth and kaolin containing heavy minerals. The refractory earth of this area contains a considerable rate of aluminum oxide in shape of dia spore minerals, behemoth and gybsite along with heavy minerals of iron and titanium. To improve the quality of refractory earth, in order to be used in related industries, these minerals have to be separated. To assess the quality of refractory earth of North Semnan as the raw materials of refractory industries, their genesis and mineralogy properties have been precisely studied. Based on the rate of aluminium oxide of the refractory earth of North Semnan mines, a suitable mineral deposit has been selected for more investigation. Using XRD and X RF methods along with electronic and photo microscopes, the refractory earth and heavy minerals of them have been assessed. The elementary laboratory experiments of fragmentation and magnetic separation have been performed. It has been proved that the iron minerals can be separated and, therefore, the quality of the refractory earth can be improved. The separation of titanium minerals has to be investigated with other methods

  18. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust

    Science.gov (United States)

    Enning, Dennis; Venzlaff, Hendrik; Garrelfs, Julia; Dinh, Hang T; Meyer, Volker; Mayrhofer, Karl; Hassel, Achim W; Stratmann, Martin; Widdel, Friedrich

    2012-01-01

    Iron (Fe0) corrosion in anoxic environments (e.g. inside pipelines), a process entailing considerable economic costs, is largely influenced by microorganisms, in particular sulfate-reducing bacteria (SRB). The process is characterized by formation of black crusts and metal pitting. The mechanism is usually explained by the corrosiveness of formed H2S, and scavenge of ‘cathodic’ H2 from chemical reaction of Fe0 with H2O. Here we studied peculiar marine SRB that grew lithotrophically with metallic iron as the only electron donor. They degraded up to 72% of iron coupons (10 mm × 10 mm × 1 mm) within five months, which is a technologically highly relevant corrosion rate (0.7 mm Fe0 year−1), while conventional H2-scavenging control strains were not corrosive. The black, hard mineral crust (FeS, FeCO3, Mg/CaCO3) deposited on the corroding metal exhibited electrical conductivity (50 S m−1). This was sufficient to explain the corrosion rate by electron flow from the metal (4Fe0 → 4Fe2+ + 8e−) through semiconductive sulfides to the crust-colonizing cells reducing sulfate (8e− + SO42− + 9H+ → HS− + 4H2O). Hence, anaerobic microbial iron corrosion obviously bypasses H2 rather than depends on it. SRB with such corrosive potential were revealed at naturally high numbers at a coastal marine sediment site. Iron coupons buried there were corroded and covered by the characteristic mineral crust. It is speculated that anaerobic biocorrosion is due to the promiscuous use of an ecophysiologically relevant catabolic trait for uptake of external electrons from abiotic or biotic sources in sediments. PMID:22616633

  19. Use of a portable X-ray analyser for manganese and iron assay in minerals

    International Nuclear Information System (INIS)

    Taqueda, M.H.S.; Agudo, E.G.

    1975-01-01

    The use of a protable X-ray fluorescence analyser for manganese and iron assay in minerals is described. The concentration range in the measured samples was 30% to 60% for Mn and 2% to 20% for Fe. The excitation source used was a 3 mCi 109 Cd sealed source. Balanced filters were used for the X-ray analysis. The statistical study of results showed a precision better than 0,5 for Mn, but only 4% for iron. They can be improved either increasing the counting time or using a 238 Pu source

  20. Evaluation of Digital Classification of Polarimetric SAR Data for Iron-Mineralized Laterites Mapping in the Amazon Region

    Directory of Open Access Journals (Sweden)

    Cleber G. Oliveira

    2013-06-01

    Full Text Available This study evaluates the potential of C- and L-band polarimetric SAR data for the discrimination of iron-mineralized laterites in the Brazilian Amazon region. The study area is the N1 plateau located on the northern border of the Carajás Mineral Province, the most important Brazilian mineral province which has numerous mineral deposits, particularly the world’s largest iron deposits. The plateau is covered by low-density savanna-type vegetation (campus rupestres which contrasts visibly with the dense equatorial forest. The laterites are subdivided into three units: chemical crust, iron-ore duricrust, and hematite, of which only the latter two are of economic interest. Full polarimetric data from the airborne R99B sensor of the SIVAM/CENSIPAM (L-band system and the RADARSAT-2 satellite (C-band were evaluated. The study focused on an assessment of distinct schemes for digital classification based on decomposition theory and hybrid approach, which incorporates statistical analysis as input data derived from the target decomposition modeling. The results indicated that the polarimetric classifications presented a poor performance, with global Kappa values below 0.20. The accuracy for the identification of units of economic interest varied from 55% to 89%, albeit with high commission error values. In addition, the results using L-band were considered superior compared to C-band, which suggest that the roughness scale for laterite discrimination in the area is nearer to L than to C-band.

  1. Characterization of iron-enriched synthetic basalt for transuranic containment

    International Nuclear Information System (INIS)

    Flinn, J.E.; Henslee, S.P.; Kelsey, P.V.; Tallman, R.L.; Welch, J.M.

    1980-01-01

    In the slagging pyrolytic incineration process, combustibles are burned and noncombustibles, including metals, are oxidized into a molten , an electromelter, where the molten slag, with further processing conducted in a heated tundish, e.g. is allowed to homogenize (within a reasonable time period) and then cast into large, cylindrical metal containers. Analyses of Idaho National Engineering Laboratory waste slags show them similar in composition and appearance to natural basalts, but rich in iron. The electromelt process and the resulting iron-rich castings offer great promise for rendering nuclear waste into a stable form. The process offers great flexibility with regard to both compositional variation of the incoming waste and the high rates at which the waste can be introduced and cast. The cast product, a fine-grained basalt-like material, shows excellent homogeneity with little or no reaction to the steel containment. The preliminary mechanical and chemical durability data show the form to have adequate containment properties for TRU waste. However, work presently underway to improve these properties through additives and controlled cooling cycles has greatly enhanced the durability of the waste form. Furthermore, recent evidence indicates that divalent iron (Fe 2+ ) included in the crystalline phases of granites and basalts imparts a resistance to leaching of uranium and other actinide ions

  2. Aluminium alloys containing iron and nickel

    International Nuclear Information System (INIS)

    Coriou, H.; Fournier, R.; Grall, L.; Hure, J.; Herenguel, J.; Lelong, P.

    1958-01-01

    The first part of this report addresses mechanism, kinetics and structure factors of aluminium alloys containing iron and nickel in water and high temperature steam. The studied alloys contain from 0.3 to 0.7 per cent of iron, and 0.2 to 1.0 per cent of nickel. Corrosion resistance and corrosion structure have been studied. The experimental installation, process and samples are presented. Corrosion structures in water at 350 C are identified and discussed (structure of corrosion products, structure of metal-oxide interface), and then in steam at different temperatures (350-395 C). Corrosion kinetics is experimentally studied (weight variation in time) in water at 350 C and in steam at different temperatures. Reactions occurring at over-heated steam (more than 400 C) are studied, and the case of welded alloys is also addressed. The second part addresses the metallurgical mechanism and processes influencing aluminium alloy resistance to corrosion by high temperature water as it appeared that separated phases protect the solid solution through a neighbourhood action. In order to avoid deep local corrosions, it seems necessary to multiply protective phases in an as uniform as possible way. Some processes enabling this result are described. They belong to conventional metallurgy or to powder metallurgy (with sintering and extrusion)

  3. The Effect Of Local Coal And Smelting Sponge Iron On Iron Content Of Pig Iron

    Science.gov (United States)

    Oediyani, Soesaptri; Juwita Sari, Pramita; Hadi P, Djoko

    2018-03-01

    The new regulation on mineral resources was announced by Ministry of Energy and Mineral resources (ESDM) of Indonesia at 2014 which it called Permen ESDM No 1/2014. Therefore, this research was conducted to add the value of local iron ores by using smelting technology. The objective of the research is to produce pig iron that meet the requirement of the new regulation of mineral resources such as 90% Fe. First, iron ores and coal mixed together with lime as a flux, then smelted in a Electric Arc Furnace at 1800°C. The process variables are (1; 1.25; 1.5; 1.75; 2.0) and the composition of coal (0.8%, 1.6%, 3.0%). The type of coal that used in this research was bituminous coal from Kalimantan and also the iron ores from Kalimantan. The products of the smelting technology are Pig iron and slag. Both pig iron and slag then analyzed by SEM-EDS to measure the iron content. The result shows that the maximum iron content on pig iron is about 95.04% meanwhile the minimum iron content on slag is about 3.66%. This result achieved at 1.6% coal and 2.0.

  4. Influence of particle size and mineral phase in the analysis of iron ore slurries by Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Michaud, Daniel; Leclerc, Remi; Proulx, Eric

    2007-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) was applied to the analysis of iron ore concentrates. The objective was to determine the influence of particle size and mineral phase on the LIBS signal. The LIBS spectra of hematite and magnetite ore concentrates were qualitatively indistinguishable from each other but magnetite yielded systematically less than hematite. This behavior could be set into an empirical equation to correct the iron peak intensities according to the level of magnetite in the analyzed sample. Similarly, an increase of the LIBS signal was observed as the particle size of the ore samples decreased. Again, an equation could be written down to correct the intensity of either iron or silicon in response to a variation of the average particle size of the ore concentrate. Using these corrections, proper response of the silicon signal against the concentration of silica in the samples was restored. The observed dependence of the strength of the iron signal upon the mineral phase is attributed to oxidation of magnetite into hematite

  5. A Bacillus paralicheniformis Iron-Containing Urease Reduces Urea Concentrations in Rice Wine.

    Science.gov (United States)

    Liu, Qingtao; Chen, Yuqi; Yuan, Minglai; Du, Guocheng; Chen, Jian; Kang, Zhen

    2017-09-01

    Urease, a nickel-containing metalloenzyme, was the first enzyme to be crystallized and has a prominent position in the history of biochemistry. In the present study, we identified a nickel urease gene cluster, ureABCEFGDH , in Bacillus paralicheniformis ATCC 9945a and characterized it in Escherichia coli Enzymatic assays demonstrate that this oxygen-stable urease is also an iron-containing acid urease. Heterologous expression assays of UreH suggest that this accessory protein is involved in the transmembrane transportation of nickel and iron ions. Moreover, this iron-containing acid urease has a potential application in the degradation of urea in rice wine. The present study not only enhances our understanding of the mechanism of activation of urease but also provides insight into the evolution of metalloenzymes. IMPORTANCE An iron-containing, oxygen-stable acid urease from B. paralicheniformis ATCC 9945a with good enzymatic properties was characterized. This acid urease shows activities toward both urea and ethyl carbamate. After digestion with 6 U/ml urease, approximately 92% of the urea in rice wine was removed, suggesting that this urease has great potential in the food industry. Copyright © 2017 American Society for Microbiology.

  6. Methodology for determination of trace elements in mineral phases of iron banded formation by LA-ICP-MS

    International Nuclear Information System (INIS)

    Sousa, Denise V.M. de; Nalini Junior, Herminio A.; Sampaio, Geraldo M.S.; Abreu, Adriana T. de; Lana, Cristiano de C.

    2015-01-01

    The study of the chemical composition of mineral phases of iron formation (FF), especially of trace elements, is an important tool in the understanding of the genesis of these rocks and the contribution of the phases in the composition of whole rock. Low mass fraction of such elements in the mineral phases present in this rock type requires a suitable analytical procedure. The laser ablation technique coupled with ICP-MS (LA-ICP-MS) has been widely used for determination of trace elements in geological samples. Thus, the aim of this study is to develop calibration curves for determination of trace elements (Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) in mineral phases of banded iron formations by LA-ICP-MS. Several certified reference materials (CRM) were used for calibrate the equipment. The analytical conditions were checked by CRM NIST SRM 614. The results were satisfactory, since the curves showed good linearity coefficients, good accuracy and precision of results. (author)

  7. Impact of Bioreduction on Remobilization of Adsorbed Cadmium on Iron Minerals in Anoxic Condition.

    Science.gov (United States)

    Ghorbanzadeh, Nasrin; Lakzian, Amir; Halajnia, Akram; Choi, Ui-Kyu; Kim, Ki-Hyun; Kim, Jong-Oh; Kurade, Mayur; Jeon, Byong-Hun

    2017-06-01

      The impact of bioreduction on the remobilization of adsorbed cadmium Cd(II) on minerals, including hematite, goethite, and two iron(III)-rich clay minerals nontronites (NAU-1 and NAU-2) under anoxic conditions was investigated. Langmuir isotherm equation better described the sorption of Cd(II) onto the all minerals. The maximum adsorption capacity was 6.2, 18.1, 3.6, and 4 mg g-1 for hematite, goethite, NAU-1 and NAU-2, respectively. The desorption of Cd(II) was due to the production of Fe(II) as a result of bioreduction of structural Fe(III) in the minerals by Shewanella putrefaciens. The bioreduction of Cd(II)-loaded Fe(III) minerals was negligible during the initial 5 days followed by a rapid increase up to 20 days. The amount of Cd(II) in solution phase at the end of 30 days increased up to 0.07 mmol L-1 for hematite, NAU-1, and NAU-2 and 0.02 mmol L-1 for goethite. The X-ray diffraction study showed negligible changes in bioreduced minerals phases.

  8. Investigations of Ferritic Nodular Cast Iron Containing About 5-6% Aluminium

    Directory of Open Access Journals (Sweden)

    Soiński M.S.

    2016-12-01

    Full Text Available The work presents results of investigations concerning the production of cast iron containing about 5-6% aluminium, with the ferritic matrix in the as-cast state and nodular or vermicular graphite precipitates. The examined cast iron came from six melts produced under the laboratory conditions. It contained aluminium in the amount of 5.15% to 6.02% (carbon in the amount of 2.41% to 2.87%, silicon in the amount of 4.50% to 5.30%, and manganese in the amount of 0.12% to 0.14%. After its treatment with cerium mixture and graphitization with ferrosilicon (75% Si, only nodular and vermicular graphite precipitates were achieved in the examined cast iron. Moreover, it is possible to achieve the alloy of pure ferritic matrix, even after the spheroidizing treatment, when both the aluminium and the silicon occur in cast iron in amounts of about 5.2÷5.3%.

  9. Bacterial Oxidation and Reduction of Iron in the Processes of Creation and Treatment of Acid Mining Waters

    Directory of Open Access Journals (Sweden)

    Daniel Kupka

    2004-12-01

    Full Text Available Acid mine drainages (AMDs arise at the weathering of sulphidic minerals. The occurrence of acidic streams is commonly associated with the human mining activities. Due to the disruption and excavation of sulphide deposits, the oxidation processes have initiated. Acidic products of sulphide oxidation accelerate the degradation of accompanying minerals. AMDs typically contain high concentrations of sulfuric acid and soluble metals and cause serious ecological problems due to the water pollution and the devastation of adjacent country. Microbial life in these extremely acidic environments may be considerably diverse. AMDs are abundant in bacteria capable to oxidize and/or to reduce iron. The rate of bacterial oxidation of ferrous iron released from pyrite surfaces is up to one million times faster than the chemical oxidation rate at low pH. Bacterial regeneration of ferric iron maintains the continuity of pyrite oxidation and the production of AMDs. Another group of microorganisms living in these environments are acidophilic ferric iron reducing bacteria. This group of microorganisms has been discovered only relatively recently. Acidophilic heterotrophic bacteria reduce ferric iron in either soluble or solid forms to ferrous iron. The reductive dissolution of ferric iron minerals brings about a mobilization of iron as well as associated heavy metals. The Bacterial oxidation and reduction of iron play an important role in the transformation of either crystalline or amorphous iron-containing minerals, including sulphides, oxides, hydroxysulfates, carbonates and silicates. This work discusses the role of acidophilic bacteria in the natural iron cycling and the genesis of acidic effluents. The possibilities of application of iron bacteria in the remediation of AMDs are also considered.

  10. Iron phosphate glass containing simulated fast reactor waste: Characterization and comparison with pristine iron phosphate glass

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Asuvathraman, R.; Venkata Krishnan, R.; Ravindran, T.R.; Govindaraj, R.; Govindan Kutty, K.V.; Vasudeva Rao, P.R.

    2014-01-01

    Detailed characterization was carried out on an iron phosphate glass waste form containing 20 wt.% of a simulated nuclear waste. High temperature viscosity measurement was carried out by the rotating spindle method. The Fe 3+ /Fe ratio and structure of this waste loaded iron phosphate glass was investigated using Mössbauer and Raman spectroscopy respectively. Specific heat measurement was carried out in the temperature range of 300–700 K using differential scanning calorimeter. Isoconversional kinetic analysis was employed to understand the crystallization behavior of the waste loaded iron phosphate glass. The glass forming ability and glass stability of the waste loaded glass were also evaluated. All the measured properties of the waste loaded glass were compared with the characteristics of pristine iron phosphate glass

  11. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  12. Iron-Coupled Anaerobic Oxidation of Methane Performed by a Mixed Bacterial-Archaeal Community Based on Poorly Reactive Minerals.

    Science.gov (United States)

    Bar-Or, Itay; Elvert, Marcus; Eckert, Werner; Kushmaro, Ariel; Vigderovich, Hanni; Zhu, Qingzeng; Ben-Dov, Eitan; Sivan, Orit

    2017-11-07

    Anaerobic oxidation of methane (AOM) was shown to reduce methane emissions by over 50% in freshwater systems, its main natural contributor to the atmosphere. In these environments iron oxides can become main agents for AOM, but the underlying mechanism for this process has remained enigmatic. By conducting anoxic slurry incubations with lake sediments amended with 13 C-labeled methane and naturally abundant iron oxides the process was evidenced by significant 13 C-enrichment of the dissolved inorganic carbon pool and most pronounced when poorly reactive iron minerals such as magnetite and hematite were applied. Methane incorporation into biomass was apparent by strong uptake of 13 C into fatty acids indicative of methanotrophic bacteria, associated with increasing copy numbers of the functional methane monooxygenase pmoA gene. Archaea were not directly involved in full methane oxidation, but their crucial participation, likely being mediators in electron transfer, was indicated by specific inhibition of their activity that fully stopped iron-coupled AOM. By contrast, inhibition of sulfur cycling increased 13 C-methane turnover, pointing to sulfur species involvement in a competing process. Our findings suggest that the mechanism of iron-coupled AOM is accomplished by a complex microbe-mineral reaction network, being likely representative of many similar but hidden interactions sustaining life under highly reducing low energy conditions.

  13. Petrography, mineralization and mineral explorations in the Zendan salt dome (Hara, Bandar Lengeh

    Directory of Open Access Journals (Sweden)

    Habib Biabangard

    2018-04-01

    Full Text Available Introduction The Zendan salt dome is located at 80 Km north of Bandar-Lengeh and 110 Km west of Bandar-Khamir cities in the Hormozgan province. Based on the structural geology of Iran, the Zendan salt dome is placed in the southeastern part of the Zagros zone (Stocklin, 1968. Important units in this area are Hormuz, Mishan, Aghajari and Bakhtiari formations with the Precambrian age (Alian and Bazamad, 2014. The Hormuz formation with the four members of H1, H2, H3, and H4 is the oldest formation (Ahmadzadeh Heravi et al., 1991. Basalt and diabase rocks are mostly rocks that are exposed in the Zendan salt dome. Magnetite and hematite iron mineralization happened in all the building rocks of salt dome, and is not a uniform mineralization. Iron mineralization contains hematite, spicularite, magnetite, goethite, and iron hydroxides. Magnetite-hematite-oligist layers (red soil are the most iron mineralization in the Zendan salt dome, which are usually broken and scattered with gypsum layers (mostly anhydrite, respectively. Another form of iron mineralization is a mixture of hematite and magnetite (about 10 to 15% in diabase rocks. Copper mineralization consists of pyrite and chalcopyrite minerals that are mostly in tuff and shale units. The presence of low immobile trace elements in the Zendan salt dome and type of alteration shows that maybe the origin of this iron is deposited from brine fluid. Therefore, this deposit can be classified into VMS deposits. Materials and methods We have taken 60 samples rocks from the Zendan salt dome, and then prepared 20 thin and polished sections. Petrographic studies were done and 9 samples were selected for analysis. These samples were sent to the Zarzma laboratory and the amount of FeO was determined by the wet chemical method and other amounts of oxides were determined by XRF. Six samples were analyzed for determining the major elements with the XRF method in the Binalood laboratory. Nine samples from vines

  14. Influence of a soil enzyme on iron-cyanide complex speciation and mineral adsorption.

    Science.gov (United States)

    Zimmerman, Andrew R; Kang, Dong-Hee; Ahn, Mi-Youn; Hyun, Seunghun; Banks, M Katherine

    2008-01-01

    Cyanide is commonly found as ferrocyanide [Fe(II)(CN)(6)](-4) and in the more mobile form, ferricyanide [Fe(III)(CN)(6)](-3) in contaminated soils and sediments. Although soil minerals may influence ferrocyanide speciation, and thus mobility, the possible influence of soil enzymes has not been examined. In a series of experiments conducted under a range of soil-like conditions, laccase, a phenoloxidase enzyme derived from the fungi Trametes versicolor, was found to exert a large influence on iron-cyanide speciation and mobility. In the presence of laccase, up to 93% of ferrocyanide (36-362ppm) was oxidized to ferricyanide within 4h. No significant effect of pH (3.6 and 6.2) or initial ferrocyanide concentration on the extent or rate of oxidation was found and ferrocyanide oxidation did not occur in the absence of laccase. Relative to iron-cyanide-mineral systems without laccase, ferrocyanide adsorption to aluminum hydroxide and montmorillonite decreased in the presence of laccase and was similar to or somewhat greater than that of ferricyanide without laccase. Laccase-catalyzed conversion of ferrocyanide to ferricyanide was extensive though up to 33% of the enzyme was mineral-bound. These results demonstrate that soil enzymes can play a major role in ferrocyanide speciation and mobility. Biotic soil components must be considered as highly effective oxidation catalysts that may alter the mobility of metals and metal complexes in soil. Immobilized enzymes should also be considered for use in soil metal remediation efforts.

  15. Influence of non-clay minerals on the interaction between metallic iron and Callovo-Oxfordian clay fraction

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Michau, N.

    2012-01-01

    Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste, it is of prime importance to understand the interaction mechanisms between the geological matrix, Callovo-Oxfordian clay rock (COx) and metallic iron, from the package overpack. In order to evidence the individual role of each clay component entering in the mineralogy of the COx, interactions between metallic iron and pure clays (smectites, illite and kaolinite) were first conducted. To investigate the role of the other minerals, the reactivity of COx, COx clay fraction (COxCF) and mixtures between COxCF and quartz, calcite or pyrite, was studied. Clays and additional minerals were put in contact with powder metallic iron with a weight ratio iron:clay fixed at 1:3 and a clay:solution ratio of 1:20. Proportions of non-clay minerals were deduced from the average COx composition: 50% clays, 24.5% quartz, 24.5% calcite and 1% pyrite. Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L -1 , CaCl 2 0.04 M.L -1 ) in Parr reactors for durations of one, three or nine months. After reaction, solid and liquid phases were separated by centrifugation and characterized by classical techniques combining chemical analyses (liquid analyses, transmission electron microscopy combined with Energy Dispersive of X-rays spectroscopy TEM-EDS), mineralogical (X-ray diffraction), spectroscopic ( 57 Fe Moessbauer) and morphometric techniques (TEM, scanning electron microscopy and N 2 adsorption). For COx, COxCF and all the pure clay phases, major evolutions were observed during the first month, which shows that the oxidation of metallic iron is rapid in our experimental conditions. Release of iron cations in solution, pH increase (8-10) and Eh decrease (reductive conditions) are responsible for the partial dissolution of initial clay phases. Released iron is involved in the crystallization of Fe

  16. Oxygen Extraction from Minerals

    Science.gov (United States)

    Muscatello, Tony

    2017-01-01

    Oxygen, whether used as part of rocket bipropellant or for astronaut life support, is a key consumable for space exploration and commercialization. In Situ Resource Utilization (ISRU) has been proposed many times as a method for making space exploration more cost effective and sustainable. On planetary and asteroid surfaces the presence of minerals in the regolith that contain oxygen is very common, making them a potential oxygen resource. The majority of research and development for oxygen extraction from minerals has been for lunar regolith although this work would generally be applicable to regolith at other locations in space. This presentation will briefly survey the major methods investigated for oxygen extraction from regolith with a focus on the current status of those methods and possible future development pathways. The major oxygen production methods are (1) extraction from lunar ilmenite (FeTiO3) with either hydrogen or carbon monoxide, (2) carbothermal reduction of iron oxides and silicates with methane, and (3) molten regolith electrolysis (MRE) of silicates. Methods (1) and (2) have also been investigated in a two-step process using CO reduction and carbon deposition followed by carbothermal reduction. All three processes have byproducts that could also be used as resources. Hydrogen or carbon monoxide reduction produce iron metal in small amounts that could potentially be used as construction material. Carbothermal reduction also makes iron metal along with silicon metal and a glass with possible applications. MRE produces iron, silicon, aluminum, titanium, and glass, with higher silicon yields than carbothermal reduction. On Mars and possibly on some moons and asteroids, water is present in the form of mineral hydrates, hydroxyl (-OH) groups on minerals, andor water adsorbed on mineral surfaces. Heating of the minerals can liberate the water which can be electrolyzed to provide a source of oxygen as well. The chemistry of these processes, some key

  17. Phosphate Recovery From Sewage Sludge Containing Iron Phosphate

    NARCIS (Netherlands)

    Wilfert, P.K.

    2018-01-01

    The scope of this thesis was to lay the basis for a phosphate recovery technology that can be applied on sewage sludge containing iron phosphate. Such a technology should come with minimal changes to the existing sludge treatment configuration while keeping the use of chemicals or energy as small as

  18. Arabidopsis Glutaredoxin S17 Contributes to Vegetative Growth, Mineral Accumulation, and Redox Balance during Iron Deficiency

    Directory of Open Access Journals (Sweden)

    Han Yu

    2017-06-01

    Full Text Available Iron (Fe is an essential mineral nutrient and a metal cofactor required for many proteins and enzymes involved in the processes of DNA synthesis, respiration, and photosynthesis. Iron limitation can have detrimental effects on plant growth and development. Such effects are mediated, at least in part, through the generation of reactive oxygen species (ROS. Thus, plants have evolved a complex regulatory network to respond to conditions of iron limitations. However, the mechanisms that couple iron deficiency and oxidative stress responses are not fully understood. Here, we report the discovery that an Arabidopsis thaliana monothiol glutaredoxin S17 (AtGRXS17 plays a critical role in the plants ability to respond to iron deficiency stress and maintain redox homeostasis. In a yeast expression assay, AtGRXS17 was able to suppress the iron accumulation in yeast ScGrx3/ScGrx4 mutant cells. Genetic analysis indicated that plants with reduced AtGRXS17 expression were hypersensitive to iron deficiency and showed increased iron concentrations in mature seeds. Disruption of AtGRXS17 caused plant sensitivity to exogenous oxidants and increased ROS production under iron deficiency. Addition of reduced glutathione rescued the growth and alleviates the sensitivity of atgrxs17 mutants to iron deficiency. These findings suggest AtGRXS17 helps integrate redox homeostasis and iron deficiency responses.

  19. The mineralogy and geochemistry of some of the iron-formations of Bushmanland

    International Nuclear Information System (INIS)

    Meyer, T.Q.

    1986-01-01

    A great diversity of metasedimentary and metavolcanic rock types form inselbergs on the sandcovered plains of Bushmanland in the north-western Cape Province. Algoma-type iron-formation occurs as isolated units in the Proterozoic metasediments of Namaqualand and Bushmanland, varying in size and stratigraphical position. In many cases, the iron-formations are closely associated with base metal mineralization. Examples are the huge base metal deposits at Black Mountain, Gamsberg and Broken Hill in the Aggeneys area. The oxidation zones are expressed as black magnetite-rich outcrops which can in some cases be traced for as much as a kilometre. This study was undertaken to investigate the mineralogy and geochemistry of a selection of the iron-formations of Bushmanland. Some of the iron-formations, associated ferriferous metasediments and gossans contain a wide variety of secondary minerals. These minerals were examined by X-ray diffraction and analyses were obtained by means of an electron microprobe

  20. Regeneration of iron oxide containing pellets used for hot gas clean up

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A.; Heeney, P.; Furimsky, E. (CANMET, Ottawa, Ontario (Canada). Energy Research Laboratories)

    1989-09-01

    Four iron-containing pelletized solids used for H{sub 2}S removal from hot gas were oxidized in a Cahn electrobalance and in a fixed bed reactor. The main reactions included the sequence in which FeS was oxidized to iron sulphate which then decomposed rapidly yielding SO{sub 2} and iron oxides. The oxidation occurred predominantly on the outer surface of the pellets. 12 refs., 5 figs., 5 tabs.

  1. Geochemical investigation of iron transport into bentonite as steel corrodes

    International Nuclear Information System (INIS)

    Hunter, Fiona; Bate, Fiona; Heath, Tim; Hoch, Andrew

    2007-09-01

    some experiments. Using the experimental data as a guide, a modelling investigation has been carried out. The objectives of the modelling investigation were: To develop a geochemical model of the transport of iron into bentonite based on the clear experimental evidence of the penetration of iron into bentonite. To improve our understanding of the desaturation of the bentonite as water is consumed during the corrosion process and the resultant gas(es) escapes. The production of iron from the corroding source was modelled using a rate of gas evolution that had been fitted. It was shown that ion exchange and surface complexation processes do not provide sufficient sorption to predict the high amount of iron observed in the solid phase. Therefore alternative processes, such as iron-containing mineral formation or mineral transformations, were also suggested to account for the amount of iron observed within the bentonite phase. Magnetite was identified as the most thermodynamically stable solubility limiting phase under the experimental conditions. A one-dimensional transport model was constructed to include all relevant processes. The simulations considered the diffusive transport of Fe 2+ ions away from a corroding source, using the rate of gas evolution resulting from the corrosion process. Ion exchange and surface complexation processes were allowed within the bentonite which would provide sorption of iron onto and within the bentonite solid. The pH was buffered by allowing protonation and deprotonation of the surface sites of the bentonite solid. In addition, saturation of iron-containing minerals was permitted. The base case model suggests that about 4.4 wt % of iron could form in the bentonite if the formation of magnetite was allowed. However, the maximum theoretical amount of iron available from the source term is limited to 4.5 wt % of iron by the cumulative gas evolution rate, which is lower than the observed amount of iron in the bulk bentonite (6.6 wt %). A

  2. Geochemical investigation of iron transport into bentonite as steel corrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Fiona; Bate, Fiona; Heath, Tim; Hoch, Andrew [Serco Assurance, Harwe ll (United Kingdom)

    2007-09-15

    some experiments. Using the experimental data as a guide, a modelling investigation has been carried out. The objectives of the modelling investigation were: To develop a geochemical model of the transport of iron into bentonite based on the clear experimental evidence of the penetration of iron into bentonite. To improve our understanding of the desaturation of the bentonite as water is consumed during the corrosion process and the resultant gas(es) escapes. The production of iron from the corroding source was modelled using a rate of gas evolution that had been fitted. It was shown that ion exchange and surface complexation processes do not provide sufficient sorption to predict the high amount of iron observed in the solid phase. Therefore alternative processes, such as iron-containing mineral formation or mineral transformations, were also suggested to account for the amount of iron observed within the bentonite phase. Magnetite was identified as the most thermodynamically stable solubility limiting phase under the experimental conditions. A one-dimensional transport model was constructed to include all relevant processes. The simulations considered the diffusive transport of Fe{sup 2+} ions away from a corroding source, using the rate of gas evolution resulting from the corrosion process. Ion exchange and surface complexation processes were allowed within the bentonite which would provide sorption of iron onto and within the bentonite solid. The pH was buffered by allowing protonation and deprotonation of the surface sites of the bentonite solid. In addition, saturation of iron-containing minerals was permitted. The base case model suggests that about 4.4 wt % of iron could form in the bentonite if the formation of magnetite was allowed. However, the maximum theoretical amount of iron available from the source term is limited to 4.5 wt % of iron by the cumulative gas evolution rate, which is lower than the observed amount of iron in the bulk bentonite (6.6 wt

  3. Remote-sensing data processing with the multivariate regression analysis method for iron mineral resource potential mapping: a case study in the Sarvian area, central Iran

    Science.gov (United States)

    Mansouri, Edris; Feizi, Faranak; Jafari Rad, Alireza; Arian, Mehran

    2018-03-01

    This paper uses multivariate regression to create a mathematical model for iron skarn exploration in the Sarvian area, central Iran, using multivariate regression for mineral prospectivity mapping (MPM). The main target of this paper is to apply multivariate regression analysis (as an MPM method) to map iron outcrops in the northeastern part of the study area in order to discover new iron deposits in other parts of the study area. Two types of multivariate regression models using two linear equations were employed to discover new mineral deposits. This method is one of the reliable methods for processing satellite images. ASTER satellite images (14 bands) were used as unique independent variables (UIVs), and iron outcrops were mapped as dependent variables for MPM. According to the results of the probability value (p value), coefficient of determination value (R2) and adjusted determination coefficient (Radj2), the second regression model (which consistent of multiple UIVs) fitted better than other models. The accuracy of the model was confirmed by iron outcrops map and geological observation. Based on field observation, iron mineralization occurs at the contact of limestone and intrusive rocks (skarn type).

  4. Enhanced Iron Solubility at Low pH in Global Aerosols

    Directory of Open Access Journals (Sweden)

    Ellery D. Ingall

    2018-05-01

    Full Text Available The composition and oxidation state of aerosol iron were examined using synchrotron-based iron near-edge X-ray absorption spectroscopy. By combining synchrotron-based techniques with water leachate analysis, impacts of oxidation state and mineralogy on aerosol iron solubility were assessed for samples taken from multiple locations in the Southern and the Atlantic Oceans; and also from Noida (India, Bermuda, and the Eastern Mediterranean (Crete. These sampling locations capture iron-containing aerosols from different source regions with varying marine, mineral dust, and anthropogenic influences. Across all locations, pH had the dominating influence on aerosol iron solubility. When aerosol samples were approximately neutral pH, iron solubility was on average 3.4%; when samples were below pH 4, the iron solubility increased to 35%. This observed aerosol iron solubility profile is consistent with thermodynamic predictions for the solubility of Fe(III oxides, the major iron containing phase in the aerosol samples. Source regions and transport paths were also important factors affecting iron solubility, as samples originating from or passing over populated regions tended to contain more soluble iron. Although the acidity appears to affect aerosol iron solubility globally, a direct relationship for all samples is confounded by factors such as anthropogenic influence, aerosol buffer capacity, mineralogy and physical processes.

  5. Investigation of mineral composition of differently treated devonian, quaternary and triassic clays of Latvia

    International Nuclear Information System (INIS)

    Kosorukovs, A.; Viss, R.

    1999-01-01

    Clayey fractions (particle size less than 5 μm )of the Latvian Devonian (Kuprava and Liepa deposits), Quaternary (Laza and Ugale deposits) and Triassic (Akmene deposit, Republic of Lithuania) clays have been obtained. The clayey fractions were converted in the form in which all the cations were exchanged for magnesium ions. After the ion exchange the fractions were treated with dimethyl sulfoxide or glycerol in the course for two days, one sample being subjected to thermal treatment at 550±110 C for two hours. Diffractograms for the treated samples have been obtained using a DRON-2,0 diffractometer (Co-radiation). Analysis of the obtained diffractograms show that: 1) the main clayey minerals of the Devonian clays occur to be hydromicas (mainly hydromuscovite) containing admixtures of kaolinite and quartz; 2) the main clayey minerals of the Quarternary clays also occur to be hydromicas - mixtures of hydrobiotite and hydromuscovite containing admixtures of kaolinite and iron-containing chlorite; 3) smectite occurs to be the main mineral of the Triassic clay; it contains admixtures of hydromica and chlorite; 4) the Triassic and Quaternary clays contain fine- and coarse-grained carbonates, mainly calcite, in quantities of 10-16%; 5) iron and titanium are included in fine grained minerals. (author)

  6. Natural minerals and synthetic materials for sorption of radioactive anions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mun Ja; Chun, Kwan Sik; Kim, Seung Soo

    1998-07-01

    Technetium-99 and iodine-129 are fission products with long half-lives, and exist as highly soluble anionic species. Studies on natural and synthetic materials sorbing TcO{sub 4} and/or I have been performed by several researchers. The application of these materials as an additive in the high-level waste disposal has been considered. The iron- or sulfide-containing minerals such as metal iron, iron powder, stibnite and pyrrhotite show a high capacity for TcO{sub 4} sorption. And the small amounts of activated carbon are reported to have high distribution coefficients recently. In the iodine sorption studies, sulfide-, copper-, lead- or mercury-containing minerals can be a candidate. Pyrite, chalcopyrite, galena, Cu{sub 2}S and CuS reveal a high capacity for I sorption. The synthetic materials were found to have high sorption capacity and compensate the defects of natural minerals, which contain hydrous oxides such as zirconium oxide, aluminium oxide and mercarbide. The mercarbide has the high distribution coefficients for the sorption of TcO{sub 4} and I. Recently it was proposed that the synthetic clay, hydrotalcite, could be useful for the fixation of anion. However, to determine the applicability of those natural and synthetic materials as an additive to a buffer or backfill material for sorption of TcO{sub 4} and/or I, the sorption behavior of the anions on those materials under the repository conditions should be identified. (author). 32 refs., 21 tabs., 10 figs

  7. Iron released from ilmenite mineral sustains a phytoplankton community in microcosms

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, C.E.G.; Velip, D.; Mourya, B.S.; Shaikh, S.; Das, A.; LokaBharathi, P.A.

    Natural biotic communities from Kalbadevi Bay were monitored in microcosms (1-l glass flasks) to test the hypothesis that iron released from ilmenite through microbial action contributes to proliferation of phytoplankton. Microcosms containing...

  8. Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth.

    Science.gov (United States)

    Pasek, Matthew A; Lauretta, Dante S

    2005-08-01

    We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO(3), the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.

  9. Occurrence and Characterization Microstructure of Iron Impurities in Halloysite.

    Science.gov (United States)

    Liu, Rong; Yan, Chunjie; Wang, Hongquan; Xiao, Guoqi; Tu, Dong

    2015-09-01

    The quality of the clays and over all halloysite are mostly associated with minor amounts of ferruginous impurities content, since this element gives an undesirable reddish color to the halloysite mineral. Hence, finding out the modes of occurrence of iron in halloysite is of prime importance in the value addition and optimum utilization of halloysite. In order to analyze the occurrence of iron impurities in halloysite, Transmission Electron Microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were combined with wet chemical analysis methods to study the low-grade halloysite. The results indicated that the mineral phases of iron impurities in the concentrates are mainly composed of amounts of magnetite, goethite and hematite. Two types of occurrences for iron impurities have been found. One is single crystalline mineral consist in the halloysite, which contains three different phases of Goethite FeO(OH) (44.75%), Magnetite Fe3O4 (27.43%) and Hematite Fe2O3 (31.96%). The other is amorphous Fe-Al-Si glial materials. This study is of significance in the theoretical research on the halloysite mineralogy and in the developmental practice of halloysite in coal measures.

  10. In Vitro Iron Availability from Insects and Sirloin Beef.

    Science.gov (United States)

    Latunde-Dada, Gladys O; Yang, Wenge; Vera Aviles, Mayra

    2016-11-09

    Interest in the consumption of insects (entomophagy) as an alternative environmentally sustainable source of protein in the diet of humans has recently witnessed a surge. Knowledge of the nutrient composition and, in particular, the bioavailability of minerals from insects is currently sparse. This study evaluated the availability of Fe, Ca, Cu, Mg, Mn, and Zn from four commonly eaten insects and compared these to sirloin beef. Soluble iron from the samples was measured by inductively coupled plasma optical emission spectrometry (ICP-OES). Iron bioavailability was determined using an in vitro simulated peptic-pancreatic digestion, followed by measurement of ferritin (a surrogate marker for iron absorption) in Caco-2 cells. Cricket and sirloin beef had comparably higher levels of Fe, Ca, and Mn than grasshopper, meal, and buffalo worms. However, iron solubility was significantly higher from the insect samples than from beef. The complementation of whole-wheat flour with insect or beef protein resulted in overall decreases in mineral content and iron solubility in the composite mixtures. Collectively, the data show that grasshopper, cricket, and mealworms contain significantly higher chemically available Ca, Cu, Mg, Mn, and Zn than sirloin. However, buffalo worms and sirloin exhibited higher iron bioavailability comparable to that of FeSO 4 . Commonly consumed insect species could be excellent sources of bioavailable iron and could provide the platform for an alternative strategy for increased mineral intake in the diets of humans.

  11. Minerals in thalassaemia major patients: An overview.

    Science.gov (United States)

    Ozturk, Zeynep; Genc, Gizem Esra; Gumuslu, Saadet

    2017-05-01

    Thalassaemia major (TM) is a hereditary blood disease characterised by reduced or absent production of beta globin chains. Erythrocyte transfusions are given to raise the haemoglobin level in patients with thalassaemia major. However, transfusions have been related to increased risk of iron overload and tissue damage related to excess iron. Both elevated oxidative stress due to iron overload and increased hemolysis lead to over utilisation of minerals required for antioxidant enzymes activities. Iron chelators have been used to prevent iron overload in thalassaemia major patients, but these chelators have the possibility of removing minerals from the body. Thalassaemia patients are more at risk for mineral deficiency because of increased oxidative stress and iron chelation therapies. Growth and maturational delay, cardiomyopathy, endocrinopathies and osteoporosis are the complications of thalassaemia. Minerals may play a particular role to prevent these complications. In the current review, we provide an overview of minerals including zinc (Zn), copper (Cu), selenium (Se), magnesium (Mg) and calcium (Ca) in thalassaemia major patients. We, also, underline that some complications of thalassaemia can be caused by an increased need for minerals or lack of the minerals. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Method for Transformation of Weakly Magnetic Minerals (Hematite, Goethite into Strongly Magnetic Mineral (Magnetite to Improve the Efficiency of Technologies for Oxidized Iron Ores Benefication

    Directory of Open Access Journals (Sweden)

    Ponomarenko, O.

    2015-03-01

    Full Text Available A new method for relatively simple transformation of weakly magnetic minerals (goethite (α-FeOOH and hematite (α-Fe2O3 into strongly magnetic mineral (magnetite (Fe3O4 was developed. It was shown, that transformation of structure and magnetic characteristics of go ethite and hematite are realized in the presence of starch at relatively low temperatures (in the range of 300—600 °С. Obtained results open up new possibilities for development of effective technologies for oxidized iron ore beneficiation.

  13. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    International Nuclear Information System (INIS)

    Sisman, S. Lara

    2015-01-01

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such as ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.

  14. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Sisman, S. Lara [Univ. of Virginia, Charlottesville, VA (United States); Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-20

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such as ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.

  15. Glasses Containing Iron (II, III) Oxides For Immobilization Of Radioactive Technetium

    International Nuclear Information System (INIS)

    Kruger, A.A.; Heo, J.; Xu, K.; Choi, J.K.; Hrma, P.R.; Um, W.

    2011-01-01

    Technetium-99 (Tc-99) has posed serious environmental threats as US Department of Energy's high-level waste. This work reports the vitrification of Re, as surrogate for Tc-99, by iron-borosilicate and iron-phosphate glasses, respectively. Iron-phosphate glasses can dissolve Re as high as ∼ 1.2 wt. %, which can become candidate waste forms for Tc-99 disposal, while borosilicate glasses can retain less than 0.1 wt. % of Re due to high melting temperature and long melting duration. Vitrification of Re as Tc-99's mimic was investigated using iron-borosilicate and iron-phosphate glasses. The retention of Re in borosilicate glasses was less than 0.1 wt. % and more than 99 wt. % of Re were volatilized due to high melting temperature and long melting duration. Because the retention of Re in iron-phosphate glasses is as high as 1.2 wt. % and the volatilization is reduced down to ∼50 wt. %, iron-phosphate glasses can be one of the glass waste form candidates for Tc (or Re) disposal. The investigations of chemical durability and leaching test of iron-phosphate glasses containing Re are now underway to test the performance of the waste form.

  16. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation.

    Science.gov (United States)

    Hilty, Florentine M; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T N; Ehrensperger, Felix; Hurrell, Richard F; Pratsinis, Sotiris E; Langhans, Wolfgang; Zimmermann, Michael B

    2010-05-01

    Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO(4)), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area approximately 190 m(2) g(-1)) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO(4) and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO(4) and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.

  17. Investigating the effect of ascorbate on the Fe(II)-catalyzed transformation of the poorly crystalline iron mineral ferrihydrite.

    Science.gov (United States)

    Xiao, Wei; Jones, Adele M; Collins, Richard N; Waite, T David

    2018-05-09

    The inorganic core of the iron storage protein, ferritin, is recognized as being analogous to the poorly crystalline iron mineral, ferrihydrite (Fh). Fh is also abundant in soils where it is central to the redox cycling of particular soil contaminants and trace elements. In geochemical circles, it is recognized that Fh can undergo Fe(II)-catalyzed transformation to form more crystalline iron minerals, vastly altering the reactivity of the iron oxide and, in some cases, the redox poise of the system. Of relevance to both geochemical and biological systems, we investigate here if the naturally occurring reducing agent, ascorbate, can effect such an Fe(II)-catalyzed transformation of Fh at 25 °C and circumneutral pH. The transformation of ferrihydrite to possible secondary Fe(III) mineralization products was quantified using Fourier transform infrared (FTIR) spectroscopy, with supporting data obtained using X-ray absorbance spectroscopy (XAS) and X-ray diffraction (XRD). Whilst the amount of Fe(II) formed in the presence of ascorbate has resulted in Fh transformation in previous studies, no transformation of Fh to more crystalline Fe(III) (oxyhydr)oxides was observed in this study. Further experiments indicated this was due to the ability of ascorbate to inhibit the formation of goethite, lepidocrocite and magnetite. The manner in which ascorbate associated with Fh was investigated using FTIR and total organic carbon (TOC) analysis. The majority of ascorbate was found to adsorb to the Fh surface under anoxic conditions but, under oxic conditions, ascorbate was initially adsorbed then became incorporated within the Fe(III) (oxyhydr)oxide structure (i.e., co-precipitated) over time. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Lung cancer and bronchi-pulmonary diseases of iron uranium miners

    International Nuclear Information System (INIS)

    Gneusheva, G. I.; Uspenskaya, K. M.

    2004-01-01

    The lung cancer mortality has been analyzed for 2.582 miners employed from 1943 to 1961. All persons observed had three years occupation at least. Basing upon the lung cancer risk value per unit of the exposure, the assessment of the effective standard of pulmonary organ irradiation to radon progeny was elaborated and mortality excess was calcuated. Medical demography studies of morbidity and mortality were elaborated for silicosis, silicotuberculosis, lung cancer and occupational bronchitis versus the magnitude of dust and radiation exposure. Annual and cumulative exposures have been assessed for seven cohorts of miners employed and vast primary material has been accumulated for the period of 40 years (1943-1984). Intensive indice of mortality were determined for observation periods. The mortality excess was compared to cumulated radiation exposure. The lung cancer mortality excess in iron-uranium miners was 3.3 cases per 106 man-years per 1 WLM; 4.8 cases per 106 man-years per 1 WLM was assessed if first years of occupation are negected. The latent period from radiation exposure to death from lung cancer is generally ten year or more. Changes of miners labor conditions (the magnitude of dust exposure) have been reflected by the bronchi pulmonary disease structure. The input of these dieseases into the occupational lung pathology has been significantly changed with the time course. Within first 18-20 years, pneumoconiosis was the only form of occupational lung pathology in the mine, whereas occupational bronchis and lung cancers were recorded within next then years thereafter. In cohorts of longest observation period, the average age of patients was increasingly ranked versus diseases as follows: silicosis, silicotuberculosis, chronic bronchitis, and lung cancer. (Author)

  19. Removal of Iron and Manganese from Natural Groundwater by Continuous Reactor Using Activated and Natural Mordenite Mineral Adsorption

    Science.gov (United States)

    Zevi, Y.; Dewita, S.; Aghasa, A.; Dwinandha, D.

    2018-01-01

    Mordenite minerals derived from Sukabumi natural green stone founded in Indonesia was tested in order to remove iron and manganese from natural groundwater. This research used two types of adsorbents which were consisted of physically activated and natural mordenite. Physical activation of the mordenite was carried out by heating at 400-600°C for two hours. Batch system experiments was also conducted as a preliminary experiment. Batch system proved that both activated and natural mordenite minerals were capable of reducing iron and manganese concentration from natural groundwater. Then, continuous experiment was conducted using down-flow system with 45 ml/minute of constant flow rate. The iron & manganese removal efficiency using continuous reactor for physically activated and natural mordenite were 1.38-1.99%/minute & 0.8-1.49%/minute and 2.26%/minute & 1.37-2.26%/minute respectively. In addition, the regeneration treatment using NH4Cl solution managed to improve the removal efficiency of iron & manganese to 1.98%/minute & 1.77-1.90%/minute and 2.25%/minute & 2.02-2.21%/minute on physically activated mordenite and natural mordenite respectively. Subsequently, the activation of the new mordenite was carried out by immersing mordenite in NH4Cl solution. This chemical activation showed 2.42-2.75%/minute & 0.96 - 2.67 %/minute and 2.66 - 2.78 %/minute & 1.34 - 2.32 %/minute of iron & manganese removal efficiency per detention time for chemically activated and natural mordenite respectively.

  20. Abiotic versus biotic iron mineral transformation studied by a miniaturized backscattering Mössbauer spectrometer (MIMOS II), X-ray diffraction and Raman spectroscopy

    Science.gov (United States)

    Markovski, C.; Byrne, J. M.; Lalla, E.; Lozano-Gorrín, A. D.; Klingelhöfer, G.; Rull, F.; Kappler, A.; Hoffmann, T.; Schröder, C.

    2017-11-01

    Searching for biomarkers or signatures of microbial transformations of minerals is a critical aspect for determining how life evolved on Earth, and whether or not life may have existed in other planets, including Mars. In order to solve such questions, several missions to Mars have sought to determine the geochemistry and mineralogy on the Martian surface. This research includes the two miniaturized Mössbauer spectrometers (MIMOS II) on board the Mars Exploration Rovers Spirit and Opportunity, which have detected a variety of iron minerals on Mars, including magnetite (Fe2+Fe3+2O4) and goethite (α-FeO(OH)). On Earth, both minerals can derive from microbiological activity (e.g. through dissimilatory iron reduction of ferrihydrite by Fe(III)-reducing bacteria). Here we used a lab based MIMOS II to characterize the mineral products of biogenic transformations of ferrihydrite to magnetite by the Fe(III)-reducing bacteria Geobacter sulfurreducens. In combination with Raman spectroscopy and X-ray diffraction (XRD), we observed the formation of magnetite, goethite and siderite. We compared the material produced by biogenic transformations to abiotic samples in order to distinguish abiotic and biotic iron minerals by techniques that are or will be available onboard Martian based laboratories. The results showed the possibility to distinguish the abiotic and biotic origin of the minerals. Mossbauer was able to distinguish the biotic/abiotic magnetite with the interpretation of the geological context (Fe content mineral assemblages and accompanying minerals) and the estimation of the particle size in a non-destructive way. The Raman was able to confirm the biotic/abiotic principal peaks of the magnetite, as well as the organic principal vibration bands attributed to the bacteria. Finally, the XRD confirmed the particle size and mineralogy.

  1. Enhancement of Treatment Efficiency of Recalcitrant Wastewater Containing Textile Dyes Using a Newly Developed Iron Zeolite Socony Mobil-5 Heterogeneous Catalyst

    Science.gov (United States)

    Ahmad, Mushtaq; Asghar, Anam; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2015-01-01

    Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5) was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption. PMID:26517827

  2. Enhancement of Treatment Efficiency of Recalcitrant Wastewater Containing Textile Dyes Using a Newly Developed Iron Zeolite Socony Mobil-5 Heterogeneous Catalyst.

    Science.gov (United States)

    Ahmad, Mushtaq; Asghar, Anam; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2015-01-01

    Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5) was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption.

  3. [Vitamin and mineral supplements in the diet of military personnel: effect on the balance of iron, copper and manganese, immune reactivity and physical work-capacity].

    Science.gov (United States)

    Zaĭtseva, I P; Nosolodin, V V; Zaĭtsev, O N; Gladkikh, I P; Koznienko, I V; Beliakov, R A; Arshinov, N P

    2012-03-01

    Conducted with the participation of 50 students of military educational study the effect of various vitamin and mineral complexes for the provision by the body naturally iron, copper and manganese on the immune and physical status. Found that diets enriched BMV was accompanied by a significant delay in the micro-elements, mainly iron, which indicates a deficiency of these bioelements in chickens Santo during the summer. Under the influence of vitamin-mineral complexes significantly increased rates of natural and specific immunity. As the delay increases significantly increased iron medical indicators of immunological reaction efficiency and physical performance.

  4. COMPOSITION OF MINERAL PHASES OF THE GHIDIRIM DIATOMITE

    Directory of Open Access Journals (Sweden)

    Vasile Rusu

    2007-06-01

    Full Text Available Studies of the mineralogical composition of diatomite from the Ghidirim location of RM, as well as of the extracted clay phase are presented. The mineral phase of the diatomite contains a number of clay minerals, like montmorillonite (in a mixture with insignificant quantities of slightly chloritized montmorillonite, illite and kaolinite. Diatomite contains also non-clay components as fine-dispersed quartz and amorphous material, the more probable sources of which are opal, amorphous alumosilicates, aluminum and iron hydroxides. The applied procedure for separation of clay fractions by sizing settling in liquid media proves to be very useful, enabling possibilities for more accurate identification of the clay constituents of diatomic material. Procedure allows to separate very clean clay fraction especially rich in montmorillonite, which can be utilized itself as mineral adsorbent for practical purposes.

  5. Study of catalytic effects of mineral matter level on coal reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Mazzocco, Nestor J.; Klunder, Edgar B.; Krastman, Donald

    1981-03-01

    Coal liquefaction experiments using a 400-lb/day bubble-column reactor tested the catalytic effects of added mineral matter level on coal conversion, desulfurization, and distillate yields in continuous operation under recycle conditions, with specific emphasis on the use of a disposable pyrite catalyst indigenous to the feed coal. Western Kentucky No. 11 run-of-mine (ROM) and washed coals were used as feedstocks to determine the effects of levels of mineral matter, specifically iron compounds. Liquefaction reactivity as characterized by total distillate yield was lower for washed coal, which contained less mineral matter. Liquefaction reactivity was regained when pyrite concentrate was added as a disposable catalyst to the washed coal feed in sufficient quantity to match the feed iron concentration of the run-of-mine coal liquefaction test run.

  6. A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile

    Science.gov (United States)

    Rojas, Paula A.; Barra, Fernando; Reich, Martin; Deditius, Artur; Simon, Adam; Uribe, Francisco; Romero, Rurik; Rojo, Mario

    2018-01-01

    El Romeral is one of the largest iron oxide-apatite (IOA) deposits in the Coastal Cordillera of northern Chile. The Cerro Principal magnetite ore body at El Romeral comprises massive magnetite intergrown with actinolite, with minor apatite, scapolite, and sulfides (pyrite ± chalcopyrite). Several generations of magnetite were identified by using a combination of optical and electron microscopy techniques. The main mineralization event is represented by zoned magnetite grains with inclusion-rich cores and inclusion-poor rims, which form the massive magnetite ore body. This main magnetite stage was followed by two late hydrothermal events that are represented by magnetite veinlets that crosscut the massive ore body and by disseminated magnetite in the andesite host rock and in the Romeral diorite. The sulfur stable isotope signature of the late hydrothermal sulfides indicates a magmatic origin for sulfur (δ34S between - 0.8 and 2.9‰), in agreement with previous δ34S data reported for other Chilean IOA and iron oxide-copper-gold deposits. New 40Ar/39Ar dating of actinolite associated with the main magnetite ore stage yielded ages of ca. 128 Ma, concordant within error with a U-Pb zircon age for the Romeral diorite (129.0 ± 0.9 Ma; mean square weighted deviation = 1.9, n = 28). The late hydrothermal magnetite-biotite mineralization is constrained at ca. 118 Ma by 40Ar/39Ar dating of secondary biotite. This potassic alteration is about 10 Ma younger than the main mineralization episode, and it may be related to post-mineralization dikes that crosscut and remobilize Fe from the main magnetite ore body. These data reveal a clear genetic association between magnetite ore formation, sulfide mineralization, and the diorite intrusion at El Romeral (at 129 Ma), followed by a late and more restricted stage of hydrothermal alteration associated with the emplacement of post-ore dikes at ca. 118 Ma. Therefore, this new evidence supports a magmatic-hydrothermal model for the

  7. Deep-Earth Equilibration between Molten Iron and Solid Silicates

    Science.gov (United States)

    Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.

    2017-12-01

    Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.

  8. Facile deferration of commercial fertilizers containing iron chelates for their NMR analysis.

    Science.gov (United States)

    Laghi, Luca; Alcañiz, Sara; Cerdán, Mar; Gomez-Gallego, Mar; Sierra, Miguel Angel; Placucci, Giuseppe; Cremonini, Mauro Andrea

    2009-06-24

    Ethylenediamine-N,N'-bis(o-hydroxyphenylacetic) acid (o,o-EDDHA) is widely used in commercial formulations as a Fe(3+) chelating agent to remedy iron shortage in calcareous and alkaline soils. Commercially available o,o-EDDHA-Fe(3+) formulations contain a mixture of EDDHA regioisomers (o,p-EDDHA and p,p-EDDHA), together with other, still uncharacterized, products. NMR spectroscopy can be applied to their study as long as iron is accurately removed prior to the observation. This paper shows that it is possible to obtain a deferrated solution of the organic ligands present in commercial fertilizers containing the EDDHA-Fe(3+) chelate by treating the chelate with ferrocyanide, thus forming Prussian Blue that can be easily removed by centrifugation. This iron removal process does not cause significant losses of the o,o-EDDHA ligand or its minor structural isomers.

  9. Effect of Iron-Containing Intermetallic Particles on the Corrosion Behaviour of Aluminium

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2006-01-01

    The effect of heat treatment on the corrosion behaviour of binary Al-Fe alloys containing iron at levels between 0.04 and 0.42 wt.% was investigated by electrochemical measurements in both acidic and alkaline chloride solutions. Comparing solution heat-treated and quenched materials with samples...... with {100} facets, and are observed to contain numerous intermetallic particles. Fine facetted filaments also radiate out from the periphery of pits. The results demonstrate that the corrosion of "pure" 99.96% Al is thus dominated by the role of iron, which is the main impurity, and its electrochemical...... that had been subsequently annealed to promote precipitation of Al3Fe intermetallic particles, it was found that annealing increases both the cathodic and anodic reactivity. The increased cathodic reactivity is believed to be directly related to the increased available surface area of the iron...

  10. Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Won; Kim, Jeong Jin; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, Dong Woo [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2016-03-15

    There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

  11. muSR-Investigation of a Liquid Crystal Containing Iron Atoms

    CERN Document Server

    Mamedov, T N; Galyametdinov, Yu G; Gritsaj, K I; Herlach, D; Kormann, O; Major, J V; Rochev, V Ya; Stoikov, A V; Zimmermann, U

    2000-01-01

    The work is devoted to the investigation of properties of a liquid crystal whose molecule contains iron atom. The compounds of this type are of interest from the point of view of obtaining liquid crystals with magnetic properties. The temperature dependence of the polarization and relaxation rate of positive muon spin in the liquid crystal was measured in the temperature range 4-300 K. The results obtained do not contradict the suggestion that the iron ions from an antiferromagnetically-ordered structure in this liquid crystal at the temperatures below 80 K.

  12. Mineralogical study of zard koh and kulli koh iron ore deposits of pakistan

    International Nuclear Information System (INIS)

    Khoso, S.A.; Abro, M.I.

    2017-01-01

    Zard Koh and Kulli Koh are two recently discovered iron ore deposits, existing in the Chagai district, Balochistan, Pakistan. PSM (Pakistan Steel Mill Limited) is interested to utilize these ore deposits at priority. Purpose of the present study was to assess the mineralogy of the Zard Koh and Kulli Koh iron ore deposits, as it plays a vital role in the selection of an appropriate processing method. The mineralogical study of ore deposits was carried out by XRD (X-Ray Diffraction), XRF (X-Ray Fluorescence), SEM (Scanning Electron Microscope) attached with EDS (Energy Dispersive Spectroscope) and SM (Stereomicroscope) techniques. Results indicated that the Zard Koh ore is mainly composed of 60.15% maghemite, 23.57% pyrite, 4.07% chlorite, 10.30% grossular and 1.65% admontite minerals. The chemical analysis revealed that Zard Koh iron ore contains an average of 54.27% Fe, 12.73% S, 8.70% Si, 3.07% Al, 4.07% Ca, and 2.16% Mg. Similarly, the mineralogical study of the Kulli Koh iron ore indicated that, ore is containing 51.16% hematite, 29.24% quartz, 8.89% dravite, and 8.76% kaolinite minerals. Elemental analysis of different samples indicated that Kulli Koh iron ore contains an average composition of 40.23% Fe, 20.67% Si, 3.44% Ca, 3.81% Al and 3.25% Mg. Mineralogical study of the Zard Koh and Kulli Koh iron ore deposits suggested that these ore deposits can be beneficiated costeffectively by using magnetic separation techniques. (author)

  13. Moessbauer study of the evolution of a laterite iron mineral based catalyst: effect of the activation treatment

    International Nuclear Information System (INIS)

    Cubeiro, M.L.; Goldwasser, M.R.; Perez Zurita, M.J.; Franco, C.; Gonzalez-Jimenez, F.; Jaimes, E.

    1994-01-01

    The syngas reaction has been studied using a laterite iron mineral, promoted with K and Mn. In situ activation under syngas, as well as pre-treatment with H 2 followed by CO under mild and more severe conditions were tested. These activation procedures led to different iron phase compositions and to different catalytic selectivities. The C 2 -C 4 /CH 4 ratio was significantly lower for those catalysts which after reaction showed the presence of hexagonal carbide and magnetite compared to the solid, which showed the highest proportion of Haegg carbide. (orig.)

  14. Iron, zinc and phytic acid in rice from China: wet and dry processing towards improved mineral bioavailability

    NARCIS (Netherlands)

    Liang, J.

    2007-01-01

    Rice and rice products supply two thirds of Chinese people with their staple food. Mineral deficiencies, especially of iron and zinc, are prevalent in China, and are caused by insufficient intake and poor bioavailability. Rice and rice products contribute more than 50% of the antinutrient phytic

  15. Mobilization of iron and arsenic from soil by construction and demolition debris landfill leachate.

    Science.gov (United States)

    Wang, Yu; Sikora, Saraya; Kim, Hwidong; Dubey, Brajesh; Townsend, Timothy

    2012-05-01

    Column experiments were performed to examine (a) the potential for leachate from construction and demolition (C&D) debris landfills to mobilize naturally-occurring iron and arsenic from soils underlying such facilities and (b) the ability of crushed limestone to remove these aqueous phase pollutants. In duplicate columns, water was added to a 30-cm layer of synthetic C&D debris, with the resulting leachate serially passed through a 30-cm soil layer containing iron and arsenic and a 30-cm crushed limestone layer. This experiment was conducted for two different soil types (one high in iron (10,400mg/kg) and the second high in iron (5400mg/kg) and arsenic (70mg/kg)); also monitored were control columns for both soil types with water infiltration alone. Despite low iron concentrations in the simulated C&D debris leachate, elevated iron concentrations were observed when leachate passed through the soils; reductive dissolution was concluded to be the cause of iron mobilization. In the soil containing elevated arsenic, increased iron mobilization from the soil was accompanied by a similar but delayed arsenic mobilization. Since arsenic sorbs to oxidized iron soil minerals, reductive dissolution of these minerals results in arsenic mobilization. Crushed limestone significantly reduced iron (to values below the detection limit of 0.01mg/L in most cases); however, arsenic was not removed to any significant extent. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Banded Iron Formations

    DEFF Research Database (Denmark)

    Posth, Nicole R; Konhauser, Kurt O; Kappler, Andreas

    2011-01-01

    Sedimentary deposits of alternating iron-rich (20–40% Fe) and iron-poor, siliceous (40–50% SiO2) mineral layers that primarily precipitated throughout much of the late Archean (2.7–2.5 Ga) and Paleoproterozoic (2.5– 1.8 Ga), but then remerged in the Neoproterozoic (0.8 Ga).......Sedimentary deposits of alternating iron-rich (20–40% Fe) and iron-poor, siliceous (40–50% SiO2) mineral layers that primarily precipitated throughout much of the late Archean (2.7–2.5 Ga) and Paleoproterozoic (2.5– 1.8 Ga), but then remerged in the Neoproterozoic (0.8 Ga)....

  17. Behavior of catalyst and mineral matter in coal liquefaction; Sekitan ekika hannochu no kobusshitsu to shokubai no kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, K.; Wang, J.; Tomita, A. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    Mineral matter in coals is important in various senses for coal liquefaction. It is possible that the catalytic activity is affected by the interaction between catalyst and mineral matter. Iron-based catalyst forms pyrrhotite in the process of liquefaction, but the interaction between it and mineral matter is not known in detail. In this study, the interaction between mineral matter and catalyst and the selective reaction between them were investigated. Tanito Harum coal was used for this study. This coal contains a slight amount of siderite and jarosite besides pyrite as iron compounds. Liquefaction samples were obtained from the 1 t/d NEDOL process PSU. The solid deposits in the reactor mainly contained pyrrhotite and quartz. A slight amount of kaolinite was observed, and pyrite was little remained. It was found that the catalyst (pyrrhotite) often coexisted with quartz, clay and calcite. 8 figs., 2 tabs.

  18. ENVIRONMENTAL IMPACT OF THE STORED DUST-LIKE ZINC AND IRON CONTAINING WASTES

    Directory of Open Access Journals (Sweden)

    Tatyana A. Lytaeva

    2017-05-01

    On the basis of laboratory research and field observations of the environmental components in the impact area of the storage of dust-like zinc and iron containing wastes, the article describes regularities of formation of hydrogeochemical halos of contamination by heavy metals and iron. Results include also the description of changes in physico-chemical groundwater composition under the storage area.

  19. DETERMINATION OF MINERAL CONTAIN AND BACTERIA CONTAMINANT ON ORGANIC AND NONORGANIC FRESH VEGETABLES

    Directory of Open Access Journals (Sweden)

    Harsojo Harsojo

    2010-06-01

    Full Text Available The determination of mineral content and bacteria contaminant on fresh vegetable of long bean (Vegan ungulate Wall., white cabbage (Basic tolerance L., and lettuce (Lectuca sativa L. that cultivated by organic and nonorganic system have been done. The mineral content has been analyzed using neutron activation analysis and atomic absorption spectroscopy method, while bacteria contaminant by total plate count number using Nutrient Agar, Mac Conkey Agar, Baird Parker medium, and Salmonella using selective medium. The results showed that there are some essential mineral such as Fe, Zn, Ca, Co, and nonessential mineral Cd. There is tendency that fresh vegetable that cultivated by organic system contained Fe, Zn, Ca, Co and Cd mineral less than nonorganic. The Zn mineral content in nonorganic of fresh vegetable were higher than the limit of threshold number from Health Department, Republic of Indonesia (2004, while Cd mineral in organic or nonorganic of fresh vegetable were greater then threshold number from Codex Alimentarius Commision. The measurement of bacteria contaminant on organic and nonorganic of fresh vegetables contained aerob, coli, and Staphylococcus bacteria in organic of fresh vegetables were less compared to nonorganic of fresh vegetables.   Keywords: mineral, bacteria aerob, coli, Staphylococcus, Salmonella, organic, and nonorganic vegetable, neutron activation

  20. Effect of different iron compounds on rheological and technological parameters as well as bioaccessibility of minerals in whole wheat bread.

    Science.gov (United States)

    Rebellato, Ana Paula; Bussi, Jéssica; Silva, Joyce Grazielle Siqueira; Greiner, Ralf; Steel, Caroline Joy; Pallone, Juliana Azevedo Lima

    2017-04-01

    This study aimed at investigating the effect of iron compounds used in whole wheat flour (WWF) fortification, both on rheological properties of the dough and on bread technological quality. Furthermore, bioaccessibility of iron (Fe), zinc (Zn) and calcium (Ca) in the final breads was determined. Rheological properties (mainly dough development time, stability, mixing tolerance index, resistance to extension and ratio number) of the dough and the technological quality of bread (mainly oven spring and cut opening) were altered. However, producing roll breads fortified with different iron compounds was still possible. NaFeEDTA (ferric sodium ethylene diamine tetra acetic acid) proved to be the most effective iron compound in the fortification of WWF, since it presented the highest levels of solubility (44.80%) and dialysability (46.14%), followed by microencapsulated ferrous fumarate (FFm). On the other hand, the microencapsulated ferrous sulfate (FSm) and reduced iron presented the lowest solubility (5.40 and 18.30%, respectively) and dialysability (33.12 and 31.79%, respectively). Zn dialysis was positively influenced by NaFeEDTA, FSm, and ferrous fumarate. As for Ca, dialysis was positively influenced by FSm and negatively influenced by FFm. The data indicated that there is a competitive interaction for the absorption of these minerals in whole wheat roll breads, but all studied minerals can be considered bioaccessible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Serum levels of iron in Sør-Varanger, Northern Norway--an iron mining municipality.

    Science.gov (United States)

    Broderstad, Ann R; Smith-Sivertsen, Tone; Dahl, Inger Marie S; Ingebretsen, Ole Christian; Lund, Eiliv

    2006-12-01

    The purpose of this study was to investigate iron status in a population with a high proportion of miners in the northernmost part of Norway. Cross-sectional, population-based study performed in order to investigate possible health effects of pollution in the population living on both sides of the Norwegian-Russian border. All individuals living in the community of Sør-Varanger were invited for screening in 1994. In 2000, blood samples from 2949 participants (response rate 66.8 %), age range 30-69 years, were defrosted. S-ferritin and transferrin saturation were analysed in samples from 1548 women and 1401 men. About 30 % (n = 893) were employed in the iron mining industry, 476 of whom were miners and 417 had other tasks in the company. Type and duration of employment and time since last day of work at the company were used as indicators of exposure. Both s-ferritin levels and transferrin saturation were higher in men than in women. S-ferritin increased with increasing age in women, while the opposite was true for men. Iron deficiency occurred with higher frequencies in women (16 %) than in men (4 %). Iron overload was uncommon in both sexes. Adjustment for smoking and self-reported pulmonary diseases did not show any effect on iron levels. Miners had non-significant higher mean s-ferritin and transferrin saturation than non-miners. Neither duration, nor time since employment in the mine, had any impact on iron status. Our analyses did not show any associations between being a miner in the iron mining industry and serum iron levels compared to the general population.

  2. Iron, transferrin and myelinogenesis

    International Nuclear Information System (INIS)

    Sergeant, C.; Vesvres, M.H.; Deves, G.; Baron, B.; Guillou, F.

    2003-01-01

    Transferrin (Tf), the iron binding protein of vertebrates serum, is known to be synthesized by oligodendrocytes (Ols) in the central nervous system. It has been postulated that Tf is involved in Ols maturation and myelinogenesis. This link is particularly important in the understanding of a severe human pathology: the multiple sclerosis, which remains without efficient treatment. We generated transgenic mice containing the complete human Tf gene and extensive regulatory sequences from the 5 ' and 3 ' untranslated regions that specifically overexpress Tf in Ols. Brain cytoarchitecture of the transgenic mice appears to be normal in all brain regions examined, total myelin content is increased by 30% and motor coordination is significantly improved when compared with non-transgenic littermates. Tf role in the central nervous system may be related to its affinity for metallic cations. Normal and transgenic mice were used for determination of trace metals (iron, copper and zinc) and minerals (potassium and calcium) concentration in cerebellum and corpus callosum. The freeze-dried samples were prepared to allow proton-induced X-ray emission and Rutherford backscattering spectrometry analyses with the nuclear microprobe in Bordeaux. Preliminary results were obtained and carbon distribution was revealed as a very good analysis to distinguish precisely the white matter region. A comparison of metallic and mineral elements contents in brain between normal and transgenic mice shows that iron, copper and zinc levels remained constant. This result provides evidence that effects of Tf overexpression in the brain do not solely relate to iron transport

  3. Effect of iron and chromium on the graphitization behaviour of sulfur-containing carbon

    International Nuclear Information System (INIS)

    Tyumentsev, V.A.; Belenkov, E.A.; Saunina, S.I.; Podkopaev, S.A.; Shvejkin, G.P.

    1998-01-01

    Process of transition of carbonaceous material, containing structurally incorporated sulfur, into graphite and impact of iron and chromium additions are studied. It is established that carbonaceous material, containing more than 1.5 mass % S and also 1.5 mass % Cr 2 O 3 is heterogeneous after thermal treatment at 1300-1600 deg C. It consists of large and sufficiency complete areas of coherent scattering having graphite structure and ultra-dispersed matrix. The number of graphite crystals formed in the presence of dispersed iron within this temperature range, decreases by two times [ru

  4. THE USE OF FLUORIDE CONTAINING MINERAL WATER IN WORT PRODUCTION

    Directory of Open Access Journals (Sweden)

    Gunka Yonkova

    2011-12-01

    Full Text Available The present work aims to study the quality of wort produced using fluoride containing mineral water. The results show that the mineral water has a negative impact on the enzymatic destruction of starch, proteins, color intensity and pH of the wort. The changes of pH during mashing process using tap and mineral water was studied. The lower acidity of wort obtained using mineral water didn’t change during the brewing process. The fluoride content of beer is lower than 5 mg.L-1 when wort is produced using mineral and tap water in 1:1 ratio and citric acid for pH correction. At the same time, the final degree of fermentation, α-amine nitrogen content and the intensity of color of produced wort are close to the control sample. The changes in fluoride ion concentration are monitored using ion-selective potentiometry. The fluoride content is decreased from 5.7 to 4.75 mg.L-1, the most intense change is observed during the mashing process.

  5. Iron-titanium oxide minerals and magnetic susceptibility anomalies in the Mariano Lake-Lake Valley cores - Constraints on conditions of uranium mineralization in the Morrison Formation, San Juan Basin, New Mexico

    International Nuclear Information System (INIS)

    Reynolds, R.L.; Fishman, N.S.; Scott, J.H.; Hudson, M.R.

    1986-01-01

    Petrographic study of the Mariano Lake-Lake Valley cores reveals three distinct zones of postdepositional alteration of detrital Fe-Ti (iron-titanium) oxide minerals in the Westwater Canyon Member of the Upper Jurassic Morrisson Formation. In the uranium-bearing and adjacent portions of the Westwater Canyon, these detrital Fe-Ti oxide minerals have been thoroughly altered by leaching of iron. Stratigraphically lower parts of the Westwater Canyon and the underlying Recapture Member are characterized by preservation of Fe-Ti oxide grains, primarily magnetite and ilmenite, and of hematite, and by an absence or uranium concentrations. Partly destroyed Fe-Ti oxide minerals occupy an interval between the zones of destruction and preservation. Alteration patterns of the Fe-Ti oxide minerals are reflected in bore-hole magnetic susceptibility logs. Magnetic susceptibility response in the upper parts of the Westwater Canyon Member is flat and uniformly <500 μSI units, but at greater depths it fluctuates sharply, from <1,000 to nearly 8,000 μSI units. The boundary between uniformly low and high magnetic susceptibility response corresponds closely to the interval that divides the zone of completely altered from the zone of preserved detrital Fe-Ti oxide minerals. The alteration pattern suggests that solutions responsible for destruction of the Fe-ti oxide minerals originated in the overlying Brushy Basin Member of the Morrison Formation. Previous studies indicate that these solutions were rich in soluble organic matter and perhaps in uranium. Uranium precipitation may have been controlled by a vertically fluctuation interface between organic-rich solutions and geochemically different fluids in which the detrital Fe-Ti oxide minerals were preserved

  6. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.

    Science.gov (United States)

    Joe-Wong, Claresta; Brown, Gordon E; Maher, Kate

    2017-09-05

    Hexavalent chromium is a water-soluble pollutant, the mobility of which can be controlled by reduction of Cr(VI) to less soluble, environmentally benign Cr(III). Iron(II/III)-bearing clay minerals are widespread potential reductants of Cr(VI), but the kinetics and pathways of Cr(VI) reduction by such clay minerals are poorly understood. We reacted aqueous Cr(VI) with two abiotically reduced clay minerals: an Fe-poor montmorillonite and an Fe-rich nontronite. The effects of ionic strength, pH, total Fe content, and the fraction of reduced structural Fe(II) [Fe(II)/Fe(total)] were examined. The last variable had the largest effect on Cr(VI) reduction kinetics: for both clay minerals, the rate constant of Cr(VI) reduction varies by more than 3 orders of magnitude with Fe(II)/Fe(total) and is described by a linear free energy relationship. Under all conditions examined, Cr and Fe K-edge X-ray absorption near-edge structure spectra show that the main Cr-bearing product is a Cr(III)-hydroxide and that Fe remains in the clay structure after reacting with Cr(VI). This study helps to quantify our understanding of the kinetics of Cr(VI) reduction by Fe(II/III)-bearing clay minerals and may improve predictions of Cr(VI) behavior in subsurface environments.

  7. Mineralogical Study of Zard Koh and Kulli Koh Iron Ore Deposits of Pakistan

    Directory of Open Access Journals (Sweden)

    SULTAN AHMED KHOSO

    2017-10-01

    Full Text Available Zard Koh and Kulli Koh are two recently discovered iron ore deposits, existing in the Chagai district, Balochistan, Pakistan. PSM (Pakistan Steel Mill Limited is interested to utilize these ore deposits at priority. Purpose of the present study was to assess the mineralogy of the Zard Koh and Kulli Koh iron ore deposits, as it plays a vital role in the selection of an appropriate processing method. The mineralogical study of ore deposits was carried out by XRD (X-Ray Diffraction, XRF (X-Ray Fluorescence, SEM (Scanning Electron Microscope attached with EDS (Energy Dispersive Spectroscope and SM (Stereomicroscope techniques. Results indicated that the Zard Koh ore is mainly composed of 60.15% maghemite, 23.57% pyrite, 4.07% chlorite, 10.30% grossular and 1.65% admontite minerals. The chemical analysis revealed that Zard Koh iron ore contains an average of 54.27% Fe, 12.73% S, 8.70% Si, 3.07% Al, 4.07% Ca, and 2.16% Mg. Similarly, the mineralogical study of the Kulli Koh iron ore indicated that, ore is containing 51.16% hematite, 29.24% quartz, 8.89% dravite, and 8.76% kaolinite minerals. Elemental analysis of different samples indicated that Kulli Koh iron ore contains an average composition of 40.23% Fe, 20.67% Si, 3.44% Ca, 3.81% Al and 3.25% Mg. Mineralogical study of the Zard Koh and Kulli Koh iron ore deposits suggested that these ore deposits can be beneficiated costeffectively by using magnetic separation techniques.

  8. Change of iron species and iron solubility in Asian dust during the long-range transport from western China to Japan

    Directory of Open Access Journals (Sweden)

    Y. Takahashi

    2011-11-01

    Full Text Available In the North Pacific, transport and deposition of mineral dust from Asia appear to be one of major sources of iron which can regulate growth of phytoplankton in the ocean. In this process, it is essential to identify chemical species of iron contained in Asian dust, because bioavailability of iron in the ocean is strongly influenced by the solubility of iron, which in turn is dependent on iron species in the dust. Here, we report that clay minerals (illite and chlorite in the dusts near the source collected at Aksu (western China can be transformed into ferrihydrite by atmospheric chemical processes during their long-range transport to eastern China (Qingdao and Japan (Tsukuba based on the speciation by X-ray absorption fine structure (XAFS and other methods such as X-ray diffraction and chemical extraction. As a result, Fe molar ratio in Aksu (illite : chlorite : ferrihydrite = 70 : 25 : 5 was changed to that in Tsukuba (illite : chlorite : ferrihydrite = 65 : 10 : 25. Moreover, leaching experiments were conducted to study the change of iron solubility. It was found that the iron solubility for the dust in Tsukuba (soluble iron fraction: 11.8 % and 1.10 % for synthetic rain water and seawater, respectively was larger than that in Aksu (4.1 % and 0.28 %, respectively, showing that iron in the dust after the transport becomes more soluble possibly due to the formation of ferrihydrite in the atmosphere. Our findings suggested that secondary formation of ferrihydrite during the transport should be considered as one of important processes in evaluating the supply of soluble iron to seawater.

  9. Maxi- and mini-ferritins: minerals and protein nanocages.

    Science.gov (United States)

    Bevers, Loes E; Theil, Elizabeth C

    2011-01-01

    Ferritins synthesize ferric oxide biominerals and are central to all life for concentrating iron and protection against oxidative stress from the ferrous and oxidant chemistry. The ferritin protein nanocages and biomineral synthesis are discussed in terms of wide biological distribution of the maxi-ferritins (24 subunit ± heme) and mini-ferritins (Dps) (12 subunit), conservations of the iron/oxygen catalytic sites in the protein cages, mineral formation (step i. Fe(II) entry and binding, step ii. O(2) or H(2)O(2) binding and formation of transition intermediates, step iii. release of differric oxo mineral precursors from active sites, step iv. nucleation and mineralization) properties of the minerals, and protein control of mineral dissolution and release of Fe(II). Pores in ferritin protein cages control iron entry for mineralization and iron exit after mineral dissolution. The relationship between phosphate or the presence of catalytically inactive subunits (animal L subunits) and ferritin iron mineral disorder is developed based on new information about contributions of ferritin protein cage structure to nucleation in protein cage subunit channels that exit close enough to those of other subunits and exiting mineral nuclei to facilitate bulk mineral formation. How and where protons move in and out of the protein during mineral synthesis and dissolution, how ferritin cage assembly with 12 or 24 subunits is encoded in the widely divergent ferritin amino acid sequences, and what is the role of the protein in synthesis of the bulk mineral are all described as problems requiring new approaches in future investigations of ferritin biominerals.

  10. MICROCOSM STUDY OF DEGRADATION OF CHLORINATED SOLVENTS ON SYNTHETIC GREEN RUST MINERALS

    Science.gov (United States)

    Green rust minerals contain ferrous ion in their structure that can potentially serve as a chemical reductant for degradation of chlorinated solvents. Green rusts are found in zerovalent iron based permeable reactive barriers and in certain soil and sediments. Some previous labor...

  11. Soil phosphorus redistribution among iron-bearing minerals under redox fluctuation

    Science.gov (United States)

    Lin, Y.; Bhattacharyya, A.; Campbell, A.; Nico, P. S.; Pett-Ridge, J.; Silver, W. L.

    2016-12-01

    Phosphorus (P) is a key limiting nutrient in tropical forests that governs primary production, litter decomposition, and soil respiration. A large proportion of P in these highly weathered soils is bound to short-range ordered or poorly crystalline iron (Fe) minerals. It is well-documented that these Fe minerals are redox-sensitive; however, little is known about how Fe-redox interactions affect soil P turnover. We evaluated the impacts of oxic/anoxic fluctuation on soil P fractions and reactive Fe species in a laboratory incubation experiment. Soils from a humid tropical forest were amended with plant biomass and incubated for up to 44 days under four redox regimes: static oxic, static anoxic, high frequency fluctuating (4-day oxic/4-day anoxic), and low frequency fluctuating (8-day oxic/4-day anoxic). We found that the static anoxic treatment induced a 10-fold increase in Fe(II) (extracted by hydrochloric acid) and a 1.5-fold increase in poorly crystalline Fe (extracted by ammonium oxalate), suggesting that anoxic conditions drastically increased Fe(III) reduction and the formation of amorphous Fe minerals. Static anoxic conditions also increased Fe-bound P (extracted by sodium hydroxide) and increased the oxalate-extractable P by up to 110% relative to static oxic conditions. In two fluctuating treatments, Fe(II) and oxalate-extractable Fe and P were all increased by short-term reduction events after 30 minutes, but fell back to their initial levels after 3 hours. These results suggest that reductive dissolution of Fe(III) minerals mobilized a significant amount of P; however, this P could be rapidly re-adsorbed. Furthermore, bioavailable P extracted by sodium bicarbonate solution was largely unaffected by redox regimes and was only increased by static anoxic conditions after 20 days. Overall, our data demonstrate that a significant amount of soil P may be liberated and re-adsorbed by Fe minerals during redox fluctuation. Even though bioavailable P appears to be

  12. Improvement the nutritional status of pre-school children following intervention with a supplement containing iron, zinc, copper, vitamin A, vitamin C and prebiotic

    Directory of Open Access Journals (Sweden)

    Luiza Carla Vidigal Castro

    Full Text Available Abstract This study investigated the effects of a vitamin and mineral fortified powder product supplemented with inulin, on the iron and vitamin A status of 110 pre-schools childrens in Viçosa, MG, Brazil. The 2 to 5-year-old children were submitted to anthropometric (weight and height, biochemical (erythrocytes, hemoglobin, mean corpuscular volume – MCV, mean corpuscular hemoglobin - MCH, serum iron, ferritin and serum retinol and dietary (direct food weighing, 24 h recall, and food intake record evaluations, at the beginning and at the end of a 45-day intervention. The supplement (30 g was provided daily as part of the afternoon snack, diluted in 100 mL of water, 5 times/week and it supplied 30% of the recommended daily doses of iron, zinc, copper and vitamins A and C. Dietary and biochemical data was compared by the Wilcoxon test, and anthropometric data by the paired t-test. Values of z-scores for weight and height, erythrocytes, hemoglobin, MCV, MCH and ferritin were significantly higher after intervention; no change was observed in serum retinol. The prebiotic-containing supplement significantly increased the intake of energy, macro and micronutrients, and was effective in improving the iron and anthropometric status.

  13. Effect of iron cation on geochemical trapping of CO2 in brine

    Science.gov (United States)

    Liu, Qi; Maroto-Valer, Mercedes

    2014-05-01

    Carbon dioxide sequestration using brines has emerged as a promising technology to mitigate the adverse impacts of climate change due to its large storage capacity and favorable chemistries. However, the permanent storage (mineral trapping) of CO2 in brines takes significantly long periods of time as the formation and precipitation of carbonates is very slow .[1]. The main parameters reported to effect on mineral trapping of CO2 sequestration in brines are brine composition, brine pH, system temperature and pressure.[2, 3]. It is suggested that the precipitation of mineral carbonates is mostly dependent on brine pH. Previous studies by the authors concluded that iron in natural brines causes pH instability, but it was not ascertained whether ferric iron or ferrous iron caused pH instability .[4]. Accordingly, the aim of this project is to study synthetic brines mimicking the major ions found in natural brines and including different concentrations of ferric and ferrous iron. Three brines were prepared, as follows: Brine 1 was prepared with ferric Fe3+ iron, Brine 2 prepared with ferrous Fe2+ iron and Brine 3 prepared with no iron. A series of pH stability studies and carbonation reactions were conducted using the above three brines. It is concluded that the ferrous iron causes pH instability, while ferric iron might promote carbonate precipitation. .1. Garcia, S., et al., Sequestration of non-pure carbon dioxide streams in iron oxyhydroxide-containing saline repositories. International Journal of Greenhouse Gas Control, 2012. 7: p. 89-97. 2. Liu, Q. and M.M. Maroto-Valer, Investigation of the pH effect of a typical host rock and buffer solution on CO 2 sequestration in synthetic brines. Fuel Processing Technology, 2010. 91(10): p. 1321-1329. 3. Liu, Q. and M.M. MarotoValer, Parameters affecting mineral trapping of CO2 sequestration in brines. Greenhouse Gases: Science and Technology, 2011. 1(3): p. 211-222. 4. Druckenmiller, M.L. and M.M. Maroto-Valer, Carbon

  14. Antimony Adsorption from Zarshouran Gold Mineral Processing Plant Wastewater by Nano Zero Valent Iron Coated on Bentonite

    Directory of Open Access Journals (Sweden)

    nader nosrati

    2015-03-01

    Full Text Available The effluent from Zarshouran gold mineral processing plant contains high quantities of arsenic, antimony, mercury, and bismuth. These metals and metalloids are soluble in water and very toxic when they enter the environment. Their solubility in water causes the polluted area to extend beyond their point of origin. In this article, different methods of antimony removal from water and wastewater were reviewed and the zero-valent iron nanoparticles coated on Bentonite were selected as an effective and low cost material for removing antimony from wastewater. For the purposes of this study, zero-valent iron nanoparticles of 40-100 nanometers in size were synthesized by dropwise addition of sodium borohydride solution to an Iron (III aqueous solution at  ambient temperature and mixed with nitrogen gas. To avoid particle agglomeration and to enhance the product’s environmentally safe application, the  nanoparticles were coated on Bentonite and characterized by SEM/EDAX and BET. The experiments were carried out by intense mixing of the adsorbent with 10ml of real/synthtic wastewater samples in 20ml bottles.  The effects of pH, contact time, temperature, and adsorbent dosage on antimony removal efficiency were investigated under intense mixing using a magnetic mixer. Finally, the effluents were filtered upon completion of the experiments and used for atomic adsorption analysis. The results of the experiments showed that the adsorption isotherms of the synthesized nanoparticles obeyed the Langmuir and Freundlich models. The experiments carried out on real samples showed that antimony adsorption capacity for B-nZVI was 2.6 mg/g of the adsorbent and that the highest antimony removal efficiency was 99.56%.

  15. Manganese and iron oxidation by fungi isolated from building stone.

    Science.gov (United States)

    de la Torre, M A; Gomez-Alarcon, G

    1994-01-01

    Acid and nonacid generating fungal strains isolated from weathered sandstone, limestone, and granite of Spanish cathedrals were assayed for their ability to oxidize iron and manganese. In general, the concentration of the different cations present in the mineral salt media directly affected Mn(IV) oxide formation, although in some cases, the addition of glucose and nitrate to the culture media was necessary. Mn(II) oxidation in acidogenic strains was greater in a medium containing the highest concentrations of glucose, nitrate, and manganese. High concentrations of Fe(II), glucose, and mineral salts were optimal for iron oxidation. Mn(IV) precipitated as oxides or hydroxides adhered to the mycelium. Most of the Fe(III) remained in solution by chelation with organic acids excreted by acidogenic strains. Other metabolites acted as Fe(III) chelators in nonacidogenic strains, although Fe(III) deposits around the mycelium were also detected. Both iron and manganese oxidation were shown to involve extracellular, hydrosoluble enzymes, with maximum specific activities during exponential growth. Strains able to oxidize manganese were also able to oxidize iron. It is concluded that iron and manganese oxidation reported in this work were biologically induced by filamentous fungi mainly by direct (enzymatic) mechanisms.

  16. Consumption of galacto-oligosaccharides increases iron absorption from a micronutrient powder containing ferrous fumarate and sodium iron EDTA: a stable-isotope study in Kenyan infants.

    Science.gov (United States)

    Paganini, Daniela; Uyoga, Mary A; Cercamondi, Colin I; Moretti, Diego; Mwasi, Edith; Schwab, Clarissa; Bechtler, Salome; Mutuku, Francis M; Galetti, Valeria; Lacroix, Christophe; Karanja, Simon; Zimmermann, Michael B

    2017-10-01

    Background: Whether consumption of prebiotics increases iron absorption in infants is unclear. Objective: We set out to determine whether prebiotic consumption affects iron absorption from a micronutrient powder (MNP) containing a mixture of ferrous fumarate and sodium iron EDTA (FeFum+NaFeEDTA) in Kenyan infants. Design: Infants ( n = 50; aged 6-14 mo) consumed maize porridge that was fortified with an MNP containing FeFum+NaFeEDTA and 7.5 g galacto-oligosaccharides (GOSs) (Fe+GOS group, n = 22) or the same MNP without GOSs (Fe group, n = 28) each day for 3 wk. Then, on 2 consecutive days, we fed all infants isotopically labeled maize porridge and MNP test meals containing 5 mg Fe as 57 FeFum+Na 58 FeEDTA or ferrous sulfate ( 54 FeSO 4 ). Iron absorption was measured as the erythrocyte incorporation of stable isotopes. Iron markers, fecal pH, and bacterial groups were assessed at baseline and 3 wk. Comparisons within and between groups were done with the use of mixed-effects models. Results: There was a significant group-by-compound interaction on iron absorption ( P = 0.011). The median percentages of fractional iron absorption from FeFum+NaFeEDTA and from FeSO 4 in the Fe group were 11.6% (IQR: 6.9-19.9%) and 20.3% (IQR: 14.2-25.7%), respectively, ( P iron absorption was greater from the FeFum+NaFeEDTA ( P = 0.047) in the Fe+GOS group but not from the FeSO 4 ( P = 0.653). The relative iron bioavailability from FeFum+NaFeEDTA compared with FeSO 4 was higher in the Fe+GOS group than in the Fe group (88% compared with 63%; P = 0.006). There was a significant time-by-group interaction on Bifidobacterium spp. ( P = 0.008) and Lactobacillus / Pediococcus / Leuconostoc spp. ( P = 0.018); Lactobacillus / Pediococcus / Leuconostoc spp. decreased in the Fe group ( P = 0.013), and there was a nonsignificant trend toward higher Bifidobacterium spp. in the Fe+GOS group ( P = 0.099). At 3 wk, iron absorption was negatively correlated with fecal pH ( P iron absorption by 62

  17. Dose-effect relationship between the thorium lung burden and the hepatic function of the miners at the Bayan Obo Rare-earth Iron Mine

    International Nuclear Information System (INIS)

    Cheng, Yong-e; Chen, Xing-an

    2008-01-01

    The purpose of this paper is to present the dose effect relationship between the thorium lung burden and the hepatic function of the miners at the Bayun Obo Rare-earth Iron Mine. The methods we used is to carry out the measurement of each miner.s exhaled thoron activity and the thorium lung burden along with the four hepatic functions (thymol turbidity test, glutamic pyruvic transaminase, thymol flocculation test and alkaline phosphatase)of the dust exposed miners in Bayun Obo Rare-earth Iron Mine. We have carried out three investigations in 1983, 1984-1987 and 1994 respectively. Results showed that during the period 1983-1994, 1158 measurements of thorium lung burden estimates and 1158 measurement of every four hepatic functions(altogether 4632 measurements) were performed on 638 dust-exposed miners. No adverse effects were observed. In the same time, none of the above-mentioned 638 exposed miners had a thorium lung burden higher than 11.11 Bq. It is concluded that if any miners. thorium lung burden not higher than 11.11 Bq, his four hepatic functions should not be affected. This first possible threshold for thorium lung burden affecting the hepatic functions was put forward by the authors and confirmed by the Information Center of Chinese Academy of Medical Science in 2003 after searching 23.6 million references. (author)

  18. The redox properties of the natural iron-bearing clay mineral ferruginous smectite SWA-1: a combined electrochemical and spectroscopic study

    International Nuclear Information System (INIS)

    Gorski, Christopher A.; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B.

    2012-01-01

    Document available in extended abstract form only. Iron-bearing clay minerals are ubiquitous in the environment and clay-mineral-based materials have been proposed to be part of backfill material in nuclear waste repositories. Laboratory and field studies have confirmed that structural iron (Fe) in clay minerals participates in redox reactions with organic pollutants, metals, and radionuclides, thus influencing their transport and reactivity. Knowledge of the redox properties of Fe-bearing clay minerals is therefore essential for understanding and predicting the fate, mobility, and bioavailability subsurface contaminants. A quantitative understanding of clay mineral redox behavior remains lacking, however, due to constraints in previous experimental approaches and the complex structural changes that accompany changes in the Fe oxidation state. This work provides a quantitative means for measuring the redox properties of Fe-bearing clay minerals, which can be applied to both field and laboratory studies tracking radionuclide-clay mineral redox reactions. Here we use mediated electrochemical reduction and oxidation to determine the electron accepting and donating capacities of several natural Fe-bearing clay minerals with different structural Fe content (2.3 to 21 wt-%) and varied redox histories. Results indicate that the fraction of redox-active Fe in clay minerals is mineral-dependent, and is linked to the thermodynamics of reduction and oxidation as well as to the ability of clay minerals to conduct electrons and facilitate structural re-arrangements required to maintain charge balance. The reduction potential (E H ) characteristics of a natural ferruginous smectite (SWa-1) were further characterized as a function of solution conditions and repeated Fe reduction and oxidation cycles. SWa-1 samples were analyzed with Moessbauer spectroscopy (MS) and X-ray absorption spectroscopy (XAS) to link observed redox potential behavior to structural properties and changes

  19. Iron Oxide Minerals in Atmospheric Dust and Source Sediments-Studies of Types and Properties to Assess Environmental Effects

    Science.gov (United States)

    Reynolds, R. L.; Goldstein, H. L.; Moskowitz, B. M.; Till, J. L.; Flagg, C.; Kokaly, R. F.; Munson, S.; Landry, C.; Lawrence, C. R.; Hiza, M. M.; D'Odorico, P.; Painter, T. H.

    2011-12-01

    Ferric oxide minerals in atmospheric dust can influence atmospheric temperatures, accelerate melting of snow and ice, stimulate marine phytoplankton productivity, and impact human health. Such effects vary depending on iron mineral type, size, surface area, and solubility. Generally, the presence of ferric oxides in dust is seen in the red, orange, or yellow hues of plumes that originate in North Africa, central and southwest Asia, South America, western North America, and Australia. Despite their global importance, these minerals in source sediments, atmospheric dust, and downwind aeolian deposits remain poorly described with respect to specific mineralogy, particle size and surface area, or presence in far-traveled aerosol compounds. The types and properties of iron minerals in atmospheric dust can be better understood using techniques of rock magnetism (measurements at 5-300 K), Mössbauer and high-resolution visible and near-infrared reflectance spectroscopy; chemical reactivity of iron oxide phases; and electron microscopy for observing directly the ferric oxide coatings and particles. These studies can elucidate the diverse environmental effects of iron oxides in dust and can help to identify dust-source areas. Dust-source sediments from the North American Great Basin and Colorado Plateau deserts and the Kalahari Desert, southern Africa, were used to compare average reflectance values with a magnetic parameter (hard isothermal remanent magnetization, HIRM) for ferric oxide abundance. Lower reflectance values correspond strongly with higher HIRM values, indicating that ferric oxides (hematite or goethite, or both) contribute to absorption of solar radiation in these sediments. Dust deposited to snow cover of the San Juan Mountains (Colorado) and Wasatch Mountains (Utah) was used to characterize dust composition compared with properties of sediments exposed in source-areas identified from satellite retrievals. Results from multiple methods indicate that

  20. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings.

    Science.gov (United States)

    Li, Yang; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-07-15

    The oxidization of metal sulfide in tailings causes acid mine drainage. However, it remains unclear whether vegetation prevents the oxidization of metal sulfides. The oxidization characteristics and microbial indices of the tailings in the presence of various plant species were investigated to explore the effects of vegetation on the oxidization of sulfide minerals in tailings. The pH, reducing sulfur, free iron oxides (Fed), chemical oxygen consumption (COC) and biological oxygen consumption (BOC) were measured. Key iron- and sulfur-oxidizing bacteria (Acidithiobacillus spp., Leptospirillum spp. and Thiobacillus spp.) were quantified using real-time PCR. The results indicate that vegetation growing on tailings can effectively prevent the oxidization of sulfide minerals in tailings. A higher pH and reducing-sulfur content and lower Fed were observed in the 0-30 cm depth interval in the presence of vegetation compared to bare tailings (BT). The COC gradually decreased with depth in all of the soil profiles; specifically, the COC rapidly decreased in the 10-20 cm interval in the presence of vegetation but gradually decreased in the BT profiles. Imperata cylindrica (IC) and Chrysopogon zizanoides (CZ) profiles contained the highest BOC in the 10-20 cm interval. The abundance of key iron- and sulfur-oxidizing bacteria in the vegetated tailings were significantly lower than in the BT; in particular, IC was associated with the lowest iron- and sulfur-oxidizing bacterial abundance. In conclusion, vegetation successfully prevented the oxidization of sulfide minerals in the tailings, and Imperata cylindrica is the most effective in reducing the number of iron- and sulfur-oxidizing bacteria and helped to prevent the oxidization of sulfide minerals in the long term. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Iron, transferrin and myelinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Sergeant, C. E-mail: sergeant@cenbg.in2p3.fr; Vesvres, M.H.; Deves, G.; Baron, B.; Guillou, F

    2003-09-01

    Transferrin (Tf), the iron binding protein of vertebrates serum, is known to be synthesized by oligodendrocytes (Ols) in the central nervous system. It has been postulated that Tf is involved in Ols maturation and myelinogenesis. This link is particularly important in the understanding of a severe human pathology: the multiple sclerosis, which remains without efficient treatment. We generated transgenic mice containing the complete human Tf gene and extensive regulatory sequences from the 5{sup '} and 3{sup '} untranslated regions that specifically overexpress Tf in Ols. Brain cytoarchitecture of the transgenic mice appears to be normal in all brain regions examined, total myelin content is increased by 30% and motor coordination is significantly improved when compared with non-transgenic littermates. Tf role in the central nervous system may be related to its affinity for metallic cations. Normal and transgenic mice were used for determination of trace metals (iron, copper and zinc) and minerals (potassium and calcium) concentration in cerebellum and corpus callosum. The freeze-dried samples were prepared to allow proton-induced X-ray emission and Rutherford backscattering spectrometry analyses with the nuclear microprobe in Bordeaux. Preliminary results were obtained and carbon distribution was revealed as a very good analysis to distinguish precisely the white matter region. A comparison of metallic and mineral elements contents in brain between normal and transgenic mice shows that iron, copper and zinc levels remained constant. This result provides evidence that effects of Tf overexpression in the brain do not solely relate to iron transport.

  2. Structural features of AgCaCdMg2(PO4)3 and AgCd2Mg2(PO4)3, two new compounds with the alluaudite-type structure, and their catalytic activity in butan-2-ol conversion

    International Nuclear Information System (INIS)

    Kacimi, Mohammed; Ziyad, Mahfoud; Hatert, Frederic

    2005-01-01

    AgCaCdMg 2 (PO 4 ) 3 and AgCd 2 Mg 2 (PO 4 ) 3 , two new compounds with the alluaudite-type structure, were synthesized by a solid state reaction in air at 750 deg. C. The X-ray powder diffraction pattern of AgCaCdMg 2 (PO 4 ) 3 indicates the presence of small amounts of (Ca, Mg) 3 (PO 4 ) 2 with the whitlockite structure, as impurity, whereas AgCd 2 Mg 2 (PO 4 ) 3 is constituted by pure alluaudite. The Rietveld refinements of the X-ray powder diffraction patterns indicate an ordered cationic distribution for AgCd 2 Mg 2 (PO 4 ) 3 , with Ag on A(2)', Cd on A(1) and M(1), and Mg on M(2), whereas a disordered distribution of Cd and Ca between the A(1) and M(1) sites is observed for AgCaCdMg 2 (PO 4 ) 3 . The catalytic properties of these compounds has been measured in reaction of butan-2-ol dehydrogenation. In the absence of oxygen, both samples exhibit poor dehydrogenation activity. All samples displayed no dehydration activity. Introduction of oxygen into the feed changed totally the catalytic behavior of the catalysts. The production of methyl ethyl ketone increases with time on stream and the reaction temperature. AgCaCdMg 2 (PO 4 ) 3 is more efficient than AgCd 2 Mg 2 (PO 4 ) 3

  3. Experimental investigation of the fatigue behaviour of asphalt concrete mixtures containing waste iron powder

    International Nuclear Information System (INIS)

    Arabani, M.; Mirabdolazimi, S.M.

    2011-01-01

    Research highlights: → This paper presents the first model of the fatigue behaviour of iron-asphalt mixtures in the world. → This model is able to describe the fatigue behaviour of iron-asphalt under dynamic loading. → Coarse surface, high stiffness and angularity of iron powder lead to enhanced fatigue performance. → The model illustrates that the use of iron powder has a considerable effect on tensile strain of HMA. → The use of this type of waste material could be a helpful solution for less polluted environment. - Abstract: The use of additives and admixtures in the construction of asphalt concrete pavements to strengthen them against dynamic loads has increased considerably in recent years. Recent research has shown that employing desirable waste materials in hot mix asphalts (HMAs) improves their dynamic properties noticeably. The study of some special cases, such as the addition of blast furnace slag and metallic materials of waste electronic instruments to HMA, has led to a considerable increase in the ability of HMAs to tolerate fatigue phenomena and repeated loading. Based on experimental studies, a model is proposed to describe the fatigue behaviour of asphalt mixtures containing waste iron powder. The results of this research show an important increase in the strength of asphalt mixtures containing waste iron powder against fatigue phenomena in comparison to conventional HMAs.

  4. Iron supplements (image)

    Science.gov (United States)

    The mineral iron is an essential nutrient for humans because it is part of blood cells, which carry oxygen to all body cells. There is no conclusive evidence that iron supplements contribute to heart attacks.

  5. Study of Doppler broadened annihilation spectra in zinc and zinc-containing 0.05 at. % iron

    International Nuclear Information System (INIS)

    Troev, T.; Zolov, R.; Dimova, V.; Levay, B.

    1979-01-01

    The Doppler broadening of annihilation gamma spectra obtained from positron-electron annihilation in pure polycrystalline zinc and zinc-containing 0.05 at. % iron have been investigated. The line shapes were measured by a Ge(Li) detector in coincidence with a NaI(Tl) scintillation detector. The results are quite consistent with those expected from the trapping model. The positrons are trapped by impurity atoms and vacancy-impurity pairs in zinc containing 0.05 at. % iron. (author)

  6. Mineral industry in Australia

    International Nuclear Information System (INIS)

    Parbo, S.A.

    1982-01-01

    The paper reviews the history and growth of the mineral industry in Australia and its significance to the nation's economic growth and overseas trade, particularly over the last twenty years during which time production of coal, iron ore, manganese and mineral sands has increased greatly and new discoveries of petroleum, bauxite and nickel have given rise to major new industries. Australia ranks fourteenths in the value of world trade and is among the world's largest exporters of alumina, iron ore, mineral sands, coal, lead, zinc and nickel. Some details of production, processing and exports of the major minerals are given. Comment is made on the policies and roles of the six State Governments and the Federal Government in respect of ownership and control of the mining, processing and exporting of both energy and non-energy minerals. (orig.) [de

  7. Mineral resource of the month: Iron and steel

    Science.gov (United States)

    Fenton, Michael D.

    2014-01-01

    Iron is one of the most abundant elements on Earth, but it does not occur in nature in a useful metallic form. Although ancient people may have recovered some iron from meteorites, it wasn’t until smelting was invented that iron metal could be derived from iron oxides. After the beginning of the Iron Age in about 1200 B.C., knowledge of iron- and steelmaking spread from the ancient Middle East through Greece to the Roman Empire, then to Europe and, in the early 17th century, to North America. The first successful furnace in North America began operating in 1646 in what is now Saugus, Mass. Introduction of the Bessemer converter in the mid-19th century made the modern steel age possible.

  8. Synthesis of thin film containing 4-amino-1,2,4-triazole iron(II) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Onggo, Djulia, E-mail: djulia@Chem.itb.ac.id [Inorganic and Physical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132 (Indonesia)

    2014-03-24

    The Iron(II) complex with 4-amino-1,2,4 triazole (NH{sub 2}-trz) ligand has potential applications as smart material since the compounds show a distinct color change from lilac at low temperature to colorless at high temperature. The lilac color of the complex represent the diamagnetic low spin state while the colorless correspond to the paramagnetic high spin state of iron(II). The transition between the two states could be tuned by changing the anionic group. Generally, the complex was synthesized directly from aqueous solution of iron(II) salt with considerable amounts of NH{sub 2}-trz solution produced solid powder compound. For application as an electronic molecular device, the complex should be obtained as a thin film. The transparent [Fe(NH{sub 2}trz){sub 3}]-Nafion film has been successfully obtained, however, no anion variation can be produced since the nafion is an anionic resin. In this work, the [Fe(NH{sub 2}trz){sub 3}]-complexes with several anions have been synthesized inside nata de coco membrane that commonly used as a medium for deposition metal nano-particles. After drying the membrane containing the complex became a thin film. At room temperature, the film containing iron(II) complexes of sulphate and nitrate salts show lilac color, similar to that of the original complexes in the powder form. On heating, the color of the complex film changed to colorless and this color change was observed reversibly. In contrast, the films containing perchlorate and tetrafluoroborate iron(II) complexes are colorless at room temperature and changed to lilac on cooling. The significant color changing of the iron(II)complexes in the nata de coco film can be used for demonstration thermo chromic effect of smart materials with relatively small amount of the compounds.

  9. Iron and manganese shuttles control the formation of authigenic phosphorus minerals in the euxinic basins of the Baltic Sea

    NARCIS (Netherlands)

    Jilbert, T.|info:eu-repo/dai/nl/304835714; Slomp, C.P.|info:eu-repo/dai/nl/159424003

    2013-01-01

    Microanalysis of epoxy resin-embedded sediments is used to demonstrate the presence of authigenic iron (Fe) (II) phosphates and manganese (Mn)-calcium (Ca)-carbonate-phosphates in the deep euxinic basins of the Baltic Sea. These minerals constitute major burial phases of phosphorus (P) in this area,

  10. Phytases for improved iron absorption

    DEFF Research Database (Denmark)

    Nielsen, Anne Veller Friis; Meyer, Anne S.

    2016-01-01

    Phytase enzymes present an alternative to iron supplements, because they have been shown to improve iron absorption by means of catalysing the degradation of a potent iron absorption inhibitor: phytic acid. Phytic acid is a hexaphosphate of inositol and is particularly prevalent in cereal grains......, where it serves as a storage molecule for phosphorous. Phytic acid is also associated with minerals. The minerals are bound by chelation to the negatively charged phosphate groups in phytic acid. Phytases catalyse the dephosphorylation of phytic acid, thus releasing bound minerals to make them available...... for absorption. This article presents research on phytase catalysis in gastric conditions and considers potential benefits and drawbacks for using phytases as a food supplement....

  11. Atmospheric processing of iron carried by mineral dust

    Directory of Open Access Journals (Sweden)

    S. Nickovic

    2013-09-01

    Full Text Available Nutrification of the open ocean originates mainly from deposited aerosol in which the bio-avaliable iron is likely to be an important factor. The relatively insoluble iron in dust from arid soils becomes more soluble after atmospheric processing and, through its deposition in the ocean, could contribute to marine primary production. To numerically simulate the atmospheric route of iron from desert sources to sinks in the ocean, we developed a regional atmospheric dust-iron model that included parameterization of the transformation of iron to a soluble form caused by dust mineralogy, cloud processes and solar radiation. When compared with field data on the aerosol iron, which were collected during several Atlantic cruises, the results from the higher-resolution simulation experiments showed that the model was capable of reproducing the major observed patterns.

  12. The effects of metamorphism on iron mineralogy and the iron speciation redox proxy

    Science.gov (United States)

    Slotznick, Sarah P.; Eiler, John M.; Fischer, Woodward W.

    2018-03-01

    As the most abundant transition metal in the Earth's crust, iron is a key player in the planetary redox budget. Observations of iron minerals in the sedimentary record have been used to describe atmospheric and aqueous redox environments over the evolution of our planet; the most common method applied is iron speciation, a geochemical sequential extraction method in which proportions of different iron minerals are compared to calibrations from modern sediments to determine water-column redox state. Less is known about how this proxy records information through post-depositional processes, including diagenesis and metamorphism. To get insight into this, we examined how the iron mineral groups/pools (silicates, oxides, sulfides, etc.) and paleoredox proxy interpretations can be affected by known metamorphic processes. Well-known metamorphic reactions occurring in sub-chlorite to kyanite rocks are able to move iron between different iron pools along a range of proxy vectors, potentially affecting paleoredox results. To quantify the effect strength of these reactions, we examined mineralogical and geochemical data from two classic localities where Silurian-Devonian shales, sandstones, and carbonates deposited in a marine sedimentary basin with oxygenated seawater (based on global and local biological constraints) have been regionally metamorphosed from lower-greenschist facies to granulite facies: Waits River and Gile Mountain Formations, Vermont, USA and the Waterville and Sangerville-Vassalboro Formations, Maine, USA. Plotting iron speciation ratios determined for samples from these localities revealed apparent paleoredox conditions of the depositional water column spanning the entire range from oxic to ferruginous (anoxic) to euxinic (anoxic and sulfidic). Pyrrhotite formation in samples highlighted problems within the proxy as iron pool assignment required assumptions about metamorphic reactions and pyrrhotite's identification depended on the extraction techniques

  13. Fe-Impregnated Mineral Colloids for Peroxide Activation: Effects of Mineral Substrate and Fe Precursor.

    Science.gov (United States)

    Li, Yue; Machala, Libor; Yan, Weile

    2016-02-02

    Heterogeneous iron species at the mineral/water interface are important catalysts for the generation of reactive oxygen species at circumneutral pH. One significant pathway leading to the formation of such species arises from deposition of dissolved iron onto mineral colloids due to changes in redox conditions. This study investigates the catalytic properties of Fe impregnated on silica, alumina, and titania nanoparticles (as prototypical mineral colloids). Fe impregnation was carried out by immersing the mineral nanoparticles in dilute Fe(II) or Fe(III) solutions at pH 6 and 3, respectively, in an aerobic environment. The uptake of iron per unit surface area follows the order of nTiO2 > nAl2O3 > nSiO2 for both types of Fe precursors. Impregnation of mineral particles in Fe(II) solutions results in predominantly Fe(III) species due to efficient surface-mediated oxidation. The catalytic activity of the impregnated solids to produce hydroxyl radical (·OH) from H2O2 decomposition was evaluated using benzoic acid as a probe compound under dark conditions. Invariably, the rates of benzoic acid oxidation with different Fe-laden particles increase with the surface density of Fe until a critical density above which the catalytic activity approaches a plateau, suggesting active Fe species are formed predominantly at low surface loadings. The critical surface density of Fe varies with the mineral substrate as well as the aqueous Fe precursor. Fe impregnated on TiO2 exhibits markedly higher activity than its Al2O3 and SiO2 counterparts. The speciation of interfacial Fe is analyzed with diffuse reflectance UV-vis analysis and interpretation of the data in the context of benzoic oxidation rates suggests that the surface activity of the solids for ·OH generation correlates strongly with the isolated (i.e., mononuclear) Fe species. Therefore, iron dispersed on mineral colloids is a significant form of reactive iron surfaces in the aquatic environment.

  14. Evolution of Iron-containing Compounds in Al-Cu Alloys during Heat Treatment

    Directory of Open Access Journals (Sweden)

    Liu Kun

    2016-01-01

    Full Text Available The evolution of iron-containing compounds in Al-Cu 206 cast alloy during solution treatment has been investigated. Results show that platelet β-Fe and Chinese script α-Fe are the two iron-containing compounds in as-cast condition. Little change is observed on β-Fe during solution treatment. However, fine blocky post β-Fe begins to form on α-Fe when solution treated at 520°C for 8hrs. When soaking time is extended to 24 hrs, α–Fe is found to decompose to fine branches while post β-Fe present as clusters on these branches. Al-Cu-Mg-Si Q phase is observed to form at the edge of decomposed α-Fe, possibly the result of Si from decomposed α-Fe.

  15. Cold Extrusion but Not Coating Affects Iron Bioavailability from Fortified Rice in Young Women and Is Associated with Modifications in Starch Microstructure and Mineral Retention during Cooking.

    Science.gov (United States)

    Hackl, Laura; Speich, Cornelia; Zeder, Christophe; Sánchez-Ferrer, Antoni; Adelmann, Horst; de Pee, Saskia; Tay, Fabian; Zimmermann, Michael B; Moretti, Diego

    2017-12-01

    Background: Rice can be fortified with the use of hot or cold extrusion or coating, but the nutritional qualities of the resulting rice grains have never been directly compared. Objective: Using fortified rice produced by coating or hot or cold extrusion, we compared 1 ) iron and zinc absorption with the use of stable isotopes, 2 ) iron and zinc retention during cooking, and 3 ) starch microstructure. Methods: We conducted 2 studies in young women: in study 1 [ n = 19; mean ± SD age: 26.2 ± 3.4 y; body mass index (BMI; in kg/m 2 ): 21.3 ± 1.6], we compared the fractional iron absorption (FAFe) from rice meals containing isotopically labeled ferric prophosphate ( 57 FePP), zinc oxide (ZnO), citric acid, and micronutrients fortified through hot extrusion (HER1) with rice meals fortified through cold extrusion containing 57 FePP, ZnO, citric acid, and micronutrients (CER); in study 2 ( n = 22; age: 24 ± 4 y; BMI: 21.2 ± 1.3), we compared FAFe and fractional zinc absorption (FAZn) from rice meals fortified through hot extrusion (HER2) compared with rice meals fortified through coating containing 57 FePP, ZnO, a citric acid and trisodium cirate mixture (CA/TSC), and micronutrients (COR) relative to rice meals extrinsically fortified with ferrous sulfate (reference). Rice types HER1 and CER contained citric acid, whereas types HER2 and COR contained CA/TSC. We assessed retention during standardized cooking experiments and characterized the rice starch microstructure. Results: FAFe (95% CI) was greater from CER [2.2% (1.4%, 3.4%)] than from HER1 [1.2% (0.7%, 2.0%)] ( P = 0.036). There was no difference in FAFe between HER2 [5.1% (3.7%, 7.1%)] and COR [4.0% (2.9%, 5.4%)] ( P = 0.14), but FAFe from COR was lower than that from the reference meal [6.6% (4.9%, 9.0%)] ( P = 0.003), and the geometric mean FAZn (95% CI) did not differ between HER2 [9.5% (7.9%, 11.6%)] and COR [9.6% (8.7%, 10.7%)] ( P = 0.92). Cooking in a rice-to-water ratio of 1:2 resulted in iron and zinc

  16. Recovery of iron oxide from coal fly ash

    Science.gov (United States)

    Dobbins, Michael S.; Murtha, Marlyn J.

    1983-05-31

    A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

  17. Characterization of iron and manganese minerals and their associated microbiota in different mine sites to reveal the potential interactions of microbiota with mineral formation.

    Science.gov (United States)

    Park, Jin Hee; Kim, Bong-Soo; Chon, Chul-Min

    2018-01-01

    Different environmental conditions such as pH and dissolved elements of mine stream induce precipitation of different minerals and their associated microbial community may vary. Therefore, mine precipitates from various environmental conditions were collected and their associated microbiota were analyzed through metagenomic DNA sequencing. Various Fe and Mn minerals including ferrihydrite, schwertmannite, goethite, birnessite, and Mn-substituted δ-FeOOH (δ-(Fe 1-x , Mn x )OOH) were found in the different environmental conditions. The Fe and Mn minerals were enriched with toxic metal(loid)s including As, Cd, Ni and Zn, indicating they can act as scavengers of toxic metal(loid)s in mine streams. Under acidic conditions, Acidobacteria was dominant phylum and Gallionella (Fe oxidizing bacteria) was the predominant genus in these Fe rich environments. Manganese oxidizing bacteria, Hyphomicrobium, was found in birnessite forming environments. Leptolyngbya within Cyanobacteria was found in Fe and Mn oxidizing environments, and might contribute to Fe and Mn oxidation through the production of molecular oxygen. The potential interaction of microbial community with minerals in mine sites can be traced by analysis of microbial community in different Fe and Mn mineral forming environments. Iron and Mn minerals contribute to the removal of toxic metal(loid)s from mine water. Therefore, the understanding characteristics of mine precipitates and their associated microbes helps to develop strategies for the management of contaminated mine water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Iron solubility related to particle sulfur content in source emission and ambient fine particles.

    Science.gov (United States)

    Oakes, M; Ingall, E D; Lai, B; Shafer, M M; Hays, M D; Liu, Z G; Russell, A G; Weber, R J

    2012-06-19

    The chemical factors influencing iron solubility (soluble iron/total iron) were investigated in source emission (e.g., biomass burning, coal fly ash, mineral dust, and mobile exhaust) and ambient (Atlanta, GA) fine particles (PM2.5). Chemical properties (speciation and mixing state) of iron-containing particles were characterized using X-ray absorption near edge structure (XANES) spectroscopy and micro-X-ray fluorescence measurements. Bulk iron solubility (soluble iron/total iron) of the samples was quantified by leaching experiments. Major differences were observed in iron solubility in source emission samples, ranging from low solubility (iron solubility did not correspond to silicon content or Fe(II) content. However, source emission and ambient samples with high iron solubility corresponded to the sulfur content observed in single particles. A similar correspondence between bulk iron solubility and bulk sulfate content in a series of Atlanta PM2.5 fine particle samples (N = 358) further supported this trend. In addition, results of linear combination fitting experiments show the presence of iron sulfates in several high iron solubility source emission and ambient PM2.5 samples. These results suggest that the sulfate content (related to the presence of iron sulfates and/or acid-processing mechanisms by H(2)SO(4)) of iron-containing particles is an important proxy for iron solubility.

  19. Evaluation of the bleaching flux in clays containing hematite and different clay minerals; Avaliacao do fundente descolorante em argilas contendo hematita e diferentes argilominerais

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, E.M.; Lusa, T.; Silva, T.M.; Medeiros, B.B.; Santos, G.R. dos [Universidade Tecnologica Federal do Parana (DAMEC/UFTPR), Pato Branco, PR (Brazil); Morelli, M.R., E-mail: geocrisr@utfpr.edu.com, E-mail: morelli@power.ufscar.br [Universidade Federal de Sao Carlos (DEMa/PPGCEM/UFSCar), SP (Brazil)

    2016-07-01

    Previous studies have shown that the addition of a synthetic flux in a clay mineral constituted by illite phase in the presence of iron oxide with the hematite, promotes color change of the firing products, making the reddish color firing into whiteness. This flow is constituted of a vitreous phase of the silicates family obtained by fusion/solidification of oxides and carbonates. Thus, the objective of this work was that of studying the interaction of the iron element in the final color mechanism of the different types of mineral crystal phase of the clays. In order to study the phenomenon, we obtained different compositions between the select clays and the synthetic flow, and characterization using X-ray diffraction (XRD) and visual analysis. The results showed that the action of the synthetic flow as a modifying agent for color depends on the mineral crystal phase of the clays. The color firing modification does not occur in the clays content high levels of kaolinite mineral phase. (author)

  20. Iron oxide minerals in dust-source sediments from the Bodélé Depression, Chad: Implications for radiative properties and Fe bioavailability of dust plumes from the Sahara

    Science.gov (United States)

    Moskowitz, Bruce M; Reynolds, Richard L.; Goldstein, Harland L.; Beroquo, Thelma; Kokaly, Raymond F.; Bristow, Charlie S

    2016-01-01

    Atmospheric mineral dust can influence climate and biogeochemical cycles. An important component of mineral dust is ferric oxide minerals (hematite and goethite) which have been shown to influence strongly the optical properties of dust plumes and thus affect the radiative forcing of global dust. Here we report on the iron mineralogy of dust-source samples from the Bodélé Depression (Chad, north-central Africa), which is estimated to be Earth’s most prolific dust producer and may be a key contributor to the global radiative budget of the atmosphere as well as to long-range nutrient transport to the Amazon Basin. By using a combination of magnetic property measurements, Mössbauer spectroscopy, reflectance spectroscopy, chemical analysis, and scanning electron microscopy, we document the abundance and relative amounts of goethite, hematite, and magnetite in dust-source samples from the Bodélé Depression. The partition between hematite and goethite is important to know to improve models for the radiative effects of ferric oxide minerals in mineral dust aerosols. The combination of methods shows (1) the dominance of goethite over hematite in the source sediments, (2) the abundance and occurrences of their nanosize components, and (3) the ubiquity of magnetite, albeit in small amounts. Dominant goethite and subordinate hematite together compose about 2% of yellow-reddish dust-source sediments from the Bodélé Depression and contribute strongly to diminution of reflectance in bulk samples. These observations imply that dust plumes from the Bodélé Depression that are derived from goethite-dominated sediments strongly absorb solar radiation. The presence of ubiquitous magnetite (0.002–0.57 wt%) is also noteworthy for its potentially higher solubility relative to ferric oxide and for its small sizes, including PM iron apportionment is estimated at about 33% in ferric oxide minerals, 1.4% in magnetite, and 65% in ferric silicates. Structural iron in clay

  1. Recovery and separation of iron from iron ore using innovative fluidized magnetization roasting and magnetic separation

    Directory of Open Access Journals (Sweden)

    Yu J.

    2018-01-01

    Full Text Available In this investigation, a pilot-scale fluidized magnetization roasting reactor was introduced and used to enhance magnetic properties of iron ore. Consequently, the effects of roasting temperature, reducing gas CO flow rate, and fluidizing gas N2 flow rate on the magnetization roasting performance were studied. The results indicated that the hematite was almost completely converted into magnetite by a gas mixture of 4 Nm3/h CO and 1 Nm3/h N2 at roasting temperature of 540°C for about 30 s. Under optimized conditions, a high grade concentrate containing 66.84% iron with iron recovery of 91.16% was achieved. The XRD, VSM, and optical microscopy (OM analyses revealed that most of the hematite, except some coarse grains, was selectively converted to magnetite, and that the magnetic properties were greatly enhanced. Thus, their separation from non-magnetic gangue minerals was facilitated.

  2. Influence of iron redox transformations on plutonium sorption to sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hixon, A.E.; Powell, B.A. [Environmental Engineering and Earth Sciences, Clemson Univ., Clemson, SC (United States); Hu, Y.J.; Nitsche, H. [Dept. of Chemistry, Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab., Berkeley, CA (United States); Kaplan, D.I. [Savannah River National Lab., Aiken, SC (United States); Kukkadapu, R.K.; Qafoku, O. [Pacific Northwest National Lab., Richland, WA (United States)

    2010-07-01

    Plutonium subsurface mobility is primarily controlled by its oxidation state, which in turn is loosely coupled to the oxidation state of iron in the system. Experiments were conducted to examine the effect of sediment iron mineral composition and oxidation state on plutonium sorption and reduction. A pH 6.3 vadose zone sediment containing iron oxides and iron-containing phyllosilicates was treated with various complexants (ammonium oxalate) and reductants (hydroxylamine hydrochloride and dithionite-citrate-bicarbonate (DCB)) to selectively leach and/or reduce iron oxide and phyllosilicate/clay Fe(III). {sup 57}Fe-Moessbauer spectroscopy was used to identify initial iron mineral composition of the sediment and monitor dissolution and reduction of iron oxides and reduction of phyllosilicate Fe(III). {sup 57}Fe-Moessbauer spectroscopy showed that the Fe-mineral composition of the untreated sediment is: 25-30% hematite, 60-65% small-particle/Al-goethite, and < 10% Fe(III) in phyllosilicate; there was no detectable Fe(II). Upon reduction with a strong chemical reductant (dithionite-citrate-bicarbonate buffer), much of the hematite and goethite was removed. Partial reduction of phyllosilicate Fe(III) was evident in the sediments subjected to DCB treatment. Sorption of Pu(V) was monitored over one week for the untreated and each of five treated sediment fractions. Plutonium oxidation state speciation in the aqueous and solid phases was monitored using solvent extraction, coprecipitation, and XANES. The rate of sorption appears to correlate with the fraction of Fe(II) in the sediment (untreated or treated). Pu(V) was the only oxidation state measured in the aqueous phase, irrespective of treatment, whereas Pu(IV) and much smaller amounts of Pu(V) and Pu(VI) were measured in the solid phase. Surface-mediated reduction of Pu(V) to Pu(IV) occurred in treated and untreated sediment samples; Pu(V) remained on untreated sediment surface for two days before reducing to Pu

  3. Quantification of mineral matter in commercial cokes and their parent coals

    Energy Technology Data Exchange (ETDEWEB)

    Sakurovs, Richard; French, David; Grigore, Mihaela [CRC for Coal in Sustainable Development, CSIRO Energy Technology, PO Box 330 Newcastle 2300 (Australia)

    2007-10-01

    The nature of mineral matter in coke is an important factor in determining the behaviour of coke in the blast furnace. However, there have been few quantitative determinations of the types of mineral matter in coke and the feed coal. Here we use a technique of quantitative X-ray diffraction - SIROQUANT trademark - to determine the nature and quantity of mineral matter in eleven cokes and their parent materials, using samples of coals and their cokes utilised commercially in blast furnaces around the world. In some of these coals a considerable proportion of the phosphorus was present as goyazite, an aluminium phosphate. In the cokes, most of the iron was incorporated into amorphous aluminosilicate material; metallic iron accounted for about 15% of the iron present, and a similar amount was present as sulfides. Potassium and sodium were largely present as amorphous aluminosilicate material. Most of the quartz in the coal was unaffected by the coking, but a small fraction was transformed into other minerals. Quartz is not completely inert during coking. The amount of the catalytic forms of iron in the coke - iron, iron oxides and iron sulfides - was not related to the amount of pyrite and siderite in the starting coal, indicating that estimation of catalytic iron requires investigation of the mineral matter in coke directly and cannot be estimated from the minerals in the coal. (author)

  4. Binding of heavy metal ions in aggregates of microbial cells, EPS and biogenic iron minerals measured in-situ using metal- and glycoconjugates-specific fluorophores

    Science.gov (United States)

    Hao, Likai; Guo, Yuan; Byrne, James M.; Zeitvogel, Fabian; Schmid, Gregor; Ingino, Pablo; Li, Jianli; Neu, Thomas R.; Swanner, Elizabeth D.; Kappler, Andreas; Obst, Martin

    2016-05-01

    Aggregates consisting of bacterial cells, extracellular polymeric substances (EPS) and Fe(III) minerals formed by Fe(II)-oxidizing bacteria are common at bulk or microscale chemical interfaces where Fe cycling occurs. The high sorption capacity and binding capacity of cells, EPS, and minerals controls the mobility and fate of heavy metals. However, it remains unclear to which of these component(s) the metals will bind in complex aggregates. To clarify this question, the present study focuses on 3D mapping of heavy metals sorbed to cells, glycoconjugates that comprise the majority of EPS constituents, and Fe(III) mineral aggregates formed by the phototrophic Fe(II)-oxidizing bacteria Rhodobacter ferrooxidans SW2 using confocal laser scanning microscopy (CLSM) in combination with metal- and glycoconjugates-specific fluorophores. The present study evaluated the influence of glycoconjugates, microbial cell surfaces, and (biogenic) Fe(III) minerals, and the availability of ferrous and ferric iron on heavy metal sorption. Analyses in this study provide detailed knowledge on the spatial distribution of metal ions in the aggregates at the sub-μm scale, which is essential to understand the underlying mechanisms of microbe-mineral-metal interactions. The heavy metals (Au3+, Cd2+, Cr3+, CrO42-, Cu2+, Hg2+, Ni2+, Pd2+, tributyltin (TBT) and Zn2+) were found mainly sorbed to cell surfaces, present within the glycoconjugates matrix, and bound to the mineral surfaces, but not incorporated into the biogenic Fe(III) minerals. Statistical analysis revealed that all ten heavy metals tested showed relatively similar sorption behavior that was affected by the presence of sorbed ferrous and ferric iron. Results in this study showed that in addition to the mineral surfaces, both bacterial cell surfaces and the glycoconjugates provided most of sorption sites for heavy metals. Simultaneously, ferrous and ferric iron ions competed with the heavy metals for sorption sites on the organic

  5. The three-dimensional distribution of minerals in potato tubers

    Science.gov (United States)

    Subramanian, Nithya K.; White, Philip J.; Broadley, Martin R.; Ramsay, Gavin

    2011-01-01

    Background and Aims The three-dimensional distributions of mineral elements in potato tubers provide insight into their mechanisms of transport and deposition. Many of these minerals are essential to a healthy human diet, and characterizing their distribution within the potato tuber will guide the effective utilization of this staple foodstuff. Methods The variation in mineral composition within the tuber was determined in three dimensions, after determining the orientation of the harvested tuber in the soil. The freeze-dried tuber samples were analysed for minerals using inductively coupled plasma-mass spectrometry (ICP-MS). Minerals measured included those of nutritional significance to the plant and to human consumers, such as iron, zinc, copper, calcium, magnesium, manganese, phosphorus, potassium and sulphur. Key Results The concentrations of most minerals were higher in the skin than in the flesh of tubers. The potato skin contained about 17 % of total tuber zinc, 34 % of calcium and 55 % of iron. On a fresh weight basis, most minerals were higher in tuber flesh at the stem end than the bud end of the tuber. Potassium, however, displayed a gradient in the opposite direction. The concentrations of phosphorus, copper and calcium decreased from the periphery towards the centre of the tuber. Conclusions The distribution of minerals varies greatly within the potato tuber. Low concentrations of some minerals relative to those in leaves may be due to their low mobility in phloem, whereas high concentrations in the skin may reflect direct uptake from the soil across the periderm. In tuber flesh, different minerals show distinct patterns of distribution in the tuber, several being consistent with phloem unloading in the tuber and limited onward movement. These findings have implications both for understanding directed transport of minerals in plants to stem-derived storage organs and for the dietary implications of different food preparation methods for potato tubers

  6. Minerals

    Science.gov (United States)

    ... Aren't minerals something you find in the earth, like iron and quartz? Well, yes, but small ... canned salmon and sardines with bones leafy green vegetables, such as broccoli calcium-fortified foods — from orange ...

  7. Reconstruction of a digital core containing clay minerals based on a clustering algorithm.

    Science.gov (United States)

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  8. Reconstruction of a digital core containing clay minerals based on a clustering algorithm

    Science.gov (United States)

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K -means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  9. Study on electrolytic reduction with controlled oxygen flow for iron from molten oxide slag containing FeO

    Directory of Open Access Journals (Sweden)

    Gao Y.M.

    2013-01-01

    Full Text Available A ZrO2-based solid membrane electrolytic cell with controlled oxygen flow was constructed: graphite rod /[O]Fe+C saturated / ZrO2(MgO/(FeO slag/iron crucible. The feasibility of extraction of iron from molten oxide slag containing FeO at an applied voltage was investigated by means of the electrolytic cell. The effects of some important process factors on the FeO electrolytic reduction with the controlled oxygen flow were discussed. The results show that: solid iron can be extracted from molten oxide slag containing FeO at 1450ºC and an applied potential of 4V. These factors, such as precipitation and growth of solid iron dendrites, change of the cathode active area on the inner wall of the iron crucible and ion diffusion flux in the molten slag may affect the electrochemical reaction rate. The reduction for Fe2+ ions mainly appears on new iron dendrites of the iron crucible cathode, and a very small amount of iron are also formed on the MSZ (2.18% MgO partially stabilized zirconia tube/slag interface due to electronic conductance of MSZ tube. Internal electronic current through MSZ tube may change direction at earlier and later electrolytic reduction stage. It has a role of promoting electrolytic reduction for FeO in the molten slag at the earlier stage, but will lower the current efficiency at the later stage. The final reduction ratio of FeO in the molten slag can achieve 99%. A novel electrolytic method with controlled oxygen flow for iron from the molten oxide slag containing FeO was proposed. The theory of electrolytic reduction with the controlled oxygen flow was developed.

  10. Role of glutaredoxin 3 in iron homeostasis

    Science.gov (United States)

    Iron is an essential mineral nutrient that is tightly regulated through mechanisms involving iron regulatory genes, intracellular storage, and iron recycling. Dysregulation of these mechanisms often results in either excess tissue iron accumulation (overload) or iron deficiency (anemia). Many bioche...

  11. Raoultella sp. SM1, a novel iron-reducing and uranium-precipitating strain.

    Science.gov (United States)

    Sklodowska, Aleksandra; Mielnicki, Sebastian; Drewniak, Lukasz

    2018-03-01

    The main aim of this study was the characterisation of novel Raoutella isolate, an iron-reducing and uranium-precipitating strain, originating from microbial mats occurring in the sediments of a closed down uranium mine in Kowary (SW Poland). Characterisation was done in the context of its potential role in the functioning of these mats and the possibility to use them in uranium removal/recovery processes. In our experiment, we observed the biological precipitation of iron and uranium's secondary minerals containing oxygen, potassium, sodium and phosphor, which were identified as ningyoite-like minerals. The isolated strain, Raoultella sp. SM1, was also able to dissimilatory reduce iron (III) and uranium (VI) in the presence of citrate as an electron donor. Our studies allowed us to characterise a new strain which may be used as a model microorganism in the study of Fe and U respiratory processes and which may be useful in the bioremediation of uranium-contaminated waters and sediments. During this process, uranium may be immobilised in ningyoite-like minerals and can then be recovered in nano/micro-particle form, which may be easily transformed to uraninite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Microorganisms in the deposits of cold carbon mineral waters of the Russian Far East and their habitats

    Science.gov (United States)

    Kalitina, E. G.; Kharitonova, N. A.; Kuzmina, T. V.; Chelnokov, G. A.

    2018-01-01

    Study of the chemical composition of carbon mineral waters has shown the prevalence of calcium, magnesium and sodium among the cations, sulfate, nitrate and chloride ions among the anions, and ferric iron, strontium and manganese in the microelement composition. Results of the microbiological studies have revealed that carbon mineral waters contain various microorganisms that can transform the physical and chemical composition of mineral waters by interfering with geochemical cycles. The sanitary and microbiological properties of carbon mineral waters have been evaluated thus proving that the waters of Medvezhii (Shmakovskoe deposit) are microbiologically clean.

  13. Evaluating the Effectiveness of Various Methods of Iron Deficiency Prevention in Infants

    Directory of Open Access Journals (Sweden)

    N.А. Bielykh

    2015-02-01

    Full Text Available Objective: to evaluate the effectiveness of various methods of iron deficiency prevention in infants. Materials and Methods. Within 30-cluster regional epidemiological study on the prevalence of iodine and iron deficiency in children, we have analyzed the results of screening for anemia in 948 children, carried out questioning of mothers, determined the concentration of iron in breast milk. The effectiveness of preventive measures was assessed by indicators of iron supplementation of the body in 96 children depending on the existing method of iron prophylaxis. Results of the Study. It was found that the use by mother during lactation of iron-containing vitamin-mineral complexes had no effect on the iron content in breast milk. It is proved that administration of iron (III hydroxide polymaltose complex 1 mg/kg/day for 2 months is the most effective way to prevent iron deficiency in children who are exclusively breastfed.

  14. Production of ferrous sulfate from residue from the iron mining

    International Nuclear Information System (INIS)

    Cardoso, K.A; Riella, H.G.; Abreu, E.F.; Carvalho, E.F. Urano de; Durazzo, M.

    2012-01-01

    This paper was developed from a residue obtained by processing iron ore exploited by the mining company Samarco S/A. The residue was characterized and the analyses showed that it contains about 70% of the mineral hematite (Fe 2 O 3 ) and also that some economically important products could be produced. One is the ferrous sulfate that can be used in pharmaceuticals and also that can be used in the treatment of iron deficiency anemia. The iron, in addition to is importance for the industrial production of steel and parts in general, also has great biological importance in all living beings. In order to produce ferrous sulfate from the byproduct in question, it was developed a obtaining route using metallic iron as hematite reductor and sulfuric acid to form the salt. (author)

  15. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    Science.gov (United States)

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  16. Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide-copper-gold deposit, Carajás Mineral Province, Brazil: Paragenesis and stable isotope constraints

    Science.gov (United States)

    Monteiro, Lena V.S.; Xavier, R.P.; Carvalho, E.R.; Hitzman, M.W.; Johnson, C.A.; Souza, Filho C.R.; Torresi, I.

    2008-01-01

    The Sossego iron oxide–copper–gold deposit (245 Mt @ 1.1% Cu, 0.28 g/t Au) in the Carajás Mineral Province of Brazil consists of two major groups of orebodies (Pista–Sequeirinho–Baiano and Sossego–Curral) with distinct alteration assemblages that are separated from each other by a major high angle fault. The deposit is located along a regional WNW–ESE-striking shear zone that defines the contact between metavolcano–sedimentary units of the ∼2.76 Ga Itacaiúnas Supergroup and tonalitic to trondhjemitic gneisses and migmatites of the ∼2.8 Ga Xingu Complex. The deposit is hosted by granite, granophyric granite, gabbro, and felsic metavolcanic rocks. The Pista–Sequeirinho–Baiano orebodies have undergone regional sodic (albite–hematite) alteration and later sodic–calcic (actinolite-rich) alteration associated with the formation of massive magnetite–(apatite) bodies. Both these alteration assemblages display ductile to ductile–brittle fabrics. They are cut by spatially restricted zones of potassic (biotite and potassium feldspar) alteration that grades outward to chlorite-rich assemblages. The Sossego–Curral orebodies contain weakly developed early albitic alteration and very poorly developed subsequent calcic–sodic alteration. These orebodies contain well-developed potassic alteration assemblages that were formed during brittle deformation that resulted in the formation of breccia bodies. Breccia matrix commonly displays coarse mineral infill suggestive of growth into open space. Sulfides in both groups of deposits were precipitated first with potassic alteration and more importantly with a later assemblage of calcite–quartz–epidote–chlorite. In the Sequeirinho orebodies, sulfides range from undeformed to deformed; sulfides in the Sossego–Curral orebodies are undeformed. Very late, weakly mineralized hydrolytic alteration is present in the Sossego/Currral orebodies. The sulfide assemblage is dominated by chalcopyrite with

  17. Occurrence of uranium in the itabiritic iron ore of Morro Agudo on the NE border of the iron Quadrangle/Minas Gerais, Brasilien

    International Nuclear Information System (INIS)

    Guba, I.

    1982-01-01

    The precambrian itabirites and hematite ores of the Morro Agudo iron ore mine on the NE border of the Quadrilatero Ferrifero in Minas Gerais/Brazil contain uranium-bearing minerals and rare-earth elements. In association with phosphates they occupy planes of joints, fractures and cleavage in the area of amphibolitic schist which is intercalated in the s 1 -planes of the itabirites and hematite ores. Preliminary analyses of the uranium-bearing minerals were made by energy dispersive X-ray spectrometry and electron microscopy. The results are presented in connection with the lithologic and tectonic features of the Morro Agudo mine. (orig.) [de

  18. Trace elements in rock phosphates and P containing mineral and organo-mineral fertilizers sold in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Kratz, Sylvia, E-mail: sylvia.kratz@jki.bund.de; Schick, Judith; Schnug, Ewald

    2016-01-15

    68 rock phosphates and 162 P containing (organo-)mineral fertilizers sold in Germany were evaluated with regard to trace element contents. While Al, As, B, Be, Cd, Cr, Mo, Ni, Pb, Sb, Se, Tl, U, and Zn were higher in sedimentary than in igneous rock phosphates, the opposite was true for Co, Cu, Sn, Mn, Ti, Fe, and Sr. Comparing element concentrations to the currently valid legal limit values defined by the German Fertilizer Ordinance, it was found that some PK and many straight P fertilizers (superphosphate, triple superphosphate, partly acidulated rock phosphates) exceeded the limit of 50 mg Cd/kg P{sub 2}O{sub 5}. Mean values for As, Ni, Pb, and Tl remained below legal limits in almost all cases. While no legal limit has been defined for U in Germany yet, the limit of 50 mg U/kg P{sub 2}O{sub 5} for P containing fertilizers proposed by the German Commission for the Protection of Soils was clearly exceeded by mean values for all fertilizer types analyzed. A large share of the samples evaluated in this work contained essential trace elements at high concentrations, with many of them not being declared as such. Furthermore, trace elements supplied with these fertilizers at a fertilization rate leveling P uptake would exceed trace element uptake by crops. This may become most relevant for B and Fe, since many crops are sensitive to an oversupply of B, and Fe loads exceeding plant uptake may immobilize P supplies for the crops by forming Fe phosphate salts. The sample set included two products made from thermochemically treated sewage sludge ash. The products displayed very high concentrations of Fe and Mn and exceeded the legal limit for Ni, emphasizing the necessity to continue research on heavy metal removal from recycled raw materials and the development of environmentally friendly and agriculturally efficient fertilizer products. - Highlights: • Mineral fertilizers (MF) sold in Germany often exceed legal limits for Cd • MF sold in Germany contain high

  19. Prediction of Gibbs energies of formation and stability constants of some secondary uranium minerals containing the uranyl group

    International Nuclear Information System (INIS)

    Genderen, A.C.G. van; Weijden, C.H. van der

    1984-01-01

    For a group of minerals containing a common anion there exists a linear relationship between two parameters called ΔO and ΔF.ΔO is defined as the difference between the Gibbs energy of formation of a solid oxide and the Gibbs energy of formation of its aqueous cation, while ΔF is defined as the Gibbs energy of reaction of the formation of a mineral from the constituting oxide(s) and the acid. Using the Gibbs energies of formation of a number of known minerals the corresponding ΔO's and ΔF's were calculated and with the resulting regression equation it is possible to predict values for the Gibbs energies of formation of other minerals containing the same anion. This was done for 29 minerals containing the uranyl-ion together with phosphate, vanadate, arsenate or carbonate. (orig.)

  20. Mineral transformations associated with goethite reduction by Methanosarcina barkeri

    Science.gov (United States)

    Liu, D.; Wang, Hongfang; Dong, H.; Qiu, X.; Dong, X.; Cravotta, C.A.

    2011-01-01

    To investigate the interaction between methanogens and iron-containing minerals in anoxic environments, we conducted batch culture experiments with Methanosarcina barkeri in a phosphate-buffered basal medium (PBBM) to bioreduce structural Fe(III) in goethite with hydrogen as the sole substrate. Fe(II) and methane concentrations were monitored over the course of the bioreduction experiments with wet chemistry and gas chromatography, respectively. Subsequent mineralogical changes were characterized with X-ray diffraction (XRD) and scanning electron microscopy (SEM). In the presence of an electron shuttle anthraquinone-2,6-disulfonate (AQDS), 30% Fe(III) in goethite (weight basis) was reduced to Fe(II). In contrast, only 2% Fe(III) (weight basis) was bioreduced in the absence of AQDS. Most of the bioproduced Fe(II) was incorporated into secondary minerals including dufr??nite and vivianite. Our data implied a dufr??nite-vivianite transformation mechanism where a metastable dufr??nite transformed to a more stable vivianite over extended time in anaerobic conditions. Methanogenesis was greatly inhibited by bioreduction of goethite Fe(III). These results have important implications for the methane flux associated with Fe(III) bioreduction and ferrous iron mineral precipitation in anaerobic soils and sediments. ?? 2011 Elsevier B.V.

  1. Cloning and expression of an iron-containing superoxide dismutase in the parasitic protist, Trichomonas vaginalis.

    Science.gov (United States)

    Viscogliosi, E; Delgado-Viscogliosi, P; Gerbod, D; Dauchez, M; Gratepanche, S; Alix, A J; Dive, D

    1998-04-01

    A superoxide dismutase (SOD) gene of the parasitic protist Trichomonas vaginalis was cloned, sequenced, expressed in Escherichia coli, and its gene product characterized. It is an iron-containing dimeric protein with a monomeric mass of 22,067 Da. Southern blots analyses suggested the presence of seven iron-containing (FeSOD) gene copies. Hydrophobic cluster analysis revealed some peculiarities in the 2D structure of the FeSOD from T. vaginalis and a strong structural conservation between prokaryotic and eukaryotic FeSODs. Phylogenetic reconstruction of the SOD sequences confirmed the dichotomy between FeSODs and manganese-containing SODs. FeSODs of protists appeared to group together with homologous proteobacterial enzymes suggesting a possible origin of eukaryotic FeSODs through an endosymbiotic event.

  2. Mineral catalysis of oil producing reactions in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Shridharani, K.G.

    1983-01-01

    This work was concerned primarily with the development of a relatively inexpensive, readily available, high activity catalyst that can be used as a disposable catalyst in coal liquefaction processes. For a fair evaluation of the developmental mineral catalyst (presulfided iron oxide), it was necessary to determine at different stages of this work, whether catalyst inhibition, deactivation or activity was the limiting factor in coal liquefaction catalysis. First, different routes were explored to prepare a high hydrogenation activity, iron-based catalyst. Naphthalene hydrogenation was used as a model reaction to rate the hydrogenation activities of different additives. Presulfiding of iron oxide with H/sub 2/S, under controlled conditions, rendered the highest hydrogenation activity mineral catalyst, which had a hydrogenation activity even greater than that of commercial CoMo/Al/sub 2/O/sub 3/ catalyst sulfided with creosote oil and hydrogen. Sulfiding of CoMo/Al/sub 2/O/sub 3/ catalyst with H/sub 2/S remarkably improved its initial hydrogenation activity. Second, the catalyst inhibition and deactivation during liquefaction were studied. Liquefaction-process solvents contain a number of compounds that can either deactivate or inhibit the hydrogenation activity of a catalyst. Finally, the hydrocracking activity of the presulfided iron oxide catalyst was compared with that of commercial catalysts, CoMo/Al/sub 2/O/sub 3/ and low alumina FCC catalyst.

  3. Fracture mechanics aspects in the safe design of ductile iron shipping and storage containers

    International Nuclear Information System (INIS)

    Sappok, M.; Bounin, D.

    1996-01-01

    Containers made of ductile cast iron provide a safe method for transport of radioactive material. Contrary to widespread opinion ductile cast iron is a very tough material and can be manufactured in heavy sections. The containers are designed to withstand the very high impact loads of accidents like free drops onto unyielding targets. The design is based on postulated undetected crack-like flaws at the highest stressed location. Design must show that applied stress intensities are smaller than fracture toughness and no crack initiation and therefore also no crack propagation can occur. The design procedure followed in this paper is given in a new guideline still being drafted by the International Atomic Energy Agency

  4. [Prenatal supplementations of iron, iron-containing multimicronutrients and antianemic Chinese patent medicines in women in Shaanxi province, 2010-2013].

    Science.gov (United States)

    Liu, D M; Li, J M; Qu, P F; Dang, S N; Wu, X Y; Zhang, R; Yan, H; Yan, H

    2017-11-10

    Objective: To understand the prevalence of prenatal supplementations of iron, iron-containing multi-micronutrients (IMMN) and antianemic Chinese patent medicines (ACPM) and associated factors in women in Shaanxi province. Methods: A sample of 28 367 childbearing-age women who gave birth during 2010-2013 and had specific information of the prenatal nutrients supplementation were recruited using stratified multistage cluster random sampling in Shaanxi province. The information about their basic characteristics and prenatal supplementation of nutrients were collected by a questionnaire survey. Descriptive analysis method was used to analyze the intake rate of iron, IMMN and ACPM during each period of pregnancy, and logistic regression model was used to identify associated factors. Results: The overall prevalence of prenatal iron, IMMN and ACPM supplementation was low (28.99%), and the intake rate of iron was the lowest (5.33%). The prevalence of prenatal supplementation of iron, IMMN and ACPM were lower before pregnancy and in the first trimester than in the second and third trimester. The intake rates for consecutive 2 periods were very low (all were lower than 2.00%). The intake rates of iron, IMMN and ACPM significantly increased year by year. Women living in central Shaanxi had relatively high intake rates of iron (7.22%) and IMMN (16.55%), and women in southern Shaanxi had relatively high intake rate of ACPM (18.50%). The results of logistic regression analysis showed that higher educational level ( OR =1.920, 95 %CI : 1.617-2.279), antenatal care times≥6 ( OR =1.832, 95 %CI : 1.604-2.091), etc . were the positive factors for iron intake, and these positive factors were similar to those for IMMN intake. Additionally, rural residence was the negative factor for IMMN intake (compared with urban residence, OR =0.872, 95 %CI : 0.788-0.966). Conversely, higher educational level ( OR =0.855, 95 %CI : 0.746-0.979), higher household income ( OR =0.864, 95 %CI : 0

  5. Maize porridge enriched with a micronutrient powder containing low-dose iron as NaFeEDTA but not Amaranth grain flour reduces anemia and iron deficiency in Kenyan preschool children

    NARCIS (Netherlands)

    Macharia-Mutie, C.W.; Moretti, D.; Briel, van den N.; Omusundi, A.M.; Mwangi, A.M.; Kok, F.J.; Zimmerman, J.B.; Brouwer, I.D.

    2012-01-01

    Few studies have evaluated the impact of fortification with iron-rich foods such as amaranth grain and multi-micronutrient powder (MNP) containing low doses of highly bioavailable iron to control iron deficiency anemia (IDA) in children. We assessed the efficacy of maize porridge enriched with

  6. Bioavailability of mineral-bound iron to a snow algae-bacteria co-culture and implications for albedo-altering snow algae blooms.

    Science.gov (United States)

    Harrold, Z R; Hausrath, E M; Garcia, A H; Murray, A E; Tschauner, O; Raymond, J; Huang, S

    2018-01-26

    Snow algae can form large-scale blooms across the snowpack surface and near-surface environments. These pigmented blooms can decrease snow albedo, increase local melt rates, and may impact the global heat budget and water cycle. Yet, underlying causes for the geospatial occurrence of these blooms remain unconstrained. One possible factor contributing to snow algae blooms is the presence of mineral dust as a micronutrient source. We investigated the bioavailability of iron (Fe) -bearing minerals, including forsterite (Fo 90 , Mg 1.8 Fe 0.2 SiO 4 ), goethite, smectite and pyrite as Fe sources for a Chloromonas brevispina - bacteria co-culture through laboratory-based experimentation. Fo 90 was capable of stimulating snow algal growth and increased the algal growth rate in otherwise Fe-depleted co-cultures. Fo 90 -bearing systems also exhibited a decrease in bacteria:algae ratios compared to Fe-depleted conditions, suggesting a shift in microbial community structure. The C. brevispina co-culture also increased the rate of Fo 90 dissolution relative to an abiotic control. Analysis of 16S rRNA genes in the co-culture identified Gammaproteobacteria , Betaprotoeobacteria and Sphingobacteria , all of which are commonly found in snow and ice environments. Archaea were not detected. Collimonas and Pseudomonas , which are known to enhance mineral weathering rates, comprised two of the top eight (> 1 %) OTUs. These data provide unequivocal evidence that mineral dust can support elevated snow algae growth under otherwise Fe-depleted growth conditions, and that snow algae can enhance mineral dissolution under these conditions. IMPORTANCE Fe, a key micronutrient for photosynthetic growth, is necessary to support the formation of high-density snow algae blooms. The laboratory experiments described herein allow for a systematic investigation of snow algae-bacteria-mineral interactions and their ability to mobilize and uptake mineral-bound Fe. Results provide unequivocal and

  7. Distribution of bacteria and associated minerals in the gill chamber of the vent shrimp Rimicaris exoculata and related biogeochemical processes

    Science.gov (United States)

    Zbinden, M.; Le Bris, N.; Compere, P.; Gaill, F.

    2004-12-01

    The shrimp Rimicaris exoculata dominates the megafauna of some mid-Atlantic Ridge hydrothermal vent fields. This species harbors a rich bacterial epibiosis inside its gill chamber. At the Rainbow vent field, the epibionts are associated with iron oxide deposits. Investigation of both bacteria and minerals by scanning electron microscopy (SEM) and X-ray microanalysis (EDX) shows the occurrence of three distinct compartments in the gill chamber: (1) the lower pre-branchial chamber, housing bacteria, but devoid of minerals, (2) the "true" branchial chamber that contains the gills and remains free of both bacteria and minerals, and (3) the upper pre-branchial chamber housing the main ectosymbiotic bacterial community and associated iron oxides. According to our chemical and temperature data, abiotic iron oxidation appears to be kinetically inhibited in the environment of the shrimps and this would explain the lack of iron oxide deposits in the first two areas. We propose that, in the third area, iron oxidation is microbially promoted. The discrepancy between the spatial distribution of bacteria and minerals suggests that different bacterial metabolisms are involved in the two compartments. A possible explanation lies in the modification of physico-chemical conditions downstream of the gills, that would reduce the oxygen content and favor the development of bacterial iron-oxidizers in this Fe II-rich environment. A potential role of such iron-oxidizing symbionts in the shrimp diet is suggested. This would be unusual for hydrothermal ecosystems, where most previously described symbioses rely on sulphide or methane as an energy source.

  8. Selenium containing clays minerals as additive for the discoloration of glass

    NARCIS (Netherlands)

    Timmer, K.; Limpt, J.A.C. van; Fischer, H.R.

    2010-01-01

    While selenium is applied as decolorizing agent for flint container glass or tableware glass, the retention of selenium in glass however is very low. Generally more than 75% of the total selenium input sublimes from the glass melt and leaves the clay minerals due to the high volatility of

  9. Effects of iron type in Fenton reaction on mineralization and biodegradability enhancement of hazardous organic compounds.

    Science.gov (United States)

    Khan, Eakalak; Wirojanagud, Wanpen; Sermsai, Nawarat

    2009-01-30

    The mineralization and biodegradability increase and their combination of two traditional and two relatively new organic contaminants by Fenton reagents with three different types of iron, Fe(2+), Fe(3+), and Fe(0) were investigated. The traditional contaminants examined were trichloroethene (TCE) and 2,4-dichlorophenol (2,4-DCP) while 1,4-dioxane (1,4-D) and 1,2,3-trichloropropane (TCP) were studied for the relatively new contaminants. The mineralization and biodegradability were represented by dissolved organic carbon (DOC) reduction and the ratio of biodegradable dissolved organic carbon and DOC, respectively. For all four contaminants, Fenton reagent using Fe(2+) was more effective in the DOC reduction than Fenton reagents using Fe(3+) and Fe(0) in most cases. The types of Fe that provided maximum biodegradability increase were not the same for all four compounds, Fe(3+) for TCE, Fe(0) for 2,4-DCP, Fe(2+) for 1,4-D, and Fe(3+) for TCP. When the combination of DOC elimination and biodegradability increase (least refractory fraction) was considered, Fe(2+) was the best choice except for 2,4-DCP which was susceptible to Fe(0) catalyzed Fenton reagent the most. The least refractory fractions remaining after 120 min of reaction were 20-25% for TCE, 2,4-DCP, and TCP and 30-40% for 1,4-D. The iron type in Fenton reaction also affected the type of mineralization kinetics of TCE, 2,4-DCP, and TCP as well as the types of degradation by-products of these contaminants. Some of the by-products found, such as isopropanol and propionic aldehyde, which were produced from Fe(0) catalyzed Fenton degradation of TCP, have not been previously reported.

  10. Iron isotope fractionation during hydrothermal ore deposition and alteration

    Science.gov (United States)

    Markl, Gregor; von Blanckenburg, Friedhelm; Wagner, Thomas

    2006-06-01

    Iron isotopes fractionate during hydrothermal processes. Therefore, the Fe isotope composition of ore-forming minerals characterizes either iron sources or fluid histories. The former potentially serves to distinguish between sedimentary, magmatic or metamorphic iron sources, and the latter allows the reconstruction of precipitation and redox processes. These processes take place during ore formation or alteration. The aim of this contribution is to investigate the suitability of this new isotope method as a probe of ore-related processes. For this purpose 51 samples of iron ores and iron mineral separates from the Schwarzwald region, southwest Germany, were analyzed for their iron isotope composition using multicollector ICP-MS. Further, the ore-forming and ore-altering processes were quantitatively modeled using reaction path calculations. The Schwarzwald mining district hosts mineralizations that formed discontinuously over almost 300 Ma of hydrothermal activity. Primary hematite, siderite and sulfides formed from mixing of meteoric fluids with deeper crustal brines. Later, these minerals were partly dissolved and oxidized, and secondary hematite, goethite and iron arsenates were precipitated. Two types of alteration products formed: (1) primary and high-temperature secondary Fe minerals formed between 120 and 300 °C, and (2) low-temperature secondary Fe minerals formed under supergene conditions (illustrates the potential of the new technique in deciphering ore formation and alteration processes. Isotope ratios are strongly dependent on and highly characteristic of fluid and precipitation histories. Therefore, they are less suitable to provide information on Fe sources. However, it will be possible to unravel the physico-chemical processes leading to the formation, dissolution and redeposition of ores in great detail.

  11. Identification of mineralized zones in the Zardu area, Kushk SEDEX deposit (Central Iran, based on geological and multifractal modeling

    Directory of Open Access Journals (Sweden)

    Dahooei Ahmad Heidari

    2016-02-01

    Full Text Available The aim of this paper is to delineate the different lead–zinc mineralized zones in the Zardu area of the Kushk zinc–lead stratabound SEDEX deposit, Central Iran, through concentration–volume (C–V modeling of geological and lithogeochemical drillcore data. The geological model demonstrated that the massive sulfide and pyrite+dolomite ore types as main rock types hosting mineralization. The C–V fractal modeling used lead, zinc and iron geochemical data to outline four types of mineralized zones, which were then compared to the mineralized rock types identified in the geological model. ‘Enriched’ mineralized zones contain lead and zinc values higher than 6.93% and 19.95%, respectively, with iron values lower than 12.02%. Areas where lead and zinc values were higher than 1.58% and 5.88%, respectively, and iron grades lower than 22% are labelled “high-grade” mineralized zones, and these zones are linked to massive sulfide and pyrite+dolomite lithologies of the geological model. Weakly mineralized zones, labelled ‘low-grade’ in the C– V model have 0–0.63% lead, 0–3.16% zinc and > 30.19% iron, and are correlated to those lithological units labeled as gangue in the geological model, including shales and dolomites, pyritized dolomites. Finally, a log-ratio matrix was employed to validate the results obtained and check correlations between the geological and fractal modeling. Using this method, a high overall accuracy (OA was confirmed for the correlation between the enriched and high-grade mineralized zones and two lithological units — the massive sulfide and pyrite+dolomite ore types.

  12. Statistical treatment of bleaching kaolin by iron removal

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez H, R. A.; Legorreta G, F.; Hernandez C, L. E. [Universidad Autonoma del Estado de Hidalgo, Area Academica de Ciencias de la Tierra y Materiales, Carretera Pachuca-Tulancingo Km 4.5, Mineral de la Reforma, 42184 Hidalgo (Mexico); Martinez L, A., E-mail: angelitofox3@hotmail.com [Universidad Autonoma de Coahuila, Blvd. V. Carranza y Gonzalez Lobo s/n, 25280 Saltillo, Coahuila (Mexico)

    2013-07-01

    In the present study, oxalic acid was used as a leaching reagent to remove iron from a kaolin mineral. Statistical analysis was conducted to determine the most influential factors in the dissolution of iron from the kaolin mineral. Our goal was ferric iron solubilization and its reduction to ferrous iron to improve the iron removal in the acid medium. Leaching experiments were conducted at atmospheric pressure. A two-level factorial design of the type 2{sup 4} was utilized. The dependent variable was the percentage of dissolved iron, and the dependent variables in this study were acid concentration (0.35 and 0.50 M), temperature (75 C and 100 C), leaching time (2 and 4 h), and ph (1.5 and 2.5). An analysis of variance revealed that the effects of the factors temperature (b), ph (d), and the combined effects of temperature and time (b c) resulted in the maximum dissolution of iron of 88% at 100 C, giving a kaolin mineral with a whiteness index 93.50. For the mineralogical analysis the X-ray diffraction technique was used. (Author)

  13. Statistical treatment of bleaching kaolin by iron removal

    International Nuclear Information System (INIS)

    Hernandez H, R. A.; Legorreta G, F.; Hernandez C, L. E.; Martinez L, A.

    2013-01-01

    In the present study, oxalic acid was used as a leaching reagent to remove iron from a kaolin mineral. Statistical analysis was conducted to determine the most influential factors in the dissolution of iron from the kaolin mineral. Our goal was ferric iron solubilization and its reduction to ferrous iron to improve the iron removal in the acid medium. Leaching experiments were conducted at atmospheric pressure. A two-level factorial design of the type 2 4 was utilized. The dependent variable was the percentage of dissolved iron, and the dependent variables in this study were acid concentration (0.35 and 0.50 M), temperature (75 C and 100 C), leaching time (2 and 4 h), and ph (1.5 and 2.5). An analysis of variance revealed that the effects of the factors temperature (b), ph (d), and the combined effects of temperature and time (b c) resulted in the maximum dissolution of iron of 88% at 100 C, giving a kaolin mineral with a whiteness index 93.50. For the mineralogical analysis the X-ray diffraction technique was used. (Author)

  14. Are iron-phosphate minerals a sink for phosphorus in anoxic Black Sea sediments?

    Directory of Open Access Journals (Sweden)

    Nikki Dijkstra

    Full Text Available Phosphorus (P is a key nutrient for marine organisms. The only long-term removal pathway for P in the marine realm is burial in sediments. Iron (Fe bound P accounts for a significant proportion of this burial at the global scale. In sediments underlying anoxic bottom waters, burial of Fe-bound P is generally assumed to be negligible because of reductive dissolution of Fe(III (oxyhydroxides and release of the associated P. However, recent work suggests that Fe-bound P is an important burial phase in euxinic (i.e. anoxic and sulfidic basin sediments in the Baltic Sea. In this study, we investigate the role of Fe-bound P as a potential sink for P in Black Sea sediments overlain by oxic and euxinic bottom waters. Sequential P extractions performed on sediments from six multicores along two shelf-to-basin transects provide evidence for the burial of Fe-bound P at all sites, including those in the euxinic deep basin. In the latter sediments, Fe-bound P accounts for more than 20% of the total sedimentary P pool. We suggest that this P is present in the form of reduced Fe-P minerals. We hypothesize that these minerals may be formed as inclusions in sulfur-disproportionating Deltaproteobacteria. Further research is required to elucidate the exact mineral form and formation mechanism of this P burial phase, as well as its role as a sink for P in sulfide-rich marine sediments.

  15. Are iron-phosphate minerals a sink for phosphorus in anoxic Black Sea sediments?

    Science.gov (United States)

    Dijkstra, Nikki; Kraal, Peter; Kuypers, Marcel M M; Schnetger, Bernhard; Slomp, Caroline P

    2014-01-01

    Phosphorus (P) is a key nutrient for marine organisms. The only long-term removal pathway for P in the marine realm is burial in sediments. Iron (Fe) bound P accounts for a significant proportion of this burial at the global scale. In sediments underlying anoxic bottom waters, burial of Fe-bound P is generally assumed to be negligible because of reductive dissolution of Fe(III) (oxyhydr)oxides and release of the associated P. However, recent work suggests that Fe-bound P is an important burial phase in euxinic (i.e. anoxic and sulfidic) basin sediments in the Baltic Sea. In this study, we investigate the role of Fe-bound P as a potential sink for P in Black Sea sediments overlain by oxic and euxinic bottom waters. Sequential P extractions performed on sediments from six multicores along two shelf-to-basin transects provide evidence for the burial of Fe-bound P at all sites, including those in the euxinic deep basin. In the latter sediments, Fe-bound P accounts for more than 20% of the total sedimentary P pool. We suggest that this P is present in the form of reduced Fe-P minerals. We hypothesize that these minerals may be formed as inclusions in sulfur-disproportionating Deltaproteobacteria. Further research is required to elucidate the exact mineral form and formation mechanism of this P burial phase, as well as its role as a sink for P in sulfide-rich marine sediments.

  16. Colorimetric determination of selenium in mineral premixes .

    Science.gov (United States)

    Hurlbut, J A; Burkepile, R G; Geisler, C A; Kijak, P J; Rummel, N G

    1997-01-01

    A method is described for determination of sodium selenite or sodium selenate in mineral-based premixes. It is based on the formation of intense-yellow piazselenol by Se(IV) and 3,3'-diaminobenzidine. Mineral premixes typically contain calcium carbonate as a base material and magnesium carbonate, silicon dioxide, and iron(III) oxide as minor components or additives. In this method, the premix is digested briefly in nitric acid, diluted with water, and filtered to remove any Iron(III) oxide. Ethylenediaminetetraacetic acid and HCl are added to the filtrate, which is heated to near boiling for 1 h to convert any selenate to selenite. After heating, the solution is buffered between pH 2 and 3 with NaOH and formic acid and treated with NH2OH and EDTA; any Se present forms a complex with 3,3'-diaminobenzidine at 60 degrees C. The solution is made basic with NH4OH, and the piazselenol is extracted into toluene. The absorbance of the complex in dried toluene is measured at 420 nm. The method was validated independently by 2 laboratories. Samples analyzed included calcium carbonate fortified with 100, 200, and 300 micrograms Se in the form of sodium selenite or sodium selenate, a calcium carbonate premix containing sodium selenite, a calcium carbonate premix containing sodium selenate, and a commercial premix; 5 replicates of each sample type were analyzed by each laboratory. Average recoveries ranged from 89 to 109% with coefficients of variation from 1.2 to 13.6%.

  17. Accumulation and distribution of iron, cadmium, lead and nickel in cucumber plants grown in hydroponics containing two different chelated iron supplies.

    Science.gov (United States)

    Csog, Árpád; Mihucz, Victor G; Tatár, Eniko; Fodor, Ferenc; Virág, István; Majdik, Cornelia; Záray, Gyula

    2011-07-01

    Cucumber plants grown in hydroponics containing 10 μM Cd(II), Ni(II) and Pb(II), and iron supplied as Fe(III) EDTA or Fe(III) citrate in identical concentrations, were investigated by total-reflection X-ray fluorescence spectrometry with special emphasis on the determination of iron accumulation and distribution within the different plant compartments (root, stem, cotyledon and leaves). The extent of Cd, Ni and Pb accumulation and distribution were also determined. Generally, iron and heavy-metal contaminant accumulation was higher when Fe(III) citrate was used. The accumulation of nickel and lead was higher by about 20% and 100%, respectively, if the iron supply was Fe(III) citrate. The accumulation of Cd was similar. In the case of Fe(III) citrate, the total amounts of Fe taken up were similar in the control and heavy-metal-treated plants (27-31 μmol/plant). Further, the amounts of iron transported from the root towards the shoot of the control, lead- and nickel-contaminated plants were independent of the iron(III) form. Although Fe mobility could be characterized as being low, its distribution within the shoot was not significantly affected by the heavy metals investigated. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Define rules for the exporter and importer of minerals or ores containing nuclear elements

    International Nuclear Information System (INIS)

    1969-01-01

    The present resolution establishes regulations for the exporter of minerals or ores containing associated nuclear elements, and for the importer of chemical compounds of technical purity grade, containing a quantity of fissile of fertile materials equal to the existent in the exported material

  19. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1989-01-01

    This patent describes lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 0 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms

  20. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation.

    Science.gov (United States)

    Zeng, Zhirui; Tice, Michael M

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms. Key Words: Microbial iron reduction-Micropore-Electron transfer strategies-Microbial carbonate. Astrobiology 18, 28-36.

  1. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean

    Directory of Open Access Journals (Sweden)

    A. Ito

    2016-01-01

    Full Text Available Atmospheric deposition of anthropogenic soluble iron (Fe to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. In this study, for the first time, we interactively combined laboratory kinetic experiments with global aerosol modeling to more accurately quantify anthropogenic soluble Fe due to air pollution. Firstly, we determined Fe dissolution kinetics of African dust samples at acidic pH values with and without ionic species commonly found in aerosol water (i.e., sulfate and oxalate. Then, by using acidity as a master variable, we constructed a new empirical scheme for Fe release from mineral dust due to inorganic and organic anions in aerosol water. We implemented this new scheme and applied an updated mineralogical emission database in a global atmospheric chemistry transport model to estimate the atmospheric concentration and deposition flux of soluble Fe under preindustrial and modern conditions. Our improved model successfully captured the inverse relationship of Fe solubility and total Fe loading measured over the North Atlantic Ocean (i.e., 1–2 orders of magnitude lower Fe solubility in northern-African- than combustion-influenced aerosols. The model results show a positive relationship between Fe solubility and water-soluble organic carbon (WSOC/Fe molar ratio, which is consistent with previous field measurements. We estimated that deposition of soluble Fe to the ocean increased from 0.05–0.07 Tg Fe yr−1 in the preindustrial era to 0.11–0.12 Tg Fe yr−1 in the present day, due to air pollution. Over the high-nitrate, low-chlorophyll (HNLC regions

  2. Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets.

    Science.gov (United States)

    Northup, D E; Melim, L A; Spilde, M N; Hathaway, J J M; Garcia, M G; Moya, M; Stone, F D; Boston, P J; Dapkevicius, M L N E; Riquelme, C

    2011-09-01

    Lava caves contain a wealth of yellow, white, pink, tan, and gold-colored microbial mats; but in addition to these clearly biological mats, there are many secondary mineral deposits that are nonbiological in appearance. Secondary mineral deposits examined include an amorphous copper-silicate deposit (Hawai'i) that is blue-green in color and contains reticulated and fuzzy filament morphologies. In the Azores, lava tubes contain iron-oxide formations, a soft ooze-like coating, and pink hexagons on basaltic glass, while gold-colored deposits are found in lava caves in New Mexico and Hawai'i. A combination of scanning electron microscopy (SEM) and molecular techniques was used to analyze these communities. Molecular analyses of the microbial mats and secondary mineral deposits revealed a community that contains 14 phyla of bacteria across three locations: the Azores, New Mexico, and Hawai'i. Similarities exist between bacterial phyla found in microbial mats and secondary minerals, but marked differences also occur, such as the lack of Actinobacteria in two-thirds of the secondary mineral deposits. The discovery that such deposits contain abundant life can help guide our detection of life on extraterrestrial bodies.

  3. Iron and manganese in oxide minerals and in glasses: preliminary consideration of Eh buffering potential at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Caporuscio, F.A.; Vaniman, D.T.

    1985-04-01

    The tuffs of Yucca Mountain at the Nevada Test Site are currently under investigation as a possible deep burial site for high-level radioactive waste disposal. One of the main concerns is the effect of oxidizing groundwater on the transport of radionuclides. Rock components that may affect the oxygen content of groundwater include Fe-Ti oxides, Mn oxides, and glasses that contain ferrous iron. Some phenocryst Fe-Ti oxides at Yucca Mountain are in reduced states, whereas groundmass Fe-Ti oxides have been oxidized to hematite, rutile, and pseudobrookite (Fe 3+ -bearing phases) exclusively. Estimates of Fe 2+ -bearing oxides indicate that less than 0.33 vol% phenocrysts is available to act as solid buffering agents of Eh. Of this percentage, significant amounts of Fe-Ti oxides are isolated from effective interaction with groundwater because they occur in densely welded, devitrified tuffs that have low interstitial permeability. Manganese oxides occur primarily along fractures in the ash-flow tuffs. Because the Mn oxides are concentrated along the same pathways (fractures) where transport has occurred in the past, these small volume percentages could act as buffers. However, the oxidation states of actual Mn-oxide phases are high (Mn 4+ ), and these minerals have virtually no potential for reducing groundwater Eh. Manganese oxides may even act as oxidizing agents. However, regardless of their poor capabilities as reducing agents, the Mn oxides could be important as sorbents of heavy metals at Yucca Mountain. The lack of accessible, pristine Fe-Ti oxides and the generally high oxidation states of Mn oxides seem to rule out these oxides as Eh buffers of the Yucca Mountain groundwater system. Reduction of ferrous iron within glassy tuffs may have some effect on Eh, but further study is needed. At present it is prudent to assume that minerals and glasses have little or no capacity for reducing oxygen-rich groundwater at Yucca Mountain. 25 refs., 3 figs., 12 tabs

  4. Accelerated dissolution of iron oxides in ice

    Directory of Open Access Journals (Sweden)

    D. Jeong

    2012-11-01

    Full Text Available Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4, the dissolution of iron oxides was greatly enhanced in the ice phase compared to that in water. The dissolved iron was mainly in the ferric form, which indicates that the dissolution is not a reductive process. The extent of dissolved iron was greatly affected by the kind of organic complexing ligands and the surface area of iron oxides. The iron dissolution was most pronounced with high surface area iron oxides and in the presence of strong iron binding ligands. The enhanced dissolution of iron oxides in ice is mainly ascribed to the "freeze concentration effect", which concentrates iron oxide particles, organic ligands, and protons in the liquid like ice grain boundary region and accelerates the dissolution of iron oxides. The ice-enhanced dissolution effect gradually decreased when decreasing the freezing temperature from −10 to −196 °C, which implies that the presence and formation of the liquid-like ice grain boundary region play a critical role. The proposed phenomenon of enhanced dissolution of iron oxides in ice may provide a new pathway of bioavailable iron production. The frozen atmospheric ice with iron-containing dust particles in the upper atmosphere thaws upon descending and may provide bioavailable iron upon deposition onto the ocean surface.

  5. FTIR spectra and properties of iron borophosphate glasses containing simulated nuclear wastes

    Science.gov (United States)

    Liao, Qilong; Wang, Fu; Chen, Kuiru; Pan, Sheqi; Zhu, Hanzhen; Lu, Mingwei; Qin, Jianfa

    2015-07-01

    30 wt.% simulated nuclear wastes were successfully immobilized by B2O3-doped iron phosphate base glasses. The structure and thermal stability of the prepared wasteforms were characterized by Fourier transform infrared spectroscopy and differential thermal analysis, respectively. The subtle structural variations attributed to different B2O3 doping modes have been discussed in detail. The results show that the thermal stability and glass forming tendency of the iron borophosphate glass wasteforms are faintly affected by different B2O3 doping modes. The main structural networks of iron borophosphate glass wasteforms are PO43-, P2O74-, [BO4] groups. Furthermore, for the wasteform prepared by using 10B2O3-36Fe2O3-54P2O5 as base glass, the distributions of Fe-O-P bonds, [BO4], PO43- and P2O74- groups are optimal. In general, the dissolution rate (DR) values of the studied iron borophosphate wasteforms are about 10-8 g cm-2 min-1. The obtained conclusions can offer some useful information for the disposal of high-level radioactive wastes using boron contained phosphate glasses.

  6. Review of iron oxides for water treatment

    International Nuclear Information System (INIS)

    Navratil, J. D.

    2001-01-01

    Many processes have utilized iron oxides for the treatment of liquid wastes containing radioactive and hazardous metals. These processes have included adsorption, precipitation and other chemical and physical techniques. For example, a radioactive wastewater precipitation process includes addition of a ferric hydroxide floc to scavenge radioactive contaminants, such as americium, plutonium and uranium. Some adsorption processes for wastewater treatment have utilized ferrites and a variety of iron containing minerals. Various ferrites and natural magnetite were used in batch modes for actinide and heavy metal removal from wastewater. Supported magnetite was also used in a column mode, and in the presence of an external magnetic field, enhanced capacity was found for removal of plutonium and americium from wastewater. These observations were explained by a nano-level high gradient magnetic separation effect, as americium, plutonium and other hydrolytic metals are known to form colloidal particles at elevated pHs. Recent modeling work supports this assumption and shows that the smaller the magnetite particle the larger the induced magnetic field around the particle from the external field. Other recent studies have demonstrated the magnetic enhanced removal of arsenic, cobalt and iron from simulated groundwater. (author)

  7. Geo-microbiological reactivity of iron materials: impact on geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Esnault, L.

    2010-01-01

    This thesis sought to describe the dynamic concept of a viable and sustainable microbiological activity under deep geological disposal conditions and to assess its impact on containment properties and storage components. Thus, in this study, a model based on the bacterial ferric reduction was chosen for its sustainability criteria in the system and its ability to alter the materials in storage conditions. The main results of this work demonstrated the capability of the environment to stand the iron-reducing bacterial activity and the conditions of its development in the deep clay environments. The bio-availability of structural Fe (III) in clay minerals and iron oxides produced during the process of metal corrosion was clearly demonstrated. In this system, the corrosion appears to be a positive factor on bacterial activities by producing an energy source, hydrogen. The iron-reducing bacterial activities can lead to a resumption of metallic corrosion through the consumption of iron oxides in the passive film. The direct consequence would be a reduction of the lifetime of metal containers. In the case of ferric clay minerals, the consequences of such an activity are such that they can have an impact on the overall porous structure both in terms of chemical reactivity of the materials or physical behavior of the clayey barrier. One of the most significant results is the crystallization of new clay phases at very low temperatures, below 40 C, highlighting the influence of the anaerobic microbial activity in the mineralogical transformations of clay minerals. Furthermore, these experiments also allowed to visualize, for the first time, a mechanism of bacterial respiration at distance, this increases the field of the availability of essential elements as Fe 3+ for bacterial growth in extreme environment. In conclusion, these results clearly showed the impact of the microbiological factor on the reactivity of clay and metal minerals, while relying on control parameters on

  8. Method for the production of solid hydroxides contained in mineral oils, mineral oil-like materials or mineral oil-containing materials and uses of products thus obtained. Verfahren zur Herstellung von Mineraloele, mineraloelaehnliche Stoffe oder mineraloelhaltige Stoffe enthaltenden festen Hydroxiden sowie die Verwendung danach erhaltener Produkte

    Energy Technology Data Exchange (ETDEWEB)

    Boelsing, F

    1975-07-29

    A method has been developed which permits mineral oils, mineral oil-like substances or mineral oil-containing substances (eg waste oil) to be separated in powder form, even when these substance are present in a continuous phase with water (for example, oil slurries). A compound (eg. line) which forms a hydroxide with water is added, the formed hydroxide then acts as carrier substance. Prerequisite for obtaining the end-product in powdered form is that the homogeneous mixing of the oil-containing substance and hydroxide-forming substance takes place at a faster rate than the necessary auxilliary reaction, namely hydroxide formation, and further that water in present in at least stoichiometric quantities. The powdered end-product finds numerous applications eg. road construction, soil conditioning and compacting, recultivation measures in cement manufacture, and others.

  9. Application of EDRXF technique for the determination of uranium and thorium in beach sand minerals

    International Nuclear Information System (INIS)

    Natarajan, V.

    2013-01-01

    Zircon is a naturally occurring mineral and is available in many locations all over the world, This mineral usually contains U and Th at about 100-500 μg/g. Naturally occurring TiO 2 , containing minerals, rutile and ilmenite have small quantities of associated uranium. Natural rutile may contain upto 10% iron and upto 500 μg/g of uranium. Since the availability of rutile in nature is limited, ilmenite is used as raw material for producing synthetic rutile. In India, from monazite, thorium is separated by Indian Rare Earths Ltd., wherein uranium is a bye product. Since rutile is of importance to the gemstone markets, this is also produced from ilmenite ore. Roasting, reduction and leaching processes are important steps for removal of iron economically and efficiently from ilmenite ore during the production of synthetic rutile. We have developed a method to determine U and Th in zircon, using synthetic powder standards of ZrO 2 , containing U and Th in the range of 50 to 1000 μg/g. The limits of detection for U and Th were determined to be 200 and 100 μg/g respectively. Three zircon ore samples from different locations in India were analyzed for uranium and thorium using the method. The standardized method can be used for fast determination U and Th in zircon samples non-destructively with a precision of 10-20 %. Further another method was developed for the determination of uranium in rutile. Since iron and chromium are among the other impurities co-existing with U in rutile, these analytes have been included in the method. Synthetic standards containing U at 200-10,000 μg/g and Fe, Cr at 100- 2000 μg/g level were prepared and the spectrometer was calibrated using these standards. Two synthetic samples were analyzed using this method to evaluate the method for its reliability and reproducibility. In the present talk, details of these studies will be discussed. Moreover the work carried out on the determination of U/Th in sand minerals by other international

  10. Effects of Radiation and a High Iron Load on Bone Mineral Density

    Science.gov (United States)

    Yuen, E.; Morgan, J. L. L.; Zwart, S. R.; Gonzales, E.; Camp, K.; Smith, S. M.; Bloomfield, S. A.

    2012-01-01

    Astronauts on long duration space flight missions to the moon or mars are exposed to radiation and have increase iron (Fe) stores, both of which can independently induce oxidative stress and may exacerbate bone mass loss and strength. We hypothesize a high Fe diet and a fractionated gamma radiation exposure would increase oxidative stress and lower bone mass. Three mo-old, SD rats (n=32) were randomized to receive an adequate Fe diet (45 mg Fe/kg diet) or a high Fe diet (650 mg Fe/kg diet) for 4 wks and either a cumulative 3 Gy dose (fractionated 8 x 0.375 Gy) of gamma radiation (Cs-137) or sham exposure starting on day 14. Elisa kit assessed serum catalase, clinical analyzer assessed serum Fe status and ex vivo pQCT scans measured bone parameters in the proximal/midshaft tibia and femoral neck. Mechanical strength was assessed by 3-pt bending and femoral neck test. There is a significant decrease in trabecular bone mineral density (BMD) from radiation (p less than 0.05) and a trend in diet (p=0.05) at the proximal tibia. There is a significant interaction in cortical BMD from the combined treatments at the midshaft tibia (p less than 0.05). There is a trending decrease in total BMD from diet (p=0.07) at the femoral neck. In addition, high serum Fe was correlated to low trabecular BMD (p less than 0.05) and high serum catalase was correlated to low BMD at all 3 bone sites (p less than 0.05). There was no difference in the max load of the tibia or femoral neck. Radiation and a high iron diet increases iron status and catalase in the serum and decreases BMD.

  11. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.

    Science.gov (United States)

    Jeong, Daun; Kim, Kitae; Min, Dae Wi; Choi, Wonyong

    2015-11-03

    Dissolution of iron from mineral dust particles greatly depends upon the type and amount of copresent inorganic anions. In this study, we investigated the roles of sulfate, chloride, nitrate, and perchlorate on the dissolution of maghemite and lepidocrocite in ice under both dark and UV irradiation and compared the results with those of their aqueous counterparts. After 96 h of reaction, the total dissolved iron in ice (pH 3 before freezing) was higher than that in the aqueous phase (pH 3) by 6-28 times and 10-20 times under dark and UV irradiation, respectively. Sulfuric acid was the most efficient in producing labile iron under dark condition, whereas hydrochloric acid induced the most dissolution of the total and ferrous iron in the presence of light. This ice-induced dissolution result was also confirmed with Arizona Test Dust (AZTD). In the freeze-thaw cycling test, the iron oxide samples containing chloride, nitrate, or perchlorate showed a similar extent of total dissolved iron after each cycling while the sulfate-containing sample rapidly lost its dissolution activity with repeating the cycle. This unique phenomenon observed in ice might be related to the freeze concentration of protons, iron oxides, and inorganic anions in the liquid-like ice grain boundary region. These results suggest that the ice-enhanced dissolution of iron oxides can be a potential source of bioavailable iron, and the acid anions critically influence this process.

  12. Application Of Bacterial Iron Reduction For The Removal Of Iron Impurities From Industrial Silica Sand And Kaolin

    Science.gov (United States)

    Zegeye, A.; Yahaya, S.; Fialips, C. I.; White, M.; Manning, D. A.; Gray, N.

    2008-12-01

    Biogeochemical evidence exists to support the potential importance of crystalline or amorphous Fe minerals as electron acceptor for Fe reducing bacteria in soils and subsurface sediments. This microbial metabolic activity can be exploited as alternative method in different industrial applications. For instance, the removal of ferric iron impurities from minerals for the glass and paper industries currently rely on physical and chemical treatments having substantial economical and environmental disadvantages. The ability to remove iron by other means, such as bacterial iron reduction, may reduce costs, allow lower grade material to be mined, and improve the efficiency of mineral processing. Kaolin clay and silica sand are used in a wide range of industrial applications, particularly in paper, ceramics and glass manufacturing. Depending on the geological conditions of deposition, they are often associated with iron (hydr)oxides that are either adsorbed to the mineral surfaces or admixed as separate iron bearing minerals. In this study, we have examined the Fe(III) removal efficiency from kaolin and silica sand by a series of iron- reducing bacteria from the Shewanella species (S. alga BrY, S. oneidensis MR-1, S. putrefaciens CN32 and S. putrefaciens ATCC 8071) in the presence of anthraquinone 2,6 disulfonate (AQDS). We have also investigated the effectiveness of a natural organic matter, extracted with the silica sand, as a substitute to AQDS for enhancing Fe(III) reduction kinetics. The microbial reduction of Fe(III) was achieved using batch cultures under non-growth conditions. The rate and the extent of Fe(III) reduction was monitored as a function of the initial Fe(III) content, Shewanella species and temperature. The bacterially- treated minerals were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) to observe any textural and mineralogical transformation. The whiteness and ISO brightness of the kaolin was also measured by

  13. Contribution in the study of the stability of Callovo-Oxfordian clay rock minerals in the presence of iron at 90 deg C

    International Nuclear Information System (INIS)

    Rivard, Camille

    2011-01-01

    In the context of underground disposal of high-level radioactive waste, it is of prime importance to understand the interaction mechanisms between Callovo-Oxfordian clay rock (COx), selected as a potential host-rock by Andra (French national radioactive waste management agency) and metallic iron, that enters the composition of containers and disposal cells. Interactions between metallic iron and COx clay-rock, COx Callovo-Oxfordian clay fraction (SCOx) and pure clay phases (kaolinite, illite, smectites) were investigated at 90 deg. C under anoxic atmosphere in chlorine solution. In order to study the role of COx non clay minerals, the reactivity of mixtures between SCOx and quartz, calcite, dolomite or pyrite, was also studied. Liquid and solid by-products were characterised by chemical analyses, mineralogical and morphometric techniques, at different scales. In our experimental conditions, major evolutions were observed during the first month, which shows that the oxidation of metallic iron is rapid. The release of iron cations in solution, pH increase (8-10) and Eh decrease (reductive conditions) are responsible for the partial dissolution of initial clay phases. Released iron is involved in the crystallization of Fe-serpentines (odinite or berthierite mainly) or precipitates under the form of magnetite in low amount. Fe-serpentine stability is controlled by the redox conditions as the introduction of dioxygen into the system leads to iron exsolution under the form of iron oxides and hydroxides and precipitation of clay particles with composition close to the initial ones. Whereas carbonates and pyrite do not significantly influence SCOx-metallic iron interactions, reaction pathways are modified in the presence of quartz. Indeed, in such conditions one observes a slight decrease of pH, an increase in Eh, the absence of magnetite and differences in the crystal chemistry of Fe-serpentines that are silica enriched, in comparison with those formed without any quartz

  14. Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing.

    Science.gov (United States)

    Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Baker, Alex R; Jickells, Timothy D; Benning, Liane G

    2009-09-01

    The formation of iron (Fe) nanoperticles and increase in Fe reactivity in mineral dust during simulated cloud processing was investigated using high-resolution microscopy and chemical extraction methods. Cloud processing of dust was experimentally simulated via an alternation of acidic (pH 2) and circumneutral conditions (pH 5-6) over periods of 24 h each on presieved (formation of Fe-rich nanoparticle aggregates, which were not found initially. Similar Fe-rich nanoparticles were also observed in wet-deposited Saharen dusts from the western Mediterranean but not in dry-deposited dust from the eastern Mediterranean. Sequential Fe extraction of the soil samples indicated an increase in the proportion of chemically reactive Fe extractable by an ascorbate solution after simulated cloud processing. In addition, the sequential extractions on the Mediterranean dust samples revealed a higher content of reactive Fe in the wet-deposited dust compared to that of the dry-deposited dust These results suggestthat large variations of pH commonly reported in aerosol and cloud waters can trigger neo-formation of nanosize Fe particles and an increase in Fe reactivity in the dust

  15. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications

    Energy Technology Data Exchange (ETDEWEB)

    Hilty, F M; Hurrell, R F; Zimmermann, M B [Human Nutrition Laboratory, Institute of Food Science and Nutrition, ETH Zurich (Switzerland); Teleki, A; Buechel, R; Pratsinis, S E [Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich (Switzerland); Krumeich, F, E-mail: michael.zimmermann@ilw.agrl.ethz.c [Electron Microscopy Center (EMEZ), ETH Zurich (Switzerland)

    2009-11-25

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe{sub 2}O{sub 4}) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  16. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications

    International Nuclear Information System (INIS)

    Hilty, F M; Hurrell, R F; Zimmermann, M B; Teleki, A; Buechel, R; Pratsinis, S E; Krumeich, F

    2009-01-01

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe 2 O 4 ) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  17. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications.

    Science.gov (United States)

    Hilty, F M; Teleki, A; Krumeich, F; Büchel, R; Hurrell, R F; Pratsinis, S E; Zimmermann, M B

    2009-11-25

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe2O4) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  18. Technetium behavior in sulfide and ferrous iron solutions

    International Nuclear Information System (INIS)

    Lee, S.Y.; Bondietti, E.A.

    1982-01-01

    Pertechnetate oxyanion ( 99 TcO 4- ), a potentially mobile species in leachate from a breached radioactive waste repository, was removed from a brine solution by precipitation with sulfide, iron, and ferrous sulfide at environmental pH's. Maghemite (ν-Fe 2 O 3 ) and geothite (α-FeOOH) were the dominant minerals in the precipitate obtained from the TcO 4- -ferrous iron reaction. The observation of small particle size and poor crystallinity of the minerals formed in the presence of Tc suggested that the Tc was incorporated into the mineral structure after reduction to a lower valence state. Amorphous ferrous sulfide, an initial phase precipitating in the TcO 4- -ferrous iron-sulfide reaction, was transformed to goethite and hematite (α-Fe 2 O 3 ) on aging. The black precipitate obtained from the TcO 4- -sulfide reaction was poorly crystallized technetium sulfide (Tc 2 S 7 ) which was insoluble in both acid and alkaline solution in the absence of strong oxidents. The results suggested that ferrous- and/or sulfide-bearing groundwaters and minerals in host rocks or backfill barriers could reduce the mobility of Tc through the formation of less-soluble Tc-bearing iron and/or sulfide minerals

  19. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation

    Science.gov (United States)

    Zeng, Zhirui; Tice, Michael M.

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms.

  20. Mineral composition of non-conventional leafy vegetables.

    Science.gov (United States)

    Barminas, J T; Charles, M; Emmanuel, D

    1998-01-01

    Six non-conventional leafy vegetables consumed largely by the rural populace of Nigeria were analyzed for mineral composition. Mineral contents appeared to be dependent on the type of vegetables. Amaranthus spinosus and Adansonia digitata leaves contained the highest level of iron (38.4 mg/100 g and 30.6 mg/100 g dw, respectively). These values are low compared to those for common Nigerian vegetables but higher than those for other food sources. All the vegetables contained high levels of calcium compared to common vegetables, thus they could be a rich source of this mineral. Microelement content of the leaves varied appreciably. Zinc content was highest in Moringa oleifera, Adansonia digitata and Cassia tora leaves (25.5 mg/100 g, 22.4 mg/100 g and 20.9 mg/100 g dw, respectively) while the manganese content was comparatively higher in Colocasia esculenta. The concentrations of the mineral elements in the vegetables per serving portion are presented and these values indicate that the local vegetables could be valuable and important contributors in the diets of the rural and urban people of Nigeria. The mean daily intake of P, Mg, Ca, Fe, Cu and Zn were lower than their recommended dietary allowances (RDAs). However, the manganese daily intake was found not to differ significantly (p = 0.05) from the RDA value.

  1. Iron content of some samples of the black murrams and red ochres from different parts of Kenya

    International Nuclear Information System (INIS)

    Muriithi, N.

    1985-01-01

    A number of samples of the black or dark ironstone(commonly referred to as murram) and some red ochres collected from different parts of Kenya were analysed, particularly for their iron content. The results show that some of the materials examined are potential iron ores. Heating the black murram or the red ochres to 500 0 C increases the iron content in the residue by between 10% and 20%. On the other hand boiling the materials with 3M sodium hydroxide increases the proportion of iron in the residue by only 7%. X-ray analysis shows that most of the murrams and the red ochres examined contain the mineral geothite as the main iron-bearing material. (author)

  2. Iron-ore resources of the United States including Alaska and Puerto Rico, 1955

    Science.gov (United States)

    Carr, Martha S.; Dutton, Carl E.

    1959-01-01

    minerals are associated with other rock-forming minerals, the iron content of marketable ore has a lower range from 30 to 67 percent.Chemical constituents other than iron also are important in determining the marketability of iron ore. Although some iron ores can be used in the blast furnace as mined, others must first be improved either chemically by reduction of undesirable constituents, or physically by aggregation. Phosphorus and sulfur particularly are common deleterious elements; excessive silica is also undesirable but within certain limits can be controlled by additional flux. Lime and magnesia are beneficial in specified amounts because of their fluxing qualities, and a small amount of alumina improves the fluidity of slag. Manganese is especially desirable as a deoxidizing and desulfurizing agent. Titanium, chromium, and nickel must also be considered in the use of ore containing these elements.The principal iron-ore deposits in the United States have been formed by three processes. Hematite-bearing bedded deposits such as those at Birmingham, Ala., are marine sedimentary rocks which, except for weathering along the outcrop, have remained practically unaltered since deposition. Deposits of the Lake Superior region, also in sedimentary strata, originally had a slightly lower iron content than those at-Birmingham, but ore bodies of hematite and limonite were formed by removal of other constituents in solution after deposition of the beds, with a relative increase of iron content in the material remaining. Limestone adjacent to igneous intrusions has been replaced by magnetite deposits at Cornwall, Pa., and by hematite-magnetite deposits near Cedar City, Utah. Magnetite deposits in New Jersey and in the Adirondack Mountains of New York are generally believed to have been formed by replacement of grains of other minerals in metamorphic rocks. Iron-ore resources are made up of reserves of iron ore, material usable under existing economic and technologic conditions

  3. Vitamins, Minerals, and Mood

    Science.gov (United States)

    Kaplan, Bonnie J.; Crawford, Susan G.; Field, Catherine J.; Simpson, J. Steven A.

    2007-01-01

    In this article, the authors explore the breadth and depth of published research linking dietary vitamins and minerals (micronutrients) to mood. Since the 1920s, there have been many studies on individual vitamins (especially B vitamins and Vitamins C, D, and E), minerals (calcium, chromium, iron, magnesium, zinc, and selenium), and vitamin-like…

  4. Natural resources sustainability: iron ore mining

    International Nuclear Information System (INIS)

    De La Torre de Palacios, Luis

    2011-01-01

    In the present article, a new tool to determine environmental sustainability, the energy impact index (EII) was developed to classify different iron mine projects according to two main parameters including energy consumption and CO 2 emissions. The EII considers the characteristics of the mineral (such as the quality, size, hardness, iron ore grade, reducibility, mineral/waste rate, and type of deposit), mining processes (type of exploitation, ore processing, available technology), and transportation (distance to cover).

  5. The search for asbestos within the Peter Mitchell Taconite iron ore mine, near Babbitt, Minnesota.

    Science.gov (United States)

    Ross, Malcolm; Nolan, Robert P; Nord, Gordon L

    2008-10-01

    Asbestos crystallizes within rock formations undergoing intense deformation characterized by folding, faulting, shearing, and dilation. Some of these conditions have prevailed during formation of the taconite iron ore deposits in the eastern Mesabi Iron Range of Minnesota. This range includes the Peter Mitchell Taconite Mine at Babbitt, Minnesota. The mine pit is over 8 miles long, up to 1 mile wide. Fifty three samples were collected from 30 sites within areas of the pit where faulting, shearing and folding occur and where fibrous minerals might occur. Eight samples from seven collecting sites contain significant amounts of ferroactinolite amphibole that is partially to completely altered to fibrous ferroactinolite. Two samples from two other sites contain ferroactinolite degraded to ropy masses of fibers consisting mostly of ferrian sepiolite as defined by X-ray diffraction and TEM and SEM X-ray spectral analysis. Samples from five other sites contain unaltered amphiboles, however some of these samples also contain a very small number of fiber bundles composed of mixtures of grunerite, ferroactinolite, and ferrian sepiolite. It is proposed that the alteration of the amphiboles was caused by reaction with water-rich acidic fluids that moved through the mine faults and shear zones. The fibrous amphiboles and ferrian sepiolite collected at the Peter Mitchell Mine composes a tiny fraction of one percent of the total rock mass of this taconite deposit; an even a smaller amount of these mineral fragments enter the ambient air during mining and milling. These fibrous minerals thus do not present a significant health hazard to the miners nor to those non-occupationally exposed. No asbestos of any type was found in the mine pit.

  6. Extending hydraulic lifetime of iron walls

    International Nuclear Information System (INIS)

    Mackenzie, P.D.; Sivavec, T.M.; Horney, D.P.

    1997-01-01

    Iron walls for control of groundwaters contaminated with chlorinated solvents and reducible metals are becoming much more widely used and field studies of this technology have proven successful to date. However, there is still much uncertainty in predicting long-term performance. This work focuses on two factors affecting the lifetime of the iron media: plugging at the treatment zone entrance and precipitation in the bulk iron media. Plugging at the system entrance is due principally to dissolved oxygen in the incoming water and is an issue in aerobic aquifers or in ex-situ canister tests. In an in-situ treatment system, plugging would result in a dramatic reduction in flow through the iron zone. Designs to minimize plugging in field applications include use of larger iron particles and admixing sand of comparable size with the iron particles. Mineral precipitation in the bulk iron media can lead to porosity losses in the media, again reducing flow through the treatment zone. Decreases in reactivity of the iron media may also occur. The nature of the mineral precipitation and the factors that affect extent of mineral precipitation are examined by a variety of tools, including tracer tests, aqueous inorganic profiles, and surface analysis techniques. At short treatment times, measured porosity losses are due mainly to entrapment of a film of H 2 gas on the iron surfaces and also to Fe(OH) 2 precipitation. Over longer treatment times precipitation of Fe(OH) 2 and FeCO 3 in low carbonate waters and of Fe(OH) 2 , FeCO 3 and CaCO 3 in higher carbonate waters will begin to dominate porosity losses. Preliminary results of an on-going study to control pH in an iron zone by admixing iron sulfide with iron show no difference in extent of carbonate precipitation versus a 100% iron system, suggesting that these systems are supersaturated with respect to carbonate precipitation

  7. Iron and zinc complexation in wild-type and ferritin-expressing wheat grain: implications for mineral transport into developing grain

    DEFF Research Database (Denmark)

    Neal, Andrew L; Geraki, Kalotina; Borg, Søren

    2013-01-01

    of modified complexation of both metals in transgenic grain overexpressing wheat ferritin. For zinc, there is a consistent doubling of the number of complexing phosphorus atoms. Although there is some EXAFS evidence for iron phytate in ferritin-expressing grain, there is also evidence of a structure lacking......We have used synchrotron-based X-ray fluorescence and absorption techniques to establish both metal distribution and complexation in mature wheat grains. In planta, extended X-ray absorption fine structure (EXAFS) spectroscopy reveals iron phytate and zinc phytate structures in aleurone cells...... of ferritin-expressing grains is quite different from that in wild-type grain. This may explain why the raised levels of minerals transported to the developing grain accumulate within the crease region of the transgenic grain....

  8. Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation.

    Science.gov (United States)

    Mitchell, Timothy K; Nguyen, Anh V; Evans, Geoffrey M

    2005-06-30

    Heterocoagulation between various fine mineral particles contained within a mineral suspension with different structural and surface chemistry can interfere with the ability of the flotation processes to selectively separate the minerals involved. This paper examines the interactions between chalcopyrite (a copper mineral) and pyrite (an iron mineral often bearing gold) as they approach each other in suspensions with added chemicals, and relates the results to the experimental data for the flotation recovery and selectivity. The heterocoagulation was experimentally studied using the electrophoretic light scattering (ELS) technique and was modelled by incorporating colloidal forces, including the van der Waals, electrostatic double layer and hydrophobic forces. The ELS results indicated that pyrite has a positive zeta potential (zeta) up to its isoelectric point (IEP) at approximately pH 2.2, while chalcopyrite has a positive zeta up to its IEP at approximately pH 5.5. This produces heterocoagulation of chalcopyrite with pyrite between pH 2.2 and pH 5.5. The heterocoagulation was confirmed by the ELS spectra measured with a ZetaPlus instrument from Brookhaven and by small-scale flotation experiments.

  9. Investigation of microbial-mineral interactions by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Brown, D.A.

    1998-01-01

    Moessbauer spectroscopy was used to investigate the reactions of microbes with iron minerals in aqueous solutions and as components of rocks in banded iron formations and granite. A microbial biofilm that formed on a wall of an excavated granite vault in a deep underground laboratory initiated this research. At the aerobic face of the biofilm, iron was found in a form of ferrihydrite; in the anaerobic face against the rock, iron was found as very small siderite particles. Laboratory incubations of the biofilm microbial consortium showed different mineral species could be formed. When the microbial consortium from the biofilm was incubated with magnetite grains, up to about 10% of the iron was altered in three weeks to hematite. The ability of the consortium to precipitate iron both as Fe 2+ and Fe 3+ in close proximity may have a bearing on the deposition of banded iron formations. These reactions could also be important in microbially induced corrosion

  10. Economic value of Valentines iron minerals

    International Nuclear Information System (INIS)

    Alvarado, B.

    1960-01-01

    This work is a investigation required by the government of Uruguay about the economic value of iron and manganese deposits in Valentines ferriferrous zone. The purpose is to study the potential commercial for the exportation.

  11. Coal fly ash as a source of iron in atmospheric dust.

    Science.gov (United States)

    Chen, Haihan; Laskin, Alexander; Baltrusaitis, Jonas; Gorski, Christopher A; Scherer, Michelle M; Grassian, Vicki H

    2012-02-21

    Anthropogenic coal fly ash (FA) aerosol may represent a significant source of bioavailable iron in the open ocean. Few measurements have been made that compare the solubility of atmospheric iron from anthropogenic aerosols and other sources. We report here an investigation of iron dissolution for three FA samples in acidic aqueous solutions and compare the solubilities with that of Arizona test dust (AZTD), a reference material for mineral dust. The effects of pH, simulated cloud processing, and solar radiation on iron solubility have been explored. Similar to previously reported results on mineral dust, iron in aluminosilicate phases provides the predominant component of dissolved iron. Iron solubility of FA is substantially higher than of the crystalline minerals comprising AZTD. Simulated atmospheric processing elevates iron solubility due to significant changes in the morphology of aluminosilicate glass, a dominant material in FA particles. Iron is continuously released into the aqueous solution as FA particles break up into smaller fragments. These results suggest that the assessment of dissolved atmospheric iron deposition fluxes and their effect on the biogeochemistry at the ocean surface should be constrained by the source, environmental pH, iron speciation, and solar radiation.

  12. Fluorometric determination of zirconium in minerals

    Science.gov (United States)

    Alford, W.C.; Shapiro, L.; White, C.E.

    1951-01-01

    The increasing use of zirconium in alloys and in the ceramics industry has created renewed interest in methods for its determination. It is a common constituent of many minerals, but is usually present in very small amounts. Published methods tend to be tedious, time-consuming, and uncertain as to accuracy. A new fluorometric procedure, which overcomes these objections to a large extent, is based on the blue fluorescence given by zirconium and flavonol in sulfuric acid solution. Hafnium is the only element that interferes. The sample is fused with borax glass and sodium carbonate and extracted with water. The residue is dissolved in sulfuric acid, made alkaline with sodium hydroxide to separate aluminum, and filtered. The precipitate is dissolved in sulfuric acid and electrolysed in a Melaven cell to remove iron. Flavonol is then added and the fluorescence intensity is measured with a photo-fluorometer. Analysis of seven standard mineral samples shows excellent results. The method is especially useful for minerals containing less than 0.25% zirconium oxide.

  13. BIOINSPIRED DESIGN AND DIRECTED EVOLUTION OF IRON CONTAINING ENZYMES FOR GREENSYNTHETIC PROCESSES AND BIOREMEDIATION

    Science.gov (United States)

    SU833912Title: Bioinspired Design and Directed Evolution of Iron Containing Enzymes for Green Synthetic Processes and BioremediationEdward I. Solomon, Shaun D. Wong, Lei Liu, Caleb B. Bell, IIICynthia Nolt-HelmsProject Period: August 15, 2008 - August 14,...

  14. A 1-h time interval between a meal containing iron and consumption of tea attenuates the inhibitory effects on iron absorption: a controlled trial in a cohort of healthy UK women using a stable iron isotope.

    Science.gov (United States)

    Ahmad Fuzi, Salma F; Koller, Dagmar; Bruggraber, Sylvaine; Pereira, Dora Ia; Dainty, Jack R; Mushtaq, Sohail

    2017-12-01

    Background: Tea has been shown to be a potent inhibitor of nonheme iron absorption, but it remains unclear whether the timing of tea consumption relative to a meal influences iron bioavailability. Objective: The aim of the study was to investigate the effect of a 1-h time interval of tea consumption on nonheme iron absorption in an iron-containing meal in a cohort of iron-replete, nonanemic female subjects with the use of a stable isotope ( 57 Fe). Design: Twelve women (mean ± SD age: 24.8 ± 6.9 y) were administered a standardized porridge meal extrinsically labeled with 4 mg 57 Fe as FeSO 4 on 3 separate occasions, with a 14-d time interval between each test meal (TM). The TM was administered with water (TM-1), with tea administered simultaneously (TM-2), and with tea administered 1 h postmeal (TM-3). Fasted venous blood samples were collected for iron isotopic analysis and measurement of iron status biomarkers. Fractional iron absorption was estimated by the erythrocyte iron incorporation method. Results: Iron absorption was 5.7% ± 8.5% (TM-1), 3.6% ± 4.2% (TM-2), and 5.7% ± 5.4% (TM-3). Mean fractional iron absorption was found to be significantly higher (2.2%) when tea was administered 1 h postmeal (TM-3) than when tea was administered simultaneously with the meal (TM-2) ( P = 0.046). An ∼50% reduction in the inhibitory effect of tea (relative to water) was observed, from 37.2% (TM-2) to 18.1% (TM-3). Conclusions: This study shows that tea consumed simultaneously with an iron-containing porridge meal leads to decreased nonheme iron absorption and that a 1-h time interval between a meal and tea consumption attenuates the inhibitory effect, resulting in increased nonheme iron absorption. These findings are not only important in relation to the management of iron deficiency but should also inform dietary advice, especially that given to those at risk of deficiency. This trial was registered at clinicaltrials.gov as NCT02365103. © 2017 American Society for

  15. The Efficiency of Iron and Manganese Removal from Groundwater Using Tower Aeration

    Directory of Open Access Journals (Sweden)

    Meghdad Pirsaheb

    2012-09-01

    Full Text Available Groundwaters passing through different layers of soil and due to its water properties and its high solubility, contain elements and minerals of material in the soil that sometimes can be dangerous for the health of consumers or at least undesirable in terms of cognitive beautiful. Iron and manganese are from constitutive of the soil and rocks of the Earth's surface. Water penetration through soil and rock can minerals such as these elements have dissolved and bring them into solution. The problems of iron and manganese in groundwater in domestic installations, commercial, industrial and refineries are created, and because much of the community water supply from underground water supplies will be removed where iron and manganese concentrations exceeded it is necessary. In this study Tower aeration system performance for the removal of iron and manganese from groundwater sources have been studied. In this research, pilot column aeration tower design, implementation and was established. This system made of PVC with a diameter and height 150 cm and 15 cm which was filled with flexible pipe parts. The initial pH=5, 7 and 9 and the initial concentration of Fe and Mn 2, 3 and 4 mg/l of the output system, sampling was done.

  16. Co-processing of lignite-plastic mixtures into liquid distillate fractions in the presence of iron catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Sharypov, V.I.; Beregovtsova, N.G.; Baryshnikov, S.V.; Doroginskaya, A.N. [Russian Academy of Sciences, Krasnoyarsk (Russian Federation). Inst. of Chemistry of Natural Organic Materials Sibirian Branch

    1997-12-31

    Some features of co-processing of Kansk-Achinsk lignite with plastics into hydrocarbon mixtures in the presence of activated iron-containing minerals (hematite, magnetite, pyrrhotite) were investigated under various operating parameters. The following catalytic processes were studied: pyrolysis in an inert atmosphere, hydropyrolysis and water-steam cracking. (orig.)

  17. An integrated technique using zero-valent iron and UV/H2O2 sequential process for complete decolorization and mineralization of C.I. Acid Black 24 wastewater

    International Nuclear Information System (INIS)

    Chang, M.-C.; Shu, H.-Y.; Yu, H.-H.

    2006-01-01

    The zero-valent iron (ZVI) reduction succeeds for decolorization, while UV/H 2 O 2 oxidation process results into mineralization, so that this study proposed an integrated technique by reduction coupling with oxidation process in order to acquire simultaneously complete both decolorization and mineralization of C.I. Acid Black 24. From the experimental data, the zero-valent iron addition alone can decolorize the dye wastewater yet it demanded longer time than ZVI coupled with UV/H 2 O 2 processes (Red-Ox). Moreover, it resulted into only about 30% removal of the total organic carbon (TOC), which was capable to be effectively mineralized by UV/H 2 O 2 process. The proposed sequential ZVI-UV/H 2 O 2 integration system cannot only effectively remove color and TOC in AB 24 wastewater simultaneously but also save irradiation power and time demand. Furthermore, the decolorization rate constants were about 3.77-4.0 times magnitude comparing with that by UV/H 2 O 2 process alone

  18. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability.

    Science.gov (United States)

    Gibson, Rosalind S; Bailey, Karl B; Gibbs, Michelle; Ferguson, Elaine L

    2010-06-01

    Plant-based complementary foods often contain high levels of phytate, a potent inhibitor of iron, zinc, and calcium absorption. This review summarizes the concentrations of phytate (as hexa- and penta-inositol phosphate), iron, zinc, and calcium and the corresponding phytate:mineral molar ratios in 26 indigenous and 27 commercially processed plant-based complementary foods sold in low-income countries. Phytate concentrations were highest in complementary foods based on unrefined cereals and legumes (approximately 600 mg/100 g dry weight), followed by refined cereals (approximately 100 mg/100 g dry weight) and then starchy roots and tubers (source foods and/or fortification with minerals. Dephytinization, either in the household or commercially, can potentially enhance mineral absorption in high-phytate complementary foods, although probably not enough to overcome the shortfalls in iron, zinc, and calcium content of plant-based complementary foods used in low-income countries. Instead, to ensure the World Health Organization estimated needs for these minerals from plant-based complementary foods for breastfed infants are met, dephytinization must be combined with enrichment with animal-source foods and/or fortification with appropriate levels and forms of mineral fortificants.

  19. Properties and solubility of chrome in iron alumina phosphate glasses containing high level nuclear waste

    International Nuclear Information System (INIS)

    Huang, W.; Day, D.E.; Ray, C.S.; Kim, C.W.; Reis, S.T.D.

    2004-01-01

    Chemical durability, glass formation tendency, and other properties of iron alumina phosphate glasses containing 70 wt% of a simulated high level nuclear waste (HLW), doped with different amounts of Cr 2 O 3 , have been investigated. All of the iron alumina phosphate glasses had an outstanding chemical durability as measured by their small dissolution rate (1 . 10 -9 g/(cm 2 . min)) in deionized water at 90 C for 128 d, their low normalized mass release as determined by the product consistency test (PCT) and a barely measurable corrosion rate of 2 . d) after 7 d at 200 C by the vapor hydration test (VHT). The solubility limit for Cr 2 O 3 in the iron phosphate melts was estimated at 4.1 wt%, but all of the as-annealed melts contained a few percent of crystalline Cr 2 O 3 that had no apparent effect on the chemical durability. The chemical durability was unchanged after deliberate crystallization, 48 h at 650 C. These iron phosphate waste forms, with a waste loading of at least 70 wt%, can be readily melted in commercial refractory crucibles at 1250 C for 2 to 4 h, are resistant to crystallization, meet all current US Department of Energy requirements for chemical durability, and have a solubility limit for Cr 2 O 3 which is at least three times larger than that for borosilicate glasses. (orig.)

  20. Preserved filamentous microbial biosignatures in the Brick Flat gossan, Iron Mountain, California

    Science.gov (United States)

    Williams, Amy J.; Sumner, Dawn Y.; Alpers, Charles N.; Karunatillake, Suniti; Hofmann, Beda A

    2015-01-01

    A variety of actively precipitating mineral environments preserve morphological evidence of microbial biosignatures. One such environment with preserved microbial biosignatures is the oxidized portion of a massive sulfide deposit, or gossan, such as that at Iron Mountain, California. This gossan may serve as a mineralogical analogue to some ancient martian environments due to the presence of oxidized iron and sulfate species, and minerals that only form in acidic aqueous conditions, in both environments. Evaluating the potential biogenicity of cryptic textures in such martian gossans requires an understanding of how microbial textures form biosignatures on Earth. The iron-oxide-dominated composition and morphology of terrestrial, nonbranching filamentous microbial biosignatures may be distinctive of the underlying formation and preservation processes. The Iron Mountain gossan consists primarily of ferric oxide (hematite), hydrous ferric oxide (HFO, predominantly goethite), and jarosite group minerals, categorized into in situ gossan, and remobilized iron deposits. We interpret HFO filaments, found in both gossan types, as HFO-mineralized microbial filaments based in part on (1) the presence of preserved central filament lumina in smooth HFO mineral filaments that are likely molds of microbial filaments, (2) mineral filament formation in actively precipitating iron-oxide environments, (3) high degrees of mineral filament bending consistent with a flexible microbial filament template, and (4) the presence of bare microbial filaments on gossan rocks. Individual HFO filaments are below the resolution of the Mars Curiosity and Mars 2020 rover cameras, but sinuous filaments forming macroscopic matlike textures are resolvable. If present on Mars, available cameras may resolve these features identified as similar to terrestrial HFO filaments and allow subsequent evaluation for their biogenicity by synthesizing geochemical, mineralogical, and morphological analyses. Sinuous

  1. Trace mineral interactions during elevated calcium consumption

    International Nuclear Information System (INIS)

    Smith, K.T.; Luhrsen, K.R.

    1986-01-01

    Elevated calcium consumption is reported to affect trace mineral bioavailability. The authors examined this phenomenon in both single dose radio-label test meals and an eight week feeding trial in rats. In the single dose studies, human milk, cows milk, and various calcium sources were examined in relation to radio-iron and radio-zinc retention. 59 Fe retention was greater from human milk than cows milk. However, when the calcium content of human milk was adjusted (with CaHPO 4 or CaCO 3 ) to equal the level in cows milk, iron retention was depressed. Similarly, when calcium sources (CaCO 3 , CaHPO 4 , hydroxy-apatite, bone meal) were examined at different calcium:metal molar ratios, the degree of inhibition on metal retention varied. In general, phosphate salts were more inhibiting than carbonates. In the feeding trial, calcium was fed in diets at normal (0.5%) or elevated (1.5%) levels. Serum, liver, kidney, and bone trace mineral profiles were obtained. In general, most trace elements showed decreased levels in the tissues. Zinc and iron were most striking, followed by magnesium with minor changes in copper. A high calcium:high mineral supplemented group was also fed. Mixed mineral supplementation prevented all calcium interactions. These data indicate the importance of calcium mineral interactions in bioavailability considerations in both milk sources and in mineral supplementation

  2. Effects of mineral matters on evolution of sulfur-containing gases in pyrolysis and hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion

    1998-07-01

    The evolution of sulfur-containing gases were investigated using two Chinese coals with their de-ash and de-pyrite forms in pyrolysis and hydropyrolysis. Mineral matter can not only return H{sub 2}S produced in pyrolysis and hydropyrolysis, but also catalyse hydrodesulfurization and reduce COS formation. Secondary reactions markedly influence COS formation. Mineral matter can reduce CH{sub 3}SH formation, and pyrite shows positive effects on CH{sub 3}SH formation. 7 refs., 6 figs., 1 tab.

  3. Single Particulate SEM-EDX Analysis of Iron-Containing Coarse Particulate Matter in an Urban Environment: Sources and Distribution of Iron within Cleveland, Ohio

    Science.gov (United States)

    The physicochemical properties of coarse-mode, iron-containing particles, and their temporal and spatial distributions are poorly understood. Single particle analysis combining x-ray elemental mapping and computer-controlled scanning electron microscopy (CCSEM-EDX) of passively ...

  4. Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume

    Energy Technology Data Exchange (ETDEWEB)

    Toner, Brandy M.; Fakra, Sirine C.; Manganini, Steven J.; Santelli, Cara M.; Marcus, Matthew A.; Moffett, James W.; Rouxel, Olivier; German, Christopher R.; Edwards, Katrina J.

    2008-09-20

    Hydrothermal venting associated with mid-ocean ridge volcanism is globally widespread. This venting is responsible for a dissolved iron flux to the ocean that is approximately equal to that associated with continental riverine runoff. For hydrothermal fluxes, it has long been assumed that most of the iron entering the oceans is precipitated in inorganic forms. However, the possibility of globally significant fluxes of iron escaping these mass precipitation events and entering open-ocean cycles is now being debated, and two recent studies suggest that dissolved organic ligands might influence the fate of hydrothermally vented metals. Here we present spectromicroscopic measurements of iron and carbon in hydrothermal plume particles at the East Pacific Rise mid-ocean ridge. We show that organic carbon-rich matrices, containing evenly dispersed iron(II)-rich materials, are pervasive in hydrothermal plume particles. The absence of discrete iron(II) particles suggests that the carbon and iron associate through sorption or complexation. We suggest that these carbon matrices stabilize iron(II) released from hydrothermal vents in the region, preventing its oxidation and/or precipitation as insoluble minerals. Our findings have implications for deep-sea biogeochemical cycling of iron, a widely recognized limiting nutrient in the oceans.

  5. Niger Republic mineral planning : Part four Second volume : Main mineral substances specific study and their geological context

    International Nuclear Information System (INIS)

    Franconi, Antoine; Joo', Julien; Zibo, Idde

    1981-01-01

    This volume describes Niger Republic mineral substances capable of rising economic interest. After relating minerals occurrence , indices and deposits types, conclusions and recommendations have been made for mineral prospecting. Mineral substances described are : Copper, lead and zinc, molybdena, iron, manganese, titanium, vanadium, nickel and chrome ( cobalt and platinoid ), lithium, lignite, diamond and diverse substances rare earth, beryllium, silver, bismuth arsenic and antimony, barytine, alunite, talc and asbestos ( graphite and diatomite) [fr

  6. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil.

    Science.gov (United States)

    Muehe, E Marie; Adaktylou, Irini J; Obst, Martin; Zeitvogel, Fabian; Behrens, Sebastian; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2013-01-01

    Cadmium (Cd) is of environmental relevance as it enters soils via Cd-containing phosphate fertilizers and endangers human health when taken up by crops. Cd is known to associate with Fe(III) (oxyhydr)oxides in pH-neutral to slightly acidic soils, though it is not well understood how the interrelation of Fe and Cd changes under Fe(III)-reducing conditions. Therefore, we investigated how the mobility of Cd changes when a Cd-bearing soil is faced with organic carbon input and reducing conditions. Using fatty acid profiles and quantitative PCR, we found that both fermenting and Fe(III)-reducing bacteria were stimulated by organic carbon-rich conditions, leading to significant Fe(III) reduction. The reduction of Fe(III) minerals was accompanied by increasing soil pH, increasing dissolved inorganic carbon, and decreasing Cd mobility. SEM-EDX mapping of soil particles showed that a minor fraction of Cd was transferred to Ca- and S-bearing minerals, probably carbonates and sulfides. Most of the Cd, however, correlated with a secondary iron mineral phase that was formed during microbial Fe(III) mineral reduction and contained mostly Fe, suggesting an iron oxide mineral such as magnetite (Fe3O4). Our data thus provide evidence that secondary Fe(II) and Fe(II)/Fe(III) mixed minerals could be a sink for Cd in soils under reducing conditions, thus decreasing the mobility of Cd in the soil.

  7. Chladniite: A New Mineral Honoring the Father of Meteoritics

    Science.gov (United States)

    McCoy, T. J.; Steele, I. M.; Keil, K.; Leonard, B. F.; Endress, M.

    1993-07-01

    The IIICD irons are a small group of meteorites, three of which (Maltahohe, Carlton, and Dayton) contain silicate-bearing inclusions rich in troilite, graphite, schreibersite, and phosphates [1]. The Na,Ca,Mg-rich phosphates bnanite and panethite were first described in Dayton [2]. We have discovered a new mineral, Na(sub)2CaMg(sub)7(PO(sub)4)(sub)6, as a single grain within a silicate-bearing inclusion in the Carlton (IIICD) iron meteorite. The mineral and mineral name have been approved by the Commission on New Minerals and Mineral Names of the International Mineralogical Association. Chladniite occurs as a single grain near the edge of a silicate-bearing inclusion in polished section USNM 2707. This inclusion is dominated by chlorapatite and contains olivine, pyroxene, plagioclase, schreibersite, and troilite. Chladniite occurs as a single, massive grain (975 x 175 micrometers) and is cross-cut by hydrated iron oxides of terrestrial origin. In polished section, it is gray, dark, and weakly anisotropic. Cleavage is rhomboidal in plan and very likely rhombohedral in three dimension. The formula for chladniite (derived from five microprobe analyses) is Na(sub)1.77Si(sub)0.08 Ca(sub)0.98(Mg(sub)6.96Fe(sub)0.26Mn(sub)0.04)(sub)Sigma = 7.26(Po(sub)0.98 O(sub)4)(sub)6. The idealized formula is Na(sub)2CaMg(sub)7(PO(sub)4)(sub)6. Chladniite is related to two rare minerals, fillowite [3] and johnsomervilleite [4], where fillowite is the Mn-dominated and johnsomervilleite the Fe-dominated analog of chladniite. The unique occurrence of chladniite, the relatively small size of the grain, and the presence of terrestrial weathering veins all presented challenges for removing material for X-ray studies. A 30-micrometer-diameter spindle of material was removed after microdrilling a shallow trench and breaking the spindle with a surgical scalpel. Studies were performed using both a Gandolfi camera to obtain a powder pattern and a four-circle diffractometer to determine the unit

  8. Experimental Discovery of Magnetoresistance and Its Memory Effect in Methylimidazolium-Type Iron-Containing Ionic Liquids

    KAUST Repository

    Zhang, Haitao; Zhang, Suojiang; Zhang, Xixiang

    2016-01-01

    carriers. Here, we report the observation of positive magnetoresistance and its memory effect in methylimidazolium-type iron-containing ionic liquids (ILs). Both the electrical transport and magnetic properties of ILs were measured to understand

  9. Minerals Yearbook, volume I, Metals and Minerals

    Science.gov (United States)

    ,

    2018-01-01

    The U.S. Geological Survey (USGS) Minerals Yearbook discusses the performance of the worldwide minerals and materials industries and provides background information to assist in interpreting that performance. Content of the individual Minerals Yearbook volumes follows:Volume I, Metals and Minerals, contains chapters about virtually all metallic and industrial mineral commodities important to the U.S. economy. Chapters on survey methods, summary statistics for domestic nonfuel minerals, and trends in mining and quarrying in the metals and industrial mineral industries in the United States are also included.Volume II, Area Reports: Domestic, contains a chapter on the mineral industry of each of the 50 States and Puerto Rico and the Administered Islands. This volume also has chapters on survey methods and summary statistics of domestic nonfuel minerals.Volume III, Area Reports: International, is published as four separate reports. These regional reports contain the latest available minerals data on more than 180 foreign countries and discuss the importance of minerals to the economies of these nations and the United States. Each report begins with an overview of the region’s mineral industries during the year. It continues with individual country chapters that examine the mining, refining, processing, and use of minerals in each country of the region and how each country’s mineral industry relates to U.S. industry. Most chapters include production tables and industry structure tables, information about Government policies and programs that affect the country’s mineral industry, and an outlook section.The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the Minerals Yearbook are welcomed.

  10. The Use of Flow-Injection Analysis with Chemiluminescence Detection of Aqueous Ferrous Iron in Waters Containing High Concentrations of Organic Compounds

    Directory of Open Access Journals (Sweden)

    Carrick M. Eggleston

    2009-06-01

    Full Text Available An evaluation of flow-injection analysis with chemiluminescence detection (FIA-CL to quantify Fe2+(aq in freshwaters was performed. Iron-coordinating and/or iron-reducing compounds, dissolved organic matter (DOM, and samples from two natural water systems were used to amend standard solutions of Fe2+(aq. Slopes of the response curves from ferrous iron standards (1 – 100 nM were compared to the response curves of iron standards containing the amendments. Results suggest that FIA-CL is not suitable for systems containing ascorbate, hydroxylamine, cysteine or DOM. Little or no change in sensitivity occurred in solutions of oxalate and glycine or in natural waters with little organic matter.

  11. Proton activation studies of changes in mineral composition of eucalyptus obliqua due to phytophthora cinnamomi

    International Nuclear Information System (INIS)

    Chaudri, M.A.; Lee, M.M.; Rouse, J.L.; Weste, G.

    1978-01-01

    As part of a study of disease caused by Phytophthora cinnamomi in native vegetation, the mineral composition of diseased plants was compared with those free from disease, but grown under the same conditions. Young plants of Eucalyptus obliqua, three years old and with well-formed lignotubers, were selected (a) diseased plant from soil containing a high concentration of P. cinnamomi, and (b) unaffected plant from an adjacent area where the soil was free from this pathogen. The plants were ashed and their mineral composition was compared by activation analysis using proton beams from the Melbourne University Cyclotron. Results showed a 70% reduction in iron and 41% in titanium from diseased plants compared with disease-free plants. The reduction in iron is associated with severe chlorosis which occurs as a primary symptom in most plants attacked by this pathogen

  12. Long-term alteration of bentonite in the presence of metallic iron

    Energy Technology Data Exchange (ETDEWEB)

    Kumpulainen, Sirpa; Kiviranta, Leena (BandTech Oy (Finland)); Carlsson, Torbjoern; Muurinen, Arto (VTT (Finland)); Svensson, Daniel (Svensk Kaernbraenslehantering AB (Sweden)); Sasamoto, Hiroshi; Yui, Mikatzu (JAEA (Japan)); Wersin, Paul; Rosch, Dominic (Gruner Ltd (Switzerland))

    2010-05-15

    , reducing conditions, a pH of around eight, and measurable amounts of Mg2+, Ca2+, and SO{sub 4}{sup 2-}. The bentonite was carefully divided into subsamples, which were studied with XRD, FTIR, SEM, ICP-AES, TEM-EDS, XANES, Moessbauer spectroscopy, and wet-chemical methods. Briefly, bentonite samples containing cast iron cylinders contained higher amounts of iron than the reference samples. The corroded iron was predominantly in the divalent form, and its concentration was highest close to the cylinder and decreased strongly with increasing distance from its surface. The average corrosion rate estimated from Fe profiles in the Fe-reacted samples is about 1.7 mm/a. The results from the Moessbauer spectroscopy analyses suggest that no reduction of the octahedral Fe3+ in the montmorillonite layers had occurred. The swelling pressure and the hydraulic conductivity were measured in undisturbed subsamples of the MX-80. The iron-bentonite interaction seemed to slightly decrease the swelling pressure, while the hydraulic conductivity was unchanged. The corrosion rate of the Cu vessel surface was estimated from the Cu analysis in the clay to be about 0.035 mm/a. The JAEA samples were analyzed with regard to the conditions in the water and in the bentonite. The water exhibited pH values in the approximate range of 11 to 13, and clearly reducing conditions with Eh values between -260 and -580 mV. XRD and FTIR analyses of the bentonite material, showed that montmorillonite was completely transformed to a non-swelling 7 Aa clay mineral, most likely to the serpentine mineral berthierine, in samples containing 0.3-0.6 M NaCl solutions, with the highest pH values. The transformation was incomplete in samples containing 0.1 M NaHCO3 solution, and did not occur at all when the solution was either 0.05 M Na{sub 2}SO{sub 4} or distilled water

  13. Long-term alteration of bentonite in the presence of metallic iron

    International Nuclear Information System (INIS)

    Kumpulainen, Sirpa; Kiviranta, Leena; Carlsson, Torbjoern; Muurinen, Arto; Svensson, Daniel; Sasamoto, Hiroshi; Yui, Mikatzu; Wersin, Paul; Rosch, Dominic

    2010-05-01

    around eight, and measurable amounts of Mg 2+ , Ca 2+ , and SO 4 2- . The bentonite was carefully divided into subsamples, which were studied with XRD, FTIR, SEM, ICP-AES, TEM-EDS, XANES, Moessbauer spectroscopy, and wet-chemical methods. Briefly, bentonite samples containing cast iron cylinders contained higher amounts of iron than the reference samples. The corroded iron was predominantly in the divalent form, and its concentration was highest close to the cylinder and decreased strongly with increasing distance from its surface. The average corrosion rate estimated from Fe profiles in the Fe-reacted samples is about 1.7 mm/a. The results from the Moessbauer spectroscopy analyses suggest that no reduction of the octahedral Fe3+ in the montmorillonite layers had occurred. The swelling pressure and the hydraulic conductivity were measured in undisturbed subsamples of the MX-80. The iron-bentonite interaction seemed to slightly decrease the swelling pressure, while the hydraulic conductivity was unchanged. The corrosion rate of the Cu vessel surface was estimated from the Cu analysis in the clay to be about 0.035 mm/a. The JAEA samples were analyzed with regard to the conditions in the water and in the bentonite. The water exhibited pH values in the approximate range of 11 to 13, and clearly reducing conditions with Eh values between -260 and -580 mV. XRD and FTIR analyses of the bentonite material, showed that montmorillonite was completely transformed to a non-swelling 7 Aa clay mineral, most likely to the serpentine mineral berthierine, in samples containing 0.3-0.6 M NaCl solutions, with the highest pH values. The transformation was incomplete in samples containing 0.1 M NaHCO3 solution, and did not occur at all when the solution was either 0.05 M Na 2 SO 4 or distilled water

  14. In Vitro Enzymatic Reduction Kinetics of Mineral Oxides by Membrane Fractions from Shewanella oneidensis MR-1

    International Nuclear Information System (INIS)

    Ruebush, S.; Icopini, G.; Brantley, S.; Tien, M.

    2006-01-01

    This study documents the first example of in vitro solid-phase mineral oxide reduction by enzyme-containing membrane fractions. Previous in vitro studies have only reported the reduction of aqueous ions. Total membrane (TM) fractions from iron-grown cultures of Shewanella oneidensis MR-1 were isolated and shown to catalyze the reduction of goethite, hematite, birnessite, and ramsdellite/pyrolusite using formate. In contrast, nicotinamide adenine dinucleotide (NADH) and succinate cannot function as electron donors. The significant implications of observations related to this cell-free system are: (i) both iron and manganese mineral oxides are reduced by the TM fraction, but aqueous U(VI) is not; (ii) TM fractions from anaerobically grown, but not aerobically grown, cells can reduce the mineral oxides; (iii) electron shuttles and iron chelators are not needed for this in vitro reduction, documenting conclusively that reduction can occur by direct contact with the mineral oxide; (iv) electron shuttles and EDTA stimulate the in vitro Fe(III) reduction, documenting that exogenous molecules can enhance rates of enzymatic mineral reduction; and (v) multiple membrane components are involved in solid-phase oxide reduction. The membrane fractions, consisting of liposomes of cytoplasmic and outer membrane segments, contain at least 100 proteins including the enzyme that oxidizes formate, formate dehydrogenase. Mineral oxide reduction was inhibited by the addition of detergent Triton X-100, which solubilizes membranes and their associated proteins, consistent with the involvement of multiple electron carriers that are disrupted by detergent addition. In contrast, formate dehydrogenase activity was not inhibited by Triton X-100. The addition of anthraquinone-2,6-disulfonate (AQDS) and menaquinone-4 was unable to restore activity; however, menadione (MD) restored 33% of the activity. The addition of AQDS and MD to reactions without added detergent increased the rate of goethite

  15. Mesothelioma and other lung disease in taconite miners; the uncertain role of non-asbestiform EMP.

    Science.gov (United States)

    Mandel, Jeffrey H; Odo, Nnaemeka U

    2018-04-10

    The purpose of this paper was to assess the role of non-asbestiform amphibole EMPs in the etiology of mesotheliomas and other lung disease in taconite (iron ore) miners. Increased mesothelioma rates have been described in Minnesota taconite workers since the late 1990s. Currently, over 100 cases have been reported by the Minnesota Department of Health within the complete cohort of miners in Minnesota. Geologic sampling has indicated that only the eastern part of the iron range contains non-asbestiform amphibole elongate mineral particles (EMPs), in close proximity to the ore. This type of EMP has been less studied and also exists in talc and gold mining. A series of investigations into the state's taconite industry have been recently completed. Results from a cohort mortality study indicated an SMR of 2.77 (95% CI = 1.87-3.96) for mesothelioma. In a case-control study, the odds ratio for mesothelioma for high vs. low EMP exposure was 2.25 (5% CI = 1.13-4.5) but EMPs in this study were counted by phase contrast microscopy. Odds ratios were not elevated in mines located in the eastern part of the Mesabi iron range. The overall findings suggest that mesothelioma in taconite miners is related to EMP exposure. Because of the way EMPs were counted, results from these studies cannot allow a firm conclusion about the association between EMP exposure and the reported excess mesothelioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Preparing rare earth-silicon-iron-aluminum alloys

    International Nuclear Information System (INIS)

    Marchant, J.D.; Morrice, E.; Herve, B.P.; Wong, M.M.

    1980-01-01

    As part of its mission to assure the maximum recovery and use of the Nation's mineral resources, the Bureau of Mines, investigated an improved procedure for producing rare earth-silicon alloys. For example, a charge consisting of 681 grams of mixed rare-earth oxides, 309 grams of ferrosilicon (75 wt-pct Si), and 182 grams of aluminum metal along with a flux consisting of 681 grams of CaO and 45 grams of MgO was reacted at 1500 0 C in an induction furnace. Good slag-metal separation was achieved. The alloy product contained, in weight-percent, 53 RE, 28 Si, 11 Fe, and 4 Al with a rare earth recovery of 80 pct. In current industrial practice rare earth recoveries are usually about 60 pct in alloy products that contain approximately 30 wt-pct each of rare earths and silicon. Metallurgical evaluations showed the alloys prepared in this investigation to be as effective in controlling the detrimental effect of sulfur in steel and cast iron as the commercial rare earth-silicon-iron alloys presently used in the steel industry

  17. Biological mineralization of iron: Studies using Moesbauer spectroscopy and complementary techniques

    International Nuclear Information System (INIS)

    Webb, J.; Kim, K.S.; Tran, K.C.; Pierre, T.G.S.

    1988-01-01

    Biological deposition of solid Fe-containing phases can be studied using 57 Fe Moessbauer spectroscopy. Other techniques are needed in order to understand this complex process. These include proton-induced X-ray and γ-ray emission (PIXE/PIGME), electron microscopy, electron and X-ray diffraction, infrared spectroscopy and chemical characterization of organic components. This paper reviews and evaluates the application of these techniques to biological mineralization of Fe, particularly that occurring in the radula teeth of the marine molluscs, chitons and limpets. (orig.)

  18. Fatigue properties of ductile cast iron containing chunky graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, P., E-mail: ferro@gest.unipd.it [Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, I-36100 Vicenza (Italy); Lazzarin, P.; Berto, F. [Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, I-36100 Vicenza (Italy)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Experimental determination of high cycle fatigue properties of EN-GJS-400. Black-Right-Pointing-Pointer Evaluation of the influence of chunky graphite morphology on fatigue life. Black-Right-Pointing-Pointer Metallurgical analysis and microstructural parameters determination. Black-Right-Pointing-Pointer Nodule counting and nodularity rating. - Abstract: This work deals with experimental determination of high cycle fatigue properties of EN-GJS-400 ductile cast iron containing chunky graphite. Constant amplitude axial tests were performed at room temperature under a nominal load ratio R = 0. In order to evaluate the influence of chunky graphite morphology on fatigue life, fatigue tests were carried out also on a second set of specimens without this microstructural defect. All samples were taken from the core of a large casting component. Metallurgical analyses were performed on all the samples and some important microstructural parameters (nodule count and nodularity rating, among others) were measured and compared. It was found that a mean content of 40% of chunky graphite in the microstructure (with respect to total graphite content) does not influence significantly the fatigue strength properties of the analysed cast iron. Such result was attributed to the presence of microporosity detected on the surface fracture of the specimens by means of electron scanning microscope.

  19. Fatigue properties of ductile cast iron containing chunky graphite

    International Nuclear Information System (INIS)

    Ferro, P.; Lazzarin, P.; Berto, F.

    2012-01-01

    Highlights: ► Experimental determination of high cycle fatigue properties of EN-GJS-400. ► Evaluation of the influence of chunky graphite morphology on fatigue life. ► Metallurgical analysis and microstructural parameters determination. ► Nodule counting and nodularity rating. - Abstract: This work deals with experimental determination of high cycle fatigue properties of EN-GJS-400 ductile cast iron containing chunky graphite. Constant amplitude axial tests were performed at room temperature under a nominal load ratio R = 0. In order to evaluate the influence of chunky graphite morphology on fatigue life, fatigue tests were carried out also on a second set of specimens without this microstructural defect. All samples were taken from the core of a large casting component. Metallurgical analyses were performed on all the samples and some important microstructural parameters (nodule count and nodularity rating, among others) were measured and compared. It was found that a mean content of 40% of chunky graphite in the microstructure (with respect to total graphite content) does not influence significantly the fatigue strength properties of the analysed cast iron. Such result was attributed to the presence of microporosity detected on the surface fracture of the specimens by means of electron scanning microscope.

  20. Binding of Pseudomonas aeruginosa Apo-Bacterioferritin Associated Ferredoxin to Bacterioferritin B Promotes Heme Mediation of Electron Delivery and Mobilization of Core Mineral Iron†

    Science.gov (United States)

    Weeratunga, Saroja K.; Gee, Casey E.; Lovell, Scott; Zeng, Yuhong; Woodin, Carrie L.; Rivera, Mario

    2009-01-01

    The bfrB gene from Pseudomonas aeruginosa was cloned and expressed in E. coli. The resultant protein (BfrB), which assembles into a 445.3 kDa complex0020from 24 identical subunits, binds 12 molecules of heme axially coordinated by two Met residues. BfrB, isolated with 5–10 iron atoms per protein molecule, was reconstituted with ferrous ions to prepare samples with a core mineral containing 600 ± 40 ferric ions per BfrB molecule and approximately one phosphate molecule per iron atom. In the presence of sodium dithionite or in the presence of P. aeruginosa ferredoxin NADP reductase (FPR) and NADPH the heme in BfrB remains oxidized and the core iron mineral is mobilized sluggishly. In stark contrast, addition of NADPH to a solution containing BfrB, FPR and the apo-form of P. aeruginosa bacterioferritin associated ferredoxin (apo-Bfd) results in rapid reduction of the heme in BfrB and in the efficient mobilization of the core iron mineral. Results from additional experimentation indicate that Bfd must bind to BfrB to promote heme mediation of electrons from the surface to the core to support the efficient mobilization of ferrous ions from BfrB. In this context, the thus far mysterious role of heme in bacterioferritins has been brought to the front by reconstituting BfrB with its physiological partner, apo-Bfd. These findings are discussed in the context of a model for the utilization of stored iron in which the significant upregulation of the bfd gene under low-iron conditions [Ochsner, U.A., Wilderman, P.J., Vasil, A.I., and Vasil, M.L. (2002) Mol. Microbiol. 45, 1277–1287] ensures sufficient concentrations of apo-Bfd to bind BfrB and unlock the iron stored in its core. Although these findings are in contrast to previous speculations suggesting redox mediation of electron transfer by holo-Bfd, the ability of apo-Bfd to promote iron mobilization is an economical strategy used by the cell because it obviates the need to further deplete cellular iron levels to

  1. The effect of iron and copper impurities on the wettability of sphalerite (110) surface.

    Science.gov (United States)

    Simpson, Darren J; Bredow, Thomas; Chandra, Anand P; Cavallaro, Giuseppe P; Gerson, Andrea R

    2011-07-15

    The effect of impurities in the zinc sulfide mineral sphalerite on surface wettability has been investigated theoretically to shed light on previously reported conflicting results on sphalerite flotation. The effect of iron and copper impurities on the sphalerite (110) surface energy and on the water adsorption energy was calculated with the semi-empirical method modified symmetrically orthogonalized intermediate neglect of differential overlap (MSINDO) using the cyclic cluster model. The effect of impurities or dopants on surface energies is small but significant. The surface energy increases with increasing surface iron concentration while the opposite effect is reported for increasing copper concentration. The effect on adsorption energies is much more pronounced with water clearly preferring to adsorb on an iron site followed by a zinc site, and copper site least favorable. The theoretical results indicate that a sphalerite (110) surface containing iron is more hydrophilic than the undoped zinc sulfide surface. In agreement with the literature, the surface containing copper (either naturally or by activation) is more hydrophobic than the undoped surface. Copyright © 2011 Wiley Periodicals, Inc.

  2. Visibility of an iron-containing fiducial marker in magnetic resonance imaging for high-precision external beam prostate radiotherapy.

    Science.gov (United States)

    Tanaka, Osamu; Komeda, Hisao; Hirose, Shigeki; Taniguchi, Takuya; Ono, Kousei; Matsuo, Masayuki

    2017-11-29

    Visualization of fiducial gold markers is critical for registration on computed tomography (CT) and magnetic resonance imaging (MRI) for imaging-guided radiotherapy. Although larger markers provide better visualization on MRI, they tend to generate artifacts on CT. MRI is strongly influenced by the presence of metals, such as iron, in the body. Here we compared efficacies of a 0.5% iron-containing gold marker (GM) and a traditional non-iron-containing marker. Twenty-seven patients underwent CT/MRI fusion-based intensity-modulated radiotherapy. Markers were placed by urologists under local anesthesia. Gold Anchor (GA; diameter: 0.28 mm; length: 10 mm), an iron-containing marker, was placed on the right side of the prostate using a 22-G needle and VISICOIL (VIS; diameter: 0.35 mm; length: 10 mm), a non-iron-containing marker, was placed on the left side using a 19-G needle. T2*-weighted images MRI sequences were obtained. Two radiation oncologists and a radiation technologist evaluated and assigned scores for visual quality on a five-point scale (1, poor; 5, best visibility). Artifact generation on CT was slightly greater with GA than with VIS. The mean marker visualization scores on MRI of all three observers were significantly superior for GA than for VIS (3.5 vs 3.2, 3.9 vs 3.2, and 4.0 vs 2.9). The actual size of the spherical GA was about 2 mm in diameter, but the signal void on MRI was approximately 5 mm. Although both markers were well visualized and can be recommended clinically, the results suggest that GA has some subtle advantages for quantitative visualization that could prove useful in certain situations of stereotactic body radiotherapy and intensity-modulated radiotherapy. © 2017 John Wiley & Sons Australia, Ltd.

  3. Iron and manganese oxide mineralization in the Pacific

    Science.gov (United States)

    Hein, J. R.; Koschinsky, A.; Halbach, P.; Manheim, F. T.; Bau, M.; Jung-Keuk, Kang; Lubick, N.

    1997-01-01

    Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. These processes are discussed.

  4. Cast iron transport, storage and disposal containers for use in UK nuclear licensed sites - 59412

    International Nuclear Information System (INIS)

    Viermann, Joerg; Messer, Matthias P.

    2012-01-01

    Document available in abstract form only. Full text of publication follows: Ductile Cast Iron Containers of the types GCVI (UK trademark -GNS YELLOW BOX R ) and MOSAIK R have been in use in Germany for transport, storage and disposal of intermediate level radioactive waste (ILW) for more than two decades. In 2009 a number of containers of these types were delivered to various Magnox sites as so called pathfinders to test their suitability for Magnox waste streams. The results were encouraging. Therefore the Letter of Compliance (LoC) procedure was started to prove the suitability of packages using these types of containers for the future UK Geological Disposal Facility (GDF) and a conceptual Letter of Compliance (cLoC) was obtained from RWMD in 2010. Waste stream specific applications for Interim Stage Letters of Compliance (ILoC) for a number of waste streams from different Magnox sites and from the UK's only pressurised water reactor, Sizewell B are currently being prepared and discussed with RWMD. In order to achieve a package suitable for interim storage and disposal the contents of a Ductile Cast Iron Container only has to be dried. Mobile drying facilities are readily available. Containers and drying facilities form a concerted system

  5. Sorption of pesticides to aquifer minerals

    DEFF Research Database (Denmark)

    Clausen, Liselotte; Fabricius, Ida Lykke

    2000-01-01

    This paper summarizes results from a work were the sorption of five pesticides on seven minerals were studied in order to quantify the adsorption to different mineral surfaces. Investigated mineral phases are: quartz, calcite, kaolinite, a-alumina, and three iron oxides (2-line ferrihydrite......, goethite, lepidocrocite). Selected pesticides are: atrazine, isoproturon, mecoprop, 2,4-D, and bentazone. The results demonstrate that pesticides adsorb to pure mineral surfaces. However, the size of the adsorption depends on the type of pesticide and the type of mineral....

  6. Microbial processes in banded iron formation deposition

    DEFF Research Database (Denmark)

    Posth, Nicole; Konhauser, Kurt; Kappler, Andreas

    2013-01-01

    , remains unresolved. Evidence of an anoxic Earth with only localized oxic areas until the Great Oxidation Event ca 2·45 to 2·32 Ga makes the investigation of O2-independent mechanisms for banded iron formation deposition relevant. Recent studies have explored the long-standing proposition that Archean......Banded iron formations have been studied for decades, particularly regarding their potential as archives of the Precambrian environment. In spite of this effort, the mechanism of their deposition and, specifically, the role that microbes played in the precipitation of banded iron formation minerals...... banded iron formations may have been formed, and diagenetically modified, by anaerobic microbial metabolisms. These efforts encompass a wide array of approaches including isotope, ecophysiological and phylogeny studies, molecular and mineral marker analysis, and sedimentological reconstructions. Herein...

  7. Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz.

    Science.gov (United States)

    Neil, Chelsea W; Lee, Byeongdu; Jun, Young-Shin

    2014-10-21

    Iron(III) (hydr)oxides play an important role in the geochemical cycling of contaminants in natural and engineered aquatic systems. The ability of iron(III) (hydr)oxides to immobilize contaminants can be related to whether the precipitates form heterogeneously (e.g., at mineral surfaces) or homogeneously in solution. Utilizing grazing incidence small-angle X-ray scattering (GISAXS), we studied heterogeneous iron(III) (hydr)oxide nucleation and growth on quartz substrates for systems containing arsenate and phosphate anions. For the iron(III) only system, the radius of gyration (Rg) of heterogeneously formed precipitates grew from 1.5 to 2.5 (± 1.0) nm within 1 h. For the system containing 10(-5) M arsenate, Rg grew from 3.6 to 6.1 (± 0.5) nm, and for the system containing 10(-5) M phosphate, Rg grew from 2.0 to 4.0 (± 0.2) nm. While the systems containing these oxyanions had more growth, the system containing only iron(III) had the most nucleation events on substrates. Ex situ analyses of homogeneously and heterogeneously formed precipitates indicated that precipitates in the arsenate system had the highest water content and that oxyanions may bridge iron(III) hydroxide polymeric embryos to form a structure similar to ferric arsenate or ferric phosphate. These new findings are important because differences in nucleation and growth rates and particle sizes will impact the number of available reactive sites and the reactivity of newly formed particles toward aqueous contaminants.

  8. 43 CFR 19.8 - Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest...

    Science.gov (United States)

    2010-10-01

    ... patents, and mineral leasing within National Forest Wilderness. 19.8 Section 19.8 Public Lands: Interior... § 19.8 Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest... locations, mineral patents, and mineral leasing within National Forest Wilderness are contained in parts...

  9. Estimation of Trace Elements (Iodine and Iron Content in Breast Milk

    Directory of Open Access Journals (Sweden)

    N.A. Belykh

    2013-08-01

    Full Text Available The estimation of iodine and iron content in breast milk (n = 88 has been carried out. The study shows that the concentration of iodine and iron in breast milk of the women did not correspond to the physiological needs of an infant. It has been demonstrated that the use of iron-containing vitamin-mineral supplements during lactation has no significant effect on the level of iron in breast milk. The iodine content in breast milk depends on the iodine subsidies. It is shown that the level of micronutrients in breast milk is not affected by the presence of gestational maternal anemia and goiter, due date and place of residence of the family. It is concluded that a statistically significant impact on the level of iodine in the breast milk of combined iodine prophylaxis (acceptance by the mother during lactation drugs potassium iodide (200 mg/day due to the use of iodized salt.

  10. Isotope-aided studies of the bioavailability of iron from Myanmar diets

    Energy Technology Data Exchange (ETDEWEB)

    Naing, Khin Maung [Department of Medical Research, Yangon (Myanmar). Nutrition Research Div.; Khin, Myo [Department of Medical Research, Yangon, (Myanmar). Nuclear Medicine Research Div.

    1994-12-31

    A study was conducted to determine the dietary intakes and serum levels of iron and zinc in twenty apparently healthy Myanmar adults (10 males and 10 females), using atomic absorption spetrophotometry. The mean iron intake of females was found to be lower than the FAO/WHO recommended allowance whereas for men it was found to be adequate. The mean serum iron concentration in females was found to be significantly lower than in males (p < 0.05). It was observed that zinc intakes of males was significantly higher than in females (p < 0.01) but there was no significant difference in serum zinc level between the two groups. Dietary zinc intakes of both groups were found to be low. There was a weak positive correlation between dietary intake and serum concentrations of these minerals. Laboratory scale production of iron-fortified salt containing 1 mg of Fe/g salt was conducted by mixing 5g of FeSO{sub 4{center_dot}}7H{sub 2}O, and 5g of sodium-hexa-metaphosphate thoroughly and then the mixture was again mixed with 1 kg of salt. This was done in July 1992. Stability of iron-fortified salt (i.e. change in colour of salt) as well as ferrous and ferric iron content of iron-fortified salt, were determined at monthly intervals. Iron-fortified salt was found to be stable up to the time of report writing, i.e. 3rd week of October, 1992. The ferrous iron content of salt was found to range between 0.95 to 0.98 mg Fe/g salt. Bioavailability studies of iron from two types of standard meals, one containing staple rice, 32 g of fish, water cress, watery fish paste and cucumber, and another containing boiled peas in place of fish, were conducted on two groups of male subjects using {sup 59}Fe as an extrinsic tag. Bioavailability studies of iron from the above two types of meals cooked with iron-fortified salt (1 mg/g salt) were also conducted on the same groups of subjects using {sup 59}Fe as an extrinsic tag. Reference dose absorption of iron will be conducted. This work is in progress.

  11. Biofilm formation and potential for iron cycling in serpentinization-influenced groundwater of the Zambales and Coast Range ophiolites.

    Science.gov (United States)

    Meyer-Dombard, D'Arcy R; Casar, Caitlin P; Simon, Alexander G; Cardace, Dawn; Schrenk, Matthew O; Arcilla, Carlo A

    2018-05-01

    Terrestrial serpentinizing systems harbor microbial subsurface life. Passive or active microbially mediated iron transformations at alkaline conditions in deep biosphere serpentinizing ecosystems are understudied. We explore these processes in the Zambales (Philippines) and Coast Range (CA, USA) ophiolites, and associated surface ecosystems by probing the relevance of samples acquired at the surface to in situ, subsurface ecosystems, and the nature of microbe-mineral associations in the subsurface. In this pilot study, we use microcosm experiments and batch culturing directed at iron redox transformations to confirm thermodynamically based predictions that iron transformations may be important in subsurface serpentinizing ecosystems. Biofilms formed on rock cores from the Zambales ophiolite on surface and in-pit associations, confirming that organisms from serpentinizing systems can form biofilms in subsurface environments. Analysis by XPS and FTIR confirmed that enrichment culturing utilizing ferric iron growth substrates produced reduced, magnetic solids containing siderite, spinels, and FeO minerals. Microcosms and enrichment cultures supported organisms whose near relatives participate in iron redox transformations. Further, a potential 'principal' microbial community common to solid samples in serpentinizing systems was identified. These results indicate collectively that iron redox transformations should be more thoroughly and universally considered when assessing the function of terrestrial subsurface ecosystems driven by serpentinization.

  12. Microbes: uranium miners, money makers, problem solvers

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, A.L., E-mail: awilliamson@mirarco.org [MIRARCO, Sudbury, ON (Canada); Laurentian Univ., Sudbury, ON (Canada); Payne, R.; Kerr, F. [Pele Mountain Resources Inc., Toronto, ON (Canada); Hall, S. [Laurentian Univ., Sudbury, ON (Canada); Spiers, G.A. [MIRARCO, Sudbury, ON (Canada); Laurentian Univ., Sudbury, ON (Canada)

    2010-07-01

    Bioleaching, the microbial dissolution of minerals, is potentially useful in exploiting a variety of ore deposits, including the lower-grade uraniferous quartz-pebble conglomerate beds of the Quirke Syncline, Elliot Lake, Ontario. The metabolism of chemolithotropic bacterium Acidithiobacillus ferrooxidans is dependent on its ability to derive energy and reducing power from the oxidation of ferrous iron. The characteristics of this bacterium, in particular the ability to oxidize both iron and sulphur with an associated high tolerance of low acidity, allow the organism to contribute significantly to bioleaching processes. Under ideal conditions, A. ferrooxidans promotes the oxidation of iron-containing sulphide ore materials, breaking their crystal structure and promoting the dissolution of iron, base metals, as well as uranium, rare earth elements and associated elements of toxicological interest such as arsenic and selenium. The current study documents an overview of the recovery of uranium and rare earth elements to solution, plus investigates the acid generating potential of the solid residues from a series of environmentally controlled, biologically-mediated uranium ore extraction experiments. The findings will be used in the design of larger scale bioleaching experiments to further assess the potential for success of bioleaching as a metallurgical extraction technique potentially leading to minimum maintenance decommissioning strategies for the ore deposits of the Quirke Syncline. (author)

  13. Microbes: uranium miners, money makers, problem solvers

    International Nuclear Information System (INIS)

    Williamson, A.L.; Payne, R.; Kerr, F.; Hall, S.; Spiers, G.A.

    2010-01-01

    Bioleaching, the microbial dissolution of minerals, is potentially useful in exploiting a variety of ore deposits, including the lower-grade uraniferous quartz-pebble conglomerate beds of the Quirke Syncline, Elliot Lake, Ontario. The metabolism of chemolithotropic bacterium Acidithiobacillus ferrooxidans is dependent on its ability to derive energy and reducing power from the oxidation of ferrous iron. The characteristics of this bacterium, in particular the ability to oxidize both iron and sulphur with an associated high tolerance of low acidity, allow the organism to contribute significantly to bioleaching processes. Under ideal conditions, A. ferrooxidans promotes the oxidation of iron-containing sulphide ore materials, breaking their crystal structure and promoting the dissolution of iron, base metals, as well as uranium, rare earth elements and associated elements of toxicological interest such as arsenic and selenium. The current study documents an overview of the recovery of uranium and rare earth elements to solution, plus investigates the acid generating potential of the solid residues from a series of environmentally controlled, biologically-mediated uranium ore extraction experiments. The findings will be used in the design of larger scale bioleaching experiments to further assess the potential for success of bioleaching as a metallurgical extraction technique potentially leading to minimum maintenance decommissioning strategies for the ore deposits of the Quirke Syncline. (author)

  14. Daily oral iron supplementation during pregnancy

    Science.gov (United States)

    Peña-Rosas, Juan Pablo; De-Regil, Luz Maria; Dowswell, Therese; Viteri, Fernando E

    2014-01-01

    Background Iron and folic acid supplementation has been the preferred intervention to improve iron stores and prevent anaemia among pregnant women, and it may also improve other maternal and birth outcomes. Objectives To assess the effects of daily oral iron supplements for pregnant women, either alone or in conjunction with folic acid, or with other vitamins and minerals as a public health intervention. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (2 July 2012). We also searched the WHO International Clinical Trials Registry Platform (ICTRP) (2 July 2012) and contacted relevant organisations for the identification of ongoing and unpublished studies. Selection criteria Randomised or quasi-randomised trials evaluating the effects of oral preventive supplementation with daily iron, iron + folic acid or iron + other vitamins and minerals during pregnancy. Data collection and analysis We assessed the methodological quality of trials using standard Cochrane criteria. Two review authors independently assessed trial eligibility, extracted data and conducted checks for accuracy. Main results We included 60 trials. Forty-three trials, involving more than 27,402 women, contributed data and compared the effects of daily oral supplements containing iron versus no iron or placebo. Overall, women taking iron supplements were less likely to have low birthweight newborns (below 2500 g) compared with controls (8.4% versus 10.2%, average risk ratio (RR) 0.81; 95% confidence interval (CI) 0.68 to 0.97, 11 trials, 8480 women) and mean birthweight was 30.81 g greater for those infants whose mothers received iron during pregnancy (average mean difference (MD) 30.81; 95% CI 5.94 to 55.68, 14 trials, 9385 women). Preventive iron supplementation reduced the risk of maternal anaemia at term by 70% (RR 0.30; 95% CI 0.19 to 0.46, 14 trials, 2199 women) and iron deficiency at term by 57% (RR 0.43; 95% CI 0.27 to 0.66, seven trials, 1256 women

  15. Ecological aspects of Moessbauer study of iron-containing atmospheric aerosols

    International Nuclear Information System (INIS)

    Kopcewicz, B.; Kopcewicz, M.

    2000-01-01

    Moessbauer spectroscopy was applied to analyze the iron compounds in atmospheric aerosol. Seasonal variations of iron concentration in atmospheric air measured over twenty years in Poland are discussed. It was observed that the concentration of iron sulfides (FeS, FeS 2 ) related to coal combustion dropped significantly, however, concentration of iron oxides and iron oxyhydroxides related to fuel combustion increased

  16. Moessbauer study of nickel containing 0.5% iron between room temperature and the Curie point

    International Nuclear Information System (INIS)

    Longworth, G.; Cranshaw, T.E.

    1983-01-01

    The Moessbauer measurements of the temperature variation of the spectra for nickel containing 0.5% iron by Hirsch have been repeated for a similar sample. No evidence was found for the magnetic first order transition postulated by Hirsch. (orig.)

  17. Redistribution of Iron and Titanium in High-Pressure Ultramafic Rocks

    Science.gov (United States)

    Crossley, Rosalind J.; Evans, Katy A.; Reddy, Steven M.; Lester, Gregory W.

    2017-11-01

    The redox state of iron in high-pressure serpentinites, which host a significant proportion of Fe3+ in subduction zones, can be used to provide an insight into iron cycling and constrain the composition of subduction zone fluids. In this study, we use oxide and silicate mineral textures, interpretation of mineral parageneses, mineral composition data, and whole rock geochemistry of high-pressure retrogressed ultramafic rocks from the Zermatt-Saas Zone to constrain the distribution of iron and titanium, and iron oxidation state. These data provide an insight on the oxidation state and composition of fluids at depth in subduction zones. Oxide minerals host the bulk of iron, particularly Fe3+. The increase in mode of magnetite and observation of magnetite within antigorite veins in the investigated ultramafic samples during initial retrogression is most consistent with oxidation of existing iron within the samples during the infiltration of an oxidizing fluid since it is difficult to reconcile addition of Fe3+ with the known limited solubility of this species. However, high Ti contents are not typical of serpentinites and also cannot be accounted for by simple mixing of a depleted mantle protolith with the nearby Allalin gabbro. Titanium-rich phases coincide with prograde metamorphism and initial exhumation, implying the early seafloor and/or prograde addition and late mobilization of Ti. If Ti addition has occurred, then the introduction of Fe3+, also generally considered to be immobile, cannot be disregarded. We explore possible transport vectors for Ti and Fe through mineral texture analysis.

  18. Long-term alteration of bentonite in the presence of metallic iron

    International Nuclear Information System (INIS)

    Kumpulainen, S.; Kiviranta, L.; Carlsson, T.; Muurinen, A.; Svensson, D.; Sasamoto, Hiroshi; Yui, Mikatzu; Wersin, P.; Rosch, D.

    2011-12-01

    H of around eight, and measurable amounts of Mg 2+ , Ca 2+ , and SO 4 2- . The bentonite was carefully divided into subsamples, which were studied with XRD, FTIR, SEM, ICP-AES, TEM-EDS, XANES, Moessbauer spectroscopy, and wet-chemical methods. Briefly, bentonite samples containing cast iron cylinders contained higher amounts of iron than the reference samples. The corroded iron was predominantly in the divalent form, and its concentration was highest close to the cylinder and decreased strongly with increasing distance from its surface. The average corrosion rate estimated from Fe profiles in the Fe-reacted samples is about 1.7 μm/a. The results from the Moessbauer spectroscopy analyses suggest that no reduction of the octahedral Fe 3+ in the montmorillonite layers had occurred. The swelling pressure and the hydraulic conductivity were measured in undisturbed subsamples of the MX-80. The iron-bentonite interaction seemed to slightly decrease the swelling pressure, while the hydraulic conductivity was unchanged. The corrosion rate of the Cu vessel surface was estimated from the Cu analysis in the clay to be about 0.035 μm/a. The JAEA samples were analyzed with regard to the conditions in the water and in the bentonite. The water exhibited pH values in the approximate range of 11 to 13, and clearly reducing conditions with Eh values between -260 and -580 mV. XRD and FTIR analyses of the bentonite material, showed that montmorillonite was completely transformed to a non-swelling 7 Aa clay mineral, most likely to the serpentine mineral berthierine, in samples containing 0.3-0.6 M NaCl solutions, with the highest pH values. The transformation was incomplete in samples containing 0.1 M NaHCO 3 solution, and did not occur at all when the solution was either 0.05 M Na 2 SO 4 or distilled water. (orig.)

  19. Applications of surface analysis in the environmental sciences: dehalogenation of chlorocarbons with zero-valent iron and iron-containing mineral surfaces

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, Molly M.; Carlson, Daniel L.; Vikesland, Peter J.; Kohn, Tamar; Grenier, Adam C.; Langley, Laura A.; Roberts, A. Lynn; Fairbrother, D. Howard

    2003-10-31

    Halogenated organic compounds are common pollutants in groundwater. Consequently, there is widespread interest in understanding the reactions of these compounds in the environment and developing remediation strategies. One area of ongoing research involves the reductive dechlorination of organohalides with zero-valent metals or metal sulfide minerals. These processes have been studied almost exclusively from the perspective of the aqueous phase. In this paper we illustrate the utility of surface analysis techniques, including electron spectroscopies, vibrational spectroscopies, and atomic force microscopy in elucidating the roles played by the surface. A dual analysis approach to the study of reductive dechlorination, combining traditional solution phase analysis with surface analytical techniques, also is demonstrated using a liquid cell coupled to an ultrahigh vacuum surface analysis chamber.

  20. Fossilization of Iron-Oxidizing Bacteria at Hydrothermal Vents: a Useful Biosignature on Mars?

    Science.gov (United States)

    Leveille, R. J.; Lui, S.

    2009-05-01

    -concentric growth bands. In the bioreactor cultures, constant conditions led to abundant microbial growth and formation of an iron oxyhydroxide precipitate, either in direct association with the cells or within the growth medium. This suggests that not all of the iron precipitation is biogenic in origin. Cells typically show a filamentous morphology reminiscent of the mineral-encrusted forms observed in the natural samples. Continuing work includes high-resolution TEM observations of cultured organisms, examination of 2-year long in situ seafloor incubation experiments, and bioreactor silicification experiments in order to better understand the roles of iron and silica in the fossilization process. Microaerophilic iron oxidation could have existed on the early Earth in environments containing small amounts of oxygen produced either by locally concentrated photosynthetic microorganisms (e.g., cyanobacteria) or abiotically, as proposed for the subsurface of the Fe-dominated Rio Tinto (Spain) basin system. By analogy, similar subsurface or near-surface microaerophilic environments could have existed on Mars in the past. The distinctive morphologies and mineralization patterns of iron oxidizing bacteria could be a useful biosignature to search for on Mars. Deposits and biogenic features similar to those described here could theoretically be identified on Mars with existing imaging and analytical technologies. Therefore, future missions to Mars should target ancient hydrothermal systems, some of which have been putatively identified already.

  1. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    Science.gov (United States)

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  2. Bacterial assimilation reduction of iron in the treatment of non-metallics

    Directory of Open Access Journals (Sweden)

    Peter Malachovský

    2005-11-01

    Full Text Available Natural non-metallics, including granitoide and quartz sands, often contain iron which decreases the whiteness of these raw materials. Insoluble Fe3+ in these samples could be reduced to soluble Fe2+ by bacteria of Bacillus spp. and Saccharomyces spp. The leaching effect, observed by the measurement of Fe2+concentration in a solution, showed higher activities of a bacterial kind isolated from the Bajkal lake and also by using of yeast Saccharomyces sp. during bioleaching of quartz sands. However, allkinds of Bacillus spp. isolated from the Slovak deposit and from Bajkal lake were very active in the iron reduction during bioleaching of the feldspar raw material. This metal was efficiently removed from quartz sands as documented by the Fe2O3 decrease (from 0,317 % to 0,126 % and from feldpars raw materials by the Fe2O3 decrease (from 0,288 % to 0,115 % after bioleaching. The whiteness of these non-metallics was increased during a visual comparison of samples before and after bioleaching but samples contain selected magnetic particles. A removal of iron as well as a release of iron minerals from silicate matrix should increase the effect of the magnetic separation and should give a product which is suitable for industrial applications.

  3. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa

    Science.gov (United States)

    Beukes, N. J.; Klein, C.; Kaufman, A. J.; Hayes, J. M.

    1990-01-01

    The transition zone comprises Campbellrand microbialaminated (replacing "cryptalgalaminate") limestone and shale, with minor dolomite, conformably overlain by the Kuruman Iron Formation of which the basal part is characterized by siderite-rich microbanded iron-formation with minor magnetite and some hematite-containing units. The iron-formation contains subordinate intraclastic and microbialaminated siderite mesobands and was deposited in deeper water than the limestones. The sequence is virtually unaltered with diagenetic mineral assemblages reflecting a temperature interval of about 110 degrees to 170 degrees C and pressures of 2 kbars. Carbonate minerals in the different rock types are represented by primary micritic precipitates (now recrystallized to microsparite), early precompactional sparry cements and concretions, deep burial limpid euhedral sparites, and spar cements precipitated from metamorphic fluids in close contact with diabase sills. Paragenetic pathways of the carbonate minerals are broadly similar in all lithofacies with kerogen intimately associated with them. Kerogen occurs as pigmentation in carbonate crystals, as reworked organic detritus in clastic-textured carbonate units, and as segregations of kerogen pigment around late diagenetic carbonate crystals. Locally kerogen may also be replaced by carbonate spar. Carbon isotope compositions of the carbonate minerals and kerogen are dependent on their mode of occurrence and on the composition of the dominant carbonate species in a specific lithofacies. Integration of sedimentary, petrographic, geochemical, and isotopic results makes it possible to distinguish between depositional, early diagenetic, deep burial, and metamorphic effects on the isotopic compositions of the carbonate minerals and the kerogen in the sequence. Major conclusions are that deep burial thermal decarboxylation led to 13C depletion in euhedral ferroan sparites and 13C enrichment in kerogen (organic carbon). Metamorphic

  4. Redox transformations of iron at extremely low pH: fundamental and applied aspects

    Directory of Open Access Journals (Sweden)

    D. Barrie eJohnson

    2012-03-01

    Full Text Available Many different species of acidophilic prokaryotes, widely distributed within the domains Bacteria and Archaea, can catalyze the dissimilatory oxidation of ferrous iron or reduction of ferric iron, or can do both. Microbially-mediated cycling of iron in extremely acidic environments (pH <3 is strongly influenced by the enhanced chemical stability of ferrous iron and far greater solubility of ferric iron under such conditions. Cycling of iron has been demonstrated in vitro using both pure and mixed cultures of acidophiles, and there is considerable evidence that active cycling of iron occurs in acid mine drainage streams, pit lakes and iron-rich acidic rivers, such as the Rio Tinto. Measurements of specific rates of iron oxidation and reduction by acidophilic microorganisms show that different species vary in their capacities for iron oxido-reduction, and that this is influenced by the electron donor provided and growth conditions used. These measurements, and comparison with corresponding data for oxidation of reduced sulfur compounds, also help explain why ferrous iron is usually used preferentially as an electron donor by acidophiles that can oxidize both iron and sulfur, even though the energy yield from oxidizing iron is much smaller than that available from sulfur oxidation. Iron-oxidizing acidophiles have been used in biomining (a technology that harness their abilities to accelerate the oxidative dissolution of sulfidic minerals and thereby facilitate the extraction of precious and base metals for several decades. More recently they have also been used to simultaneously remediate iron-contaminated surface and ground-waters and produce a useful mineral by-product (schwertmannite. Bioprocessing of oxidized mineral ores using acidophiles that bring about the reductive dissolution of ferric iron minerals such as goethite has also recently been demonstrated, and new biomining technologies based on this approach are being developed.

  5. Improving the Representation of Soluble Iron in Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Perez Garcia-Pando, Carlos [Columbia Univ., New York, NY (United States)

    2016-03-13

    Mineral dust produced in the arid and semi-arid regions of the world is the dominant source of iron (Fe) in atmospheric aerosol inputs to the open ocean. The bioavailable Fe fraction of atmospheric dust is thought to regulate and occasionally limit the primary productivity in large oceanic regions, which influences the CO2 uptake from the atmosphere affecting the Earth’s climate. Because Fe bioavailability cannot be directly measured, it is assumed that the dissolved Fe or highly reactive Fe in the dust is bioavailable. The fraction of soluble Fe in dust is mainly controlled by: (1) the mineral composition of the soils and the emitted dust from the source areas; (2) the atmospheric processing that converts the Fe in Fe-bearing minerals into highly soluble forms of Fe. The project has mainly focused on constraining the mineral composition of dust aerosols (1), a previously neglected, yet a key issue to constrain the deposition of soluble iron. Deriving aerosol mineral composition requires global knowledge of the soil mineral content, which is available from poorly constrained global atlases. In addition, the mineral content of the emitted aerosol differs from that of the parent soil. Measurements of soil mineral fractions are based upon wet sedimentation (or ’wet sieving’) techniques that disturb the soil sample, breaking aggregates that are found in the original, undispersed soil that is subject to wind erosion. Wet sieving alters the soil size distribution, replacing aggregates that are potentially mobilized as aerosols with a collection of smaller particles. A major challenge is to derive the size-distributed mineral fractions of the emitted dust based upon their fractions measured from wet-sieved soils. Finally, representations of dust mineral composition need to account for mixtures of minerals. Examination of individual particles shows that iron, an element that is central to many climate processes, is often found as trace impurities of iron oxide

  6. Chemometric analysis of minerals in gluten-free products.

    Science.gov (United States)

    Gliszczyńska-Świgło, Anna; Klimczak, Inga; Rybicka, Iga

    2018-06-01

    Numerous studies indicate mineral deficiencies in people on a gluten-free (GF) diet. These deficiencies may indicate that GF products are a less valuable source of minerals than gluten-containing products. In the study, the nutritional quality of 50 GF products is discussed taking into account the nutritional requirements for minerals expressed as percentage of recommended daily allowance (%RDA) or percentage of adequate intake (%AI) for a model celiac patient. Elements analyzed were calcium, potassium, magnesium, sodium, copper, iron, manganese, and zinc. Analysis of %RDA or %AI was performed using principal component analysis (PCA) and hierarchical cluster analysis (HCA). Using PCA, the differentiation between products based on rice, corn, potato, GF wheat starch and based on buckwheat, chickpea, millet, oats, amaranth, teff, quinoa, chestnut, and acorn was possible. In the HCA, four clusters were created. The main criterion determining the adherence of the sample to the cluster was the content of all minerals included to HCA (K, Mg, Cu, Fe, Mn); however, only the Mn content differentiated four formed groups. GF products made of buckwheat, chickpea, millet, oats, amaranth, teff, quinoa, chestnut, and acorn are better source of minerals than based on other GF raw materials, what was confirmed by PCA and HCA. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Trace Mineral Losses in Sweat

    National Research Council Canada - National Science Library

    Chinevere, Troy D; McClung, James P; Cheuvront, Samuel N

    2007-01-01

    Copper, iron and zinc are nutritionally essential trace minerals that confer vital biological roles including the maintenance of cell structure and integrity, regulation of metabolism, immune function...

  8. Neutron activation determination of gold in technogenic raw materials with different mineral composition

    Directory of Open Access Journals (Sweden)

    Yudakov Aleksandr A.

    2015-01-01

    Full Text Available The methods used to determine the gold content in the technogenic objects of gold mining were analyzed regarding their non-homogeneity and complexity of chemical and mineral compositions. A possible application of the neutron activation analysis with the use of the californium source of neutrons for determining the content of fine-grained and extra-fine-grained gold in the technogenic objects, including the bottom-ash waste of energy providers, is considered. It was demonstrated that the chemical composition of the sample affects the neuron flux distribution in the sample, which can essentially distort the results of the neutron activation analysis. In order to eliminate possible systematic errors investigations of the effect of the sample mineral composition on the results of the gold determination using the neutron activation analysis were carried out. Namely, a large mass of rock (3-5 kg was loaded into an activation zone using four matrix types such as silicate, carbon-containing, iron-containing, and titanium magnetite. It was shown that there wereno significant difference between the dispersal of the fluxes of thermal and resonance neutrons emitted from 252Cf during activation of the gold-containing technogenic samples with different mineral compositions.

  9. Dinitrosyl iron complexes with thiol-containing ligands as a "working form" of endogenous nitric oxide.

    Science.gov (United States)

    Vanin, Anatoly F

    2016-04-01

    The material presented herein is an overview of the results obtained by our research team during the many years' study of biological activities and occurrence of dinitrosyl iron complexes (DNIC) with thiol-containing ligands in human and animal organisms. With regard to their dose dependence and vast diversity of biological activities, DNIC are similar to the system of endogenous NO, one of the most universal regulators of biological processes. The role of biologically active components in DNIC is played by their iron-dinitrosyl fragments, [Fe(NO)2], endowed with the ability to generate neutral NO molecules and nitrosonium ions (NO(+)). Their release is effected by heme-and thiol-containing proteins, which fulfill the function of biological targets and acceptors of NO and NO(+). Beneficial regulatory effects of DNIC on physiological and metabolic processes are numerous and diverse and include, among other things, lowering of arterial pressure and accelerated healing of skin wounds. In the course of fast decomposition of their Fe(NO)2 fragments (e.g., in the presence of iron chelators), DNIC produce adverse (cytotoxic) effects, which can best be exemplified by their ability to suppress the development of experimental endometriosis in animals. In animal tissues, DNIC with thiol-containing ligands are predominantly represented by the binuclear form, which, contrary to mononuclear DNIC detectable by the 2.03 signal, is EPR-silent. The ample body of evidence on biological activities and occurrence of DNIC gained so far clearly demonstrates that in human and animal organisms DNIC with thiol-containing ligands represent a "working form" of the system of endogenous NO responsible for its accumulation and stabilization in animal tissues as well as its further transfer to its biological targets. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Economical characteristics of base types of minerals. 1. Metallic minerals

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1990-01-01

    Metallic minerals is raw materials base of black and colour metallurgy. In this article of book author describes the group of black metals (iron, manganese, chromium), group of tempers (titanium, vanadium, nickel, cobalt, molybdenum, tungsten), colour metals (copper, lead, zinc, aluminium, tin, mercury, antimony, bismuth) and etc.

  11. One-stop shopping in Africa's minerals supermarket

    International Nuclear Information System (INIS)

    Spira, J.

    1980-01-01

    Johannesburg in South Africa is one of the minerals capitals of the world, providing a one-stop shopping supermarket for the most sought-after strategic minerals. Total annual mineral sales grew from R1563 million in 1970 to R6876 million in 1978. For 1979 the figure exceeded R9700 million. Production, trade and marketing of gold, coal, platinum, uranium, diamonds, iron ore, copper, antimony, mineral sands, asbestos and vanadium are shortly discussed

  12. Evaluation of Minerals Content of Drinking Water in Malaysia

    Science.gov (United States)

    Azlan, Azrina; Khoo, Hock Eng; Idris, Mohd Aizat; Ismail, Amin; Razman, Muhammad Rizal

    2012-01-01

    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water. PMID:22649292

  13. Evaluation of Minerals Content of Drinking Water in Malaysia

    Directory of Open Access Journals (Sweden)

    Azrina Azlan

    2012-01-01

    Full Text Available The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water.

  14. Evaluation of minerals content of drinking water in Malaysia.

    Science.gov (United States)

    Azlan, Azrina; Khoo, Hock Eng; Idris, Mohd Aizat; Ismail, Amin; Razman, Muhammad Rizal

    2012-01-01

    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water.

  15. Minerals yearbook: The mineral industry of Brazil. 1988 international review

    International Nuclear Information System (INIS)

    Ensminger, H.R.

    1988-01-01

    Brazil's gross domestic product (GDP) grew only slightly in 1988 to $277 billion at current prices. The growth rate was the smallest registered since 1983, when the rate was minus 2.8%. The economy's performance was strongly influenced by a 2% to 3% decrease in industrial production and civil construction. The mineral industry, however, countered the downward trend in the industrial sector and grew a modest 1.4%. Topics discussed in the report include the following: Government policies and programs; Production; Trade; Commodity review--Metals (Aluminum, Aluminia, and Bauxite, Columbium, Copper, Gold, Iron and Steel, Manganese, Tin, Titanium); Industrial Minerals (Gem stones, Phosphate rock, Quartz); Mineral fuels (Coal, Natural gas, Petroleum, Nuclear power); Nonmineral energy sources (Alcohol, Hydroelectric)

  16. Australian mineral industry annual review. Preliminary summaries 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Salient statistics and a general industry overview are presented. Special attention is given to the following mineral commodities: aluminium, black coal, copper, fertiliser minerals, gemstones, gold, iron, lead, manganese, nickel, tin, titanium, tungsten, uranium, zinc and zirconium.

  17. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.

    Science.gov (United States)

    Miot, J; Benzerara, K; Morin, G; Bernard, S; Beyssac, O; Larquet, E; Kappler, A; Guyot, F

    2009-06-01

    In phosphate-rich environments, vivianite (Fe(II)(3)(PO(4))(2), 8H(2)O) is an important sink for dissolved Fe(II) and is considered as a very stable mineral due to its low solubility at neutral pH. In the present study, we report the mineralogical transformation of vivianite in cultures of the nitrate-reducing iron-oxidizing bacterial strain BoFeN1 in the presence of dissolved Fe(II). Vivianite was first transformed into a greenish phase consisting mostly of an amorphous mixed valence Fe-phosphate. This precipitate became progressively orange and the final product of iron oxidation consisted of an amorphous Fe(III)-phosphate. The sub-micrometer analysis by scanning transmission X-ray microscopy of the iron redox state in samples collected at different stages of the culture indicated that iron was progressively oxidized at the contact of the bacteria and at a distance from the cells in extracellular minerals. Iron oxidation in the extracellular minerals was delayed by a few days compared with cell-associated Fe-minerals. This led to strong differences of Fe redox in between these two types of minerals and finally to local heterogeneities of redox within the sample. In the absence of dissolved Fe(II), vivianite was not significantly transformed by BoFeN1. Whereas Fe(II) oxidation at the cell contact is most probably directly catalyzed by the bacteria, vivianite transformation at a distance from the cells might result from oxidation by nitrite. In addition, processes leading to the export of Fe(III) from bacterial oxidation sites to extracellular minerals are discussed including some involving colloids observed by cryo-transmission electron microscopy in the culture medium.

  18. In vitro evaluation of iron solubility and dialyzability of various iron fortificants and of iron-fortified milk products targeted for infants and toddlers.

    Science.gov (United States)

    Kapsokefalou, Maria; Alexandropoulou, Isidora; Komaitis, Michail; Politis, Ioannis

    2005-06-01

    The objectives of the present study were: to compare the solubility and dialyzability of various iron fortificants (iron pyrophosphate, ferrous bis-glycinate, ferrous gluconate, ferrous lactate, ferrous sulfate) added, in the presence of ascorbic acid, to pasteurized milk samples produced under laboratory conditions; and to compare the solubility and dialyzability of iron in commercial pasteurized, UHT and condensed milk products available in the Greek market fortified with various vitamins and minerals including iron and targeted towards infants (6-12 months old) and toddlers. Iron solubility and dialyzability were determined using a simulated gastrointestinal digestive system. Ferrous dialyzable iron (molecular weight lower than 8000) was used as an index for prediction of iron bioavailability. Ferrous dialyzable iron in pasteurized milk samples fortified with iron pyrophosphate, ferrous lactate and ferrous bis-glycinate was higher (P iron in products fortified with ferrous lactate was not different (P > 0.05) from those fortified with ferrous sulfate. Ferrous dialyzable iron in four condensed commercial milk products was higher (P iron was higher (P iron source, milk processing and the overall product composition affect formation of ferrous dialyzable iron and may determine the success and effectiveness of iron fortification of milk.

  19. A Mesoproterozoic iron formation

    Science.gov (United States)

    Canfield, Donald E.; Zhang, Shuichang; Wang, Huajian; Wang, Xiaomei; Zhao, Wenzhi; Su, Jin; Bjerrum, Christian J.; Haxen, Emma R.; Hammarlund, Emma U.

    2018-04-01

    We describe a 1,400 million-year old (Ma) iron formation (IF) from the Xiamaling Formation of the North China Craton. We estimate this IF to have contained at least 520 gigatons of authigenic Fe, comparable in size to many IFs of the Paleoproterozoic Era (2,500–1,600 Ma). Therefore, substantial IFs formed in the time window between 1,800 and 800 Ma, where they are generally believed to have been absent. The Xiamaling IF is of exceptionally low thermal maturity, allowing the preservation of organic biomarkers and an unprecedented view of iron-cycle dynamics during IF emplacement. We identify tetramethyl aryl isoprenoid (TMAI) biomarkers linked to anoxygenic photosynthetic bacteria and thus phototrophic Fe oxidation. Although we cannot rule out other pathways of Fe oxidation, iron and organic matter likely deposited to the sediment in a ratio similar to that expected for anoxygenic photosynthesis. Fe reduction was likely a dominant and efficient pathway of organic matter mineralization, as indicated by organic matter maturation by Rock Eval pyrolysis combined with carbon isotope analyses: Indeed, Fe reduction was seemingly as efficient as oxic respiration. Overall, this Mesoproterozoic-aged IF shows many similarities to Archean-aged (>2,500 Ma) banded IFs (BIFs), but with an exceptional state of preservation, allowing an unprecedented exploration of Fe-cycle dynamics in IF deposition.

  20. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation.

    Science.gov (United States)

    Sharma, Shiv K; Misra, Anupam K; Lucey, Paul G; Lentz, Rachel C F

    2009-08-01

    The authors have developed an integrated remote Raman and laser-induced breakdown spectroscopy (LIBS) system for measuring both the Raman and LIBS spectra of minerals with a single 532 nm laser line of 35 mJ/pulse and 20 Hz. The instrument has been used for analyzing both Raman and LIBS spectra of carbonates, sulfates, hydrous and anhydrous silicates, and iron oxide minerals in air. These experiments demonstrate that by focusing a frequency-doubled 532 nm Nd:YAG pulsed laser beam with a 10x beam expander to a 529-microm diameter spot on a mineral surface located at 9 m, it is possible to measure simultaneously both the remote Raman and LIBS spectra of calcite, gypsum and olivine by adjusting the laser power electronically. The spectra of calcite, gypsum, and olivine contain fingerprint Raman lines; however, it was not possible to measure the remote Raman spectra of magnetite and hematite at 9 m because of strong absorption of 532 nm laser radiation and low intensities of Raman lines from these minerals. The remote LIBS spectra of both magnetite and hematite contain common iron emission lines but show difference in the minor amount of Li present in these two minerals. Remote Raman and LIBS spectra of a number of carbonates, sulfates, feldspars and phyllosilicates at a distance of 9 m were measured with a 532-nm laser operating at 35 mJ/pulse and by changing photon flux density at the sample by varying the spot diameter from 10 mm for Raman to 530 microm for LIBS measurements. The complementary nature of these spectra is highlighted and discussed. The combined Raman and LIBS system can also be re-configured to perform micro-Raman and micro-LIBS analyses, which have applications in trace/residue analysis and analysis of very small samples in the nano-gram range.

  1. Studying Irony Detection Beyond Ironic Criticism: Let's Include Ironic Praise

    Directory of Open Access Journals (Sweden)

    Richard Bruntsch

    2017-04-01

    Full Text Available Studies of irony detection have commonly used ironic criticisms (i.e., mock positive evaluation of negative circumstances as stimulus materials. Another basic type of verbal irony, ironic praise (i.e., mock negative evaluation of positive circumstances is largely absent from studies on individuals' aptitude to detect verbal irony. However, it can be argued that ironic praise needs to be considered in order to investigate the detection of irony in the variety of its facets. To explore whether the detection ironic praise has a benefit beyond ironic criticism, three studies were conducted. In Study 1, an instrument (Test of Verbal Irony Detection Aptitude; TOVIDA was constructed and its factorial structure was tested using N = 311 subjects. The TOVIDA contains 26 scenario-based items and contains two scales for the detection of ironic criticism vs. ironic praise. To validate the measurement method, the two scales of the TOVIDA were experimentally evaluated with N = 154 subjects in Study 2. In Study 3, N = 183 subjects were tested to explore personality and ability correlates of the two TOVIDA scales. Results indicate that the co-variance between the ironic TOVIDA items was organized by two inter-correlated but distinct factors: one representing ironic praise detection aptitude and one representing ironic criticism detection aptitude. Experimental validation showed that the TOVIDA items truly contain irony and that item scores reflect irony detection. Trait bad mood and benevolent humor (as a facet of the sense of humor were found as joint correlates for both ironic criticism and ironic praise detection scores. In contrast, intelligence, trait cheerfulness, and corrective humor were found as unique correlates of ironic praise detection scores, even when statistically controlling for the aptitude to detect ironic criticism. Our results indicate that the aptitude to detect ironic praise can be seen as distinct from the aptitude to detect ironic

  2. The Use of Maltodextrin Matrices to Control the Release of Minerals from Fortified Maté

    Directory of Open Access Journals (Sweden)

    Miguel E. Schmalko

    2012-04-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE The aim of this research was to study the sensorial acceptance of a fortified food containing different minerals (calcium, magnesium and iron and to determine the actual quantities present (bioaccessibility when extracted in maté. A sensorial analysis was performed to compare sensorial quality of fortified and non-fortified maté. Although panelists identified differences between the fortified and non-fortified maté, only 3% of them commented on an unpleasant flavor. Sequential extraction assays were performed simulating maté consumption under laboratory conditions. Profile concentration diminished sharply after the second extraction. Magnesium was found to be completely extracted in the first 500 mL. Calcium and Iron were extracted in a very low percentage (29% and 25%, respectively. The outlet rate of the minerals was fitted to two models, and a good fitness (p < 0:001 in all cases was obtained.

  3. Microbial Beneficiation of Salem Iron Ore Using Penicillium purpurogenum

    Science.gov (United States)

    Mishra, M.; Pradhan, M.; Sukla, L. B.; Mishra, B. K.

    2011-02-01

    High alumina and silica content in the iron ore affects coke rate, reducibility, and productivity in a blast furnace. Iron ore is being beneficiated all around the world to meet the quality requirement of iron and steel industries. Choosing a beneficiation treatment depends on the nature of the gangue present and its association with the ore structure. The advanced physicochemical methods used for the beneficiation of iron ore are generally unfriendly to the environment. Biobeneficiation is considered to be ecofriendly, promising, and revolutionary solutions to these problems. A characterization study of Salem iron ore indicates that the major iron-bearing minerals are hematite, magnetite, and goethite. Samples on average contains (pct) Fe2O3-84.40, Fe (total)-59.02, Al2O3-7.18, and SiO2-7.53. Penicillium purpurogenum (MTCC 7356) was used for the experiment . It removed 35.22 pct alumina and 39.41 pct silica in 30 days in a shake flask at 10 pct pulp density, 308 K (35 °C), and 150 rpm. In a bioreactor experiment at 2 kg scale using the same organism, it removed 23.33 pct alumina and 30.54 pct silica in 30 days at 300 rpm agitation and 2 to 3 l/min aeration. Alumina and silica dissolution follow the shrinking core model for both shake flask and bioreactor experiments.

  4. Isolation and identification of iron ore-solubilising fungus

    Directory of Open Access Journals (Sweden)

    Damase Khasa

    2010-09-01

    Full Text Available Potential mineral-solubilising fungi were successfully isolated from the surfaces of iron ore minerals. Four isolates were obtained and identified by molecular and phylogenetic methods as close relatives of three different genera, namely Penicillium (for isolate FO, Alternaria (for isolates SFC2 and KFC1 and Epicoccum (for isolate SFC2B. The use of tricalcium phosphate (Ca3(PO42in phosphate-solubilising experiments confirmed isolate FO as the only phosphate solubiliser among the isolated fungi. The bioleaching capabilities of both the fungus and its spent liquid medium were tested and compared using two types of iron ore materials, conglomerate and shale, from the Sishen Iron Ore Mine as sources of potassium (K and phosphorus (P. The spent liquid medium removed more K (a maximum of 32.94% removal, from conglomerate, than the fungus (a maximum of 21.36% removal, from shale. However, the fungus removed more P (a maximum of 58.33% removal, from conglomerate than the spent liquid medium (a maximum of 29.25% removal, from conglomerate. The results also indicated a potential relationship between the removal of K or P and the production of organic acids by the fungus. A high production of gluconic acid could be related to the ability of the fungus to reduce K and P. Acetic, citric and maleic acids were also produced by the fungus, but in lower quantities. In addition, particle size and iron ore type were also shown to have significant effects on the removal of potassium and phosphorus from the iron ore minerals. We therefore conclude that the spent liquid medium from the fungal isolate FO can potentially be used for biobeneficiation of iron ore minerals.

  5. Study on the correlation between chemical and mineral composition of coal ashes; Sekitanbaibun no kobutsu soseigakuteki kento kagakubutsu sosei to kobutsugakuteki sosei no sokan

    Energy Technology Data Exchange (ETDEWEB)

    Hirato, M.; Nagashima, S.; Okada, S. [Hachinohe Institute of Technology, Aomori (Japan)

    1996-10-28

    Coal ash is a substance that has been mixed into minerals in the earth`s crust during their coalification process. Estimation was made on what kinds of mineral composition have been mixed into coals. Noted first was the kinds of compounds contained in the ash, wherein the ratios of mass in the compounds and minerals were correlated, and selection was made on minerals which are thought correlated. The selection criterion was based on minerals containing silica, alumina, iron oxide, lime and magnesium as compounds. Then, a phase equilibrium line diagram was used to estimate compositions and melting points of minerals which are thought to have been produced from these compounds. By comparing the estimation with the measured melting points of the ashes, mineral compositions thought reasonable were all selected. Assumption was possible on minerals that are thought to have been transferred into coal ash. Compound indications of ashes from 29 kinds of the world`s typical coals were replaced with the subject minerals and expressed as mineral compositions. As a method of calculation, stoichiometric coefficients for each mineral were determined by taking material balance in atomic/molecular levels in masses of compound aggregates and mineral composition aggregates. 7 tabs.

  6. Exposure to dust mixtures containing free crystalline silica and mineral fibers

    International Nuclear Information System (INIS)

    Wozniak, H.; Wiecek, E.; Bielichowska-Cybula, G.

    1996-01-01

    Exposure to dust mixture containing at the same time respirable mineral fibres and free crystalline silica may occur in Poland in mines and in the Lower Silesia plants processing mineral raw materials as well as in all plants which use asbestos products and MMMF. Workposts where thermal insulation is exchange with possible phase transformations during operations under conditions of high temperature, expose particularly complex problems. In the work environment of this kind, dust concentration of free crystalline silica becomes important but not sufficient criterion for evaluating working conditions and it may be misleading. A range of studies indispensable for the proper evaluation of exposure to dust, covering together with measurement of dust and SiO 2 concentrations, determination of the mineral composition of dust, was developed. It was also found that the acceptable level of risk for neoplastic disease, namely 10(-3) can be attained in the work environment only if the concentration ranges from 0.05 to 0.1 f/cm 3 , that is equal to 20% of MAC value which is now binding in Poland. Cancer risk (lung cancer and mesothelioma jointly) during a 20-year exposure to concentrations equal to present MAC values should be estimated as about 10(-2) what indicates that risk is too high and it is necessary to diminish MAC values for asbestos dust. (author). 17 refs, 3 tabs

  7. Migration of Phthalates from Plastic Containers into Soft Drinks and Mineral Water

    Directory of Open Access Journals (Sweden)

    Jasna Bošnir

    2007-01-01

    Full Text Available The aim of this study was to determine the level of phthalate migration from plastic containers to soft drinks and mineral water and to identify a possible relationship between the amount and type of phthalate migration, type of preservative used, and the pH of the sample. The analysis included 45 samples of products packed in containers made from polyethylene terephthalate. The samples were divided into 5 groups: group 1 (N=9, soft drinks preserved with orthophosphoric acid; group 2 (N=14, soft drinks preserved with Na-benzoate; group 3 (N=5, soft drinks preserved with K-sorbate; group 4 (N=8, soft drinks preserved with a combination of Na-benzoate and K-sorbate; and group 5 (N=9, mineral water without preservatives. The samples were analyzed by the method of gas chromatography, with a detection limit of 0.005 μg/L. The mean pool phthalate level and mean pH value were 91.67 μg/L and 2.82±0.30 in group 1; 116.93 μg/L and 2.75±0.32 in group 2; 819.40 μg/L and 2.88±0.15 in group 3; 542.63 μg/L and 2.82±0.54 in group 4; and 20.22 μg/L and 5.82±1.26 in group 5, respectively. The highest rate of migration to soft drinks was recorded for dimethyl phthalate, ranging from 53.51 to 92.73 %, whereas dibutyl phthalate and diethylhexyl phthalate showed highest rate of migration to the mineral water (56.04 and 43.42 %, respectively. The highest level of phthalate migration from plastic containers to soft drinks was found in the products preserved with K-sorbate. The rate of phthalate migration appears to be influenced also by the drink pH, i.e. the lower the pH value, the greater the phthalate migration. Dimethyl phthalate showed highest migration to preserved drinks as an acidic medium, which might stimulate modification in the composition of plastic containers according to the type and composition of the product. Additional studies in a greater number of samples are needed. Although the phthalate levels measured in these samples pose no risk for

  8. Hydrothermal oxidation in the Biwabik Iron Formation, MN, USA

    Science.gov (United States)

    Losh, Steven; Rague, Ryan

    2018-02-01

    Precambrian iron formations throughout the world, notably in Australia, Brazil, and South Africa, show evidence of hypogene (≥ 110 °C, mostly > 250 °C) oxidation, alteration, and silica dissolution as a result of tectonic or magmatic activity. Although hydrothermal oxidation has been proposed for the prototype Lake Superior-type iron formation, the Biwabik Iron Formation in Minnesota (USA), it has not been documented there. By examining oxidized and unoxidized Biwabik Iron Formation in three mines, including material from high-angle faults that are associated with oxidation, we document an early hypogene oxidation event ( 175 °C) involving medium-salinity aqueous fluids (8.4 ± 4.9 wt% NaCl equiv) that infiltrated iron formation along high-angle faults. At the Hibbing Taconite Mine, hydrothermal fluids oxidized iron carbonates and silicates near faults, producing goethite ± quartz. In contrast with much of the oxidized iron ores on the Mesabi Range, silica was not removed but rather recrystallized during this event, perhaps lying in a rock-dominated system at low cumulative fluid flux. During the hydrothermal oxidation event in the Hibbing Taconite deposit, quartz-filled microfractures and irregular inclusions commonly formed in coarse variably oxidized magnetite, currently the ore mineral: these inclusions degrade the ore by introducing excess silica in magnetic concentrate. Hydrothermal oxidation at Hibbing Taconite Mine is overprinted by later, relatively minor supergene oxidation both along faults and near the surface, which locally dissolved quartz. At the Fayal Reserve Mine, widespread silicate and carbonate gangue dissolution and iron oxidation was followed by precipitation of pyrite, Mn-siderite, apatite, and other minerals in void spaces, which prevented post-oxidation compaction and significant volume loss in the sampled rocks. Although definitive temperature data for this assemblage are needed, the weight of evidence indicates that this

  9. The N-terminal domain of human DNA helicase Rtel1 contains a redox active iron-sulfur cluster.

    Science.gov (United States)

    Landry, Aaron P; Ding, Huangen

    2014-01-01

    Human telomere length regulator Rtel1 is a superfamily II DNA helicase and is essential for maintaining proper length of telomeres in chromosomes. Here we report that the N-terminal domain of human Rtel1 (RtelN) expressed in Escherichia coli cells produces a protein that contains a redox active iron-sulfur cluster with the redox midpoint potential of -248 ± 10 mV (pH 8.0). The iron-sulfur cluster in RtelN is sensitive to hydrogen peroxide and nitric oxide, indicating that reactive oxygen/nitrogen species may modulate the DNA helicase activity of Rtel1 via modification of its iron-sulfur cluster. Purified RtelN retains a weak binding affinity for the single-stranded (ss) and double-stranded (ds) DNA in vitro. However, modification of the iron-sulfur cluster by hydrogen peroxide or nitric oxide does not significantly affect the DNA binding activity of RtelN, suggesting that the iron-sulfur cluster is not directly involved in the DNA interaction in the N-terminal domain of Rtel1.

  10. The N-Terminal Domain of Human DNA Helicase Rtel1 Contains a Redox Active Iron-Sulfur Cluster

    Directory of Open Access Journals (Sweden)

    Aaron P. Landry

    2014-01-01

    Full Text Available Human telomere length regulator Rtel1 is a superfamily II DNA helicase and is essential for maintaining proper length of telomeres in chromosomes. Here we report that the N-terminal domain of human Rtel1 (RtelN expressed in Escherichia coli cells produces a protein that contains a redox active iron-sulfur cluster with the redox midpoint potential of −248 ± 10 mV (pH 8.0. The iron-sulfur cluster in RtelN is sensitive to hydrogen peroxide and nitric oxide, indicating that reactive oxygen/nitrogen species may modulate the DNA helicase activity of Rtel1 via modification of its iron-sulfur cluster. Purified RtelN retains a weak binding affinity for the single-stranded (ss and double-stranded (ds DNA in vitro. However, modification of the iron-sulfur cluster by hydrogen peroxide or nitric oxide does not significantly affect the DNA binding activity of RtelN, suggesting that the iron-sulfur cluster is not directly involved in the DNA interaction in the N-terminal domain of Rtel1.

  11. Recycling of Zn-containing Fe-bearing steelmaking waste by the reducing smelting process in pig iron. I. Laboratory tests

    Directory of Open Access Journals (Sweden)

    Kendera Ján

    1997-09-01

    Full Text Available Results of the laboratory test treatment of the zinc containing steelwork dusts in a hot liquid pig iron are described. These results show that it is necessary to use an external reductant. The zinc content of the dust emission is ca. 20 %. The charge of the steel-works dusts diminished the Si and Mn content of pig iron.

  12. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters.

    Science.gov (United States)

    Hedrich, Sabrina; Johnson, D Barrie

    2012-02-01

    A novel modular bioremediation system which facilitates the selective removal of soluble iron from extremely acidic (pH ∼2) metal-rich wastewaters by ferrous iron oxidation and selective precipitation of the ferric iron produced is described. In the first of the three modules, rapid ferrous iron oxidation was mediated by the recently-characterized iron-oxidizing autotrophic acidophile, "Ferrovum myxofaciens", which grew as long "streamers" within the reactor. Over 90% of the iron present in influent test liquors containing 280mg/L iron was oxidized at a dilution rate of 0.41h(-1), in a proton-consuming reaction. The ferric iron-rich solutions produced were pumped into a second reactor where controlled addition of sodium hydroxide caused the water pH to increase to 3.5 and ferric iron to precipitate as the mineral schwertmannite. Addition of a flocculating agent promoted rapid aggregation and settling of the fine-grain schwertmannite particles. A third passive module (a packed-bed bioreactor, also inoculated with "Fv. myxofaciens") acted as a polishing reactor, lowering soluble iron concentrations in the processed water to iron from a synthetic acidic (pH 2.1) mine water that contained soluble aluminum, copper, manganese and zinc in addition to iron. Schwertmannite was again produced, with little or no co-precipitation of other metals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Li4FeH6: Iron-containing complex hydride with high gravimetric hydrogen density

    Directory of Open Access Journals (Sweden)

    Hiroyuki Saitoh

    2014-07-01

    Full Text Available Li4FeH6, which has the highest gravimetric hydrogen density of iron-containing complex hydrides reported so far, is synthesized by hydrogenation of a powder mixture of iron and LiH above 6.1 GPa at 900 °C. In situ synchrotron radiation X-ray diffraction measurements reveal that while kinetics require high temperature and thus high pressure for the synthesis, Li4FeH6 is expected to be thermodynamically stable slightly below room temperature at ambient pressure; further synthetic studies to suppress the kinetic effects may enable us to synthesize Li4FeH6 at moderate pressures. Li4FeH6 can be recovered at ambient conditions where Li4FeH6 is metastable.

  14. [Physico-chemical features of dinitrosyl iron complexes with natural thiol-containing ligands underlying biological activities of these complexes].

    Science.gov (United States)

    Vanin, A F; Borodulin, R R; Kubrina, L N; Mikoian, V D; Burbaev, D Sh

    2013-01-01

    Current notions and new experimental data of the authors on physico-chemical features of dinitrosyl iron complexes with natural thiol-containing ligands (glutathione or cysteine), underlying the ability of the complexes to act as NO molecule and nitrosonium ion donors, are considered. This ability determines various biological activities of dinitrosyl iron complexes--inducing long-lasting vasodilation and thereby long-lasting hypotension in human and animals, inhibiting pellet aggregation, increasing red blood cell elasticity, thereby stimulating microcirculation, and reducing necrotic zone in animals with myocardial infarction. Moreover, dinitrosyl iron complexes are capable of accelerating skin wound healing, improving the function of penile cavernous tissue, blocking apoptosis development in cell cultures. When decomposed dinitrosyl iron complexes can exert cytotoxic effect that can be used for curing infectious and carcinogenic pathologies.

  15. Mineral industry statistics 1975

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Production, consumption and marketing statistics are given for solid fuels (coal, peat), liquid fuels and gases (oil, natural gas), iron ore, bauxite and other minerals quarried in France, in 1975. Also accident statistics are included. Production statistics are presented of the Overseas Departments and territories (French Guiana, New Caledonia, New Hebrides). An account of modifications in the mining field in 1975 is given. Concessions, exploitation permits, and permits solely for prospecting for mineral products are discussed. (In French)

  16. Preparation of Highly Pure Vanadyl Sulfate from Sulfate Solutions Containing Impurities of Iron and Aluminum by Solvent Extraction Using EHEHPA

    Directory of Open Access Journals (Sweden)

    Dan Li

    2017-03-01

    Full Text Available The preparation of highly pure vanadyl sulfate from sulfate solutions containing impurities of iron and aluminumwas investigated by solvent extraction with 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (EHEHPA and tri-n-butyl phosphate (TBP as the phase modifier. The extraction and stripping conditions of vanadium (IV and its separation from iron and aluminum were optimized. Under the optimal extraction conditions, the extraction of vanadium (IV and iron were 68% and 53%, respectively, while only 2% aluminum was extracted in a single contact, suggesting good separation of vanadium (IV from aluminum. Sulfuric acid solution was used for the stripping. Nearly 100% vanadium (IV and 95% aluminum were stripped, while only 10% iron was stripped under the optimal stripping conditions in a single contact, suggesting good separation of vanadium (IV from iron. After five stages of extraction and stripping, highly pure vanadyl sulfate containing 76.5 g/L V (IV with the impurities of 12 mg/L Fe and 10 mg/L Al was obtained, which is suitable for the electrolyte of a vanadium redox flow battery. Organic solution was well regenerated after stripping by oxalic acid solution to remove the remaining iron. The mechanism of vanadium (IV extraction using EHEHPA was also discussed based on the Fourier transform infrared spectroscopy (FT-IR analysis.

  17. Did the Kiruna iron ores form as a result of a metasomatic or igneous process? New U-Pb and Nd data for the iron oxide apatite ores and their host rocks in the Norrbotten region of northern Sweden

    Science.gov (United States)

    Westhues, A.; Hanchar, J. M.; Whitehouse, M. J.; Fisher, C. M.

    2012-12-01

    A number of iron deposits near Kiruna in the Norrbotten region of northern Sweden are of the iron oxide apatite (IOA) type of deposits; also referred to as Kiruna-type deposits. They are commonly considered a subgroup or end-member of iron oxide copper gold (IOCG) deposits, containing no economic grades of copper or gold. Both IOCG and IOA deposits are characterized by abundant low-Ti Fe oxides, an enrichment in REE, and intense sodium and potassium wall-rock alteration adjacent to the ores. Deposits of these types are of a great economic importance, not only for iron, but also for other elements such as rare earth elements (REE) or uranium. Kiruna, the type locality of the IOA type of mineral deposits, is the focus of this study. Despite a century-long mining history and 2500 Mt of iron ore produced in the region to date (with grades of 30 to 70 wt.% Fe), the genesis of these deposits is poorly understood: theories of a magmatic vs. a hydrothermal or metasomatic origin have been debated, and the timing of mineralization of the ores in the Norbotten region has never been directly dated. The results anticipated from this study will provide a better understanding of the nature of the IOA type of mineral deposits and their relation to IOCG deposits such as Olympic Dam in Australia. An array of geochemical methods is used in order to gain insights on the emplacement history of the host rocks, their subsequent alteration, and the ore genesis of these deposits. This includes in situ U/Pb geochronology of zircon, monazite, and titanite to constrain the timing between host rock emplacement, alteration and mineralization. Isotopic data from whole rocks and in situ at mineral scale will provide constraints on the involvement of hydrothermal fluids and their possible sources, as well as on the sources of Fe, U, and the REE. Newly obtained Sm-Nd isotopic data points to distinct source differences between host rocks, ore and alteration related samples. Preliminary in situ U

  18. Chemical process for recovery of uranium values contained in phosphoric mineral lixivia

    International Nuclear Information System (INIS)

    Conceicao, E.L.H. da; Awwal, M.A.; Coelho, S. V.

    1980-01-01

    A recovery process of uranium values from phosporic mineral lixivia for obtaining uranio oxide concentrate adjusted to specifications of purity for its commercialization the process consists of the adjustment of electromotive force of lixiviem to suitable values for uranium extraction, extraction with organic solvent containing phosphoric acid ester and oxidant reextraction from this solvent with phosphoric acid solution, suggesting a new solvent extraction containing synergetic mixture of di-2-ethyl hexyl phosphoric acid and tri-octyl phosphine, leaching this solvent with water and re-extraction/precipitation with ammonium carbonate solution, resulting in the formation of uranyl tricarbonate and ammonium, that by drying and calcination gives the uranium oxide with purity degree for commercialization. (M.C.K.) [pt

  19. Magnetic properties and phase transformations of iron sulfides synthesized under the hydrothermal method

    Science.gov (United States)

    Li, S. H.; Chen, Y. H.

    2016-12-01

    The iron sulfide nano-minerals possess advantages of high abundance, low cost, and low toxicity. These advantages make them be competitive in the magnetic, electronic, and photoelectric applications. Mackinawite can be used in soil or water remediations. Greigite is very important for paleomagnetic and geochemical environment studies and the anode materials for lithium ion batteries. Besides, greigite is also utilized for hyperthermia and biomedicine. Pyrrhotite can be applied as geothermometry. Due to the above-mentioned reasons, iron sulfide minerals have specific significances and they must be further investigated, like their phase transformations, magnetic properties, and etc. In this study, the iron sulfide minerals were synthesized by using a hydrothermal method. The ex-situ and in-situ X-ray diffraction (XRD) was used to examine the crystal structure and phase transformation of iron sulfide minerals. The Transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID) were carried out to investigate their morphology and magnetic properties, respectively. The results suggested that the phase transformation sequence was followed the order: mackinawite → greigite → (smythite) → pyrrhotite. Two pure mineral phases of greigite and pyrrhotite were obtained under the hydrothermal conditions. The morphology of the pure greigite is granular aggregates with a particle size of approximately 30 nm and pyrrhotite presented a hexagonal sheet stacking with a particle size of thousands nanometers. The greigite had a ferri-magnetic behavior and pyrrhotite was weak ferro-magnetic. Both of them had a pseudo-single magnetic domain (PSD) based on the Day's plot from SQUID data. The complete phase-transformation pathways and high magnetization of iron sulfide minerals are observed in this study and these kind of iron sulfide minerals are worthy to further study.

  20. Geochemical patterns and microbial contribution to iron plaque formation in the rice plant rhizosphere

    Science.gov (United States)

    Maisch, Markus; Murata, Chihiro; Unger, Julia; Kappler, Andreas; Schmidt, Caroline

    2015-04-01

    Rice is the major food source for more than half of the world population and 80 percent of the worldwide rice cultivation is performed on water logged paddy soils. The establishment of reducing conditions in the soil and across the soil-water interface not only stimulates the microbial production and release of the greenhouse gas methane. These settings also create optimal conditions for microbial iron(III) reduction and therefore saturate the system with reduced ferrous iron. Through the reduction and dissolution of ferric minerals that are characterized by their high surface activity, sorbed nutrients and contaminants (e.g. arsenic) will be mobilized and are thus available for uptake by plants. Rice plants have evolved a strategy to release oxygen from their roots in order to prevent iron toxification in highly ferrous environments. The release of oxygen to the reduced paddy soil causes ferric iron plaque formation on the rice roots and finally increases the sorption capacity for toxic metals. To this date the geochemical and microbiological processes that control the formation of iron plaque are not deciphered. It has been hypothesized that iron(II)-oxidizing bacteria play a potential role in the iron(III) mineral formation along the roots. However, not much is known about the actual processes, mineral products, and geochemical gradients that establish within the rhizosphere. In the present study we have developed a growth set-up that allows the co-cultivation of rice plants and iron(II)-oxidizing bacteria, as well as the visual observation and in situ measurement of geochemical parameters. Oxygen and dissolved iron(II) gradients have been measured using microelectrodes and show geochemical hot spots that offer optimal growth conditions for microaerophilic iron(II) oxidizers. First mineral identification attempts of iron plaque have been performed using Mössbauer spectroscopy and microscopy. The obtained results on mineraology and crystallinity have been

  1. Microbial impact on metallic corrosion processes: case of iron reducing bacteria

    International Nuclear Information System (INIS)

    Esnault, Loic; Jullien, Michel; Libert, Marie; Mustin, Christian

    2010-01-01

    Document available in extended abstract form only. French concept of deep disposal of nuclear waste is based on a multi-barrier system with a metal container and a clayey host rock as last natural barrier for radionuclides confinement and to avoid their migration in the environment. One of the most important criteria for the safety assessment concerns the life time of metal containers. In this deep environment (elevated pressure and temperature, low water content) many factors may induce an alteration and modification of metal containers properties through corrosion processes. Two types of reactions are currently studied First, the anaerobic aqueous corrosion (a) which is depending on the amount of water available and the second is clayey corrosion (b) by an oxidation of structural Iron(III) or clay's H + on Fe(0) of metal containers. - Fe 0 + 2H 2 O → Fe 2+ + 2OH - + H 2 (a) - Fe 0 + 2H + argile → Fe 2+ solution + H 2 (b) - Fe 0 + Fe 3+ argile → Fe 2+ solution + Fe 2+ argile (b) These processes will entail different reaction products: first, we observe formation of corrosion products like aqueous Fe(II) and magnetite, hematite like mineral. These new minerals inhibit aqueous corrosion by the formation of a passivation process. For the second process, we observe a transformation of smectites into iron-rich serpentine-type minerals. These phenomenons will be responsible for a potential loss of confinement properties such as release of radionuclides, swelling and capacity to cations exchange. Moreover, since the discovery of microorganisms in deep clayey environment or in bentonite used as swelling clay. A new corrosion parameter 'biological one inducing bio-corrosion process' must be taken into account and has to be investigated to improve geochemical prediction on the sustainability of containers in geological disposal. - Impact of microorganisms has to be focused in term of bio-corrosion and more precisely on an indirect corrosion through the

  2. Phanerozoic Rifting Phases And Mineral Deposits

    Science.gov (United States)

    Hassaan, Mahmoud

    2016-04-01

    connected with NW,WNW and N-S faults genetically related to volcano-hydrothermal activity associated the Red Sea rifting. At Sherm EL-Sheikh hydrothermal manganese deposit occurs in Oligocene clastics within fault zone. Four iron-manganese-barite mineralization in Esh-Elmellaha plateau are controlled by faults trending NW,NE and nearly E-W intersecting Miocene carbonate rocks. Barite exists disseminated in the ores and as a vein in NW fault. In Shalatee - Halaib district 24 manganese deposits and barite veins with sulphide patches occur within Miocene carbonates distributed along two NW fault planes,trending 240°and 310° and occur in granite and basalt . Uranium -lead-zinc sulfide mineralization occur in Late Proterozoic granite, Late Cretaceous sandstones, and chiefly in Miocene clastic-carbonate-evaporate rocks. The occurrences of uranium- lead-zinc and iron-manganese-barite mineralization have the characteristic features of hypogene cavity filling and replacement deposits correlated with Miocene- Recent Aden volcanic rocks rifting. In western Saudi Arabia barite-lead-zinc mineralization occurs at Lat. 25° 45' and 25° 50'N hosted by Tertiary sediments in limestone nearby basaltic flows and NE-SW fault system. The mineralized hot brines in the Red Sea deeps considered by the author a part of this province. The author considers the constant rifting phases of Pangea and then progressive fragmentation of Western Gondwana during the Late Carboniferous-Lias, Late Jurassic-Early Aptian, Late Aptian - Albian and Late Eocene-Early Miocene and Oligocene-Miocene, responsible for formation of the mineral deposits constituting the M provinces. During these events, rifting, magmatism and hydrothermal activities took place in different peri-continental margins.

  3. Iron Biochemistry is Correlated with Amyloid Plaque Morphology in an Established Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Telling, Neil D; Everett, James; Collingwood, Joanna F; Dobson, Jon; van der Laan, Gerrit; Gallagher, Joseph J; Wang, Jian; Hitchcock, Adam P

    2017-10-19

    A signature characteristic of Alzheimer's disease (AD) is aggregation of amyloid-beta (Aβ) fibrils in the brain. Nevertheless, the links between Aβ and AD pathology remain incompletely understood. It has been proposed that neurotoxicity arising from aggregation of the Aβ 1-42 peptide can in part be explained by metal ion binding interactions. Using advanced X-ray microscopy techniques at sub-micron resolution, we investigated relationships between iron biochemistry and AD pathology in intact cortex from an established mouse model over-producing Aβ. We found a direct correlation of amyloid plaque morphology with iron, and evidence for the formation of an iron-amyloid complex. We also show that iron biomineral deposits in the cortical tissue contain the mineral magnetite, and provide evidence that Aβ-induced chemical reduction of iron could occur in vivo. Our observations point to the specific role of iron in amyloid deposition and AD pathology, and may impact development of iron-modifying therapeutics for AD. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Catalytic properties of extraframework iron-containing species in ZSM-5 for N2O decomposition

    NARCIS (Netherlands)

    Li, G.; Pidko, E.A.; Filot, I.A.W.; Santen, van R.A.; Li, Can; Hensen, E.J.M.

    2013-01-01

    The reactivity of mononuclear and binuclear iron-containing complexes in ZSM-5 zeolite for catalytic N2O decomposition has been investigated by periodic DFT calculations and microkinetic modeling. On mononuclear sites, the activation of a first N2O molecule is favorable. The rate of catalytic N2O

  5. Iron-clay interactions under a thermal gradient

    International Nuclear Information System (INIS)

    Jodin-Caumon, Marie-Camille; Mosser-Ruck, Regine; Randi, Aurelien; Cathelineau, Michel; Michau, Nicolas

    2010-01-01

    Document available in extended abstract form only. Repository in deep geological formations is considered as a possible solution for long-term high-level nuclear waste (HLW) management. The concept generally consists in a multiple barriers system including steel canister in a clay host rock. Heat and radiation emissions by HLW, corrosion of the canister and desaturation/re-saturation of the clay may affect the properties of the geological formation. In this context, the possible mineralogical evolutions of clays in contact with metal iron were studied in various conditions simulating those of HLW repository. Most of these studies were carried out at a constant temperature whereas the system will undergo a thermal gradient in time (progressive decrease of the temperature of the HLW with the decrease of its activity) and space (from the waste to the host rock). A thermal gradient may imply mass transport phenomena by convection and diffusion processes as a function of temperature, gradient intensity and the nature of the chemical elements. Here we show the effect of a thermal gradient in space on the interaction between the argillite from the ANDRA underground laboratory at Bure (Meuse/Haute-Marne) and metal iron. Tube-in-tube experiments were carried out. Argillite was put in two previously drilled platinum capsules (Diam. holes: 200 μm). Metal iron (powder and plate) was added in one of the Pt capsule. The Pt capsules were then loaded at the two ends of a gold tube. A fluid (H 2 O or a saline solution) was added and the gold tube was sealed and regularly pinched to form 5 precipitation niches. The iron/argillite mass ratio ranged between 0.3 and 0.5 and the fluid/argillite mass ratio was around 10. A thermal gradient 80 deg. C-150 deg. C or 150 deg. C-300 deg. C was applied to the tube during 3 and 6 months. The end of the gold tube with the Pt capsule containing iron was placed at the hot point (max. temperature 150 deg. C or 300 deg. C) or at the cold point (min

  6. Strata-bound Fe-Co-Cu-Au-Bi-Y-REE deposits of the Idaho Cobalt Belt: Multistage hydrothermal mineralization in a magmatic-related iron oxide copper-gold system

    Science.gov (United States)

    Slack, John F.

    2012-01-01

    Mineralogical and geochemical studies of strata-bound Fe-Co-Cu-Au-Bi-Y-rare-earth element (REE) deposits of the Idaho cobalt belt in east-central Idaho provide evidence of multistage epigenetic mineralization by magmatic-hydrothermal processes in an iron oxide copper-gold (IOCG) system. Deposits of the Idaho cobalt belt comprise three types: (1) strata-bound sulfide lenses in the Blackbird district, which are cobaltite and, less commonly, chalcopyrite rich with locally abundant gold, native bismuth, bismuthinite, xenotime, allanite, monazite, and the Be-rich silicate gadolinite-(Y), with sparse uraninite, stannite, and Bi tellurides, in a gangue of quartz, chlorite, biotite, muscovite, garnet, tourmaline, chloritoid, and/or siderite, with locally abundant fluorapatite or magnetite; (2) discordant tourmalinized breccias in the Blackbird district that in places have concentrations of cobaltite, chalcopyrite, gold, and xenotime; and (3) strata-bound magnetite-rich lenses in the Iron Creek area, which contain cobaltiferous pyrite and locally sparse chalcopyrite or xenotime. Most sulfide-rich deposits in the Blackbird district are enclosed by strata-bound lenses composed mainly of Cl-rich Fe biotite; some deposits have quartz-rich envelopes.Whole-rock analyses of 48 Co- and/or Cu-rich samples show high concentrations of Au (up to 26.8 ppm), Bi (up to 9.16 wt %), Y (up to 0.83 wt %), ∑REEs (up to 2.56 wt %), Ni (up to 6,780 ppm), and Be (up to 1,180 ppm), with locally elevated U (up to 124 ppm) and Sn (up to 133 ppm); Zn and Pb contents are uniformly low (≤821 and ≤61 ppm, respectively). Varimax factor analysis of bulk compositions of these samples reveals geochemically distinct element groupings that reflect statistical associations of monazite, allanite, and xenotime; biotite and gold; detrital minerals; chalcopyrite and sparse stannite; quartz; and cobaltite with sparse selenides and tellurides. Significantly, Cu is statistically separate from Co and As

  7. Reactivity of Uranium and Ferrous Iron with Natural Iron Oxyhydroxides.

    Science.gov (United States)

    Stewart, Brandy D; Cismasu, A Cristina; Williams, Kenneth H; Peyton, Brent M; Nico, Peter S

    2015-09-01

    Determining key reaction pathways involving uranium and iron oxyhydroxides under oxic and anoxic conditions is essential for understanding uranium mobility as well as other iron oxyhydroxide mediated processes, particularly near redox boundaries where redox conditions change rapidly in time and space. Here we examine the reactivity of a ferrihydrite-rich sediment from a surface seep adjacent to a redox boundary at the Rifle, Colorado field site. Iron(II)-sediment incubation experiments indicate that the natural ferrihydrite fraction of the sediment is not susceptible to reductive transformation under conditions that trigger significant mineralogical transformations of synthetic ferrihydrite. No measurable Fe(II)-promoted transformation was observed when the Rifle sediment was exposed to 30 mM Fe(II) for up to 2 weeks. Incubation of the Rifle sediment with 3 mM Fe(II) and 0.2 mM U(VI) for 15 days shows no measurable incorporation of U(VI) into the mineral structure or reduction of U(VI) to U(IV). Results indicate a significantly decreased reactivity of naturally occurring Fe oxyhydroxides as compared to synthetic minerals, likely due to the association of impurities (e.g., Si, organic matter), with implications for the mobility and bioavailability of uranium and other associated species in field environments.

  8. Content of Selected Minerals and Active Ingredients in Teas Containing Yerba Mate and Rooibos.

    Science.gov (United States)

    Rusinek-Prystupa, Elżbieta; Marzec, Zbigniew; Sembratowicz, Iwona; Samolińska, Wioletta; Kiczorowska, Bożena; Kwiecień, Małgorzata

    2016-07-01

    The study aimed to determine the content of selected elements: sodium, potassium, copper, zinc, iron, manganese and active ingredients such as phenolic acids and tannins in teas containing Yerba Mate and Rooibos cultivated in various areas. The study material comprised six samples of Yerba Mate teas and of Rooibos teas, both tea bags and leaves, purchased in Puławy and online via Allegro. In total, 24 samples were tested. Yerba Mate was particularly abundant in Mn and Fe. The richest source of these elements was Yerba Mate Yer-Vita (2261.3 mg · kg(-1) d.m.) and (691.6 mg · kg(-1) d.m.). The highest content of zinc was determined in Yerba Mate Amanda with lime (106.0 mg · kg(-1) d.m.), while copper was most abundant in Yerba Mate Big-Active cocoa and vanilla (14.05 mg · kg(-1) d.m.). In Rooibos, the content of sodium was several times higher than in Yerba Mate. A clear difference was observed in the content of minerals in dry weight of the examined products, which could be a result of both the taxonomic distinctness and the origin of the raw material. Leaf teas turned out to be a better source of tannins; on the other hand, tea bags contained substantially more phenolic acids. The richest source of phenolic acids was Yer-Vita in bags (1.8 %), and the highest amount of tannins was recorded in the leaf tea Green Goucho caramel and dark chocolate (9.04 g · 100 g(-1) d.m.). In Rooibos products, the highest content of phenolic acids was recorded in tea bags (Savannah with honey and vanilla 0.96 %), and tannins in (Lord Nelson with strawberry and cream 7.99 g · 100 g (-1) d.m.).

  9. EPR Characterization of Dinitrosyl Iron Complexes with Thiol-Containing Ligands as an Approach to Their Identification in Biological Objects: An Overview.

    Science.gov (United States)

    Vanin, Anatoly F

    2018-06-01

    The overview demonstrates how the use of only one physico-chemical approach, viz., the electron paramagnetic resonance method, allowed detection and identification of dinitrosyl iron complexes with thiol-containing ligands in various animal and bacterial cells. These complexes are formed in biological objects in the paramagnetic (electron paramagnetic resonance-active) mononuclear and diamagnetic (electron paramagnetic resonance-silent) binuclear forms and control the activity of nitrogen monoxide, one of the most universal regulators of metabolic processes in the organism. The analysis of electronic and spatial structures of dinitrosyl iron complex sheds additional light on the mechanism whereby dinitrosyl iron complex with thiol-containing ligands function in human and animal cells as donors of nitrogen monoxide and its ionized form, viz., nitrosonium ions (NO + ).

  10. Evaluation of the influence of UV/IR radiation on iron release from ferritin

    International Nuclear Information System (INIS)

    Gritzkov, M.; Kochev, V.; Vladimirova, L

    2010-01-01

    In the present work the influence of UV/IR radiation on the iron-releasing process from ferritin is investigated. The ferritins are a family of iron-storing proteins playing a key role in the biochemical reactions between iron and oxygen-processes of exclusive importance for the existence of all living organisms. The iron is stored within the ferritin core in the form of insoluble crystals containing Fe(III). Therefore for its release, the mineral matrix has to be decomposed, usually through a reduction of Fe(III) to Fe(II). Our study considers the action of UV/IR radiation on the structure of the protein molecule. Eventual changes in the ferritin conformation under the irradiation could result in the change of channel forming regions responsible for the iron efflux. This can be assess by the quantity of Fe (II) obtained in a subsequent mobilization procedure evoked by exogenous reducing agents. In our case the content of the reduced iron is determined electrochemically by the method of potentiometric titration. As already was shown, this method promises to become highly useful for quantitative evaluation of released Fe 2+ . (Author)

  11. Very heavy iron-punching concretes

    International Nuclear Information System (INIS)

    Dubois, F.

    1966-01-01

    The present report deals with all the heavy iron-punching concretes, metallic wastes produced by the transformation industry. After a detailed description of the physical properties of metallic aggregates, a classification of heavy mortars is given, into three main categories: steel-shot grouts d = 5,3 - 6; steel-shot grouts mixed with a mineral d = 3,7 - 4,2; injection heavy grouts d = 3,5 - 4. The following chapter describes iron-punching concretes the most used in the atomic industry: iron-punching concretes mixed with cast-iron - iron-punching concretes mixed with magnetite; iron-punching concretes mixed with barite; iron-punching concretes mixed with limonite; iron-punching concretes mixed with boron. The compositions of these concretes are given together with their physical and mechanical characteristics. Numerous diagrams make it possible to find rapidly the proportions of the constituents of these concretes as a function of the required density. Technical advice and specifications are given in an appendix together with a bibliography of these heavy concretes. (author) [fr

  12. An Analysis of the Published Mineral Resource Estimates of the Haji-Gak Iron Deposit, Afghanistan

    International Nuclear Information System (INIS)

    Sutphin, David M.; Renaud, Karine M.; Drew, Lawrence J.

    2011-01-01

    The Haji-Gak iron deposit of eastern Bamyan Province, eastern Afghanistan, was studied extensively and resource calculations were made in the 1960s by Afghan and Russian geologists. Recalculation of the resource estimates verifies the original estimates for categories A (in-place resources known in detail), B (in-place resources known in moderate detail), and C 1 (in-place resources estimated on sparse data), totaling 110.8 Mt, or about 6% of the resources as being supportable for the methods used in the 1960s. C 2 (based on a loose exploration grid with little data) resources are based on one ore grade from one drill hole, and P 2 (prognosis) resources are based on field observations, field measurements, and an ore grade derived from averaging grades from three better sampled ore bodies. C 2 and P 2 resources are 1,659.1 Mt or about 94% of the total resources in the deposit. The vast P 2 resources have not been drilled or sampled to confirm their extent or quality. The purpose of this article is to independently evaluate the resources of the Haji-Gak iron deposit by using the available geologic and mineral resource information including geologic maps and cross sections, sampling data, and the analog-estimating techniques of the 1960s to determine the size and tenor of the deposit.

  13. In Situ Mineralization of Magnetite Nanoparticles in Chitosan Hydrogel

    Science.gov (United States)

    Wang, Yongliang; Li, Baoqiang; Zhou, Yu; Jia, Dechang

    2009-09-01

    Based on chelation effect between iron ions and amino groups of chitosan, in situ mineralization of magnetite nanoparticles in chitosan hydrogel under ambient conditions was proposed. The chelation effect between iron ions and amino groups in CS-Fe complex, which led to that chitosan hydrogel exerted a crucial control on the magnetite mineralization, was proved by X-ray photoelectron spectrum. The composition, morphology and size of the mineralized magnetite nanoparticles were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and thermal gravity. The mineralized nanoparticles were nonstoichiometric magnetite with a unit formula of Fe2.85O4 and coated by a thin layer of chitosan. The mineralized magnetite nanoparticles with mean diameter of 13 nm dispersed in chitosan hydrogel uniformly. Magnetization measurement indicated that superparamagnetism behavior was exhibited. These magnetite nanoparticles mineralized in chitosan hydrogel have potential applications in the field of biotechnology. Moreover, this method can also be used to synthesize other kinds of inorganic nanoparticles, such as ZnO, Fe2O3 and hydroxyapatite.

  14. In Situ Mineralization of Magnetite Nanoparticles in Chitosan Hydrogel

    Directory of Open Access Journals (Sweden)

    Wang Yongliang

    2009-01-01

    Full Text Available Abstract Based on chelation effect between iron ions and amino groups of chitosan, in situ mineralization of magnetite nanoparticles in chitosan hydrogel under ambient conditions was proposed. The chelation effect between iron ions and amino groups in CS–Fe complex, which led to that chitosan hydrogel exerted a crucial control on the magnetite mineralization, was proved by X-ray photoelectron spectrum. The composition, morphology and size of the mineralized magnetite nanoparticles were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and thermal gravity. The mineralized nanoparticles were nonstoichiometric magnetite with a unit formula of Fe2.85O4and coated by a thin layer of chitosan. The mineralized magnetite nanoparticles with mean diameter of 13 nm dispersed in chitosan hydrogel uniformly. Magnetization measurement indicated that superparamagnetism behavior was exhibited. These magnetite nanoparticles mineralized in chitosan hydrogel have potential applications in the field of biotechnology. Moreover, this method can also be used to synthesize other kinds of inorganic nanoparticles, such as ZnO, Fe2O3and hydroxyapatite.

  15. EMSP Project 70070: Reactivity of Primary Soil Minerals and Secondary Precipitates Beneath Leaking Hanford Waste Tanks - Final Report

    International Nuclear Information System (INIS)

    Nagy, Kathryn L.

    2004-01-01

    Since the late 1950s, leaks from 67 single-shell tanks at the Hanford Site have released about 1 million curies to the underlying sediments. The radioactive material was contained in water-based solutions generally characterized as having high pH values (basic solutions), high nitrate and nitrite concentrations, and high aluminum concentrations. The solutions were also hot, in some cases at or near boiling, as well as complex and highly variable in composition reflecting solutions obtained from multiple methods of reprocessing spent nuclear fuel. In order to understand the observed and probable distribution of radionuclides in the ground at Hanford, major reactions that likely occurred between the leaked fluids and the sediment minerals were investigated in laboratory experiments simulating environmental conditions. Reactions involving the dissolution of quartz and biotite and the simultaneous formation of new minerals were quantified at controlled pH values and temperature. Result s show that the dissolution of quartz and formation of new zeolite-like minerals could have altered the flow path of ground water and contaminant plumes and provided an uptake mechanism for positively-charged soluble radionuclides, such as cesium. The dissolution of biotite, a layered-iron-aluminum-silicate mineral, provided iron in a reduced form that could have reacted with negatively-charged soluble chromium, a toxic component of the wastes, to cause its reduction and precipitation as a new reduced-chromium mineral. The quantity of iron released in the experiments is sufficient to explain observations of reductions in dissolved chromium concentration in a plume beneath one Hanford tank. Fundamental data obtained in the project are the rates of the reactions at variable temperatures and pHs. Fundamental data were also obtained on aspects of the surface reactivity of clay or layered-silicate minerals, a small proportion of the total mass of the sediment minerals, but a large proportion

  16. Atmospheric processing of combustion aerosols as a source of soluble iron to the open ocean

    OpenAIRE

    伊藤, 彰記; ITO, Akinori

    2015-01-01

    The majority of bioavailable iron (Fe) from the atmosphere is delivered from arid and semiarid regions to the oceans because the global deposition of iron from combustion sources is small compared with that from mineral dust. Atmospheric processing of mineral aerosols by inorganic and organic acids from anthropogenic and natural sources has been shown to increase the iron solubility of soils (initially < 0.5%) up to about 10%. On the other hand, atmospheric observations have shown that iron i...

  17. Characterization of PAH matrix with monazite stream containing uranium, gadolinium and iron

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Sangita, E-mail: sangpal@barc.gov.in; Goswami, D. [Desalination Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India); Meena, Sher Singh [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India)

    2016-05-23

    Uranium (U) gadolinium (Gd) and iron (Fe) containing alkaline waste simulated effluent (relevant to alkaline effluent of monazite ore) has been treated with a novel amphoteric resin viz, Polyamidehydroxamate (PAH) containing amide and hydroxamic acid groups. The resin has been synthesized in an eco-friendly manner by polymerization nad conversion to functional groups characterized by FT-IR spectra and architectural overview by SEM. Coloration of the loaded matrix and de-coloration after extraction of uranium is the special characteristic of the matrix. Effluent streams have been analyzed by ICP-AES, U loaded PAH has been characterized by FT-IR, EXAFS, Gd and Fe by X-ray energy values of EDXRF at 6.053 KeVand 6.405 KeV respectively. The remarkable change has been observed in Mössbauer spectrum of Fe-loaded PAH samples.

  18. Prediction of reducible soil iron content from iron extraction data

    NARCIS (Netherlands)

    Bodegom, van P.M.; Reeven, van J.; Denier van der Gon, H.A.C.

    2003-01-01

    Soils contain various iron compounds that differ in solubility, reducibility and extractability. Moreover, the contribution of the various iron compounds to total iron (Fe) and total Fe concentrations differs highly among soils. As a result, the total reducible Fe content can also differ among

  19. Long-term alteration of bentonite in the presence of metallic iron

    Energy Technology Data Exchange (ETDEWEB)

    Kumpulainen, S.; Kiviranta, L. [B and Tech Oy, Helsinki (Finland); Carlsson, T.; Muurinen, A. [VTT Technical Research Centre of Finland, Espoo (Finland); Svensson, D. [Svensk Kaernbraenslehantering AB (SKB), Stockholm (Sweden); Sasamoto, Hiroshi; Yui, Mikatzu [Japan Atomic Energy Agency (JAEA) (Japan); Wersin, P.; Rosch, D. [Gruner Ltd, Basel (Switzerland)

    2011-12-15

    , inter alia, reducing conditions, a pH of around eight, and measurable amounts of Mg{sup 2+}, Ca{sup 2+}, and SO{sub 4} {sup 2-}. The bentonite was carefully divided into subsamples, which were studied with XRD, FTIR, SEM, ICP-AES, TEM-EDS, XANES, Moessbauer spectroscopy, and wet-chemical methods. Briefly, bentonite samples containing cast iron cylinders contained higher amounts of iron than the reference samples. The corroded iron was predominantly in the divalent form, and its concentration was highest close to the cylinder and decreased strongly with increasing distance from its surface. The average corrosion rate estimated from Fe profiles in the Fe-reacted samples is about 1.7 {mu}m/a. The results from the Moessbauer spectroscopy analyses suggest that no reduction of the octahedral Fe{sup 3+} in the montmorillonite layers had occurred. The swelling pressure and the hydraulic conductivity were measured in undisturbed subsamples of the MX-80. The iron-bentonite interaction seemed to slightly decrease the swelling pressure, while the hydraulic conductivity was unchanged. The corrosion rate of the Cu vessel surface was estimated from the Cu analysis in the clay to be about 0.035 {mu}m/a. The JAEA samples were analyzed with regard to the conditions in the water and in the bentonite. The water exhibited pH values in the approximate range of 11 to 13, and clearly reducing conditions with Eh values between -260 and -580 mV. XRD and FTIR analyses of the bentonite material, showed that montmorillonite was completely transformed to a non-swelling 7 Aa clay mineral, most likely to the serpentine mineral berthierine, in samples containing 0.3-0.6 M NaCl solutions, with the highest pH values. The transformation was incomplete in samples containing 0.1 M NaHCO{sub 3} solution, and did not occur at all when the solution was either 0.05 M Na{sub 2}SO{sub 4} or distilled water. (orig.)

  20. Iron transport, deposition and bioavailability in the wheat and barley grain

    DEFF Research Database (Denmark)

    Borg, Søren; Brinch-Pedersen, Henrik; Tauris, Birgitte

    2009-01-01

    will briefly review existing knowledge on the distribution and transport pathways of iron in the two small grained cereals, barley and wheat, and focus on the efforts made to increase the iron content in cereals in general. However, mineral content is not the only factor of relevance for improving......). The nutritional impact of increasing mineral content accordingly has to be seen in the context of mineral bioavailability. Finally, we will briefly report on recent data from barley, where laser capture microdissection of the different grain tissues combined with gene expression profiling has provided some...

  1. Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals

    Science.gov (United States)

    Zhang, G.; Dong, H.; Jiang, H.; Kukkadapu, R.K.; Kim, J.; Eberl, D.; Xu, Z.

    2009-01-01

    Iron-reducing and oxidizing microorganisms gain energy through reduction or oxidation of iron, and by doing so play an important role in the geochemical cycling of iron. This study was undertaken to investigate mineral transformations associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. A fluid sample from the 2450 m depth of the Chinese Continental Scientific Drilling project was collected, and Fe3+-reducing and Fe2+-oxidizing microorganisms were enriched. The enrichment cultures displayed reduction of Fe3+ in nontronite and ferric citrate, and oxidation of Fe2+ in vivianite, siderite, and monosulfide (FeS). Additional experiments verified that the iron reduction and oxidation was biological. Oxidation of FeS resulted in the formation of goethite, lepidocrocite, and ferrihydrite as products. Although our molecular microbiological analyses detected Thermoan-aerobacter ethanolicus as a predominant organism in the enrichment culture, Fe3+ reduction and Fe2+ oxidation may be accomplished by a consortia of organisms. Our results have important environmental and ecological implications for iron redox cycling in solid minerals in natural environments, where iron mineral transformations may be related to the mobility and solubility of inorganic and organic contaminants.

  2. Spectroscopic characterization of manganese minerals.

    Science.gov (United States)

    Lakshmi Reddy, S; Padma Suvarna, K; Udayabhaska Reddy, G; Endo, Tamio; Frost, R L

    2014-01-03

    Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Application of solution-mineral equilibrium chemistry to solution mining of uranium ores

    International Nuclear Information System (INIS)

    Riese, A.C.; Propp, C.J.

    1980-01-01

    Modern methods of uranium solution mining are typically accompanied by gains and losses of mass through reagent consumption by rock-forming minerals, with subsequent formation of clay minerals, gypsum, carbonates, and iron oxyhydroxides. A systematic approach to alleviate such problems involves the application of leach solutions that are in equilibrium with the host-rock minerals but in disequilibrium with the ore-forming minerals. This partial equilibrium can be approximated by solution-composition adjustments within the systems K 2 O-Al 2 O 3 SiO 2 -H 2 O and Na 2 O 3 -Al 2 O 3 SiO 2 -H 2 O. Uranium ore containing 0.15 percent U 3 O 8 from the Gulf Mineral Resources Corporation's Mariano Lake mine, the Smith Lake district of the Grants mineral belt, was collected for investigation. Presented are a theoretical evaluation of leachate data and an experimental treatment of the ore, which contained mainly K-feldspar, plagioclase feldspar, and quartz (with lesser amounts of micas, clay minerals, and organic carbonaceous material). Small-scale (less than or equal to 1 kg) column-leaching experiments were conducted to model the results of conventional leaching operations and to provide leachate solutions that could be compared with solutions calculated to be in equilibrium with the matrix minerals. Leach solutions employed include: 1) sulfuric acid, 2) sodium bicarbonate, and 3) sulfuric acid with 1.0 molal potassium chloride. The uranium concentrations in the sodium-bicarbonate leach solution and the acid-leach solution were about a gram per liter at the termination of the tests. However, the permeability of the ore in the acid leach was greatly reduced, owing to the formation of clay minerals. Uranium solubility in the leach column stabilized with the potassium-chloride solution was calculated from leachate compositions to be limited by the solubility of carnotite

  4. Uranyl adsorption at clay mineral surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roesch, N. [Technische Univ. Muenchen (Germany). Fachgebiet Theoretische Chemie

    2016-11-01

    This first systematic survey of actinide adsorption at complex clay mineral surfaces, which provided new insights at the atomic level, is currently being extended to neptunyl NpO{sub 2}{sup +} and more complex minerals, like iron-substituted phyllosilicates. In this way we examine if the concepts developed so far can be applied more generally to support the interpretation of pertinent experiments. A further facet of these studies is to account also for the dynamic nature of the mineral/water interface by means of exemplary dynamic simulations.

  5. Effect of dietary iron source and iron status on iron bioavailability tests in the rat

    International Nuclear Information System (INIS)

    Zhang, D.; Hendricks, D.G.; Mahoney, A.W.

    1986-01-01

    Weanling male rats were made anemic in 7 days by feeding a low iron diet and bleeding. Healthy rats were fed the low iron diet supplemented with ferrous sulfate (29 ppm Fe). Each group was subdivided and fed for 10 days on test diets containing about 29 ppm iron that were formulated with meat:spinach mixtures or meat:soy mixtures to provided 100:0, 75:25, 50:50, 25:75, or 0:100% of the dietary iron from these sources or from a ferrous sulfate diet. After 3 days on the diets all rats were dosed orally with 2 or 5 micro curries of 59 Fe after a 18 hour fast and refeeding for 1.5 hours. Iron status influenced liver iron, carcass iron, liver radio activity and percent of radioactive dose retained. Diet influenced fecal iron and apparent absorption of iron. In iron bioavailability studies assessment methodology and iron status of the test subject greatly influences the estimates of the value of dietary sources of iron

  6. Genetic and biochemical investigations of the role of MamP in redox control of iron biomineralization in Magnetospirillum magneticum.

    Science.gov (United States)

    Jones, Stephanie R; Wilson, Tiffany D; Brown, Margaret E; Rahn-Lee, Lilah; Yu, Yi; Fredriksen, Laura L; Ozyamak, Ertan; Komeili, Arash; Chang, Michelle C Y

    2015-03-31

    Magnetotactic bacteria have evolved complex subcellular machinery to construct linear chains of magnetite nanocrystals that allow the host cell to sense direction. Each mixed-valent iron nanoparticle is mineralized from soluble iron within a membrane-encapsulated vesicle termed the magnetosome, which serves as a specialized compartment that regulates the iron, redox, and pH environment of the growing mineral. To dissect the biological components that control this process, we have carried out a genetic and biochemical study of proteins proposed to function in iron mineralization. In this study, we show that the redox sites of c-type cytochromes of the Magnetospirillum magneticum AMB-1 magnetosome island, MamP and MamT, are essential to their physiological function and that ablation of one or both heme motifs leads to loss of function, suggesting that their ability to carry out redox chemistry in vivo is important. We also develop a method to heterologously express fully heme-loaded MamP from AMB-1 for in vitro biochemical studies, which show that its Fe(III)-Fe(II) redox couple is set at an unusual potential (-89 ± 11 mV) compared with other related cytochromes involved in iron reduction or oxidation. Despite its low reduction potential, it remains competent to oxidize Fe(II) to Fe(III) and mineralize iron to produce mixed-valent iron oxides. Finally, in vitro mineralization experiments suggest that Mms mineral-templating peptides from AMB-1 can modulate the iron redox chemistry of MamP.

  7. Filamentous hydrous ferric oxide biosignatures in a pipeline carrying acid mine drainage at Iron Mountain Mine, California

    Science.gov (United States)

    Williams, Amy J.; Alpers, Charles N.; Sumner, Dawn Y.; Campbell, Kate M.

    2017-01-01

    A pipeline carrying acidic mine effluent at Iron Mountain, CA, developed Fe(III)-rich precipitate caused by oxidation of Fe(II)aq. The native microbial community in the pipe included filamentous microbes. The pipe scale consisted of microbial filaments, and schwertmannite (ferric oxyhydroxysulfate, FOHS) mineral spheres and filaments. FOHS filaments contained central lumina with diameters similar to those of microbial filaments. FOHS filament geometry, the geochemical environment, and the presence of filamentous microbes suggest that FOHS filaments are mineralized microbial filaments. This formation of textural biosignatures provides the basis for a conceptual model for the development and preservation of biosignatures in other environments.

  8. Predicting the mineral composition of dust aerosols - Part 1: Representing key processes

    Science.gov (United States)

    Perlwitz, J. P.; Pérez García-Pando, C.; Miller, R. L.

    2015-02-01

    Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, coating by heterogeneous uptake of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wet-sieved soil and the resulting aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent in a soil whose aggregates are dispersed by wet sieving during analysis. We reconstruct the undispersed size distribution of the original soil that is subject to wind erosion. An empirical constraint upon the relative emission of clay and silt is applied that further differentiates the soil and aerosol mineral composition. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to measurements from North Africa shows that the extension brings the model into better agreement, consistent with a more extensive comparison to global observations as well as measurements of elemental composition downwind of the Sahara, as described in companion articles.

  9. Geochemistry and the origin of the Mamouniyeh iron ore-terra rossa deposit, Markazi Province - Iran

    Directory of Open Access Journals (Sweden)

    Marziyeh Mahboubiyan Fard

    2017-11-01

    chert and minor jasper. Some secondary dolomite and calcite, filling the fractures and open spaces are found. Clay minerals are also minor constituents of the ore. The remaining fossils of green-blue algae indicate the conditions of iron deposition and effective biological processes in oxidizing Fe+2 and creation of new oxide minerals in a sedimentary basin. XRD studies show that tetraferriannite, hisingerite, barite, dolomite and calcite are present in addition to dominant hematite and quartz minerals. Hisingerite is formed in sedimentary iron deposits during hydrothermal alteration (Whelan and Goldich., 1961. Tetraferriannite occurs in low grade iron formations (Miyano, 1982. Structurally, the mineralization is controlled by a tectonic zone in which abundant breccias and faults are well found. The amount of Fe2O3 ranges between 11.62% and 65.73%, with an average value of 31% Fe2O3. The amounts of Cr (3-95 ppm and Zr (<5-29 ppm are low; while, the deposit contains a moderate amount of V (26-189 ppm and high concentrations of Zn (28-218 ppm, Sr (66-1462 ppm and Ba (62-5511 ppm. The concentration of REEs shows that total amount of these elements is variable and it falls in the range of 2.34-12.74 ppm. The amount of LREEs falls in the range of 1.66-11.94 ppm and that of HREEs falls in 0.21-2.22 ppm. These values clearly indicate the enrichment of ore in LREEs relative to HREEs. The Eu anomaly (Eu/Eu* lies in the range of 1.32-10.2, indicating positive Eu anomalies. The Ce anomalies (Ce/Ce* fall in the range of 0.076-0.52, suggesting negative anomaly. Discussion The low concentration of Cr and Zr, and high values of V, Zn and Sr in the ore suggest that mineralization is related to submarine volcanic activities. Geochemical data, including chondrite-normalized REE patterns, indicate that seafloor hydrothermal fluids are the most probable source for mineralizing solutions. The ∑(Cu+Co+Ni vs. ∑REE diagram also indicates the role of deep sea hydrothermal fluids in the

  10. Study on Strength and Microstructure of Cement-Based Materials Containing Combination Mineral Admixtures

    Directory of Open Access Journals (Sweden)

    Meijuan Rao

    2016-01-01

    Full Text Available The compressive strength of complex binders containing two or three blended mineral admixtures in terms of glass powder (GP, limestone powder (LP, and steel slag powder (SP was determined by a battery solution type compressive testing machine. The morphology and microstructure characteristics of complex binder hydration products were also studied by microscopic analysis methods, such as XRD, TG-DTA, and SEM. The mechanical properties of the cement-based materials were analyzed to reveal the most appropriate mineral admixture type and content. The early sample strength development with GP was very slow, but it rapidly grew at later stages. The micro aggregate effect and pozzolanic reaction mutually occurred in the mineral admixture. In the early stage, the micro aggregate effect reduced paste porosity and the small particles connected with the cement hydration products to enhance its strength. In the later stage, the pozzolanic reaction of some components in the complex powder occurred and consumed part of the calcium hydroxide to form C-S-H gel, thus improving the hydration environment. Also, the produced C-S-H gel made the structure more compact, which improved the structure’s strength.

  11. Refining of the cracked products of mineral oils, etc

    Energy Technology Data Exchange (ETDEWEB)

    Seelig, S

    1928-06-02

    A process is disclosed for the refining of the distilled or cracked products from mineral oil, shale oil, or brown-coal-tar oil, with the aid of alkali-plumbite solution, characterized by adding to the plumbite solution from oxide, iron hydroxide, basic oxide, or an iron salt.

  12. Use of Mishell-Dutton culture for the detection of the immunosuppressive effect of iron-containing compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ban, M.; Hettich, D.; Cavelier, C. [Institut National de Recherche et de Securite, Vandoeuvre (France)

    1995-11-15

    Mishell-Dutton culture, known as an in vitro model for the evaluation of the humoral immune response of mice spleen cells to sheep red blood cells (SRBC), was used to study the immunosuppressive effect of iron-containing compounds. This response was indicated by the number of anitbody forming cell (AFC) per million nucleated cells. Ferrous sulfate and ferric citrate (0.1 mM), when continuously present in Mishell-Dutton culture, significantly decreased the SRBC AFC response by approximately 63% and 86% of the control values, respectively. Ferric citrate, preincubated (24h) with spleen cells and followed by lavage, significantly decreased the SRBC AFC response by approximately 54% for the control values. Primary and iron-treated coal, in concentration ranging from 40{mu}g ml{sup -1} to 120{mu}g.m{sup -1}, significantly decreased the SRBC AFC response when continuously present in Mishell-Dutton culture. Iron-treated coal, suppressed this response in dose-dependent amounts, to a greater extent than did the primary coal: 73% versus 54% at 120{mu}g.ml{sup -1}. It was concluded that Mishell-Dutton culture is suitable for studying the immunotoxicity of iron and these results may contribute to explain a decrease of host resistance against parasitic and bacterial infection in workers exposed to iron. 28 refs., 3 tabs.

  13. Hyperspectral surface materials map of quadrangle 3266, Uruzgan (519) and Moqur (520) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  14. Hyperspectral surface materials map of quadrangle 3464, Shahrak (411) and Kasi (412) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  15. Hyperspectral surface materials map of quadrangle 3470, Jalalabad (511) and Chaghasaray (512) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Hyperspectral surface materials map of quadrangle 3368, Ghazni (515) and Gardez (516) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Hyperspectral surface materials map of quadrangle 3162, Chakhansur (603) and Kotalak (604) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Hyperspectral surface materials map of quadrangle 3362, Shindand (415) and Tulak (416) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangle 3366, Gizab (513) and Nawer (514) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3770, Faizabad (217) and Parkhaw (218) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Role of dust alkalinity in acid mobilization of iron

    OpenAIRE

    A. Ito; Y. Feng

    2010-01-01

    Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl) may play a key role in the transformation of insoluble iron (Fe in the oxidized or ferric (III) form) to soluble forms (e.g., Fe(II), inorganic soluble species of Fe(III), and organic complexes of iron). On the other hand, mineral dust particles have a potential of neutralizing the acidic species due to the alkali...

  3. Beliefs and practices of Iranian pregnant mothers regarding vitamins and minerals.

    Science.gov (United States)

    Mashayekhi, S O; Dilmaghanizadeh, M; Fardiazar, Z; Bamdad-Moghadam, R; Ghandforoush-Sattari, M

    2011-03-01

    The objective of this descriptive study was to examine the vitamin and mineral supplements safety beliefs and practices of Iranian pregnant women. Data were collected from 400 randomly chosen women. More than 50% of the participants believed that taking vitamins and minerals during pregnancy was safe; 87% reported taking iron during pregnancy, of which 71.7 % reported their doctor as the main recommender; 21.8% reported first trimester as the most beneficial time for iron supplementation, 13.0% second trimester and 3.0% third trimester. Although an appropriate intake of vitamins and minerals can assure health in pregnancy, excess can be harmful. Educational programmes for women of childbearing age are necessary.

  4. VARIABILITY OF COORDINATION COMPLEXES OF COPPER ACCUMULATED WITHIN FUNGAL COLONY IN THE PRESENCE OF COPPER-CONTAINING MINERALS

    Directory of Open Access Journals (Sweden)

    M. O. Fomina

    2014-04-01

    Full Text Available The aim of work was to elucidate the mechanisms of bioaccumulation of copper leached from minerals by fungus Aspergillus niger with great bioremedial potential due to its ability to produce chelating metabolites and transform toxic metals and minerals. The special attention was paid to the chemical speciation of copper bioaccumulated within fungal colony in the process of fungal transformation of copper-containing minerals. Chemical speciation of copper within different parts of the fungal colony was studied using solid-state chemistry methods such as synchrotron-based X-ray absorption spectroscopy providing information about the oxidation state of the target element, and its coordination environment. The analysis of the obtained X-ray absorption spectroscopy spectra was carried out using Fourier transforms of Extended X-ray Absorption Fine Structure regions, which correspond to the oscillating part of the spectrum to the right of the absorption edge. Results of this study showed that fungus A. niger was involved in the process of solubilization of copper-containing minerals resulted in leaching of mobile copper and its further immobilization by fungal biomass with variable coordination of accumulated copper within fungal colony which depended on the age and physiological/reproductive state of fungal mycelium. X-ray absorption spectroscopy data demonstrated that copper accumulated within outer zone of fungal colony with immature vegetative mycelium was coordinated with sulphur–containing ligands, in contrast to copper coordination with phosphate ligands within mature mycelium with profuse conidia in the central zone of the colony. The findings of this study not only broaden our understanding of the biogeochemical role of fungi but can also be used in the development of various fungal-based biometallurgy technologies such as bioremediation, bioaccumulation and bioleaching and in the assessment of their reliability. The main conclusion is that

  5. Optical Properties of Fe3O4 Thin Films Prepared from the Iron Sand by Spin Coating Method

    Science.gov (United States)

    Yulfriska, N.; Rianto, D.; Murti, F.; Darvina, Y.; Ramli, R.

    2018-04-01

    Research on magnetic oxide is growing very rapidly. This magnetic oxide can be found in nature that is in iron sand. One of the beaches in Sumatera Barat containing iron sand is Tiram Beach, Padang Pariaman District, Sumatera Barat. The content of iron sand is generally in the form of magnetic minerals such as magnetite, hematite, and maghemit. Magnetite has superior properties that can be developed into thin films. The purpose of this research is to investigate the optical properties of transmittance, absorbance, reflectance and energy gap from Fe3O4 thin films. This type of research is an experimental research. The iron sand obtained from nature is first purified using a permanent magnet, then made in nanoparticle size using HEM-E3D with milling time for 30 hours. After that, the process of making thin film with sol-gel spin coating method. In this research, variation of rotation speed from spin coating is 1000 rpm, 2000 rpm and 3000 rpm. Based on XRD results indicated that the iron sand of Tiram beach contains magnetite minerals and the SEM results show that the thickness of the thin films formed is 25μm, 24μm and 11μm. The characterization tool used for characterizing optical properties is the UV-VIS Spectrophotometer. So it can be concluded that the greater the speed of rotation the thickness of the thin layer will be smaller, resulting in the transmittance and reflectance will be greater, while the absorbance will be smaller. Energy gap obtained from this research is 3,75eV, 3,75eV and 3,74eV. So the average energy gap obtained is 3,75eV.

  6. Characterization of Rare Earth Element Minerals in Coal Utilization Byproducts

    Energy Technology Data Exchange (ETDEWEB)

    Montross, Scott N. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); Verba, Circe A. [National Energy Technology Lab. (NETL), Albany, OR (United States). Research Innovation Center; Collins, Keith [National Energy Technology Lab. (NETL), Albany, OR (United States). Research Innovation Center

    2017-07-17

    occurrence of REE mineral phases in CUB and allowed us to calculate structural and volumetric estimates of REE. Collectively, the rock and coal ash samples contained minerals such as quartz, kaolinite, muscovite/illite, iron oxide (as hematite or magnetite), mullite, and clinochlore. Trace minerals included pyrite, zircon, siderite, rutile, diopside, foresterite, gypsum, and barite. We identified REE phosphate minerals monazite (Ce,La,Nd,Th)(PO4,SiO4), xenotime (YPO4,SiO4), and apatite (Ca5(PO4)3(F,Cl,OH) via SEM and electron microprobe analysis: these materials generally occurred as 1-10 μm-long crystals in the rock and ash samples. As has been shown in other studies, amorphous material-aluminosilicate glass or iron oxyhydroxide-are the major components of coal fly and bottom ash. Trace amounts of amorphous calcium oxide and mixed element (e.g., Al-Si-Ca-Fe) slag are also present. Quartz, mullite, hematite, and magnetite are the crystalline phases present. We found that REEs are present as monomineralic grains dispersed within the ash, as well as fused to or encapsulated by amorphous aluminosilicate glass particles. Monazite and xenotime have relatively high melting points (>1800 °C) compared to typical combustion temperatures; our observations indicate that the REE-phosphates, which presumably contribute a large percentage of REE to the bulk ash REE pool, as measured by mass spectroscopy, are largely unaltered by the combustion. Our study shows that conventional coal combustion processes sequester REE minerals into aluminosilicate glass phases, which presents a new engineering challenge for extracting REE from coal ash. The characterization work summarized in this report provides a semi-quantitative assessments of REE in coal-containing rock and CUB. The data we obtained from 2- and 3-D imaging, elemental mapping, volumetric estimates, and advanced high-resolution pixel classification

  7. Phytase-mediated mineral solubilization from cereals underin vitrogastric conditions

    DEFF Research Database (Denmark)

    Nielsen, Anne V. F.; Meyer, Anne S.

    2016-01-01

    that of the microbial phytases. No increases in soluble cadmium, lead or arsenic were observed with microbial phytase-catalyzed phytate dephosphorylation. CONCLUSION Microbial phytase treatment abated phytate chelation hence enhanced the release of iron and zinc from the phytate-rich cereals at the simulated gastric......BACKGROUND Enzymatic dephosphorylation of phytic acid (inositol hexakisphosphate) in cereals may improve mineral bioavailability in humans. This study quantified enzymatic dephosphorylation of phytic acid by measuring inositol tri- to hexakisphosphate (InsP3-6) degradation and iron and zinc release...... cereal phytic acid at similar rates and to similar extents. Microbial phytase-catalysed phytate dephosphorylation was accompanied by increased iron and zinc release from the cereal substrates. For wheat bran at pH 5, the endogenous wheat phytase activity produced mineral release equal to or better than...

  8. EFFECTIVENESS OF NITROGEN-CONTAINING BISPHOSPHONATES IN THE REGULATION OF MINERAL METABOLISM DISTURBANCES ASSOCIATED WITH ALIMENTARY OSTEOPOROSIS IN RATS

    OpenAIRE

    Komisarenko S. V.; Volochnyuk D. M.; Shymanskyy I. O.; Ivonin S. P.; Veliky M. M.1

    2015-01-01

    The aim of the study was to investigate the effectiveness of nitrogen-containing bisphosphonates synthesized as promising substances for correction of mineral metabolism in osteoporosis. The study was carried out on a model of alimentary osteoporosis that was characterized by hypocalcaemia, hypophosphatemia, decreased 25-Hydroxyvitamin D3 content in blood serum and severe bone tissue demineralization (reduced ash content and mineral components). It was found that synthesized novel nitrogen bi...

  9. Far infrared extinction coefficients of minerals of interest for astronomical observations

    International Nuclear Information System (INIS)

    Hasegawa, H.

    1984-01-01

    Far infrared extinction coefficients of mineral grains of interest for astronomical observations have been measured. The measured mineral species are: amorphous carbon, high temperature magnesium silicates, hydrous silicates, iron oxides, and amorphous silicates. (author)

  10. Iron oxide deposits associated with the ectosymbiotic bacteria in the hydrothermal vent shrimp Rimicaris exoculata

    Directory of Open Access Journals (Sweden)

    P. Compère

    2008-09-01

    Full Text Available The Rimicaris exoculata shrimp is considered as a primary consumer that dominates the fauna of most Mid-Atlantic Ridge (MAR hydrothermal ecosystems. These shrimps harbour in their gill chambers an important ectosymbiotic community of chemoautotrophic bacteria associated with iron oxide deposits. The structure and elemental composition of the mineral concretions associated with these bacteria have been investigated by using LM, ESEM, TEM STEM and EDX microanalyses. The nature of the iron oxides in shrimps obtained from the Rainbow vent field has also been determined by Mössbauer spectroscopy. This multidisciplinary approach has revealed that the three layers of mineral crust in the Rimicaris exoculata shrimps consist of large concretions formed by aggregated nanoparticles of two-line ferrihydrite and include other minor elements as Si, Ca, Mg, S and P, probably present as silicates cations, sulphates or phosphates respectively that may contribute to stabilise the ferrihydrite form of iron oxides. TEM-observations on the bacteria have revealed their close interactions with these minerals. Abiotic and biotic precipitation could occur within the gill chamber of Rimicaris exoculata, suggesting the biologically-mediated formation of the iron oxide deposits. The difference of the bacterial density in the three-mineral crust layers could be correlated to the importance of the iron oxide concretions and suggest that the first mineral particles precipitates on the lower layer which could be considered as the most likely location of iron-oxidizing bacteria.

  11. Microanalysis of iron oxidation state in iron oxides using X Ray Absorption Near Edge Structure (XANES)

    Science.gov (United States)

    Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.

  12. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    International Nuclear Information System (INIS)

    Omran, Mamdouh; Fabritius, Timo; Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A.; El-Aref, Mortada; Elmanawi, Abd El-Hamid

    2015-01-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe 2 O 3 and P 2 O 5 contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe 3+ ) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases

  13. Magnetic study of iron-containing carbon nanotubes: Feasibility for magnetic hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Krupskaya, Y. [Leibniz-Institute for Solid State and Materials Research IFW Dresden, 01171 Dresden (Germany)], E-mail: y.krupskaya@ifw-dresden.de; Mahn, C.; Parameswaran, A. [Leibniz-Institute for Solid State and Materials Research IFW Dresden, 01171 Dresden (Germany); Taylor, A.; Kraemer, K. [Department of Urology, Dresden University of Technology, 01307 Dresden (Germany); Hampel, S.; Leonhardt, A.; Ritschel, M.; Buechner, B.; Klingeler, R. [Leibniz-Institute for Solid State and Materials Research IFW Dresden, 01171 Dresden (Germany)

    2009-12-15

    We present a detailed magnetic study of iron containing carbon nanotubes (Fe-CNT), which highlights their potential for contactless magnetic heating in hyperthermia cancer treatment. Magnetic field dependent AC inductive heating experiments on Fe-CNT dispersions show a substantial temperature increase of Fe-CNT dispersions in applied AC magnetic fields. DC and AC magnetization studies have been done in order to elucidate the heating mechanism. We observe a different magnetic response of Fe-CNT powder compared to Fe-CNT dispersed in aqueous solution, e.g., ferromagnetic Fe-CNT in powder do not show any hysteresis when being dispersed in liquid. Our data indicate the motion of Fe-CNT in liquid in applied magnetic fields.

  14. Study of iron deposit using seismic refraction and resistivity in Carajás Mineral Province, Brazil

    Science.gov (United States)

    Nogueira, Pedro Vencovsky; Rocha, Marcelo Peres; Borges, Welitom Rodrigues; Silva, Adalene Moreira; Assis, Luciano Mozer de

    2016-10-01

    This work comprises the acquisition, processing and interpretation of 2D seismic shallow refraction (P-wave) and resistivity profiles located in the iron ore deposit of N4WS, Carajás Mineral Province (CMP), northern Brazil. The geophysical methods were used to identify the boundaries of the iron ore deposit. Another objective was to evaluate the potentiality of these geophysical methods in that geological context. In order to validate the results, the geophysical lines were located to match a geological borehole line. For the seismic refraction, we used 120 channels, spaced by 10 m, in a line of 1190 m, with seven shot points. The resistivity method used in the acquisition was the electrical resistivity imaging, with pole-pole array, in order to reach greater depths. The resistivity line had a length of 1430 m, with 10 m spacing between electrodes. The seismic results produced a model with two distinct layers. Based on the velocities values, the first layer was interpreted as altered rocks, and the second layer as more preserved rocks. It was not possible to discriminate different lithologies with the seismic method inside each layer. From the resistivity results, a zone of higher resistivity (> 3937 Ω·m) was interpreted as iron ore, and a region of intermediate resistivity (from 816 to 2330 Ω·m) as altered rocks. These two regions represent the first seismic layer. On the second seismic layer, an area with intermediated resistivity values (from 483 to 2330 Ω·m) was interpreted as mafic rocks, and the area with lower resistivity (boreholes and show reasonable correlation, suggesting that the geophysical anomalies correspond to the main variations in composition and physical properties of rocks.

  15. Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: Applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations

    Science.gov (United States)

    Gregory, R.T.; Criss, R.E.; Taylor, H.P.

    1989-01-01

    heat-balance constraints, we can utilize the 18O 16O data on natural mineral assemblages to calculate the kinetic rate constants (k's) and the effective diffusion constants (D's) for mineral-H2O exchange: these calculated values (kqtz ??? 10-14, kfeld ??? 10-13-10-12) agree with experimental determinations of such constants. In nature, once the driving force or energy source for the external infiltrating fluid phase is removed, the disequilibrium mineral-pair arrays will either: (1) remain "frozen" in their existing state, if the temperatures are low enough, or (2) re-equilibrate along specific closed-system exchange vectors determined solely by the temperature path and the mineral modal proportions. Thus, modal mineralogical information is a particularly important parameter in both the open- and closed-system scenarios, and should in general always be reported in stable-isotopic studies of mineral assemblages. These concepts are applied to an analysis of 18O 16O systematics of gabbros (Plagioclase-clinopyroxene and plagioclase-amphibole pairs), granitic plutons (quartz-feldspar pairs), and Precambrian siliceous iron formations (quartz-magnetite pairs). In all these examples, striking regularities are observed on ??-?? and ??-?? plots, but we point out that ??-?? plots have many advantages over their equivalent ??-?? diagrams, as the latter are more susceptible to misinterpretation. Using the equations developed in this study, these regularities can be interpreted to give semiquantitative information on the exchange histories of these rocks subsequent to their formation. In particular, we present a new interpretation indicating that Precambrian cherty iron formations have in general undergone a complex fluid exchange history in which the iron oxide (magnetite precursor?) has exchanged much faster with low-temperature (< 400??C) fluids than has the relatively inert quartz. ?? 1989.

  16. Morphological changes during enhanced carbonation of asbestos containing material and its comparison to magnesium silicate minerals

    International Nuclear Information System (INIS)

    Gadikota, Greeshma; Natali, Claudio; Boschi, Chiara; Park, Ah-Hyung Alissa

    2014-01-01

    The disintegration of asbestos containing materials (ACM) over time can result in the mobilization of toxic chrysotile ((Mg, Fe) 3 Si 2 O 5 (OH) 4 )) fibers. Therefore, carbonation of these materials can be used to alter the fibrous morphology of asbestos and help mitigate anthropogenic CO 2 emissions, depending on the amount of available alkaline metal in the materials. A series of high pressure carbonation experiments were performed in a batch reactor at P CO2 of 139 atm using solvents containing different ligands (i.e., oxalate and acetate). The results of ACM carbonation were compared to those of magnesium silicate minerals which have been proposed to permanently store CO 2 via mineral carbonation. The study revealed that oxalate even at a low concentration of 0.1 M was effective in enhancing the extent of ACM carbonation and higher reaction temperatures also resulted in increased ACM carbonation. Formation of phases such as dolomite ((Ca, Mg)(CO 3 ) 2 ), whewellite (CaC 2 O 4 ·H 2 O) and glushinskite (MgC 2 O 4 ·2H 2 O) and a reduction in the chrysotile content was noted. Significant changes in the particle size and surface morphologies of ACM and magnesium silicate minerals toward non-fibrous structures were observed after their carbonation

  17. Decline in the lung cancer hazard: a prospective study of the mortality of iron ore miners in Cumbria

    International Nuclear Information System (INIS)

    Kinlen, L.J.

    1988-01-01

    The mortality of 1947 Cumbrian iron ore miners has been studied over the period 1939-82 in relation to that among other groups of men in England and Wales: (a) all men, (b) men of similar social class, and (c) men living in similar types of (mainly rural) area. Significant excesses were found for deaths from tuberculosis and respiratory diseases compared with each of the reference populations. Lung cancer showed an excess over that in comparable (mainly rural) areas of England and Wales, as reported in a previous study using a proportionate method of analysis and which covered the period 1948-67 but no appreciable excess after 1967. Reasons for this decline are discussed. (author)

  18. Methodology for determination of trace elements in mineral phases of iron banded formation by LA-ICP-MS; Metodologia de determinacao de elementos-traco em fases minerais de formacoes ferriferas bandadas por LA-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Denise V.M. de; Nalini Junior, Herminio A.; Sampaio, Geraldo M.S.; Abreu, Adriana T. de; Lana, Cristiano de C., E-mail: deniseversiane2@yahoo.com.br, E-mail: nalini@degeo.ufop.br, E-mail: geraldomssampaio@gmail.com, E-mail: adrianatropia@gmail.com, E-mail: cristianodeclana@gmail.com [Universidade Federal de Ouro Preto (DEGEO/UFOP), Ouro Preto, MG (Brazil). Departamento de Geologia

    2015-07-01

    The study of the chemical composition of mineral phases of iron formation (FF), especially of trace elements, is an important tool in the understanding of the genesis of these rocks and the contribution of the phases in the composition of whole rock. Low mass fraction of such elements in the mineral phases present in this rock type requires a suitable analytical procedure. The laser ablation technique coupled with ICP-MS (LA-ICP-MS) has been widely used for determination of trace elements in geological samples. Thus, the aim of this study is to develop calibration curves for determination of trace elements (Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) in mineral phases of banded iron formations by LA-ICP-MS. Several certified reference materials (CRM) were used for calibrate the equipment. The analytical conditions were checked by CRM NIST SRM 614. The results were satisfactory, since the curves showed good linearity coefficients, good accuracy and precision of results. (author)

  19. Exogenous mineralization of hard tissues using photo-absorptive minerals and femto-second lasers; the case of dental enamel.

    Science.gov (United States)

    Anastasiou, A D; Strafford, S; Thomson, C L; Gardy, J; Edwards, T J; Malinowski, M; Hussain, S A; Metzger, N K; Hassanpour, A; Brown, C T A; Brown, A P; Duggal, M S; Jha, A

    2018-04-15

    A radical new methodology for the exogenous mineralization of hard tissues is demonstrated in the context of laser-biomaterials interaction. The proposed approach is based on the use of femtosecond pulsed lasers (fs) and Fe 3+ -doped calcium phosphate minerals (specifically in this work fluorapatite powder containing Fe 2 O 3 nanoparticles (NP)). A layer of the synthetic powder is applied to the surface of eroded bovine enamel and is irradiated with a fs laser (1040 nm wavelength, 1 GHz repetition rate, 150 fs pulse duration and 0.4 W average power). The Fe 2 O 3 NPs absorb the light and may act as thermal antennae, dissipating energy to the vicinal mineral phase. Such a photothermal process triggers the sintering and densification of the surrounding calcium phosphate crystals thereby forming a new, dense layer of typically ∼20 μm in thickness, which is bonded to the underlying surface of the natural enamel. The dispersed iron oxide NPs, ensure the localization of temperature excursion, minimizing collateral thermal damage to the surrounding natural tissue during laser irradiation. Simulated brushing trials (pH cycle and mechanical force) on the synthetic layer show that the sintered material is more acid resistant than the natural mineral of enamel. Furthermore, nano-indentation confirms that the hardness and Young's modulus of the new layers are significantly more closely matched to enamel than current restorative materials used in clinical dentistry. Although the results presented herein are exemplified in the context of bovine enamel restoration, the methodology may be more widely applicable to human enamel and other hard-tissue regenerative engineering. In this work we provide a new methodology for the mineralisation of dental hard tissues using femtosecond lasers and iron doped biomaterials. In particular, we demonstrate selective laser sintering of an iron doped fluorapatite on the surface of eroded enamel under low average power and mid

  20. Canadian minerals yearbook : 2004 review and outlook

    International Nuclear Information System (INIS)

    2004-01-01

    The main focus of the CMY publication is the non-fuel mineral industry, together with uranium, although all mineral fuels are normally included when the total value of Canada's mineral production is reported. The Yearbook includes chapters devoted to each major mineral commodity produced in Canada: aluminum, coal, copper, diamonds, gold, iron ore, magnesium, nickel, potash, salt, silica, and uranium. The subject matter spans all stages of mineral industry activity from geoscience and exploration, through mining and processing, to markets and use. Although domestic issues receive the greatest attention in each chapter, international developments may also be reviewed because of the global nature of the mineral industry and the significant impact that such developments could have on the Canadian industry

  1. Iron behaviour in the process of stratum-infiltration uranium ore formation

    International Nuclear Information System (INIS)

    Shmariovich, E.M.; Golubev, V.S.

    1980-01-01

    Investigated has been the behaviour of iron in the process of stratum infiltration uranium mineralization. Iron is partially avacuated from the forward part of the stratum oxidation zone during the development of infiltration uranium mineralization in pyritiferous rocks. This phenomenon is characterized quantitatively and described on the basis of equations of physical chemistry and dynamics of geochemical processes. Local regions of epigenetic ferruginization caused by opposite diffusion of iron and its precipitation in oxygenous conditions often occur at the sections of sharp moderation of limonitization zone advance. Formation of similar ferruginous margins takes place in a very short geological period (less than thousand years)

  2. Individual intake and antiparasitic efficacy of free choice mineral containing fenbendazole for grazing steers.

    Science.gov (United States)

    Garossino, K C; Ralston, B J; Olson, M E; McAllister, T A; Milligan, D N; Genswein, B M A

    2005-04-20

    A 95-day study (June 25-September 27, 2001) was conducted using 120 steers (311.9+/-2.4 kg) randomly allocated to two treatments: (1) mineral containing 0.55% fenbendazole (FBZ) and (2) control, no FBZ in the mineral. Animals in the FBZ group were individually identified by an electronic tag that was read each time an animal attended the mineral feeder. The feeder was equipped with load cells that enabled individual mineral intakes to be estimated. The FBZ group was provided with non-medicated mineral during a 14-day adaptation period (July 23-August 5) and an 8-day post-medication period (September 17-24). The intake of FBZ was monitored for 14 days during each of the two treatment periods; August 6-19 and September 3-16, separated by a 14-day non-medicated period, August 20-September 2. Control animals had access to non-medicated mineral for the entire 95-day study period. All steers were grazed on alfalfa-grass pasture for the duration of the study and had free access to flocculated, filtered and chlorinated water via an automatic waterer. Fecal samples were collected from steers three times during the experiment July 23, August 27 and September 27, and analyzed for nematode eggs and Giardia sp. cysts. Seventy-five and 83% of the steers in the FBZ group visited the mineral feeder during the first and second treatment periods, respectively. Individual daily mineral and FBZ intake for the first and second treatment periods was 52.9+/-6.6g per day and 10.1+/-1.2mg/kg BW; 72.3+/-8.4 g per day and 11.8+/-1.4 mg/kg BW, respectively. FBZ animals were separated into three groups during each treatment period based on the recommended dose (RD) of FBZ (5 mg/kg/BW), those that received > the RD, those that received 50% RD and those that received 0.05) by FBZ as compared to controls in either treatment period. These results may be a reflection of Giardia re-infection occurring following treatment and highlight the need for variation in treatment regimes specifically targeted

  3. Hyperspectral surface materials map of quadrangle 3462, Herat (409) and Chishti Sharif (410) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3670, Jurm-Kishim (223) and Zebak (224) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangle 3164, Lashkar Gah (605) and Kandahar (606) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral surface materials map of quadrangle 3562, Khawja-Jir (403) and Murghab (404) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral Surface Materials Map of Quadrangle 3268, Khayr Kot (521) and Urgun (522) Quadrangles, Afghanistan, Showing Iron-bearing Minerals and Other Materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Depressing effect of phenoxyl acetic acids on flotation of minerals containing Ca2+/Mg2+ gangues

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Phenoxyl acetic acids were applied to determine their depressing effect on minerals containing Ca2+/Mg2+ gangues. Calcite,mixture of calcite and fluorite, and nickel ore were used in the flotation. And the depression mechanism was studied by the determination of contact angle, zeta potential, adsorptive capacity of collector, and IR analysis as well. It is found that 0.1 mmol/L of phenoxyl acetic acid derived from pyrogallol or gallic acid exhibits strong depressing ability on calcite in almost zero yields at pH value of 9.8, and calcite can be depressed in the flotation of calcite/fluorite mixture for approximate 87% yield of fluorite. The flotation result of practical nickel ore containing serpentine indicates that these two depressants may also show better depression performance to serpentine than traditional depressants such as sodium fluosilicate and carboxylmethyl cellulose. Analysis for the depression mechanism reveals that there exists strong chemical interaction between the depressants and minerals.

  10. BET measurements: Outgassing of minerals

    DEFF Research Database (Denmark)

    Clausen, Liselotte; Fabricius, Ida Lykke

    2000-01-01

    Outgassing minerals at elevated temperatures prior to BET measurements can lead to phase changes, especially in the case of amorphous and poorly crystalline materials. In order to evaluate the applicability of the BET method when low outgassing temperatures are required, selected aquifer minerals...... were outgassed at different temperatures and for different times. The studied minerals are 2-line ferrihydrite, goethite, lepidocrocite, quartz, calcite, ®-alumina, and kaolinite. The results demonstrate that measured specific surface areas of iron oxides are strongly dependent on outgassing conditions...... because the surface area increased by 170% with increasing temperature. In the poorly crystalline minerals, phase changes caused by heating were observed at temperatures lower than 100±C. Therefore low outgassing temperatures are preferable for minimizing phase changes. As demonstrated in this study...

  11. A novel concept of Fe-mineral-based magnetoreception: histological and physicochemical data from the upper beak of homing pigeons

    Science.gov (United States)

    Fleissner, Gerta; Stahl, Branko; Thalau, Peter; Falkenberg, Gerald; Fleissner, Günther

    2007-08-01

    Animals make use of the Earth’s magnetic field for navigation and regulation of vegetative functions; however, the anatomical and physiological basis for the magnetic sense has not been elucidated yet. Our recent results from histology and X-ray analyses support the hypothesis that delicate iron-containing structures in the skin of the upper beak of homing pigeons might serve as a biological magnetometer. Histology has revealed various iron sites within dendrites of the trigeminal nerve, their arrangement along strands of axons, the existence of three dendritic fields in each side of the beak with specific 3D-orientations, and the bilateral symmetry of the whole system. Element mapping by micro-synchrotron X-ray fluorescence analysis has shown the distribution of iron and its quantities. Micro-synchrotron X-ray absorption near-edge-structure spectroscopy has allowed us to unambiguously identify maghemite as the predominating iron mineral (90 vs 10% magnetite). In this paper, we show that iron-based magnetoreception needs the presence of both of these iron minerals, their specific dimensions, shapes, and arrangements in three different subcellular compartments. We suggest that an inherent magnetic enhancement process via an iron-crusted vesicle and the attached chains of iron platelets might be sufficient to account for the sensitivity and specificity required by such a magnetoreceptor. The appropriate alignment between the Earth’s magnetic field and the maghemite bands would induce a multiple attraction of the magnetite bullets perpendicular to the membrane, thus, triggering strain-sensitive membrane channels and a primary receptor potential. Due to its 3D architecture and physicochemical nature, the dendritic system should be able to separately sense the three vector components of the Earth’s local field, simultaneously—allowing birds to detect their geographic position by the magnetic vector, i.e., amplitude and direction of the local magnetic field

  12. Magnetostructural study of iron sucrose

    International Nuclear Information System (INIS)

    Gutierrez, Lucia; Puerto Morales, Maria del; Jose Lazaro, Francisco

    2005-01-01

    Magnetic and structural analyses have been performed on an iron sucrose complex used as a haematinic agent. The system contains two-line ferrihydrite particles of about 5 nm that are superparamagnetic above approximately 50 K. The observed low-temperature magnetic dynamics of this compound is closer to simple models than in the case of other iron-containing drugs for intravenous use like iron dextran

  13. Identification of mineral deposits in the brain on radiological images: a systematic review

    International Nuclear Information System (INIS)

    DelValdes Hernandez, Maria; Maconick, Lucy C.; Tan, Elizabeth M.J.; Wardlaw, Joanna M.

    2012-01-01

    MRI has allowed the study of mineral deposition in the brain throughout life and in disease. However, studies differ in their reporting of minerals on MRI for reasons that are unclear. We conducted a systematic review from 1985 to July 2011 to determine the appearance of iron, calcium, copper and manganese on MRI and CT and their reliability. We assessed which imaging investigations provided the most consistent results compared with histology. Of 325 papers on minerals imaging, we included 46 studies that confirmed findings either directly or indirectly using a non-imaging method such as histology. Within this group, there was inconsistency in the identification of iron probably because of changes in its paramagnetic properties during its degradation. Iron appeared consistently hypointense only on T2*-weighted MRI, and along with calcified areas, hyperattenuated on CT. Appearance of copper, calcium and manganese, although consistently reported as hyperintense on T1-weighted MRI, was confirmed histologically in few studies. On T2-weighted imaging, calcified areas were always reported as hypointense, while the appearance of iron depended on the concentration, location and degradation stage. More work is required to improve the reliability of imaging methods to detect and differentiate brain mineral deposition accurately. (orig.)

  14. Evaluation of mineral content and heavy metals of dromedary camel milk in Iran

    Directory of Open Access Journals (Sweden)

    Mahdieh MOSTAFIDI

    Full Text Available Abstract The aim of this study was to determine the amount of major mineral compounds and heavy metals of camel milk in Iran. For this purpose camel milk samples were collected from seven regions of Iran include Qazvin, Golestan, Semnan, Sistan-Baluchestan, Khuzestan, Bushehr and Tehran. The samples were analyzed using Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES method. The results showed that among the mineral contents, iron and zinc of camel milk were greater than bovine milk. Based on the codex standard 193-2007 standards, the maximum acceptable limit for lead and cadmium is 20 µg/kg and 10 µg/kg, respectively. The results of this study showed that the measured amounts of lead, cadmium and nickel in all samples were less than the acceptable limit for bovine milk. Bovine milk and dairy products are a poor source of iron, while the obtained data revealed that camel milk is a major source of minerals, especially iron. The camel milk’s iron was 10 times more than bovine milk. However, variations in mineral content in camel milk could be due to feed, stage of lactation, milk collection time, drought conditions, environmental conditions and associated analytical methods. Camel milk recommended as a valuable source of food for the human.

  15. Redox control of iron biomineralization in Magnetospirillum magneticum AMB-1

    Science.gov (United States)

    Jones, Stephanie Rhianon

    Magnetotactic bacteria have evolved complex subcellular machinery to construct linear chains of magnetite nanocrystals that allow the host cell to sense direction. Each mixed-valent iron nanoparticle is mineralized from soluble iron within a membrane-encapsulated vesicle termed the magnetosome, which serves as a specialized compartment that regulates the iron, redox, and pH environment of the growing mineral. In order to dissect the biological components that control this process, we have carried out genetic and biochemical studies of proteins proposed to function in iron mineralization in Magnetospirillum magneticum AMB-1. As iron biomineralization by magnetotactic bacteria represents a particularly interesting case for understanding how the production of nanomaterials can be programmed at the genetic level, we also apply synthetic biology techniques towards the production of new cellular materials and new cellular functions. As the production of magnetite requires both the formation of Fe(II) and Fe(III), the redox components of the magnetosome play an essential role in this process. Using genetic complementation studies, we show that the redox cofactors or heme sites of the two putative redox partners, MamP and MamT, are required for magnetite biomineralization in vivo and that removal of one or both sites leads to defects in mineralization. We develop and optimize a heterologous expression method in the E. coli periplasm to cleanly isolate fully heme-loaded MamP for biochemical studies. Spectrochemical redox titrations show that the reduction potential of MamP lies in a different range than other c-type cytochrome involved in either Fe(III) reduction or Fe(II) oxidation. Nonetheless, in vitro mineralization studies with MamP and Fe(II) show that it is able to catalyze the formation of mixed-valent Fe(II)/Fe(III) oxides such as green rust. Biomineralization also requires lattice-templating proteins that guide the growth of the functional crystalline material. We

  16. Predicting the Mineral Composition of Dust Aerosols. Part 1; Representing Key Processes

    Science.gov (United States)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wetsieved soil and the emitted aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent at these diameters in a soil whose aggregates are dispersed by wet sieving. We calculate the emitted mass of each mineral with respect to size by accounting for the disintegration of soil aggregates during wet sieving. These aggregates are emitted during mobilization and fragmentation of the original undispersed soil that is subject to wind erosion. The emitted aggregates are carried far downwind from their parent soil. The soil mineral fractions used to calculate the aggregates also include larger particles that are suspended only in the vicinity of the source. We calculate the emitted size distribution of these particles using a normalized distribution derived from aerosol measurements. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to

  17. Preliminary Assessment of Non-Fuel Mineral Resources of Afghanistan, 2007

    Science.gov (United States)

    ,

    2007-01-01

    Introduction Afghanistan has abundant mineral resources, including known deposits of copper, iron, barite, sulfur, talc, chromium, magnesium, salt, mica, marble, rubies, emeralds, lapis lazuli, asbestos, nickel, mercury, gold and silver, lead, zinc, fluorspar, bauxite, beryllium, and lithium (fig. 1). Between 2005 and 2007, the U.S. Agency for International Development (USAID) funded a cooperative study by the U.S. Geological Survey (USGS) and the Afghanistan Geological Survey (AGS) to assess the non-fuel mineral resources of Afghanistan as part of the effort to aid in the reconstruction of that country. An assessment is an estimation or evaluation, in this instance of undiscovered non-fuel mineral resources. Mineral resources are materials that are in such form that economic extraction of a commodity is currently or potentially feasible. In this assessment, teams of scientists from the USGS and the AGS compiled information about known mineral deposits and then evaluated the possible occurrence of undiscovered deposits of all types. Quantitative probabilistic estimates were made for undiscovered deposits of copper, mercury, rare-earth elements, sulfur, chromite, asbestos, potash, graphite, and sand and gravel. These estimates were made for undiscovered deposits at depths less than a kilometer. Other deposit types were considered and discussed in the assessment, but quantitative estimates of numbers of undiscovered deposits were not made. In addition, the assessment resulted in the delineation of 20 mineralized areas for further study, of which several may contain resources amenable to rapid development.

  18. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    Energy Technology Data Exchange (ETDEWEB)

    Omran, Mamdouh, E-mail: mamdouh.omran@oulu.fi [Process Metallurgy Research Group, Faculty of Technology, University of Oulu (Finland); Mineral Processing and Agglomeration Lab, Central Metallurgical Research and Development Institute, Cairo (Egypt); Fabritius, Timo [Process Metallurgy Research Group, Faculty of Technology, University of Oulu (Finland); Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A. [Mineral Processing and Agglomeration Lab, Central Metallurgical Research and Development Institute, Cairo (Egypt); El-Aref, Mortada; Elmanawi, Abd El-Hamid [Geology Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2015-08-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe{sub 2}O{sub 3} and P{sub 2}O{sub 5} contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe{sup 3+}) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases.

  19. TRU waste form studies with special reference to iron-enriched basalt: 1980. Annual report

    International Nuclear Information System (INIS)

    Flinn, J.E.; Henslee, S.P.; Kelsey, P.V. Jr.

    1981-06-01

    Material studies were performed on iron-enriched basalt (IEB) as a waste form containment medium for transuranic wastes. Specimens from laboratory scale, as well as large scale melts, were used in the evaluation. The studies included melting and casting, slag-refractory interaction, slag fruit assessments, volatility of sodium salts from IEB melts, chemical and structure homogeneity, metallic dissolution tests, physical properties, and devitrification associated with the development of mineral phases. In addition, durability tests, which included leaching and mechanical behavior, were performed

  20. Purification and characterization of an iron-induced ferritin from soybean (Glycine max) cell suspensions.

    Science.gov (United States)

    Lescure, A M; Massenet, O; Briat, J F

    1990-11-15

    Ferric citrate induces ferritin synthesis and accumulation in soybean (Glycine max) cell suspension cultures [Proudhon, Briat & Lescure (1989) Plant Physiol. 90, 586-590]. This iron-induced ferritin has been purified from cells grown for 72 h in the presence of either 100 microM- or 500 microM-ferric citrate. It has a molecular mass of about 600 kDa and is built up from a 28 kDa subunit which is recognized by antibodies raised against pea (Pisum sativum) seed ferritin and it has the same N-terminal sequence as this latter, except for residue number 3, which is alanine in pea seed ferritin instead of valine in iron-induced soybean cell ferritin. It contains an average of 1800 atoms of iron per molecule whatever the ferric citrate concentration used to induce its synthesis. It is shown that the presence of 100 microM- or 500 microM-ferric citrate in the culture medium leads respectively to an 11- and 28-fold increase in the total intracellular iron concentration and to a 30- and 60-fold increase in the ferritin concentration. However, the percentage of iron stored in the mineral core of ferritin remains constant whatever the ferric citrate concentration used and represents only 5-6% of cellular iron.

  1. Photoreductive dissolution of iron oxides trapped in ice and its environmental implications.

    Science.gov (United States)

    Kim, Kitae; Choi, Wonyong; Hoffmann, Michael R; Yoon, Ho-Il; Park, Byong-Kwon

    2010-06-01

    The availability of iron has been thought to be a main limiting factor for the productivity of phytoplankton and related with the uptake of atmospheric CO(2) and algal blooms in fresh and sea waters. In this work, the formation of bioavailable iron (Fe(II)(aq)) from the dissolution of iron oxide particles was investigated in the ice phase under both UV and visible light irradiation. The photoreductive dissolution of iron oxides proceeded slowly in aqueous solution (pH 3.5) but was significantly accelerated in polycrystalline ice, subsequently releasing more bioavailable ferrous iron upon thawing. The enhanced photogeneration of Fe(II)(aq) in ice was confirmed regardless of the type of iron oxides [hematite, maghemite (gamma-Fe(2)O(3)), goethite (alpha-FeOOH)] and the kind of electron donors. The ice-enhanced dissolution of iron oxides was also observed under visible light irradiation, although the dissolution rate was much slower compared with the case of UV radiation. The iron oxide particles and organic electron donors (if any) in ice are concentrated and aggregated in the liquid-like grain boundary region (freeze concentration effect) where protons are also highly concentrated (lower pH). The enhanced photodissolution of iron oxides should occur in this confined boundary region. We hypothesized that electron hopping through the interconnected grain boundaries of iron oxide particles facilitates the separation of photoinduced charge pairs. The outdoor experiments carried out under ambient solar radiation of Ny-Alesund (Svalbard, 78 degrees 55'N) also showed that the generation of dissolved Fe(II)(aq) via photoreductive dissolution is enhanced when iron oxides are trapped in ice. Our results imply that the ice(snow)-covered surfaces and ice-cloud particles containing iron-rich mineral dusts in the polar and cold environments provide a source of bioavailable iron when they thaw.

  2. Enterobactin-mediated iron transport in Pseudomonas aeruginosa.

    Science.gov (United States)

    Poole, K; Young, L; Neshat, S

    1990-01-01

    A pyoverdine-deficient strain of Pseudomonas aeruginosa was unable to grow in an iron-deficient minimal medium in the presence of the nonmetabolizable iron chelator ethylene diamine-di(omega-hydroxyphenol acetic acid) (EDDHA), although addition of enterobactin to EDDHA-containing minimal media did restore growth of the pyoverdine-deficient P. aeruginosa. Consistent with the apparent ability of enterobactin to provide iron to P. aeruginosa, enterobactin-dependent 55Fe3+ uptake was observed in cells of P. aeruginosa previously grown in an iron-deficient medium containing enterobactin (or enterobactin-containing Escherichia coli culture supernatant). This uptake was energy dependent, was observable at low concentrations (60 nM) of FeCl3, and was absent in cells cultured without enterobactin. A novel protein with a molecular weight of approximately 80,000 was identified in the outer membranes of cells grown in iron-deficient minimal medium containing enterobactin, concomitant with the induction of enterobactin-dependent iron uptake. A Tn501 insertion mutant lacking this protein was isolated and shown to be deficient in enterobactin-mediated iron transport at 60 nM FeCl3, although it still exhibited enterobactin-dependent growth in iron-deficient medium containing EDDHA. It was subsequently observed that the mutant was, however, capable of enterobactin-mediated iron transport at much higher concentrations (600 nM) of FeCl3. Indeed, enterobactin-dependent iron uptake at this concentration of iron was observed in both the mutant and parent strains irrespective of whether they had been cultured in the presence of enterobactin.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:2174865

  3. Morphological changes during enhanced carbonation of asbestos containing material and its comparison to magnesium silicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Gadikota, Greeshma [Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027 (United States); Natali, Claudio; Boschi, Chiara [Institute of Geosciences and Earth Resources – National Research Council, Pisa (Italy); Park, Ah-Hyung Alissa, E-mail: ap2622@columbia.edu [Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, NY 10027 (United States); Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027 (United States); Lenfest Center for Sustainable Energy, Columbia University, 500 West 120th Street, New York, NY 10027 (United States)

    2014-01-15

    The disintegration of asbestos containing materials (ACM) over time can result in the mobilization of toxic chrysotile ((Mg, Fe){sub 3}Si{sub 2}O{sub 5}(OH){sub 4})) fibers. Therefore, carbonation of these materials can be used to alter the fibrous morphology of asbestos and help mitigate anthropogenic CO{sub 2} emissions, depending on the amount of available alkaline metal in the materials. A series of high pressure carbonation experiments were performed in a batch reactor at P{sub CO2} of 139 atm using solvents containing different ligands (i.e., oxalate and acetate). The results of ACM carbonation were compared to those of magnesium silicate minerals which have been proposed to permanently store CO{sub 2} via mineral carbonation. The study revealed that oxalate even at a low concentration of 0.1 M was effective in enhancing the extent of ACM carbonation and higher reaction temperatures also resulted in increased ACM carbonation. Formation of phases such as dolomite ((Ca, Mg)(CO{sub 3}){sub 2}), whewellite (CaC{sub 2}O{sub 4}·H{sub 2}O) and glushinskite (MgC{sub 2}O{sub 4}·2H{sub 2}O) and a reduction in the chrysotile content was noted. Significant changes in the particle size and surface morphologies of ACM and magnesium silicate minerals toward non-fibrous structures were observed after their carbonation.

  4. Understanding the role of multiheme cytochromes in iron(III) reduction and arsenic mobilization by Shewanella sp. ANA-3

    Science.gov (United States)

    Reyes, C.; Duenas, R.; Saltikov, C.

    2006-12-01

    The reduction of Fe (III) to Fe (II) and of arsenate (As (V)) to arsenite (As (III)) by Fe (III) reducing and As (V) respiring prokaryotes such as the bacterium Shewanella sp. ANA-3 may contribute to arsenic mobilization in aquifers contaminated with arsenic, specifically in places such as Bangladesh. Under oxic conditions As (V) predominates and is often adsorbed onto mineral surfaces such as amorphous ferrihydrite. However, under anoxic conditions As (III) predominates, sorbs to fewer minerals, and has a greater hydrologic mobility compared to As (V). The genetic mechanism underlying arsenic release from subsurface material most likely involves a combination of respiratory gene clusters (e.g. mtr/omc and arr). In this study, we are investigating the genetic pathways underlying arsenic mobilization. We have generated various mutations in the mtr/omc gene cluster, which encodes several outermembrane decaheme c-type cytochromes. Deletions in one mtr/omc gene did not eliminate iron reduction. However, strains carrying multiple gene deletions were greatly impaired in iron reduction abilities. Work is currently underway to generate combinations of iron reduction and arsenate reduction single and double mutants that will be used to investigate microbial mobilization of arsenic in flow-through columns containing As (V)-HFO coated sand. This work will address the importance of arsenate reduction and iron reduction in the mobilization of arsenic.

  5. Iron Oxide Deposition from Aqueous Solution and Iron Formations on Mars

    Science.gov (United States)

    Catling, David; Moore, Jeff

    2000-01-01

    Iron formations are ancient, laminated chemical sediments containing at least 15 wt% Fe. We discuss possible mechanisms for their formation in aqueous environments on early Mars. Such iron oxide deposits may be detectable today.

  6. Biogeochemical Cycling of Iron and Phosphorous in Deep Saprolite

    Science.gov (United States)

    Buss, H. L.; Bruns, M. A.; Williams, J. Z.; White, A. F.; Brantley, S. L.

    2006-12-01

    Few microbiological studies have been conducted within the unsaturated zones between rooting depth and bedrock and thus the relationships between biological activity and mineral nutrient cycling in deep regolith are poorly understood. Here we investigate the weathering of primary minerals containing iron (hornblende and biotite) and phosphorous (apatite) and the role of resident microorganisms in the cycling of these elements in the deep saprolite of the Rio Icacos watershed in Puerto Rico's Luquillo Mountains. In the Rio Icacos watershed, which has one of the fastest documented chemical weathering rates of granitic rock in the world, the quartz diorite bedrock weathers spheroidally, producing a complex interface comprised of partially weathered rock layers called rindlets. This rindlet zone (0.2-2 m thick) is overlain by saprolite (2-8 m) topped by soil (0.5-1 m). With the objective of understanding interactions among mineral weathering, substrate availability and resident microorganisms, we made geochemical and microbiological measurements as a function of depth in 5 m of regolith (soil + saprolite) and examined mineral weathering reactions within a 0.5 m thick spheroidally weathering rindlet zone. We measured total cell densities, culturable aerobic chemoorganotrophs, and microbial DNA yields; and performed biochemical tests for iron-oxidizing bacteria in the regolith samples. Total cell densities, which ranged from 2.5 x 106 to 1.6 x 1010 g-1 regolith, were higher than 108 g-1 at three depths: in the upper 1 m, at 2.1 m, and between 3.7-4.9 m, just above the rindlet zone. Biochemical tests for aerobic iron-oxidizers were also positive at 0.15-0.6 m, at 2.1-2.4 m, and at 4.9 m depths. High proportions of inactive or unculturable cells were indicated throughout the profile by very low percentages of culturable chemoorganotrophs. The observed increases in total and culturable cells and DNA yields at lower depths were correlated with an increase in HCl

  7. Synthesis of magnetite nanoparticles from mineral waste

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rohit [CSIR – Institute of Minerals and Materials Technology, Bhubaneswar 751 013 (India); Sakthivel, R., E-mail: velsak_r@yahoo.com [CSIR – Institute of Minerals and Materials Technology, Bhubaneswar 751 013 (India); Behura, Reshma; Mishra, B.K. [CSIR – Institute of Minerals and Materials Technology, Bhubaneswar 751 013 (India); Das, D. [UGC-DAE Consortium, Kolkata (India)

    2015-10-05

    Highlights: • Mineral waste becomes a valuable source for the synthesis of magnetite. • Milling helps uniform mixing of reductant with iron ore tailings. • Magnetite nanoparticles exhibit saturation magnetization of 60 emu/g. • Ag coating induces antibacterial activity of magnetite. - Abstract: Magnetite nanoparticles were synthesized from iron ore tailings – a mineral waste collected from the iron ore processing plant. Mechanical milling followed by chemical route is employed to obtain the magnetite nanoparticles from the waste. The magnetite nanoparticles were characterized by X-ray diffractometer, Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrometer and Vibrating Sample Magnetometer. X-ray diffraction pattern confirms the existence of a magnetite phase. Field Emission Scanning Electron Microscopic (FE-SEM) pictures reveal that the particle size is below 100 nm. Fourier Transform Infrared (FTIR) spectrum shows a band at 570 cm{sup −1} for the Fe–O bond vibration. Vibrating Sample Magnetometric (VSM) study shows high saturation magnetization value of 60 emu/g at low applied magnetic field. Silver coated magnetite nanoparticles exhibits antibacterial property whereas bare magnetite does not.

  8. Iron isotope systematics of the Skaergaard intrusion

    DEFF Research Database (Denmark)

    Lesher, Charles; Lundstrom, C.C.; Barfod, Gry

    crystallization on non-traditional stable isotope systems, particularly iron. FeTi oxide minerals (titanomagnetite and ilmenite) appear after ~60% of the magma had solidified. This was a significant event affecting the liquid line of descent and potentially accompanied by iron isotope fractionation. Here we...... report the results of a broad study of the iron isotope compositions of gabbros within the layered and upper border series of the Skaergaard intrusion, pegmatite and granophyre associated with these gabbroic rocks, and the sandwich horizon thought to represent the product of extreme differentiation and...

  9. Characterization and structural properties of iron in plants.

    Science.gov (United States)

    Dewanamuni, Udya; Dehipawala, Sunil; Gafney, Harry

    Iron is one of the most abundant metals in the soil and occurs in a wide range of chemical forms. Humans receive iron through either meat products or plants. Non meat eaters depend on plant product for their daily iron requirement. The iron absorption by plants depends on other minerals present in the soil and soil pH value. The amount of iron present in plants grown with different soil compositions were investigated using X-ray absorption spectroscopy (XAS) and Mossbauer spectroscopy. Based on the X-ray absorption data, the amount of iron in plants vary significantly with soil pH value. The Mossbauer spectroscopy reveals that iron present in the samples has the form Fe3+ or electron density at the site of the iron nucleus similar to that of Fe3+. CUNY Research Scholar Program, MSEIP.

  10. Treatment of Ni-EDTA containing wastewater by electrocoagulation using iron scraps packed-bed anode.

    Science.gov (United States)

    Ye, Xiaokun; Zhang, Junya; Zhang, Yan; Lv, Yuancai; Dou, Rongni; Wen, Shulong; Li, Lianghao; Chen, Yuancai; Hu, YongYou

    2016-12-01

    The unique electrocoagulator proposed in this study is highly efficient at removing Ni-EDTA, providing a potential remediation option for wastewater containing lower concentrations of Ni-EDTA (Ni ≤ 10 mg L -1 ). In the electrocoagulation (EC) system, cylindrical graphite was used as a cathode, and a packed-bed formed from iron scraps was used as an anode. The results showed that the removal of Ni-EDTA increased with the application of current and favoured acidic conditions. We also found that the iron scrap packed-bed anode was superior in its treatment ability and specific energy consumption (SECS) compared with the iron rod anode. In addition, the packed density and temperature had a large influence on the energy consumption (ECS). Over 94.3% of Ni and 95.8% of TOC were removed when conducting the EC treatment at an applied current of 0.5 A, initial pH of 3, air-purged rate 0.2 L min -1 , anode packed density of 400 kg m -3 temperature of 313 K and time of 30 min. SEM analysis of the iron scraps indicated that the specific area of the anode increased after the EC. The XRD analysis of flocs produced during EC revealed that hematite (α-Fe 2 O 3 ) and magnetite (Fe 3 O 4 ) were the main by-products under aerobic and anoxic conditions, respectively. A kinetic study demonstrated that the removal of Ni-EDTA followed a first-order model with the current parameters. Moreover, the removal efficiency of real wastewater was essentially consistent with that of synthetic wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Production of ferrous sulfate from residue from the iron mining; Producao de sulfato ferroso a partir de residuo proveniente da mineracao de ferro

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, K.A; Riella, H.G.; Abreu, E.F. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engrenharia Quimica; Carvalho, E.F. Urano de; Durazzo, M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Combustivel Nuclear

    2012-11-15

    This paper was developed from a residue obtained by processing iron ore exploited by the mining company Samarco S/A. The residue was characterized and the analyses showed that it contains about 70% of the mineral hematite (Fe{sub 2}O{sub 3}) and also that some economically important products could be produced. One is the ferrous sulfate that can be used in pharmaceuticals and also that can be used in the treatment of iron deficiency anemia. The iron, in addition to is importance for the industrial production of steel and parts in general, also has great biological importance in all living beings. In order to produce ferrous sulfate from the byproduct in question, it was developed a obtaining route using metallic iron as hematite reductor and sulfuric acid to form the salt. (author)

  12. Uranium mineralization in the central region of Cuba

    International Nuclear Information System (INIS)

    Valdez, M.G.; Olivera, J.; Fernandez, P.

    1995-01-01

    The present work shows different geological and geophysical index for uranium mineralization found at Loma Alta iron ore deposit, located in the central region of Cuba. In this deposit was carried out pull work of iron ore. The tunnels were radiometrically documented in the wall and the floor observing some anomalies of the gamma ray intensity (up to 1700 c.p.s.) associated with the poor iron ore. In those points were collected solid sample. The obtained results were very important (uranium concentrations values up to 3500 ppm)

  13. Aluminium alloys containing iron and nickel; Alliages d'aluminium contenant du fer et du nickel

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H.; Fournier, R.; Grall, L.; Hure, J. [Commissariat a l' Energie atomique, Centre d' Etudes Nucleaires de Saclay, Departement de Metallurgie et de Chimie Appliquee (France); Herenguel, J.; Lelong, P. [Centre de Recherches d' Antony, des Trefileries et Laminoirs du Havre (France)

    1958-07-01

    The first part of this report addresses mechanism, kinetics and structure factors of aluminium alloys containing iron and nickel in water and high temperature steam. The studied alloys contain from 0.3 to 0.7 per cent of iron, and 0.2 to 1.0 per cent of nickel. Corrosion resistance and corrosion structure have been studied. The experimental installation, process and samples are presented. Corrosion structures in water at 350 C are identified and discussed (structure of corrosion products, structure of metal-oxide interface), and then in steam at different temperatures (350-395 C). Corrosion kinetics is experimentally studied (weight variation in time) in water at 350 C and in steam at different temperatures. Reactions occurring at over-heated steam (more than 400 C) are studied, and the case of welded alloys is also addressed. The second part addresses the metallurgical mechanism and processes influencing aluminium alloy resistance to corrosion by high temperature water as it appeared that separated phases protect the solid solution through a neighbourhood action. In order to avoid deep local corrosions, it seems necessary to multiply protective phases in an as uniform as possible way. Some processes enabling this result are described. They belong to conventional metallurgy or to powder metallurgy (with sintering and extrusion)

  14. Analysis of Mineral Assemblages Containing Unstable Hydrous Phases

    Science.gov (United States)

    Vaniman, D. T.; Wilson, S. A.; Bish, D. L.; Chipera, S.

    2011-12-01

    Minerals in many environments can be treated as durable phases that preserve a record of their formation. However many minerals, especially those with hydrogen-bonded H2O molecules as part of their structure, are ephemeral and are unlikely to survive disturbance let alone removal from their environment of formation. Minerals with exceptionally limited stability such as meridianiite (Mg-sulfate 11 hydrate), ikaite (Ca-carbonate 6 hydrate), and mirabilite (Na-sulfate 10 hydrate) are very susceptible to destabilization during analysis, and even modest changes in temperature or relative humidity can lead to change in hydration state or deliquescence. The result may be not only loss of the salt hydrate but dissolution of other salts present, precipitation of new phases, and ion exchange between the concentrated solution and otherwise unaffected phases. Exchange of H2O molecules can also occur in solid-vapor systems without any liquid involvement; moreover, recent work has shown that cation exchange between smectite and sulfate hydrates can occur without any liquid phase present other than a presumed thin film at the salt-silicate interface. Among hydrous silicates, clay minerals are susceptible to cation exchange and similar alteration can be expected for zeolites, palagonite, and possibly other hydrous silicate alteration products. Environmentally sensitive phases on Mars, such as meridianiite, may occur at higher latitudes or in the subsurface where permafrost may be present. Accurate determination of the presence and paragenesis of such minerals will be important for understanding the near-surface hydrogeology of Mars, and in situ analysis may be the only way to obtain this information. Access to the subsurface may be required, yet the act of exposure by excavation or drilling can itself lead to rapid degradation as the sample is exposed or brought to the surface for analysis. Mars is not the only body with which to be concerned, for similar concerns can be raised

  15. Sulphate analysis in uranium leach iron(III) chloride solutions by inductively coupled argon plasma spectrometry

    International Nuclear Information System (INIS)

    Nirdosh, I.; Lakhani, S.; Yunus, M.Z.M.

    1993-01-01

    Inductively coupled Argon Plasma Spectrometry is used for the indirect determination of sulphate in iron(III) chloride leach solution of Elliot Lake uranium ores via addition of a known amount of barium ions and analyzing for excess of barium. The ore contains ∼ 7 wt% pyrite, FeS 2 , as the major mineral which oxidizes to generate sulphate during leaching with Fe(III). The effects of pH, the concentrations of Fe(III) and chloride ions and for presence of ethanol in the test samples on the accuracy of analysis are studied. It is found that unlike the Rhodizonate method, removal of iron(III) from or addition of ethanol to the test sample prior to analysis are not required. Linear calibration curves are obtained. (author)

  16. Mineral Dissolution and Precipitation due to Carbon Dioxide-Water-Rock Interactions: The Significance of Accessory Minerals in Carbonate Reservoirs (Invited)

    Science.gov (United States)

    Kaszuba, J. P.; Marcon, V.; Chopping, C.

    2013-12-01

    Accessory minerals in carbonate reservoirs, and in the caprocks that seal these reservoirs, can provide insight into multiphase fluid (CO2 + H2O)-rock interactions and the behavior of CO2 that resides in these water-rock systems. Our program integrates field data, hydrothermal experiments, and geochemical modeling to evaluate CO2-water-rock reactions and processes in a variety of carbonate reservoirs in the Rocky Mountain region of the US. These studies provide insights into a wide range of geologic environments, including natural CO2 reservoirs, geologic carbon sequestration, engineered geothermal systems, enhanced oil and gas recovery, and unconventional hydrocarbon resources. One suite of experiments evaluates the Madison Limestone on the Moxa Arch, Southwest Wyoming, a sulfur-rich natural CO2 reservoir. Mineral textures and geochemical features developed in the experiments suggest that carbonate minerals which constitute the natural reservoir will initially dissolve in response to emplacement of CO2. Euhedral, bladed anhydrite concomitantly precipitates in response to injected CO2. Analogous anhydrite is observed in drill core, suggesting that secondary anhydrite in the natural reservoir may be related to emplacement of CO2 into the Madison Limestone. Carbonate minerals ultimately re-precipitate, and anhydrite dissolves, as the rock buffers the acidity and reasserts geochemical control. Another suite of experiments emulates injection of CO2 for enhanced oil recovery in the Desert Creek Limestone (Paradox Formation), Paradox Basin, Southeast Utah. Euhedral iron oxyhydroxides (hematite) precipitate at pH 4.5 to 5 and low Eh (approximately -0.1 V) as a consequence of water-rock reaction. Injection of CO2 decreases pH to approximately 3.5 and increases Eh by approximately 0.1 V, yielding secondary mineralization of euhedral pyrite instead of iron oxyhydroxides. Carbonate minerals also dissolve and ultimately re-precipitate, as determined by experiments in the

  17. Biorefining of wheat straw: accounting for the distribution of mineral elements in pretreated biomass by an extended pretreatment – severity equation

    DEFF Research Database (Denmark)

    Le, Duy Michael; Sørensen, Hanne Risbjerg; Knudsen, Niels Ole

    2014-01-01

    Background: Mineral elements present in lignocellulosic biomass feedstocks may accumulate in biorefinery process streams and cause technological problems, or alternatively can be reaped for value addition. A better understanding of the distribution of minerals in biomass in response to pretreatment...... factors is therefore important in relation to development of new biorefinery processes. The objective of the present study was to examine the levels of mineral elements in pretreated wheat straw in response to systematic variations in the hydrothermal pretreatment parameters (pH, temperature......) Silicon, iron, copper, aluminum correlated with lignin and cellulose levels, but the levels of these constituents showed no severity-dependent trends. For the first group, an expanded pretreatment-severity equation, containing a specific factor for each constituent, accounting for variability due...

  18. Composition, speciation and distribution of iron minerals in Imperata cylindrica.

    Science.gov (United States)

    Amils, Ricardo; de la Fuente, Vicenta; Rodríguez, Nuria; Zuluaga, Javier; Menéndez, Nieves; Tornero, Jesús

    2007-05-01

    A comparative study of the roots, rhizomes and leaves of an iron hyperaccumulator plant, Imperata cylindrica, isolated from the banks of an extreme acidic environment, using complementary techniques: Mösbauer spectroscopy (MS), X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled to energy-dispersive X-ray microanalysis (EDAX) and transmission electron microscopy (TEM), has shown that two main biominerals, jarosite and ferrihydrate-ferritin, accumulate in the different tissues. Jarosite accumulates mainly in roots and rhizomes, while ferritin has been detected in all the structures. A model of iron management in I. cylindrica is presented.

  19. Hyperspectral surface materials map of quadrangle 3364, Pasaband (417) and Markaz-e Kajiran (418) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3566, Sangcharak (501) and Sayghan-o-Kamard (502) quadrangles, Afghanistan, showing iron-bearing minerals and other material

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangle 3568, Pul-e Khumri (503) and Charikar (504) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Iron-Deficiency Anemia (For Parents)

    Science.gov (United States)

    ... Videos for Educators Search English Español Iron-Deficiency Anemia KidsHealth / For Parents / Iron-Deficiency Anemia What's in ... common nutritional deficiency in children. About Iron-Deficiency Anemia Every red blood cell in the body contains ...

  3. Process for iron separation from an organic solution containing uranium

    International Nuclear Information System (INIS)

    Textoris, A.; Lyaudet, G.; Bathelier, A.

    1987-01-01

    Iron is separated from an organic solution of U and Fe in a phosphine oxide and an acid organic phosphorus compound by reaction on oxalic acid or a mixture of sulfuric and phosphoric acid or phosphoric acid. Uranium stays in the initial organic solution and iron is transferred to the aqueous phase [fr

  4. Development of neutron shielding concrete containing iron content materials

    Science.gov (United States)

    Sariyer, Demet; Küçer, Rahmi

    2018-02-01

    Concrete is one of the most important construction materials which widely used as a neutron shielding. Neutron shield is obtained of interaction with matter depends on neutron energy and the density of the shielding material. Shielding properties of concrete could be improved by changing its composition and density. High density materials such as iron or high atomic number elements are added to concrete to increase the radiation resistance property. In this study, shielding properties of concrete were investigated by adding iron, FeB, Fe2B, stainless - steel at different ratios into concrete. Neutron dose distributions and shield design was obtained by using FLUKA Monte Carlo code. The determined shield thicknesses vary depending on the densities of the mixture formed by the additional material and ratio. It is seen that a combination of iron rich materials is enhanced the neutron shielding of capabilities of concrete. Also, the thicknesses of shield are reduced.

  5. Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1.

    Science.gov (United States)

    Dippon, Urs; Pantke, Claudia; Porsch, Katharina; Larese-Casanova, Phil; Kappler, Andreas

    2012-06-19

    The mobility of toxic metals and the transformation of organic pollutants in the environment are influenced and in many cases even controlled by iron minerals. Therefore knowing the factors influencing iron mineral formation and transformation by Fe(II)-oxidizing and Fe(III)-reducing bacteria is crucial for understanding the fate of contaminants and for the development of remediation technologies. In this study we followed mineral formation by the nitrate-reducing Fe(II)-oxidizing strain Acidovorax sp. BoFeN1 in the presence of the crystalline Fe(III) (oxyhydr)oxides goethite, magnetite and hematite added as potential nucleation sites. Mössbauer spectroscopy analysis of minerals precipitated by BoFeN1 in (57)Fe(II)-spiked microbial growth medium showed that goethite was formed in the absence of mineral additions as well as in the presence of goethite or hematite. The presence of magnetite minerals during Fe(II) oxidation induced the formation of magnetite in addition to goethite, while the addition of humic substances along with magnetite also led to goethite but no magnetite. This study showed that mineral formation not only depends on the aqueous geochemical conditions but can also be affected by the presence of mineral nucleation sites that initiate precipitation of the same underlying mineral phases.

  6. Feasibility Studies for Production of Pellet Grade Concentrate from Sub Grade Iron Ore Using Multi Gravity Separator

    Science.gov (United States)

    Rao, Gottumukkala Venkateswara; Markandeya, R.; Kumar, Rajan

    2018-04-01

    An attempt has been made to utilise Sub Grade Iron Ore by producing pellet grade concentrate from Deposit 5, Bacheli Complex, Bailadila, Chhattisgarh, India. The `as received' Run of Mine (ROM) sample assayed 40.80% Fe, 40.90% SiO2. Mineralogical studies indicated that the main ore mineral is Hematite and lone gangue mineral is Quartz. Mineral liberation studies indicated that, the ore mineral Hematite and gangue mineral Quartz are getting liberated below 100 microns. The stage crushed and ground sample was subjected to concentration by using a Multi Gravity Separator (MGS). Rougher Multi Gravity Separation (MGS) experimental results were optimised to recover highest possible iron values. A concentrate of 55.80% Fe with a yield of 61.73% by weight with a recovery of 84.42% Iron values was obtained in rougher MGS concentrate. Further experiments were carried out with rougher MGS concentrate to produce a concentrate suitable for commercial grade pellet concentrate. It was proved that a concentrate assaying 66.67% Fe, 3.12% SiO2 with an yield of 45.08% by weight and with a recovery of 73.67% iron values in the concentrate.

  7. Development of the Facility for Transformation of Magnetic Characteristics of Weakly Magnetic Oxidized Iron Ores Related to Improvement of Technologies for Iron Ore Concentrate Production

    Directory of Open Access Journals (Sweden)

    Ponomarenko, O.M.

    2016-01-01

    Full Text Available New facility for continuous registration of iron ore magnetization depending on temperature by heating of iron ores upon reducing conditions was created. Facility allows to register the processes of transformation of weakly magnetic minerals into strongly magnetic ones under the influence of reducing agents and temperature, as well as to determine the Curie temperature of the minerals. Using created facility it was shown, that heating of goethite and hematite in the presence of 4 % of starch in the temperature range of 300—650 °С leads to significant increase of magnetization of the samples. X-Ray diffraction confirmed that under indicated conditions the structure of hematite and goethite is transformed into magnetite structure. Obtained results open up new possibilities for the development of effective technologies for oxidized iron ore beneficiation.

  8. Effect of Iron Impurity on the Phase Composition, Structure and Properties of Magnesium Alloys Containing Manganese and Aluminum

    Science.gov (United States)

    Volkova, E. F.

    2017-07-01

    Results of a study of the interaction between iron impurity and manganese and aluminum alloying elements during formation of phase composition in alloys of the Mg - Mn, Mg - Al, Mg - Al - Mn, and Mg - Al - Zn - Mn systems are presented. It is proved that this interaction results in introduction of Fe into the intermetallic phase. The phase compositions of model magnesium alloys and commercial alloys MA2-1 and MA5 are studied. It is shown that both manganese and aluminum may bind the iron impurity into phases. Composite Fe-containing intermetallic phases of different compositions influence differently the corrosion resistance of magnesium alloys.

  9. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation

    Science.gov (United States)

    Kobayashi, Takanori; Nagasaka, Seiji; Senoura, Takeshi; Itai, Reiko Nakanishi; Nakanishi, Hiromi; Nishizawa, Naoko K.

    2013-01-01

    Iron is essential for most living organisms. Plants transcriptionally induce genes involved in iron acquisition under conditions of low iron availability, but the nature of the deficiency signal and its sensors are unknown. Here we report the identification of new iron regulators in rice, designated Oryza sativa Haemerythrin motif-containing Really Interesting New Gene (RING)- and Zinc-finger protein 1 (OsHRZ1) and OsHRZ2. OsHRZ1, OsHRZ2 and their Arabidopsis homologue BRUTUS bind iron and zinc, and possess ubiquitination activity. OsHRZ1 and OsHRZ2 are susceptible to degradation in roots irrespective of iron conditions. OsHRZ-knockdown plants exhibit substantial tolerance to iron deficiency, and accumulate more iron in their shoots and grains irrespective of soil iron conditions. The expression of iron deficiency-inducible genes involved in iron utilization is enhanced in OsHRZ-knockdown plants, mostly under iron-sufficient conditions. These results suggest that OsHRZ1 and OsHRZ2 are iron-binding sensors that negatively regulate iron acquisition under conditions of iron sufficiency. PMID:24253678

  10. The occurrence of ferropyrosmalite in the mineralized breccias from Igarape Bahia (North region, Brazil) Au-Cu (± ETR-U) deposit, Carajas mineral Province

    International Nuclear Information System (INIS)

    Tazava, Edison; Gomes, Newton Souza; Oliveira, Claudinei Gouveia de

    1999-01-01

    In the last years, several works report the presence of pyrosmalite mineral series [(Fe, Mn) 8 Si 6 O 15 (OH, Cl) 10 ] commonly associated with volcanic exhalative massive sulphide or Fe-Mn metamorphosed deposits. In this paper, we present the inedit occurrence of ferropyrosmalite in the Au-Cu (± REE-U) of Igarape Bahia deposit, located in the Au-Cu district of the Carajas Mineral Province. We consider the Igarape Bahia mineralization as being related to the genesis of iron-oxide class deposit, like the Olympic Dam type. Ferropyrosmalite occurs in two different contexts: associated with carbonate veins; associated with heterolithic breccias, composed by BIF and mafic metavolcanic fragments immersed in a magnetic, chalcopyrite, bornite, pyrite, carbonates (calcite to siderite), uranium and REE minerals, and gold, - rich matrix. The growth of ferropyrosmalite is probably due to the substitution of iron rich minerals (chloride, magnetite and siderite), controlled by magmatic fluid influx rich in chlorine. The permeability of breccias and the discontinuity of veins favour fluid percolation. The mode of occurrence of ferropyrosmalite and its relation with amphibole (ferro-hornblende-actinolite) indicate metasomatic growth of the former under temperatures in the transition of greenschist/amphibolite facies. The ferropyrosmalite of the Igarape Bahia deposit represents an uncommon type of occurrence linked to hydrothermal/magmatic conditions. (author)

  11. Tissue levels of iron, copper, zinc and magnesium in iron deficient rats

    African Journals Online (AJOL)

    The effects of iron deficiency on the levels of iron, copper, zinc and magnesium in the brain, liver, kidney, heart and lungs of albino rats (Rattus novergicus) was investigated. Forty rats were divided into two groups and the first group was fed a control diet containing 1.09g iron/kg diet while the test group was fed diet ...

  12. Watson: A new link in the IIE iron chain

    Science.gov (United States)

    Olsen, Edward; Davis, Andrew; Clarke, Roy S., Jr.; Schultz, Ludolf; Weber, Hartwig W.; Clayton, Robert; Mayeda, Toshiko; Jarosewich, Eugene; Sylvester, Paul; Grossman, Lawrence

    1994-01-01

    Watson, which was found in 1972 in South Australia, contains the largest single silicate rock mass seen in any known iron meteorite. A comprehensive study has been completed on this unusual meteorite: petrography, metallography, analyses of the silicate inclusion (whole rock chemical analysis, INAA, RNAA, noble gases, and oxygen isotope analysis) and mineral compositions (by electron microprobe and ion microprobe). The whole rock has a composition of an H-chondrite minus the normal H-group metal and troilite content. The oxygen isotope composition is that of the silicates in the IIE iron meteorites and lies along an oxygen isotope fractionation line with the H-group chondrites. Trace elements in the metal confirm Watson is a new IIE iron. Whole rock Watson silicate shows an enrichment in K and P (each approximately 2X H-chondrites). The silicate inclusion has a highly equilibrated igneous (peridotite-like) texture with olivine largely poikilitic within low-Ca pyroxene: olivine (Fa20), opx (Fs17Wo3), capx (Fs9Wo14)(with very fine exsolution lamellae), antiperthite feldspar (An1-3Or5) with less than 1 micron exsolution lamellae (An1-3Or greater than 40), shocked feldspar with altered stoichiometry, minor whitlockite (also a poorly characterized interstitial phosphate-rich phase) and chromite, and only traces of metal and troilite. The individual silicate minerals have normal chondritic REE patterns, but whitlockite has a remarkable REE pattern. It is very enriched in light REE (La is 720X C1, and Lu is 90X C1, as opposed to usual chonditic values of approximately 300X and 100-150X, respectively) with a negative Eu anomaly. The enrichment of whole rock K is expressed both in an unusually high mean modal Or content of the feldspar, Or13, and in the presence of antiperthite.

  13. Removal of arsenic from aqueous solutions using waste iron columns inoculated with iron bacteria.

    Science.gov (United States)

    Azhdarpoor, Abooalfazl; Nikmanesh, Roya; Samaei, Mohammad Reza

    2015-01-01

    Arsenic contamination of water resources is one of the serious risks threatening natural ecosystems and human health. This study investigates arsenic removal using a waste iron column with and without iron bacteria in continuous and batch phases. In batch experiments, the effects of pH, contact time, initial concentration of arsenic and adsorbent dose were investigated. Results indicated that the highest arsenate removal efficiency occurred at pH 7 (96.76%). On increasing the amount of waste iron from 0.25 to 1 g, the removal rate changed from about 42.37%-96.70%. The results of continuous experiments on the column containing waste iron showed that as the empty bed contact time increased from 5 to 60 min, the secondary arsenate concentration changed from 23 to 6 µg/l. In experiments involving a waste iron column with iron bacteria, an increase in residence time from 5 to 60 min decreased the secondary arsenate concentration from 14.97 to 4.86 µg/l. The results of this study showed that waste iron containing iron bacteria is a good adsorbent for removal of arsenic from contaminated water.

  14. Comparative study of biogenic and abiotic iron-containing materials

    Energy Technology Data Exchange (ETDEWEB)

    Cherkezova-Zheleva, Z., E-mail: zzhel@ic.bas.bg; Shopska, M., E-mail: shopska@ic.bas.bg; Paneva, D. [Bulgarian Academy of Sciences, Institute of Catalysis (Bulgaria); Kovacheva, D. [Bulgarian Academy of Sciences, Institute of General and Inorganic Chemistry (Bulgaria); Kadinov, G.; Mitov, I. [Bulgarian Academy of Sciences, Institute of Catalysis (Bulgaria)

    2016-12-15

    Series of iron-based biogenic materials prepared by cultivation of Leptothrix group of bacteria in different feeding media (Sphaerotilus-Leptothrix group of bacteria isolation medium, Adler, Lieske and silicon-iron-glucose-peptone) were studied. Control samples were obtained in the same conditions and procedures but the nutrition media were not infected with bacteria, i.e. they were sterile. Room and low temperature Mössbauer spectroscopy, powder X-ray diffraction (XRD), and infrared spectroscopy (IRS) were used to reveal the composition and physicochemical properties of biomass and respective control samples. Comparative analysis showed differences in their composition and dispersity of present phases. Sample composition included different ratio of nanodimensional iron oxyhydroxide and oxide phases. Relaxation phenomena such as superparamagnetism or collective magnetic excitation behaviour were registered for some of them. The experimental data showed that the biogenic materials were enriched in oxyhydroxides of high dispersion. Catalytic behaviour of a selected biomass and abiotic material were studied in the reaction of CO oxidation. In situ diffuse-reflectance (DR) IRS was used to monitor the phase transformations in the biomass and CO conversion.

  15. PROPHYLAXIS OF VITAMIN AND MINERAL DEFICITS IN CHILDREN

    Directory of Open Access Journals (Sweden)

    O. V. Stennikova

    2012-01-01

    Full Text Available Nowadays one of the most pressing problems of prophylactic pediatrics is the provision of children with vitamins and minerals. In the article we review physiological role of calcium, vitamin D and iron, prevalence and clinical presentations of respective deficits in childhood. We also provide with variants of dietary prophylaxis using various products enriched with vitamins and microelements adjusted to average daily norms of calcium, vitamin D and iron consumption.

  16. Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California

    Science.gov (United States)

    Majzlan, Juraj; Alpers, Charles N.; Bender Koch, Christian; McCleskey, R. Blaine; Myneni, Satish B.C.; Neil, John M.

    2014-01-01

    The Iron Mountain Mine Superfund site in California is a prime example of an acid mine drainage (AMD) system with well developed assemblages of sulfate minerals typical for such settings. Here we present and discuss the vibrational (infrared), X-ray absorption, and Mössbauer spectra of a number of these phases, augmented by spectra of a few synthetic sulfates related to the AMD phases. The minerals and related phases studied in this work are (in order of increasing Fe2O3/FeO): szomolnokite, rozenite, siderotil, halotrichite, römerite, voltaite, copiapite, monoclinic Fe2(SO4)3, Fe2(SO4)3·5H2O, kornelite, coquimbite, Fe(SO4)(OH), jarosite and rhomboclase. Fourier transform infrared spectra in the region 750–4000 cm−1 are presented for all studied phases. Position of the FTIR bands is discussed in terms of the vibrations of sulfate ions, hydroxyl groups, and water molecules. Sulfur K-edge X-ray absorption near-edge structure (XANES) spectra were collected for selected samples. The feature of greatest interest is a series of weak pre-edge peaks whose position is determined by the number of bridging oxygen atoms between Fe3+ octahedra and sulfate tetrahedra. Mössbauer spectra of selected samples were obtained at room temperature and 80 K for ferric minerals jarosite and rhomboclase and mixed ferric–ferrous minerals römerite, voltaite, and copiapite. Values of Fe2+/[Fe2+ + Fe3+] determined by Mössbauer spectroscopy agree well with those determined by wet chemical analysis. The data presented here can be used as standards in spectroscopic work where spectra of well-characterized compounds are required to identify complex mixtures of minerals and related phases.

  17. A preliminary approach to identify irradiated foods by thermoluminescence measurements

    International Nuclear Information System (INIS)

    Shin, Choonshik; Kim, Hyoung-Ook; Lim, Yoongho

    2012-01-01

    Thermoluminescence (TL) is one of the physical methods for the identification of irradiated foods. Among the currently developed methods, TL is the most widely used method for the identification of irradiated foods. However, in order to use this method, silicate minerals should be isolated from food samples. The process for the isolation of silicate minerals is time consuming and laborious. In this work, we have investigated the applicability of the TL method using iron-containing minerals instead of silicate minerals. In the TL analyses of dried spices, TL glow curves of iron-containing minerals showed maximum temperatures between 150 and 250 °C which were the same as those of silicate minerals. The process for the mineral separation of the proposed method is simple, fast, easy, and reliable. Moreover, the analysis results including TL ratio have not shown significant differences compared with the silicate minerals method. As a result, the TL measurements using the iron-containing minerals could be an excellent method for the identification of the irradiated foods, including dried spices. - Highlights: ► A thermoluminescence method using iron-containing minerals is proposed. ► Current method using silicate minerals is time consuming and laborious. ► However, the proposed method is simple, fast, easy, and reliable. ► Analysis results are similar to those of the silicate minerals method.

  18. Evaluation of iron-base materials for waste package containers in a salt repository

    International Nuclear Information System (INIS)

    Westerman, R.E.; Nelson, J.L.; Kuhn, W.L.; Basham, S.G.; Moak, D.A.; Pitman, S.G.

    1983-11-01

    Design studies for high-level nuclear waste packages for salt repositories have identified low-carbon steel as a candidate material for containers. Among the requirements are strength, corrosion resistance, and fabricability. The studies of the corrosion resistance and structural stability of iron-base materials (particularly low-carbon steel) are treated in this paper. The materials have been exposed in brines that are characteristic of the potential sites for salt repositories. The effects of temperature, radiation level, oxygen level and other parameters are under investigation. The initial development of corrosion models for these environments is presented with discussion of the key mechanisms under consideration. 6 references, 5 figures

  19. Grains of Nonferrous and Noble Metals in Iron-Manganese Formations and Igneous Rocks of Submarine Elevations of the Sea of Japan

    Science.gov (United States)

    Kolesnik, O. N.; Astakhova, N. V.

    2018-01-01

    Iron-manganese formations and igneous rocks of submarine elevations in the Sea of Japan contain overlapping mineral phases (grains) with quite identical morphology, localization, and chemical composition. Most of the grains conform to oxides, intermetallic compounds, native elements, sulfides, and sulfates in terms of the set of nonferrous, noble, and certain other metals (Cu, Zn, Sn, Pb, Ni, Mo, Ag, Pd, and Pt). The main conclusion that postvolcanic hydrothermal fluids are the key sources of metals is based upon a comparison of the data of electron microprobe analysis of iron-manganese formations and igneous rocks dredged at the same submarine elevations in the Sea of Japan.

  20. Effect of dietary calcium level and source on mineral utilisation by piglets fed diets containing exogenous phytase.

    Science.gov (United States)

    Schlegel, P; Gutzwiller, A

    2017-10-01

    Calcium and phosphorus are essential minerals, closely linked in digestive processes and metabolism. With widespread use of low P diets containing exogenous phytase, the optimal dietary Ca level was verified. The 40-day study evaluated the effects of Ca level (4, 7 and 10 g/kg diet) and Ca source (Ca from CaCO 3 and from Lithothamnium calcareum) on mineral utilisation in 72 piglets (7.9 ± 1.0 kg BW) fed an exogenous phytase containing diet with 2.9 g digestible P/kg. Measured parameters were growth performance, stomach mineral solubility, bone breaking strength and urinary, serum and bone mineral concentration. The apparent total tract digestibility of minerals was also assessed in the two diets with 7 g Ca/kg, using 12 additional pigs. Regardless of Ca source, increasing dietary Ca impaired feed conversion ratio, increased urinary pH, increased serum and urinary Ca, decreased serum and urinary P, decreased serum Mg and increased urinary Mg, increased serum AP activity, decreased bone Mg increased bone Zn. Bone breaking strength was improved with 7 compared to 4 g Ca/kg. Compared to CaCO 3 , Ca from Lithothamnium calcareum increased serum Mg and with, 10 g Ca/kg, it limited body weight gain. The dose response of Ca in a diet with 2.9 g digestible P/kg and including exogenous phytase indicated that: (i) a low dietary Ca was beneficial for piglet growth, but was limiting the metabolic use of P; (ii) a high dietary Ca level impaired P utilisation; (iii) the optimal P utilisation and bone breaking strength was obtained with a dietary Ca-to-digestible P ratio of 2.1 to 2.4:1; (iv). Increasing dietary Ca reduced Mg utilisation, but not Zn status, when fed at adequate level. Finally, Ca from Lithothamnium calcareum had similar effects on Ca and P metabolism as CaCO 3 , but impaired growth when fed at the highest inclusion level. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  1. The Australian mineral resources industry in 2006 - ongoing business and new challenges

    Energy Technology Data Exchange (ETDEWEB)

    Leschhorn, F.

    2006-08-15

    Australia has the potential to remain as a stable long-term supplier of important minerals for the entire world (Table 1). The national income of Australia is direct related to the exports of minerals and it is no wonder that the annual poker-style price negotiations for iron ore and coking coal have become the most important events on the Australian economic calendar. The 2005 price increases for the two biggest export commodities, iron ore and coal, alone have contributed to a 2% rise of the national income. The total value of exported minerals will be 91.8 bn AS in 2006/2007. This boom was mainly driven by the surge of demand from China. In addition to iron ore and coal there are also gold, copper, nickel, bauxite, and many more metals which are creating headlines. Diamond and recently uranium mining have become hot topics. Besides the big players there are hundreds of small exploration and mining companies especially in the gold and base metal sector. Australia's rich resources, social stability and economic strengths have shaped a unique investment environment which continues to attract investors from around the world. The following will give you an overview on Australia's supply potential for the most important minerals. (orig.)

  2. Mineral facilities of Europe

    Science.gov (United States)

    Almanzar, Francisco; Baker, Michael S.; Elias, Nurudeen; Guzman, Eric

    2010-01-01

    This map displays over 1,700 records of mineral facilities within the countries of Europe and western Eurasia. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recently published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2.

  3. Hyperspectral surface materials map of quadrangle 3264, Naw Zad-Musa Qala (423) and Dihrawud (424) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3570, Tagab-e-Munjan (505) and Asmar-Kamdesh (506) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3468, Chak-e Wardak-Siyahgird (509) and Kabul (510) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangle 3262, Farah (421) and Hokumat-e-pur-Chaman (422) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Fungal Iron Biomineralization in Río Tinto

    Directory of Open Access Journals (Sweden)

    Monike Oggerin

    2016-04-01

    Full Text Available Although there are many studies on biomineralization processes, most of them focus on the role of prokaryotes. As fungi play an important role in different geological and biogeochemical processes, it was considered of interest to evaluate their role in a natural extreme acidic environment, Río Tinto, which has a high level of fungal diversity and a high concentration of metals. In this work we report, for the first time, the generation of iron oxyhydroxide minerals by the fungal community in a specific location of the Tinto basin. Using Transmission Electron Microscopy (TEM and High Angle Angular Dark Field coupled with Scanning Transmission Electron Microscopy (HAADF-STEM and Energy-Dispersive X-ray Spectroscopy (EDX, we observed fungal structures involved in the formation of iron oxyhydroxide minerals in mineralized sediment samples from the Río Tinto basin. Although Río Tinto waters are supersaturated in these minerals, they do not precipitate due to their slow precipitation kinetics. The presence of fungi, which simply provide charged surfaces for metal binding, favors the precipitation of Fe oxyhydroxides by overcoming these kinetic barriers. These results prove that the fungal community of Río Tinto participates very actively in the geochemical processes that take place there.

  8. Assessment of Iron Fortification Influence on Organoleptics and Physico-Chemical Properties of Yogurt

    Directory of Open Access Journals (Sweden)

    N. Askary

    2013-08-01

    Full Text Available Innumerable percentage of the world population suffers from shortage of vitamins and minerals which is usually called malnutrition. Enough perception and access of such essential vitamins and minerals have close relationship with eternity, physical and mental developments, good health, general welfare of individuals and societies. In this research, the fortification of yogurt with iron has been studied. The kinds of iron used in this study include: FeCl3 (H2O6, The whey protein-chelated iron (Fe-WP and The Fe-Casein complex (Fe-CN that each of them were evaluated in three quantities (10, 20 and 40 milligrams per one kilogram of milk. Then their chemical experiments and organoleptic specifications were studied after keeping 21 days in refrigerator and their results were reported. Results showed that all of these iron compounds were suitable for yogurt but two complexes of iron, including Fe-WP and Fe-CN, were better to be used.

  9. Semiconductor composition containing iron, dysprosium, and terbium

    Science.gov (United States)

    Pooser, Raphael C.; Lawrie, Benjamin J.; Baddorf, Arthur P.; Malasi, Abhinav; Taz, Humaira; Farah, Annettee E.; Kalyanaraman, Ramakrishnan; Duscher, Gerd Josef Mansfred; Patel, Maulik K.

    2017-09-26

    An amorphous semiconductor composition includes 1 to 70 atomic percent iron, 15 to 65 atomic percent dysprosium, 15 to 35 atomic percent terbium, balance X, wherein X is at least one of an oxidizing element and a reducing element. The composition has an essentially amorphous microstructure, an optical transmittance of at least 50% in at least the visible spectrum and semiconductor electrical properties.

  10. On the crystalline structures of iron oxides formed during the removal process of iron in water

    International Nuclear Information System (INIS)

    Cho, Bongyeon; Fujita, Kenji; Oda, Katsuro; Ino, Hiromitsu

    1993-01-01

    The iron oxide samples collected from both filtration and batch reactors were analysed by X-ray diffraction and Moessbauer spectroscopy. In the filtration of water containing iron, the oxidized form of iron was determined to be ferrihydrite. In contrast, in the batch experiment without filtration, iron was oxidized to microcrystalline goethite. (orig.)

  11. Secondary Sulfate Mineralization and Basaltic Chemistry of Craters of the Moon National Monument, Idaho: Potential Martian Analog

    Energy Technology Data Exchange (ETDEWEB)

    C. Doc Richardson; Nancy W. Hinman; Lindsay J. McHenry; J. Michelle Kotler; Jill R. Scott

    2012-05-01

    Secondary deposits associated with the basaltic caves of Craters of the Moon National Monument (COM) in southern Idaho were examined using X-ray powder diffraction, X-ray fluorescence spectrometry, Fourier transform infrared spectrometry, and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The secondary mineral assemblages are dominated by Na-sulfate minerals (thenardite, mirabilite) with a small fraction of the deposits containing minor concentrations of Na-carbonate minerals. The assemblages are found as white, efflorescent deposits in small cavities along the cave walls and ceilings and as localized mounds on the cave floors. Formation of the deposits is likely due to direct and indirect physiochemical leaching of meteoritic water through the overlying basalts. Whole rock data from the overlying basaltic flows are characterized by their extremely high iron concentrations, making them good analogs for martian basalts. Understanding the physiochemical pathways leading to secondary mineralization at COM is also important because lava tubes and basaltic caves are present on Mars. The ability of FTICR-MS to consistently and accurately identify mineral species within these heterogeneous mineral assemblages proves its validity as a valuable technique for the direct fingerprinting of mineral species by deductive reasoning or by comparison with reference spectra.

  12. Enhancing market potentials, contract and trading of Nigerian solid minerals in world market

    International Nuclear Information System (INIS)

    Kwa, Y. B.

    1997-01-01

    The mineral endowments of Nigeria is discussed. Most of these minerals are mined for their export potential and also to meet domestic industrial needs. Minerals mined for export include tin, columbite, tantalite, lead/zinc, coal, and iron. Minerals meet specified requirements to qualify for export or application in the industrial sector. For export, a number of issues relating to pricing, shipping, insurance, international laws and contractual agreements must be clearly articulated

  13. Interplay between black carbon and minerals contributes to long term carbon stabilization and mineral transformation

    Science.gov (United States)

    Liang, B.; Weng, Y. T.; Wang, C. C.; Chiang, C. C.; Liu, C. C.; Lehmann, J.

    2017-12-01

    Black carbon receives increasing global wide research attention due to its role in carbon sequestration, soil fertility enhancement and remediation application. Generally considered chemically stable in bulk, the reactive surface of BC can interplays with minerals and form strong chemical bondage, which renders physical protection of BC and contributes to its long term stabilization. Using historical BC-rich Amazonian Dark Earth (ADE), we probe the in-situ organo-mineral association and transformation of BC and minerals over a millennium scale using various synchrotron-based spectroscopic (XANES, FTIR) and microscopic (TXM) methods. Higher content of SRO minerals was found in BC-rich ADE compare to adjacent tropical soils. The iron signature found in BC-rich ADE was mainly ferrihydrite/lepidocrocite, a more reactive form of Fe compared to goethite, which was dominant in adjacent soil. Abundant nano minerals particles were observed in-situ associated with BC surface, in clusters and layers. The organo-mineral interaction lowers BC bioavailability and enhances its long-term stabilization in environment, while at the same time, transforms associated minerals into more reactive forms under rapid redox/weathering environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding. The scale up application of BC/biochar into agricultural systems and natural environments have long lasting impact on the in-situ transformation of associated minerals.

  14. Mineral components and anti-oxidant activities of tropical seaweeds

    Science.gov (United States)

    Takeshi, Suzuki; Yumiko, Yoshie-Stark; Joko, Santoso

    2005-07-01

    Seaweeds are known to hold substances of high nutritional value; they are the richest resources of minerals important to the biochemical reactions in the human body. Seaweeds also hold non-nutrient compounds like dietary fiber and polyphenols. However, there is not enough information on the mineral compounds of tropical seaweeds. Also we are interested in the antioxidant activities of seaweeds, especially those in the tropical area. In this study, Indonesian green, brown and red algae were used as experimental materials with their mineral components analyzed by using an atomic absorption spectrophotometer. The catechins and flavonoids of these seaweeds were extracted with methanol and analyzed by high performance liquid chromatography (HPLC); the antioxidant activities of these seaweeds were evaluated in a fish oil emulsion system. The mineral components of tropical seaweeds are dominated by calcium, potassium and sodium, as well as small amounts of copper, iron and zinc. A green alga usually contains epigallocatechin, gallocatechin, epigallocatechin gallate and catechin. However, catechin and its isomers are not found in some green and red algae. In the presence of a ferrous ion catalyst, all the methanol extracts from the seaweeds show significantly lower peroxide values of the emulsion than the control, and that of a green alga shows the strongest antioxidant activity. The highest chelation on ferrous ions is also found in the extract of this alga, which is significantly different from the other methanol extracts in both 3 and 24 h incubations.

  15. Iron Stain on Wood

    Science.gov (United States)

    Mark Knaebe

    2013-01-01

    Iron stain, an unsightly blue–black or gray discoloration, can occur on nearly all woods. Oak, redwood, cypress, and cedar are particularly prone to iron stain because these woods contain large amounts of tannin-like extractives. The discoloration is caused by a chemical reaction between extractives in the wood and iron in steel products, such as nails, screws, and...

  16. Digestion of Alumina from Non-Magnetic Material Obtained from Magnetic Separation of Reduced Iron-Rich Diasporic Bauxite with Sodium Salts

    Directory of Open Access Journals (Sweden)

    Guanghui Li

    2016-11-01

    Full Text Available Recovery of iron from iron-rich diasporic bauxite ore via reductive roasting followed by magnetic separation has been explored recently. However, the efficiency of alumina extraction in the non-magnetic materials is absent. In this paper, a further study on the digestion of alumina by the Bayer process from non-magnetic material obtained after magnetic separation of reduced iron-rich diasporic bauxite with sodium salts was investigated. The results indicate that the addition of sodium salts can destroy the original occurrences of iron-, aluminum- and silicon-containing minerals of bauxite ore during reductive roasting. Meanwhile, the reactions of sodium salts with complex aluminum- and silicon-bearing phases generate diaoyudaoite and sodium aluminosilicate. The separation of iron via reductive roasting of bauxite ore with sodium salts followed by magnetic separation improves alumina digestion in the Bayer process. When the alumina-bearing material in bauxite ore is converted into non-magnetic material, the digestion temperature decreases significantly from 280 °C to 240 °C with a nearly 99% relative digestion ratio of alumina.

  17. Moessbauer investigation of characteristic distribution of iron oxides in sediments from the Antarctica

    International Nuclear Information System (INIS)

    Kuzmann, E.; Homonnay, Z.; Vertes, A.; Garg, V.K.; De Oliveira, A.C.; De Souza Junior, P.A.; Schuch, L.A.

    2000-01-01

    Sediments from the Admirally Bay, King George Island, Antarctica, were investigated by 57 Fe Moessbauer spectroscopy, X-ray diffractometry, and radiometry. Quartz, feldspar, chlorite, calcite, dolomite, mica, kaolinite, hematite and magnetite were identified as constituent minerals in the sediment samples. The phase composition and the iron distribution among the crystallographic sites of iron-bearing minerals (silicates, magnetite and hematite) of samples from different location have been derived from the complex Moessbauer spectra. At different locations sediments has significant characteristic differences in the mineral composition, in the iron distribution among the crystallographic site of silicates, and in the specific radioactivity of Cs radionuclides. These results indicate differences in the rock formation and alteration by the sediments in this maritime part of Antarctica. There is a much higher amount of iron oxides in the sediments from south part of the geological fault across the Admirally Bay than in the north part. This can be associated with much more alteration in the rocks in the south part compared to the northern one. This finding can contribute to the question of the history of the formation and alteration of volcanic rocks in the border of Antarctica. (author)

  18. Chemical fingerprint of iron oxides related to iron enrichment of banded iron formation from the Cauê Formation - Esperança Deposit, Quadrilátero Ferrífero, Brazil: a laser ablation ICP-MS study

    Directory of Open Access Journals (Sweden)

    Lucilia Aparecida Ramos de Oliveira

    Full Text Available Chemical signatures of iron oxides from dolomitic itabirite and high-grade iron ore from the Esperança deposit, located in the Quadrilátero Ferrífero, indicate that polycyclic processes involving changing of chemical and redox conditions are responsible for the iron enrichment on Cauê Formation from Minas Supergroup. Variations of Mn, Mg and Sr content in different generations of iron oxides from dolomitic itabirite, high-grade iron ore and syn-mineralization quartz-carbonate-hematite veins denote the close relationship between high-grade iron ore formation and carbonate alteration. This indicates that dolomitic itabirite is the main precursor of the iron ore in that deposit. Long-lasting percolation of hydrothermal fluids and shifts in the redox conditions have contributed to changes in the Y/Ho ratio, light/heavy rare earth elements ratio and Ce anomaly with successive iron oxide generations (martite-granular hematite, as well as lower abundance of trace elements including rare earth elements in the younger specularite generations.

  19. Anthropogenic combustion iron as a complex climate forcer.

    Science.gov (United States)

    Matsui, Hitoshi; Mahowald, Natalie M; Moteki, Nobuhiro; Hamilton, Douglas S; Ohata, Sho; Yoshida, Atsushi; Koike, Makoto; Scanza, Rachel A; Flanner, Mark G

    2018-04-23

    Atmospheric iron affects the global carbon cycle by modulating ocean biogeochemistry through the deposition of soluble iron to the ocean. Iron emitted by anthropogenic (fossil fuel) combustion is a source of soluble iron that is currently considered less important than other soluble iron sources, such as mineral dust and biomass burning. Here we show that the atmospheric burden of anthropogenic combustion iron is 8 times greater than previous estimates by incorporating recent measurements of anthropogenic magnetite into a global aerosol model. This new estimation increases the total deposition flux of soluble iron to southern oceans (30-90 °S) by 52%, with a larger contribution of anthropogenic combustion iron than dust and biomass burning sources. The direct radiative forcing of anthropogenic magnetite is estimated to be 0.021 W m -2 globally and 0.22 W m -2 over East Asia. Our results demonstrate that anthropogenic combustion iron is a larger and more complex climate forcer than previously thought, and therefore plays a key role in the Earth system.

  20. Investigation of iron-containing complexes of deoxyribonucleic acid nucleosides by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Greguskova, M.; Novotny, J.; Cernohorsky, I.; Cirak, J.

    1975-01-01

    DNA and nucleoside complexes with ferric and ferrous ions were investigated for the concentration of iron ions, ionic strength, temperature, and the nature and spatial configuration of neighbouring atoms of the iron ions in the complexes. Moessbauer spectroscopy was used. The Moessbauer measurements were conducted on lyophilized samples at room temperature (300 K) and on frozen solutions at liquid nitrogen temperature (77 K). Quadrupole splitting was found in all spectra obtained by a Pd(Co) source, with the exception of thymidine, thus indicating that the formation of complexes had not affected the oxidation state of iron ions. A decrease in isomer shift and an increase in quadrupole splitting were found in all spectra obtained by an iron(III) chloride source as well as in all spectra obtained by an iron chloride tetrahydrate source. UV irradiation of the samples prior to the Moessbauer measurements was found to have no effect on the Moessbauer spectra but to result in changes in the oxidation state of iron ions, mainly their valency and the ferrous/ferric ion ratio. The results are shown in a table and in graphs. (L.O.)