WorldWideScience

Sample records for iron-binding protein lactoferrin

  1. The structure of lactoferrin-binding protein B from Neisseria meningitidis suggests roles in iron acquisition and neutralization of host defences

    Science.gov (United States)

    Brooks, Cory L.; Arutyunova, Elena; Lemieux, M. Joanne

    2014-01-01

    Pathogens have evolved a range of mechanisms to acquire iron from the host during infection. Several Gram-negative pathogens including members of the genera Neisseria and Moraxella have evolved two-component systems that can extract iron from the host glycoproteins lactoferrin and transferrin. The homologous iron-transport systems consist of a membrane-bound transporter and an accessory lipoprotein. While the mechanism behind iron acquisition from transferrin is well understood, relatively little is known regarding how iron is extracted from lactoferrin. Here, the crystal structure of the N-terminal domain (N-lobe) of the accessory lipoprotein lactoferrin-binding protein B (LbpB) from the pathogen Neisseria meningitidis is reported. The structure is highly homologous to the previously determined structures of the accessory lipoprotein transferrin-binding protein B (TbpB) and LbpB from the bovine pathogen Moraxella bovis. Docking the LbpB structure with lactoferrin reveals extensive binding interactions with the N1 subdomain of lactoferrin. The nature of the interaction precludes apolactoferrin from binding LbpB, ensuring the specificity of iron-loaded lactoferrin. The specificity of LbpB safeguards proper delivery of iron-bound lactoferrin to the transporter lactoferrin-binding protein A (LbpA). The structure also reveals a possible secondary role for LbpB in protecting the bacteria from host defences. Following proteolytic digestion of lactoferrin, a cationic peptide derived from the N-terminus is released. This peptide, called lactoferricin, exhibits potent antimicrobial effects. The docked model of LbpB with lactoferrin reveals that LbpB interacts extensively with the N-terminal lactoferricin region. This may provide a venue for preventing the production of the peptide by proteolysis, or directly sequestering the peptide, protecting the bacteria from the toxic effects of lactoferricin. PMID:25286931

  2. Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, K.M.; Alderete, J.F.

    1984-08-01

    Lactoferrin acquisition and iron uptake by pathogenic Trichomonas vaginalis was examined. Saturation binding kinetics were obtained for trichomonads using increasing amounts of radioiodinated lactoferrin, while no significant binding by transferrin under similar conditions was achieved. Only unlabeled lactoferrin successfully and stoichiometrically competed with 125I-labeled lactoferrin binding. Time course studies showed maximal lactoferrin binding by 30 min at 37 degrees C. Data suggest no internalization of bound lactoferrin. The accumulation of radioactivity in supernatants after incubation of T. vaginalis with 125I-labeled lactoferrin and washing in PBS suggested the presence of low affinity sites for this host macromolecule. Scatchard analysis indicated the presence of 90,000 receptors per trichomonad with an apparent Kd of 1.0 microM. Two trichomonad lactoferrin binding proteins were identified by affinity chromatography and immunoprecipitation of receptor-ligand complexes. A 30-fold accumulation of iron was achieved using 59Fe-lactoferrin when compared to the steady state concentration of bound lactoferrin. The activity of pyruvate/ferrodoxin oxidoreductase, an enzyme involved in trichomonal energy metabolism, increased more than sixfold following exposure of the parasites to lactoferrin, demonstrating a biologic response to the receptor-mediated binding of lactoferrin. These data suggest that T. vaginalis possesses specific receptors for biologically relevant host proteins and that these receptors contribute to the metabolic processes of the parasites.

  3. Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors

    International Nuclear Information System (INIS)

    Peterson, K.M.; Alderete, J.F.

    1984-01-01

    Lactoferrin acquisition and iron uptake by pathogenic Trichomonas vaginalis was examined. Saturation binding kinetics were obtained for trichomonads using increasing amounts of radioiodinated lactoferrin, while no significant binding by transferrin under similar conditions was achieved. Only unlabeled lactoferrin successfully and stoichiometrically competed with 125I-labeled lactoferrin binding. Time course studies showed maximal lactoferrin binding by 30 min at 37 degrees C. Data suggest no internalization of bound lactoferrin. The accumulation of radioactivity in supernatants after incubation of T. vaginalis with 125I-labeled lactoferrin and washing in PBS suggested the presence of low affinity sites for this host macromolecule. Scatchard analysis indicated the presence of 90,000 receptors per trichomonad with an apparent Kd of 1.0 microM. Two trichomonad lactoferrin binding proteins were identified by affinity chromatography and immunoprecipitation of receptor-ligand complexes. A 30-fold accumulation of iron was achieved using 59Fe-lactoferrin when compared to the steady state concentration of bound lactoferrin. The activity of pyruvate/ferrodoxin oxidoreductase, an enzyme involved in trichomonal energy metabolism, increased more than sixfold following exposure of the parasites to lactoferrin, demonstrating a biologic response to the receptor-mediated binding of lactoferrin. These data suggest that T. vaginalis possesses specific receptors for biologically relevant host proteins and that these receptors contribute to the metabolic processes of the parasites

  4. Lactoferrin binding protein B - a bi-functional bacterial receptor protein.

    Directory of Open Access Journals (Sweden)

    Nicholas K H Ostan

    2017-03-01

    Full Text Available Lactoferrin binding protein B (LbpB is a bi-lobed outer membrane-bound lipoprotein that comprises part of the lactoferrin (Lf receptor complex in Neisseria meningitidis and other Gram-negative pathogens. Recent studies have demonstrated that LbpB plays a role in protecting the bacteria from cationic antimicrobial peptides due to large regions rich in anionic residues in the C-terminal lobe. Relative to its homolog, transferrin-binding protein B (TbpB, there currently is little evidence for its role in iron acquisition and relatively little structural and biophysical information on its interaction with Lf. In this study, a combination of crosslinking and deuterium exchange coupled to mass spectrometry, information-driven computational docking, bio-layer interferometry, and site-directed mutagenesis was used to probe LbpB:hLf complexes. The formation of a 1:1 complex of iron-loaded Lf and LbpB involves an interaction between the Lf C-lobe and LbpB N-lobe, comparable to TbpB, consistent with a potential role in iron acquisition. The Lf N-lobe is also capable of binding to negatively charged regions of the LbpB C-lobe and possibly other sites such that a variety of higher order complexes are formed. Our results are consistent with LbpB serving dual roles focused primarily on iron acquisition when exposed to limited levels of iron-loaded Lf on the mucosal surface and effectively binding apo Lf when exposed to high levels at sites of inflammation.

  5. AN INVESTIGATION OF THE PROTONATION STATES OF HUMAN LACTOFERRIN IRON-BINDING PROTEIN

    Directory of Open Access Journals (Sweden)

    Lilia Anghel

    2015-06-01

    Full Text Available In this study, the protonation states of ionizable groups of human lactoferrin in various conformations were investigated theoretically, at physiological pH (7.365. These calculations show that the transition of the protein from a conformation to another one is accompanied by changes in the protonation state of specific amino acid residues. Analysis of the pKa calculatons underlined the importance of participation of two arginines and one lysine in the opening / closing of the protein. In addition, it was found that the mechanism of iron release depends on the protonation state of TYR-192. Protonated state of this residue in the closed form of lactoferrin will trigger the opening of protein and release of iron ions.

  6. Serum albumin forms a lactoferrin-like soluble iron-binding complex in presence of hydrogen carbonate ions.

    Science.gov (United States)

    Ueno, Hiroshi M; Urazono, Hiroshi; Kobayashi, Toshiya

    2014-02-15

    The iron-lactoferrin complex is a common food ingredient because of its iron-solubilizing capability in the presence of hydrogen carbonate ions. However, it is unclear whether the formation of a stable iron-binding complex is limited to lactoferrin. In this study, we investigated the effects of bovine serum albumin (BSA) on iron solubility and iron-catalyzed lipid oxidation in the presence of hydrogen carbonate ions. BSA could solubilize >100-fold molar equivalents of iron at neutral pH, exceeding the specific metal-binding property of BSA. This iron-solubilizing capability of BSA was impaired by thermally denaturing BSA at ≥ 70 °C for 10 min at pH 8.5. The resulting iron-BSA complex inhibited iron-catalyzed oxidation of soybean oil in a water-in-oil emulsion measured using the Rancimat test. Our study is the first to show that BSA, like lactoferrin, forms a soluble iron-binding complex in the presence of hydrogen carbonate ions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Multifunctional Iron Bound Lactoferrin and Nanomedicinal Approaches to Enhance Its Bioactive Functions

    Directory of Open Access Journals (Sweden)

    Jagat R. Kanwar

    2015-05-01

    Full Text Available Lactoferrin (Lf, an iron-binding protein from the transferrin family has been reported to have numerous functions. Even though Lf was first isolated from milk, it is also found in most exocrine secretions and in the secondary granules of neutrophils. Antimicrobial and anti-inflammatory activity reports on lactoferrin identified its significance in host defense against infection and extreme inflammation. Anticarcinogenic reports on lactoferrin make this protein even more valuable. This review is focused on the structural configuration of iron-containing and iron-free forms of lactoferrin obtained from different sources such as goat, camel and bovine. Apart for emphasizing on the specific beneficial properties of lactoferrin from each of these sources, the general antimicrobial, immunomodulatory and anticancer activities of lactoferrin are discussed here. Implementation of nanomedicinial strategies that enhance the bioactive function of lactoferrin are also discussed, along with information on lactoferrin in clinical trials.

  8. Spectroscopic studies on Titanium ion binding to the apo lactoferrin

    International Nuclear Information System (INIS)

    Moshtaghie, A.A.; Ani, M.; Arabi, M.H.

    2006-01-01

    Titanium is a relatively abundant element that has found growing applications in medical science and recently some of Titanium compounds are introduced as anticancer drugs. In spite of very limited data which exist on the Titanium metabolism, some proteins might be involved in the mechanism of action of Titanium up to our knowledge, there is not any report in the literature concerning binding of Titanium to apo lactoferrin. Binding of apo lactoferrin with Ti(IV)-citrate was studied by spectroflourimeterey and spectrophotometery techniques under physiological conditions. The spectroflourimeteric studies revealed a significant fluorescence quenching, that indicated binding of apo lactoferrin with Ti(IV). The same reaction was monitored through spectrophotometry technique; this represents a characteristic UV difference band at 267 nm, which is different from lac-Fe (III). Titration studies how that lactoferrin specifically binds two moles Ti(IV) as complex with citrate per mol protein. Spectroflourimeterey and spectrophotometery techniques indicated that Ti(IV) ions cause a reduction (13%-14%) in binding of Fe(III) to lactoferrin. In overall, we may come to this conclusion that this element might be involved in the iron metabolism

  9. Host iron binding proteins acting as niche indicators for Neisseria meningitidis.

    Directory of Open Access Journals (Sweden)

    Philip W Jordan

    Full Text Available Neisseria meningitidis requires iron, and in the absence of iron alters its gene expression to increase iron acquisition and to make the best use of the iron it has. During different stages of colonization and infection available iron sources differ, particularly the host iron-binding proteins haemoglobin, transferrin, and lactoferrin. This study compared the transcriptional responses of N. meningitidis, when grown in the presence of these iron donors and ferric iron, using microarrays.Specific transcriptional responses to the different iron sources were observed, including genes that are not part of the response to iron restriction. Comparisons between growth on haemoglobin and either transferrin or lactoferrin identified changes in 124 and 114 genes, respectively, and 33 genes differed between growth on transferrin or lactoferrin. Comparison of gene expression from growth on haemoglobin or ferric iron showed that transcription is also affected by the entry of either haem or ferric iron into the cytoplasm. This is consistent with a model in which N. meningitidis uses the relative availability of host iron donor proteins as niche indicators.Growth in the presence of haemoglobin is associated with a response likely to be adaptive to survival within the bloodstream, which is supported by serum killing assays that indicate growth on haemoglobin significantly increases survival, and the response to lactoferrin is associated with increased expression of epithelial cell adhesins and oxidative stress response molecules. The transferrin receptor is the most highly transcribed receptor and has the fewest genes specifically induced in its presence, suggesting this is the favoured iron source for the bacterium. Most strikingly, the responses to haemoglobin, which is associated with unrestricted growth, indicates a low iron transcriptional profile, associated with an aggressive phenotype that may be adaptive to access host iron sources but which may also

  10. The negatively charged regions of lactoferrin binding protein B, an adaptation against anti-microbial peptides.

    Directory of Open Access Journals (Sweden)

    Ari Morgenthau

    Full Text Available Lactoferrin binding protein B (LbpB is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein's C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides.

  11. The Negatively Charged Regions of Lactoferrin Binding Protein B, an Adaptation against Anti-Microbial Peptides

    Science.gov (United States)

    Morgenthau, Ari; Beddek, Amanda; Schryvers, Anthony B.

    2014-01-01

    Lactoferrin binding protein B (LbpB) is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein’s C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides. PMID:24465982

  12. Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment.

    OpenAIRE

    Yamauchi, K; Tomita, M; Giehl, T J; Ellison, R T

    1993-01-01

    Although the antimicrobial activity of lactoferrin has been well described, its mechanism of action has been poorly characterized. Recent work has indicated that in addition to binding iron, human lactoferrin damages the outer membrane of gram-negative bacteria. In this study, we determined whether bovine lactoferrin and a pepsin-derived bovine lactoferrin peptide (lactoferricin) fragment have similar activities. We found that both 20 microM bovine lactoferrin and 20 microM lactoferricin rele...

  13. Lactoferrin from Milk: Nutraceutical and Pharmacological Properties

    Directory of Open Access Journals (Sweden)

    Francesco Giansanti

    2016-09-01

    Full Text Available Lactoferrin is an iron-binding protein present in large quantities in colostrum and in breast milk, in external secretions and in polymorphonuclear leukocytes. Lactoferrin’s main function is non-immune protection. Among several protective activities shown by lactoferrin, those displayed by orally administered lactoferrin are: (i antimicrobial activity, which has been presumed due to iron deprivation, but more recently attributed also to a specific interaction with the bacterial cell wall and extended to viruses and parasites; (ii immunomodulatory activity, with a direct effect on the development of the immune system in the newborn, together with a specific antinflammatory effects; (iii a more recently discovered anticancer activity. It is worth noting that most of the protective activities of lactoferrin have been found, sometimes to a greater extent, also in peptides derived from limited proteolysis of lactoferrin that could be generated after lactoferrin ingestion. Lactoferrin could therefore be considered an ideal nutraceutic product because of its relatively cheap production from bovine milk and of its widely recognized tolerance after ingestion, along with its well demonstrated protective activities. The most important protective activities shown by orally administered bovine lactoferrin are reviewed in this article.

  14. Specific binding of lactoferrin to Escherichia coli isolated from human intestinal infections

    International Nuclear Information System (INIS)

    Naidu, S.S.; Erdei, J.; Forsgren, A.; Naidu, A.S.; Czirok, E.; Gado, I.; Kalfas, S.; Thoren, A.

    1991-01-01

    The degrees of human lactoferrin (HLf) and bovine lactoferrin (BLf) binding in 169 Escherichia coli strains isolated from human intestinal infections, and in an additional 68 strains isolated from healthy individuals, were examined in a 125 I-labelled protein binding assay. The binding was expressed as a percentage calculated from the total labelled ligand added to bacteria. The HLf and BLf binding to E. coli was in the range 3.7 to 73.4% and 4.8 to 61.6%, respectively. Enterotoxigenic strains demonstrated a significantly higher HLf binding (median = 19%) than enteropathogenic, enteroinvasive, enterohaemorrhagic strains or normal intestinal E. coli isolates (medians 6 to 9). Enteropathogenic strains belonging to serotypes O44 and O127 demonstrated significantly higher HLf binding compared to O26, O55, O111, O119 and O126. No significant differences in the degree of HLf or BLf binding were found between aerobactin-producing and non-producing strains. The interaction was further characterized in a high Lf-binging EPEC strain, E34663 (serotype O127). The binding was stable in the pH range 4.0 to 7.5, did not dissociate in the presence of 2M NaCl or 2M urea, and reached saturation within two h. Unlabelled HLf and BLf displaced the 125 I-HLf binding to E34663 in a dose-dependent manner. Apo- and iron-saturated forms of Lf demonstrated similar binding to E34663. Among various unlabelled subephithelial matrix proteins and carbohydrates tested (in 10 4 -fold excess) only fibronectin and fibrinogen caused a moderate inhibition of 125 I-HLf binding. According to Scatchard plot analysis, 5,400 HLf-binding sites/cell, with an affinity constant (K a ) of 1.4 x 10 -7 M, were estimated in strain E34663. These data establish the presence of a specific Lf-binding mechanism in E. coli. (au)

  15. Bovine Lactoferrin Inhibits Toscana Virus Infection by Binding to Heparan Sulphate

    Directory of Open Access Journals (Sweden)

    Agostina Pietrantoni

    2015-01-01

    Full Text Available Toscana virus is an emerging sandfly-borne bunyavirus in Mediterranean Europe responsible for neurological diseases in humans. It accounts for about 80% of paediatric meningitis cases during the summer. Despite the important impact of Toscana virus infection-associated disease on human health, currently approved vaccines or effective antiviral treatments are not available. In this research, we have analyzed the effect of bovine lactoferrin, a bi-globular iron-binding glycoprotein with potent antimicrobial and immunomodulatory activities, on Toscana virus infection in vitro. Our results showed that lactoferrin was capable of inhibiting Toscana virus replication in a dose-dependent manner. Results obtained when lactoferrin was added to the cells during different phases of viral infection showed that lactoferrin was able to prevent viral replication when added during the viral adsorption step or during the entire cycle of virus infection, demonstrating that its action takes place in an early phase of viral infection. In particular, our results demonstrated that the anti-Toscana virus action of lactoferrin took place on virus attachment to the cell membrane, mainly through a competition for common glycosaminoglycan receptors. These findings provide further insights on the antiviral activity of bovine lactoferrin.

  16. Monomeric Yeast Frataxin is an Iron-Binding Protein

    International Nuclear Information System (INIS)

    Cook, J.; Bencze, K.; Jankovic, A.; Crater, A.; Busch, C.; Bradley, P.; Stemmler, A.; Spaller, M.; Stemmler, T.

    2006-01-01

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50 000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron

  17. Effect of lactoferrin protein on red blood cells and macrophages: mechanism of parasite–host interaction

    Directory of Open Access Journals (Sweden)

    An

    2015-07-01

    Full Text Available Namrata Anand,1 Rupinder K Kanwar,2 Mohan Lal Dubey,1 R K Vahishta,3 Rakesh Sehgal,1,* Anita K Verma,4 Jagat R Kanwar2,*1Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India; 2Nanomedicine Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Molecular and Medical Research Strategic Research Centre, Faculty of Health, Deakin University, Geelong, VIC, Australia; 3Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 4Nanobiotech Laboratory, Department of Zoology, Kirorimal College, University of Delhi, Delhi, India*These authors contributed equally to this workBackground: Lactoferrin is a natural multifunctional protein known to have antitumor, antimicrobial, and anti-inflammatory activity. Apart from its antimicrobial effects, lactoferrin is known to boost the immune response by enhancing antioxidants. Lactoferrin exists in various forms depending on its iron saturation. The present study was done to observe the effect of lactoferrin, isolated from bovine and buffalo colostrum, on red blood cells (RBCs and macrophages (human monocytic cell line-derived macrophages THP1 cells.Methods: Lactoferrin obtained from both species and in different iron saturation forms were used in the present study, and treatment of host cells were given with different forms of lactoferrin at different concentrations. These treated host cells were used for various studies, including morphometric analysis, viability by MTT assay, survivin gene expression, production of reactive oxygen species, phagocytic properties, invasion assay, and Toll-like receptor-4, Toll-like receptor-9, and MDR1 expression, to investigate the interaction between lactoferrin and host cells and the possible mechanism of action with regard to parasitic infections.Results: The mechanism of interaction between host cells and lactoferrin have shown various aspects of gene

  18. Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters, and iron storage proteins.

    Science.gov (United States)

    Niles, Brad J; Clegg, Michael S; Hanna, Lynn A; Chou, Susan S; Momma, Tony Y; Hong, Heeok; Keen, Carl L

    2008-02-22

    One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.

  19. Lactoferrin derived resistance against plant pathogen in transgenic plants

    Science.gov (United States)

    Lactoferrin (LF) is a ubiquitous cationic iron-binding milk glycoprotein and it is known to exert a broad-spectrum primary defense activity against bacteria, fungi, protozoa and viruses in mammals. The Bovine lactoferrin gene was introduced to tobacco (Nicotiana tabacum var Xanthi), Arabidopsis (A. ...

  20. Lactoferrin targets T cells in the small intestine

    DEFF Research Database (Denmark)

    Nielsen, Sanne Mie; Hansen, Gert Helge; Danielsen, E Michael

    2010-01-01

    BACKGROUND: Lactoferrin (Lf) belongs to the transferrin family of non-heme iron-binding proteins and is found in milk and mucosal secretions. Consequently, it is now considered a multifunctional protein mainly involved in both the innate and adaptive immune defenses of the organism against various...... explants of pig small intestine by immunofluorescence and immunogold microscopy. RESULTS: Lf rapidly bound to the brush border and subsequently appeared in punctae in the apical cytoplasm, indicating internalization into an endosomal compartment. Essentially, no labeling was detected elsewhere...

  1. Lactoferrin Efficiently Counteracts the Inflammation-Induced Changes of the Iron Homeostasis System in Macrophages.

    Science.gov (United States)

    Cutone, Antimo; Rosa, Luigi; Lepanto, Maria Stefania; Scotti, Mellani Jinnett; Berlutti, Francesca; Bonaccorsi di Patti, Maria Carmela; Musci, Giovanni; Valenti, Piera

    2017-01-01

    Human lactoferrin (hLf), an 80-kDa multifunctional iron-binding cationic glycoprotein, is constitutively secreted by exocrine glands and by neutrophils during inflammation. hLf is recognized as a key element in the host immune defense system. The in vitro and in vivo experiments are carried out with bovine Lf (bLf), which shares high sequence homology and identical functions with hLf, including anti-inflammatory activity. Here, in "pure" M1 human macrophages, obtained by stimulation with a mixture of 10 pg/ml LPS and 20 ng/ml IFN-γ, as well as in a more heterogeneous macrophage population, challenged with high-dose of LPS (1 µg/ml), the effect of bLf on the expression of the main proteins involved in iron and inflammatory homeostasis, namely ferroportin (Fpn), membrane-bound ceruloplasmin (Cp), cytosolic ferritin (Ftn), transferrin receptor 1, and cytokines has been investigated. The increase of IL-6 and IL-1β cytokines, following the inflammatory treatments, is associated with both upregulation of cytosolic Ftn and downregulation of Fpn, membrane-bound Cp, and transferrin receptor 1. All these changes take part into intracellular iron overload, a very unsafe condition leading in vivo to higher host susceptibility to infections as well as iron deficiency in the blood and anemia of inflammation. It is, therefore, of utmost importance to counteract the persistence of the inflammatory status to rebalance iron levels between tissues/secretions and blood. Moreover, levels of the antiinflammatory cytokine IL-10 were increased in cells treated with high doses of LPS. Conversely, IL-10 decreased when the LPS/IFN-γ mix was used, suggesting that only the inflammation triggered by LPS high doses can switch on an anti-inflammatory response in our macrophagic model. Here, we demonstrate that bLf, when included in the culture medium, significantly reduced IL-6 and IL-1β production and efficiently prevented the changes of Fpn, membrane-bound Cp, cytosolic Ftn, and

  2. Lactoferrin Efficiently Counteracts the Inflammation-Induced Changes of the Iron Homeostasis System in Macrophages

    Directory of Open Access Journals (Sweden)

    Antimo Cutone

    2017-06-01

    Full Text Available Human lactoferrin (hLf, an 80-kDa multifunctional iron-binding cationic glycoprotein, is constitutively secreted by exocrine glands and by neutrophils during inflammation. hLf is recognized as a key element in the host immune defense system. The in vitro and in vivo experiments are carried out with bovine Lf (bLf, which shares high sequence homology and identical functions with hLf, including anti-inflammatory activity. Here, in “pure” M1 human macrophages, obtained by stimulation with a mixture of 10 pg/ml LPS and 20 ng/ml IFN-γ, as well as in a more heterogeneous macrophage population, challenged with high-dose of LPS (1 µg/ml, the effect of bLf on the expression of the main proteins involved in iron and inflammatory homeostasis, namely ferroportin (Fpn, membrane-bound ceruloplasmin (Cp, cytosolic ferritin (Ftn, transferrin receptor 1, and cytokines has been investigated. The increase of IL-6 and IL-1β cytokines, following the inflammatory treatments, is associated with both upregulation of cytosolic Ftn and downregulation of Fpn, membrane-bound Cp, and transferrin receptor 1. All these changes take part into intracellular iron overload, a very unsafe condition leading in vivo to higher host susceptibility to infections as well as iron deficiency in the blood and anemia of inflammation. It is, therefore, of utmost importance to counteract the persistence of the inflammatory status to rebalance iron levels between tissues/secretions and blood. Moreover, levels of the antiinflammatory cytokine IL-10 were increased in cells treated with high doses of LPS. Conversely, IL-10 decreased when the LPS/IFN-γ mix was used, suggesting that only the inflammation triggered by LPS high doses can switch on an anti-inflammatory response in our macrophagic model. Here, we demonstrate that bLf, when included in the culture medium, significantly reduced IL-6 and IL-1β production and efficiently prevented the changes of Fpn, membrane-bound Cp

  3. Sequence characterization and glycosylation sites identification of donkey milk lactoferrin by multiple enzyme digestions and mass spectrometry

    DEFF Research Database (Denmark)

    Gallina, Serafina; Cunsolo, Vincenzo; Saletti, Rosaria

    2016-01-01

    Lactoferrin, a protein showing an array of biochemical properties, including immuno-modulation, iron-binding ability, as well as antioxidant, antibacterial and antiviral activities, but which may also represent a potential milk allergen, was isolated from donkey milk by ion exchange chromatography...... characterization of donkey lactoferrin sequence, that, at least for the covered sequence, differs from the horse genomic deduced sequence (UniProtKB Acc. Nr. O77811) by five point substitutions located at positions 91 (Arg → His), 328 (Thr → Ile/Leu), 466 (Ala → Gly), 642 (Asn → Ser) and 668 (Ser → Ala). Analysis...... of the glycosylated protein showed that glycans in donkey lactoferrin are linked to the protein backbone via an amide bond to asparagine residues located at the positions 137, 281 and 476....

  4. Proteome scale identification, classification and structural analysis of iron-binding proteins in bread wheat.

    Science.gov (United States)

    Verma, Shailender Kumar; Sharma, Ankita; Sandhu, Padmani; Choudhary, Neha; Sharma, Shailaja; Acharya, Vishal; Akhter, Yusuf

    2017-05-01

    Bread wheat is one of the major staple foods of worldwide population and iron plays a significant role in growth and development of the plant. In this report, we are presenting the genome wide identification of iron-binding proteins in bread wheat. The wheat genome derived putative proteome was screened for identification of iron-binding sequence motifs. Out of 602 putative iron-binding proteins, 130 were able to produce reliable structural models by homology techniques and further analyzed for the presence of iron-binding structural motifs. The computationally identified proteins appear to bind to ferrous and ferric ions and showed diverse coordination geometries. Glu, His, Asp and Cys amino acid residues were found to be mostly involved in iron binding. We have classified these proteins on the basis of their localization in the different cellular compartments. The identified proteins were further classified into their protein folds, families and functional classes ranging from structure maintenance of cellular components, regulation of gene expression, post translational modification, membrane proteins, enzymes, signaling and storage proteins. This comprehensive report regarding structural iron binding proteome provides useful insights into the diversity of iron binding proteins of wheat plants and further utilized to study their roles in plant growth, development and physiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Advances in lactoferrin research concerning bovine mastitis.

    Science.gov (United States)

    Shimazaki, Kei-Ichi; Kawai, Kazuhiro

    2017-02-01

    Lactoferrin is a multifunctional, iron-binding glycoprotein found in milk and other exocrine secretions. Lactoferrin in milk plays vital roles in the healthy development of newborn mammals, and is also an innate resistance factor involved in the prevention of mammary gland infection by microorganisms. Inflammation of the udder because of bacterial infection is referred to as mastitis. There have been many investigations into the relationships between lactoferrin and mastitis, which fall into several categories. The main categories are fluctuations in the lactoferrin concentration of milk, lactoferrin activity against mastitis pathogens, elucidation of the processes underlying the onset of mastitis, participation of lactoferrin in the immune system, and utilization of lactoferrin in mastitis treatment and prevention. This minireview describes lactoferrin research concerning bovine mastitis. In the 1970s, many researchers reported that the lactoferrin concentration fluctuates in milk from cows with mastitis. From the late 1980s, many studies clarified the infection-defense mechanism in the udder and the contribution of lactoferrin to the immune system. After the year 2000, the processes underlying the onset of mastitis were elucidated in vivo and in vitro, and lactoferrin was applied for the treatment and prevention of mastitis.

  6. The Structure of the Iron Binding Protein, FutA1, from Synechocystis 6803*

    International Nuclear Information System (INIS)

    Koropatkin, Nicole; Randich, Amelia M.; Bhattacharyya-Pakrasi, Maitrayee; Pakrasi, Himadri B.; Smith, Thomas J.

    2007-01-01

    Cyanobacteria account for a significant percentage of aquatic primary productivity even in areas where the concentrations of essential micronutrients are extremely low. To better understand the mechanism of iron selectivity and transport, the structure of the solute-binding domain of an ABC iron transporter, FutA1, was determined in the presence and absence of iron. The iron ion is bound within the 'C-clamp' structure via four tyrosine and one histidine residues. There are extensive interactions between these ligating residues and the rest of the protein such that the conformations of the side chains remain relatively unchanged as the iron is released by the opening of the metal binding cleft. This is in stark contrast to the zinc binding protein, ZnuA, where the domains of the metal binding protein remain relatively fixed while the ligating residues rotate out of the binding pocket upon metal release. The rotation of the domains in FutA1 is facilitated by two flexible β-strands running along the back of the protein that act like a hinge during domain motion. This motion may require relatively little energy since total contact area between the domains is the same whether the protein is in the open or closed conformation. Consistent with the pH dependency of iron binding, the main trigger for iron release is likely the histidine in the iron-binding site. Finally, neither FutA1 nor FutA2 binds iron as a siderophore complex or in the presence of anions and both preferentially bind ferrous over ferric ions

  7. Mammary mechanisms for lactoferrin: interactions with IGFBP-3.

    Directory of Open Access Journals (Sweden)

    Baumrucker C.R.

    2000-01-01

    Full Text Available Lactoferrin (Lf is an iron-binding protein found in high concentrations in mammary secretions but synthesized by many tissues. Bovine mammary tissue secretes microg/ml mass of Lf in milk, but during involution and prepartum periods, 20-80 mg per ml concentrations may be observed. While a number of functions have been ascribed to lactoterrin, only the antimicrobial and lymphocyte interactions have compelling experimental evidence of support. We report a new finding that lactoferrin binds to insulin-like growth factor binding protein-3 (IGFBP-3 and not to other mammary secreted IGFBPs (IGFBP-2, -4. and -5. Furthermore, bovine Lf(bLf is found associated with membranes of mammary cells. We demonstrate that bovine Lf competes with IGF for binding to IGFBP-3 with ED50 competition of 3 microg per ml and displacement of 1 mg per ml to monomeric bLf. The tetrameric form that is favored by high concentrations of Lf and calcium, does not appear to bind IGFBP-3. Both IGFBP-3 and Lf have nuclear localization sequences that are reported to he key components of nuclear localization of proteins. We demonstrate that extracellular IGFBP-3 binds to membrane Lf and that Lf is the key to the entry of IGFBP-3 to mammary cellular nucleus. Additionally, we have shown that the internalization of Lf requires the presence of retinoids that also induces both IGFBP-3 and Lf synthesis in primary cultures of bovine mammary epithelial cells. We hypothesize a new role for Lf in the regulation and integration into the IGF System.

  8. Influence of protein expression system on elicitation of IgE antibody responses: experience with lactoferrin.

    Science.gov (United States)

    Almond, Rachael J; Flanagan, Brian F; Kimber, Ian; Dearman, Rebecca J

    2012-11-15

    With increased interest in genetically modified (GM) crop plants there is an important need to understand the properties that contribute to the ability of such novel proteins to provoke immune and/or allergic responses. One characteristic that may be relevant is glycosylation, particularly as novel expression systems (e.g. bacterial to plant) will impact on the protein glycoprofile. The allergenicity (IgE inducing) and immunogenicity (IgG inducing) properties of wild type native human lactoferrin (NLF) from human milk (hm) and neutrophil granules (n) and a recombinant molecule produced in rice (RLF) have been assessed. These forms of lactoferrin have identical amino acid sequences, but different glycosylation patterns: hmNLF and nNLF have complex glycoprofiles including Lewis (Le)(x) structures, with particularly high levels of Le(x) expressed by nNLF, whereas RLF is simpler and rich in mannose residues. Antibody responses induced in BALB/c strain mice by intraperitoneal exposure to the different forms of lactoferrin were characterised. Immunisation with both forms of NLF stimulated substantial IgG and IgE antibody responses. In contrast, the recombinant molecule was considerably less immunogenic and failed to stimulate detectable IgE, irrespective of endotoxin and iron content. The glycans did not contribute to epitope formation, with equivalent IgE and IgG binding recorded for high titre anti-NLF antisera regardless of whether the immunising NLF or the recombinant molecule were used substrates in the analyses. These data demonstrate that differential glycosylation profiles can have a profound impact on protein allergenicity and immunogenicity, with mannose and Le(x) exhibiting opposing effects. These results have clear relevance for characterising the allergenic hazards of novel proteins in GM crops. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Lactoferrin and prematurity: a promising milk protein?

    Science.gov (United States)

    Ochoa, Theresa J; Sizonenko, Stéphane V

    2017-02-01

    Lactoferrin (Lf) is the major whey protein in milk, with multiple beneficial health effects including direct antimicrobial activities, anti-inflammatory effects, and iron homeostasis. Oral Lf supplementation in human preterm infants has been shown to reduce the incidence of sepsis and necrotizing enterocolitis. In preclinical models of antenatal stress and perinatal brain injury, bovine Lf protected the developing brain from neuronal loss, improved connectivity, increased neurotrophic factors, and decreased inflammation. It also supported brain development and cognition. Further, Lf can prevent preterm delivery by reducing proinflammatory factors and inhibiting premature cervix maturation. We review here the latest research on Lf in the field of neonatology.

  10. Human lactoferrin increases Helicobacter pylori internalisation into AGS cells.

    Science.gov (United States)

    Coray, Dorien S; Heinemann, Jack A; Tyrer, Peter C; Keenan, Jacqueline I

    2012-05-01

    Helicobacter pylori has high global infection rates and can cause other undesirable clinical manifestations such as duodenal ulcer (DU) and gastric cancer (GC). Frequencies of re-infection after therapeutic clearance and rates of DU versus GC vary geographically and differ markedly between developed and developing countries, which suggests additional factors may be involved. The possibility that, in vivo, lactoferrin (Lf) may play a subtle role in modulating micronutrient availability or bacterial internalisation with implications for disease etiology is considered. Lf is an iron binding protein produced in mammals that has antimicrobial and immunomodulatory properties. Some bacteria that regularly colonise mammalian hosts have adapted to living in high Lf environments and we investigated if this included the gastric pathogen H. pylori. We found that H. pylori was able to use iron from fully iron-saturated human Lf (hLf) whereas partially iron-saturated hLf (apo) did not increase H. pylori growth. Instead, apo-hLf increased adherence to and internalisation of bacteria into cultured epithelial cells. By increasing internalisation, we speculate that apo-human lactoferrin may contribute to H. pylori's ability to persistence in the human stomach, an observation that potentially has implications for the risk of H. pylori-associated disease.

  11. A new lactoferrin- and iron-dependent lysosomal death pathway is induced by benzo[a]pyrene in hepatic epithelial cells

    International Nuclear Information System (INIS)

    Gorria, Morgane; Tekpli, Xavier; Rissel, Mary; Sergent, Odile; Huc, Laurence; Landvik, Nina; Fardel, Olivier; Dimanche-Boitrel, Marie-Therese; Holme, Jorn A.; Lagadic-Gossmann, Dominique

    2008-01-01

    While lysosomal disruption seems to be a late step of necrosis, a moderate lysosomal destabilization has been suggested to participate early in the apoptotic cascade. The origin of lysosomal dysfunction and its precise role in apoptosis or apoptosis-like process still needs to be clarified, especially upon carcinogen exposure. In this study, we focused on the implication of lysosomes in cell death induced by the prototype carcinogen benzo[a]pyrene (B[a]P; 50 nM) in rat hepatic epithelial F258 cells. We first demonstrated that B[a]P affected lysosomal morphology (increase in size) and pH (alkalinization), and that these changes were involved in caspase-3 activation and cell death. Subsequently, we showed that lysosomal modifications were partly dependent on mitochondrial dysfunction, and that lysosomes together with mitochondria participate in B[a]P-induced oxidative stress. Using two iron chelators (desferrioxamine and deferiprone) and siRNA targeting the lysosomal iron-binding protease lactoferrin, we further demonstrated that both lysosomal iron content and lactoferrin were required for caspase-3 activation and apoptosis-like cell death

  12. Lactoferrin or ferrous salts for iron deficiency anemia in pregnancy: A meta-analysis of randomized trials.

    Science.gov (United States)

    Abu Hashim, Hatem; Foda, Osama; Ghayaty, Essam

    2017-12-01

    This systematic review and meta-analysis aimed to evaluate the efficacy of daily oral bovine lactoferrin versus daily oral ferrous iron preparations for treatment of iron deficiency anemia (IDA) during pregnancy. Searches were conducted on PubMed, ScienceDirect, ClinicalTrials.gov and CENTRAL databases from inception to February 2017 and the bibliographies of retrieved articles were screened. The PRISMA Statement was followed. Published English language randomized trials comparing lactoferrin with oral ferrous iron preparations in pregnant women with iron deficiency anemia were included. Quasi-randomized, non- randomized or studies including other known cause of anemia, gestational or pre-existent maternal diseases were excluded. Accordingly, 4 eligible trials (600 women) were analyzed. Primary outcome was change in hemoglobin level at 4 weeks of treatment. Secondary outcomes were; change in serum ferritin and iron, rates of gastrointestinal side effects, preterm birth, low birthweight, neonatal death and mean birthweight. Quality assessment was performed by the Cochrane risk of bias tool. Odds ratio and mean difference were used to integrate dichotomous and continuous outcomes respectively. Pooled estimates for change in hemoglobin levels at four weeks favored daily oral lactoferrin over daily oral ferrous sulphate (mean difference 0.77; 95% confidence interval [CI] 0.04-1.55; P=0.04, 4 trials, 600 women). However, after subgroup analysis (degree of anemia), no significant difference in hemoglobin levels were found between both groups in mild anemia (mean difference 0.80; 95% CI -0.21 to 1.82, 3 trials, 372 women), but a significant increase favoring lactoferrin was reported in moderate anemia (mean difference 0.68; 95% CI 0.53-0.83; P<0.00001, one trial, 228 women). Significantly less gastrointestinal side effects were reported with lactoferrin treatment. No significant differences existed with regard to other outcomes. In conclusion, for pregnant women with IDA

  13. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    Science.gov (United States)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  14. Analysis of the spectroscopic characteristics on the binding interaction between tosufloxacin and bovine lactoferrin

    International Nuclear Information System (INIS)

    Guo Ming; Zhang Luying; Lue Weijun; Cao Huaru

    2011-01-01

    The interaction between tosufloxacin (TELX) and bovine lactoferrin (BLF) in aqueous solution was analyzed by fluorescence spectroscopy and absorbance spectra. The binding parameters and energy-transfer efficiency parameters were determined and the mechanism of interaction was discussed. The effect of tosufloxacin acting on the BLF's conformation was detected and the unfolding procedure of BLF induced by tosufloxacin was explored by 'fluorescence phase diagram'. Following experimental data of fluorescence polarization values P and r, the saturation characteristic of such kind of binding reaction was observed for the first time. The interaction between tosufloxacin and BLF influenced by Ni 2+ and Co 2+ were also preliminarily explored in this work. - Research Highlights: →In this paper, a new saturation spectroscopic characteristic of non-covalent binding reaction is proposed. The saturated character of interaction of tosufloxacin binding with bovine lactoferrin is firstly observed by fluorescence polarization spectroscopy. →The unfolding procedure of bovine lactoferrin induced by drug ligand is analyzed by 'fluorescence phase diagram', and it is quantitatively characterized. →The binding parameters and energy-transfer efficiency parameters of bovine lactoferrin-tosufloxacin/tosufloxacin-Co 2+ (Ni 2+ ) system are determined and the mechanism of interaction is discussed.

  15. Evaluation of Antimicrobial Activity of Lactoferrin against P.Aeruginosa and E.Coli Growth

    Directory of Open Access Journals (Sweden)

    R Sharbafi

    2016-07-01

    Full Text Available BACKGROUND AND OBJECTIVE: Lactoferrin(LF is an iron-binding glycoprotein that involves a diverse range of biological activities. Lactoferrin is a major component of milk and is present in exocrine secretions such  as tears, salvia, bile, and neutrophil granules. Lactoferrin has more potent antimicrobial activities against a wide range of gram negative and positive bacteria as well as antivirus activities. The purpose of this study is to evaluate the effect of this protein on P.aeruginosa growth in patients with burns that show drug resistance. METHODS: In this study, antibacterial activity of Lactoferrin has been scrutinized after isolation and purification of bovine colostrum against pseudomonas aeroginosa. Bacteria samples were isolated from scald patients (Shahid Zare Hospital; then microbial activity was confirmed with biochemical tests like oxidase, catalase and growth on TSI medium. Four concentrations 400,500,600 and 700 µg/ml of lactoferrin were assayed. Pseudomonas colonies counted and compared with negative control (without lactoferrin as well as E.coli (DH5α as positive control was considered. FINDINGS: Our results showed that 400µg/ml concentration of lactoferrin has the least inhibitory effect with 35% and 29% growth inhibitory and 700µg/ml concentration of lactoferrin has the highest inhibitory effect with 86% and 66% on Pseudomonas and E.coli, respectively. CONCLUSION: Our result showed that all of lactoferrin concentrations have inhibitory activity which in 700µg/ml has the highest inhibition against Pseudomonas aeroginosa and also E.coli.

  16. Role of Lactobacilli and Lactoferrin in the Mucosal Cervicovaginal Defense

    Directory of Open Access Journals (Sweden)

    Piera Valenti

    2018-03-01

    Full Text Available The innate defense system of the female mucosal genital tract involves a close and complex interaction among the healthy vaginal microbiota, different cells, and various proteins that protect the host from pathogens. Vaginal lactobacilli and lactoferrin represent two essential actors in the vaginal environment. Lactobacilli represent the dominant bacterial species able to prevent facultative and obligate anaerobes outnumber in vaginal microbiota maintaining healthy microbial homeostasis. Several mechanisms underlie the protection exerted by lactobacilli: competition for nutrients and tissue adherence, reduction of the vaginal pH, modulation of immunity, and production of bioactive compounds. Among bioactive factors of cervicovaginal mucosa, lactoferrin, an iron-binding cationic glycoprotein, is a multifunctional glycoprotein with antibacterial, antifungal, antiviral, and antiparasitic activities, recently emerging as an important modulator of inflammation. Lactobacilli and lactoferrin are largely under the influence of female hormones and of paracrine production of various cytokines. Lactoferrin is strongly increased in lower genital tract mucosal fluid of women affected by Neisseria gonorrheae, Chlamydia trachomatis, and Trichomonas vaginalis infections promoting both innate and adaptive immune responses. In vaginal dysbiosis characterized by low amounts of vaginal lactobacilli and increased levels of endogenous anaerobic bacteria, the increase in lactoferrin could act as an immune modulator assuming the role normally played by the healthy microbiota in vaginal mucosa. Then lactoferrin and lactobacilli may be considered as biomarkers of altered microbial homeostasis at vaginal level. Considering the shortage of effective treatments to counteract recurrent and/or antibiotic-resistant bacterial infections, the intravaginal administration of lactobacilli and lactoferrin could be a novel efficient therapeutic strategy and a valuable tool to restore

  17. Iron-Binding Protein Degradation by Cysteine Proteases of Naegleria fowleri

    Directory of Open Access Journals (Sweden)

    Moisés Martínez-Castillo

    2015-01-01

    Full Text Available Naegleria fowleri causes acute and fulminant primary amoebic meningoencephalitis. This microorganism invades its host by penetrating the olfactory mucosa and then traveling up the mesaxonal spaces and crossing the cribriform plate; finally, the trophozoites invade the olfactory bulbs. During its invasion, the protozoan obtains nutrients such as proteins, lipids, carbohydrates, and cationic ions (e.g., iron, calcium, and sodium from the host. However, the mechanism by which these ions are obtained, particularly iron, is poorly understood. In the present study, we evaluated the ability of N. fowleri to degrade iron-binding proteins, including hololactoferrin, transferrin, ferritin, and hemoglobin. Zymography assays were performed for each substrate under physiological conditions (pH 7 at 37°C employing conditioned medium (CM and total crude extracts (TCEs of N. fowleri. Different degradation patterns with CM were observed for hololactoferrin, transferrin, and hemoglobin; however, CM did not cause ferritin degradation. In contrast, the TCEs degraded only hololactoferrin and transferrin. Inhibition assays revealed that cysteine proteases were involved in this process. Based on these results, we suggest that CM and TCEs of N. fowleri degrade iron-binding proteins by employing cysteine proteases, which enables the parasite to obtain iron to survive while invading the central nervous system.

  18. Lactoferrin release and interleukin-1, interleukin-6, and tumor necrosis factor production by human polymorphonuclear cells stimulated by various lipopolysaccharides: relationship to growth inhibition of Candida albicans.

    Science.gov (United States)

    Palma, C; Cassone, A; Serbousek, D; Pearson, C A; Djeu, J Y

    1992-11-01

    Lipopolysaccharides (LPSs) from Escherichia coli, Serratia marcescens, and Salmonella typhimurium, at doses from 1 to 100 ng/ml, strongly enhanced growth inhibition of Candida albicans by human polymorphonuclear leukocytes (PMN) in vitro. Flow cytometry analysis demonstrated that LPS markedly augmented phagocytosis of Candida cells by increasing the number of yeasts ingested per neutrophil as well as the number of neutrophils capable of ingesting fungal cells. LPS activation caused augmented release of lactoferrin, an iron-binding protein which itself could inhibit the growth of C. albicans in vitro. Antibodies against lactoferrin effectively and specifically reduced the anti-C. albicans activity of both LPS-stimulated and unstimulated PMN. Northern (RNA blot) analysis showed enhanced production of mRNAs for interleukin-1 beta, tumor necrosis factor alpha, and interleukin-6 and in neutrophils within 1 h of stimulation with LPS. The cytokines were also detected in the supernatant of the activated PMN, and their synthesis was prevented by pretreatment of LPS-stimulated PMN with protein synthesis inhibitors, such as emetine and cycloheximide. These inhibitors, however, did not block either lactoferrin release or the anti-Candida activity of LPS-stimulated PMN. These results demonstrate the ability of various bacterial LPSs to augment neutrophil function against C. albicans and suggest that the release of a candidastatic, iron-binding protein, lactoferrin, may contribute to the antifungal effect of PMN. Moreover, the ability to produce cytokines upon stimulation by ubiquitous microbial products such as the endotoxins points to an extraphagocytic, immunomodulatory role of PMN during infection.

  19. Preparation and antimicrobial action of three tryptic digested functional molecules of bovine lactoferrin.

    Directory of Open Access Journals (Sweden)

    Nilisha Rastogi

    Full Text Available Lactoferrin is an 80 kDa bilobal, iron binding glycoprotein which is primarily antimicrobial in nature. The hydrolysis of lactoferrin by various proteases in the gut produces several functional fragments of lactoferrin which have varying molecular sizes and properties. Here, bovine lactoferrin has been hydrolyzed by trypsin, the major enzyme present in the gut, to produce three functional molecules of sizes approximately 21 kDa, 38 kDa and 45 kDa. The molecules have been purified using ion exchange and gel filtration chromatography and identified using N-terminal sequencing, which reveals that while the 21 kDa molecule corresponds to the N2 domain (21LF, the 38 kDa represents the whole C-lobe (38LF and the 45 kDa is a portion of N1 domain of N-lobe attached to the C-lobe (45LF. The iron binding and release properties of 21LF, 38LF and 45LF have been studied and compared. The sequence and structure analysis of the portions of the excision sites of LF from various species have been done. The antibacterial properties of these three molecules against bacterial strains, Streptococcus pyogenes, Escherichia coli, Yersinia enterocolitica and Listeria monocytogenes were investigated. The antifungal action of the molecules was also evaluated against Candida albicans. This is the first report on the antimicrobial actions of the trypsin cleaved functional molecules of lactoferrin from any species.

  20. Lactoferrin-derived Peptides Active towards Influenza: Identification of Three Potent Tetrapeptide Inhibitors.

    Science.gov (United States)

    Scala, Maria Carmina; Sala, Marina; Pietrantoni, Agostina; Spensiero, Antonia; Di Micco, Simone; Agamennone, Mariangela; Bertamino, Alessia; Novellino, Ettore; Bifulco, Giuseppe; Gomez-Monterrey, Isabel M; Superti, Fabiana; Campiglia, Pietro

    2017-09-06

    Bovine lactoferrin is a biglobular multifunctional iron binding glycoprotein that plays an important role in innate immunity against infections. We have previously demonstrated that selected peptides from bovine lactoferrin C-lobe are able to prevent both Influenza virus hemagglutination and cell infection. To deeper investigate the ability of lactoferrin derived peptides to inhibit Influenza virus infection, in this study we identified new bovine lactoferrin C-lobe derived sequences and corresponding synthetic peptides were synthesized and assayed to check their ability to prevent viral hemagglutination and infection. We identified three tetrapeptides endowed with broad anti-Influenza activity and able to inhibit viral infection in a concentration range femto- to picomolar. Our data indicate that these peptides may constitute a non-toxic tool for potential applications as anti-Influenza therapeutics.

  1. Lactoferrin: A Modulator for Immunity against Tuberculosis Related Granulomatous Pathology

    Directory of Open Access Journals (Sweden)

    Jeffrey K. Actor

    2015-01-01

    Full Text Available There is great need for a therapeutic that would limit tuberculosis related pathology and thus curtail spread of disease between individuals by establishing a “firebreak” to slow transmission. A promising avenue to increase current therapeutic efficacy may be through incorporation of adjunct components that slow or stop development of aggressive destructive pulmonary pathology. Lactoferrin, an iron-binding glycoprotein found in mucosal secretions and granules of neutrophils, is just such a potential adjunct therapeutic agent. The focus of this review is to explore the utility of lactoferrin to serve as a therapeutic tool to investigate “disruption” of the mycobacterial granuloma. Proposed concepts for mechanisms underlying lactoferrin efficacy to control immunopathology are supported by data generated based on in vivo models using nonpathogenic trehalose 6,6′-dimycolate (TDM, cord factor.

  2. High-Level Expression of Recombinant Bovine Lactoferrin in Pichia pastoris with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Blanca Iglesias-Figueroa

    2016-06-01

    Full Text Available In this study, bovine lactoferrin (bLf, an iron-binding glycoprotein considered an important nutraceutical protein because of its several properties, was expressed in Pichia pastoris KM71-H under AOX1 promoter control, using pJ902 as the recombinant plasmid. Dot blotting analysis revealed the expression of recombinant bovine lactoferrin (rbLf in Pichia pastoris. After Bach fermentation and purification by molecular exclusion, we obtained an expression yield of 3.5 g/L of rbLf. rbLf and predominantly pepsin-digested rbLf (rbLfcin demonstrated antibacterial activity against Escherichia coli (E. coli BL21DE3, Staphylococcus aureus (S. aureus FRI137, and, in a smaller percentage, Pseudomonas aeruginosa (Ps. Aeruginosa ATCC 27833. The successful expression and characterization of functional rbLf expressed in Pichia pastoris opens a prospect for the development of natural antimicrobial agents produced recombinantly.

  3. Identification of milk proteins enhancing the antimicrobial activity of lactoferrin and lactoferricin.

    Science.gov (United States)

    Murata, M; Wakabayashi, H; Yamauchi, K; Abe, F

    2013-08-01

    Lactoferrin (LF) is known as an iron-binding antimicrobial protein present in exocrine secretions such as milk and releases the potent antimicrobial peptide lactoferricin (LFcin) by hydrolysis with pepsin. The antimicrobial activity of LF and LFcin has been studied well; however, their cooperative action with other milk proteins remains to be elucidated. In this study, we identified milk proteins enhancing the antimicrobial activity of bovine LF and LFcin against gram-negative bacteria, gram-positive bacteria, and fungi. As the target fraction, we isolated a minor milk protein fraction around 15 kDa, which was identified as bovine RNase 5 (angiogenin-1), RNase 4, and angiogenin-2 by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. As these proteins are collectively known as the RNase A family, we referred to the target protein fraction as milk RNase of 15 kDa (MR15). The number of colony-forming units of Escherichia coli and other pathogenic microorganisms with the addition of MR15 to LF (MR15:LF ratio=16:1,000) was dramatically lowered than that with LF alone. On the other hand, MR15 itself did not show any reductions in the number of colony-forming units at the concentrations tested. Similarly, the antimicrobial activities of LFcin against various microorganisms were significantly enhanced by the addition of MR15. These results suggest that LF and MR15 may be concomitantly acting antimicrobial agents in milk. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Expression and characterization of an iron-regulated hemin-binding protein, HbpA, from Leptospira interrogans serovar Lai.

    Science.gov (United States)

    Asuthkar, Swapna; Velineni, Sridhar; Stadlmann, Johannes; Altmann, Friedrich; Sritharan, Manjula

    2007-09-01

    In an earlier study, based on the ferric enterobactin receptor FepA of Escherichia coli, we identified and modeled a TonB-dependent outer membrane receptor protein (LB191) from the genome of Leptospira interrogans serovar Lai. Based on in silico analysis, we hypothesized that this protein was an iron-dependent hemin-binding protein. In this study, we provide experimental evidence to prove that this protein, termed HbpA (hemin-binding protein A), is indeed an iron-regulated hemin-binding protein. We cloned and expressed the full-length 81-kDa recombinant rHbpA protein and a truncated 55-kDa protein from L. interrogans serovar Lai, both of which bind hemin-agarose. Assay of hemin-associated peroxidase activity and spectrofluorimetric analysis provided confirmatory evidence of hemin binding by HbpA. Immunofluorescence studies by confocal microscopy and the microscopic agglutination test demonstrated the surface localization and the iron-regulated expression of HbpA in L. interrogans. Southern blot analysis confirmed our earlier observation that the hbpA gene was present only in some of the pathogenic serovars and was absent in Leptospira biflexa. Hemin-agarose affinity studies showed another hemin-binding protein with a molecular mass of approximately 44 kDa, whose expression was independent of iron levels. This protein was seen in several serovars, including nonpathogenic L. biflexa. Sequence analysis and immunoreactivity with specific antibodies showed this protein to be LipL41.

  5. Antiviral activity of human lactoferrin: inhibition of alphavirus interaction with heparan sulfate

    International Nuclear Information System (INIS)

    Waarts, Barry-Lee; Aneke, Onwuchekwa J.C.; Smit, Jolanda M.; Kimata, Koji; Bittman, Robert; Meijer, Dirk K.F.; Wilschut, Jan

    2005-01-01

    Human lactoferrin is a component of the non-specific immune system with distinct antiviral properties. We used alphaviruses, adapted to interaction with heparan sulfate (HS), as a tool to investigate the mechanism of lactoferrin's antiviral activity. Lactoferrin inhibited infection of BHK-21 cells by HS-adapted, but not by non-adapted, Sindbis virus (SIN) or Semliki Forest virus (SFV). Lactoferrin also inhibited binding of radiolabeled HS-adapted viruses to BHK-21 cells or liposomes containing lipid-conjugated heparin as a receptor analog. On the other hand, low-pH-induced fusion of the viruses with liposomes, which occurs independently of virus-receptor interaction, was unaffected. Studies involving preincubation of virus or cells with lactoferrin suggested that the protein does not bind to the virus, but rather blocks HS-moieties on the cell surface. Charge-modified human serum albumin, with a net positive charge, had a similar antiviral effect against HS-adapted SIN and SFV, suggesting that the antiviral activity of lactoferrin is related to its positive charge. It is concluded that human lactoferrin inhibits viral infection by interfering with virus-receptor interaction rather than by affecting subsequent steps in the viral cell entry or replication processes

  6. Apoptotic effects of bovine apo-lactoferrin on HeLa tumor cells.

    Science.gov (United States)

    Luzi, Carla; Brisdelli, Fabrizia; Iorio, Roberto; Bozzi, Argante; Carnicelli, Veronica; Di Giulio, Antonio; Lizzi, Anna Rita

    2017-01-01

    Lactoferrin (Lf), a cationic iron-binding glycoprotein of 80 kDa present in body secretions, is known as a compound with marked antimicrobial activity. In the present study, the apoptotic effect of iron-free bovine lactoferrin (apo-bLf) on human epithelial cancer (HeLa) cells was examined in association with reactive oxygen species and glutathione (GSH) levels. Apoptotic effect of iron-free bovine lactoferrin inhibited the growth of HeLa cells after 48 hours of treatment while the diferric-bLf was ineffective in the concentration range tested (from 1 to 12.5 μM). Western blot analysis showed that key apoptotic regulators including Bax, Bcl-2, Sirt1, Mcl-1, and PARP-1 were modulated by 1.25 μM of apo-bLf. In the same cell line, apo-bLf induced apoptosis together with poly (ADP-ribose) polymerase cleavage, caspase activation, and a significant drop of NAD + . In addition, apo-bLf-treated HeLa cells showed a marked increase of reactive oxygen species level and a significant GSH depletion. On the whole, apo-bLf triggered apoptosis of HeLa cells upon oxygen radicals burst and GSH decrease. Copyright © 2017 John Wiley & Sons, Ltd.

  7. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins Involved in a Posttranscriptional Iron Regulatory Mechanism

    Science.gov (United States)

    Figueroa-Angulo, Elisa E.; Calla-Choque, Jaeson S.; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-01-01

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis. PMID:26703754

  8. Attenuation of iron-binding proteins in ARPE-19 cells reduces their resistance to oxidative stress.

    Science.gov (United States)

    Karlsson, Markus; Kurz, Tino

    2016-09-01

    Oxidative stress-related damage to retinal pigment epithelial (RPE) cells is an important feature in the development of age-related macular degeneration. Iron-catalysed intralysosomal production of hydroxyl radicals is considered a major pathogenic factor, leading to lipofuscin formation with ensuing depressed cellular autophagic capacity, lysosomal membrane permeabilization and apoptosis. Previously, we have shown that cultured immortalized human RPE (ARPE-19) cells are extremely resistant to exposure to bolus doses of hydrogen peroxide and contain considerable amounts of the iron-binding proteins metallothionein (MT), heat-shock protein 70 (HSP70) and ferritin (FT). According to previous findings, autophagy of these proteins depresses lysosomal redox-active iron. The aim of this study was to investigate whether up- or downregulation of these proteins would affect the resistance of ARPE-19 cells to oxidative stress. The sensitivity of ARPE-19 cells to H2 O2 exposure was tested following upregulation of MT, HSP70 and/or FT by pretreatment with ZnSO4 , heat shock or FeCl3 , as well as siRNA-mediated downregulation of the same proteins. Upregulation of MT, HSP70 and FT did not improve survival following exposure to H2 O2 . This was interpreted as existence of an already maximal protection. Combined siRNA-mediated attenuation of both FT chains (H and L), or simultaneous downregulation of all three proteins, made the cells significantly more susceptible to oxidative stress confirming the importance of iron-binding proteins. The findings support our hypothesis that the oxidative stress resistance exhibited by RPE cells may be explained by a high autophagic influx of iron-binding proteins that would keep levels of redox-active lysosomal iron low. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  9. The Effects of Dietary Calcium and/or Iron Deficiency upon Murine Intestinal Calcium Binding Protein Activity and Calcium Absorption

    OpenAIRE

    McDonald, Catherine M.

    1980-01-01

    Iron deficiency has been shown to impair calcium absorption, leading to decreased bone mass. Vitamin D3-dependent calcium binding protein (CaBP) has been demonstrated to be necessary for the active transport of calcium in the intestine of numerous species. Iron deficiency might affect the activity of the calcium binding protein. Four experimental diets were formulated as follows: Diet 1, iron adequate, calcium adequate; Diet 2, iron deficient, calcium adequate; Diet 3, iron adequate, calci...

  10. Inhibition of herpes simplex virus infection by lactoferrin is dependent on interference with the virus binding to glycosaminoglycans

    International Nuclear Information System (INIS)

    Marchetti, Magda; Trybala, Edward; Superti, Fabiana; Johansson, Maria; Bergstroem, Tomas

    2004-01-01

    Previous reports have indicated that lactoferrin inhibits herpes simplex virus (HSV) infection during the very early phases of the viral replicative cycle. In the present work we investigated the mechanism of the antiviral activity of lactoferrin in mutant glycosaminoglycan (GAG)-deficient cells. Bovine lactoferrin (BLf) was a strong inhibitor of HSV-1 infection in cells expressing either heparan sulfate (HS) or chondroitin sulfate (CS) or both, but was ineffective or less efficient in GAG-deficient cells or in cells treated with GAG-degrading enzymes. In contrast to wild-type HSV-1, virus mutants devoid of glycoprotein C (gC) were significantly less inhibited by lactoferrin in GAG-expressing cells, indicating that lactoferrin interfered with the binding of viral gC to cell surface HS and/or CS. Finally, we demonstrated that lactoferrin bound directly to both HS and CS isolated from surfaces of the studied cells, as well as to commercial preparations of GAG chains. The results support the hypothesis that the inhibition of HSV-1 infectivity by lactoferrin is dependent on its interaction with cell surface GAG chains of HS and CS

  11. Identification of unprecedented anticancer properties of high molecular weight biomacromolecular complex containing bovine lactoferrin (HMW-bLf.

    Directory of Open Access Journals (Sweden)

    Fawzi Ebrahim

    Full Text Available With the successful clinical trials, multifunctional glycoprotein bovine lactoferrin is gaining attention as a safe nutraceutical and biologic drug targeting cancer, chronic-inflammatory, viral and microbial diseases. Interestingly, recent findings that human lactoferrin oligomerizes under simulated physiological conditions signify the possible role of oligomerization in the multifunctional activities of lactoferrin molecule during infections and in disease targeting signaling pathways. Here we report the purification and physicochemical characterization of high molecular weight biomacromolecular complex containing bovine lactoferrin (≥250 kDa, from bovine colostrum, a naturally enriched source of lactoferrin. It showed structural similarities to native monomeric iron free (Apo lactoferrin (∼78-80 kDa, retained anti-bovine lactoferrin antibody specific binding and displayed potential receptor binding properties when tested for cellular internalization. It further displayed higher thermal stability and better resistance to gut enzyme digestion than native bLf monomer. High molecular weight bovine lactoferrin was functionally bioactive and inhibited significantly the cell proliferation (p<0.01 of human breast and colon carcinoma derived cells. It induced significantly higher cancer cell death (apoptosis and cytotoxicity in a dose-dependent manner in cancer cells than the normal intestinal cells. Upon cellular internalization, it led to the up-regulation of caspase-3 expression and degradation of actin. In order to identify the cutting edge future potential of this bio-macromolecule in medicine over the monomer, its in-depth structural and functional properties need to be investigated further.

  12. The actin-binding protein profilin 2 is a novel regulator of iron homeostasis.

    Science.gov (United States)

    Luscieti, Sara; Galy, Bruno; Gutierrez, Lucia; Reinke, Michael; Couso, Jorge; Shvartsman, Maya; Di Pascale, Antonio; Witke, Walter; Hentze, Matthias W; Pilo Boyl, Pietro; Sanchez, Mayka

    2017-10-26

    Cellular iron homeostasis is controlled by the iron regulatory proteins (IRPs) 1 and 2 that bind cis -regulatory iron-responsive elements (IRE) on target messenger RNAs (mRNA). We identified profilin 2 ( Pfn2 ) mRNA, which encodes an actin-binding protein involved in endocytosis and neurotransmitter release, as a novel IRP-interacting transcript, and studied its role in iron metabolism. A combination of electrophoretic mobility shift assay experiments and bioinformatic analyses led to the identification of an atypical and conserved IRE in the 3' untranslated region of Pfn2 mRNA. Pfn2 mRNA levels were significantly reduced in duodenal samples from mice with intestinal IRP ablation, suggesting that IRPs exert a positive effect on Pfn2 mRNA expression in vivo. Overexpression of Pfn2 in HeLa and Hepa1-6 cells reduced their metabolically active iron pool. Importantly, Pfn2-deficient mice showed iron accumulation in discrete areas of the brain (olfactory bulb, hippocampus, and midbrain) and reduction of the hepatic iron store without anemia. Despite low liver iron levels, hepatic hepcidin expression remained high, likely because of compensatory activation of hepcidin by mild inflammation. Splenic ferroportin was increased probably to sustain hematopoiesis. Overall, our results indicate that Pfn2 expression is controlled by the IRPs in vivo and that Pfn2 contributes to maintaining iron homeostasis in cell lines and mice. © 2017 by The American Society of Hematology.

  13. Lactoferrin modified graphene oxide iron oxide nanocomposite for glioma-targeted drug delivery.

    Science.gov (United States)

    Song, Meng-Meng; Xu, Huai-Liang; Liang, Jun-Xing; Xiang, Hui-Hui; Liu, Rui; Shen, Yu-Xian

    2017-08-01

    Targeting delivery of drugs in a specific manner represents a potential powerful technology in gliomas. Herein, we prepared a multifunctional targeted delivery system based on graphene oxide (GO) that contains a molecular bio-targeting ligand and superparamagnetic iron oxide nanoparticles on the surface of GO for magnetic targeting. Superparamagnetic Fe 3 O 4 nanoparticles was loaded on the surface of GO via chemical precipitation method to form GO@Fe 3 O 4 nanocomposites. Lactoferrin (Lf), an iron-transporting serum glycoprotein that binds to receptors overexpressed at the surface of glioma cells and vascular endothelial cell of the blood brain barrier, was chosen as the targeted ligand to construct the targeted delivery system Lf@GO@Fe 3 O 4 through EDC/NHS chemistry. With the confirmation of TEM, DLS and VSM, the resulting Lf@GO@Fe 3 O 4 had a size distribution of 200-1000nm and exhibited a superparamagnetic behavior. The nano delivery system had a high loading capacity and exhibited a pH-dependent release behavior. Compared with free DOX and DOX@GO@Fe 3 O 4 , Lf@GO@Fe 3 O 4 @DOX displayed greater intracellular delivery efficiency and stronger cytotoxicity against C6 glioma cells. The results demonstrated the potential utility of Lf conjugated GO@Fe 3 O 4 nanocomposites for therapeutic application in the treatment of gliomas. Copyright © 2017. Published by Elsevier B.V.

  14. Kinetic, spectroscopic and chemical modification study of iron release from transferrin; iron(III) complexation to adenosine triphosphate

    International Nuclear Information System (INIS)

    Thompson, C.P.

    1985-01-01

    Amino acids other than those that serve as ligands have been found to influence the chemical properties of transferrin iron. The catalytic ability of pyrophosphate to mediate transferrin iron release to a terminal acceptor is largely quenched by modification non-liganded histine groups on the protein. The first order rate constants of iron release for several partially histidine modified protein samples were measured. A statistical method was employed to establish that one non-liganded histidine per metal binding domain was responsible for the reduction in rate constant. These results imply that the iron mediated chelator, pyrophosphate, binds directly to a histidine residue on the protein during the iron release process. EPR spectroscopic results are consistent with this interpretation. Kinetic and amino acid sequence studies of ovotransferrin and lactoferrin, in addition to human serum transferrin, have allowed the tentative assignment of His-207 in the N-terminal domain and His-535 in the C-terminal domain as the groups responsible for the reduction in rate of iron release. The above concepts have been extended to lysine modified transferrin. Complexation of iron(II) to adenosine triphosphate (ATP) was also studied to gain insight into the nature of iron-ATP species present at physiological pH. 31 P NMR spectra are observed when ATP is presented in large excess

  15. Antimicrobial Activity of Lactoferrin-Related Peptides and Applications in Human and Veterinary Medicine

    Directory of Open Access Journals (Sweden)

    Natascia Bruni

    2016-06-01

    Full Text Available Antimicrobial peptides (AMPs represent a vast array of molecules produced by virtually all living organisms as natural barriers against infection. Among AMP sources, an interesting class regards the food-derived bioactive agents. The whey protein lactoferrin (Lf is an iron-binding glycoprotein that plays a significant role in the innate immune system, and is considered as an important host defense molecule. In search for novel antimicrobial agents, Lf offers a new source with potential pharmaceutical applications. The Lf-derived peptides Lf(1–11, lactoferricin (Lfcin and lactoferrampin exhibit interesting and more potent antimicrobial actions than intact protein. Particularly, Lfcin has demonstrated strong antibacterial, anti-fungal and antiparasitic activity with promising applications both in human and veterinary diseases (from ocular infections to osteo-articular, gastrointestinal and dermatological diseases.

  16. High-resolution diffraction from crystals of a membrane-protein complex: bacterial outer membrane protein OmpC complexed with the antibacterial eukaryotic protein lactoferrin

    International Nuclear Information System (INIS)

    Sundara Baalaji, N.; Acharya, K. Ravi; Singh, T. P.; Krishnaswamy, S.

    2005-01-01

    Crystals of the complex formed between the bacterial membrane protein OmpC and the antibacterial protein lactoferrin suitable for high-resolution structure determination have been obtained. The crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å. Crystals of the complex formed between the outer membrane protein OmpC from Escherichia coli and the eukaryotic antibacterial protein lactoferrin from Camelus dromedarius (camel) have been obtained using a detergent environment. Initial data processing suggests that the crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å, α = β = 90, γ = 120°. This indicated a Matthews coefficient (V M ) of 3.3 Å 3 Da −1 , corresponding to a possible molecular complex involving four molecules of lactoferrin and two porin trimers in the unit cell (4832 amino acids; 533.8 kDa) with 63% solvent content. A complete set of diffraction data was collected to 3 Å resolution at 100 K. Structure determination by molecular replacement is in progress. Structural study of this first surface-exposed membrane-protein complex with an antibacterial protein will provide insights into the mechanism of action of OmpC as well as lactoferrin

  17. A solute-binding protein for iron transport in Streptococcus iniae

    Directory of Open Access Journals (Sweden)

    Li Anxing

    2010-12-01

    Full Text Available Abstract Background Streptococcus iniae (S. iniae is a major pathogen that causes considerable morbidity and mortality in cultured fish worldwide. The pathogen's ability to adapt to the host affects the extent of infection, hence understanding the mechanisms by which S. iniae overcomes physiological stresses during infection will help to identify potential virulence determinants of streptococcal infection. Grow S. iniae under iron-restricted conditions is one approach for identifying host-specific protein expression. Iron plays an important role in many biological processes but it has low solubility under physiological condition. Many microorganisms have been shown to be able to circumvent this nutritional limitation by forming direct contacts with iron-containing proteins through ATP-binding cassette (ABC transporters. The ABC transporter superfamilies constitute many different systems that are widespread among living organisms with different functions, such as ligands translocation, mRNA translation, and DNA repair. Results An ABC transporter system, named as mtsABC (metal transport system was cloned from S. iniae HD-1, and was found to be involved in heme utilization. mtsABC is cotranscribed by three downstream genes, i.e., mtsA, mtsB, and mtsC. In this study, we cloned the first gene of the mtsABC transporter system (mtsA, and purified the corresponding recombinant protein MtsA. The analysis indicated that MtsA is a putative lipoprotein which binds to heme that can serve as an iron source for the microorganism, and is expressed in vivo during Kunming mice infection by S. iniae HD-1. Conclusions This is believed to be the first report on the cloning the ABC transporter lipoprotein from S. iniae genomic DNA. Together, our data suggested that MtsA is associated with heme, and is expressed in vivo during Kunming mice infection by S. iniae HD-1 which indicated that it can be a potential candidate for S. iniae subunit vaccine.

  18. Sequential Proton Loss Electron Transfer in Deactivation of Iron(IV) Binding Protein by Tyrosine Based Food Components

    DEFF Research Database (Denmark)

    Tang, Ning; Skibsted, Leif Horsfelt

    2017-01-01

    The iron(IV) binding protein ferrylmyoglobin, MbFe(IV)=O, was found to be reduced by tyrosine based food components in aqueous solution through a sequential proton loss electron transfer reaction mechanism without binding to the protein as confirmed by isothermal titration calorimetry. Dopamine a...

  19. Attenuation of massive cytokine response to the staphylococcal enterotoxin B superantigen by the innate immunomodulatory protein lactoferrin

    Science.gov (United States)

    Hayworth, J L; Kasper, K J; Leon-Ponte, M; Herfst, C A; Yue, D; Brintnell, W C; Mazzuca, D M; Heinrichs, D E; Cairns, E; Madrenas, J; Hoskin, D W; McCormick, J K; Haeryfar, S M M

    2009-01-01

    Staphylococcal enterotoxin B (SEB) is a pyrogenic exotoxin and a potent superantigen which causes massive T cell activation and cytokine secretion, leading to profound immunosuppression and morbidity. The inhibition of SEB-induced responses is thus considered a goal in the management of certain types of staphylococcal infections. Lactoferrin (LF) is a multi-functional glycoprotein with both bacteriostatic and bactericidal activities. In addition, LF is known to have potent immunomodulatory properties. Given the anti-microbial and anti-inflammatory properties of this protein, we hypothesized that LF can modulate T cell responses to SEB. Here, we report that bovine LF (bLF) was indeed able to attenuate SEB-induced proliferation, interleukin-2 production and CD25 expression by human leucocyte antigen (HLA)-DR4 transgenic mouse T cells. This inhibition was not due to bLF's iron-binding capacity, and could be mimicked by the bLF-derived peptide lactoferricin. Cytokine secretion by an engineered SEB-responsive human Jurkat T cell line and by peripheral blood mononuclear cells from healthy donors was also inhibited by bLF. These findings reveal a previously unrecognized property of LF in modulation of SEB-triggered immune activation and suggest a therapeutic potential for this naturally occurring protein during toxic shock syndrome. PMID:19659771

  20. Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement

    International Nuclear Information System (INIS)

    Deng, Jianjun; Chen, Fei; Fan, Daidi; Zhu, Chenhui; Ma, Xiaoxuan; Xue, Wenjiao

    2013-01-01

    Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b = 23.7 and log K app = 4.57, respectively. The amount of iron (Fe 2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. - Highlights: • The iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared. • One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. • The binding properties could be modulated through alterations in pH and phosphate content presented in HLC. • A novel strategy for preparing iron-binding proteins was provided

  1. Effect of technological treatments on bovine lactoferrin: An overview.

    Science.gov (United States)

    Franco, Indira; Pérez, María Dolores; Conesa, Celia; Calvo, Miguel; Sánchez, Lourdes

    2018-04-01

    Lactoferrin (LF) is a multifunctional protein that exerts important activities in the neonate through its presence in milk, and also in other external mucosas, acting as a defense protein of innate immunity. The addition of bovine LF to infant formula and also to other functional products and cosmetics has increased during the last decades. Consequently, it is essential to know the effect that the technological processes, necessary to elaborate those products, have on LF activity. In this study, we have revised the effect of classical treatments on lactoferrin structure and activity, such as heat treatment or drying, and also of emerging technologies, like high pressure or pulsed electric field. The results of the studies included in this review indicate that LF stability is dependent on its level of iron-saturation and on the characteristics of the treatment media. Furthermore, the studies revised here reveal that the non-thermal treatments are interesting alternatives to the traditional ones, as they protect better the structure and activity of lactoferrin. It is also clear the need for research on LF encapsulation by different ways, to protect its properties before it reaches the intestine. All this knowledge would allow designing processes less harmful for LF, thus maintaining all its functionality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jianjun; Chen, Fei; Fan, Daidi, E-mail: fandaidi@nwu.edu.cn; Zhu, Chenhui; Ma, Xiaoxuan; Xue, Wenjiao

    2013-10-01

    Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n{sub b}) and apparent association constant (K{sub app}) between iron and phosphorylated HLC were measured at n{sub b} = 23.7 and log K{sub app} = 4.57, respectively. The amount of iron (Fe{sup 2+} sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. - Highlights: • The iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared. • One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. • The binding properties could be modulated through alterations in pH and phosphate content presented in HLC. • A novel strategy for preparing iron-binding proteins was provided.

  3. CLINICAL EXPERIENCE OF CANCER IMMUNOTHERAPY INTEGRATED WITH OLEIC ACID COMPLEXED WITH DE-GLYCOSYLATED VITAMIN D BINDING PROTEIN

    OpenAIRE

    Emma Ward; Rodney Smith; Jacopo J.V. Branca; David Noakes; Gabriele Morucci; Lynda Thyer

    2014-01-01

    Proteins highly represented in milk such as α-lactalbumin and lactoferrin bind Oleic Acid (OA) to form complexes with selective anti-tumor activity. A protein present in milk, colostrum and blood, vitamin D binding protein is the precursor of a potent Macrophage Activating Factor (GcMAF) and in analogy with other OA-protein complexes, we proposed that OA-GcMAF could demonstrate a greater immunotherapeutic activity than that of GcMAF alone. We describe a preliminary experience treating p...

  4. Production of human lactoferrin in animal milk.

    Science.gov (United States)

    Goldman, I L; Georgieva, S G; Gurskiy, Ya G; Krasnov, A N; Deykin, A V; Popov, A N; Ermolkevich, T G; Budzevich, A I; Chernousov, A D; Sadchikova, E R

    2012-06-01

    Genetic constructs containing the human lactoferrin (hLf) gene were created within a joint program of Russian and Belorussian scientists. Using these constructs, transgenic mice were bred (the maximum hLf concentration in their milk was 160 g/L), and transgenic goats were also generated (up to 10 g/L hLf in their milk). Experimental goatherds that produced hLf in their milk were also bred, and the recombinant hLf was found to be identical to the natural protein in its physical and chemical properties. These properties included electrophoretic mobility, isoelectric point, recognition by polyclonal and monoclonal antibodies, circular dichroic spectra, interaction with natural ligands (DNA, lipopolysaccharides, and heparin), the binding of iron ions, the sequence of the 7 terminal amino acids, and its biological activity. The latter was assessed by the agglutination of Micrococcus luteus protoplasts, bactericidal activity against Escherichia coli and Listeria monocytogenes , and fungicidal activity against Candida albicans . We also demonstrated a significant increase in the activity of antibiotics when used in combination with Lf.

  5. Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement.

    Science.gov (United States)

    Deng, Jianjun; Chen, Fei; Fan, Daidi; Zhu, Chenhui; Ma, Xiaoxuan; Xue, Wenjiao

    2013-10-01

    Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein-iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (nb) and apparent association constant (Kapp) between iron and phosphorylated HLC were measured at nb=23.7 and log Kapp=4.57, respectively. The amount of iron (Fe(2+) sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. © 2013.

  6. A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin.

    Science.gov (United States)

    Kuznets, Galit; Vigonsky, Elena; Weissman, Ziva; Lalli, Daniela; Gildor, Tsvia; Kauffman, Sarah J; Turano, Paola; Becker, Jeffrey; Lewinson, Oded; Kornitzer, Daniel

    2014-10-01

    Iron scavenging constitutes a crucial challenge for survival of pathogenic microorganisms in the iron-poor host environment. Candida albicans, like many microbial pathogens, is able to utilize iron from hemoglobin, the largest iron pool in the host's body. Rbt5 is an extracellular glycosylphosphatidylinositol (GPI)-anchored heme-binding protein of the CFEM family that facilitates heme-iron uptake by an unknown mechanism. Here, we characterize an additional C. albicans CFEM protein gene, PGA7, deletion of which elicits a more severe heme-iron utilization phenotype than deletion of RBT5. The virulence of the pga7-/- mutant is reduced in a mouse model of systemic infection, consistent with a requirement for heme-iron utilization for C. albicans pathogenicity. The Pga7 and Rbt5 proteins exhibit distinct cell wall attachment, and discrete localization within the cell envelope, with Rbt5 being more exposed than Pga7. Both proteins are shown here to efficiently extract heme from hemoglobin. Surprisingly, while Pga7 has a higher affinity for heme in vitro, we find that heme transfer can occur bi-directionally between Pga7 and Rbt5, supporting a model in which they cooperate in a heme-acquisition relay. Together, our data delineate the roles of Pga7 and Rbt5 in a cell surface protein network that transfers heme from extracellular hemoglobin to the endocytic pathway, and provide a paradigm for how receptors embedded in the cell wall matrix can mediate nutrient uptake across the fungal cell envelope.

  7. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation

    Science.gov (United States)

    Kobayashi, Takanori; Nagasaka, Seiji; Senoura, Takeshi; Itai, Reiko Nakanishi; Nakanishi, Hiromi; Nishizawa, Naoko K.

    2013-01-01

    Iron is essential for most living organisms. Plants transcriptionally induce genes involved in iron acquisition under conditions of low iron availability, but the nature of the deficiency signal and its sensors are unknown. Here we report the identification of new iron regulators in rice, designated Oryza sativa Haemerythrin motif-containing Really Interesting New Gene (RING)- and Zinc-finger protein 1 (OsHRZ1) and OsHRZ2. OsHRZ1, OsHRZ2 and their Arabidopsis homologue BRUTUS bind iron and zinc, and possess ubiquitination activity. OsHRZ1 and OsHRZ2 are susceptible to degradation in roots irrespective of iron conditions. OsHRZ-knockdown plants exhibit substantial tolerance to iron deficiency, and accumulate more iron in their shoots and grains irrespective of soil iron conditions. The expression of iron deficiency-inducible genes involved in iron utilization is enhanced in OsHRZ-knockdown plants, mostly under iron-sufficient conditions. These results suggest that OsHRZ1 and OsHRZ2 are iron-binding sensors that negatively regulate iron acquisition under conditions of iron sufficiency. PMID:24253678

  8. Cytosolic iron chaperones: Proteins delivering iron cofactors in the cytosol of mammalian cells.

    Science.gov (United States)

    Philpott, Caroline C; Ryu, Moon-Suhn; Frey, Avery; Patel, Sarju

    2017-08-04

    Eukaryotic cells contain hundreds of metalloproteins that are supported by intracellular systems coordinating the uptake and distribution of metal cofactors. Iron cofactors include heme, iron-sulfur clusters, and simple iron ions. Poly(rC)-binding proteins are multifunctional adaptors that serve as iron ion chaperones in the cytosolic/nuclear compartment, binding iron at import and delivering it to enzymes, for storage (ferritin) and export (ferroportin). Ferritin iron is mobilized by autophagy through the cargo receptor, nuclear co-activator 4. The monothiol glutaredoxin Glrx3 and BolA2 function as a [2Fe-2S] chaperone complex. These proteins form a core system of cytosolic iron cofactor chaperones in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Neelaredoxin, an iron-binding protein from the syphilis spirochete, Treponema pallidum, is a superoxide reductase.

    Science.gov (United States)

    Jovanović, T; Ascenso, C; Hazlett, K R; Sikkink, R; Krebs, C; Litwiller, R; Benson, L M; Moura, I; Moura, J J; Radolf, J D; Huynh, B H; Naylor, S; Rusnak, F

    2000-09-15

    Treponema pallidum, the causative agent of venereal syphilis, is a microaerophilic obligate pathogen of humans. As it disseminates hematogenously and invades a wide range of tissues, T. pallidum presumably must tolerate substantial oxidative stress. Analysis of the T. pallidum genome indicates that the syphilis spirochete lacks most of the iron-binding proteins present in many other bacterial pathogens, including the oxidative defense enzymes superoxide dismutase, catalase, and peroxidase, but does possess an orthologue (TP0823) for neelaredoxin, an enzyme of hyperthermophilic and sulfate-reducing anaerobes shown to possess superoxide reductase activity. To analyze the potential role of neelaredoxin in treponemal oxidative defense, we examined the biochemical, spectroscopic, and antioxidant properties of recombinant T. pallidum neelaredoxin. Neelaredoxin was shown to be expressed in T. pallidum by reverse transcriptase-polymerase chain reaction and Western blot analysis. Recombinant neelaredoxin is a 26-kDa alpha(2) homodimer containing, on average, 0.7 iron atoms/subunit. Mössbauer and EPR analysis of the purified protein indicates that the iron atom exists as a mononuclear center in a mixture of high spin ferrous and ferric oxidation states. The fully oxidized form, obtained by the addition of K(3)(Fe(CN)(6)), exhibits an optical spectrum with absorbances at 280, 320, and 656 nm; the last feature is responsible for the protein's blue color, which disappears upon ascorbate reduction. The fully oxidized protein has a A(280)/A(656) ratio of 10.3. Enzymatic studies revealed that T. pallidum neelaredoxin is able to catalyze a redox equilibrium between superoxide and hydrogen peroxide, a result consistent with it being a superoxide reductase. This finding, the first description of a T. pallidum iron-binding protein, indicates that the syphilis spirochete copes with oxidative stress via a primitive mechanism, which, thus far, has not been described in pathogenic

  10. Binding of tryptophan and iron by reptilion plasnna proteins

    African Journals Online (AJOL)

    transport functions. Albumin of the alligator (Alligator mississippiensis) and other reptiles binds, amongst other ions, tryptophan (McMenamy & Watson 1968) and transferrin binds iron (Barber & Sheeler 1963). Multiple transferrins are present in the plasma of many reptiles. (Dessauer et af 1962) and the albumin region of the.

  11. The antiviral protein human lactoferrin is distributed in the body to cytomegalovirus (CMV) infection-prone cells and tissues

    NARCIS (Netherlands)

    Beljaars, Leonie; Bakker, Hester I; van der Strate, Barry W A; Smit, Catharina; Duijvestijn, Adrian M; Meijer, Dirk K F; Molema, Grietje

    Purpose. Lactoferrin has anti-Cytomegalovirus (CMV) and -HIV properties in vitro. However, the pharmacokinetic behavior of the 80-kD protein has not been well defined. We, therefore, assessed the plasma decay and body distribution of lactoferrin after intravenous administration to freely moving

  12. Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin.

    Science.gov (United States)

    Hwang, P M; Zhou, N; Shan, X; Arrowsmith, C H; Vogel, H J

    1998-03-24

    The solution structure of bovine lactoferricin (LfcinB) has been determined using 2D 1H NMR spectroscopy. LfcinB is a 25-residue antimicrobial peptide released by pepsin cleavage of lactoferrin, an 80 kDa iron-binding glycoprotein with many immunologically important functions. The NMR structure of LfcinB reveals a somewhat distorted antiparallel beta-sheet. This contrasts with the X-ray structure of bovine lactoferrin, in which residues 1-13 (of LfcinB) form an alpha-helix. Hence, this region of lactoferricin B appears able to adopt a helical or sheetlike conformation, similar to what has been proposed for the amyloidogenic prion proteins and Alzheimer's beta-peptides. LfcinB has an extended hydrophobic surface comprised of residues Phe1, Cys3, Trp6, Trp8, Pro16, Ile18, and Cys20. The side chains of these residues are well-defined in the NMR structure. Many hydrophilic and positively charged residues surround the hydrophobic surface, giving LfcinB an amphipathic character. LfcinB bears numerous similarities to a vast number of cationic peptides which exert their antimicrobial activities through membrane disruption. The structures of many of these peptides have been well characterized, and models of their membrane-permeabilizing mechanisms have been proposed. The NMR solution structure of LfcinB may be more relevant to membrane interaction than that suggested by the X-ray structure of intact lactoferrin. Based on the solution structure, it is now possible to propose potential mechanisms for the antimicrobial action of LfcinB.

  13. Quality control of commercial bovine lactoferrin.

    Science.gov (United States)

    Wakabayashi, Hiroyuki; Yamauchi, Koji; Abe, Fumiaki

    2018-06-01

    Herein we review commercial bovine lactoferrin quality issues by describing an example of industrial production, the current status of global quality standardization, and quality-activity concerns for further discussion. Morinaga Milk Industry has been industrially producing bovine lactoferrin in Milei GmbH, Germany, since 1989. We delineate its production and quality as an example of safe and high-quality manufacturing. Currently, global standardization in the quality of bovine lactoferrin is progressing through Novel Food and GRAS in the EU and USA, respectively. Novel Food was applied or notified to seven lactoferrin manufacturers and GRAS was notified to three manufacturers, two of which are for infant use and one is for adult use, by the end of 2017. The specifications of these regulations are relatively high, including more than 95% lactoferrin purity in protein, which means that such companies can supply relatively high-grade lactoferrin. There appear to be several concerns regarding lactoferrin quality affecting activities, including contamination of lipopolysaccharide (LPS) and angiogenin, purity, and degradation of lactoferrin sample. Although LPS is immunologically toxic when invading the body, it is distributed normally in foods and the gut. However, an industrial lactoferrin sample may contain LPS at a maximum LPS/lactoferrin molecule ratio = 1/1724, which means 99.9% of the lactoferrin molecule is LPS-free. It is difficult to speculate that LPS contained in a lactoferrin sample affects its activities. Finally in order to achieve good and reproducible results, we make proposals to researchers a use of high-grade lactoferrin, careful storage, and indication the manufacturers' names and specifications in the paper.

  14. Novel recombinant human lactoferrin: differential activation of oxidative stress related gene expression.

    Science.gov (United States)

    Kruzel, Marian L; Actor, Jeffrey K; Zimecki, Michał; Wise, Jasen; Płoszaj, Paulina; Mirza, Shaper; Kruzel, Mark; Hwang, Shen-An; Ba, Xueqing; Boldogh, Istvan

    2013-12-01

    Lactoferrin, an iron-binding protein found in high concentrations in mammalian exocrine secretions, is an important component of the host defense system. It is also a major protein of the secondary granules of neutrophils from which is released upon activation. Due to its potential clinical utility, recombinant human lactoferrin (rhLF) has been produced in various eukaryotic expression systems; however, none of these are fully compatible with humans. Most of the biopharmaceuticals approved by the FDA for use in humans are produced in mammalian expression systems. The Chinese hamster ovary cells (CHO) have become the system of choice for proteins that require post-translational modifications, such as glycoproteins. The aim of this study was to scale-up expression and purification of rhLF in a CHO expression system, verify its glycan primary structure, and assess its biological properties in cell culture models. A stable CHO cell line producing >200mg/L of rhLF was developed and established. rhLF was purified by a single-step cation-exchange chromatography procedure. The highly homogenous rhLF has a molecular weight of approximately 80 kDa. MALDI-TOF mass spectrometric analysis revealed N-linked, partially sialylated glycans at two glycosylation sites, typical for human milk LF. This novel rhLF showed a protective effect against oxidative stress in a similar manner to its natural counterpart. In addition, rhLF revealed a modulatory effect on cellular redox via upregulation of key antioxidant enzymes. These data imply that the CHO-derived rhLF is fully compatible with the native molecule, thus it has promise for human therapeutic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A simple micro-batch ion-exchange resin extraction method coupled with reverse-phase HPLC (MBRE-HPLC) to quantify lactoferrin in raw and heat-treated bovine milk.

    Science.gov (United States)

    Pochet, Sylvie; Arnould, Céline; Debournoux, Perrine; Flament, Jocelyne; Rolet-Répécaud, Odile; Beuvier, Eric

    2018-09-01

    Lactoferrin is an iron-binding cationic glycoprotein (pI = 8.7) beneficial for mammal health, especially udder and milk preservation. A new simple two-step method of quantification was developed. Lactoferrin in 1 mL of bovine skim milk was first adsorbed onto 100 mg of macroporous sulfonated-resin at pH 6.8 by rotary stirring for 90 min at 20-25 °C. After washing the resin, lactoferrin was desorbed using 1 mL of 2 M NaCl containing phenylalanine as a dilution marker, then fully resolved and quantified by RP-HPLC at 220 nm using a wide-bore C4 silica column. This robust, inexpensive and flexible method improves selectivity (no protein interference) and sensitivity compared to previous HPLC methods. In-laboratory validation demonstrated its linearity (25 to 514 µg Lf mL -1 ), accuracy (110 to 98% recovery), and precision (<4%), which were comparable to immuno-based methods. The results for individual raw cow's milk were strongly correlated with results using an ELISA test. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Lactoferrin affects the adherence and invasion of Streptococcus dysgalactiae ssp. dysgalactiae in mammary epithelial cells.

    Science.gov (United States)

    O'Halloran, Fiona; Beecher, Christine; Chaurin, Valerie; Sweeney, Torres; Giblin, Linda

    2016-06-01

    Streptococcus dysgalactiae ssp. dysgalactiae is an important causative agent of bovine mastitis worldwide. Lactoferrin is an innate immune protein that is associated with many functions including immunomodulatory, antiproliferative, and antimicrobial properties. This study aimed to investigate the interactions between lactoferrin and a clinical bovine mastitis isolate, Strep. dysgalactiae ssp. dysgalactiae DPC5345. Initially a deliberate in vivo bovine intramammary challenge was performed with Strep. dysgalactiae DPC5345. Results demonstrated a significant difference in lactoferrin mRNA levels in milk cells between the control and infused quarters 7h postinfusion. Milk lactoferrin levels in the Strep. dysgalactiae DPC5345 infused quarters were significantly increased compared with control quarters at 48h postinfusion. In vitro studies demonstrated that lactoferrin had a bacteriostatic effect on the growth of Strep. dysgalactiae DPC5345 and significantly decreased the ability of the bacteria to internalize into HC-11 mammary epithelial cells. Confocal microscopy images of HC-11 cells exposed to Strep. dysgalactiae and lactoferrin further supported this effect by demonstrating reduced invasion of bacteria to HC-11 cells. The combined data suggest that a bovine immune response to Strep. dysgalactiae infection includes a significant increase in lactoferrin expression in vivo, and based on in vitro data, lactoferrin limits mammary cell invasion of this pathogen by binding to the bacteria and preventing its adherence. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Nitric oxide-mediated modulation of iron regulatory proteins: implication for cellular iron homeostasis.

    Science.gov (United States)

    Kim, Sangwon; Ponka, Prem

    2002-01-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) that are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO(.), a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels and a decrease in ferritin synthesis. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO(+) (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels and a dramatic increase in ferritin synthesis. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels and an increase in ferritin synthesis in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO(+)-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  18. Adsorption Analysis of Lactoferrin to Titanium, Stainless Steel, Zirconia, and Polymethyl Methacrylate Using the Quartz Crystal Microbalance Method

    Directory of Open Access Journals (Sweden)

    Eiji Yoshida

    2016-01-01

    Full Text Available It is postulated that biofilm formation in the oral cavity causes some oral diseases. Lactoferrin is an antibacterial protein in saliva and an important defense factor against biofilm development. We analyzed the adsorbed amount of lactoferrin and the dissociation constant (Kd of lactoferrin to the surface of different dental materials using an equilibrium analysis technique in a 27 MHz quartz crystal microbalance (QCM measurement. Four different materials, titanium (Ti, stainless steel (SUS, zirconia (ZrO2 and polymethyl methacrylate (PMMA, were evaluated. These materials were coated onto QCM sensors and the surfaces characterized by atomic force microscopic observation, measurements of surface roughness, contact angles of water, and zeta potential. QCM measurements revealed that Ti and SUS showed a greater amount of lactoferrin adsorption than ZrO2 and PMMA. Surface roughness and zeta potential influenced the lactoferrin adsorption. On the contrary, the Kd value analysis indicated that the adsorbed lactoferrin bound less tightly to the Ti and SUS surfaces than to the ZrO2 and PMMA surfaces. The hydrophobic interaction between lactoferrin and ZrO2 and PMMA is presumed to participate in better binding of lactoferrin to ZrO2 and PMMA surfaces. It was revealed that lactoferrin adsorption behavior was influenced by the characteristics of the material surface.

  19. Recombinant lactoferrin (Lf) of Vechur cow, the critical breed of Bos indicus and the Lf gene variants.

    Science.gov (United States)

    Anisha, Shashidharan; Bhasker, Salini; Mohankumar, Chinnamma

    2012-03-01

    Vechur cow, categorized as a critically maintained breed by the FAO, is a unique breed of Bos indicus due to its extremely small size, less fodder intake, adaptability, easy domestication and traditional medicinal property of the milk. Lactoferrin (Lf) is an iron-binding glycoprotein that is found predominantly in the milk of mammals. The full coding region of Lf gene of Vechur cow was cloned, sequenced and expressed in a prokaryotic system. Antibacterial activity of the recombinant Lf showed suppression of bacterial growth. To the best of our knowledge this is the first time that the full coding region of Lf gene of B. indicus Vechur breed is sequenced, successfully expressed in a prokaryotic system and characterized. Comparative analysis of Lf gene sequence of five Vechur cows with B. taurus revealed 15 SNPs in the exon region associated with 11 amino acid substitutions. The amino acid arginine was noticed as a pronounced substitution and the tertiary structure analysis of the BLfV protein confirmed the positions of arginine in the β sheet region, random coil and helix region 1. Based on the recent reports on the nutritional therapies of arginine supplementation for wound healing and for cardiovascular diseases, the higher level of arginine in the lactoferrin protein of Vechur cow milk provides enormous scope for further therapeutic studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. A preliminary approach to creating an overview of lactoferrin multi-functionality utilizing a text mining method.

    Science.gov (United States)

    Shimazaki, Kei-ichi; Kushida, Tatsuya

    2010-06-01

    Lactoferrin is a multi-functional metal-binding glycoprotein that exhibits many biological functions of interest to many researchers from the fields of clinical medicine, dentistry, pharmacology, veterinary medicine, nutrition and milk science. To date, a number of academic reports concerning the biological activities of lactoferrin have been published and are easily accessible through public data repositories. However, as the literature is expanding daily, this presents challenges in understanding the larger picture of lactoferrin function and mechanisms. In order to overcome the "analysis paralysis" associated with lactoferrin information, we attempted to apply a text mining method to the accumulated lactoferrin literature. To this end, we used the information extraction system GENPAC (provided by Nalapro Technologies Inc., Tokyo). This information extraction system uses natural language processing and text mining technology. This system analyzes the sentences and titles from abstracts stored in the PubMed database, and can automatically extract binary relations that consist of interactions between genes/proteins, chemicals and diseases/functions. We expect that such information visualization analysis will be useful in determining novel relationships among a multitude of lactoferrin functions and mechanisms. We have demonstrated the utilization of this method to find pathways of lactoferrin participation in neovascularization, Helicobacter pylori attack on gastric mucosa, atopic dermatitis and lipid metabolism.

  1. Plasma protein haptoglobin modulates renal iron loading

    DEFF Research Database (Denmark)

    Fagoonee, Sharmila; Gburek, Jakub; Hirsch, Emilio

    2005-01-01

    Haptoglobin is the plasma protein with the highest binding affinity for hemoglobin. The strength of hemoglobin binding and the existence of a specific receptor for the haptoglobin-hemoglobin complex in the monocyte/macrophage system clearly suggest that haptoglobin may have a crucial role in heme...... distribution of hemoglobin in haptoglobin-deficient mice resulted in abnormal iron deposits in proximal tubules during aging. Moreover, iron also accumulated in proximal tubules after renal ischemia-reperfusion injury or after an acute plasma heme-protein overload caused by muscle injury, without affecting...... morphological and functional parameters of renal damage. These data demonstrate that haptoglobin crucially prevents glomerular filtration of hemoglobin and, consequently, renal iron loading during aging and following acute plasma heme-protein overload....

  2. Total iron binding capacity

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003489.htm Total iron binding capacity To use the sharing features on this page, please enable JavaScript. Total iron binding capacity (TIBC) is a blood test to ...

  3. Influence of exogenous lactoferrin on the oxidant/antioxidant balance and molecular profile of hormone receptor-positive and -negative human breast cancer cells in vitro.

    Science.gov (United States)

    Zalutskii, I V; Lukianova, N Y; Storchai, D M; Burlaka, A P; Shvets, Y V; Borikun, T V; Todor, I M; Lukashevich, V S; Rudnichenko, Y A; Chekhun, V F

    2017-07-01

    To investigate the mechanisms of cytotoxic activity and pro-/antioxidant effect of lactoferrin on hormone receptor-positive and receptor-negative breast cancer cells in vitro. The study was performed on receptor-positive (MCF-7, T47D) and receptor-negative (MDA-MB-231, MDA-MB-468) human breast cancer cell lines. Immunocytochemical staining, flow cytometry, low-temperature electron paramagnetic resonance, and the Comet assay were used. Upon treatment with lactoferrin, the increased levels of reactive oxygen species (ROS) (p < 0.05), NO generation rate by inducible NO-synthase (p < 0.05) and the level of "free" iron (p < 0.05) were observed. Moreover, the effects of lactoferrin were more pronounced in receptor-negative MDA-MB-231 and MDA-MB-468 cells. These changes resulted in increased expression of proapoptotic Bax protein (p < 0.05), reduced expression of the antiapoptotic Bcl-2 protein (p < 0.05) and level of not-oxidized mitochondrial cardiolipin (1.4-1.7-fold, p < 0.05). This, in turn, caused an increase in the percentage of apoptotic cells (by 14-24%, p < 0.05). Cytotoxic effects of lactoferrin were accompanied by an increase in the percentage of DNA in the comet tail and blocking cell cycle at G2/M phase, especially in receptor-negative cell lines. The study showed that exogenous lactoferrin causes a violation of an antioxidant balance by increasing the level of ROS, "free" iron and NO generation rate, resalting in the blocking of cell cycle at G2/M-phase and apoptosis of malignant cells.

  4. Effect of mobile phone use on salivary concentrations of protein, amylase, lipase, immunoglobulin A, lysozyme, lactoferrin, peroxidase and C-reactive protein of the parotid gland.

    Science.gov (United States)

    Hashemipour, M S; Yarbakht, M; Gholamhosseinian, A; Famori, H

    2014-05-01

    The possibility of side effects associated with the electromagnetic waves emitted from mobile phones is a controversial issue. The present study aimed to evaluate the effect of mobile phone use on parotid gland salivary concentrations of protein, amylase, lipase, immunoglobulin A, lysozyme, lactoferrin, peroxidase and C-reactive protein. Stimulated salivary samples were collected simultaneously from both parotid glands of 86 healthy volunteers. Salivary flow rate and salivary concentrations of proteins, amylase, lipase, lysozyme, lactoferrin, peroxidase, C-reactive protein and immunoglobulin A, were measured. Data were analysed using t-tests and one-way analyses of variance. Salivary flow rate and parotid gland salivary concentrations of protein were significantly higher on the right side compared to the left in those that predominantly held mobile phones on the right side. In addition, there was a decrease in concentrations of amylase, lipase, lysozyme, lactoferrin and peroxidase. The side of dominant mobile phone use was associated with differences in salivary flow rate and parotid gland salivary concentrations, in right-dominant users. Although mobile phone use influenced salivary composition, the relationship was not significant.

  5. Bovine lactoferrin binds oleic acid to form an anti-tumor complex similar to HAMLET.

    Science.gov (United States)

    Fang, Bing; Zhang, Ming; Tian, Mai; Jiang, Lu; Guo, Hui Yuan; Ren, Fa Zheng

    2014-04-04

    α-Lactalbumin (α-LA) can bind oleic acid (OA) to form HAMLET-like complexes, which exhibited highly selective anti-tumor activity in vitro and in vivo. Considering the structural similarity to α-LA, we conjectured that lactoferrin (LF) could also bind OA to obtain a complex with anti-tumor activity. In this study, LF-OA was prepared and its activity and structural changes were compared with α-LA-OA. The anti-tumor activity was evaluated by methylene blue assay, while the apoptosis mechanism was analyzed using flow cytometry and Western blot. Structural changes of LF-OA were measured by fluorescence spectroscopy and circular dichroism. The interactions of OA with LF and α-LA were evaluated by isothermal titration calorimetry (ITC). LF-OA was obtained by heat-treatment at pH8.0 with LD50 of 4.88, 4.95 and 4.62μM for HepG2, HT29, and MCF-7 cells, respectively, all of which were 10 times higher than those of α-LA-OA. Similar to HAMLET, LF-OA induced apoptosis in tumor cells through both death receptor- and mitochondrial-mediated pathways. Exposure of tryptophan residues and the hydrophobic regions as well as the loss of tertiary structure were observed in LF-OA. Besides these similarities, LF showed different secondary structure changes when compared with α-LA, with a decrease of α-helix and β-turn and an increase of β-sheet and random coil. ITC results showed that there was a higher binding number of OA to LF than to α-LA, while both of the proteins interacted with OA through van der Waals forces and hydrogen bonds. This study provides a theoretical basis for further exploration of protein-OA complexes. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  6. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins

    Directory of Open Access Journals (Sweden)

    Elisa E. Figueroa-Angulo

    2015-11-01

    Full Text Available Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs that interact with an iron responsive element (IRE located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  7. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins.

    Science.gov (United States)

    Figueroa-Angulo, Elisa E; Calla-Choque, Jaeson S; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-11-26

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  8. Bone Regeneration Is Promoted by Orally Administered Bovine Lactoferrin in a Rabbit Tibial Distraction Osteogenesis Model.

    Science.gov (United States)

    Li, Wenyang; Zhu, Songsong; Hu, Jing

    2015-07-01

    Lactoferrin, an iron-binding glycoprotein which belongs to the transferrin family, has been shown to promote bone growth. However, reports regarding effects of lactoferrin on bone regeneration during distraction osteogenesis are limited. Our study was designed to investigate the effect of bovine lactoferrin treatment on bone formation of the distracted callus. We asked whether bovine lactoferrin enhances bone formation of the distraction callus as determined by (1) radiographic and histologic appearances; (2) dual-energy x-ray absorptiometry (DXA) analysis of bone mineral composition and bone mineral density; (3) micro-CT measures of trabecular architecture; and (4) biomechanical strength of the healing bone. Additionally, serology, reverse transcription (RT)-PCR, and immunohistochemistry were used to explore the possible mechanisms of bovine lactoferrin use on bone formation during distraction osteogenesis. Unilateral tibial osteodistraction was performed on 80 New Zealand White rabbits with a distraction rate of 1 mm per day for 10 days. Animals then were divided randomly into two groups: (1) vehicle and (2) bovine lactoferrin. At 4 and 8 weeks after completion of distraction, the animals were sacrificed. Lengthened tibias and serum samples were obtained and subjected to radiologic, DXA, micro-CT, histologic, and biomechanical examinations, and serum, RT-PCR and immunohistochemical analyses. Radiologic, DXA, micro-CT, histologic, and biomechanical examinations indicated that bovine lactoferrin treatment not only accelerated bone formation at early stages of distraction osteogenesis but also promoted bone consolidation at late stages. The ultimate force of the distracted calluses was increased by 37% (118.8 ± 6.65 N in the lactoferrin group and 86.5 ± 5.47 N in the vehicle group; p bovine lactoferrin treatment significantly increased serum levels of bone alkaline phosphatase and decreased serum levels of tartrate resistant acid phosphatase 5b. In addition, RT

  9. Influence of calcium depletion on iron-binding properties of milk.

    Science.gov (United States)

    Mittal, V A; Ellis, A; Ye, A; Das, S; Singh, H

    2015-04-01

    We investigated the effects of calcium depletion on the binding of iron in milk. A weakly acidic cation-exchange resin was used to remove 3 different levels (18-22, 50-55, and 68-72%) of calcium from milk. Five levels of iron (5, 10, 15, 20, and 25 mM) were added to each of these calcium-depleted milks (CDM) and the resultant milks were analyzed for particle size, microstructure, and the distribution of protein and minerals between the colloidal and soluble phases. The depletion of calcium affected the distribution of protein and minerals in normal milk. Iron added to normal milk and low-CDM (~20% calcium depletion) bound mainly to the colloidal phase (material sedimented at 100,000 × g for 1 h at 20 °C), with little effect on the integrity of the casein micelles. Depletion of ~70% of the calcium from milk resulted in almost complete disintegration of the casein micelles, as indicated by all the protein remaining in the soluble phase upon ultracentrifugation. Addition of up to ~20 mM iron to high CDM resulted in the formation of small fibrous structures that remained in the soluble phase of milk. It appeared that the iron bound to soluble (nonsedimentable) caseins in high-CDM. We observed a decrease in the aqueous phosphorus content of all milks upon iron addition, irrespective of their calcium content. We considered the interaction between aqueous phosphorus and added iron to be responsible for the high iron-binding capacity of the proteins in milk. The soluble protein-iron complexes formed in high-CDM (~70% calcium depletion) could be used as an effective iron fortificant for a range of food products because of their good solubility characteristics. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. α -Actinin TvACTN3 of Trichomonas vaginalis is an RNA-binding protein that could participate in its posttranscriptional iron regulatory mechanism.

    Science.gov (United States)

    Calla-Choque, Jaeson Santos; Figueroa-Angulo, Elisa Elvira; Ávila-González, Leticia; Arroyo, Rossana

    2014-01-01

    Trichomonas vaginalis is a sexually transmitted flagellated protist parasite responsible for trichomoniasis. This parasite is dependent on high levels of iron, favoring its growth and multiplication. Iron also differentially regulates some trichomonad virulence properties by unknown mechanisms. However, there is evidence to support the existence of gene regulatory mechanisms at the transcriptional and posttranscriptional levels that are mediated by iron concentration in T. vaginalis. Thus, the goal of this study was to identify an RNA-binding protein in T. vaginalis that interacts with the tvcp4 RNA stem-loop structure, which may participate in a posttranscriptional iron regulatory mechanism mediated by RNA-protein interactions. We performed RNA electrophoretic mobility shift assay (REMSA) and supershift, UV cross-linking, Northwestern blot, and western blot (WB) assays using cytoplasmic protein extracts from T. vaginalis with the tvcp4 RNA hairpin structure as a probe. We identified a 135-kDa protein isolated by the UV cross-linking assays as α-actinin 3 (TvACTN3) by MALDI-TOF-MS that was confirmed by LS-MS/MS and de novo sequencing. TvACTN3 is a cytoplasmic protein that specifically binds to hairpin RNA structures from trichomonads and humans when the parasites are grown under iron-depleted conditions. Thus, TvACTN3 could participate in the regulation of gene expression by iron in T. vaginalis through a parallel posttranscriptional mechanism similar to that of the IRE/IRP system.

  11. Bovine Lactoferrin and Lactoferricin, a Peptide Derived from Bovine Lactoferrin, Inhibit Tumor Metastasis in Mice

    Science.gov (United States)

    Watanabe, Shikiko; Watanabe, Ryosuke; Hata, Katsusuke; Shimazaki, Kei–ichi; Azuma, Ichiro

    1997-01-01

    We investigated the effect of a bovine milk protein, lactoferrin (LF–B), and a pepsin–generated peptide of LF–B, lactoferricin (Lfcin–B), on inhibition of tumor metastasis produced by highly metastatic murine tumor cells, B16–BL6 melanoma and L5178Y–ML25 lymphoma cells, using experimental and spontaneous metastasis models in syngeneic mice. The subcutaneous (s.c.) administration of bovine apo–lactoferrin (apo–LF–B, 1 mg/mouse) and Lfcin–B (0.5 mg/monse) 1 day after tumor inoculation significantly inhibited liver and lung metastasis of L5178Y–ML25 cells. However, human apo–lactoferrin (apo–LF–H) and bovine holo–lactoferrin (holo–LF–B) at the dose of 1 mg/mouse failed to inhibit tumor metastasis of L5178Y–ML25 cells. Similarly, the s.c. administration of apo–LF–B as well as Lfcin–B, but not apo–LF–H and holo–LF–B, 1 day after tumor inoculation resulted in significant inhibition of lung metastasis of B16–BL6 cells in an experimental metastasis model. Furthermore, in in vivo analysis for tumor–induced angiogenesis, both apo–LF–B and Lfcin–B inhibited the number of tumor–induced blood vessels and suppressed tumor growth on day 8 after tumor inoculation. However, in a long–term analysis of tumor growth for up to 21 days after tumor inoculation, single administration of apo–LF–B significantly suppressed the growth of B16–BL6 cells throughout the examination period, whereas Lfcin–B showed inhibitory activity only during the early period (8 days). In spontaneous metastasis of B16–BL6 melanoma cells, multiple administration of both apo–LF–B and Lfcin–B into tumor–bearing mice significantly inhibited lung metastasis produced by B16–BL6 cells, though only apo–LF–B exhibited an inhibitory effect on tumor growth at the time of primary tumor amputation (on day 21) after tumor inoculation. These results suggest that apo–LF–B and Lfcin–B inhibit tumor metastasis through different

  12. Lactoferrin binding to transglutaminase cross-linked casein micelles

    NARCIS (Netherlands)

    Anema, S.G.; de Kruif, C.G.|info:eu-repo/dai/nl/073609609

    2012-01-01

    Casein micelles in skim milk were either untreated (untreated milk) or were cross-linked using transglutaminase (TGA-milk). Added lactoferrin (LF) bound to the casein micelles and followed Langmuir adsorption isotherms. The adsorption level was the same in both milks and decreased the micellar zeta

  13. Tamm-Horsfall Glycoprotein Enhances PMN Phagocytosis by Binding to Cell Surface-Expressed Lactoferrin and Cathepsin G That Activates MAP Kinase Pathway

    Directory of Open Access Journals (Sweden)

    Chia-Li Yu

    2011-03-01

    Full Text Available The molecular basis of polymorphonuclear neutrophil (PMN phagocytosis-enhancing activity (PEA by human purified urinary Tamm-Horsfall glyco- protein (THP has not been elucidated. In this study, we found human THP bound to lactoferrin (LF and cathepsin G (CG expressed on the surface of PMN, identified by a proteomic study with MALDI-TOF- LC/LC/mass spectrometric analysis. Pre-incubation of 10% SDS-PAGE electrophoresed PMN lysates with monoclonal anti-LF or anti-CG antibody reduced the binding with THP. To elucidate the signaling pathway of THP on PMN activation, we found THP enhanced ERK1/2 phosphorylation, reduced p38 MAP kinase phosphorylation, but had no effect on DNA binding of the five NF-kB family members in PMN. To further clarify whether the carbohydrate-side chains or protein-core structure in THP molecule is responsible for THP-PEA, THP was cleaved by different degrading enzymes with carbohydrate specificity (neuraminidase and β-galactosidase, protein specificity (V8 protease and proteinase K or glycoconjugate specificity (carboxylpeptidase Y and O-sialoglycoprotein endopeptidase. We clearly demonstrated that the intact protein-core structure in THP molecule was more important for THP-PEA than carbohydrate-side chains. Putting these results together, we conclude that THP adheres to surface-expressed LF and CG on PMN and transduces signaling via the MAP kinase pathway to enhance PMN phagocytosis.

  14. Effects of Protein-Iron Complex Concentrate Supplementation on Iron Metabolism, Oxidative and Immune Status in Preweaning Calves

    Directory of Open Access Journals (Sweden)

    Robert Kupczyński

    2017-07-01

    Full Text Available The objective of this study was to determine the effects of feeding protein-iron complex (PIC on productive performance and indicators of iron metabolism, hematology parameters, antioxidant and immune status during first 35 days of a calf’s life. Preparation of the complex involved enzymatic hydrolysis of milk casein (serine protease from Yarrowia lipolytica yeast. Iron chloride was then added to the hydrolyzate and lyophilizate. Calves were divided into treated groups: LFe (low iron dose 10 g/day calf of protein-iron complex, HFe (height iron dose 20 g/day calf, and control group. Dietary supplements containing the lower dose of concentrate had a significant positive effect on iron metabolism, while the higher dose of concentrate resulted in increase of total iron binding capacity (TIBC, saturation of transferrin and decrease of and unsaturated iron binding capacity (UIBC, which suggest iron overload. Additionally, treatment with the lower dose of iron remarkably increased the antioxidant parameters, mainly total antioxidant (TAS and glutathione peroxidase activity (GPx. Higher doses of PIC were related to lower total antioxidant status. IgG, IgM, insulin, glucose, TNFα and IGF-1 concentration did not change significantly in either group after supplementation. In practice, the use of protein-iron complex concentrate requires taking into account the iron content in milk replacers and other feedstuffs.

  15. Bactericidal effect of bovine lactoferrin and synthetic peptide lactoferrin chimera in Streptococcus pneumoniae and the decrease in luxS gene expression by lactoferrin

    NARCIS (Netherlands)

    León-Sicairos, N.; Angulo-Zamudio, U.A.; Vidal, J.E.; López-Torres, C.A.; Bolscher, J.G.M.; Nazmi, K.; Reyes-Cortes, R.; Reyes-López, M.; de la Garza, M.; Canizalez-Román, A.

    2014-01-01

    Streptococcus pneumoniae (pneumococcus) is responsible for nearly one million child deaths annually. Pneumococcus causes infections such as pneumonia, otitis media, meningitis, and sepsis. The human immune system includes antibacterial peptides and proteins such as lactoferrin (LF), but its activity

  16. Involvement of the iron regulatory protein from Eisenia andrei earthworms in the regulation of cellular iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Petra Procházková

    Full Text Available Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs of the 5'- or 3'-untranslated regions (UTR of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP. The earthworm IRE site in 5'-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant.

  17. Involvement of the Iron Regulatory Protein from Eisenia andrei Earthworms in the Regulation of Cellular Iron Homeostasis

    Science.gov (United States)

    Procházková, Petra; Škanta, František; Roubalová, Radka; Šilerová, Marcela; Dvořák, Jiří; Bilej, Martin

    2014-01-01

    Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs) that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs) of the 5′- or 3′-untranslated regions (UTR) of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP). The earthworm IRE site in 5′-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant. PMID:25279857

  18. A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast.

    Directory of Open Access Journals (Sweden)

    Javier Encinar del Dedo

    2015-03-01

    Full Text Available Iron is an essential cofactor, but it is also toxic at high levels. In Schizosaccharomyces pombe, the sensor glutaredoxin Grx4 guides the activity of the repressors Php4 and Fep1 to mediate a complex transcriptional response to iron deprivation: activation of Php4 and inactivation of Fep1 leads to inhibition of iron usage/storage, and to promotion of iron import, respectively. However, the molecular events ruling the activity of this double-branched pathway remained elusive. We show here that Grx4 incorporates a glutathione-containing iron-sulfur cluster, alone or forming a heterodimer with the BolA-like protein Fra2. Our genetic study demonstrates that Grx4-Fra2, but not Fep1 nor Php4, participates not only in iron starvation signaling but also in iron-related aerobic metabolism. Iron-containing Grx4 binds and inactivates the Php4 repressor; upon iron deprivation, the cluster in Grx4 is probably disassembled, the proteins dissociate, and Php4 accumulates at the nucleus and represses iron consumption genes. Fep1 is also an iron-containing protein, and the tightly bound iron is required for transcriptional repression. Our data suggest that the cluster-containing Grx4-Fra2 heterodimer constitutively binds to Fep1, and upon iron deprivation the disassembly of the iron cluster between Grx4 and Fra2 promotes reverse metal transfer from Fep1 to Grx4-Fra2, and de-repression of iron-import genes. Our genetic and biochemical study demonstrates that the glutaredoxin Grx4 independently governs the Php4 and Fep1 repressors through metal transfer. Whereas iron loss from Grx4 seems to be sufficient to release Php4 and allow its nuclear accumulation, total or partial disassembly of the Grx4-Fra2 cluster actively participates in iron-containing Fep1 activation by sequestering its iron and decreasing its interaction with promoters.

  19. Heteroaggregation of lipid droplets coated with sodium caseinate and lactoferrin.

    Science.gov (United States)

    de Figueiredo Furtado, Guilherme; Michelon, Mariano; de Oliveira, Davi Rocha Bernardes; da Cunha, Rosiane Lopes

    2016-11-01

    Formation and characterization of droplet heteroaggregates were investigated by mixing two emulsions previously stabilized by proteins oppositely charged. Emulsions were composed of 5vol.% of sunflower oil and 95vol.% of sodium caseinate or lactoferrin aqueous dispersions. They were produced using ultrasound with fixed power (300W) and sonication time (6min). Different volume ratios (0-100%) of sodium caseinate-stabilized emulsion (droplet diameter around 1.75μm) to lactoferrin-stabilized emulsion (droplet diameter around 1.55μm) were mixed under conditions that both proteins showed opposite charges (pH7). Influence of ionic strength (0-400mM NaCl) on the heteroaggregates stability was also evaluated. Creaming stability, zeta potential, microstructure, mean particle diameter and rheological properties of the heteroaggregates were measured. These properties depended on the volume ratio (0-100%) of sodium caseinate to lactoferrin-stabilized emulsion (C:L) and the ionic strength. In the absence of salt, different zeta potential values were obtained, rheological properties (viscosity and elastic moduli) were improved and the largest heteroaggregates were formed at higher content of lactoferrin-stabilized emulsion (60-80%). The system containing 40 and 60vol.% of sodium caseinate and lactoferrin stabilized emulsion, respectively, presented good stability against phase separation besides showing enhanced rheological and size properties due to extensive droplets aggregation. Phase separation was observed only in the absence of sodium caseinate, demonstrating the higher susceptibility of lactoferrin to NaCl. The heteroaggregates produced may be useful functional agents for texture modification and controlled release since different rheological properties and sizes can be achieved depending on protein concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Selenium-binding lactoferrin is taken into corneal epithelial cells by a receptor and prevents corneal damage in dry eye model animals.

    Science.gov (United States)

    Higuchi, Akihiro; Inoue, Hiroyoshi; Kaneko, Yoshio; Oonishi, Erina; Tsubota, Kazuo

    2016-11-11

    The ocular surface is strongly affected by oxidative stress, which causes many ocular diseases including dry eye. Previously, we showed that selenium compounds, e.g., selenoprotein P and Se-lactoferrin, were candidates for treatment of dry eye. This paper shows the efficacy of Se-lactoferrin for the treatment of dry eye compared with Diquas as a control drug using two dry eye models and incorporation of lactoferrin into corneal epithelial cells via lactoferrin receptors. We show the efficacy of Se-lactoferrin eye drops in the tobacco smoke exposure rat dry eye model and short-term rabbit dry eye model, although Diquas eye drops were only effective in the short-term rabbit dry eye model. These results indicate that Se-lactoferrin was useful in the oxidative stress-causing dry eye model. Se-lactoferrin was taken into corneal epithelium cells via lactoferrin receptors. We identified LRP1 as the lactoferrin receptor in the corneal epithelium involved in lactoferrin uptake. Se-lactoferrin eye drops did not irritate the ocular surface of rabbits. Se-lactoferrin was an excellent candidate for treatment of dry eye, reducing oxidative stress by a novel mechanism.

  1. Inhibitory Effects of Lactoferrin on Growth and Biofilm Formation of Porphyromonas gingivalis and Prevotella intermedia▿

    Science.gov (United States)

    Wakabayashi, Hiroyuki; Yamauchi, Koji; Kobayashi, Tetsuo; Yaeshima, Tomoko; Iwatsuki, Keiji; Yoshie, Hiromasa

    2009-01-01

    Lactoferrin (LF) is an iron-binding antimicrobial protein present in saliva and gingival crevicular fluids, and it is possibly associated with host defense against oral pathogens, including periodontopathic bacteria. In the present study, we evaluated the in vitro effects of LF-related agents on the growth and biofilm formation of two periodontopathic bacteria, Porphyromonas gingivalis and Prevotella intermedia, which reside as biofilms in the subgingival plaque. The planktonic growth of P. gingivalis and P. intermedia was suppressed for up to 5 h by incubation with ≥130 μg/ml of human LF (hLF), iron-free and iron-saturated bovine LF (apo-bLF and holo-bLF, respectively), and ≥6 μg/ml of bLF-derived antimicrobial peptide lactoferricin B (LFcin B); but those effects were weak after 8 h. The biofilm formation of P. gingivalis and P. intermedia over 24 h was effectively inhibited by lower concentrations (≥8 μg/ml) of various iron-bound forms (the apo, native, and holo forms) of bLF and hLF but not LFcin B. A preformed biofilm of P. gingivalis and P. intermedia was also reduced by incubation with various iron-bound bLFs, hLF, and LFcin B for 5 h. In an examination of the effectiveness of native bLF when it was used in combination with four antibiotics, it was found that treatment with ciprofloxacin, clarithromycin, and minocycline in combination with native bLF for 24 h reduced the amount of a preformed biofilm of P. gingivalis compared with the level of reduction achieved with each agent alone. These results demonstrate the antibiofilm activity of LF with lower iron dependency against P. gingivalis and P. intermedia and the potential usefulness of LF for the prevention and treatment of periodontal diseases and as adjunct therapy for periodontal diseases. PMID:19451301

  2. Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake

    Science.gov (United States)

    2016-01-01

    Mycobacterium tuberculosis requires iron for normal growth but faces a limitation of the metal ion due to its low solubility at biological pH and the withholding of iron by the mammalian host. The pathogen expresses the Fe3+-specific siderophores mycobactin and carboxymycobactin to chelate the metal ion from insoluble iron and the host proteins transferrin, lactoferrin, and ferritin. Siderophore-mediated iron uptake is essential for the survival of M. tuberculosis, as knockout mutants, which were defective in siderophore synthesis or uptake, failed to survive in low-iron medium and inside macrophages. But as excess iron is toxic due to its catalytic role in the generation of free radicals, regulation of iron uptake is necessary to maintain optimal levels of intracellular iron. The focus of this review is to present a comprehensive overview of iron homeostasis in M. tuberculosis that is discussed in the context of mycobactin biosynthesis, transport of iron across the mycobacterial cell envelope, and storage of excess iron. The clinical significance of the serum iron status and the expression of the iron-regulated protein HupB in tuberculosis (TB) patients is presented here, highlighting the potential of HupB as a marker, notably in extrapulmonary TB cases. PMID:27402628

  3. The iron-binding protein lactotransferrin is present in pathologic lesions in a variety of neurodegenerative disorders: a comparative immunohistochemical analysis.

    Science.gov (United States)

    Leveugle, B; Spik, G; Perl, D P; Bouras, C; Fillit, H M; Hof, P R

    1994-07-04

    Lactotransferrin is a glycoprotein that specifically binds and transports iron. This protein is also believed to transport other metals such as aluminum. Several lines of evidence indicate that iron and aluminum are involved in the pathogenesis of many dementing diseases. In this context, the analysis of the iron-binding protein distribution in the brains of patients affected by neurodegenerative disorders is of particular interest. In the present study, the distribution of lactotransferrin was analyzed by immunohistochemistry in the cerebral cortex from patients presenting with Alzheimer's disease, Down syndrome, amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam, sporadic amyotrophic lateral sclerosis, or Pick's disease. The results show that lactotransferrin accumulates in the characteristic lesions of the different pathologic conditions investigated. For instance, in Alzheimer's disease and Guamanian cases, a subpopulation of neurofibrillary tangles was intensely labeled in the hippocampal formation and inferior temporal cortex. Senile plaques and Pick bodies were also consistently labeled. These staining patterns were comparable to those obtained with antibodies to the microtubule-associated protein tau and the amyloid beta A4 protein, although generally fewer neurofibrillary tangles were positive for lactotransferrin than for tau protein. Neuronal cytoplasmic staining with lactotransferrin antibodies, was observed in a subpopulation of pyramidal neurons in normal aging, and was more pronounced in Alzheimer's disease, Guamanian cases, Pick's disease, and particularly in Down syndrome. Lactotransferrin was also strongly associated with Betz cells and other motoneurons in the primary motor cortex of control, Alzheimer's disease, Down syndrome, Guamanian and Pick's disease cases. These same lactotransferrin-immunoreactive motoneurons were severely affected in the cases with amyotrophic lateral sclerosis. It is possible that in these

  4. Lactoferrin in a Context of Inflammation-Induced Pathology

    Directory of Open Access Journals (Sweden)

    Marian L. Kruzel

    2017-11-01

    Full Text Available Much progress has been achieved to elucidate the function of lactoferrin (LTF, an iron-binding glycoprotein, in the milieu of immune functionality. This review represents a unique examination of LTF toward its importance in physiologic homeostasis as related to development of disease-associated pathology. The immunomodulatory nature of this protein derives from its unique ability to “sense” the immune activation status of an organism and act accordingly. Underlying mechanisms are proposed whereby LTF controls disease states, thereby pinpointing regions of entry for LTF in maintenance of various physiological pathways to limit the magnitude of tissue damage. LTF is examined as a first line mediator in immune defense and response to pathogenic and non-pathogenic injury, as well as a molecule critical for control of oxidative cell function. Mechanisms of interaction of LTF with its receptors are examined, with a focus on protective effects via regulation of enzyme activities and reactive oxygen species production, immune deviation, and prevention of cell apoptosis. Indeed, LTF serves as a critical control point in physiologic homeostasis, functioning as a sensor of immunological performance related to pathology. Specific mediation of tissue pathophysiology is described for maintenance of intestinal integrity during endotoxemia, elicited airway inflammation due to allergens, and pulmonary damage during tuberculosis. Finally, the role of LTF to alter differentiation of adaptive immune function is examined, with specific recognition of its utility as a vaccine adjuvant to control subsequent lymphocytic reactivity. Overall, it is clear that while the ability of LTF to both sequester iron and to direct reactive oxygen intermediates is a major factor in lessening damage due to excessive inflammatory responses, further effects are apparent through direct control over development of higher order immune functions that regulate pathology due to insult

  5. Deleted in malignant brain tumors-1 protein (DMBT1): a pattern recognition receptor with multiple binding sites.

    Science.gov (United States)

    Ligtenberg, Antoon J M; Karlsson, Niclas G; Veerman, Enno C I

    2010-01-01

    Deleted in Malignant Brain Tumors-1 protein (DMBT1), salivary agglutinin (DMBT1(SAG)), and lung glycoprotein-340 (DMBT1(GP340)) are three names for glycoproteins encoded by the same DMBT1 gene. All these proteins belong to the scavenger receptor cysteine-rich (SRCR) superfamily of proteins: a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. In addition to SRCR domains, all DMBT1s contain two CUB domains and one zona pellucida domain. The SRCR domains play a role in the function of DMBT1s, which is the binding of a broad range of pathogens including cariogenic streptococci, Helicobacter pylori and HIV. Mucosal defense proteins like IgA, surfactant proteins and lactoferrin also bind to DMBT1s through their SRCR domains. The binding motif on the SRCR domains comprises an 11-mer peptide in which a few amino acids are essential for binding (GRVEVLYRGSW). Adjacent to each individual SRCR domain are glycosylation domains, where the attached carbohydrate chains play a role in the binding of influenza A virus and Helicobacter pylori. The composition of the carbohydrate chains is not only donor specific, but also varies between different organs. These data demonstrate a role for DMBT1s as pattern recognition molecules containing various peptide and carbohydrate binding motifs.

  6. Deleted in Malignant Brain Tumors-1 Protein (DMBT1: A Pattern Recognition Receptor with Multiple Binding Sites

    Directory of Open Access Journals (Sweden)

    Enno C. I. Veerman

    2010-12-01

    Full Text Available Deleted in Malignant Brain Tumors-1 protein (DMBT1, salivary agglutinin (DMBT1SAG, and lung glycoprotein-340 (DMBT1GP340 are three names for glycoproteins encoded by the same DMBT1 gene. All these proteins belong to the scavenger receptor cysteine-rich (SRCR superfamily of proteins: a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. In addition to SRCR domains, all DMBT1s contain two CUB domains and one zona pellucida domain. The SRCR domains play a role in the function of DMBT1s, which is the binding of a broad range of pathogens including cariogenic streptococci, Helicobacter pylori and HIV. Mucosal defense proteins like IgA, surfactant proteins and lactoferrin also bind to DMBT1s through their SRCR domains. The binding motif on the SRCR domains comprises an 11-mer peptide in which a few amino acids are essential for binding (GRVEVLYRGSW. Adjacent to each individual SRCR domain are glycosylation domains, where the attached carbohydrate chains play a role in the binding of influenza A virus and Helicobacter pylori. The composition of the carbohydrate chains is not only donor specific, but also varies between different organs. These data demonstrate a role for DMBT1s as pattern recognition molecules containing various peptide and carbohydrate binding motifs.

  7. Bovine lactoferrin and lactoferricin exert antitumor activities on human colorectal cancer cells (HT-29) by activating various signaling pathways.

    Science.gov (United States)

    Jiang, Rulan; Lönnerdal, Bo

    2017-02-01

    Lactoferrin (Lf) is an iron-binding glycoprotein that is present at high concentrations in milk. Bovine lactoferricin (LfcinB) is a peptide fragment generated by pepsin proteolysis of bovine lactoferrin (bLf). LfcinB consists of amino acid residues 17-41 proximal to the N-terminus of bLf and a disulfide bond between residues 19 and 36, forming a loop. Both bLf and LfcinB have been demonstrated to have antitumor activities. Colorectal cancer is the second most common cause of cancer death in developed countries. We hypothesized that bLf and LfcinB exert antitumor activities on colon cancer cells (HT-29) by triggering various signaling pathways. bLf and LfcinB significantly induced apoptosis in HT-29 cells but not in normal human intestinal epithelial cells, as revealed by the ApoTox-Glo Triplex Assay. The LIVE/DEAD cell viability assay showed that both bLf and LfcinB reduced the viability of HT-29 cells. Transcriptome analysis indicated that bLf, cyclic LfcinB, and linear LfcinB exerted antitumor activities by differentially activating diverse signaling pathways, including p53, apoptosis, and angiopoietin signaling. Immunoblotting results confirmed that both bLf and LfcinBs increased expression of caspase-8, p53, and p21, critical proteins in tumor suppression. These results provide valuable information regarding bLf and LfcinB for potential clinical applications in colon cancer therapy.

  8. The physiological functions of iron regulatory proteins in iron homeostasis - an update

    Directory of Open Access Journals (Sweden)

    De-Liang eZhang

    2014-06-01

    Full Text Available Iron regulatory proteins (IRPs regulate the expression of genes involved in iron metabolism by binding to RNA stem-loop structures known as iron responsive elements (IREs in target mRNAs. IRP binding inhibits the translation of mRNAs that contain an IRE in the 5’untranslated region of the transcripts, and increases the stability of mRNAs that contain IREs in the 3'untranslated region of transcripts. By these mechanisms, IRPs increase cellular iron absorption and decrease storage and export of iron to maintain an optimal intracellular iron balance. There are two members of the mammalian IRP protein family, IRP1 and IRP2, and they have redundant functions as evidenced by the embryonic lethality of the mice that completely lack IRP expression (Irp1-/-/Irp2-/- mice, which contrasts with the fact that Irp1-/- and Irp2-/- mice are viable. In addition, Irp2-/- mice also display neurodegenerative symptoms and microcytic hypochromic anemia, suggesting that IRP2 function predominates in the nervous system and erythropoietic homeostasis. Though the physiological significance of IRP1 had been unclear since Irp1-/- animals were first assessed in the early 1990’s, recent studies indicate that IRP1 plays an essential function in orchestrating the balance between erythropoiesis and bodily iron homeostasis. Additionally, Irp1-/- mice develop pulmonary hypertension, and they experience sudden death when maintained on an iron-deficient diet, indicating that IRP1 has a critical role in the pulmonary and cardiovascular systems. This review summarizes recent progress that has been made in understanding the physiological roles of IRP1 and IRP2, and further discusses the implications for clinical research on patients with idiopathic polycythemia, pulmonary hypertension and neurodegeneration.

  9. Targeting iron acquisition blocks infection with the fungal pathogens Aspergillus fumigatus and Fusarium oxysporum.

    Science.gov (United States)

    Leal, Sixto M; Roy, Sanhita; Vareechon, Chairut; Carrion, Steven deJesus; Clark, Heather; Lopez-Berges, Manuel S; Di Pietro, Antonio; diPietro, Antonio; Schrettl, Marcus; Beckmann, Nicola; Redl, Bernhard; Haas, Hubertus; Pearlman, Eric

    2013-01-01

    Filamentous fungi are an important cause of pulmonary and systemic morbidity and mortality, and also cause corneal blindness and visual impairment worldwide. Utilizing in vitro neutrophil killing assays and a model of fungal infection of the cornea, we demonstrated that Dectin-1 dependent IL-6 production regulates expression of iron chelators, heme and siderophore binding proteins and hepcidin in infected mice. In addition, we show that human neutrophils synthesize lipocalin-1, which sequesters fungal siderophores, and that topical lipocalin-1 or lactoferrin restricts fungal growth in vivo. Conversely, we show that exogenous iron or the xenosiderophore deferroxamine enhances fungal growth in infected mice. By examining mutant Aspergillus and Fusarium strains, we found that fungal transcriptional responses to low iron levels and extracellular siderophores are essential for fungal growth during infection. Further, we showed that targeting fungal iron acquisition or siderophore biosynthesis by topical application of iron chelators or statins reduces fungal growth in the cornea by 60% and that dual therapy with the iron chelator deferiprone and statins further restricts fungal growth by 75%. Together, these studies identify specific host iron-chelating and fungal iron-acquisition mediators that regulate fungal growth, and demonstrate that therapeutic inhibition of fungal iron acquisition can be utilized to treat topical fungal infections.

  10. Targeting iron acquisition blocks infection with the fungal pathogens Aspergillus fumigatus and Fusarium oxysporum.

    Directory of Open Access Journals (Sweden)

    Sixto M Leal

    Full Text Available Filamentous fungi are an important cause of pulmonary and systemic morbidity and mortality, and also cause corneal blindness and visual impairment worldwide. Utilizing in vitro neutrophil killing assays and a model of fungal infection of the cornea, we demonstrated that Dectin-1 dependent IL-6 production regulates expression of iron chelators, heme and siderophore binding proteins and hepcidin in infected mice. In addition, we show that human neutrophils synthesize lipocalin-1, which sequesters fungal siderophores, and that topical lipocalin-1 or lactoferrin restricts fungal growth in vivo. Conversely, we show that exogenous iron or the xenosiderophore deferroxamine enhances fungal growth in infected mice. By examining mutant Aspergillus and Fusarium strains, we found that fungal transcriptional responses to low iron levels and extracellular siderophores are essential for fungal growth during infection. Further, we showed that targeting fungal iron acquisition or siderophore biosynthesis by topical application of iron chelators or statins reduces fungal growth in the cornea by 60% and that dual therapy with the iron chelator deferiprone and statins further restricts fungal growth by 75%. Together, these studies identify specific host iron-chelating and fungal iron-acquisition mediators that regulate fungal growth, and demonstrate that therapeutic inhibition of fungal iron acquisition can be utilized to treat topical fungal infections.

  11. Serum iron and total iron binding capacity levels among the abo ...

    African Journals Online (AJOL)

    Iron deficiency anaemia is a common tropical disease. Iron plays a very important role in the human body. The understanding of the different blood groups ability to retain iron in their system can give an insight into their ability to handle the disease Iron deficiency anaemia. Serum Iron, Total Iron Binding Capacity (TIBC) and ...

  12. Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae.

    Science.gov (United States)

    Qiu, J; Hendrixson, D R; Baker, E N; Murphy, T F; St Geme, J W; Plaut, A G

    1998-10-13

    Haemophilus influenzae is a major cause of otitis media and other respiratory tract disease in children. The pathogenesis of disease begins with colonization of the upper respiratory mucosa, a process that involves evasion of local immune mechanisms and adherence to epithelial cells. Several studies have demonstrated that human milk is protective against H. influenzae colonization and disease. In the present study, we examined the effect of human milk on the H. influenzae IgA1 protease and Hap adhesin, two autotransported proteins that are presumed to facilitate colonization. Our results demonstrated that human milk lactoferrin efficiently extracted the IgA1 protease preprotein from the bacterial outer membrane. In addition, lactoferrin specifically degraded the Hap adhesin and abolished Hap-mediated adherence. Extraction of IgA1 protease and degradation of Hap were localized to the N-lobe of the bilobed lactoferrin molecule and were inhibited by serine protease inhibitors, suggesting that the lactoferrin N-lobe may contain serine protease activity. Additional experiments revealed no effect of lactoferrin on the H. influenzae P2, P5, and P6 outer-membrane proteins, which are distinguished from IgA1 protease and Hap by the lack of an N-terminal passenger domain or an extracellular linker region. These results suggest that human milk lactoferrin may attenuate the pathogenic potential of H. influenzae by selectively inactivating IgA1 protease and Hap, thereby interfering with colonization. Future studies should examine the therapeutic potential of lactoferrin, perhaps as a supplement in infant formulas.

  13. [The role of lactoferrin in the proper development of newborns].

    Science.gov (United States)

    Artym, Jolanta; Zimecki, Michał

    2005-01-01

    Colostrum and milk contain, in addition to nutritional constituents, also proteins crucial for the normal development of the offspring. Lactoferrin (LF) belongs to the family of iron-binding proteins and exhibits a wide spectrum of antimicrobial and immunotropic properties. LF is particularly resistant to proteolytic degradation in alimentary tract, in contrast to other milk proteins, e.g. casein. In any case, LF-derived peptides also possess potent antibacterial activities. LF is absorbed from the intestine by means of specific receptors located on brush border cells. Administered orally, LF stimulates both local and systemic immune response. LF plays a role in the absorption of nutrients. The protein can deliver such metal ions as iron, manganese, and zinc and facilitate the absorption of sugars. LF stimulates the proliferation of gut endothelial cells and the growth of gut-associated lymphatic follicles. This property suggests the possibility of applying LF in premature infants and patients with damaged intestinal mucus. LF controls the proper composition of the gut microflora. It suppresses the growth of pathogenic bacteria while promoting the multiplication of nonpathogenic Lactobacillus and Bifidobacterium. Newborns fed an artificial diet develop harmful microflora (Enterococcus, Enterobacter, Bacteroides, Escherichia). The non-pathogenic microflora ensures low pH, produces some vitamins, increases the activity of NK cells, T lymphocytes, and macrophages, promotes the production of protective immunoglobulins, and lowers the risk of allergies. In studies on mice, LF was found to be protective in bacteremia and endotoxemia. The protein stimulates the activity of reticulo-endothelial system cells and elicits myelopoiesis, thus increasing the killing and clearance of bacteria. In the model of experimental endotoxemia, LF inhibits the activity of pro-inflammatory cytokines, nitric oxide, and reactive forms of oxygen. LF can also promote the differentiation of T

  14. Subthreshold UV radiation-induced peroxide formation in cultured corneal epithelial cells: the protective effects of lactoferrin

    International Nuclear Information System (INIS)

    Shimmura, Shigeto; Suematsu, Makoto; Shimoyama, Masaru; Oguchi, Yoshihisa; Ishimura, Yuzuru

    1996-01-01

    Acute exposure to suprathreshold ultraviolet B radiation (UV-B) is known to cause photokeratitis resulting from the necrosis and shedding of corneal epithelial cells. However, the corneal effects of low dose UV-B in the environmental range is less clear. In this study, subthreshold UV-B was demonstrated to cause non-necrotic peroxide formation in cultured corneal epithelial cells, which was attenuated by the major tear protein lactoferrin. Intracellular oxidative insults and cell viability of rabbit corneal epithelial cells (RCEC) were assessed by dual-color digital microfluorography using carboxydichlorofluorescin (CDCFH) diacetate bis (acetoxymethyl) ester, a hydroperoxide-sensitive fluoroprobe, and propidium iodode (PI) respectively. The magnitude of UV-induced oxidative insults was calibrated by concentrations of exogenously applied H 2 O 2 which evoke compatible levels of CDCFH oxidation. Exposure of RCEC to low-dose UV-B (2.0 mJ cm -2 at 313 nm, 10.0 mJ cm -2 total UV-B) caused intracellular oxidative changes which were equivalent to those elicited by 240 μM hydrogen peroxide under the conditions of the study. The changes were dose dependent, non-necrotic, and were partially inhibited by lactoferrin ( 1 mg ml -1 ) but not by iron-saturated lactoferrin. Pretreatment with deferoxamine (2 mΜ) or catalase (100 U ml -1 ) also attenuated the UV-induced oxidative stress. The results indicate that UV-B comparable to solar irradiation levels causes significant intracellular peroxide formation in corneal epithelial cells, and that lactoferrin in tears may have a physiological role in protecting the corneal epithelium from solar UV irradiation. (Author)

  15. The iron uptake repressor Fep1 in the fission yeast binds Fe-S cluster through conserved cysteines

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-Jin; Lee, Kang-Lok; Kim, Kyoung-Dong; Roe, Jung-Hye, E-mail: jhroe@snu.ac.kr

    2016-09-09

    Iron homeostasis is tightly regulated since iron is an essential but toxic element in the cell. The GATA-type transcription factor Fep1 and its orthologs contribute to iron homeostasis in many fungi by repressing genes for iron uptake when intracellular iron is high. Even though the function and interaction partners of Fep1 have been elucidated extensively In Schizosaccharomyces pombe, the mechanism behind iron-sensing by Fep1 remains elusive. It has been reported that Fep1 interacts with Fe-S-containing monothiol glutaredoxin Grx4 and Grx4-Fra2 complex. In this study, we demonstrate that Fep1 also binds iron, in the form of Fe-S cluster. Spectroscopic and biochemical analyses of as isolated and reconstituted Fep1 suggest that the dimeric Fep1 binds Fe-S clusters. The mutation study revealed that the cluster-binding depended on the conserved cysteines located between the two zinc fingers in the DNA binding domain. EPR analyses revealed [Fe-S]-specific peaks indicative of mixed presence of [2Fe-2S], [3Fe-4S], or [4Fe-4S]. The finding that Fep1 is an Fe-S protein fits nicely with the model that the Fe-S-trafficking Grx4 senses intracellular iron environment and modulates the activity of Fep1. - Highlights: • Fep1, a prototype fungal iron uptake regulator, was isolated stably from Schizosaccharomyces pombe. • Fep1 exhibits UV–visible absorption spectrum, characteristic of [Fe-S] proteins. • The iron and sulfide contents in purified or reconstituted Fep1 also support [Fe-S]. • The conserved cysteines are critical for [Fe-S]-binding. • EPR spectra at 5 K and 123 K suggest a mixed population of [Fe-S].

  16. Dietary lactoferrin alleviates age-related lacrimal gland dysfunction in mice.

    Directory of Open Access Journals (Sweden)

    Motoko Kawashima

    Full Text Available BACKGROUND: Decrease in lacrimal gland secretory function is related to age-induced dry eye disease. Lactoferrin, the main glycoprotein component of tears, has multiple functions, including anti-inflammatory effects and the promotion of cell growth. We investigated how oral administration of lactoferrin affects age-related lacrimal dysfunction. METHODS AND FINDINGS: Twelve-month-old male C57BL/6Cr Slc mice were randomly divided into a control fed group and an oral lactoferrin treatment group. Tear function was measured at a 6-month time-point. After euthanasia, the lacrimal glands were subjected to histological examination with 8-hydroxy-2'-deoxyguanosine (8-OHdG antibodies, and serum concentrations of 8-OHdG and hexanoyl-lysine adduct (HEL were evaluated. Additionally, monocyte chemotactic protein-1(MCP-1 and tumor necrosis factor-α (TNF-α gene expression levels were determined by real-time PCR. The volume of tear secretion was significantly larger in the treated group than in the control. Lactoferrin administration reduced inflammatory cell infiltration and the MCP-1 and TNF-α expression levels. Serum concentrations of 8-OHdG and HEL in the lactoferrin group were lower than those in the control group and were associated with attenuated 8-OHdG immunostaining of the lacrimal glands. CONCLUSION: Oral lactoferrin administration preserves lacrimal gland function in aged mice by attenuating oxidative damage and suppressing subsequent gland inflammation.

  17. Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin.

    Directory of Open Access Journals (Sweden)

    Penghua Yang

    Full Text Available Large-scale production of biopharmaceuticals by current bioreactor techniques is limited by low transgenic efficiency and low expression of foreign proteins. In general, a bacterial artificial chromosome (BAC harboring most regulatory elements is capable of overcoming the limitations, but transferring BAC into donor cells is difficult. We describe here the use of cattle mammary bioreactor to produce functional recombinant human lactoferrin (rhLF by a novel procedure of transgenic cloning, which employs microinjection to generate transgenic somatic cells as donor cells. Bovine fibroblast cells were co-microinjected for the first time with a 150-kb BAC carrying the human lactoferrin gene and a marker gene. The resulting transfection efficiency of up to 15.79 x 10(-2 percent was notably higher than that of electroporation and lipofection. Following somatic cell nuclear transfer, we obtained two transgenic cows that secreted rhLF at high levels, 2.5 g/l and 3.4 g/l, respectively. The rhLF had a similar pattern of glycosylation and proteolytic susceptibility as the natural human counterpart. Biochemical analysis revealed that the iron-binding and releasing properties of rhLF were identical to that of native hLF. Importantly, an antibacterial experiment further demonstrated that rhLF was functional. Our results indicate that co-microinjection with a BAC and a marker gene into donor cells for somatic cell cloning indeed improves transgenic efficiency. Moreover, the cattle mammary bioreactors generated with this novel procedure produce functional rhLF on an industrial scale.

  18. Binding and Endocytosis of Bovine Hololactoferrin by the Parasite Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Guillermo Ortíz-Estrada

    2015-01-01

    Full Text Available Entamoeba histolytica is a human parasite that requires iron (Fe for its metabolic function and virulence. Bovine lactoferrin (B-Lf and its peptides can be found in the digestive tract after dairy products are ingested. The aim of this study was to compare virulent trophozoites recently isolated from hamster liver abscesses with nonvirulent trophozoites maintained for more than 30 years in cultures in vitro regarding their interaction with iron-charged B-Lf (B-holo-Lf. We performed growth kinetics analyses of trophozoites in B-holo-Lf and throughout several consecutive transfers. The virulent parasites showed higher growth and tolerance to iron than nonvirulent parasites. Both amoeba variants specifically bound B-holo-Lf with a similar Kd. However, averages of 9.45 × 105 and 6.65 × 106 binding sites/cell were found for B-holo-Lf in nonvirulent and virulent amoebae, respectively. Virulent amoebae bound more efficiently to human and bovine holo-Lf, human holo-transferrin, and human and bovine hemoglobin than nonvirulent amoebae. Virulent amoebae showed two types of B-holo-Lf binding proteins. Although both amoebae endocytosed this glycoprotein through clathrin-coated vesicles, the virulent amoebae also endocytosed B-holo-Lf through a cholesterol-dependent mechanism. Both amoeba variants secreted cysteine proteases cleaving B-holo-Lf. These data demonstrate that the B-Lf endocytosis is more efficient in virulent amoebae.

  19. Binding and Endocytosis of Bovine Hololactoferrin by the Parasite Entamoeba histolytica.

    Science.gov (United States)

    Ortíz-Estrada, Guillermo; Calderón-Salinas, Víctor; Shibayama-Salas, Mineko; León-Sicairos, Nidia; de la Garza, Mireya

    2015-01-01

    Entamoeba histolytica is a human parasite that requires iron (Fe) for its metabolic function and virulence. Bovine lactoferrin (B-Lf) and its peptides can be found in the digestive tract after dairy products are ingested. The aim of this study was to compare virulent trophozoites recently isolated from hamster liver abscesses with nonvirulent trophozoites maintained for more than 30 years in cultures in vitro regarding their interaction with iron-charged B-Lf (B-holo-Lf). We performed growth kinetics analyses of trophozoites in B-holo-Lf and throughout several consecutive transfers. The virulent parasites showed higher growth and tolerance to iron than nonvirulent parasites. Both amoeba variants specifically bound B-holo-Lf with a similar K d . However, averages of 9.45 × 10(5) and 6.65 × 10(6) binding sites/cell were found for B-holo-Lf in nonvirulent and virulent amoebae, respectively. Virulent amoebae bound more efficiently to human and bovine holo-Lf, human holo-transferrin, and human and bovine hemoglobin than nonvirulent amoebae. Virulent amoebae showed two types of B-holo-Lf binding proteins. Although both amoebae endocytosed this glycoprotein through clathrin-coated vesicles, the virulent amoebae also endocytosed B-holo-Lf through a cholesterol-dependent mechanism. Both amoeba variants secreted cysteine proteases cleaving B-holo-Lf. These data demonstrate that the B-Lf endocytosis is more efficient in virulent amoebae.

  20. Formation of a dinitrosyl iron complex by NorA, a nitric oxide-binding di-iron protein from Ralstonia eutropha H16.

    Science.gov (United States)

    Strube, Katja; de Vries, Simon; Cramm, Rainer

    2007-07-13

    In Ralstonia eutropha H16, two genes, norA and norB, form a dicistronic operon that is controlled by the NO-responsive transcriptional regulator NorR. NorB has been identified as a membrane-bound NO reductase, but the physiological function of NorA is unknown. We found that, in a NorA deletion mutant, the promoter activity of the norAB operon was increased 3-fold, indicating that NorA attenuates activation of NorR. NorA shows limited sequence similarity to the oxygen carrier hemerythrin, which contains a di-iron center. Indeed, optical and EPR spectroscopy of purified NorA revealed the presence of a di-iron center, which binds oxygen in a similar way as hemerythrin. Diferrous NorA binds two molecules of NO maximally. Unexpectedly, binding of NO to the diferrous NorA required an external reductant. Two different NorA-NO species could be resolved. A minor species (up to 20%) showed an S = (1/2) EPR signal with g( perpendicular) = 2.041, and g( parallel) = 2.018, typical of a paramagnetic dinitrosyl iron complex. The major species was EPR-silent, showing characteristic signals at 420 nm and 750 nm in the optical spectrum. This species is proposed to represent a novel dinitrosyl iron complex of the form Fe(2+)-[NO](2)(2-), i.e. NO is bound as NO(-). The NO binding capacity of NorA in conjunction with its high cytoplasmic concentration (20 mum) suggests that NorA regulates transcription by lowering the free cytoplasmic concentration of NO.

  1. Selenium-binding lactoferrin is taken into corneal epithelial cells by a receptor and prevents corneal damage in dry eye model animals

    OpenAIRE

    Akihiro Higuchi; Hiroyoshi Inoue; Yoshio Kaneko; Erina Oonishi; Kazuo Tsubota

    2016-01-01

    The ocular surface is strongly affected by oxidative stress, which causes many ocular diseases including dry eye. Previously, we showed that selenium compounds, e.g., selenoprotein P and Se-lactoferrin, were candidates for treatment of dry eye. This paper shows the efficacy of Se-lactoferrin for the treatment of dry eye compared with Diquas as a control drug using two dry eye models and incorporation of lactoferrin into corneal epithelial cells via lactoferrin receptors. We show the efficacy ...

  2. Antioxidant mechanism of milk mineral-high-affinity iron binding.

    Science.gov (United States)

    Allen, K; Cornforth, D

    2007-01-01

    Milk mineral (MM), a by-product of whey processing, is an effective antioxidant in meat systems, but the antioxidant mechanism has not been established. MM has been postulated to chelate iron and prevent iron-catalysis of lipid oxidation. The objective of this research was to examine this putative mechanism. MM was compared to sodium tripolyphosphate (STPP), calcium phosphate monobasic (CPM), and calcium pyrophosphate (CPP) to determine iron-binding capacity, sample solubility, and eluate soluble phosphorus after treating samples with a ferrous chloride standard. Scanning electron microscopy with energy-dispersive X-ray analysis was used to localize minerals on iron-treated MM particle surfaces. Histochemical staining for calcium was performed on raw and cooked ground beef samples with added MM. MM bound more iron per gram (P compounds, and was much less soluble (P iron across the MM particle surface, directly demonstrating iron binding to MM particles. Unlike other common chelating agents, such as STPP and citrate, histochemical staining demonstrated that MM remained insoluble in ground beef, even after cooking. The ability of MM to bind iron and remain insoluble may enhance its antioxidant effect by removing iron ions from solution. However, MM particles must be small and well distributed in order to adequately bind iron throughout the food system.

  3. Studies on anticancer activities of lactoferrin and lactoferricin.

    Science.gov (United States)

    Yin, Cui Ming; Wong, Jack Ho; Xia, Jiang; Ng, Tzi Bun

    2013-09-01

    This review mainly summarizes results of recent studies on the anticancer activity of the multifunctional protein lactoferrin (Lf) and its derived peptide lactoferricin (Lfcin). The basic information on Lf and Lfcin, such as their sources, structures, and biological properties which favor their antitumor activity is introduced. The major anticancer mechanisms of Lf and Lfcin including cell cycle arrest, apoptosis, anti-angiogenesis, antimetastasis, immune modulation and necrosis are discussed. Other information from in vivo studies employing a mouse model is also provided. In addition, the roles of talatoferrin and delta lactoferrin, as well as improvement in drug delivery will be covered.

  4. Lactoferrin, myeloperoxidase, lysozyme and eosinophil cationic protein in exudate in delayed type hypersensitivity

    DEFF Research Database (Denmark)

    Lerche, A; Bisgaard, H; Christensen, J D

    1988-01-01

    allergic patients with nickel challenge in the chamber medium showed a time-dependent increase of mononuclear cells, eosinophils and basophils and a concomitant decrease of polymorphonuclear granulocytes, characteristic of a combined specific and unspecific inflammation. The morphology of the exudate...... in contact allergic patients exposed to nickel showed a dominance of polymorphonuclear granulocytes throughout the study period, while mononuclear cells, eosinophils and basophils were detected at a much lower quantity and with a considerable delay. Further, we studied the kinetics of the leucocyte granule...... proteins: lactoferrin, myeloperoxidase, lysozyme and eosinophil cationic protein in exudate fluid in a parallel test. A significant higher flux was found for all during the second day of allergen exposure compared to contact allergic patients without allergen challenge as well as normal volunteers...

  5. The host-binding domain of the P2 phage tail spike reveals a trimeric iron-binding structure

    International Nuclear Information System (INIS)

    Yamashita, Eiki; Nakagawa, Atsushi; Takahashi, Junichi; Tsunoda, Kin-ichi; Yamada, Seiko; Takeda, Shigeki

    2011-01-01

    The C-terminal domain of a bacteriophage P2 tail-spike protein, gpV, was crystallized and its structure was solved at 1.27 Å resolution. The refined model showed a triple β-helix structure and the presence of iron, calcium and chloride ions. The adsorption and infection of bacteriophage P2 is mediated by tail fibres and tail spikes. The tail spikes on the tail baseplate are used to irreversibly adsorb to the host cells. Recently, a P2 phage tail-spike protein, gpV, was purified and it was shown that a C-terminal domain, Ser87–Leu211, is sufficient for the binding of gpV to host Escherichia coli membranes [Kageyama et al. (2009 ▶), Biochemistry, 48, 10129–10135]. In this paper, the crystal structure of the C-terminal domain of P2 gpV is reported. The structure is a triangular pyramid and looks like a spearhead composed of an intertwined β-sheet, a triple β-helix and a metal-binding region containing iron, calcium and chloride ions

  6. Oral lactoferrin protects against experimental candidiasis in mice.

    Science.gov (United States)

    Velliyagounder, K; Alsaedi, W; Alabdulmohsen, W; Markowitz, K; Fine, D H

    2015-01-01

    To determine the role of human lactoferrin (hLF) in protecting the oral cavities of mice against Candida albicans infection in lactoferrin knockout (LFKO(-/-)) mice was compared to wild-type (WT) mice. We also aim to determine the protective role of hLF in LFKO(-/-) mice. Antibiotic-treated immunosuppressed mice were inoculated with C. albicans (or sham infection) by oral swab and evaluated for the severity of infection after 7 days of infection. To determine the protective role of hLF, we added 0·3% solution of hLF to the drinking water given to some of the mice. CFU count, scoring of lesions and microscopic observations were carried out to determine the severity of infection. LFKO(-/-) I mice showed a 2 log (P = 0·001) higher CFUs of C. albicans in the oral cavity compared to the WT mice infected with C. albicans (WTI). LFKO(-/-) I mice given hLF had a 3 log (P = 0·001) reduction in CFUs in the oral cavity compared to untreated LFKO(-/-) I mice. The severity of infection, observed by light microscopy, revealed that the tongue of the LFKO(-/-) I mice showed more white patches compared to WTI and LFKO(-/-) I + hLF mice. Scanning electron microscopic observations revealed that more filiform papillae were destroyed in LFKO(-/-) I mice when compared to WTI or LFKO(-/-) I + hLF mice. Human LF is important in protecting mice from oral C. albicans infection. Administered hLF may be used to prevent C. albicans infection. Human LF, a multifunctional iron-binding glycoprotein can be used as a therapeutic active ingredient in oral healthcare products against C. albicans. © 2014 The Society for Applied Microbiology.

  7. Studies on the application of temperature-responsive ion exchange polymers with whey proteins.

    Science.gov (United States)

    Maharjan, Pankaj; Campi, Eva M; De Silva, Kirthi; Woonton, Brad W; Jackson, W Roy; Hearn, Milton T W

    2016-03-18

    Several new types of temperature-responsive ion exchange resins of different polymer composition have been prepared by grafting the products from the co-polymerisation of N-phenylacrylamide, N-iso-propylacrylamide and acrylic acid derivatives onto cross-linked agarose. Analysis of the binding isotherms for these different resins obtained under batch adsorption conditions indicated that the resin based on N-iso-propylacrylamide containing 5% (w/w) N-phenylacrylamide and 5% (w/w) acrylic acid resulted in the highest adsorption capacity, Bmax, for the whey protein, bovine lactoferrin, e.g. 14 mg bovine lactoferrin/mL resin at 4 °C and 62 mg bovine lactoferrin/mL resin at 40 °C, respectively. Under dynamic loading conditions at 40 °C, 94% of the loaded bovine lactoferrin on a normalised mg protein per mL resin basis was adsorbed by this new temperature-responsive ion-exchanger, and 76% was eluted by a single cycle temperature shift to 4 °C without varying the composition of the 10mM sodium dihydrogen phosphate buffer, pH 6.5, or the flow rate. The binding characteristics of these different ion exchange resins with bovine lactoferrin were also compared to results obtained using other resins based on N-isopropylacrylamide but contained N-tert-butylacrylamide rather than N-phenylacrylamide, where the corresponding dynamic capture and release properties for bovine lactoferrin required different temperature conditions of 20 °C and 50 °C, respectively for optimal desorption/adsorption. The cationic protein, bovine lactoperoxidase, was also adsorbed and desorbed with these temperature-responsive resins under similar conditions of changing temperature, whereas the anionic protein, bovine β-lactoglobulin, was not adsorbed under this regime of temperature conditions but instead eluted in the flow-through. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The effect of gum Arabic oral treatment on the iron and protein status ...

    African Journals Online (AJOL)

    Hemoglobin (Hb), hematocrit, total protein, albumin, globulin and 24-hour urine volume as well as serum iron, total iron-binding capacity (TIBC),transferrin saturation, packed cell volume (PCV) and, mean corpuscular hemoglobin concentration (MCHC) were determined. Results: Following administration of gum arabic oral ...

  9. Autolytic Activity and Plasma Binding Study of Aap, a Novel Minor Autolysin of Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Ramina Mahboobi

    2016-04-01

    Full Text Available Pneumococcal autolysins are enzymes involved in cell wall turnover and cellular division physiologically. They have been found to be involved in the pneumococcus pathogenesis. The aim of this study was to identify the autolytic activity of Spr1754 as a novel protein of Streptococcus pneumoniae. Moreover, the binding of the recombinant protein to plasma proteins was also determined. The spr1754 gene was amplified by PCR and cloned into the pET21a(+ prokaryotic expression vector. The constructed pET21a(+/spr1754 recombinant plasmid was transformed into E. coli Origami (DE3 and induced using IPTG. The recombinant protein of Spr1754 was purified by Ni-NTA affinity chromatography and confirmed by SDS-PAGE and Western blot analysis using anti-His tag monoclonal antibody. Autolytic activity and the ability of the recombinant protein in binding to plasma proteins were performed using zymogram analysis and western blot, respectively. The spr1754 with expected size was cloned and overexpressed in Escherichia coli Origami (DE3, successfully. After purification of the Spr1754 recombinant protein, the autolytic activity was observed by zymography. Of the four plasma proteins used in this study, binding of lactoferrin to Spr1754 recombinant protein was shown. The Spr1754 recombinant protein has a bifunctional activity, i.e., as being autolysin and lactoferrin binding and designated as Aap (autolytic/ adhesion/ pneumococcus. Nevertheless, characterization of the Aap needs to be followed using gene inactivation and cell wall localization.

  10. Crystallization and preliminary X-ray diffraction analysis of iron regulatory protein 1 in complex with ferritin IRE RNA

    International Nuclear Information System (INIS)

    Selezneva, Anna I.; Cavigiolio, Giorgio; Theil, Elizabeth C.; Walden, William E.; Volz, Karl

    2006-01-01

    The iron regulatory protein IRP1 has been crystallized in a complex with ferritin IRE RNA and a complete data set has been collected to 2.8 Å resolution. Iron regulatory protein 1 (IRP1) is a bifunctional protein with activity as an RNA-binding protein or as a cytoplasmic aconitase. Interconversion of IRP1 between these mutually exclusive states is central to cellular iron regulation and is accomplished through iron-responsive assembly and disassembly of a [4Fe–4S] cluster. When in its apo form, IRP1 binds to iron responsive elements (IREs) found in mRNAs encoding proteins of iron storage and transport and either prevents translation or degradation of the bound mRNA. Excess cellular iron stimulates the assembly of a [4Fe–4S] cluster in IRP1, inhibiting its IRE-binding ability and converting it to an aconitase. The three-dimensional structure of IRP1 in its different active forms will provide details of the interconversion process and clarify the selective recognition of mRNA, Fe–S sites and catalytic activity. To this end, the apo form of IRP1 bound to a ferritin IRE was crystallized. Crystals belong to the monoclinic space group P2 1 , with unit-cell parameters a = 109.6, b = 80.9, c = 142.9 Å, β = 92.0°. Native data sets have been collected from several crystals with resolution extending to 2.8 Å and the structure has been solved by molecular replacement

  11. Molecular cloning and preliminary function study of iron responsive element binding protein 1 gene from cypermethrin-resistant Culex pipiens pallens

    Directory of Open Access Journals (Sweden)

    Tan Wenbin

    2011-11-01

    Full Text Available Abstract Background Insecticide resistance jeopardizes the control of mosquito populations and mosquito-borne disease control, which creates a major public health concern. Two-dimensional electrophoresis identified one protein segment with high sequence homology to part of Aedes aegypti iron-responsive element binding protein (IRE-BP. Method RT-PCR and RACE (rapid amplification of cDNA end were used to clone a cDNA encoding full length IRE-BP 1. Real-time quantitative RT-PCR was used to evaluate the transcriptional level changes in the Cr-IRE strain Aedes aegypti compared to the susceptible strain of Cx. pipiens pallens. The expression profile of the gene was established in the mosquito life cycle. Methyl tritiated thymidine (3H-TdR was used to observe the cypermethrin resistance changes in C6/36 cells containing the stably transfected IRE-BP 1 gene of Cx. pipiens pallens. Results The complete sequence of iron responsive element binding protein 1 (IRE-BP 1 has been cloned from the cypermethrin-resistant strain of Culex pipiens pallens (Cr-IRE strain. Quantitative RT-PCR analysis indicated that the IRE-BP 1 transcription level was 6.7 times higher in the Cr-IRE strain than in the susceptible strain of 4th instar larvae. The IRE-BP 1 expression was also found to be consistently higher throughout the life cycle of the Cr-IRE strain. A protein of predicted size 109.4 kDa has been detected by Western blotting in IRE-BP 1-transfected mosquito C6/36 cells. These IRE-BP 1-transfected cells also showed enhanced cypermethrin resistance compared to null-transfected or plasmid vector-transfected cells as determined by 3H-TdR incorporation. Conclusion IRE-BP 1 is expressed at higher levels in the Cr-IRE strain, and may confer some insecticide resistance in Cx. pipiens pallens.

  12. Investigation of human cationic antimicrobial protein-18 (hCAP-18), lactoferrin and CD163 as potential biomarkers for ovarian cancer

    DEFF Research Database (Denmark)

    Lim, Ratana; Lappas, Martha; Riley, Clyde

    2013-01-01

    controls, including 28 women with benign pelvic masses; 91 cancer, including 21 women with borderline tumours). Localisation of each antigen within the ovary was assessed by immunohistochemistry and serum concentrations determined by ELISA assays. RESULTS: Immunoreactive (ir) hCAP-18 and lactoferrin were......BACKGROUND: Epithelial ovarian cancer is one of the leading causes of gynaecological cancer morbidity and mortality in women. Early stage ovarian cancer is usually asymptomatic, therefore, is often first diagnosed when it is widely disseminated. Currently available diagnostics lack the requisite...... and plasma concentrations of three putative ovarian cancer biomarkers: human cationic antimicrobial protein-18 (hCAP-18); lactoferrin; and CD163 in normal healthy women and women with ovarian cancer. METHODS: In this case-control cohort study, ovarian tissue and blood samples were obtained from 164 women (73...

  13. Inactivation of transferrin iron binding capacity by the neutrophil myeloperoxidase system

    International Nuclear Information System (INIS)

    Clark, R.A.; Pearson, D.W.

    1989-01-01

    Human serum apotransferrin was exposed to the isolated myeloperoxidase-H2O2-halide system or to phorbol ester-activated human neutrophils. Such treatment resulted in a marked loss in transferrin iron binding capacity as well as concomitant iodination of transferrin. Each component of the cell-free system (myeloperoxidase, H2O2, iodide) or neutrophil system (neutrophils, phorbol ester, iodide) was required in order to observe these changes. In the cell-free system, the H2O2 requirement was fulfilled by either reagent H2O2 or the peroxide-generating system glucose oxidase plus glucose. Both loss of iron binding capacity and transferrin iodination by either the myeloperoxidase system or activated neutrophils were blocked by azide or catalase. The isolated peroxidase system had an acidic pH optimum, whereas the intact cell system was more efficient at neutral pH. The kinetics of changes in iron binding capacity and iodination closely paralleled one another, exhibiting t1/2 values of less than 1 min for the myeloperoxidase-H2O2 system, 3-4 min for the myeloperoxidase-glucose oxidase system, and 8 min for the neutrophil system. That the occupied binding site is protected from the myeloperoxidase system was suggested by (1) a failure to mobilize iron from iron-loaded transferrin, (2) an inverse correlation between initial iron saturation and myeloperoxidase-mediated loss of iron binding capacity, and (3) decreased myeloperoxidase-mediated iodination of iron-loaded versus apotransferrin. Since as little as 1 atom of iodide bound per molecule of transferrin was associated with substantial losses in iron binding capacity, there appears to be a high specificity of myeloperoxidase-catalyzed iodination for residues at or near the iron binding sites. Amino acid analysis of iodinated transferrin (approximately 2 atoms/molecule) demonstrated that iodotyrosine was the predominant iodinated species

  14. Metal ion binding to iron oxides

    Science.gov (United States)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  15. Salivary proline-rich protein may reduce tannin-iron chelation: a systematic narrative review

    OpenAIRE

    Delimont, Nicole M.; Rosenkranz, Sara K.; Haub, Mark D.; Lindshield, Brian L.

    2017-01-01

    Background Tannins are often cited for antinutritional effects, including chelation of non-heme iron. Despite this, studies exploring non-heme iron bioavailability inhibition with long-term consumption have reported mixed results. Salivary proline-rich proteins (PRPs) may mediate tannin-antinutritional effects on non-heme iron bioavailability. Aim To review evidence regarding biochemical binding mechanisms and affinity states between PRPs and tannins, as well as effects of PRPs on non-heme ir...

  16. Analysis of NFU-1 metallocofactor binding-site substitutions-impacts on iron-sulfur cluster coordination and protein structure and function.

    Science.gov (United States)

    Wesley, Nathaniel A; Wachnowsky, Christine; Fidai, Insiya; Cowan, J A

    2017-11-01

    Iron-sulfur (Fe/S) clusters are ancient prosthetic groups found in numerous metalloproteins and are conserved across all kingdoms of life due to their diverse, yet essential functional roles. Genetic mutations to a specific subset of mitochondrial Fe/S cluster delivery proteins are broadly categorized as disease-related under multiple mitochondrial dysfunction syndrome (MMDS), with symptoms indicative of a general failure of the metabolic system. Multiple mitochondrial dysfunction syndrome 1 (MMDS1) arises as a result of the missense mutation in NFU1, an Fe/S cluster scaffold protein, which substitutes a glycine near the Fe/S cluster-binding pocket to a cysteine (p.Gly208Cys). This substitution has been shown to promote protein dimerization such that cluster delivery to NFU1 is blocked, preventing downstream cluster trafficking. However, the possibility of this additional cysteine, located adjacent to the cluster-binding site, serving as an Fe/S cluster ligand has not yet been explored. To fully understand the consequences of this Gly208Cys replacement, complementary substitutions at the Fe/S cluster-binding pocket for native and Gly208Cys NFU1 were made, along with six other variants. Herein, we report the results of an investigation on the effect of these substitutions on both cluster coordination and NFU1 structure and function. The data suggest that the G208C substitution does not contribute to cluster binding. Rather, replacement of the glycine at position 208 changes the oligomerization state as a result of global structural alterations that result in the downstream effects manifest as MMDS1, but does not perturb the coordination chemistry of the Fe-S cluster. © 2017 Federation of European Biochemical Societies.

  17. Dietary lactalbumin and lactoferrin interact with inulin to modulate energy balance in obese rats.

    Science.gov (United States)

    Singh, Arashdeep; Zapata, Rizaldy C; Pezeshki, Adel; Chelikani, Prasanth K

    2017-06-01

    To determine whether diets enriched with the whey protein components lactalbumin and lactoferrin interact additively with inulin to improve energy balance by decreasing food intake and body weight (BW). In four experiments, diet-induced obese rats were randomized to diets containing either lactalbumin or lactoferrin at low (20% kcal) or high (40% kcal) doses, and inulin at low (7.5% w/w) or high (15% w/w) doses, alone or in combination. Energy intake (EI), energy expenditure (EE), respiratory quotient (RQ), BW, body composition, plasma insulin, and leptin concentrations were measured. Lactalbumin and inulin at low doses were ineffective, whereas high doses additively decreased EI and RQ. Low doses of lactoferrin and inulin additively decreased EI, BW, fat and lean mass, and RQ. High doses of lactoferrin and inulin additively decreased EI, supra-additively decreased BW, fat, and lean mass, and also decreased RQ and plasma leptin concentrations. High doses of lactalbumin and inulin additively decreased EI. Importantly, lactoferrin and inulin at both low and high dose combinations, additively or supra-additively, decreased EI, BW, and adiposity. © 2017 The Obesity Society.

  18. Clearance and binding of radiolabeled glycoproteins by cells of the murine mononuclear phagocyte system

    International Nuclear Information System (INIS)

    Imber, M.J.

    1982-01-01

    The clearance and binding of radiolabeled lactoferrin and fast α 2 -macroglobulin were studied. Both glycoproteins cleared rapidly following intravenous injection in mice, and both bound specifically to discrete receptors on murine peritoneal macrophages. The simultaneous presence of excess, unlabeled ligands specific for receptors recognizing terminal fucose, mannose, N-acetylglucosamine or galactose residues did not inhibit the clearance or binding of either lactoferrin or fast-α 2 M. The clearance and binding of enzymatically defucosylated lactoferrin was indistinguishable from native lactoferrin, indicating that terminal α(1-3)-linked fucose on lactoferrin is not necessary for receptor recognition. The clearance and binding of two fast -α 2 M forms, α 2 M-trypsin and α 2 M-MeNH 2 cross compete with each other. Saturation binding studies indicated that the total binding of mannosyl -BSA, fusocyl-BSA, and N-acetylglucosaminyl-BSA to macrophages activated by BCG was approximately 15% of the levels observed with inflammatory macrophages elicited by thioglycollate broth. Cross-competition binding studies demonstrated a common surface receptor mediated binding of all three neoglycoprotein ligands and was identical to the receptor on mononuclear phagocytes that binds mannosyl- and N-acetylglucosaminyl-terminated glycoproteins. These results suggest that difference between discrete states of macrophage function may be correlated with selective changes in levels of the surface receptor for mannose-containing glycoproteins

  19. Lactoferrin Adsorbed onto Biomimetic Hydroxyapatite Nanocrystals Controlling - In Vivo - the Helicobacter pylori Infection

    Science.gov (United States)

    Fulgione, Andrea; Nocerino, Nunzia; Iannaccone, Marco; Roperto, Sante; Capuano, Federico; Roveri, Norberto; Lelli, Marco; Crasto, Antonio; Calogero, Armando; Pilloni, Argenia Paola; Capparelli, Rosanna

    2016-01-01

    Background The resistance of Helicobacter pylori to the antibiotic therapy poses the problem to discover new therapeutic approaches. Recently it has been stated that antibacterial, immunomodulatory, and antioxidant properties of lactoferrin are increased when this protein is surface-linked to biomimetic hydroxyapatite nanocrystals. Objective Based on these knowledge, the aim of the study was to investigate the efficacy of lactoferrin delivered by biomimetic hydroxyapatite nanoparticles with cell free supernatant from probiotic Lactobacillus paracasei as an alternative therapy against Helicobacter pylori infection. Methods Antibacterial and antinflammatory properties, humoral antibody induction, histopathological analysis and absence of side effects were evaluated in both in vitro and in vivo studies. Results The tests carried out have been demonstrated better performance of lactoferrin delivered by biomimetic hydroxyapatite nanoparticles combined with cell free supernatant from probiotic Lactobacillus paracasei compared to both lactoferrin and probiotic alone or pooled. Conclusion These findings indicate the effectiveness and safety of our proposed therapy as alternative treatment for Helicobacter pylori infection. PMID:27384186

  20. Isolation and characterization of iron chelators from turmeric (Curcuma longa): selective metal binding by curcuminoids.

    Science.gov (United States)

    Messner, Donald J; Surrago, Christine; Fiordalisi, Celia; Chung, Wing Yin; Kowdley, Kris V

    2017-10-01

    Iron overload disorders may be treated by chelation therapy. This study describes a novel method for isolating iron chelators from complex mixtures including plant extracts. We demonstrate the one-step isolation of curcuminoids from turmeric, the medicinal food spice derived from Curcuma longa. The method uses iron-nitrilotriacetic acid (NTA)-agarose, to which curcumin binds rapidly, specifically, and reversibly. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin each bound iron-NTA-agarose with comparable affinities and a stoichiometry near 1. Analyses of binding efficiencies and purity demonstrated that curcuminoids comprise the primary iron binding compounds recovered from a crude turmeric extract. Competition of curcuminoid binding to the iron resin was used to characterize the metal binding site on curcumin and to detect iron binding by added chelators. Curcumin-Iron-NTA-agarose binding was inhibited by other metals with relative potency: (>90% inhibition) Cu 2+  ~ Al 3+  > Zn 2+  ≥ Ca 2+  ~ Mg 2+  ~ Mn 2+ (80% by addition of iron to the media; uptake was completely restored by desferoxamine. Ranking of metals by relative potencies for blocking curcumin uptake agreed with their relative potencies in blocking curcumin binding to iron-NTA-agarose. We conclude that curcumin can selectively bind toxic metals including iron in a physiological setting, and propose inhibition of curcumin binding to iron-NTA-agarose for iron chelator screening.

  1. Manganese binding proteins in human and cow's milk

    International Nuclear Information System (INIS)

    Loennerdal, B.; Keen, C.L.; Hurley, L.S.

    1985-01-01

    Manganese nutrition in the neonatal period is poorly understood, due in part to a lack of information on the amount of manganese in infant foods and its bioavailability. Since the molecular localization of an element in foods is one determinant of its subsequent bioavailability, a study was made of the binding of manganese in human and cow's milk. An extrinsic label of 54 Mn was shown to equilibrate isotopically with native manganese in milks and formulas. Milk samples were separated into fat, casein and whey by ultracentrifugation. In human milk, the major part (71%) of manganese was found in whey, 11% in casein and 18% in the lipid fraction. In contrast, in cow's milk, 32% of total manganese was in whey, 67% in casein and 1% in lipid. Within the human whey fraction, most of the manganese was bound to lactoferrin, while in cow's whey, manganese was mostly complexed to ligands with molecular weights less than 200. The distribution of manganese in formulas was closer to that of human milk than of cow's milk. The bioavailability of manganese associated with lactoferrin, casein and low molecular weight complexes needs to be assessed

  2. Vaginal Lactoferrin Modulates PGE2, MMP-9, MMP-2, and TIMP-1 Amniotic Fluid Concentrations

    Directory of Open Access Journals (Sweden)

    Alessandro Trentini

    2016-01-01

    Full Text Available Inflammation plays an important role in pregnancy, and cytokine and matrix metalloproteases (MMPs imbalance has been associated with premature rupture of membranes and increased risk of preterm delivery. Previous studies have demonstrated that lactoferrin (LF, an iron-binding protein with anti-inflammatory properties, is able to decrease amniotic fluid (AF levels of IL-6. Therefore, we aimed to evaluate the effect of vaginal LF administration on amniotic fluid PGE2 level and MMP-TIMP system in women undergoing genetic amniocentesis. One hundred and eleven women were randomly divided into controls (n=57 or treated with LF 4 hours before amniocentesis (n=54. Amniotic fluid PGE2, active MMP-9 and MMP-2, and TIMP-1 and TIMP-2 concentrations were determined by commercially available assays and the values were normalized by AF creatinine concentration. PGE2, active MMP-9, and its inhibitor TIMP-1 were lower in LF-treated group than in controls (p<0.01, p<0.005, and p<0.001, resp.. Conversely, active MMP-2 (p<0.0001 and MMP-2/TIMP-2 molar ratio (p<0.001 were increased, whilst TIMP-2 was unchanged. Our data suggest that LF administration is able to modulate the inflammatory response following amniocentesis, which may counteract cytokine and prostanoid imbalance that leads to abortion. This trial is registered with Clinical Trial number NCT02695563.

  3. Oral administration of iron-saturated bovine lactoferrin-loaded ceramic nanocapsules for breast cancer therapy and influence on iron and calcium metabolism.

    Science.gov (United States)

    Mahidhara, Ganesh; Kanwar, Rupinder K; Roy, Kislay; Kanwar, Jagat R

    2015-01-01

    We determined the anticancer efficacy and internalization mechanism of our polymeric-ceramic nanoparticle system (calcium phosphate nanocores, enclosed in biodegradable polymers chitosan and alginate nanocapsules/nanocarriers [ACSC NCs]) loaded with iron-saturated bovine lactoferrin (Fe-bLf) in a breast cancer xenograft model. ACSC-Fe-bLf NCs with an overall size of 322±27.2 nm were synthesized. In vitro internalization and anticancer efficacy were evaluated in the MDA-MB-231 cells using multicellular tumor spheroids, CyQUANT and MTT assays. These NCs were orally delivered in a breast cancer xenograft mice model, and their internalization, cytotoxicity, biodistribution, and anticancer efficacy were evaluated. Chitosan-coated calcium phosphate Fe-bLf NCs effectively (59%, P≤0.005) internalized in a 1-hour period using clathrin-mediated endocytosis (P≤0.05) and energy-mediated pathways (P≤0.05) for internalization; 3.3 mg/mL of ACSC-Fe-bLf NCs completely disintegrated (~130-fold reduction, P≤0.0005) the tumor spheroids in 72 hours and 96 hours. The IC50 values determined for ACSC-Fe-bLf NCs were 1.69 mg/mL at 10 hours and 1.62 mg/mL after 20 hours. We found that Fe-bLf-NCs effectively (P≤0.05) decreased the tumor size (4.8-fold) compared to the void NCs diet and prevented tumor recurrence when compared to intraperitoneal injection of Taxol and Doxorubicin. Receptor gene expression and micro-RNA analysis confirmed upregulation of low-density lipoprotein receptor and transferrin receptor (liver, intestine, and brain). Several micro-RNAs responsible for iron metabolism upregulated with NCs were identified. Taken together, orally delivered Fe-bLf NCs offer enhanced antitumor activity in breast cancer by internalizing via low-density lipoprotein receptor and transferrin receptor and regulating the micro-RNA expression. These NCs also restored the body iron and calcium levels and increased the hematologic counts.

  4. Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum.

    Science.gov (United States)

    Han, Jigang; Lakshman, Dilip K; Galvez, Leny C; Mitra, Sharmila; Baenziger, Peter Stephen; Mitra, Amitava

    2012-03-09

    The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Using the tools of plant genetic engineering, a broad-spectrum antimicrobial gene was tested for resistance against head blight caused by Fusarium graminearum Schwabe, a devastating disease of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) that reduces both grain yield and quality. A construct containing a bovine lactoferrin cDNA was used to transform wheat using an Agrobacterium-mediated DNA transfer system to express this antimicrobial protein in transgenic wheat. Transformants were analyzed by Northern and Western blots to determine lactoferrin gene expression levels and were inoculated with the head blight disease fungus F. graminearum. Transgenic wheat showed a significant reduction of disease incidence caused by F. graminearum compared to control wheat plants. The level of resistance in the highly susceptible wheat cultivar Bobwhite was significantly higher in transgenic plants compared to control Bobwhite and two untransformed commercial wheat cultivars, susceptible Wheaton and tolerant ND 2710. Quantification of the expressed lactoferrin protein by ELISA in transgenic wheat indicated a positive correlation between the lactoferrin gene expression levels and the levels of disease resistance. Introgression of the lactoferrin gene into elite commercial wheat, barley and other susceptible cereals may enhance resistance to F. graminearum.

  5. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  6. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake

    DEFF Research Database (Denmark)

    Hvidberg, Vibeke; Jacobsen, Christian; Strong, Roland K

    2005-01-01

    Neutrophil-gelatinase-associated lipocalin (NGAL) is a prominent protein of specific granules of human neutrophils also synthesized by epithelial cells during inflammation. NGAL binds bacterial siderophores preventing bacteria from retrieving iron from this source. Also, NGAL may be important in ...... by surface plasmon resonance analysis. Furthermore, a rat yolk sac cell line known to express high levels of megalin, endocytosed NGAL by a mechanism completely blocked by an antibody against megalin.......Neutrophil-gelatinase-associated lipocalin (NGAL) is a prominent protein of specific granules of human neutrophils also synthesized by epithelial cells during inflammation. NGAL binds bacterial siderophores preventing bacteria from retrieving iron from this source. Also, NGAL may be important...

  7. Evaluation of energy spectral information in nuclear imaging and investigation of protein binding of cationic radionuclides by lactoferrin. Comprehensive progress report, October 1, 1977-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hoffer, P. B.

    1980-06-10

    Construction of an Anger camera-computer system which allows collection of both the position and energy signals from events detected by the scintillation camera has been completed. The system allows correction of energy response non-uniformity of the detector and facilitates research related to effects of energy discrimination in radionuclide scintigraphy. The system consists of electronic hardware to transmit and digitize the energy signal, software to record and process that signal in conjunction with spatial positioning signals, and additional hardware for recording the processed images so that they can be evaluated by observers. Preliminary results indicate that the system is useful in evaluating clinical images. Assymetric (eccentric) energy windows do improve image quality and are of value in improving detection of lesions on liver scintigraphs. The mechanisms by which Ga-67 is taken up in infection and tumor has been elucidated, and the uptake of radiogallium in microorganisms as a function of its interaction with siderophores was also studied. The primary function of these low molecular weight compounds is to trap ferric ion. However, gallium may be substituted for ferric ion and becomes trapped within the microorganism. The uptake of radiogallium by neutrophils and the role that lactoferrin plays in both intracellular localization of radiogallium and subsequent deposition of the radionuclide at sites of infection were also studied. Investigation of ferric ion analogs reveals definate differences in the affinity of these metals for binding molecules which helps explain their biologic activity. While ferric ion has the strongest affinity for such molecules, gallium has very high affinity for siderophores, moderate affinity for lactoferrin, and lower affinity for transferrin. The relative affinity of indium for these molecules is in approximately the reverse order.

  8. Architecture of the Yeast Mitochondrial Iron-Sulfur Cluster Assembly Machinery: THE SUB-COMPLEX FORMED BY THE IRON DONOR, Yfh1 PROTEIN, AND THE SCAFFOLD, Isu1 PROTEIN.

    Science.gov (United States)

    Ranatunga, Wasantha; Gakh, Oleksandr; Galeano, Belinda K; Smith, Douglas Y; Söderberg, Christopher A G; Al-Karadaghi, Salam; Thompson, James R; Isaya, Grazia

    2016-05-06

    The biosynthesis of Fe-S clusters is a vital process involving the delivery of elemental iron and sulfur to scaffold proteins via molecular interactions that are still poorly defined. We reconstituted a stable, functional complex consisting of the iron donor, Yfh1 (yeast frataxin homologue 1), and the Fe-S cluster scaffold, Isu1, with 1:1 stoichiometry, [Yfh1]24·[Isu1]24 Using negative staining transmission EM and single particle analysis, we obtained a three-dimensional reconstruction of this complex at a resolution of ∼17 Å. In addition, via chemical cross-linking, limited proteolysis, and mass spectrometry, we identified protein-protein interaction surfaces within the complex. The data together reveal that [Yfh1]24·[Isu1]24 is a roughly cubic macromolecule consisting of one symmetric Isu1 trimer binding on top of one symmetric Yfh1 trimer at each of its eight vertices. Furthermore, molecular modeling suggests that two subunits of the cysteine desulfurase, Nfs1, may bind symmetrically on top of two adjacent Isu1 trimers in a manner that creates two putative [2Fe-2S] cluster assembly centers. In each center, conserved amino acids known to be involved in sulfur and iron donation by Nfs1 and Yfh1, respectively, are in close proximity to the Fe-S cluster-coordinating residues of Isu1. We suggest that this architecture is suitable to ensure concerted and protected transfer of potentially toxic iron and sulfur atoms to Isu1 during Fe-S cluster assembly. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Can lactoferrin modulate the immunostimulant activity of levamisole in rats

    Directory of Open Access Journals (Sweden)

    Wafaa Abdou Mohamed Mohamed

    2014-03-01

    Full Text Available Objective: The aim of this study was to study the immunomodulatory activity improvement of levamisole by using lactoferrin when applied to immunosuppressed rat model. Methods: The study was designed as follows, 140 male albino rats (250-280 g 14 weeks old were used in our work. Rats were randomly divided into seven groups, 20 in each. The group I was kept as a control, group II was given cyclophosphamide (CYP at a single intraperitoneal dose of (250 mg/kg body weight, group III CYP and lactoferrin (Lac treated group, group IV orally administrated Lac only (0.5% in drinking water, group V treated with CYP and levamisole, group VI administrated levamisole orally at a dose of (2.5 mg/kg body weight and group VII was given CYP, Lac and levamisole. Animals were sacrificed and two separate blood samples were collected after 21 days from the beginning of the experiment for measuring the total and differential leukocyte count, serum total proteins, albumin, alpha globulin, beta globulin and gamma globulin, Nitric oxide (NO production and lysozyme activity. Results: CYP group showed significant decrease in the above mentioned parameters, which were improved after administration of both lactoferrin and levamisole. Conclusion: Our study concluded that lactoferrin improve the immunostimulant effect of levamisole in CYP- immunosuppressed rats. J Clin Exp Invest 2014; 5 (1: 48-53

  10. Lack of Plasma Protein Hemopexin Results in Increased Duodenal Iron Uptake.

    Science.gov (United States)

    Fiorito, Veronica; Geninatti Crich, Simonetta; Silengo, Lorenzo; Aime, Silvio; Altruda, Fiorella; Tolosano, Emanuela

    2013-01-01

    The body concentration of iron is regulated by a fine equilibrium between absorption and losses of iron. Iron can be absorbed from diet as inorganic iron or as heme. Hemopexin is an acute phase protein that limits iron access to microorganisms. Moreover, it is the plasma protein with the highest binding affinity for heme and thus it mediates heme-iron recycling. Considering its involvement in iron homeostasis, it was postulated that hemopexin may play a role in the physiological absorption of inorganic iron. Hemopexin-null mice showed elevated iron deposits in enterocytes, associated with higher duodenal H-Ferritin levels and a significant increase in duodenal expression and activity of heme oxygenase. The expression of heme-iron and inorganic iron transporters was normal. The rate of iron absorption was assessed by measuring the amount of (57)Fe retained in tissues from hemopexin-null and wild-type animals after administration of an oral dose of (57)FeSO4 or of (57)Fe-labelled heme. Higher iron retention in the duodenum of hemopexin-null mice was observed as compared with normal mice. Conversely, iron transfer from enterocytes to liver and bone marrow was unaffected in hemopexin-null mice. The increased iron level in hemopexin-null duodenum can be accounted for by an increased iron uptake by enterocytes and storage in ferritins. These data indicate that the lack of hemopexin under physiological conditions leads to an enhanced duodenal iron uptake thus providing new insights to our understanding of body iron homeostasis.

  11. Structural Simulation of MHC-peptide Interactions using T-cell Epitope in Iron-acquisition Protein of N. meningitides for Vaccine Design

    Directory of Open Access Journals (Sweden)

    Namrata Mishra

    2010-12-01

    Full Text Available The present work uses a structural simulation approach to identify the potential target vaccine candidates or T cell epitopes (antigenic region that can activate T cell response in two iron acquisition proteins from Neisseria. An iron regulated outer membrane protein frpB: extracellular, [NMB1988], and a Major ferric Iron-binding protein fbpA: periplasmic, [NMB0634] critical for the survival of the pathogen in the host were used. Ten novel promiscuous epitopes from the two iron acquisition proteins were identified using bioinformatics interface. Of these epitopes, 630VQKAVGSIL638 present on frpB with high binding affinity for allele HLA*DR1 was identified with an anchor position at P2, an aliphatic residue at P4 and glycine at P6 making it thereby a potential quality choice for linking peptide-loaded MHC dynamics to T-cell activation and vaccine constructs. The feasibility and structural binding of predicted peptide to the respective HLA allele was investigated by molecular modeling and template-based structural simulation. The conformational properties of the linear peptide were investigated by molecular dynamics using GROMOS96 package and Swiss PDB viewer.

  12. APPLICABILITY OF A HUMAN LACTOFERRIN IN PEDIATRIC PRACTICE

    Directory of Open Access Journals (Sweden)

    T. E. Borovik

    2014-01-01

    Full Text Available Modern data on efficiency and safety of a recombinant human lactoferrin (hLf and prospects of its use in pediatric practice are presented in the review of literary data. The unique anti-infectious properties of biologically active protein of the hLf, its high antimicrobic, antiviral, antifungal and anti-parasitic activity are noted. Ability to stimulate natural immunity, to interact with other antimicrobic peptides, in particular, with lysozyme and secretory leukocyte protease inhibitor is analysed. In this regard it is indicated prospects of application of the hLf in treatment of prematurely born and hypotrophic children, patients with chronic nutritional deficiency for the purpose of prevention of infectious diseases and correction of inflammatory changes in the organism of a child, includingacute respiratory virus and enteric infections in children. It is expedient to apply hLf in surgical practice for reduction of a degree of manifestation of the acute pro-inflammatory response, and also for prevention of infectious complications, especially after abdominal operations, in complex treatment of children with a severe generalized infection and multi-organ failure, for prevention of intrahospital nosocomial infections in children hospitals.Key words: children, prematurely born, nutritional deficiency, infections, lactoferrin, recombinant human lactoferrin.

  13. Transgenic expression of lactoferrin imparts enhanced resistance to head blight of wheat caused by Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Han Jigang

    2012-03-01

    Full Text Available Abstract Background The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Using the tools of plant genetic engineering, a broad-spectrum antimicrobial gene was tested for resistance against head blight caused by Fusarium graminearum Schwabe, a devastating disease of wheat (Triticum aestivum L. and barley (Hordeum vulgare L. that reduces both grain yield and quality. Results A construct containing a bovine lactoferrin cDNA was used to transform wheat using an Agrobacterium-mediated DNA transfer system to express this antimicrobial protein in transgenic wheat. Transformants were analyzed by Northern and Western blots to determine lactoferrin gene expression levels and were inoculated with the head blight disease fungus F. graminearum. Transgenic wheat showed a significant reduction of disease incidence caused by F. graminearum compared to control wheat plants. The level of resistance in the highly susceptible wheat cultivar Bobwhite was significantly higher in transgenic plants compared to control Bobwhite and two untransformed commercial wheat cultivars, susceptible Wheaton and tolerant ND 2710. Quantification of the expressed lactoferrin protein by ELISA in transgenic wheat indicated a positive correlation between the lactoferrin gene expression levels and the levels of disease resistance. Conclusions Introgression of the lactoferrin gene into elite commercial wheat, barley and other susceptible cereals may enhance resistance to F. graminearum.

  14. Prebiotic effects of bovine lactoferrin on specific probiotic bacteria.

    Science.gov (United States)

    Chen, Po-Wen; Liu, Zhen-Shu; Kuo, Tai-Chen; Hsieh, Min-Chi; Li, Zhe-Wei

    2017-04-01

    Bovine lactoferrin (bLf) is a natural iron-binding protein and it has been suggested to be a prebiotic agent, but this finding remains inconclusive. This study explores the prebiotic potential of bLf in 14 probiotics. Initially, bLf (1-32 mg/mL) treatment showed occasional and slight prebiotic activity in several probiotics only during the late experimental period (48, 78 h) at 37 °C. We subsequently supposed that bLf exerts stronger prebiotic effects when probiotic growth has been temperately retarded. Therefore, we incubated the probiotics at different temperatures, namely 37 °C, 28 °C, room temperature (approximately 22-24 °C), and 22 °C, to retard or inhibit their growth. As expected, bLf showed more favorable prebiotic activity in several probiotics when their growth was partially retarded at room temperature. Furthermore, at 22 °C, the growth of Bifidobacterium breve, Lactobacillus coryniformis, L. delbrueckii, L. acidophilus, B. angulatum, B. catenulatum, and L. paraplantarum were completely blocked. Notably, these probiotics started regrowing in the presence of bLf (1-32 mg/mL) in a significant and dose-dependent manner. Accordingly, bLf significantly increased the growth of Pediococcus pentosaceus, L. rhamnosus, and L. paracasei (BCRC 17483; a locally isolated strain) when their growth was retarded by incubation at 22 °C. In conclusion, bLf showed inconsistent prebiotic activity in the 14 probiotics at 37 °C, but revealed strong prebiotic activity in 10 probiotic strains at 22 °C. Therefore, this study enables determining additional roles of Lf in probiotic strains, which can facilitate developing novel combinational approaches by simultaneously using Lf and specific probiotics.

  15. Trichomonas vaginalis Repair of Iron Centres Proteins: The Different Role of Two Paralogs.

    Science.gov (United States)

    Nobre, Lígia S; Meloni, Dionigia; Teixeira, Miguel; Viscogliosi, Eric; Saraiva, Lígia M

    2016-06-01

    Trichomonas vaginalis, the causative parasite of one of the most prevalent sexually transmitted diseases is, so far, the only protozoan encoding two putative Repair of Iron Centres (RIC) proteins. Homologs of these proteins have been shown to protect bacteria from the chemical stress imposed by mammalian immunity. In this work, the biochemical and functional characterisation of the T. vaginalis RICs revealed that the two proteins have different properties. Expression of ric1 is induced by nitrosative stress but not by hydrogen peroxide, while ric2 transcription remained unaltered under similar conditions. T. vaginalis RIC1 contains a di-iron centre, but RIC2 apparently does not. Only RIC1 resembles bacterial RICs on spectroscopic profiling and repairing ability of oxidatively-damaged iron-sulfur clusters. Unexpectedly, RIC2 was found to bind DNA plasmid and T. vaginalis genomic DNA, a function proposed to be related with its leucine zipper domain. The two proteins also differ in their cellular localization: RIC1 is expressed in the cytoplasm only, and RIC2 occurs both in the nucleus and cytoplasm. Therefore, we concluded that the two RIC paralogs have different roles in T. vaginalis, with RIC2 showing an unprecedented DNA binding ability when compared with all other until now studied RICs. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Lactoferrin dampens high-fructose corn syrup-induced hepatic manifestations of the metabolic syndrome in a murine model.

    Directory of Open Access Journals (Sweden)

    Yi-Chieh Li

    Full Text Available Hepatic manifestations of the metabolic syndrome are related obesity, type 2 diabetes/insulin resistance and non-alcoholic fatty liver disease. Here we investigated how the anti-inflammatory properties of lactoferrin can protect against the onset of hepatic manifestations of the metabolic syndrome by using a murine model administered with high-fructose corn syrup. Our results show that a high-fructose diet stimulates intestinal bacterial overgrowth and increases intestinal permeability, leading to the introduction of endotoxin into blood circulation and liver. Immunohistochemical staining of Toll-like receptor-4 and thymic stromal lymphopoietin indicated that lactoferrin can modulate lipopolysaccharide-mediated inflammatory cascade. The important regulatory roles are played by adipokines including interleukin-1β, interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and adiponectin, ultimately reducing hepatitis and decreasing serum alanine aminotransferase release. These beneficial effects of lactoferrin related to the downregulation of the lipopolysaccharide-induced inflammatory cascade in the liver. Furthermore, lactoferrin reduced serum and hepatic triglycerides to prevent lipid accumulation in the liver, and reduced lipid peroxidation, resulting in 4-hydroxynonenal accumulation. Lactoferrin reduced oral glucose tolerance test and homeostasis model assessment-insulin resistance. Lactoferrin administration thus significantly lowered liver weight, resulting from a decrease in the triglyceride and cholesterol synthesis that activates hepatic steatosis. Taken together, these results suggest that lactoferrin protected against high-fructose corn syrup induced hepatic manifestations of the metabolic syndrome.

  17. Lactoferrin dampens high-fructose corn syrup-induced hepatic manifestations of the metabolic syndrome in a murine model.

    Science.gov (United States)

    Li, Yi-Chieh; Hsieh, Chang-Chi

    2014-01-01

    Hepatic manifestations of the metabolic syndrome are related obesity, type 2 diabetes/insulin resistance and non-alcoholic fatty liver disease. Here we investigated how the anti-inflammatory properties of lactoferrin can protect against the onset of hepatic manifestations of the metabolic syndrome by using a murine model administered with high-fructose corn syrup. Our results show that a high-fructose diet stimulates intestinal bacterial overgrowth and increases intestinal permeability, leading to the introduction of endotoxin into blood circulation and liver. Immunohistochemical staining of Toll-like receptor-4 and thymic stromal lymphopoietin indicated that lactoferrin can modulate lipopolysaccharide-mediated inflammatory cascade. The important regulatory roles are played by adipokines including interleukin-1β, interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and adiponectin, ultimately reducing hepatitis and decreasing serum alanine aminotransferase release. These beneficial effects of lactoferrin related to the downregulation of the lipopolysaccharide-induced inflammatory cascade in the liver. Furthermore, lactoferrin reduced serum and hepatic triglycerides to prevent lipid accumulation in the liver, and reduced lipid peroxidation, resulting in 4-hydroxynonenal accumulation. Lactoferrin reduced oral glucose tolerance test and homeostasis model assessment-insulin resistance. Lactoferrin administration thus significantly lowered liver weight, resulting from a decrease in the triglyceride and cholesterol synthesis that activates hepatic steatosis. Taken together, these results suggest that lactoferrin protected against high-fructose corn syrup induced hepatic manifestations of the metabolic syndrome.

  18. Competitive protein binding assay

    International Nuclear Information System (INIS)

    Kaneko, Toshio; Oka, Hiroshi

    1975-01-01

    The measurement of cyclic GMP (cGMP) by competitive protein binding assay was described and discussed. The principle of binding assay was represented briefly. Procedures of our method by binding protein consisted of preparation of cGMP binding protein, selection of 3 H-cyclic GMP on market, and measurement procedures. In our method, binding protein was isolated from the chrysalis of silk worm. This method was discussed from the points of incubation medium, specificity of binding protein, the separation of bound cGMP from free cGMP, and treatment of tissue from which cGMP was extracted. cGMP existing in the tissue was only one tenth or one scores of cGMP, and in addition, cGMP competed with cGMP in binding with binding protein. Therefore, Murad's technique was applied to the isolation of cGMP. This method provided the measurement with sufficient accuracy; the contamination by cAMP was within several per cent. (Kanao, N.)

  19. Effects of lactoferrin derived peptides on simulants of biological warfare agents

    NARCIS (Netherlands)

    Sijbrandij, T.; Ligtenberg, Antoon J.; Nazmi, K.; Veerman, Enno C. I.; Bolscher, Jan G. M.; Bikker, Floris J.

    2017-01-01

    Lactoferrin (LF) is an important immune protein in neutrophils and secretory fluids of mammals. Bovine LF (bLF) harbours two antimicrobial stretches, lactoferricin and lactoferampin, situated in close proximity in the N1 domain. To mimic these antimicrobial domain parts a chimeric peptide

  20. Luminal digestion of lactoferrin in suckling and weanling rats

    International Nuclear Information System (INIS)

    Britton, J.R.; Koldovsky, O.

    1987-01-01

    The development of luminal digestion of lactoferrin was evaluated in vitro by incubating 125 I-labeled lactoferrin with fluid flushed from the stomach and small intestine of 12-day-old suckling and 31-day-old weanling rats, followed by measurement of radioactivity in trichloroacetic acid-soluble material. Gastric hydrolysis of lactoferrin at pH 3.2 in the weanling was 20-fold greater than that in the suckling. In the small intestine at neutral pH, luminal degradation of lactoferrin was minimal in the suckling but increased significantly after weaning, with maximal degradative capacity demonstrable in the midjejunum. Sephadex G-75 chromatography of intestinal acid-soluble breakdown products revealed two peaks of radioactivity, each comprising 40-45% of the total product; analysis of intestinal acid-precipitable products by polyacrylamide gel electrophoresis yielded several discrete lower molecular weight species. Food deprivation for 12 h/100 g body wt decreased lactoferrin degradation in the weanling jejunum and midjejunum. The findings suggest that lactoferrin digestion may vary with respect to postnatal age of the organism, segment of the gastrointestinal tract, and dietary state. In the young animal, lactoferrin degradation is minimal, and consequently its potential for biological function may be high

  1. Iron uptake mechanisms in the fish pathogen Tenacibaculum maritimum.

    Science.gov (United States)

    Avendaño-Herrera, Ruben; Toranzo, Alicia E; Romalde, Jesús L; Lemos, Manuel L; Magariños, Beatriz

    2005-11-01

    We present here the first evidence of the presence of iron uptake mechanisms in the bacterial fish pathogen Tenacibaculum maritimum. Representative strains of this species, with different serotypes and origins, were examined. All of them were able to grow in the presence of the chelating agent ethylenediamine-di-(o-hydroxyphenyl acetic acid) (EDDHA) and also produced siderophores. Cross-feeding assays suggest that the siderophores produced are closely related. In addition, all T. maritimum strains utilized transferrin, hemin, hemoglobin, and ferric ammonic citrate as iron sources when added to iron-deficient media. Whole cells of all T. maritimum strains, grown under iron-supplemented or iron-restricted conditions, were able to bind hemin, indicating the existence of constitutive binding components located at the T. maritimum cell surface. This was confirmed by the observation that isolated total and outer membrane proteins from all of the strains, regardless of the iron levels of the media, were able to bind hemin, with the outer membranes showing the strongest binding. Proteinase K treatment of whole cells did not affect the hemin binding, indicating that, in addition to proteins, some protease-resistant components could also bind hemin. At least three outer membrane proteins were induced in iron-limiting conditions, and all strains, regardless of their serotype, showed a similar pattern of induced proteins. The results of the present study suggest that T. maritimum possesses at least two different systems of iron acquisition: one involving the synthesis of siderophores and another that allows the utilization of heme groups as iron sources by direct binding.

  2. The effect of bovine lactoferrin and lactoferricin B on the ability of feline calicivirus (a norovirus surrogate) and poliovirus to infect cell cultures.

    Science.gov (United States)

    McCann, K B; Lee, A; Wan, J; Roginski, H; Coventry, M J

    2003-01-01

    To characterize the effect of bovine lactoferrin and lactoferricin B against feline calicivirus (FCV), a norovirus surrogate and poliovirus (PV), as models for enteric viruses. Crandell-Reese feline kidney (CRFK) cells were used for the propagation of FCV and monkey embryo kidney (MEK) cells for PV. The assays included visual assessment of cell lines for cytopathic effects and determination of the percentage cell death using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium] dye reduction assay. Incubation of bovine lactoferrin with CRFK cells either prior to or together with FCV inoculation substantially reduced FCV infection. In contrast, the interference of lactoferrin with the infection of cells with PV was demonstrated only when lactoferrin was present with cell lines and virus for the entire assay period. Using indirect immunofluorescence, lactoferrin was detected on the surface of both CRFK and MEK cells, suggesting that the interference of viral infection may be attributed to lactoferrin binding to the surfaces of susceptible cells, thereby preventing the attachment of the virus particles. Lactoferricin B, a cationic antimicrobial peptide derived from the N-terminal domain of bovine lactoferrin, reduced FCV but not PV infection. Lactoferrin was shown to interfere with the infection of cells for both FCV and PV. However, lactoferricin B showed no interference of infection with PV and interference with infection for FCV required the presence of lactoferricin B together with the cell line and virus. An in vitro basis is provided for the effects of bovine lactoferrin and lactoferricin B in moderating food-borne infections of enteric viruses.

  3. Sequential Proton Loss Electron Transfer in Deactivation of Iron(IV) Binding Protein by Tyrosine Based Food Components.

    Science.gov (United States)

    Tang, Ning; Skibsted, Leif H

    2017-08-02

    The iron(IV) binding protein ferrylmyoglobin, MbFe(IV)═O, was found to be reduced by tyrosine based food components in aqueous solution through a sequential proton loss electron transfer reaction mechanism without binding to the protein as confirmed by isothermal titration calorimetry. Dopamine and epinephrine are the most efficient food components reducing ferrylmyoglobin to oxymyoglobin, MbFe(II)O 2 , and metmyoglobin, MbFe(III), as revealed by multivariate curve resolution alternating least-squares with second order rate constants of 33.6 ± 2.3 L/mol/s (ΔH ⧧ of 19 ± 5 kJ/mol, ΔS ⧧ of -136 ± 18 J/mol K) and 228.9 ± 13.3 L/mol/s (ΔH ⧧ of 110 ± 7 kJ/mol, ΔS ⧧ of 131 ± 25 J/mol K), respectively, at pH 7.4 and 25 °C. The other tyrosine based food components were found to reduce ferrylmyoglobin to metmyoglobin with similar reduction rates at pH 7.4 and 25 °C. These reduction reactions were enhanced by protonation of ferrylmyoglobin and facilitated proton transfer at acidic conditions. Enthalpy-entropy compensation effects were observed for the activation parameters (ΔH ⧧ and ΔS ⧧ ), indicating the common reaction mechanism. Moreover, principal component analysis combined with heat map were performed to understand the relationship between density functional theory calculated molecular descriptors and kinetic data, which was further modeled by partial least squares for quantitative structure-activity relationship analysis. In addition, a three tyrosine residue containing protein, lysozyme, was also found to be able to reduce ferrylmyoglobin with a second order rate constant of 66 ± 28 L/mol/s as determined by a competitive kinetic method.

  4. Plasmon waveguide resonance spectroscopic evidence for differential binding of oxidized and reduced rhodobacter capsulatus cytochrome c(2) to the cytochrome bc(1) complex mediated by the conformation of the rieske iron-sulfur protein

    International Nuclear Information System (INIS)

    Devanathan, S.; Salamon, Z.; Tollin, G.; Fitch, J.C.; Meyer, T.E.; Berry, E.A.; Cusanovich, M.A.

    2007-01-01

    The dissociation constants for the binding of Rhodobacter capsulatus cytochrome c2 and its K93P mutant to the cytochrome bc1 complex embedded in a phospholipid bilayer were measured by plasmon waveguide resonance spectroscopy in the presence and absence of the inhibitor stigmatellin. The reduced form of cytochrome c2 strongly binds to reduced cytochrome bc1 (Kd = 0.02 M) but binds much more weakly to the oxidized form (Kd = 3.1 M). In contrast, oxidized cytochrome c2 binds to oxidized cytochrome bc1 in a biphasic fashion with Kd values of 0.11 and 0.58 M. Such a biphasic interaction is consistent with binding to two separate sites or conformations of oxidized cytochrome c2 and/or cytochrome bc1. However, in the presence of stigmatellin, we find that oxidized cytochrome c2 binds to oxidized cytochrome bc1 in a monophasic fashion with high affinity (Kd = 0.06 M) and reduced cytochrome c2 binds less strongly (Kd = 0.11 M) but ∼30-fold more tightly than in the absence of stigmatellin. Structural studies with cytochrome bc1, with and without the inhibitor stigmatellin, have led to the proposal that the Rieske protein is mobile, moving between the cytochrome b and cytochrome c1 components during turnover. In one conformation, the Rieske protein binds near the heme of cytochrome c1, while the cytochrome c2 binding site is also near the cytochrome c1 heme but on the opposite side from the Rieske site, where cytochrome c2 cannot directly interact with Rieske. However, the inhibitor, stigmatellin, freezes the Rieske protein iron-sulfur cluster in a conformation proximal to cytochrome b and distal to cytochrome c1. We conclude from this that the dual conformation of the Rieske protein is primarily responsible for biphasic binding of oxidized cytochrome c2 to cytochrome c1. This optimizes turnover by maximizing binding of the substrate, oxidized cytochrome c2, when the iron-sulfur cluster is proximal to cytochrome b and minimizing binding of the product, reduced cytochrome c

  5. Differential Protein Expression in Streptococcus uberis under Planktonic and Biofilm Growth Conditions ▿ †

    Science.gov (United States)

    Crowley, R. C.; Leigh, J. A.; Ward, P. N.; Lappin-Scott, H. M.; Bowler, L. D.

    2011-01-01

    The bovine pathogen Streptococcus uberis was assessed for biofilm growth. The transition from planktonic to biofilm growth in strain 0140J correlated with an upregulation of several gene products that have been shown to be important for pathogenesis, including a glutamine ABC transporter (SUB1152) and a lactoferrin binding protein (gene lbp; protein SUB0145). PMID:21075893

  6. Selection of possible signature peptides for the detection of bovine lactoferrin in infant formulas by LC-MS/MS.

    Directory of Open Access Journals (Sweden)

    Mingmei Yuan

    Full Text Available An LC-MS/MS assay based on a signature peptide was developed and fully validated for the quantitation of bovine lactoferrin in infant formulas. Three unreported signature peptides were derived and identified from the tryptic peptides of bovine lactoferrin. The peptide ETTVFENLPEK was used for quantification based on assay performance. The blank matrix camel milk powder and bovine lactoferrin protein standards were mixed and spiked with stable isotope-labeled internal standard to establish a calibration curve. The established method was extensively validated by determining the linearity (R2 > 0.999, sensitivity (limit of quantitation, 0.16 mg/100 g, recovery (83.1-91.6%, precision (RSD < 5.4% and repeatability (RSD < 7.7%. To validate the applicability of the method, four different brands of infant formulas in China were analysed. The acquired contents of bovine lactoferrin were 52.60-150.56 mg/100 g.

  7. Lead-Binding Proteins: A Review

    Directory of Open Access Journals (Sweden)

    Harvey C. Gonick

    2011-01-01

    Full Text Available Lead-binding proteins are a series of low molecular weight proteins, analogous to metallothionein, which segregate lead in a nontoxic form in several organs (kidney, brain, lung, liver, erythrocyte. Whether the lead-binding proteins in every organ are identical or different remains to be determined. In the erythrocyte, delta-aminolevulinic acid dehydratase (ALAD isoforms have commanded the greatest attention as proteins and enzymes that are both inhibitable and inducible by lead. ALAD-2, although it binds lead to a greater degree than ALAD-1, appears to bind lead in a less toxic form. What may be of greater significance is that a low molecular weight lead-binding protein, approximately 10 kDa, appears in the erythrocyte once blood lead exceeds 39 μg/dL and eventually surpasses the lead-binding capacity of ALAD. In brain and kidney of environmentally exposed humans and animals, a cytoplasmic lead-binding protein has been identified as thymosin β4, a 5 kDa protein. In kidney, but not brain, another lead-binding protein has been identified as acyl-CoA binding protein, a 9 kDa protein. Each of these proteins, when coincubated with liver ALAD and titrated with lead, diminishes the inhibition of ALAD by lead, verifying their ability to segregate lead in a nontoxic form.

  8. The role of tears in preventing protein deposition on contact lenses

    NARCIS (Netherlands)

    Boot, N.; Kok, J.; Kijlstra, A.

    1989-01-01

    Recently the presence of a coating inhibitory factor was described in human tears which can prevent the binding of proteins to a solid phase. In these earlier studies depositions of lactoferrin and IgG onto plastic was studied. In the study described here, peroxidase conjugated albumin was used as a

  9. Iron Acquisition in Bacillus cereus: The Roles of IlsA and Bacillibactin in Exogenous Ferritin Iron Mobilization

    Science.gov (United States)

    Buisson, Christophe; Daou, Nadine; Kallassy, Mireille; Lereclus, Didier; Arosio, Paolo; Bou-Abdallah, Fadi; Nielsen Le Roux, Christina

    2014-01-01

    In host-pathogen interactions, the struggle for iron may have major consequences on the outcome of the disease. To overcome the low solubility and bio-availability of iron, bacteria have evolved multiple systems to acquire iron from various sources such as heme, hemoglobin and ferritin. The molecular basis of iron acquisition from heme and hemoglobin have been extensively studied; however, very little is known about iron acquisition from host ferritin, a 24-mer nanocage protein able to store thousands of iron atoms within its cavity. In the human opportunistic pathogen Bacillus cereus, a surface protein named IlsA (Iron-regulated leucine rich surface protein type A) binds heme, hemoglobin and ferritin in vitro and is involved in virulence. Here, we demonstrate that IlsA acts as a ferritin receptor causing ferritin aggregation on the bacterial surface. Isothermal titration calorimetry data indicate that IlsA binds several types of ferritins through direct interaction with the shell subunits. UV-vis kinetic data show a significant enhancement of iron release from ferritin in the presence of IlsA indicating for the first time that a bacterial protein might alter the stability of the ferritin iron core. Disruption of the siderophore bacillibactin production drastically reduces the ability of B. cereus to utilize ferritin for growth and results in attenuated bacterial virulence in insects. We propose a new model of iron acquisition in B. cereus that involves the binding of IlsA to host ferritin followed by siderophore assisted iron uptake. Our results highlight a possible interplay between a surface protein and a siderophore and provide new insights into host adaptation of B. cereus and general bacterial pathogenesis. PMID:24550730

  10. Iron acquisition in Bacillus cereus: the roles of IlsA and bacillibactin in exogenous ferritin iron mobilization.

    Directory of Open Access Journals (Sweden)

    Diego Segond

    2014-02-01

    Full Text Available In host-pathogen interactions, the struggle for iron may have major consequences on the outcome of the disease. To overcome the low solubility and bio-availability of iron, bacteria have evolved multiple systems to acquire iron from various sources such as heme, hemoglobin and ferritin. The molecular basis of iron acquisition from heme and hemoglobin have been extensively studied; however, very little is known about iron acquisition from host ferritin, a 24-mer nanocage protein able to store thousands of iron atoms within its cavity. In the human opportunistic pathogen Bacillus cereus, a surface protein named IlsA (Iron-regulated leucine rich surface protein type A binds heme, hemoglobin and ferritin in vitro and is involved in virulence. Here, we demonstrate that IlsA acts as a ferritin receptor causing ferritin aggregation on the bacterial surface. Isothermal titration calorimetry data indicate that IlsA binds several types of ferritins through direct interaction with the shell subunits. UV-vis kinetic data show a significant enhancement of iron release from ferritin in the presence of IlsA indicating for the first time that a bacterial protein might alter the stability of the ferritin iron core. Disruption of the siderophore bacillibactin production drastically reduces the ability of B. cereus to utilize ferritin for growth and results in attenuated bacterial virulence in insects. We propose a new model of iron acquisition in B. cereus that involves the binding of IlsA to host ferritin followed by siderophore assisted iron uptake. Our results highlight a possible interplay between a surface protein and a siderophore and provide new insights into host adaptation of B. cereus and general bacterial pathogenesis.

  11. Plasma lactoferrin levels in pregnancy and cystic fibrosis

    International Nuclear Information System (INIS)

    Sykes, J.A.C.; Thomas, M.J.; Goldie, D.J.; Turner, G.M.

    1982-01-01

    Plasma lactoferrin levels have been determined by radioimmunoassay for the different weeks of normal pregnancy, in normal healthy adults and in children with and without cystic fibrosis. The lactoferrin levels were higher in pregnancy than in both male and female normal adults and showed a slight progressive increase up to week 29 and thereafter remained high. Five out of seven children with cystic fibrosis had markedly raised plasma lactoferrin levels from six to 16 times higher than the mean of a control group of children. (Auth.)

  12. Purification, characterization, cloning and structural analysis of Crocodylus siamensis ovotransferrin for insight into functions of iron binding and autocleavage.

    Science.gov (United States)

    Chaipayang, Sukanya; Songsiriritthigul, Chomphunuch; Chen, Chun-Jung; Palacios, Philip M; Pierce, Brad S; Jangpromma, Nisachon; Klaynongsruang, Sompong

    2017-10-01

    Ovotransferrin (OTf), the major protein constituent of egg white, is of great interest due to its pivotal role in biological iron transport and storage processes and its spontaneous autocleavage into peptidic fragments with alternative biological properties, such as antibacterial and antioxidant activities. However, despite being well-investigated in avian, a detailed elucidation of the structure-function relationship of ovotransferrins in the closely related order of Crocodilia has not been reported to date. In this study, electron paramagnetic resonance (EPR) confirmed the presence of two spectroscopically distinct ferric iron binding sites in Crocodylus siamensis OTf (cOTf), but implied a five-fold lower quantity of bound iron than in hen OTf (hOTf). In addition, quantitative estimation of free sulfhydryl groups revealed slight differences to hOTf. To gain a better structural understanding of cOTf, we found a cOTf gene consisting of an open reading frame of 2040bp and encoding a protein of 679 amino acids. In silico prediction of the three-dimensional structure of cOTf and comparison with hOTf revealed four evolutionarily conserved iron-binding sites in both N- and C-lobes, as well as the presence of only 13 of the 15 disulfide bonds in hOTf. This evolutionary loss of disulfide linkages in conjunction with the lack of hydrogen bonding from a dilysine trigger in the C-lobe are presumed to affect the iron binding and autocleavage character of cOTf. As a result, cOTf may be capable of exerting a more diverse array of functions compared to its avian counterparts; for instance, ion buffering, antioxidant and antimicrobial activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    Science.gov (United States)

    Li, Yanan; Jiang, Han; Huang, Guangrong

    2017-01-01

    Iron (Fe) is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements. PMID:28617327

  14. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    Directory of Open Access Journals (Sweden)

    Yanan Li

    2017-06-01

    Full Text Available Iron (Fe is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements.

  15. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism.

    Science.gov (United States)

    Lill, Roland; Hoffmann, Bastian; Molik, Sabine; Pierik, Antonio J; Rietzschel, Nicole; Stehling, Oliver; Uzarska, Marta A; Webert, Holger; Wilbrecht, Claudia; Mühlenhoff, Ulrich

    2012-09-01

    Mitochondria play a key role in iron metabolism in that they synthesize heme, assemble iron-sulfur (Fe/S) proteins, and participate in cellular iron regulation. Here, we review the latter two topics and their intimate connection. The mitochondrial Fe/S cluster (ISC) assembly machinery consists of 17 proteins that operate in three major steps of the maturation process. First, the cysteine desulfurase complex Nfs1-Isd11 as the sulfur donor cooperates with ferredoxin-ferredoxin reductase acting as an electron transfer chain, and frataxin to synthesize an [2Fe-2S] cluster on the scaffold protein Isu1. Second, the cluster is released from Isu1 and transferred toward apoproteins with the help of a dedicated Hsp70 chaperone system and the glutaredoxin Grx5. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Functional defects of the core ISC assembly machinery are signaled to cytosolic or nuclear iron regulatory systems resulting in increased cellular iron acquisition and mitochondrial iron accumulation. In fungi, regulation is achieved by iron-responsive transcription factors controlling the expression of genes involved in iron uptake and intracellular distribution. They are assisted by cytosolic multidomain glutaredoxins which use a bound Fe/S cluster as iron sensor and additionally perform an essential role in intracellular iron delivery to target metalloproteins. In mammalian cells, the iron regulatory proteins IRP1, an Fe/S protein, and IRP2 act in a post-transcriptional fashion to adjust the cellular needs for iron. Thus, Fe/S protein biogenesis and cellular iron metabolism are tightly linked to coordinate iron supply and utilization. This article is part of a Special Issue entitled: Cell Biology of Metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Fractionation of whey proteins with high-capacity superparamagnetic ion-exchangers

    DEFF Research Database (Denmark)

    Heebøll-Nielsen, Anders; Justesen, S.F.L.; Thomas, Owen R. T.

    2004-01-01

    to particles activated in sequential reactions with allyl bromide and N-bromosuccinimide yielded a maximum bovine serum albumin binding capacity of 156 mg g(-1) combined with a dissociation constant of 0.60 muM, whereas ion-exchangers created by linking polyethylene imine through superficial aldehydes bound up...... was then contacted with the anion-exchanger. For both adsorbent classes of ion-exchanger, desorption selectivity was subsequently studied by sequentially increasing the concentration of NaCl in the elution buffer. In the initial cation-exchange step quantitative removal of lactoferrin (LF) and lactoperoxidase (LPO......) was achieved with some simultaneous binding of immunoglobulins (1g). The immunoglobulins were separated from the other two proteins by desorbing with a low concentration of NaCl (less than or equal to0.4 M), whereas lactoferrin and lactoperoxidase were co-eluted in significantly purer form, e...

  17. Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species

    Science.gov (United States)

    Butt, Aaron T.; Thomas, Mark S.

    2017-01-01

    Burkholderia is a genus within the β-Proteobacteriaceae that contains at least 90 validly named species which can be found in a diverse range of environments. A number of pathogenic species occur within the genus. These include Burkholderia cenocepacia and Burkholderia multivorans, opportunistic pathogens that can infect the lungs of patients with cystic fibrosis, and are members of the Burkholderia cepacia complex (Bcc). Burkholderia pseudomallei is also an opportunistic pathogen, but in contrast to Bcc species it causes the tropical human disease melioidosis, while its close relative Burkholderia mallei is the causative agent of glanders in horses. For these pathogens to survive within a host and cause disease they must be able to acquire iron. This chemical element is essential for nearly all living organisms due to its important role in many enzymes and metabolic processes. In the mammalian host, the amount of accessible free iron is negligible due to the low solubility of the metal ion in its higher oxidation state and the tight binding of this element by host proteins such as ferritin and lactoferrin. As with other pathogenic bacteria, Burkholderia species have evolved an array of iron acquisition mechanisms with which to capture iron from the host environment. These mechanisms include the production and utilization of siderophores and the possession of a haem uptake system. Here, we summarize the known mechanisms of iron acquisition in pathogenic Burkholderia species and discuss the evidence for their importance in the context of virulence and the establishment of infection in the host. We have also carried out an extensive bioinformatic analysis to identify which siderophores are produced by each Burkholderia species that is pathogenic to humans. PMID:29164069

  18. A retinoic acid response element that overlaps an estrogen response element mediates multihormonal sensitivity in transcriptional activation of the lactoferrin gene.

    Science.gov (United States)

    Lee, M O; Liu, Y; Zhang, X K

    1995-08-01

    The lactoferrin gene is highly expressed in many different tissues, and its expression is controlled by different regulators. In this report, we have defined a retinoic acid response element (RARE) in the 5'-flanking region of the lactoferrin gene promoter. The lactoferrin-RARE is composed of two AGGTCA-like motifs arranged as a direct repeat with 1-bp spacing (DR-1). A gel retardation assay demonstrated that it bound strongly with retinoid X receptor (RXR) homodimers and RXR-retinoic acid receptor (RAR) heterodimers as well as chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan receptor. In CV-1 cells, the lactoferrin-RARE linked with a heterologous thymidine kinase promoter was strongly activated by RXR homodimers in response to 9-cis-retinoic acid (9-cis-RA) but not to all-trans-RA. When the COUP-TF orphan receptor was cotransfected, the 9-cis-RA-induced RXR homodimer activity was strongly repressed. A unique feature of the lactoferrin-RARE is that it has an AGGTCA-like motif in common with an estrogen-responsive element (ERE). The composite RARE/ERE contributes to the functional interaction between retinoid receptors and the estrogen receptor (ER) and their ligands. In CV-1 cells, cotransfection of the retinoid and estrogen receptors led to mutual inhibition of the other's activity, while an RA-dependent inhibition of ER activity was observed in breast cancer cells. Furthermore, the lactoferrin-RARE/ERE showed differential transactivation activity in different cell types. RAs could activate the lactoferrin-RARE/ERE in human leukemia HL-60 cells and U937 cells but not in human breast cancer cells. By gel retardation analyses, we demonstrated that strong binding of the endogenous COUP-TF in breast cancer cells to the composite element contributed to diminished RA response in these cells. Thus, the lactoferrin-RARE/ERE functions as a signaling switch module that mediates multihormonal responsiveness in the regulation of lactoferrin gene

  19. Co-regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen Xanthomonas.

    Directory of Open Access Journals (Sweden)

    Sheo Shankar Pandey

    2016-11-01

    Full Text Available Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named Xanthomonas iron binding regulator of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc. Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon's involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in

  20. Co-regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen Xanthomonas

    Science.gov (United States)

    Pandey, Sheo Shankar; Patnana, Pradeep Kumar; Lomada, Santosh Kumar; Tomar, Archana; Chatterjee, Subhadeep

    2016-01-01

    Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur) functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named X anthomonas iron binding regulator) of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc). Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon’s involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in Xanthomonads in

  1. Bovine lactoferrin decreases cholera-toxin-induced intestinal fluid accumulation in mice by ganglioside interaction.

    Directory of Open Access Journals (Sweden)

    Fulton P Rivera

    Full Text Available Secretory diarrhea caused by cholera toxin (CT is initiated by binding of CT's B subunit (CTB to GM1-ganglioside on the surface of intestinal cells. Lactoferrin, a breast milk glycoprotein, has shown protective effect against several enteropathogens. The aims of this study were to determine the effect of bovine-lactoferrin (bLF on CT-induced intestinal fluid accumulation in mice, and the interaction between bLF and CT/CTB with the GM1-ganglioside receptor. Fluid accumulation induced by CT was evaluated in the mouse ileal loop model using 56 BALB/c mice, with and without bLF added before, after or at the same time of CT administration. The effect of bLF in the interaction of CT and CTB with GM1-ganglioside was evaluated by a GM1-enzyme-linked immunosorbent assay. bLF decreased CT-induced fluid accumulation in the ileal loop of mice. The greatest effect was when bLF was added before CT (median, 0.066 vs. 0.166 g/cm, with and without bLF respectively, p<0.01. We conclude that bLF decreases binding of CT and CTB to GM1-ganglioside, suggesting that bLF suppresses CT-induced fluid accumulation by blocking the binding of CTB to GM1-ganglioside. bLF may be effective as adjunctive therapy for treatment of cholera diarrhea.

  2. Mammalian iron metabolism and its control by iron regulatory proteins☆

    Science.gov (United States)

    Anderson, Cole P.; Shen, Lacy; Eisenstein, Richard S.; Leibold, Elizabeth A.

    2013-01-01

    Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP–IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22610083

  3. The PICALM protein plays a key role in iron homeostasis and cell proliferation.

    Directory of Open Access Journals (Sweden)

    Paula B Scotland

    Full Text Available The ubiquitously expressed phosphatidylinositol binding clathrin assembly (PICALM protein associates with the plasma membrane, binds clathrin, and plays a role in clathrin-mediated endocytosis. Alterations of the human PICALM gene are present in aggressive hematopoietic malignancies, and genome-wide association studies have recently linked the PICALM locus to late-onset Alzheimer's disease. Inactivating and hypomorphic Picalm mutations in mice cause different degrees of severity of anemia, abnormal iron metabolism, growth retardation and shortened lifespan. To understand PICALM's function, we studied the consequences of PICALM overexpression and characterized PICALM-deficient cells derived from mutant fit1 mice. Our results identify a role for PICALM in transferrin receptor (TfR internalization and demonstrate that the C-terminal PICALM residues are critical for its association with clathrin and for the inhibitory effect of PICALM overexpression on TfR internalization. Murine embryonic fibroblasts (MEFs that are deficient in PICALM display several characteristics of iron deficiency (increased surface TfR expression, decreased intracellular iron levels, and reduced cellular proliferation, all of which are rescued by retroviral PICALM expression. The proliferation defect of cells that lack PICALM results, at least in part, from insufficient iron uptake, since it can be corrected by iron supplementation. Moreover, PICALM-deficient cells are particularly sensitive to iron chelation. Taken together, these data reveal that PICALM plays a critical role in iron homeostasis, and offer new perspectives into the pathogenesis of PICALM-associated diseases.

  4. Distinct Iron-binding Ligands in the Upper Water Column at Station ALOHA

    Science.gov (United States)

    Bundy, R.; Boiteau, R.; Repeta, D.

    2016-02-01

    The distribution and chemical properties of iron-binding organic ligands at station ALOHA were examined using a combination of solid phase extraction (SPE) followed by high pressure liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS). HPLC-ICPMS ligand measurements were complemented by competitive ligand exchange adsorptive cathodic stripping voltammetry (CLE-ACSV) analysis using salicylaldoxime as the added ligand. By HPLC-ICPMS, we find enhanced concentrations of distinct naturally-occurring polar iron-binding ligands present at the surface and in the chlorophyll maximum. Lower concentrations were found in the subsurface, where a suite of non-polar ligands was detected. Siderophores were present at the deepest depths sampled at station ALOHA, down to 400m. Incubation studies provided evidence for the production of iron-binding ligands associated with nutrient amended phytoplankton growth in surface waters, and as a result of microbial particle remineralization in the subsurface water column. Ligands classes identified via SPE were then compared to CLE-ACSV ligand measurements, as well as the conditional stability constants measured from model polar and non-polar siderophores, yielding insight to the sources of iron-binding ligands throughout the water column at station ALOHA.

  5. Hydroxyapatite nanorod and microsphere functionalized with bioactive lactoferrin as a new biomaterial for enhancement bone regeneration.

    Science.gov (United States)

    Shi, Pujie; Wang, Qun; Yu, Cuiping; Fan, Fengjiao; Liu, Meng; Tu, Maolin; Lu, Weihong; Du, Ming

    2017-07-01

    Lactoferrin (LF) has been recently recognized as a promising new novel bone growth factor for the beneficial effects on bone cells and promotion of bone growth. Currently, it has been attracted wide attention in bone regeneration as functional food additives or a potential bioactive protein in bone tissue engineering. The present study investigated the possibility that hydroxyapatite (HAP) particles, a widely used bone substitute material for high biocompatibility and osteoconductivity, functionalized with lactoferrin as a composite material are applied to bone tissue engineering. Two kinds of hydroxyapatite samples with different sizes, including nanorods and microspheres particles, were functionalized with lactoferrin molecules, respectively. A detailed characterization of as-prepared HAP-LF complex is presented, combining thermal gravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FT-IR). Zeta potential and the analysis of electrostatic surface potential of lactoferrin were carried to reveal the mechanism of adsorption. The effects of HAP-LF complex on MC3T3-E1 osteoblast proliferation and morphology were systematically evaluated at different culture time. Interestingly, results showed that cell viability of HAP-LF group was significantly higher than HAP group indicating that the HAP-LF can improve the biocompatibility of HAP, which mainly originated from a combination of HAP-LF interaction. These results indicated that hydroxyapatite particles can work as a controlled releasing carrier of lactoferrin successfully, and lactoferrin showed better potentiality on using in the field of bone regeneration by coupling with hydroxyapatite. This study would provide a new biomaterial and might offer a new insight for enhancement of bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The Effect of Heating and Postfermentation on Lactoferrin of Fresh and Kefir Goat Milk

    Directory of Open Access Journals (Sweden)

    Erfan Kustiawan

    2012-02-01

    Full Text Available The aim of this study was determinated of lactoferrin profile in goat milk and kefir. The samples were collected from whey raw milk, pasteurized and kefir. Lactoferrin profile in this study consisted of concentration and molecule weight of lactoferrin. Goat lactoferrin was isolated from whey by fractionation on sephadex     G-100 column, it was eluted at 0.1 M phosphate buffer pH 6.8. Characterization of goat lactoferrin by electrophoretic SDS-PAGE techniques detected molecule weight of goat lactoferrin that the isolate of the fractions from fractionation on sephadex G-100 column. Result of the research  showed that pasteurization during storage after fermentation process were influenced by concentration of lactoferrin significant (P<0.05. The molecule weights of lactoferrin in goat milk and kefir were estimated at 84 kDa and 80 kDa. The average concentration of goat lactoferrin at 1.915 mg/ml (without pasteurized, 1.579 mg/ml (pasteurized at 65oC, 0.954 mg/ml (pasteurized at 73oC and 0.322 mg/ml (pasteurized at 83oC. The average concentration of goat lactoferrin in kefir during storage at 0.663 mg/ml (0 day, 0.448 mg/ml (3  day, 0.249 mg/ml (6 day, 0.142 mg/ml (9 day dan 0.048 mg/ml (12 day.  Pasteurization at temperature 65oC 30’’ can defend concentration of lactoferrin higher than temperature 73oC 15’’  and temperature 83oC 2’’. Concentration of lactoferrin in kefir were defended until 12 day storage.   Keywords : Lactoferrin, goat milks, kefir

  7. Changes in iron levels, total iron binding capacity, transferrin saturation in race horses, before and after of physical exercise

    Directory of Open Access Journals (Sweden)

    Gláucia Abramovitc

    2014-09-01

    Full Text Available ABSTRACT. Abramovitc G., Parra A.C. & Fernandes W.R. [Changes in iron levels, total iron binding capacity, transferrin saturation in race horses, before and after of physical exercise]. Variação de níveis séricos de ferro, da capacidade total de ligação do ferro e da saturação da transferrina em equinos de corrida, antes e após exercício físico. Revista Brasileira de Medicina Veterinária, 36(3:289-293, 2014. Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Rua Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, Butantã, São Paulo, SP 05508-270, Brasil. Email: wilsonrf@usp.br The preparation of the horse for physical activities in competition is directly related to important factors such as nutrition, muscle adaptation and blood profile, related to the concentration of serum iron, total capacity total iron binding capacity (TIBC and saturation of transferrin. This study aimed to evaluate the influence of exercise in iron levels, the total iron and transferrin saturation in race horses. One hundred and eleven samples of blood serum were collected from Thoroughbred horses, from the Jockey Club of São Paulo, aged between 3 and 4 years old, male and female, clinically healthy, practitioners turf competition, in sand or grass. The samples were obtained before exercise (control time and 30 minutes after exercise (post exercise. These animals were submitted to gallop training, of high intensity and short duration for this research. As a result, it was observed that the serum concentration of iron (Fe showed a statistically significant lowering post-exercise, due to organic re-balance of iron, while TIBC (total iron binding capacity showed a clear and significant increase in their serum levels due to increased needs of iron during and after exercise. The percentage of transferrin saturation in serum was shown to be lower post-exercise, probably due to the recruitment of

  8. Formation of crystalline nanoparticles by iron binding to pentapeptide (Asp-His-Thr-Lys-Glu) from egg white hydrolysates.

    Science.gov (United States)

    Sun, Na; Cui, Pengbo; Li, Dongmei; Jin, Ziqi; Zhang, Shuyu; Lin, Songyi

    2017-09-20

    A novel peptide from egg white, Asp-His-Thr-Lys-Glu (DHTKE), contains specific amino acids associated with iron binding. The present study aims to better understand the molecular basis of interactions between the DHTKE peptide and iron ions. The ultraviolet-visible and fluorescence spectra indicate an interaction between the DHTKE peptide and iron ions, which leads to the formation of a DHTKE-iron complex. Notably, Asp, Glu, His, and Lys in the DHTKE peptide play crucial roles in the formation of the DHTKE-iron complex, and the iron-binding site of the DHTKE peptide corresponds primarily to the amide and carboxyl groups. The DHTKE peptide can bind iron ions in a 1 : 2 ratio with a binding constant of 1.312 × 10 5 M -1 . Moreover, the DHTKE-iron complex belongs to thermodynamically stable nanoparticles that are present in the crystalline structure, which might be attributed to peptide folding induced by iron binding. Meanwhile, the DHTKE-iron complex exhibits a relatively high iron-releasing percentage and exerts excellent solubility in the human gastrointestinal tract in vitro. This suggests a potential application of peptides containing Asp, Glu, His, or Lys residues as potential iron supplements.

  9. Imparting albumin-binding affinity to a human protein by mimicking the contact surface of a bacterial binding protein.

    Science.gov (United States)

    Oshiro, Satoshi; Honda, Shinya

    2014-04-18

    Attachment of a bacterial albumin-binding protein module is an attractive strategy for extending the plasma residence time of protein therapeutics. However, a protein fused with such a bacterial module could induce unfavorable immune reactions. To address this, we designed an alternative binding protein by imparting albumin-binding affinity to a human protein using molecular surface grafting. The result was a series of human-derived 6 helix-bundle proteins, one of which specifically binds to human serum albumin (HSA) with adequate affinity (KD = 100 nM). The proteins were designed by transferring key binding residues of a bacterial albumin-binding module, Finegoldia magna protein G-related albumin-binding domain (GA) module, onto the human protein scaffold. Despite 13-15 mutations, the designed proteins maintain the original secondary structure by virtue of careful grafting based on structural informatics. Competitive binding assays and thermodynamic analyses of the best binders show that the binding mode resembles that of the GA module, suggesting that the contacting surface of the GA module is mimicked well on the designed protein. These results indicate that the designed protein may act as an alternative low-risk binding module to HSA. Furthermore, molecular surface grafting in combination with structural informatics is an effective approach for avoiding deleterious mutations on a target protein and for imparting the binding function of one protein onto another.

  10. Combination of hypothiocyanite and lactoferrin (ALX-109) enhances the ability of tobramycin and aztreonam to eliminate Pseudomonas aeruginosa biofilms growing on cystic fibrosis airway epithelial cells.

    Science.gov (United States)

    Moreau-Marquis, Sophie; Coutermarsh, Bonita; Stanton, Bruce A

    2015-01-01

    Chelating iron may be a promising new therapy to eliminate Pseudomonas aeruginosa biofilms in the lungs of cystic fibrosis (CF) patients. Here, we investigate whether ALX-109 [a defined combination of an investigational drug containing lactoferrin (an iron-binding glycoprotein) and hypothiocyanite (a bactericidal agent)], alone and in combination with tobramycin or aztreonam, reduces P. aeruginosa biofilms grown on human CF airway epithelial cells. P. aeruginosa (PAO1 and six clinical isolates of Pseudomonas) biofilms grown at the apical surface of confluent monolayers of CF airway epithelial cells were treated with ALX-109, either alone or in combination with tobramycin or aztreonam. Bacterial cfu remaining after treatment were determined by plate counting. ALX-109 alone reduced PAO1 biofilm formation, but had no effect on established biofilms. ALX-109 enhanced the ability of tobramycin and aztreonam to inhibit PAO1 biofilm formation and to reduce established PAO1 biofilms. ALX-109 and tobramycin were additive in disrupting established biofilms formed by six clinical isolates of P. aeruginosa obtained from the sputum of CF patients. Mucoid P. aeruginosa isolates were most susceptible to the combination of ALX-109 and tobramycin. In addition, ALX-109 also enhanced the ability of aztreonam to reduce established PAO1 biofilms. Inhalation therapy combining hypothiocyanite and lactoferrin with TOBI(®) (tobramycin) or Cayston(®) (aztreonam) may be beneficial to CF patients by decreasing the airway bacterial burden of P. aeruginosa. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Iron binding to caseins in the presence of orthophosphate.

    Science.gov (United States)

    Mittal, V A; Ellis, A; Ye, A; Edwards, P J B; Das, S; Singh, H

    2016-01-01

    As adding >5mM ferric chloride to sodium caseinate solutions results in protein precipitation, the effects of orthophosphate (0-64 mM) addition to sodium caseinate solution (2% w/v protein) on iron-induced aggregation of the caseins were studied at pH 6.8. Up to 20mM ferric chloride could be added to sodium caseinate solution containing 32 mM orthophosphate without any protein precipitation. The addition of iron to sodium caseinate solution containing orthophosphate reduced the diffusible phosphorus content in a concentration-dependent manner. Added iron appeared to interact simultaneously with phosphoserine on the caseins and inorganic phosphorus. The relative sizes of the casein aggregates were governed by the concentration of orthophosphate and the aggregates consisted of all casein fractions, even at the lowest level of ferric chloride addition (5mM). It is hypothesised that the addition of iron to caseins in the presence of orthophosphate results in the formation of colloidal structures involving casein-iron-orthophosphate interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus

    NARCIS (Netherlands)

    Leon-Sicairos, N.; Canizalez-Roman, A.; de la Garza, M.; Reyes-Lopez, M.; Zazueta-Beltran, J.; Nazmi, K.; Gomez-Gil, B.; Bolscher, J.G.

    2009-01-01

    Infections caused by Vibrio parahaemolyticus, an halophilic member of the genus Vibrio, have increased globally in the last 5 years. Diarrhea caused by V. parahaemolyticus results from eating raw or undercooked seafood. The aim of this work was to investigate whether lactoferrin and some

  13. Role of nitric oxide in cellular iron metabolism.

    Science.gov (United States)

    Kim, Sangwon; Ponka, Prem

    2003-03-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) which are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO*, a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO+ (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO+-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  14. In vivo conjugation of nasal lavage proteins by hexahydrophthalic anhydride

    International Nuclear Information System (INIS)

    Johannesson, Gunvor; Lindh, Christian; Nielsen, Joern; Bjoerk, Birgitta; Rosqvist, Seema; Joensson, Bo A.G.

    2004-01-01

    Hexahydrophthalic anhydride (HHPA), an industrially important chemical, is a highly allergenic compound. The aim of this work was to identify proteins in nasal lavage fluid (NLF) that form adducts with HHPA. Such bindings may induce production of specific immunoglobulin E (IgE) or affect physiological mechanisms of the proteins. NLF was obtained from HHPA-exposed volunteers, workers and exposed guinea pigs. HHPA-binding proteins were visualized with immunoblotting using a polyclonal antiserum against HHPA. The proteins were excised from sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) gels, digested with trypsin and identified by tandem mass spectrometry (MS/MS) and database searches. The antiserum was found to be specific for HHPA-bound proteins. In vivo formed HHPA-binding proteins in humans were identified as antileukoproteinase, immunoglobulin G (IgG), immunoglobulin A (IgA), serum albumin and lactoferrin. In addition, several proteins binding to HHPA were found in NLFs from guinea pigs but these could not be identified from database searches. Hypotheses for development of airways diseases by adduction of this allergenic compound to the NLF proteins in humans were established

  15. Production of human lactoferrin and lysozyme in the milk of transgenic dairy animals: past, present, and future.

    Science.gov (United States)

    Cooper, Caitlin A; Maga, Elizabeth A; Murray, James D

    2015-08-01

    Genetic engineering, which was first developed in the 1980s, allows for specific additions to animals' genomes that are not possible through conventional breeding. Using genetic engineering to improve agricultural animals was first suggested when the technology was in the early stages of development by Palmiter et al. (Nature 300:611-615, 1982). One of the first agricultural applications identified was generating transgenic dairy animals that could produce altered or novel proteins in their milk. Human milk contains high levels of antimicrobial proteins that are found in low concentrations in the milk of ruminants, including the antimicrobial proteins lactoferrin and lysozyme. Lactoferrin and lysozyme are both part of the innate immune system and are secreted in tears, mucus, and throughout the gastrointestinal (GI) tract. Due to their antimicrobial properties and abundance in human milk, multiple lines of transgenic dairy animals that produce either human lactoferrin or human lysozyme have been developed. The focus of this review is to catalogue the different lines of genetically engineered dairy animals that produce either recombinant lactoferrin or lysozyme that have been generated over the years as well as compare the wealth of research that has been done on the in vitro and in vivo effects of the milk they produce. While recent advances including the development of CRISPRs and TALENs have removed many of the technical barriers to predictable and efficient genetic engineering in agricultural species, there are still many political and regulatory hurdles before genetic engineering can be used in agriculture. It is important to consider the substantial amount of work that has been done thus far on well established lines of genetically engineered animals evaluating both the animals themselves and the products they yield to identify the most effective path forward for future research and acceptance of this technology.

  16. Dynamic factors affecting gaseous ligand binding in an artificial oxygen transport protein.

    Science.gov (United States)

    Zhang, Lei; Andersen, Eskil M E; Khajo, Abdelahad; Magliozzo, Richard S; Koder, Ronald L

    2013-01-22

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7, this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities, and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime that may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when exposed to oxygen. Compared to that of HP7, the distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off rate. Electron paramagnetic resonance comparison of these ferric hemoproteins demonstrates that the mutation increases the level of disorder at the heme binding site. Nuclear magnetic resonance-detected deuterium exchange demonstrates that the mutation greatly increases the degree of penetration of water into the protein core. The inability of the mutant protein to bind oxygen may be due to an increased level of water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together, these data underline the importance of the control of protein dynamics in the design of functional artificial proteins.

  17. The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin.

    Science.gov (United States)

    Küberl, Andreas; Polen, Tino; Bott, Michael

    2016-04-26

    The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation.

  18. Prion Protein Regulates Iron Transport by Functioning as a Ferrireductase

    Science.gov (United States)

    Singh, Ajay; Haldar, Swati; Horback, Katharine; Tom, Cynthia; Zhou, Lan; Meyerson, Howard; Singh, Neena

    2017-01-01

    Prion protein (PrPC) is implicated in the pathogenesis of prion disorders, but its normal function is unclear. We demonstrate that PrPC is a ferrireductase (FR), and its absence causes systemic iron deficiency in PrP knock-out mice (PrP−/−). When exposed to non-transferrin-bound (NTB) radioactive-iron (59FeCl3) by gastric-gavage, PrP−/− mice absorb significantly more 59Fe from the intestinal lumen relative to controls, indicating appropriate systemic response to the iron deficiency. Chronic exposure to excess dietary iron corrects this deficiency, but unlike wild-type (PrP+/+) controls that remain iron over-loaded, PrP−/− mice revert back to the iron deficient phenotype after 5 months of chase on normal diet. Bone marrow (BM) preparations of PrP−/− mice on normal diet show relatively less stainable iron, and this phenotype is only partially corrected by intraperitoneal administration of excess iron-dextran. Cultured PrP−/− BM-macrophages incorporate significantly less NTB-59Fe in the absence or presence of excess extracellular iron, indicating reduced uptake and/or storage of available iron in the absence of PrPC. When expressed in neuroblastoma cells, PrPC exhibits NAD(P)H-dependent cell-surface and intracellular FR activity that requires the copper-binding octa-peptide-repeat region and linkage to the plasma membrane for optimal function. Incorporation of NTB-59Fe by neuroblastoma cells correlates with FR activity of PrPC, implicating PrPC in cellular iron uptake and metabolism. These observations explain the correlation between PrPC expression and cellular iron levels, and the cause of iron imbalance in sporadic-Creutzfeldt-Jakob-disease brains where PrPC accumulates as insoluble aggregates. PMID:23478311

  19. Toward understanding macrocycle specificity of iron on the dioxygen-binding ability: a theoretical study.

    Science.gov (United States)

    Sun, Yong; Chen, Kexian; Jia, Lu; Li, Haoran

    2011-08-14

    In an effort to examine the interaction between dioxygen and iron-macrocyclic complexes, and to understand how this interaction was affected by those different macrocyclic ligands, dioxygen binding with iron-porphyrin, iron-phthalocyanine, iron-dibenzotetraaza[14]annulene, and iron-salen complexes is investigated by means of quantum chemical calculations utilizing Density Functional Theory (DFT). Based on the analysis of factors influencing the corresponding dioxygen binding process, it showed that different macrocyclic ligands possess different O-O bond distances, and different electronic configurations for the bound O(2) and non-aromatic macrocyclic ligands favor dioxygen activation. Furthermore, the smaller the energy gap between the HOMO of iron-macrocyclic complexes and the LUMO of dioxygen, the more active the bound O(2) becomes, with a longer O-O bond distance and a shorter Fe-O bond length.

  20. Site-specific glycosylation of donkey milk lactoferrin investigated by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Gallina, Serafina; Saletti, Rosaria; Cunsolo, Vincenzo

    2016-01-01

    A comprehensive monosaccharide composition of the N-glycans of donkey milk lactoferrin, isolated by ion exchange chromatography from an individual milk sample, was obtained by means of chymotryptic digestion, TiO2 and HILIC enrichment, reversed-phase high-performance liquid chromatography......, electrospray mass spectrometry, and high collision dissociation fragmentation. The results obtained allowed identifying 26 different glycan structures, including high mannose, complex and hybrid N-glycans, linked to the protein backbone via an amide bond to asparagine residues located at the positions 137, 281...... and 476. Altogether, the N-glycan structures determined revealed that most of the N-glycans identified in donkey milk lactoferrin are neutral complex/hybrid. Indeed, 10 neutral non-fucosylated complex/hybrid N-glycans and 4 neutral fucosylated complex/hybrid N-glycans were found. In addition, two high...

  1. The occurrence of gibberellin-binding protein(s) in pea

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.H.

    1988-01-01

    In vitro gibberellin (GA) binding properties of a cytosol fraction from epicotyls of dwarf pea (Pisum sativum L. cv. Progress No. 9) and tall pea (Pisum sativum L. cv. Alaska) were investigated using ({sup 3}H)GA{sub 4} in a DEAE filter paper assay at 0-3 C. The binding obtained is saturable, reversible, and temperature labile in dwarf pea, and has a half-life of dissociation of 5-6 min. By varying the concentration of ({sup 3}H)GA{sub 4} in the incubation medium the Kd was estimated to be 120-140 nM in dwarf pea and 70 nM in tall pea. The number of binding sites (n) was estimated to be 0.66 and 0.43 pmole mg{sup {minus}1} soluble protein in dwarf pea and in tall pea, respectively. In competition binding assays, biologically active GAs, such as GA{sub 3} and GA{sub 4} could reduce the level of ({sup 3}H)GA{sub 4} binding much more than the biologically inactive GA{sub 4} methyl ester and epi-GA{sub 4}. Changes in gibberellin-binding protein(s) were studied during seed germination. While the Kd of the binding protein(s) for ({sup 3}H)GA{sub 4} remained the same, there was a marked increase in the number of binding sites from 24 h soaked seed to 8-day old seedlings. Also, the Kd and the number of binding sites in the GA-responsive apical part and in the nonresponsive basal part in the epicotyl were similar. The effect of light on gibberellin-binding protein in dwarf pea was also studied. The GA-binding protein in dwarf pea was partially purified by gel filtration and ion exchange chromatography.

  2. Predicting protein-binding RNA nucleotides with consideration of binding partners.

    Science.gov (United States)

    Tuvshinjargal, Narankhuu; Lee, Wook; Park, Byungkyu; Han, Kyungsook

    2015-06-01

    In recent years several computational methods have been developed to predict RNA-binding sites in protein. Most of these methods do not consider interacting partners of a protein, so they predict the same RNA-binding sites for a given protein sequence even if the protein binds to different RNAs. Unlike the problem of predicting RNA-binding sites in protein, the problem of predicting protein-binding sites in RNA has received little attention mainly because it is much more difficult and shows a lower accuracy on average. In our previous study, we developed a method that predicts protein-binding nucleotides from an RNA sequence. In an effort to improve the prediction accuracy and usefulness of the previous method, we developed a new method that uses both RNA and protein sequence data. In this study, we identified effective features of RNA and protein molecules and developed a new support vector machine (SVM) model to predict protein-binding nucleotides from RNA and protein sequence data. The new model that used both protein and RNA sequence data achieved a sensitivity of 86.5%, a specificity of 86.2%, a positive predictive value (PPV) of 72.6%, a negative predictive value (NPV) of 93.8% and Matthews correlation coefficient (MCC) of 0.69 in a 10-fold cross validation; it achieved a sensitivity of 58.8%, a specificity of 87.4%, a PPV of 65.1%, a NPV of 84.2% and MCC of 0.48 in independent testing. For comparative purpose, we built another prediction model that used RNA sequence data alone and ran it on the same dataset. In a 10 fold-cross validation it achieved a sensitivity of 85.7%, a specificity of 80.5%, a PPV of 67.7%, a NPV of 92.2% and MCC of 0.63; in independent testing it achieved a sensitivity of 67.7%, a specificity of 78.8%, a PPV of 57.6%, a NPV of 85.2% and MCC of 0.45. In both cross-validations and independent testing, the new model that used both RNA and protein sequences showed a better performance than the model that used RNA sequence data alone in

  3. Physico-chemical properties of different forms of bovine lactoferrin.

    Science.gov (United States)

    Bokkhim, Huma; Bansal, Nidhi; Grøndahl, Lisbeth; Bhandari, Bhesh

    2013-12-01

    Three forms of bovine lactoferrin (Lf), apo-, native- and holo- with 0.9%, 12.9% and 99.7% iron content, respectively, were characterised for their physico-chemical properties. Colour, surface tension, thermal properties, particle charge and rheological behaviour of Lf were found to be affected by the form of Lf. The surface tension of Lf tends to decrease with decrease in iron content. The Circular Dichroism (CD) spectra confirmed that all forms of Lf had similar secondary structures while the tertiary structure was different for holo-Lf. The Differential Scanning Calorimeter (DSC) analysis showed that the apo- and holo-Lf in aqueous solution displayed thermal denaturation temperatures of 71±0.2 and 91±0.5 °C, respectively, suggesting that the iron saturation of Lf tends to increase its thermal stability. The study of particle charge properties (ζ-potential) in 1 mM KCl salt solution showed that apo-Lf reached the net charge of zero in the pH range 5.5-6.5 whereas native and holo-Lf in the pH range 8.0-9.0. The apparent viscosity of 1% (wt/wt) solution of the different forms of Lf showed no difference between apo- and native-Lf (≈1.4 mPas) while the value was significantly higher (2.38 mPas) for holo-Lf. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Crystallization and preliminary X-ray diffraction analysis of the haem-binding protein HemS from Yersinia enterocolitica

    International Nuclear Information System (INIS)

    Schneider, Sabine; Paoli, Massimo

    2005-01-01

    The haem binding protein HemS from Y. enterocolitica has been crystallized in complex with its ligand. The crystals diffracted X-rays to 2.6 Å in-house. Bacteria have evolved strategies to acquire iron from their environment. Pathogenic microbes rely on specialized proteins to ‘steal’ haem from their host and use it as an iron source. HemS is the ultimate recipient of a molecular-relay system for haem uptake in Gram-negative species, functioning as the cytosolic carrier of haem. Soluble expression and high-quality diffraction crystals were obtained for HemS from Yersinia enterocolitica. Crystals belong to the orthorhombic space group I222, with unit-cell parameters a = 74.86, b = 77.45, c = 114.09 Å, and diffract X-rays to 2.6 Å spacing in-house. Determination of the structure of the haem–HemS complex will reveal the molecular basis of haem binding

  5. Crystallization and preliminary X-ray diffraction analysis of the haem-binding protein HemS from Yersinia enterocolitica

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Sabine; Paoli, Massimo, E-mail: max.paoli@nottingham.ac.uk [School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2005-08-01

    The haem binding protein HemS from Y. enterocolitica has been crystallized in complex with its ligand. The crystals diffracted X-rays to 2.6 Å in-house. Bacteria have evolved strategies to acquire iron from their environment. Pathogenic microbes rely on specialized proteins to ‘steal’ haem from their host and use it as an iron source. HemS is the ultimate recipient of a molecular-relay system for haem uptake in Gram-negative species, functioning as the cytosolic carrier of haem. Soluble expression and high-quality diffraction crystals were obtained for HemS from Yersinia enterocolitica. Crystals belong to the orthorhombic space group I222, with unit-cell parameters a = 74.86, b = 77.45, c = 114.09 Å, and diffract X-rays to 2.6 Å spacing in-house. Determination of the structure of the haem–HemS complex will reveal the molecular basis of haem binding.

  6. Fragment-based quantum mechanical calculation of protein-protein binding affinities.

    Science.gov (United States)

    Wang, Yaqian; Liu, Jinfeng; Li, Jinjin; He, Xiao

    2018-04-29

    The electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method has been successfully utilized for efficient linear-scaling quantum mechanical (QM) calculation of protein energies. In this work, we applied the EE-GMFCC method for calculation of binding affinity of Endonuclease colicin-immunity protein complex. The binding free energy changes between the wild-type and mutants of the complex calculated by EE-GMFCC are in good agreement with experimental results. The correlation coefficient (R) between the predicted binding energy changes and experimental values is 0.906 at the B3LYP/6-31G*-D level, based on the snapshot whose binding affinity is closest to the average result from the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) calculation. The inclusion of the QM effects is important for accurate prediction of protein-protein binding affinities. Moreover, the self-consistent calculation of PB solvation energy is required for accurate calculations of protein-protein binding free energies. This study demonstrates that the EE-GMFCC method is capable of providing reliable prediction of relative binding affinities for protein-protein complexes. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  7. Siderophore-mediated iron trafficking in humans is regulated by iron

    Science.gov (United States)

    Liu, Zhuoming; Lanford, Robert; Mueller, Sebastian; Gerhard, Glenn S.; Luscieti, Sara; Sanchez, Mayka; Devireddy, L.

    2013-01-01

    Siderophores are best known as small iron binding molecules that facilitate microbial iron transport. In our previous study we identified a siderophore-like molecule in mammalian cells and found that its biogenesis is evolutionarily conserved. A member of the short chain dehydrogenase family of reductases, 3-OH butyrate dehydrogenase (BDH2) catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore. We have shown that depletion of the mammalian siderophore by inhibiting expression of bdh2 results in abnormal accumulation of cellular iron and mitochondrial iron deficiency. These observations suggest that the mammalian siderophore is a critical regulator of cellular iron homeostasis and facilitates mitochondrial iron import. By utilizing bioinformatics, we identified an iron-responsive element (IRE; a stem-loop structure that regulates genes expression post-transcriptionally upon binding to iron regulatory proteins or IRPs) in the 3′-untranslated region (3′-UTR) of the human BDH2 (hBDH2) gene. In cultured cells as well as in patient samples we now demonstrate that the IRE confers iron-dependent regulation on hBDH2 and binds IRPs in RNA electrophoretic mobility shift assays. In addition, we show that the hBDH2 IRE associates with IRPs in cells and that abrogation of IRPs by RNAi eliminates the iron-dependent regulation of hBDH2 mRNA. The key physiologic implication is that iron-mediated post-transcriptional regulation of hBDH2 controls mitochondrial iron homeostasis in human cells. These observations provide a new and an unanticipated mechanism by which iron regulates its intracellular trafficking. PMID:22527885

  8. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  9. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    International Nuclear Information System (INIS)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-01-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states

  10. Inflammatory bowel disease activity assessed by fecal calprotectin and lactoferrin: correlation with laboratory parameters, clinical, endoscopic and histological indexes

    Directory of Open Access Journals (Sweden)

    Rossini Lucio

    2009-10-01

    Full Text Available Abstract Background Research has shown that fecal biomarkers are useful to assess the activity of inflammatory bowel disease (IBD. The aim of the study is: to evaluate the efficacy of the fecal lactoferrin and calprotectin as indicators of inflammatory activity. Findings A total of 78 patients presenting inflammatory bowel disease were evaluated. Blood tests, the Crohn's Disease Activity Index (CDAI, Mayo Disease Activity Index (MDAI, and Crohn's Disease Endoscopic Index of Severity (CDEIS were used for the clinical and endoscopic evaluation. Two tests were performed on the fecal samples, to check the levels of calprotectin and lactoferrin. The performance of these fecal markers for detection of inflammation with reference to endoscopic and histological inflammatory activity was assessed and calculated sensitivity, specificity, accuracy. A total of 52 patient's samples whose histological evaluations showed inflammation, 49 were lactoferrin-positive, and 40 were calprotectin-positive (p = 0.000. Lactoferrin and calprotectin findings correlated with C-reactive protein in both the CD and UC groups (p = 0.006; p = 0.000, with CDAI values (p = 0.043; 0.010, CDEIS values in DC cases (p = 0,000; 0.000, and with MDAI values in UC cases (p = 0.000. Conclusion Fecal lactoferrin and calprotectin are highly sensitive and specific markers for detecting intestinal inflammation. Levels of fecal calprotectin have a proportional correlation to the degree of inflammation of the intestinal mucosa.

  11. Radiation damage to DNA-binding proteins

    International Nuclear Information System (INIS)

    Culard, G.; Eon, S.; DeVuyst, G.; Charlier, M.; Spotheim-Maurizot, M.

    2003-01-01

    The DNA-binding properties of proteins are strongly affected upon irradiation. The tetrameric lactose repressor (a dimer of dimers) losses its ability to bind operator DNA as soon as at least two damages per protomer of each dimer occur. The monomeric MC1 protein losses its ability to bind DNA in two steps : i) at low doses only the specific binding is abolished, whereas the non-specific one is still possible; ii) at high doses all binding vanishes. Moreover, the DNA bending induced by MC1 binding is less pronounced for a protein that underwent the low dose irradiation. When the entire DNA-protein complexes are irradiated, the observed disruption of the complexes is mainly due to the damage of the proteins and not to that of DNA. The doses necessary for complex disruption are higher than those inactivating the free protein. This difference, larger for MC1 than for lactose repressor, is due to the protection of the protein by the bound DNA. The oxidation of the protein side chains that are accessible to the radiation-induced hydroxyl radicals seems to represent the inactivating damage

  12. Lactoferrin gene promoter variants and their association with clinical and subclinical mastitis in indigenous and crossbred cattle.

    Science.gov (United States)

    Chopra, A; Gupta, I D; Verma, A; Chakravarty, A K; Vohra, V

    2015-01-01

    Lactoferrin (Lf) gene promoter was screened for the presence of single nucleotide polymphism in indigenous and crossbred cattle from North India and to evaluate its association with Mastitis. Study revealed the presence of genetic variation in regulatory region of bovine Lactoferrin gene using PCR-RFLP technique. Three genotypes namely GG, GH and HH were identified. A single nucleotide change, from guanine to adenine at 25th position was found to be significantly associated (pmastitis in indigenous Sahiwal and crossbred Karan Fries cattle maintained at organised herd of National Dairy Research Institute, Karnal. A non-significant association was observed between subclinical mastitis, somatic cell score (SCS), and GG genotype in Karan Fries cattle, however, a lower SCS was observed in animals having GG genotype. Overall a lower incidence of clinical mastitis was recorded in those animals having GG genotype of Lf in Sahiwal and Karan Fries (KF) cattle. The SNP identified in the promoter region may effect expression lactoferrin protein, which may lead to different levels of antibacterial and anti-inflammatory activity of Lf gene. Results from this study indicated the probable role played by Lactoferrin promoter to serve as candidate gene for mastitis susceptibility among indigenous and crossbred milch cattle.

  13. Assessing the iron chelation capacity of goat casein digest isolates.

    Science.gov (United States)

    Smialowska, A; Matia-Merino, L; Carr, A J

    2017-04-01

    We isolated goat phosphopeptides via calcium and ethanol precipitation from a caseinate digest and investigated their feasibility as an iron-fortification ingredient in nutritional foods. Goat tryptic-digested phosphopeptides could bind 54.37 ± 0.50 mg of Fe/g of protein compared with goat milk, which could bind 3.83 ± 0.01 mg of Fe/g of protein, indicating that isolation did increase iron binding. However, the >13-fold increase in iron binding was only partly explained by the increased concentration of phosphoserine-rich residues in the isolated fraction: we observed a 77% increase in serine residue content and a 5.9-fold increase in phosphorus in the goat peptide isolate compared with the starting caseinate material. We investigated the effect of potential industrial processing conditions (including heating, cooling, holding time, and processing order) on iron binding by the tryptic-digested phosphopeptides. In addition, we tested the effect of ionic strength and the addition of peptides to a milk system to understand how food formulations could affect iron binding. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Inhibition of HSV cell-to-cell spread by lactoferrin and lactoferricin.

    Science.gov (United States)

    Jenssen, Håvard; Sandvik, Kjersti; Andersen, Jeanette H; Hancock, Robert E W; Gutteberg, Tore J

    2008-09-01

    The milk protein lactoferrin (Lf) has multiple functions, including immune stimulation and antiviral activity towards herpes simplex virus 1 and 2 (HSV-1 and HSV-2); antiviral activity has also been reported for the N-terminal pepsin-derived fragment lactoferricin (Lfcin). The anti-HSV mode of action of Lf and Lfcin is assumed to involve, in part, their interaction with the cell surface glycosaminoglycan heparan sulfate, thereby blocking of viral entry. In this study we investigated the ability of human and bovine Lf and Lfcin to inhibit viral cell-to-cell spread as well as the involvement of cell surface glycosaminoglycans during viral cell-to-cell spread. Lf and Lfcin from both human and bovine origin, inhibited cell-to-cell spread of both HSV-1 and HSV-2. Inhibition of cell-to-cell spread by bovine Lfcin involved cell surface chondroitin sulfate. Based on transmission electron microscopy studies, human Lfcin, like bovine Lfcin, was randomly distributed intracellularly, thus differences in their antiviral activity could not be explained by differences in their distribution. In contrast, the cellular localization of iron-saturated (holo)-Lf appeared to differ from that of apo-Lf, indicating that holo- and apo-Lf may exhibit different antiviral mechanisms.

  15. Lactoferrin: Balancing Ups and Downs of Inflammation Due to Microbial Infections

    Directory of Open Access Journals (Sweden)

    Maria Elisa Drago-Serrano

    2017-03-01

    Full Text Available Lactoferrin (Lf is a glycoprotein of the primary innate immune-defense system of mammals present in milk and other mucosal secretions. This protein of the transferrin family has broad antimicrobial properties by depriving pathogens from iron, or disrupting their plasma membranes through its highly cationic charge. Noteworthy, Lf also exhibits immunomodulatory activities performing up- and down-regulation of innate and adaptive immune cells, contributing to the homeostasis in mucosal surfaces exposed to myriad of microbial agents, such as the gastrointestinal and respiratory tracts. Although the inflammatory process is essential for the control of invasive infectious agents, the development of an exacerbated or chronic inflammation results in tissue damage with life-threatening consequences. In this review, we highlight recent findings in in vitro and in vivo models of the gut, lung, oral cavity, mammary gland, and liver infections that provide experimental evidence supporting the therapeutic role of human and bovine Lf in promoting some parameters of inflammation and protecting against the deleterious effects of bacterial, viral, fungal and protozoan-associated inflammation. Thus, this new knowledge of Lf immunomodulation paves the way to more effective design of treatments that include native or synthetic Lf derivatives, which may be useful to reduce immune-mediated tissue damage in infectious diseases.

  16. Characterization of a gene family encoding SEA (sea-urchin sperm protein, enterokinase and agrin-domain proteins with lectin-like and heme-binding properties from Schistosoma japonicum.

    Directory of Open Access Journals (Sweden)

    Evaristus Chibunna Mbanefo

    Full Text Available BACKGROUND: We previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information. METHODOLOGY/PRINCIPAL FINDINGS: Here, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (K D = 1.605×10(-6 M and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition. CONCLUSIONS: The results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation, and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted.

  17. Characterization of a Gene Family Encoding SEA (Sea-urchin Sperm Protein, Enterokinase and Agrin)-Domain Proteins with Lectin-Like and Heme-Binding Properties from Schistosoma japonicum

    Science.gov (United States)

    Mbanefo, Evaristus Chibunna; Kikuchi, Mihoko; Huy, Nguyen Tien; Shuaibu, Mohammed Nasir; Cherif, Mahamoud Sama; Yu, Chuanxin; Wakao, Masahiro; Suda, Yasuo; Hirayama, Kenji

    2014-01-01

    Background We previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information. Methodology/Principal Findings Here, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin)-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (K D = 1.605×10−6 M) and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition. Conclusions The results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation), and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted. PMID:24416467

  18. Effect of the Various Steps in the Processing of Human Milk in the Concentrations of IgA, IgM, and Lactoferrin.

    Science.gov (United States)

    Arroyo, Gerardo; Ortiz Barrientos, Kevin Alexander; Lange, Karla; Nave, Federico; Miss Mas, Gabriela; Lam Aguilar, Pamela; Soto Galindo, Miguel Angel

    2017-09-01

    Human milk immune components are unique and important for the development of the newborn. Milk processing at the Human Milk Banks (HMB), however, causes partial destruction of immune proteins. The objective of this study was to determine the effects that heating during the milk processing procedure at the HMB had on the concentrations of IgA, IgM, and lactoferrin at three critical points in time. Fifty milk samples (150 mL) were collected from voluntary donors at the HMB at the Hospital Nacional Pedro de Bethancourt, located in Antigua Guatemala. Samples from three critical points in time during the milk processing procedure were selected for analysis: freezing/thawing I, freezing/thawing II, and pasteurization. IgA, IgM, and lactoferrin concentrations were determined during each critical point and compared with a baseline concentration. After milk processing, IgA, IgM, and lactoferrin mean concentrations were reduced by 30.0%, 36.0%, and 70.0%, respectively (p milk processing on the immune proteins that were evaluated in this study demonstrated a significant reduction.

  19. EFEK SUPLEMENTASI LAKTOFERIN PADA SUSU FORMULA TERHADAP AVAILABILITAS ZAT BESI, OKSIDASI LEMAK DAN PERTUMBUHAN Escherichia coli PADA SALURAN PENCERNAAN TIKUS [The Effects of Lactoferrin Supplementation to Infant Formula on Iron Availability, Lipid Oxidation and Escherichia coli Growth in RatsIntestine

    Directory of Open Access Journals (Sweden)

    Enny Purwati Nurlaili 1

    2002-12-01

    Full Text Available A research on lactoferrin supplementation to infant formula has been conducted. The objectives of this research were to study the effects of consumption of the supplemented formula on iron availability, lipid oxidation and growth of Escherichia coli in the intestine. Fifthly newly born rats and their mother (10 rats were used.They were divided into 5 groups of 10 newly born and 2 mother rats, and were given five different infant formula respectivelly i.e. FEAN (inorganic Fe supplementation, FEOR ( lactoferrin supplementation, FECAMP (inorganic and lactoferrin supplementation, Control (no Fe supplementation and Placebo. FeSO4. 7 H2O and lactoferrin were used as the source of inorganic and organic Fe respectively. During the experiment the rat baby also got regular milk from their mothers which were fed by AIN 93 diet. After 30 days of intervention, blood were withdrawn from the retro orbital plexus for Hb, Fe and TBARS determination. The rats were executed and liver was taken for Fe and TBARS analysis and large intestine were withdrawn for Escherichia coli determination. It was found that Fe supplementation of the formula have no effects on the serum total Fe, increase the total hemoglobin of the baby but was not significantly different between the sources of the Fe. Total Fe of the liver was highest in FECAMP and FEOR rats (101.3 ppm and 83.38 ppm, respectively and lowest in the Placebo groups (58.1 ppm. Inorganic Fe supplementation increase TBARS of the serum and liver of the rats. Number of total Escherichia coli was lowest in FEOR groups (1.7 10 7 cfu and was highest in FEAN rats (7.5 10 7 cfu.

  20. A structural classification of substrate-binding proteins

    NARCIS (Netherlands)

    Berntsson, Ronnie P. -A.; Smits, Sander H. J.; Schmitt, Lutz; Slotboom, Dirk-Jan; Poolman, Bert

    2010-01-01

    Substrate-binding proteins (SBP) are associated with a wide variety of protein complexes. The proteins are part of ATP-binding cassette transporters for substrate uptake, ion gradient driven transporters, DNA-binding proteins, as well as channels and receptors from both pro-and eukaryotes. A wealth

  1. Ulcerated hemosiderinic dyschromia and iron deposits within lower limbs treated with a topical application of biological chelator

    Directory of Open Access Journals (Sweden)

    Eugenio Brizzio

    2012-12-01

    Full Text Available The ulcerative haemosiderinic dyschromia of chronic venous insufficiency is difficult to heal and presents a high accumulation of iron. Lactoferrin, a potent natural iron chelator, could help to scar this ulcerative haemosi - derinic dyschromia. The objective of this study was to determine whether the topical application of a liposomal gel with Lactoferrin favors scarring/degradation of the brown colored spot typical of ulcerative haemosiderinic dyschromia. Nine patients with severe chronic venous insufficiency and ulcerative haemosiderinic dyschromia (CEAP-C6, with a natural evolution of over 12 months, were included in the study. Hemo chromatosis gene mutations were investigated. The levels of serum ferritin, transferrin saturation and blood cell counts were analyzed. The presence of hemosiderin was investigated through periulcerous and ulcer fundus biopsies carried out at baseline and 30 days after treatment with Lactoferrin. The severity of the injuries (CEAP classification was evaluated at the beginning of and throughout the whole 3-month treatment period. No patient had received compression treatment during the three months previous to this therapy. Significant improvement in these injuries, with a reduction in the dimensions of the brown spot (9 of 9 at Day 90, and complete scarring with a closure time ranging from 15 to 180 days (7 of 9 were observed. The use of topical lactoferrin is a non-invasive therapeutic tool that favors clearance of hemosiderinic dyschromia and scarring of the ulcer. The success of this study was not influenced either by the hemochromatosis genetics or the iron metabolism profile observed.

  2. Multiple protonation equilibria in electrostatics of protein-protein binding.

    Science.gov (United States)

    Piłat, Zofia; Antosiewicz, Jan M

    2008-11-27

    All proteins contain groups capable of exchanging protons with their environment. We present here an approach, based on a rigorous thermodynamic cycle and the partition functions for energy levels characterizing protonation states of the associating proteins and their complex, to compute the electrostatic pH-dependent contribution to the free energy of protein-protein binding. The computed electrostatic binding free energies include the pH of the solution as the variable of state, mutual "polarization" of associating proteins reflected as changes in the distribution of their protonation states upon binding and fluctuations between available protonation states. The only fixed property of both proteins is the conformation; the structure of the monomers is kept in the same conformation as they have in the complex structure. As a reference, we use the electrostatic binding free energies obtained from the traditional Poisson-Boltzmann model, computed for a single macromolecular conformation fixed in a given protonation state, appropriate for given solution conditions. The new approach was tested for 12 protein-protein complexes. It is shown that explicit inclusion of protonation degrees of freedom might lead to a substantially different estimation of the electrostatic contribution to the binding free energy than that based on the traditional Poisson-Boltzmann model. This has important implications for the balancing of different contributions to the energetics of protein-protein binding and other related problems, for example, the choice of protein models for Brownian dynamics simulations of their association. Our procedure can be generalized to include conformational degrees of freedom by combining it with molecular dynamics simulations at constant pH. Unfortunately, in practice, a prohibitive factor is an enormous requirement for computer time and power. However, there may be some hope for solving this problem by combining existing constant pH molecular dynamics

  3. UV-induced DNA-binding proteins in human cells

    International Nuclear Information System (INIS)

    Glazer, P.M.; Greggio, N.A.; Metherall, J.E.; Summers, W.C.

    1989-01-01

    To investigate the response of human cells to DNA-damaging agents such as UV irradiation, the authors examined nuclear protein extracts of UV-irradiated HeLa cells for the presence of DNA-binding proteins. Electrophoretically separated proteins were transferred to a nitrocellulose filter that was subsequently immersed in a binding solution containing radioactively labeled DNA probes. Several DNA-binding proteins were induced in HeLa cells after UV irradiation. These included proteins that bind predominantly double-stranded DNA and proteins that bind both double-stranded and single-stranded DNA. The binding proteins were induced in a dose-dependent manner by UV light. Following a dose of 12 J/m 2 , the binding proteins in the nuclear extracts increased over time to a peak in the range of 18 hr after irradiation. Experiments with metabolic inhibitors (cycloheximide and actinomycin D) revealed that de novo synthesis of these proteins is not required for induction of the binding activities, suggesting that the induction is mediated by protein modification

  4. Moessbauer spectroscopic studies of iron-storage proteins

    Energy Technology Data Exchange (ETDEWEB)

    St. Pierre, T.G.

    1986-01-01

    /sup 57/Fe Moessbauer spectroscopy was used to study iron storage proteins. Various cryostats and a superconducting magnet were used to obtain sample environment temperatures from 1.3 to 200K and applied magnetic fields of up to 10T. The Moessbauer spectra of ferritins isolated from iron-overloaded human spleen, limpet (Patella vulgata), giant limpet (Patella laticostata) and chiton (Clavarizona hirtosa) hemolymph, and bacterial (Pseudomonas aeruginosa) cells are used to gain information on the magnetic ordering- and superparamagnetic transition temperatures of the microcrystalline cores of the proteins. Investigations were made about the cause of the difference in the magnetic anisotropy constants of the cores of iron-overloaded human spleen ferritin and hemosiderin. Livers taken from an iron-overloaded hornbill and artificially iron-loaded rats showed no component with a superparamagnetic transition temperature approaching that of the human spleen hemosiderin.

  5. Transcriptional and Translational Regulatory Responses to Iron Limitation in the Globally Distributed Marine Bacterium Candidatus Pelagibacter ubique

    Science.gov (United States)

    Smith, Daniel P.; Kitner, Joshua B.; Norbeck, Angela D.; Clauss, Therese R.; Lipton, Mary S.; Schwalbach, Michael S.; Steindler, Laura; Nicora, Carrie D.; Smith, Richard D.; Giovannoni, Stephen J.

    2010-01-01

    Iron is recognized as an important micronutrient that limits microbial plankton productivity over vast regions of the oceans. We investigated the gene expression responses of Candidatus Pelagibacter ubique cultures to iron limitation in natural seawater media supplemented with a siderophore to chelate iron. Microarray data indicated transcription of the periplasmic iron binding protein sfuC increased by 16-fold, and iron transporter subunits, iron-sulfur center assembly genes, and the putative ferroxidase rubrerythrin transcripts increased to a lesser extent. Quantitative peptide mass spectrometry revealed that sfuC protein abundance increased 27-fold, despite an average decrease of 59% across the global proteome. Thus, we propose sfuC as a marker gene for indicating iron limitation in marine metatranscriptomic and metaproteomic ecological surveys. The marked proteome reduction was not directly correlated to changes in the transcriptome, implicating post-transcriptional regulatory mechanisms as modulators of protein expression. Two RNA-binding proteins, CspE and CspL, correlated well with iron availability, suggesting that they may contribute to the observed differences between the transcriptome and proteome. We propose a model in which the RNA-binding activity of CspE and CspL selectively enables protein synthesis of the iron acquisition protein SfuC during transient growth-limiting episodes of iron scarcity. PMID:20463970

  6. The expression of ferritin, lactoferrin, transferrin receptor and solute carrier family 11A1 in the host response to BCG-vaccination and Mycobacterium tuberculosis challenge.

    Science.gov (United States)

    Thom, R E; Elmore, M J; Williams, A; Andrews, S C; Drobniewski, F; Marsh, P D; Tree, J A

    2012-05-02

    Iron is an essential cofactor for both mycobacterial growth during infection and for a successful protective immune response by the host. The immune response partly depends on the regulation of iron by the host, including the tight control of expression of the iron-storage protein, ferritin. BCG vaccination can protect against disease following Mycobacterium tuberculosis infection, but the mechanisms of protection remain unclear. To further explore these mechanisms, splenocytes from BCG-vaccinated guinea pigs were stimulated ex vivo with purified protein derivative from M. tuberculosis and a significant down-regulation of ferritin light- and heavy-chain was measured by reverse-transcription quantitative-PCR (P≤0.05 and ≤0.01, respectively). The mechanisms of this down-regulation were shown to involve TNFα and nitric oxide. A more in depth analysis of the mRNA expression profiles, including genes involved in iron metabolism, was performed using a guinea pig specific immunological microarray following ex vivo infection with M. tuberculosis of splenocytes from BCG-vaccinated and naïve guinea pigs. M. tuberculosis infection induced a pro-inflammatory response in splenocytes from both groups, resulting in down-regulation of ferritin (P≤0.05). In addition, lactoferrin (P≤0.002), transferrin receptor (P≤0.05) and solute carrier family 11A1 (P≤0.05), were only significantly down-regulated after infection of the splenocytes from BCG-vaccinated animals. The results show that expression of iron-metabolism genes is tightly regulated as part of the host response to M. tuberculosis infection and that BCG-vaccination enhances the ability of the host to mount an iron-restriction response which may in turn help to combat invasion by mycobacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Tumorigenic Properties of Iron Regulatory Protein 2 (IRP2) Mediated by Its Specific 73-Amino Acids Insert

    OpenAIRE

    Maffettone, Carmen; Chen, Guohua; Drozdov, Ignat; Ouzounis, Christos; Pantopoulos, Kostas

    2010-01-01

    Iron regulatory proteins, IRP1 and IRP2, bind to mRNAs harboring iron responsive elements and control their expression. IRPs may also perform additional functions. Thus, IRP1 exhibited apparent tumor suppressor properties in a tumor xenograft model. Here we examined the effects of IRP2 in a similar setting. Human H1299 lung cancer cells or clones engineered for tetracycline-inducible expression of wild type IRP2, or the deletion mutant IRP2(Delta73) (lacking a specific insert of 73 amino acid...

  8. The interaction between the iron-responsive element binding protein and its cognate RNA is highly dependent upon both RNA sequence and structure.

    Science.gov (United States)

    Jaffrey, S R; Haile, D J; Klausner, R D; Harford, J B

    1993-09-25

    To assess the influence of RNA sequence/structure on the interaction RNAs with the iron-responsive element binding protein (IRE-BP), twenty eight altered RNAs were tested as competitors for an RNA corresponding to the ferritin H chain IRE. All changes in the loop of the predicted IRE hairpin and in the unpaired cytosine residue characteristically found in IRE stems significantly decreased the apparent affinity of the RNA for the IRE-BP. Similarly, alteration in the spacing and/or orientation of the loop and the unpaired cytosine of the stem by either increasing or decreasing the number of base pairs separating them significantly reduced efficacy as a competitor. It is inferred that the IRE-BP forms multiple contacts with its cognate RNA, and that these contacts, acting in concert, provide the basis for the high affinity of this interaction.

  9. Comparison of Membrane Chromatography and Monolith Chromatography for Lactoferrin and Bovine Serum Albumin Separation

    Directory of Open Access Journals (Sweden)

    Chalore Teepakorn

    2016-09-01

    Full Text Available These last few decades, membranes and monoliths have been increasingly used as stationary phases for chromatography. Their fast mass transfer is mainly based on convection, which leads to reduced diffusion, which is usually observed in resins. Nevertheless, poor flow distribution, which causes inefficient binding, remains a major challenge for the development of both membrane and monolith devices. Moreover, the comparison of membranes and monoliths for biomolecule separation has been very poorly investigated. In this paper, the separation of two proteins, bovine serum albumin (BSA and lactoferrin (LF, with similar sizes, but different isoelectric points, was investigated at a pH of 6.0 with a BSA-LF concentration ratio of 2/1 (2.00 mg·mL−1 BSA and 1.00 mg·mL−1 LF solution using strong cation exchange membranes and monoliths packed in the same housing, as well as commercialized devices. The feeding flow rate was operated at 12.0 bed volume (BV/min for all devices. Afterward, bound LF was eluted using a phosphate-buffered saline solution with 2.00 M NaCl. Using membranes in a CIM housing from BIA Separations (Slovenia with porous frits before and after the membrane bed, higher binding capacities, sharper breakthrough curves, as well as sharper and more symmetric elution peaks were obtained. The monolith and commercialized membrane devices showed lower LF binding capacity and broadened and non-symmetric elution peaks.

  10. When is protein binding important?

    Science.gov (United States)

    Heuberger, Jules; Schmidt, Stephan; Derendorf, Hartmut

    2013-09-01

    The present paper is an ode to a classic citation by Benet and Hoener (2002. Clin Pharm Ther 71(3):115-121). The now classic paper had a huge impact on drug development and the way the issue of protein binding is perceived and interpreted. Although the authors very clearly pointed out the limitations and underlying assumptions for their delineations, these are too often overlooked and the classic paper's message is misinterpreted by broadening to cases that were not intended. Some members of the scientific community concluded from the paper that protein binding is not important. This was clearly not intended by the authors, as they finished their paper with a paragraph entitled: "When is protein binding important?" Misinterpretation of the underlying assumptions in the classic work can result in major pitfalls in drug development. Therefore, we revisit the topic of protein binding with the intention of clarifying when clinically relevant changes should be considered during drug development. Copyright © 2013 Wiley Periodicals, Inc.

  11. Megalin binds and mediates cellular internalization of folate binding protein

    DEFF Research Database (Denmark)

    Birn, Henrik; Zhai, Xiaoyue; Holm, Jan

    2005-01-01

    Folate is an essential vitamin involved in a number of biological processes. High affinity folate binding proteins (FBPs) exist both as glycosylphosphatidylinositol-linked, membrane associated folate binding proteins and as soluble FBPs in plasma and some secretory fluids such as milk, saliva...... to express high levels of megalin, is inhibitable by excess unlabeled FBP and by receptor associated protein, a known inhibitor of binding to megalin. Immortalized rat yolk sac cells, representing an established model for studying megalin-mediated uptake, reveal (125)I-labeled FBP uptake which is inhibited...

  12. Distance-Based Tear Lactoferrin Assay on Microfluidic Paper Device Using Interfacial Interactions on Surface-Modified Cellulose.

    Science.gov (United States)

    Yamada, Kentaro; Henares, Terence G; Suzuki, Koji; Citterio, Daniel

    2015-11-11

    "Distance-based" detection motifs on microfluidic paper-based analytical devices (μPADs) allow quantitative analysis without using signal readout instruments in a similar manner to classical analogue thermometers. To realize a cost-effective and calibration-free distance-based assay of lactoferrin in human tear fluid on a μPAD not relying on antibodies or enzymes, we investigated the fluidic mobilities of the target protein and Tb(3+) cations used as the fluorescent detection reagent on surface-modified cellulosic filter papers. Chromatographic elution experiments in a tear-like sample matrix containing electrolytes and proteins revealed a collapse of attractive electrostatic interactions between lactoferrin or Tb(3+) and the cellulosic substrate, which was overcome by the modification of the paper surface with the sulfated polysaccharide ι-carrageenan. The resulting μPAD based on the fluorescence emission distance successfully analyzed 0-4 mg mL(-1) of lactoferrin in complex human tear matrix with a lower limit of detection of 0.1 mg mL(-1) by simple visual inspection. Assay results of 18 human tear samples including ocular disease patients and healthy volunteers showed good correlation to the reference ELISA method with a slope of 0.997 and a regression coefficient of 0.948. The distance-based quantitative signal and the good batch-to-batch fabrication reproducibility relying on printing methods enable quantitative analysis by simply reading out "concentration scale marks" printed on the μPAD without performing any calibration and using any signal readout instrument.

  13. Protein binding of psychotropic agents

    International Nuclear Information System (INIS)

    Hassan, H.A.

    1990-01-01

    Based upon fluorescence measurements, protein binding of some psychotropic agents (chlorpromazine, promethazine, and trifluoperazine) to human IgG and HSA was studied in aqueous cacodylate buffer, PH7. The interaction parameters determined from emission quenching of the proteins. The interaction parameters determined include the equilibrium constant (K), calculated from equations derived by Borazan and coworkers, the number of binding sites (n) available to the monomer molecules on a single protein molecule. The results revealed a high level of affinity, as reflected by high values of K, and the existence of specific binding sites, since a limited number of n values are obtained. 39 tabs.; 37 figs.; 83 refs

  14. The Extracellular Heme-binding Protein HbpS from the Soil Bacterium Streptomyces reticuli Is an Aquo-cobalamin Binder*

    Science.gov (United States)

    Ortiz de Orué Lucana, Darío; Fedosov, Sergey N.; Wedderhoff, Ina; Che, Edith N.; Torda, Andrew E.

    2014-01-01

    The extracellular protein HbpS from Streptomyces reticuli interacts with iron ions and heme. It also acts in concert with the two-component sensing system SenS-SenR in response to oxidative stress. Sequence comparisons suggested that the protein may bind a cobalamin. UV-visible spectroscopy confirmed binding (Kd = 34 μm) to aquo-cobalamin (H2OCbl+) but not to other cobalamins. Competition experiments with the H2OCbl+-coordinating ligand CN− and comparison of mutants identified a histidine residue (His-156) that coordinates the cobalt ion of H2OCbl+ and substitutes for water. HbpS·Cobalamin lacks the Asp-X-His-X-X-Gly motif seen in some cobalamin binding enzymes. Preliminary tests showed that a related HbpS protein from a different species also binds H2OCbl+. Furthermore, analyses of HbpS-heme binding kinetics are consistent with the role of HbpS as a heme-sensor and suggested a role in heme transport. Given the high occurrence of HbpS-like sequences among Gram-positive and Gram-negative bacteria, our findings suggest a great functional versatility among these proteins. PMID:25342754

  15. Predicting binding within disordered protein regions to structurally characterised peptide-binding domains.

    Directory of Open Access Journals (Sweden)

    Waqasuddin Khan

    Full Text Available Disordered regions of proteins often bind to structured domains, mediating interactions within and between proteins. However, it is difficult to identify a priori the short disordered regions involved in binding. We set out to determine if docking such peptide regions to peptide binding domains would assist in these predictions.We assembled a redundancy reduced dataset of SLiM (Short Linear Motif containing proteins from the ELM database. We selected 84 sequences which had an associated PDB structures showing the SLiM bound to a protein receptor, where the SLiM was found within a 50 residue region of the protein sequence which was predicted to be disordered. First, we investigated the Vina docking scores of overlapping tripeptides from the 50 residue SLiM containing disordered regions of the protein sequence to the corresponding PDB domain. We found only weak discrimination of docking scores between peptides involved in binding and adjacent non-binding peptides in this context (AUC 0.58.Next, we trained a bidirectional recurrent neural network (BRNN using as input the protein sequence, predicted secondary structure, Vina docking score and predicted disorder score. The results were very promising (AUC 0.72 showing that multiple sources of information can be combined to produce results which are clearly superior to any single source.We conclude that the Vina docking score alone has only modest power to define the location of a peptide within a larger protein region known to contain it. However, combining this information with other knowledge (using machine learning methods clearly improves the identification of peptide binding regions within a protein sequence. This approach combining docking with machine learning is primarily a predictor of binding to peptide-binding sites, and is not intended as a predictor of specificity of binding to particular receptors.

  16. Binding of zinc and iron to wheat bread, wheat bran, and their components.

    Science.gov (United States)

    Ismail-Beigi, F; Faraji, B; Reinhold, J G

    1977-10-01

    Wholemeal wheat bread decreases the availability and intestinal absorption of divalent metals. To define this action further, binding of zinc in vitro to a wheat wholemeal bread (Tanok), dephytinized Tanok, and cellulose was determined at pH 5.0 to 7.5. Zinc binding by each was highly pH-dependent and reached a maximum at pH 6.5 to 7.5. Removal of phytate from Tanok did not reduce its binding capability. Wheat bran at pH 6.5 and 6.8 bound 72% of iron (0.5 microgram/ml of solution) and 82.5% of zinc (1.43 microgram/ml solution), respectively. Lignin and two of the hemicellulose fractions of wheat bran and high binding capabilities for zinc (85.6, 87.1, and 82.1%, respectively) whereas a third had a lower zinc-binding capability (38.7%). Binding of zinc to various celluloses and dextrans is also demonstrated. Formation of complexes of these metals with wheat fiber can explain, at least in part, the decreased availability of dietary iron and zinc in wholemeal wheat bread.

  17. A Neisseria meningitidis fbpABC mutant is incapable of using nonheme iron for growth.

    Science.gov (United States)

    Khun, H H; Kirby, S D; Lee, B C

    1998-05-01

    The neisserial fbpABC locus has been proposed to act as an iron-specific ABC transporter system. To confirm this assigned function, we constructed an fbpABC mutant in Neisseria meningitidis by insertional inactivation of fbpABC with a selectable antibiotic marker. The mutant was unable to use iron supplied from human transferrin, human lactoferrin, or iron chelates. However, the use of iron from heme and human hemoglobin was unimpaired. These results support the obligatory participation of fbpABC in neisserial periplasmic iron transport and do not indicate a role for this genetic locus in the heme iron pathway.

  18. Albumin-coated SPIONs: an experimental and theoretical evaluation of protein conformation, binding affinity and competition with serum proteins

    Science.gov (United States)

    Yu, Siming; Perálvarez-Marín, Alex; Minelli, Caterina; Faraudo, Jordi; Roig, Anna; Laromaine, Anna

    2016-07-01

    The variety of nanoparticles (NPs) used in biological applications is increasing and the study of their interaction with biological media is becoming more important. Proteins are commonly the first biomolecules that NPs encounter when they interact with biological systems either in vitro or in vivo. Among NPs, super-paramagnetic iron oxide nanoparticles (SPIONs) show great promise for medicine. In this work, we study in detail the formation, composition, and structure of a monolayer of bovine serum albumin (BSA) on SPIONs. We determine, both by molecular simulations and experimentally, that ten molecules of BSA form a monolayer around the outside of the SPIONs and their binding strength to the SPIONs is about 3.5 × 10-4 M, ten times higher than the adsorption of fetal bovine serum (FBS) on the same SPIONs. We elucidate a strong electrostatic interaction between BSA and the SPIONs, although the secondary structure of the protein is not affected. We present data that supports the strong binding of the BSA monolayer on SPIONs and the properties of the BSA layer as a protein-resistant coating. We believe that a complete understanding of the behavior and morphology of BSA-SPIONs and how the protein interacts with SPIONs is crucial for improving NP surface design and expanding the potential applications of SPIONs in nanomedicine.The variety of nanoparticles (NPs) used in biological applications is increasing and the study of their interaction with biological media is becoming more important. Proteins are commonly the first biomolecules that NPs encounter when they interact with biological systems either in vitro or in vivo. Among NPs, super-paramagnetic iron oxide nanoparticles (SPIONs) show great promise for medicine. In this work, we study in detail the formation, composition, and structure of a monolayer of bovine serum albumin (BSA) on SPIONs. We determine, both by molecular simulations and experimentally, that ten molecules of BSA form a monolayer around the

  19. Dinitrogen binding and cleavage by multinuclear iron complexes.

    Science.gov (United States)

    McWilliams, Sean F; Holland, Patrick L

    2015-07-21

    The iron-molybdenum cofactor of nitrogenase has unprecedented coordination chemistry, including a high-spin iron cluster called the iron-molybdenum cofactor (FeMoco). Thus, understanding the mechanism of nitrogenase challenges coordination chemists to understand the fundamental N2 chemistry of high-spin iron sites. This Account summarizes a series of studies in which we have synthesized a number of new compounds with multiple iron atoms, characterized them using crystallography and spectroscopy, and studied their reactions in detail. These studies show that formally iron(I) and iron(0) complexes with three- and four-coordinate metal atoms have the ability to weaken and break the triple bond of N2. These reactions occur at or below room temperature, indicating that they are kinetically facile. This in turn implies that iron sites in the FeMoco are chemically reasonable locations for N2 binding and reduction. The careful evaluation of these compounds and their reaction pathways has taught important lessons about what characteristics make iron more effective for N2 activation. Cooperation of two iron atoms can lengthen and weaken the N-N bond, while three working together enables iron atoms to completely cleave the N-N bond to nitrides. Alkali metals (typically introduced into the reaction as part of the reducing agent) are thermodynamically useful because the alkali metal cations stabilize highly reduced complexes, pull electron density into the N2 unit, and make reduced nitride products more stable. Alkali metals can also play a kinetic role, because cation-π interactions with the supporting ligands can hold iron atoms near enough to one another to facilitate the cooperation of multiple iron atoms. Many of these principles may also be relevant to the iron-catalyzed Haber-Bosch process, at which collections of iron atoms (often promoted by the addition of alkali metals) break the N-N bond of N2. The results of these studies teach more general lessons as well. They

  20. Effects of lactoferrin derived peptides on simulants of biological warfare agents

    OpenAIRE

    Sijbrandij, Tjitske; Ligtenberg, Antoon J.; Nazmi, Kamran; Veerman, Enno C. I.; Bolscher, Jan G. M.; Bikker, Floris J.

    2016-01-01

    Lactoferrin (LF) is an important immune protein in neutrophils and secretory fluids of mammals. Bovine LF (bLF) harbours two antimicrobial stretches, lactoferricin and lactoferampin, situated in close proximity in the N1 domain. To mimic these antimicrobial domain parts a chimeric peptide (LFchimera) has been constructed comprising parts of both stretches (LFcin17–30 and LFampin265–284). To investigate the potency of this construct to combat a set of Gram positive and Gram negative bacteria w...

  1. Extracellular and intracellular steroid binding proteins

    International Nuclear Information System (INIS)

    Wagner, R.K.

    1978-01-01

    Steroid hormone binding proteins can be measured, after the removal of endogenous steroids, as specific complexes with radio-labelled hormones. In this study all the requirements for a quantitative determination of steroid hormone binding proteins are defined. For different methods, agargel electrophoresis, density gradient centrifugation, equilibrium dialysis and polyacrylamide electrophoresis have been evaluated. Agar electrophoresis at low temperature was found to be the simplest and most useful procedure. With this method the dissociation rates of high affinity complexes can be assessed and absolute binding protein concentrations can be determined. The dissociation rates of the oestradiol-oestrogen receptor complex and the R-5020-progestin receptor complex are low (1-2% per h run time.) In contrast, that of complexes between androgen receptor and dihydrotestosterone (17β-hydroxy-5α-androstan-3-one (DHT), progestin receptor and progesterone, corticosteroid binding globulin (CBG) and cortisol or progesterone and sex hormone binding globulin (SHBG) and DHT were hign (16-27% per h run time). Target tissue extracts (cytosols) contain, besides soluble tissue proteins, large amounts of plasma proteins. The extent of this plasma contamination can be determined by measuring the albumin concentration in cytosols by immunodiffusion. In cytosols of 4 different human target tissues the albumin content varied from 20-30% corresponding to an even higher whole plasma concentration. Steroid binding plasma proteins, such as CBG and SHBG are constituents of this containment. (author)

  2. Phosphate binding by natural iron-rich colloids in streams

    NARCIS (Netherlands)

    Baken, S.; Moens, C.; Griffioen, J.J.; Smolders, E.

    2016-01-01

    Phosphorus (P) in natural waters may be bound to iron (Fe) bearing colloids. However, the natural variation in composition and P binding strength of these colloids remain unclear. We related the composition of "coarse colloids" (colloids in the 0.1-1.2 μm size range) in 47 Belgian streams to the

  3. Antimicrobial activity of immobilized lactoferrin and lactoferricin.

    Science.gov (United States)

    Chen, Renxun; Cole, Nerida; Dutta, Debarun; Kumar, Naresh; Willcox, Mark D P

    2017-11-01

    Lactoferrin and lactoferricin were immobilized on glass surfaces via two linkers, 4-azidobenzoic acid (ABA) or 4-fluoro-3-nitrophenyl azide (FNA). The resulting surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The antimicrobial activity of the surfaces was determined using Pseudomonas aeruginosa and Staphylococcus aureus strains by fluorescence microscopy. Lactoferrin and lactoferricin immobilization was confirmed by XPS showing significant increases (p lactoferricin immobilized on glass significantly (p lactoferricin were successfully immobilized on glass surfaces and showed promising antimicrobial activity against pathogenic bacteria. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2612-2617, 2017. © 2016 Wiley Periodicals, Inc.

  4. Heteroprotein Complex Formation of Bovine Lactoferrin and Pea Protein Isolate: A Multiscale Structural Analysis.

    Science.gov (United States)

    Adal, Eda; Sadeghpour, Amin; Connell, Simon; Rappolt, Michael; Ibanoglu, Esra; Sarkar, Anwesha

    2017-02-13

    Associative electrostatic interactions between two oppositely charged globular proteins, lactoferrin (LF) and pea protein isolate (PPI), the latter being a mixture of vicilin, legumin, and convicilin, was studied with a specific PPI/LF molar ratio at room temperature. Structural aspects of the electrostatic complexes probed at different length scales were investigated as a function of pH by means of different complementary techniques, namely, with dynamic light scattering, small-angle X-ray scattering (SAXS), turbidity measurements, and atomic force microscopy (AFM). Irrespective of the applied techniques, the results consistently displayed that complexation between LF and PPI did occur. In an optimum narrow range of pH 5.0-5.8, a viscous liquid phase of complex coacervate was obtained upon mild centrifugation of the turbid LF-PPI mixture with a maximum R h , turbidity and the ζ-potential being close to zero observed at pH 5.4. In particular, the SAXS data demonstrated that the coacervates were densely assembled with a roughly spherical size distribution exhibiting a maximum extension of ∼80 nm at pH 5.4. Equally, AFM image analysis showed size distributions containing most frequent cluster sizes around 40-80 nm with spherical to elliptical shapes (axis aspect ratio ≤ 2) as well as less frequent elongated to chainlike structures. The most frequently observed compact complexes, we identify as mainly leading to LF-PPI coacervation, whereas for the less frequent chain-like aggregates, we hypothesize that additionally PPI-PPI facilitated complexes exist.

  5. Lactoferricin but not lactoferrin inhibit herpes simplex virus type 2 infection in mice.

    Science.gov (United States)

    Shestakov, Andrey; Jenssen, Håvard; Nordström, Inger; Eriksson, Kristina

    2012-03-01

    We have evaluated the potential of bovine lactoferrin and lactoferricin for their ability to prevent and/or treat genital HSV-2 infection in mice. We confirm previous data showing that both lactoferrin and lactoferricin have antiviral properties in vitro and can inhibit HSV-2 infection of GMK cells in a dose-dependent manner. When tested in vivo, lactoferricin but not lactoferrin was also a potent inhibitor of HSV-2 infection. When admixed with virus prior to inoculation, lactoferricin inhibited disease development and significantly reduced the viral load in a genital model of HSV-2 infection in mice. Lactoferrin and lactoferricin were also tested for their ability to stimulate the production of chemokines. Neither of the compounds induced the production of CCL3, CCL5, CXCL1 or CXCL2 by mouse splenocytes in vitro. However, when tested in vivo, both lactoferrin and lactoferricin were able to induce local vaginal production of CCL5. Lactoferrin also induced CXCL2 production. The prophylactic and/or therapeutic effects of lactoferrin or lactoferricin were also tested. But none of the compounds were efficient in blocking HSV-2 infection when given 24h prior to HSV-2 infection. Lactoferricin however showed promising results as a therapeutic agent and delayed both disease onset by 3days as well as reducing the viral load almost 15-fold when given as a single dose 24h post-infection. These data show that lactoferricin can block genital herpes infection in mice, and perhaps also be used for post-infection treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Binding analysis of ferritin with heme using α-casein and biotinylated-hemin: detection of heme-binding capacity of Dpr derived from heme synthesis-deficient Streptococcus mutans.

    Science.gov (United States)

    Mieno, Ayako; Yamamoto, Yuji; Yoshikawa, Yasunaga; Watanabe, Kiyotaka; Mukai, Takao; Orino, Koichi

    2013-01-01

    Bacterial and mammalian ferritins are known to bind heme. The use of α-casein and biotinylated hemin could be applicable to detection of protein-bound heme and of proteins with heme-binding capacity, respectively. Although commercial horse spleen ferritin and purified horse spleen ferritin (L:H subunit ratio=4) bound to an α-casein-coated plate, and this binding could be inhibited by hemin, recombinant iron-binding protein (rDpr), derived from heme-deficient Streptococcus mutans and expressed in Escherichia coli, did not bind to an α-casein-coated plate. Both horse spleen ferritins bound to α-casein-immobilized beads. Commercial horse spleen ferritin and rDpr showed direct binding to hemin-agarose beads. After preincubation of commercial horse spleen ferritin or rDpr with biotinylated hemin, they showed indirect binding to avidin-immobilized beads through biotinylated hemin. These results demonstrate that α-casein is useful for detection of heme-binding ferritin and that both hemin-agarose and the combination of biotinylated hemin and avidin-beads are useful for detection of the heme-binding capacity of ferritin. In addition, this study also revealed that Dpr, a decameric iron-binding protein, from heme-deficient cells binds heme.

  7. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    International Nuclear Information System (INIS)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-01-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  8. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Okoli, Chuka [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden); Boutonnet, Magali; Jaeras, Sven [Royal Institute of Technology (KTH), Chemical Technology (Sweden); Rajarao-Kuttuva, Gunaratna, E-mail: gkr@kth.se [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden)

    2012-10-15

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  9. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Science.gov (United States)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-10-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  10. Partial characterization of GTP-binding proteins in Neurospora

    International Nuclear Information System (INIS)

    Hasunuma, K.; Miyamoto-Shinohara, Y.; Furukawa, K.

    1987-01-01

    Six fractions of GTP-binding proteins separated by gel filtration of a mycelial extract containing membrane components of Neurospora crassa were partially characterized. [ 35 S]GTP gamma S bound to GTP-binding protein was assayed by repeated treatments with a Norit solution and centrifugation. The binding of [ 35 S]GTP gamma S to GTP-binding proteins was competitively prevented in the presence of 0.1 to 1 mM GTP but not in the presence of ATP. These GTP-binding proteins fractionated by the gel column had Km values of 20, 7, 4, 4, 80 and 2 nM. All six fractions of these GTP-binding proteins showed the capacity to be ADP-ribosylated by pertussis toxin

  11. Guardian of Genetic Messenger-RNA-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Antje Anji

    2016-01-01

    Full Text Available RNA in cells is always associated with RNA-binding proteins that regulate all aspects of RNA metabolism including RNA splicing, export from the nucleus, RNA localization, mRNA turn-over as well as translation. Given their diverse functions, cells express a variety of RNA-binding proteins, which play important roles in the pathologies of a number of diseases. In this review we focus on the effect of alcohol on different RNA-binding proteins and their possible contribution to alcohol-related disorders, and discuss the role of these proteins in the development of neurological diseases and cancer. We further discuss the conventional methods and newer techniques that are employed to identify RNA-binding proteins.

  12. Polymeric competitive protein binding adsorbents for radioassay

    International Nuclear Information System (INIS)

    Adams, R.J.

    1976-01-01

    Serum protein comprising specific binding proteins such as antibodies, B 12 intrinsic factor, thyroxin binding globulin and the like may be copolymerized with globulin constituents of serum by the action of ethylchloroformate to form readily packed insoluble precipitates which, following purification as by washing, are eminently suited for employment as competitive binding protein absorbents in radioassay procedures. 10 claims, no drawings

  13. Identification of Differentially Abundant Proteins of Edwardsiella ictaluri during Iron Restriction.

    Directory of Open Access Journals (Sweden)

    Pradeep R Dumpala

    Full Text Available Edwardsiella ictaluri is a Gram-negative facultative anaerobe intracellular bacterium that causes enteric septicemia in channel catfish. Iron is an essential inorganic nutrient of bacteria and is crucial for bacterial invasion. Reduced availability of iron by the host may cause significant stress for bacterial pathogens and is considered a signal that leads to significant alteration in virulence gene expression. However, the precise effect of iron-restriction on E. ictaluri protein abundance is unknown. The purpose of this study was to identify differentially abundant proteins of E. ictaluri during in vitro iron-restricted conditions. We applied two-dimensional difference in gel electrophoresis (2D-DIGE for determining differentially abundant proteins and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF/TOF MS for protein identification. Gene ontology and pathway-based functional modeling of differentially abundant proteins was also conducted. A total of 50 unique differentially abundant proteins at a minimum of 2-fold (p ≤ 0.05 difference in abundance due to iron-restriction were detected. The numbers of up- and down-regulated proteins were 37 and 13, respectively. We noted several proteins, including EsrB, LamB, MalM, MalE, FdaA, and TonB-dependent heme/hemoglobin receptor family proteins responded to iron restriction in E. ictaluri.

  14. Iron-regulated proteins (IRPS of leptospira biflexa serovar Patoc strain Patoc I

    Directory of Open Access Journals (Sweden)

    Sritharan M

    2004-01-01

    Full Text Available BACKGROUND: Iron deficiency has been shown to induce the expression of siderophores and their receptors, the iron-regulated membrane proteins in a number of bacterial systems. In this study, the response of Leptospira biflexa serovar Patoc strain Patoc I to conditions of iron deprivation was assessed and the expression of siderophores and iron-regulated proteins is reported. MATERIALS AND METHODS: Two methods were used for establishing conditions of iron deprivation. One method consisted of addition of the iron chelators ethylenediamine-N, N′-diacetic acid (EDDA and ethylenediamine di-o-hydroxyphenylacetic acid (EDDHPA and the second method involved the addition of iron at 0.02 µg Fe/mL. Alternatively, iron sufficient conditions were achieved by omitting the chelators in the former method and adding 4 µg Fe/mL of the medium in the latter protocol. Triton X-114 extraction of the cells was done to isolate the proteins in the outer membrane (detergent phase, periplasmic space (aqueous phase and the protoplasmic cylinder (cell pellet. The proteins were subjected to SDS-PAGE for analysis. RESULTS: In the presence of the iron-chelators, four iron-regulated proteins (IRPs of apparent molecular masses of 82, 64, 60 and 33 kDa were expressed. The 82-kDa protein was seen only in the aqueous phase, while the other three proteins were seen in both the aqueous and detergent fractions. These proteins were not identified in organisms grown in the absence of the iron chelators. The 64, 60 and the 33 kDa proteins were also demonstrated in organisms grown in media with 0.02 µg Fe/mL. In addition, a 24 kDa protein was found to be down-regulated at this concentration of iron as compared to the high level of expression in organisms grown with 4 µg Fe/mL. The blue CAS agar plates with top agar containing 0.02µg Fe/mL showed a colour change to orange-red. CONCLUSION: The expression of siderophores and iron-regulated proteins under conditions of iron deprivation

  15. Contributions of molecular size, charge distribution, and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates.

    Science.gov (United States)

    Sun, Na; Cui, Pengbo; Jin, Ziqi; Wu, Haitao; Wang, Yixing; Lin, Songyi

    2017-09-01

    This study investigated the contributions of molecular size, charge distribution and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates (SCOHs), and further explored their iron-binding sites. It was demonstrated that enzyme type and degree of hydrolysis (DH) significantly influenced the iron-binding capacity of the SCOHs. The SCOHs produced by alcalase at a DH of 25.9% possessed the highest iron-binding capacity at 92.1%. As the hydrolysis time increased, the molecular size of the SCOHs decreased, the negative charges increased, and the hydrophilic amino acids were exposed to the surface, facilitating iron binding. Furthermore, the Fourier transform infrared spectra, combined with amino acid composition analysis, revealed that iron bound to the SCOHs primarily through interactions with carboxyl oxygen of Asp, guanidine nitrogen of Arg or nitrogen atoms in imidazole group of His. The formed SCOHs-iron complexes exhibited a fold and crystal structure with spherical particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Role of Proteins and of Some Bioactive Peptides on the Nutritional Quality of Donkey Milk and Their Impact on Human Health

    Directory of Open Access Journals (Sweden)

    Silvia Vincenzetti

    2017-07-01

    Full Text Available Donkey milk could be considered a good and safer alternative, compared to other types of milk, for infants affected by cow’s milk protein allergy, when breastfeeding is not possible. Interestingly, donkey milk has low allergenicity, mainly due to the low total casein amount, and the content of some whey proteins that act as bioactive peptides. The amount of lysozyme, an antibacterial agent, is 1.0 g/L, similar to human milk. Lactoferrin content is 0.08 g/L, with this protein being involved in the regulation of iron homoeostasis, anti-microbial and anti-viral functions, and protection against cancer development. Lactoperoxidase, another protein with antibacterial function, is present in donkey milk, but in very low quantities (0.11 mg/L. β-lactoglobulin content in donkey milk is 3.75 g/L—this protein is able to bind and transport several hydrophobic molecules. Donkey milk’s α-lactalbumin concentration is 1.8 g/L, very close to that of human milk. α-lactalbumin shows antiviral, antitumor, and anti-stress properties. Therefore, donkey milk can be considered as a set of nutraceuticals properties and a beverage suitable, not only for the growing infants, but for all ages, especially for convalescents and for the elderly.

  17. Effects of a Bovine Lactoferrin Formulation from Cow’s Milk on Menstrual Distress in Volunteers: A Randomized, Crossover Study

    Directory of Open Access Journals (Sweden)

    Hiroshi M. Ueno

    2016-05-01

    Full Text Available Dysmenorrhea is a highly prevalent complaint and highly undiagnosed gynecologic condition. Dairy products have a potential in the management of menstrual distress, and bovine lactoferrin can help the subjective dysphoria associated with dysmenorrhea. In the present study, we aimed to investigate the effects of a lactoferrin formulation isolated from cow’s milk on menstrual symptoms in volunteers. A double-blind, randomized, placebo-controlled, crossover study of the iron-lactoferrin complex (FeLf was performed in thirty-five healthy Japanese women. Participants received the 150 mg FeLf (per day or placebo from day ten of the luteal phase to day four of the follicular phase. The Moos Menstrual Distress Questionnaire (MDQ was measured for menstrual distress, and heart rate variability was measured as an index of autonomic nerve balance during menses. A visual analog scale for menstrual pain, and a verbal rating scale for quality of life during the first three days of menstruation were measured. The MDQ score for the automatic nervous system subscale was lower and the parasympathetic nervous system activity was greater in FeLf than in placebo for intention-to-treat or per-protocol populations. The other variables were not different between the groups. No treatment-related side effects were observed during the study. The results indicate that FeLf can provide a beneficial effect on the psychological symptoms in women affected by menstrual distress.

  18. Uptake of ingested bovine lactoferrin and its accumulation in adult mouse tissues.

    Science.gov (United States)

    Fischer, Romy; Debbabi, Hajer; Blais, Anne; Dubarry, Michel; Rautureau, Michèle; Boyaka, Prosper N; Tome, Daniel

    2007-10-01

    Lactoferrin is a glycoprotein with antimicrobial and immunoregulatory properties, which is found in milk, other external secretions, and in the secondary granules of neutrophils. The present study examined the time course of uptake and the pattern of tissue accumulation of bovine lactoferrin (bLf) following intragastric intubation of a single dose to adult naïve mice or to mice daily fed bLf for 4 weeks. Following ingestion, bLf was transferred from the intestine into peripheral blood in a form with intact molecular weight (80 kDa) and localized within 10 to 20 min after oral administration in the liver, kidneys, gall bladder, spleen, and brain of both groups of mice. Immunoreactive bLf could also be detected in the luminal contents of the stomach, small intestine and colon 1 h after intragastric intubation. Interestingly, serum and tissue accumulation of bLf was approximately 50% lower in mice chronically fed this protein than in those given only the single oral dose. Furthermore, significant levels of bLf-specific IgA and IgG antibodies as well as bLf-containing IgA- and IgG immune complexes were detected in mice chronically fed bLf but not in those fed only once. Taken together, these results indicate that bLf resists major proteolytic degradation in the intestinal lumen and is readily absorbed in an antigenic form in blood and various mouse tissues. Chronic ingestion of lactoferrin reduces its uptake, probably through mechanisms such as immune exclusion, which minimize potential harmful reactions to food products.

  19. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    Science.gov (United States)

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  20. Separation of lactoferrin and clinical application of its radioimmunoassay

    International Nuclear Information System (INIS)

    Qiang Yizhong; Wang Chongdao; Jin Jian

    1995-02-01

    A new method of separation and purification of lactoferrin (LF), its radioimmunoassay (LF-RIA), and application in the diagnosis of lung cancer are reported. The results showed that this method is much better than what were previously reported, with advantages of high yield, time-saving and economy. The results of the LF-RIA established were good. The coefficients of variation within a batch and between batches were 4.77% and 13.59% respectively and the recovery rate was 97.99%. There was no cross-reaction between lactoferrin and transferrin. The lactoferrin in the bronchial washing fluid (BLF) was determined in 36 lung cancer cases, 21 pulmonary infection cases and 4 normal controls. The results indicated that the BLF content in the lung cancer group was higher than that in the pulmonary infection group or the normal control group and the detection rate was the highest in lung adenocarcinoma. Pathological analysis indicated that the BLF was negatively related to the early and later tumor. (2 figs., 2 tabs.)

  1. Factor VII and protein C are phosphatidic acid-binding proteins.

    Science.gov (United States)

    Tavoosi, Narjes; Smith, Stephanie A; Davis-Harrison, Rebecca L; Morrissey, James H

    2013-08-20

    Seven proteins in the human blood clotting cascade bind, via their GLA (γ-carboxyglutamate-rich) domains, to membranes containing exposed phosphatidylserine (PS), although with membrane binding affinities that vary by 3 orders of magnitude. Here we employed nanodiscs of defined phospholipid composition to quantify the phospholipid binding specificities of these seven clotting proteins. All bound preferentially to nanobilayers in which PS headgroups contained l-serine versus d-serine. Surprisingly, however, nanobilayers containing phosphatidic acid (PA) bound substantially more of two of these proteins, factor VIIa and activated protein C, than did equivalent bilayers containing PS. Consistent with this finding, liposomes containing PA supported higher proteolytic activity by factor VIIa and activated protein C toward their natural substrates (factors X and Va, respectively) than did PS-containing liposomes. Moreover, treating activated human platelets with phospholipase D enhanced the rates of factor X activation by factor VIIa in the presence of soluble tissue factor. We hypothesize that factor VII and protein C bind preferentially to the monoester phosphate of PA because of its accessibility and higher negative charge compared with the diester phosphates of most other phospholipids. We further found that phosphatidylinositol 4-phosphate, which contains a monoester phosphate attached to its myo-inositol headgroup, also supported enhanced enzymatic activity of factor VIIa and activated protein C. We conclude that factor VII and protein C bind preferentially to monoester phosphates, which may have implications for the function of these proteases in vivo.

  2. Adaptation of Staphylococcus aureus to Airway Environments in Patients With Cystic Fibrosis by Upregulation of Superoxide Dismutase M and Iron-Scavenging Proteins.

    Science.gov (United States)

    Treffon, Janina; Block, Desiree; Moche, Martin; Reiss, Swantje; Fuchs, Stephan; Engelmann, Susanne; Becher, Dörte; Langhanki, Lars; Mellmann, Alexander; Peters, Georg; Kahl, Barbara C

    2018-04-11

    Adaptation of S. aureus to the hostile environment of CF airways resulted in changed abundance of proteins involved in energy metabolism, cellular processes, transport and binding, but most importantly in an iron-scavenging phenotype and increased activity of superoxide dismutase M.

  3. GTP-binding proteins in rat liver nuclear envelopes

    International Nuclear Information System (INIS)

    Rubins, J.B.; Benditt, J.O.; Dickey, B.F.; Riedel, N.

    1990-01-01

    Nuclear transport as well as reassembly of the nuclear envelope (NE) after completion of mitosis are processes that have been shown to require GTP and ATP. To study the presence and localization of GTP-binding proteins in the NE, we have combined complementary techniques of [alpha-32P]GTP binding to Western-blotted proteins and UV crosslinking of [alpha-32P]GTP with well-established procedures for NE subfractionation. GTP binding to blotted NE proteins revealed five low molecular mass GTP-binding proteins of 26, 25, 24.5, 24, and 23 kDa, and [alpha-32P]GTP photoaffinity labeling revealed major proteins with apparent molecular masses of 140, 53, 47, 33, and 31 kDa. All GTP-binding proteins appear to localize preferentially to the inner nuclear membrane, possibly to the interface between inner nuclear membrane and lamina. Despite the evolutionary conservation between the NE and the rough endoplasmic reticulum, the GTP-binding proteins identified differed between these two compartments. Most notably, the 68- and 30-kDa GTP-binding subunits of the signal recognition particle receptor, which photolabeled with [alpha-32P]GTP in the rough endoplasmic reticulum fraction, were totally excluded from the NE fraction. Conversely, a major 53-kDa photolabeled protein in the NE was absent from rough endoplasmic reticulum. Whereas Western-blotted NE proteins bound GTP specifically, all [alpha-32P]GTP photolabeled proteins could be blocked by competition with ATP, although with a competition profile that differed from that obtained with GTP. In comparative crosslinking studies with [alpha-32P]ATP, we have identified three specific ATP-binding proteins with molecular masses of 160, 78, and 74 kDa. The localization of GTP- and ATP-binding proteins within the NE appears appropriate for their involvement in nuclear transport and in the GTP-dependent fusion of nuclear membranes

  4. Cobalamin and its binding protein in rat milk

    DEFF Research Database (Denmark)

    Raaberg, Lasse; Nexø, Ebba; Poulsen, Steen Seier

    1989-01-01

    Cobalamin and its binding protein, haptocorrin, are present in rat milk throughout the lactation period. The concentration of cobalamin is approximately 0.3-times the concentration of the unsaturated binding protein. The concentration of the unsaturated cobalamin-binding protein varies between 18...

  5. Effect of human milk prostaglandins and lactoferrin on respiratory syncytial virus and rotavirus.

    Science.gov (United States)

    Grover, M; Giouzeppos, O; Schnagl, R D; May, J T

    1997-03-01

    The effect of lactoferrin and prostaglandins E and F2 alpha on the growth of rotavirus and respiratory syncytial virus in cell culture was investigated. Lactoferrin inhibited the growth of respiratory syncytial virus at a concentration tenfold lower than that normally present in human milk. The prostaglandins had no effect on either virus growth, even at a concentration of 100-fold more than that found in human milk. Lactoferrin may have some antiviral properties in human milk in addition to its known antibacterial functions.

  6. Gonadal cell surface receptor for plasma retinol-binding protein

    International Nuclear Information System (INIS)

    Krishna Bhat, M.; Cama, H.R.

    1979-01-01

    A specific membrane receptor for plasma retinol-binding protein has been demonstrated in testicular cells. Prealbumin-2 did not show any specific binding to the membrane. The affinity of retinol-binding protein for receptor drastically decreases upon delivery of retinol and the retinol-binding protein does not enter the cell. The mechanism of delivery of retinol to the target cell by plasma retinol-binding protein has been investigated. The process involves two steps; direct binding of retinol-binding protein to the receptor and uptake of retinol by the target cell with a concomitant drastic reduction in the affinity of the retinol-binding protein to the receptor. Probably the second step of the process needs a cytosolic factor, possibly the cellular retinol-binding protein or an enzyme. The binding of retinol-binding protein to the receptor is saturable and reversible. The interaction shows a Ksub(d) value of 2.1x10 -10 . The specific binding of a retinol-binding protein with great affinity has been employed in the development of a method for radioassay of the receptor. The receptor level of the gonadal cell has been found to vary with the stage of differentiation. The receptor concentrations in 11-week-old birds and adult birds are comparable. Testosterone treatment of 11-week-old birds produced a substantial increase in the receptor concentration over control, while the protein content increased marginally, indicating that, probably, synthesis of the receptor is specifcally induced by testosterone during spermatogenesis, and the concentration of receptor is relatively higher before the formation of the acrosome. (Auth.)

  7. Quantitative proteomic view on secreted, cell surface-associated, and cytoplasmic proteins of the methicillin-resistant human pathogen Staphylococcus aureus under iron-limited conditions.

    Science.gov (United States)

    Hempel, Kristina; Herbst, Florian-Alexander; Moche, Martin; Hecker, Michael; Becher, Dörte

    2011-04-01

    Staphylococcus aureus is capable of colonizing and infecting humans by its arsenal of surface-exposed and secreted proteins. Iron-limited conditions in mammalian body fluids serve as a major environmental signal to bacteria to express virulence determinants. Here we present a comprehensive, gel-free, and GeLC-MS/MS-based quantitative proteome profiling of S. aureus under this infection-relevant situation. (14)N(15)N metabolic labeling and three complementing approaches were combined for relative quantitative analyses of surface-associated proteins. The surface-exposed and secreted proteome profiling approaches comprise trypsin shaving, biotinylation, and precipitation of the supernatant. By analysis of the outer subproteomic and cytoplasmic protein fraction, 1210 proteins could be identified including 221 surface-associated proteins. Thus, access was enabled to 70% of the predicted cell wall-associated proteins, 80% of the predicted sortase substrates, two/thirds of lipoproteins and more than 50% of secreted and cytoplasmic proteins. For iron-deficiency, 158 surface-associated proteins were quantified. Twenty-nine proteins were found in altered amounts showing particularly surface-exposed proteins strongly induced, such as the iron-regulated surface determinant proteins IsdA, IsdB, IsdC and IsdD as well as lipid-anchored iron compound-binding proteins. The work presents a crucial subject for understanding S. aureus pathophysiology by the use of methods that allow quantitative surface proteome profiling.

  8. Acyl-CoA-binding protein/diazepam-binding inhibitor gene and pseudogenes

    DEFF Research Database (Denmark)

    Mandrup, S; Hummel, R; Ravn, S

    1992-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein isolated from bovine liver by virtue of its ability to bind and induce the synthesis of medium-chain acyl-CoA esters. Surprisingly, it turned out to be identical to a protein named diazepam-binding Inhibitor (DBI) claimed to be an endogenous mod...... have molecularly cloned and characterized the ACBP/DBI gene family in rat. The rat ACBP/DBI gene family comprises one expressed gene and four processed pseudogenes of which one was shown to exist in two allelic forms. The expressed gene is organized into four exons and three introns...

  9. Binding and Endocytosis of Bovine Hololactoferrin by the Parasite Entamoeba histolytica

    OpenAIRE

    Ort?z-Estrada, Guillermo; Calder?n-Salinas, V?ctor; Shibayama-Salas, Mineko; Le?n-Sicairos, Nidia; de la Garza, Mireya

    2015-01-01

    Entamoeba histolytica is a human parasite that requires iron (Fe) for its metabolic function and virulence. Bovine lactoferrin (B-Lf) and its peptides can be found in the digestive tract after dairy products are ingested. The aim of this study was to compare virulent trophozoites recently isolated from hamster liver abscesses with nonvirulent trophozoites maintained for more than 30 years in cultures in vitro regarding their interaction with iron-charged B-Lf (B-holo-Lf). We performed growth ...

  10. Zinc and the iron donor frataxin regulate oligomerization of the scaffold protein to form new Fe-S cluster assembly centers.

    Science.gov (United States)

    Galeano, B K; Ranatunga, W; Gakh, O; Smith, D Y; Thompson, J R; Isaya, G

    2017-06-21

    Early studies of the bacterial Fe-S cluster assembly system provided structural details for how the scaffold protein and the cysteine desulfurase interact. This work and additional work on the yeast and human systems elucidated a conserved mechanism for sulfur donation but did not provide any conclusive insights into the mechanism for iron delivery from the iron donor, frataxin, to the scaffold. We previously showed that oligomerization is a mechanism by which yeast frataxin (Yfh1) can promote assembly of the core machinery for Fe-S cluster synthesis both in vitro and in cells, in such a manner that the scaffold protein, Isu1, can bind to Yfh1 independent of the presence of the cysteine desulfurase, Nfs1. Here, in the absence of Yfh1, Isu1 was found to exist in two forms, one mostly monomeric with limited tendency to dimerize, and one with a strong propensity to oligomerize. Whereas the monomeric form is stabilized by zinc, the loss of zinc promotes formation of dimer and higher order oligomers. However, upon binding to oligomeric Yfh1, both forms take on a similar symmetrical trimeric configuration that places the Fe-S cluster coordinating residues of Isu1 in close proximity of iron-binding residues of Yfh1. This configuration is suitable for docking of Nfs1 in a manner that provides a structural context for coordinate iron and sulfur donation to the scaffold. Moreover, distinct structural features suggest that in physiological conditions the zinc-regulated abundance of monomeric vs. oligomeric Isu1 yields [Yfh1]·[Isu1] complexes with different Isu1 configurations that afford unique functional properties for Fe-S cluster assembly and delivery.

  11. TATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus E1A protein

    NARCIS (Netherlands)

    Hateboer, G.; Timmers, H.T.M.; Rustgi, A.K.; Billaud, Marc; Veer, L.J. Van 't; Bernards, R.A.

    1993-01-01

    Using a protein binding assay, we show that the amino-teminal 204 amino acids of the c-Myc protein interact di y with a key component of the basal p tdon factor TFID, the TATA box-binding protein (TBP). Essentialy the same region of the c-Myc protein alo binds the product of the retinoblatoma

  12. Metagenomic Study of Iron Homeostasis in Iron Depositing Hot Spring Cyanobacterial Community

    Science.gov (United States)

    Brown, I.; Franklin H.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    Introduction: It is not clear how an iron-rich thermal hydrosphere could be hospitable to cyanobacteria, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, metagenomic study of cyanobacterial community in iron-depositing hot springs may help elucidate how oxygenic prokaryotes can withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe2+ and O2. Method: Anchor proteins from various species of cyanobacteria and some anoxygenic phototrophs were selected on the basis of their hypothetical role in Fe homeostasis and the suppression of oxidative stress and were BLASTed against the metagenomes of iron-depositing Chocolate Pots and freshwater Mushroom hot springs. Results: BLASTing proteins hypothesized to be involved in Fe homeostasis against the microbiomes from the two springs revealed that iron-depositing hot spring has a greater abundance of defensive proteins such as bacterioferritin comigratory protein (Bcp) and DNA-binding Ferritin like protein (Dps) than a fresh-water hot spring. One may speculate that the abundance of Bcp and Dps in an iron-depositing hot spring is connected to the need to suppress oxidative stress in bacteria inhabiting environments with high Fe2+ concnetration. In both springs, Bcp and Dps are concentrated within the cyanobacterial fractions of the microbial community (regardless of abundance). Fe3+ siderophore transport (from the transport system permease protein query) may be less essential to the microbial community of CP because of the high [Fe]. Conclusion: Further research is needed to confirm that these proteins are unique to photoautotrophs such as those living in iron-depositing hot spring.

  13. De novo design and engineering of functional metal and porphyrin-binding protein domains

    Science.gov (United States)

    Everson, Bernard H.

    In this work, I describe an approach to the rational, iterative design and characterization of two functional cofactor-binding protein domains. First, a hybrid computational/experimental method was developed with the aim of algorithmically generating a suite of porphyrin-binding protein sequences with minimal mutual sequence information. This method was explored by generating libraries of sequences, which were then expressed and evaluated for function. One successful sequence is shown to bind a variety of porphyrin-like cofactors, and exhibits light- activated electron transfer in mixed hemin:chlorin e6 and hemin:Zn(II)-protoporphyrin IX complexes. These results imply that many sophisticated functions such as cofactor binding and electron transfer require only a very small number of residue positions in a protein sequence to be fixed. Net charge and hydrophobic content are important in determining protein solubility and stability. Accordingly, rational modifications were made to the aforementioned design procedure in order to improve its overall success rate. The effects of these modifications are explored using two `next-generation' sequence libraries, which were separately expressed and evaluated. Particular modifications to these design parameters are demonstrated to effectively double the purification success rate of the procedure. Finally, I describe the redesign of the artificial di-iron protein DF2 into CDM13, a single chain di-Manganese four-helix bundle. CDM13 acts as a functional model of natural manganese catalase, exhibiting a kcat of 0.08s-1 under steady-state conditions. The bound manganese cofactors have a reduction potential of +805 mV vs NHE, which is too high for efficient dismutation of hydrogen peroxide. These results indicate that as a high-potential manganese complex, CDM13 may represent a promising first step toward a polypeptide model of the Oxygen Evolving Complex of the photosynthetic enzyme Photosystem II.

  14. Impact of protein pre-treatment conditions on the iron encapsulation efficiency of whey protein cold-set gel particles

    NARCIS (Netherlands)

    Martin, A.H.; Jong, G.A.H. de

    2012-01-01

    This paper investigates the possibility for iron fortification of food using protein gel particles in which iron is entrapped using cold-set gelation. The aim is to optimize the iron encapsulation efficiency of whey protein by giving the whey protein different heat treatment prior to gelation with

  15. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    Science.gov (United States)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  16. Tritium NMR spectroscopy of ligand binding to maltose-binding protein

    International Nuclear Information System (INIS)

    Gehring, K.; Williams, P.G.; Pelton, J.G.; Morimoto, H.; Wemmer, D.E.

    1991-01-01

    Tritium-labeled α- and β-maltodextrins have been used to study their complexes with maltose-binding protein (MBP), a 40-kDa bacterial protein. Five substrates, from maltose to maltohexaose, were labeled at their reducing ends and their binding studied. Tritium NMR specctroscopy of the labeled sugars showed large upfield chamical shift changes upon binding and strong anomeric specficity. At 10 degrees C, MBP bound α-maltose with 2.7 ± 0.5-fold higher affinity than β-maltose, and, for longer maltodextrins, the ratio of affinities was even larger. The maximum chemical shift change was 2.2 ppm, suggesting that the reducing end of bound α-maltodextrin makes close contact with an aromatic residue in the MBP-binding site. Experiments with maltotriose (and longer maltodextrins) also revealed the presence of two bound β-maltotriose resonances in rapid exchange. The authors interpret these two resonances as arising from two distinct sugar-protein complexes. In one complex, the β-maltodextrin is bound by its reducing end, and, in the other complex, the β-maltodextrin is bound by the middle glucose residue(s). This interpretation also suggests how MBP is able to bind both linear and circular maltodextrins

  17. Localization of cellular retinol-binding protein and retinol-binding protein in cells comprising the blood-brain barrier of rat and human

    International Nuclear Information System (INIS)

    MacDonald, P.N.; Ong, D.E.; Bok, D.

    1990-01-01

    Brain is not generally recognized as an organ that requires vitamin A, perhaps because no obvious histologic lesions have been observed in severely vitamin A-deficient animals. However, brain tissue does contain cellular vitamin A-binding proteins and a nuclear receptor protein for retinoic acid. In the present study, immunohistochemical techniques were used to determine the cell-specific location of cellular retinol-binding protein in human and rat brain tissue. Cellular retinol-binding protein was localized specifically within the cuboidal epithelial cells of the choroid plexus, two primary sites of the mammalian blood-brain barrier. In addition, autoradiographic procedures demonstrated binding sites for serum retinol-binding protein in the choroidal epithelium. These observations suggest that a significant movement of retinol across the blood-brain barrier may occur

  18. CC1, a novel crenarchaeal DNA binding protein.

    Science.gov (United States)

    Luo, Xiao; Schwarz-Linek, Uli; Botting, Catherine H; Hensel, Reinhard; Siebers, Bettina; White, Malcolm F

    2007-01-01

    The genomes of the related crenarchaea Pyrobaculum aerophilum and Thermoproteus tenax lack any obvious gene encoding a single-stranded DNA binding protein (SSB). SSBs are essential for DNA replication, recombination, and repair and are found in all other genomes across the three domains of life. These two archaeal genomes also have only one identifiable gene encoding a chromatin protein (the Alba protein), while most other archaea have at least two different abundant chromatin proteins. We performed a biochemical screen for novel nucleic acid binding proteins present in cell extracts of T. tenax. An assay for proteins capable of binding to a single-stranded DNA oligonucleotide resulted in identification of three proteins. The first protein, Alba, has been shown previously to bind single-stranded DNA as well as duplex DNA. The two other proteins, which we designated CC1 (for crenarchaeal chromatin protein 1), are very closely related to one another, and homologs are restricted to the P. aerophilum and Aeropyrum pernix genomes. CC1 is a 6-kDa, monomeric, basic protein that is expressed at a high level in T. tenax. This protein binds single- and double-stranded DNAs with similar affinities. These properties are consistent with a role for CC1 as a crenarchaeal chromatin protein.

  19. Effect of indomethacin and lactoferrin on human tenocyte proliferation and collagen formation in vitro

    International Nuclear Information System (INIS)

    Zhang, Yaonan; Wang, Xiao; Qiu, Yiwei; Cornish, Jillian; Carr, Andrew J.; Xia, Zhidao

    2014-01-01

    Highlights: • Indomethacin, a classic NSAID, inhibited human tenocyte proliferation at high concentration (100 µM). • Lactoferrin at 50-100 µg/ml promoted human tenocyte survival, proliferation and collagen synthesis. • Lactoferrin is anabolic to human tenocytes in vitro and reverses potential inhibitory effects of NSAIDs on human tenocytes. - Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in patients with injuries and inflammation of tendon and ligament, and as post-surgical analgesics. The aim of this study is to investigate the effect of indomethacin, a classic NSAID and its combinational effect with an anabolic agent of skeletal tissue, lactoferrin, on the proliferation and collagen formation of human tenocytes in vitro. A factorial experimental design was employed to study the dose-dependent effect of the combination of indomethacin and lactoferrin. The results showed that indomethacin at high concentration (100 μM) inhibited human tenocyte proliferation in culture medium with 1–10% fetal bovine serum (FBS) in vitro. Also, high dose of indomethacin inhibited the collagen formation of human tenocytes in 1% FBS culture medium. Lactoferrin at 50–100 μg/ml promoted human tenocyte survival in serum-free culture medium and enhanced proliferation and collagen synthesis of human tenocytes in 1% FBS culture medium. When 50–100 μg/ml lactoferrin was used in combination with 100–200 μM indomethacin, it partially rescued the inhibitory effects of indomethacin on human tenocyte proliferation, viability and collagen formation. To our knowledge, it is the first evidence that lactoferrin is anabolic to human tenocytes in vitro and reverses potential inhibitory effects of NSAIDs on human tenocytes

  20. Effect of indomethacin and lactoferrin on human tenocyte proliferation and collagen formation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yaonan [Centre for Nanohealth, College of Medicine, Swansea University, Singleton Park, Swansea, UK SA2 8PP (United Kingdom); Department of Orthopaedic, Beijing Hospital of Ministry of Public Health, Beijing, China 100730 (China); Wang, Xiao; Qiu, Yiwei [Centre for Nanohealth, College of Medicine, Swansea University, Singleton Park, Swansea, UK SA2 8PP (United Kingdom); Cornish, Jillian [Department of Medicine, University of Auckland, Private Bag 92019, Auckland (New Zealand); Carr, Andrew J. [Centre for Nanohealth, College of Medicine, Swansea University, Singleton Park, Swansea, UK SA2 8PP (United Kingdom); Xia, Zhidao, E-mail: z.xia@swansea.ac.uk [Centre for Nanohealth, College of Medicine, Swansea University, Singleton Park, Swansea, UK SA2 8PP (United Kingdom)

    2014-11-14

    Highlights: • Indomethacin, a classic NSAID, inhibited human tenocyte proliferation at high concentration (100 µM). • Lactoferrin at 50-100 µg/ml promoted human tenocyte survival, proliferation and collagen synthesis. • Lactoferrin is anabolic to human tenocytes in vitro and reverses potential inhibitory effects of NSAIDs on human tenocytes. - Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in patients with injuries and inflammation of tendon and ligament, and as post-surgical analgesics. The aim of this study is to investigate the effect of indomethacin, a classic NSAID and its combinational effect with an anabolic agent of skeletal tissue, lactoferrin, on the proliferation and collagen formation of human tenocytes in vitro. A factorial experimental design was employed to study the dose-dependent effect of the combination of indomethacin and lactoferrin. The results showed that indomethacin at high concentration (100 μM) inhibited human tenocyte proliferation in culture medium with 1–10% fetal bovine serum (FBS) in vitro. Also, high dose of indomethacin inhibited the collagen formation of human tenocytes in 1% FBS culture medium. Lactoferrin at 50–100 μg/ml promoted human tenocyte survival in serum-free culture medium and enhanced proliferation and collagen synthesis of human tenocytes in 1% FBS culture medium. When 50–100 μg/ml lactoferrin was used in combination with 100–200 μM indomethacin, it partially rescued the inhibitory effects of indomethacin on human tenocyte proliferation, viability and collagen formation. To our knowledge, it is the first evidence that lactoferrin is anabolic to human tenocytes in vitro and reverses potential inhibitory effects of NSAIDs on human tenocytes.

  1. Expression, immunogenicity and variation of iron-regulated surface protein A from bovine isolates of Staphylococcus aureus

    Science.gov (United States)

    Misra, Neha; Wines, Tyler F.; Knopp, Colton L.; McGuire, Mark A.; Tinker, Juliette K.

    2017-01-01

    Abstract Staphylococcus aureus iron-regulated surface protein A (IsdA) is a fibrinogen and fibronectin adhesin that also contributes to iron sequestration and resistance to innate immunity. IsdA is conserved in human isolates and has been investigated as a human vaccine candidate. Here we report the expression of isdA, the efficacy of anti-IsdA responses and the existence of IsdA sequence variants from bovine Staphylococcus. Clinical staphylococci were obtained from US dairy farms and assayed by PCR for the presence and expression of isdA. isdA-positive species from bovines included S. aureus, S. haemolyticus and S. chromogenes. Immunoassays on bovine milk and serum confirmed the induction and opsonophagocytic activity of anti-IsdA humoral responses. The variable region of isdA was sequenced and protein alignments predicted the presence of two main variants consistent with those from human S. aureus. Mouse antibodies against one IsdA variant reduced staphylococcal binding to fibronectin in vitro in an isotype-dependent manner. Purified IsdA variants bound distinctly to fibronectin and fibrinogen. Our findings demonstrate that variability within the C-terminus of this adhesin affects immune reactivity and binding specificity, but are consistent with the significance of IsdA in bovine disease and relevant for vaccine development. PMID:28430959

  2. Altered biodistribution of gallium-67 in a patient with multiple factors influencing iron-transport protein saturation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeon Young; Kim, Sang Eun; Lee, Kyung Han; Kim, Byung Tae [College of Medicine, Samsung Medical Center, Seoul (Korea, Republic of)

    1998-01-01

    We present a case of a young female patient with fulminant hepatitis who showed an altered biodistribution of Ga-67, after being scanned twice at 10 month intervals. On initial scan, uptake of Ga-67 was increased in the liver, kidneys, and skeletons. Increased hepatic Ga-67 uptake may be explained by increased transferrin unbound Ga-67 that was taken up by the inflamed liver. The saturation of iron-binding proteins due to multiple transfusions may lead to increased renal and skeletal Ga-67 uptake. On follow-up scan hepatic Ga-67 uptake was markedly increased. Also increased Ga-67 uptake in the axial skeleton and normalized renal uptake were shown. The findings were consistent with iron deficiency anemia. This case demonstrates altered Ga-67 biodistribution associated with multiple transfusions, fulminant hepatitis, and iron deficiency anemia.

  3. Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif

    International Nuclear Information System (INIS)

    Westberg, Johan A.; Jiang, Ji; Andersson, Leif C.

    2011-01-01

    Highlights: → Stanniocalcin 1 (STC1) binds heme through novel heme binding motif. → Central iron atom of heme and cysteine-114 of STC1 are essential for binding. → STC1 binds Fe 2+ and Fe 3+ heme. → STC1 peptide prevents oxidative decay of heme. -- Abstract: Hemin (iron protoporphyrin IX) is a necessary component of many proteins, functioning either as a cofactor or an intracellular messenger. Hemoproteins have diverse functions, such as transportation of gases, gas detection, chemical catalysis and electron transfer. Stanniocalcin 1 (STC1) is a protein involved in respiratory responses of the cell but whose mechanism of action is still undetermined. We examined the ability of STC1 to bind hemin in both its reduced and oxidized states and located Cys 114 as the axial ligand of the central iron atom of hemin. The amino acid sequence differs from the established (Cys-Pro) heme regulatory motif (HRM) and therefore presents a novel heme binding motif (Cys-Ser). A STC1 peptide containing the heme binding sequence was able to inhibit both spontaneous and H 2 O 2 induced decay of hemin. Binding of hemin does not affect the mitochondrial localization of STC1.

  4. Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein

    Directory of Open Access Journals (Sweden)

    Stormo Gary D

    2005-07-01

    Full Text Available Abstract Background Recognition codes for protein-DNA interactions typically assume that the interacting positions contribute additively to the binding energy. While this is known to not be precisely true, an additive model over the DNA positions can be a good approximation, at least for some proteins. Much less information is available about whether the protein positions contribute additively to the interaction. Results Using EGR zinc finger proteins, we measure the binding affinity of six different variants of the protein to each of six different variants of the consensus binding site. Both the protein and binding site variants include single and double mutations that allow us to assess how well additive models can account for the data. For each protein and DNA alone we find that additive models are good approximations, but over the combined set of data there are context effects that limit their accuracy. However, a small modification to the purely additive model, with only three additional parameters, improves the fit significantly. Conclusion The additive model holds very well for every DNA site and every protein included in this study, but clear context dependence in the interactions was detected. A simple modification to the independent model provides a better fit to the complete data.

  5. Lactoferrin Glu561Asp polymorphism is associated with susceptibility to herpes simplex keratitis

    DEFF Research Database (Denmark)

    Keijser, S; Jager, M J; Dogterom-Ballering, H C M

    2008-01-01

    Lactoferrin plays an important role in the defense against infections, including herpes simplex virus (HSV) keratitis. We studied the impact of three single nucleotide polymorphisms in the human lactoferrin gene on the susceptibility to HSV infections of the eye and the severity of such infections...

  6. Influence of protein deposition on bacterial adhesion to contact lenses.

    Science.gov (United States)

    Subbaraman, Lakshman N; Borazjani, Roya; Zhu, Hua; Zhao, Zhenjun; Jones, Lyndon; Willcox, Mark D P

    2011-08-01

    The aim of the study is to determine the adhesion of Gram positive and Gram negative bacteria onto conventional hydrogel (CH) and silicone hydrogel (SH) contact lens materials with and without lysozyme, lactoferrin, and albumin coating. Four lens types (three SH-balafilcon A, lotrafilcon B, and senofilcon A; one CH-etafilcon A) were coated with lysozyme, lactoferrin, or albumin (uncoated lenses acted as controls) and then incubated in Staphylococcus aureus (Saur 31) or either of two strains of Pseudomonas aeruginosa (Paer 6294 and 6206) for 24 h at 37 °C. The total counts of the adhered bacteria were determined using the H-thymidine method and viable counts by counting the number of colony-forming units on agar media. All three strains adhered significantly lower to uncoated etafilcon A lenses compared with uncoated SH lenses (p 0.05). Lactoferrin coating on lenses increased binding (total and viable counts) of Saur 31 (p lenses showed significantly higher total counts (p lenses. Albumin coating of lenses increased binding (total and viable counts) of all three strains (p lenses does not possess antibacterial activity against certain bacterial strains, whereas lactoferrin possess an antibacterial effect against strains of P. aeruginosa.

  7. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells

    International Nuclear Information System (INIS)

    Chen Haobin; Davidson, Todd; Singleton, Steven; Garrick, Michael D.; Costa, Max

    2005-01-01

    Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1α). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic

  8. Efficient identification of phosphatidylserine-binding proteins by ORF phage display

    International Nuclear Information System (INIS)

    Caberoy, Nora B.; Zhou, Yixiong; Alvarado, Gabriela; Fan, Xianqun; Li, Wei

    2009-01-01

    To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in ∼300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressed for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.

  9. Characterization of a cocaine binding protein in human placenta

    International Nuclear Information System (INIS)

    Ahmed, M.S.; Zhou, D.H.; Maulik, D.; Eldefrawi, M.E.

    1990-01-01

    [ 3 H]-Cocaine binding sites are identified in human placental villus tissue plasma membranes. These binding sites are associated with a protein and show saturable and specific binding of [ 3 H]-cocaine with a high affinity site of 170 fmole/mg protein. The binding is lost with pretreatment with trypsin or heat. The membrane bound protein is solubilized with the detergent 3-(3-cholamidopropyl)dimethyl-ammonio-1-propane sulphonate (CHAPS) with retention of its saturable and specific binding of [ 3 H]-cocaine. The detergent-protein complex migrates on a sepharose CL-6B gel chromatography column as a protein with an apparent molecular weight of 75,900. The protein has an S 20,w value of 5.1. The binding of this protein to norcocaine, pseudococaine, nomifensine, imipramine, desipramine, amphetamine and dopamine indicates that it shares some, but not all, the properties of the brain cocaine receptor. The physiologic significance of this protein in human placenta is currently unclear

  10. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.

    Science.gov (United States)

    Miao, Yinglong; McCammon, J Andrew

    2018-03-20

    Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.

  11. Bone marrow and chelatable iron in patients with protein energy ...

    African Journals Online (AJOL)

    Objectives: To examine the iron status of malnourished children by comparing bone marrow iron deposits in children with protein energy malnutrition with those in well-nourished controls, and measuring chelatable urinary iron excretion in children with kwashiorkor. Design: Bone marrow iron was assessed histologicaHy in ...

  12. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    Science.gov (United States)

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  13. Improved detection of calcium-binding proteins in polyacrylamide gels

    International Nuclear Information System (INIS)

    Anthony, F.A.; Babitch, J.A.

    1984-01-01

    The authors refined the method of Schibeci and Martonosi (1980) to enhance detection of calcium-binding proteins in polyacrylamide gels using 45 Ca 2+ . Their efforts have produced a method which is shorter, has 40-fold greater sensitivity over the previous method, and will detect 'EF hand'-containing calcium-binding proteins in polyacrylamide gels below the 0.5 μg level. In addition this method will detect at least one example from every described class of calcium-binding protein, including lectins and γ-carboxyglutamic acid containing calcium-binding proteins. The method should be useful for detecting calcium-binding proteins which may trigger neurotransmitter release. (Auth.)

  14. Predicting DNA-binding proteins and binding residues by complex structure prediction and application to human proteome.

    Directory of Open Access Journals (Sweden)

    Huiying Zhao

    Full Text Available As more and more protein sequences are uncovered from increasingly inexpensive sequencing techniques, an urgent task is to find their functions. This work presents a highly reliable computational technique for predicting DNA-binding function at the level of protein-DNA complex structures, rather than low-resolution two-state prediction of DNA-binding as most existing techniques do. The method first predicts protein-DNA complex structure by utilizing the template-based structure prediction technique HHblits, followed by binding affinity prediction based on a knowledge-based energy function (Distance-scaled finite ideal-gas reference state for protein-DNA interactions. A leave-one-out cross validation of the method based on 179 DNA-binding and 3797 non-binding protein domains achieves a Matthews correlation coefficient (MCC of 0.77 with high precision (94% and high sensitivity (65%. We further found 51% sensitivity for 82 newly determined structures of DNA-binding proteins and 56% sensitivity for the human proteome. In addition, the method provides a reasonably accurate prediction of DNA-binding residues in proteins based on predicted DNA-binding complex structures. Its application to human proteome leads to more than 300 novel DNA-binding proteins; some of these predicted structures were validated by known structures of homologous proteins in APO forms. The method [SPOT-Seq (DNA] is available as an on-line server at http://sparks-lab.org.

  15. Clinical relevance of drug binding to plasma proteins

    Science.gov (United States)

    Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana

    2014-12-01

    Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.

  16. Adsorption and spectroscopic characterization of lactoferrin on hydroxyapatite nanocrystals.

    Science.gov (United States)

    Iafisco, Michele; Di Foggia, Michele; Bonora, Sergio; Prat, Maria; Roveri, Norberto

    2011-01-28

    Lactoferrin (LF), a well-characterized protein of blood plasma and milk with antioxidant, cariostatic, anticarcinogenic and anti-inflammatory properties, has been adsorbed onto biomimetic hydroxyapatite (HA) nanocrystals at two different pH values (7.4 and 9.0). The interaction was herein investigated by spectroscopic, thermal and microscopic techniques. The positive electrostatic surface potential of LF at pH 7.4 allows a strong surface interaction with the slightly negative HA nanocrystals and avoids the protein-protein interaction, leading to the formation of a coating protein monolayer. In contrast, at pH 9.0 the surface potential of LF is a mix of negative and positive zones favouring the protein-protein interaction and reducing the interaction with HA nanocrystals; as a result a double layer of coating protein was formed. These experimental findings are supported by the good fittings of the adsorption isotherms by different theoretical models according to Langmuir, Freundlich and Langmuir-Freundlich models. The nanosized HA does not appreciably affect the conformation of the adsorbed protein. In fact, using FT-Raman and FT-IR, we found that after adsorption the protein was only slightly unfolded with a small fraction of the α-helix structure being converted into turn, while the β-sheet content remained almost unchanged. The bioactive surface of HA functionalized with LF could be utilized to improve the material performance towards the biological environment for biomedical applications.

  17. Characterization of binding of N'-nitrosonornicotine to protein

    International Nuclear Information System (INIS)

    Hughes, M.F.

    1986-01-01

    The NADPH-dependent activation of the carcinogenic nitrosamine, N'-nitrosonornicotine (NNN) to a reactive intermediate which binds covalently to protein was assessed using male Sprague-Dawley rat liver and lung microsomes. The NADPH-dependent covalent binding of [ 14 C]NNN to liver and lung microsomes was linear with time up to 90 and 45 min, respectively and was also linear with protein concentrations up to 3.0 and 2.0 mg/ml, respectively. The apparent K/sub m/ and V/sub max/ of the NADPH-dependent binding to liver microsomes were determined from the initial velocities. Addition of the thiols glutathione, cystein, N-acetylcysteine or 2-mercapthoethanol significantly decreased the non-NADPH-dependent binding to liver microsomal protein, but did not affect the NADPH-dependent binding. Glutathione was required in order to observe any NADPH-dependent binding to lung microsomal protein. In lung microsomes, SKF-525A significantly decreased the NADPH-dependent binding by 79%. Replacement of an air atmosphere with N 2 or CO:O 2 (8:2) significantly decreased the NADPH-dependent binding of [ 14 C]NNN to liver microsomal protein by 40% or 27% respectively. Extensive covalent binding of [ 14 C]NNN to liver and muscle microsomal protein occurred in the absence of an NADPH-generating system, in the presence of 50% methanol and also to bovine serum albumin, indicating a nonenzymatic reaction. These data indicate that cytochrome P-450 is at least in part responsible for the metabolic activation of the carcinogen NNN, but also suggest additional mechanisms of activation

  18. Helper T cell epitope-mapping reveals MHC-peptide binding affinities that correlate with T helper cell responses to pneumococcal surface protein A.

    Directory of Open Access Journals (Sweden)

    Rajesh Singh

    2010-02-01

    Full Text Available Understanding the requirements for protection against pneumococcal carriage and pneumonia will greatly benefit efforts in controlling these diseases. Several proteins and polysaccharide capsule have recently been implicated in the virulence of and protective immunity against Streptococcus pneumonia. Pneumococcal surface protein A (PspA is highly conserved among S. pneumonia strains, inhibits complement activation, binds lactoferrin, elicits protective systemic immunity against pneumococcal infection, and is necessary for full pneumococcal virulence. Identification of PspA peptides that optimally bind human leukocyte antigen (HLA would greatly contribute to global vaccine efforts, but this is hindered by the multitude of HLA polymorphisms. Here, we have used an experimental data set of 54 PspA peptides and in silico methods to predict peptide binding to HLA and murine major histocompatibility complex (MHC class II. We also characterized spleen- and cervical lymph node (CLN-derived helper T lymphocyte (HTL cytokine responses to these peptides after S. pneumonia strain EF3030-challenge in mice. Individual, yet overlapping peptides, 15 amino acids in length revealed residues 199 to 246 of PspA (PspA(199-246 consistently caused the greatest IFN-gamma, IL-2, IL-5 and proliferation as well as moderate IL-10 and IL-4 responses by ex vivo stimulated splenic and CLN CD4(+ T cells isolated from S. pneumonia strain EF3030-challeged F(1 (B6xBALB/c mice. IEDB, RANKPEP, SVMHC, MHCPred, and SYFPEITHI in silico analysis tools revealed peptides in PspA(199-246 also interact with a broad range of HLA-DR, -DQ, and -DP allelles. These data suggest that predicted MHC class II-peptide binding affinities do not always correlate with T helper (Th cytokine or proliferative responses to PspA peptides, but when used together with in vivo validation can be a useful tool to choose candidate pneumococcal HTL epitopes.

  19. Substrate-Triggered Exosite Binding: Synergistic Dendrimer/Folic Acid Action for Achieving Specific, Tight-Binding to Folate Binding Protein.

    Science.gov (United States)

    Chen, Junjie; van Dongen, Mallory A; Merzel, Rachel L; Dougherty, Casey A; Orr, Bradford G; Kanduluru, Ananda Kumar; Low, Philip S; Marsh, E Neil G; Banaszak Holl, Mark M

    2016-03-14

    Polymer-ligand conjugates are designed to bind proteins for applications as drugs, imaging agents, and transport scaffolds. In this work, we demonstrate a folic acid (FA)-triggered exosite binding of a generation five poly(amidoamine) (G5 PAMAM) dendrimer scaffold to bovine folate binding protein (bFBP). The protein exosite is a secondary binding site on the protein surface, separate from the FA binding pocket, to which the dendrimer binds. Exosite binding is required to achieve the greatly enhanced binding constants and protein structural change observed in this study. The G5Ac-COG-FA1.0 conjugate bound tightly to bFBP, was not displaced by a 28-fold excess of FA, and quenched roughly 80% of the initial fluorescence. Two-step binding kinetics were measured using the intrinsic fluorescence of the FBP tryptophan residues to give a KD in the low nanomolar range for formation of the initial G5Ac-COG-FA1.0/FBP* complex, and a slow conversion to the tight complex formed between the dendrimer and the FBP exosite. The extent of quenching was sensitive to the choice of FA-dendrimer linker chemistry. Direct amide conjugation of FA to G5-PAMAM resulted in roughly 50% fluorescence quenching of the FBP. The G5Ac-COG-FA, which has a longer linker containing a 1,2,3-triazole ring, exhibited an ∼80% fluorescence quenching. The binding of the G5Ac-COG-FA1.0 conjugate was compared to poly(ethylene glycol) (PEG) conjugates of FA (PEGn-FA). PEG2k-FA had a binding strength similar to that of FA, whereas other PEG conjugates with higher molecular weight showed weaker binding. However, no PEG conjugates gave an increased degree of total fluorescence quenching.

  20. Rapid kinetics of iron responsive element (IRE) RNA/iron regulatory protein 1 and IRE-RNA/eIF4F complexes respond differently to metal ions.

    Science.gov (United States)

    Khan, Mateen A; Ma, Jia; Walden, William E; Merrick, William C; Theil, Elizabeth C; Goss, Dixie J

    2014-06-01

    Metal ion binding was previously shown to destabilize IRE-RNA/IRP1 equilibria and enhanced IRE-RNA/eIF4F equilibria. In order to understand the relative importance of kinetics and stability, we now report rapid rates of protein/RNA complex assembly and dissociation for two IRE-RNAs with IRP1, and quantitatively different metal ion response kinetics that coincide with the different iron responses in vivo. kon, for FRT IRE-RNA binding to IRP1 was eight times faster than ACO2 IRE-RNA. Mn(2+) decreased kon and increased koff for IRP1 binding to both FRT and ACO2 IRE-RNA, with a larger effect for FRT IRE-RNA. In order to further understand IRE-mRNA regulation in terms of kinetics and stability, eIF4F kinetics with FRT IRE-RNA were determined. kon for eIF4F binding to FRT IRE-RNA in the absence of metal ions was 5-times slower than the IRP1 binding to FRT IRE-RNA. Mn(2+) increased the association rate for eIF4F binding to FRT IRE-RNA, so that at 50 µM Mn(2+) eIF4F bound more than 3-times faster than IRP1. IRP1/IRE-RNA complex has a much shorter life-time than the eIF4F/IRE-RNA complex, which suggests that both rate of assembly and stability of the complexes are important, and that allows this regulatory system to respond rapidly to change in cellular iron. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Human plasminogen binding protein tetranectin

    DEFF Research Database (Denmark)

    Kastrup, J S; Rasmussen, H; Nielsen, B B

    1997-01-01

    The recombinant human plasminogen binding protein tetranectin (TN) and the C-type lectin CRD of this protein (TN3) have been crystallized. TN3 crystallizes in the tetragonal space group P4(2)2(1)2 with cell dimensions a = b = 64.0, c = 75.7 A and with one molecule per asymmetric unit. The crystals...... to at least 2.5 A. A full data set has been collected to 3.0 A. The asymmetric unit contains one monomer of TN. Molecular replacement solutions for TN3 and TN have been obtained using the structure of the C-type lectin CRD of rat mannose-binding protein as search model. The rhombohedral space group indicates...

  2. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    Science.gov (United States)

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  3. Colorectal mucus binds DC-SIGN and inhibits HIV-1 trans-infection of CD4+ T-lymphocytes.

    Science.gov (United States)

    Stax, Martijn J; Mouser, Emily E I M; van Montfort, Thijs; Sanders, Rogier W; de Vries, Henry J C; Dekker, Henk L; Herrera, Carolina; Speijer, Dave; Pollakis, Georgios; Paxton, William A

    2015-01-01

    Bodily secretions, including breast milk and semen, contain factors that modulate HIV-1 infection. Since anal intercourse caries one of the highest risks for HIV-1 transmission, our aim was to determine whether colorectal mucus (CM) also contains factors interfering with HIV-1 infection and replication. CM from a number of individuals was collected and tested for the capacity to bind DC-SIGN and inhibit HIV-1 cis- or trans-infection of CD4+ T-lymphocytes. To this end, a DC-SIGN binding ELISA, a gp140 trimer competition ELISA and HIV-1 capture/ transfer assays were utilized. Subsequently we aimed to identify the DC-SIGN binding component through biochemical characterization and mass spectrometry analysis. CM was shown to bind DC-SIGN and competes with HIV-1 gp140 trimer for binding. Pre-incubation of Raji-DC-SIGN cells or immature dendritic cells (iDCs) with CM potently inhibits DC-SIGN mediated trans-infection of CD4+ T-lymphocytes with CCR5 and CXCR4 using HIV-1 strains, while no effect on direct infection is observed. Preliminary biochemical characterization demonstrates that the component seems to be large (>100kDa), heat and proteinase K resistant, binds in a α1-3 mannose independent manner and is highly variant between individuals. Immunoprecipitation using DC-SIGN-Fc coated agarose beads followed by mass spectrometry indicated lactoferrin (fragments) and its receptor (intelectin-1) as candidates. Using ELISA we showed that lactoferrin levels within CM correlate with DC-SIGN binding capacity. In conclusion, CM can bind the C-type lectin DC-SIGN and block HIV-1 trans-infection of both CCR5 and CXCR4 using HIV-1 strains. Furthermore, our data indicate that lactoferrin is a DC-SIGN binding component of CM. These results indicate that CM has the potential to interfere with pathogen transmission and modulate immune responses at the colorectal mucosa.

  4. The RNA-binding protein repertoire of Arabidopsis thaliana

    KAUST Repository

    Marondedze, Claudius; Thomas, Ludivine; Serano, Natalia Lorena Gorron; Lilley, Kathryn S.; Gehring, Christoph A

    2016-01-01

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently

  5. Effects of in vitro lactoferricin and lactoferrin on the head kidney cells of European sea bass (Dicentrarchus labrax, L.).

    Science.gov (United States)

    Henry, Morgane A; Alexis, Maria N

    2009-08-15

    Antimicrobial, anti-inflammatory and immunomodulating properties of lactoferrin have been demonstrated in mammals and in fish. However, in vivo, lactoferrin is digested by gastric pepsin treatment into the N-terminal derived peptide named lactoferricin. This has been so far overlooked in fish in vitro studies. The aim of the present study was to assess in vitro the effects of both lactoferricin and lactoferrin on the head kidney cells of European sea bass (Dicentrarchus labrax, L.) in order to determine their potential as dietary additives and to get some insight into their mode of action. In vitro lactoferricin decreased significantly the chemiluminescent response of head kidney cells but did not affect the zymosan-triggered chemiluminescence activity. On the other hand, a high concentration of lactoferrin directly stimulated chemiluminescence but reduced the zymosan-triggered chemiluminescence. The bactericidal activity of head kidney cells was also significantly diminished by pre-incubation with lactoferrin in a dose-dependent manner. Although no significant effect of lactoferricin or lactoferrin was evidenced on head kidney cellular viability, absent or negative effect on the priming of respiratory burst activity suggested that care should be taken when using lactoferrin in the diet of sea bass and high doses should be avoided. Hypotheses about the mechanisms of action of lactoferricin and lactoferrin are presented.

  6. Effect of amino acid ligands on the structure of iron porphyrins and their ability to bind oxygen.

    Science.gov (United States)

    Berryman, Victoria E J; Baker, Matthew G; Boyd, Russell J

    2014-06-26

    Density functional theory is used to study a series of model iron porphyrins in the gas phase. In the first part of this study, three range-separated hybrid density functionals developed by Chai and Head-Gordon were assessed; ωB97, ωB97X, and ωB97XD. The effects of including full Hartree-Fock exchange at long-range and dispersion corrections are reported with respect to the geometries and binding energies of oxygen to the iron porphyrin systems. The functionals all correctly predict the quintet ground state for the deoxy-iron porphyrins, where typically hybrid functionals fail and predict a triplet ground state. Including dispersion in ωB97XD is shown to give the best results for the O2 binding energy and geometrical parameters. The second part of the study employs ωB97XD to study iron porphine systems with different amino acids in the axial position. Geometrical parameters are reported and compared to experimental data, where available. Binding energies of the systems with oxygen are also reported and discussed.

  7. Computational design and elaboration of a de novo heterotetrameric alpha-helical protein that selectively binds an emissive abiological (porphinato)zinc chromophore.

    Science.gov (United States)

    Fry, H Christopher; Lehmann, Andreas; Saven, Jeffery G; DeGrado, William F; Therien, Michael J

    2010-03-24

    The first example of a computationally de novo designed protein that binds an emissive abiological chromophore is presented, in which a sophisticated level of cofactor discrimination is pre-engineered. This heterotetrameric, C(2)-symmetric bundle, A(His):B(Thr), uniquely binds (5,15-di[(4-carboxymethyleneoxy)phenyl]porphinato)zinc [(DPP)Zn] via histidine coordination and complementary noncovalent interactions. The A(2)B(2) heterotetrameric protein reflects ligand-directed elements of both positive and negative design, including hydrogen bonds to second-shell ligands. Experimental support for the appropriate formulation of [(DPP)Zn:A(His):B(Thr)](2) is provided by UV/visible and circular dichroism spectroscopies, size exclusion chromatography, and analytical ultracentrifugation. Time-resolved transient absorption and fluorescence spectroscopic data reveal classic excited-state singlet and triplet PZn photophysics for the A(His):B(Thr):(DPP)Zn protein (k(fluorescence) = 4 x 10(8) s(-1); tau(triplet) = 5 ms). The A(2)B(2) apoprotein has immeasurably low binding affinities for related [porphinato]metal chromophores that include a (DPP)Fe(III) cofactor and the zinc metal ion hemin derivative [(PPIX)Zn], underscoring the exquisite active-site binding discrimination realized in this computationally designed protein. Importantly, elements of design in the A(His):B(Thr) protein ensure that interactions within the tetra-alpha-helical bundle are such that only the heterotetramer is stable in solution; corresponding homomeric bundles present unfavorable ligand-binding environments and thus preclude protein structural rearrangements that could lead to binding of (porphinato)iron cofactors.

  8. Identification of FUSE-binding proteins as interacting partners of TIA proteins

    International Nuclear Information System (INIS)

    Rothe, Francoise; Gueydan, Cyril; Bellefroid, Eric; Huez, Georges; Kruys, Veronique

    2006-01-01

    TIA-1 and TIAR are closely related RNA-binding proteins involved in several mechanisms of RNA metabolism, including alternative hnRNA splicing and mRNA translation regulation. In particular, TIA-1 represses tumor necrosis factor (TNF) mRNA translation by binding to the AU-rich element (ARE) present in the mRNA 3' untranslated region. Here, we demonstrate that TIA proteins interact with FUSE-binding proteins (FBPs) and that fbp genes are co-expressed with tia genes during Xenopus embryogenesis. FBPs participate in various steps of RNA processing and degradation. In Cos cells, FBPs co-localize with TIA proteins in the nucleus and migrate into TIA-enriched cytoplasmic granules upon oxidative stress. Overexpression of FBP2-KH3 RNA-binding domain fused to EGFP induces the specific sequestration of TIA proteins in cytoplasmic foci, thereby precluding their nuclear accumulation. In cytosolic RAW 264.7 macrophage extracts, FBPs are found associated in EMSA to the TIA-1/TNF-ARE complex. Together, our results indicate that TIA and FBP proteins may thus be relevant biological involved in common events of RNA metabolism occurring both in the nucleus and the cytoplasm

  9. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    Science.gov (United States)

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  10. Iron porphyrin-modified PVDF membrane as a biomimetic material and its effectiveness on nitric oxide binding

    Science.gov (United States)

    Can, Faruk; Demirci, Osman Cahit; Dumoulin, Fabienne; Erhan, Elif; Arslan, Leyla Colakerol; Ergenekon, Pınar

    2017-10-01

    Nitric oxide (NO) is a reactive gas well-known as an air pollutant causing severe environmental problems. NO is also an important signaling molecule having a strong affinity towards heme proteins in the body. Taking this specialty as a model, a biomimetic membrane was developed by modification of the membrane surface with iron-porphyrin which depicts very similar structure to heme proteins. In this study, PVDF membrane was coated with synthesized (4-carboxyphenyl)-10,15,20-triphenyl-porphyrin iron(III) chloride (FeCTPP) to promote NO fixation on the surface. The coated membrane was characterized in terms of ATR-IR spectra, contact angle measurement, chemical composition, and morphological structure. Contact angle of original PVDF first decreased sharply after plasma treatment and surface polymerization steps but after incorporation of FeCTPP, the surface acquired its hydrophobicity again. NO binding capability of modified membrane surface was evaluated on the basis of X-ray Photoelectron. Upon exposure to NO gas, a chemical shift of Fe+3 and appearance of new N peak was observed due to the electron transfer from NO ligand to Fe ion with the attachment of nitrosyl group to FeCTPP. This modification brings the functionality to the membrane for being used in biological systems such as membrane bioreactor material in biological NO removal technology.

  11. Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif

    Energy Technology Data Exchange (ETDEWEB)

    Westberg, Johan A., E-mail: johan.westberg@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland); Jiang, Ji, E-mail: ji.jiang@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland); Andersson, Leif C., E-mail: leif.andersson@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland)

    2011-06-03

    Highlights: {yields} Stanniocalcin 1 (STC1) binds heme through novel heme binding motif. {yields} Central iron atom of heme and cysteine-114 of STC1 are essential for binding. {yields} STC1 binds Fe{sup 2+} and Fe{sup 3+} heme. {yields} STC1 peptide prevents oxidative decay of heme. -- Abstract: Hemin (iron protoporphyrin IX) is a necessary component of many proteins, functioning either as a cofactor or an intracellular messenger. Hemoproteins have diverse functions, such as transportation of gases, gas detection, chemical catalysis and electron transfer. Stanniocalcin 1 (STC1) is a protein involved in respiratory responses of the cell but whose mechanism of action is still undetermined. We examined the ability of STC1 to bind hemin in both its reduced and oxidized states and located Cys{sup 114} as the axial ligand of the central iron atom of hemin. The amino acid sequence differs from the established (Cys-Pro) heme regulatory motif (HRM) and therefore presents a novel heme binding motif (Cys-Ser). A STC1 peptide containing the heme binding sequence was able to inhibit both spontaneous and H{sub 2}O{sub 2} induced decay of hemin. Binding of hemin does not affect the mitochondrial localization of STC1.

  12. The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.

    Science.gov (United States)

    Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E

    2017-12-05

    Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Prion protein modulates glucose homeostasis by altering intracellular iron.

    Science.gov (United States)

    Ashok, Ajay; Singh, Neena

    2018-04-26

    The prion protein (PrP C ), a mainly neuronal protein, is known to modulate glucose homeostasis in mouse models. We explored the underlying mechanism in mouse models and the human pancreatic β-cell line 1.1B4. We report expression of PrP C on mouse pancreatic β-cells, where it promoted uptake of iron through divalent-metal-transporters. Accordingly, pancreatic iron stores in PrP knockout mice (PrP -/- ) were significantly lower than wild type (PrP +/+ ) controls. Silencing of PrP C in 1.1B4 cells resulted in significant depletion of intracellular (IC) iron, and remarkably, upregulation of glucose transporter GLUT2 and insulin. Iron overloading, on the other hand, resulted in downregulation of GLUT2 and insulin in a PrP C -dependent manner. Similar observations were noted in the brain, liver, and neuroretina of iron overloaded PrP +/+ but not PrP -/- mice, indicating PrP C -mediated modulation of insulin and glucose homeostasis through iron. Peripheral challenge with glucose and insulin revealed blunting of the response in iron-overloaded PrP +/+ relative to PrP -/- mice, suggesting that PrP C -mediated modulation of IC iron influences both secretion and sensitivity of peripheral organs to insulin. These observations have implications for Alzheimer's disease and diabetic retinopathy, known complications of type-2-diabetes associated with brain and ocular iron-dyshomeostasis.

  14. Effect of Oral Lactoferrin on Cataract Surgery Induced Dry Eye: A Randomised Controlled Trial.

    Science.gov (United States)

    Devendra, Jaya; Singh, Sneha

    2015-10-01

    Cataract surgery is one of the most frequently performed intra-ocular surgeries, of these manual Small Incision Cataract Surgery (SICS) is a time tested technique of cataract removal. Any corneal incisional surgery, including cataract surgery, can induce dry eye postoperatively. Various factors have been implicated, of which oneis the inflammation induced by the surgery. Lactoferrin, a glycoprotein present in tears is said to have anti-inflammatory effects, and promotes cell growth. It has been used orally in patients of immune mediated dry eye to alleviate symptoms. This study was aimed to evaluate the dry eyes induced by manual Small Incision Cataract Surgery, and the effect if any, of oral lactoferrin on the dry eyes. A single centre, prospective randomised controlled trial with a concurrent parallel design. The study was carried out on patients presenting in the OPD of Rohilkhand Medical College hospital for cataract surgery. Sixty four patients of cataract surgery were included in the study. Patients with pre-existing dry eyes, ocular disease or systemic disease predisposing to dry eyes were excluded from the study. The selected patients were assigned into two groups by simple randomisation-Control Group A-32 patients that did not receive oral lactoferrin postoperatively. Group B-32 patients that received oral lactoferrin 350 gm postoperatively from day 1 after SICS. All patients were operated for cataract and their pre and postoperative (on days 7, 14, 30 and 60) dry eye status was assessed using the mean tear film break-up time (tBUT) and Schirmer test 1 (ST 1) as the evaluating parameters. Subjective evaluation of dry eye was done using Ocular Surface Disease Index (OSDI) scoring. Data was analysed for 58 patients, as 6 did not complete the follow up. Unpaired t-test was used to calculate the p-values. There was a statistically significant difference between the tBUT values of the Control and Lactoferrin group from day 14 onwards. The tBUT of control group

  15. Expression, immunogenicity and variation of iron-regulated surface protein A from bovine isolates of Staphylococcus aureus.

    Science.gov (United States)

    Misra, Neha; Wines, Tyler F; Knopp, Colton L; McGuire, Mark A; Tinker, Juliette K

    2017-05-01

    Staphylococcus aureus iron-regulated surface protein A (IsdA) is a fibrinogen and fibronectin adhesin that also contributes to iron sequestration and resistance to innate immunity. IsdA is conserved in human isolates and has been investigated as a human vaccine candidate. Here we report the expression of isdA, the efficacy of anti-IsdA responses and the existence of IsdA sequence variants from bovine Staphylococcus. Clinical staphylococci were obtained from US dairy farms and assayed by PCR for the presence and expression of isdA. isdA-positive species from bovines included S. aureus, S. haemolyticus and S. chromogenes. Immunoassays on bovine milk and serum confirmed the induction and opsonophagocytic activity of anti-IsdA humoral responses. The variable region of isdA was sequenced and protein alignments predicted the presence of two main variants consistent with those from human S. aureus. Mouse antibodies against one IsdA variant reduced staphylococcal binding to fibronectin in vitro in an isotype-dependent manner. Purified IsdA variants bound distinctly to fibronectin and fibrinogen. Our findings demonstrate that variability within the C-terminus of this adhesin affects immune reactivity and binding specificity, but are consistent with the significance of IsdA in bovine disease and relevant for vaccine development. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Tumor regression following intravenous administration of lactoferrin- and lactoferricin-bearing dendriplexes.

    Science.gov (United States)

    Lim, Li Ying; Koh, Pei Yin; Somani, Sukrut; Al Robaian, Majed; Karim, Reatul; Yean, Yi Lyn; Mitchell, Jennifer; Tate, Rothwelle J; Edrada-Ebel, RuAngelie; Blatchford, David R; Mullin, Margaret; Dufès, Christine

    2015-08-01

    The possibility of using gene therapy for the treatment of cancer is limited by the lack of safe, intravenously administered delivery systems able to selectively deliver therapeutic genes to tumors. In this study, we investigated if the conjugation of the polypropylenimine dendrimer to lactoferrin and lactoferricin, whose receptors are overexpressed on cancer cells, could result in a selective gene delivery to tumors and a subsequently enhanced therapeutic efficacy. The conjugation of lactoferrin and lactoferricin to the dendrimer significantly increased the gene expression in the tumor while decreasing the non-specific gene expression in the liver. Consequently, the intravenous administration of the targeted dendriplexes encoding TNFα led to the complete suppression of 60% of A431 tumors and up to 50% of B16-F10 tumors over one month. The treatment was well tolerated by the animals. These results suggest that these novel lactoferrin- and lactoferricin-bearing dendrimers are promising gene delivery systems for cancer therapy. Specific targeting of cancer cells should enhance the delivery of chemotherapeutic agents. This is especially true for gene delivery. In this article, the authors utilized a dendrimer-based system and conjugated this with lactoferrin and lactoferricin to deliver anti-tumor genes. The positive findings in animal studies should provide the basis for further clinical studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Bovine Lactoferrampin, Human Lactoferricin, and Lactoferrin 1-11 Inhibit Nuclear Translocation of HIV Integrase.

    Science.gov (United States)

    Wang, Winston Yan; Wong, Jack Ho; Ip, Denis Tsz Ming; Wan, David Chi Cheong; Cheung, Randy Chifai; Ng, Tzi Bun

    2016-08-01

    This study aimed to investigate fragments derived from human and bovine lactoferrins for ability to inhibit nuclear translocation of HIV-1 integrase. It was shown that human lactoferricin, human lactoferrin 1-11, and bovine lactoferrampin reduced nuclear distribution of HIV-1 integrase. Bovine lactoferrampin could inhibit both the activity and nuclear translocation of HIV-1 integrase. Human lactoferrampin, bovine lactoferricin, and bovine lactoferrin 1-11 had no effect on HIV-1 integrase nuclear translocation. Human lactoferrampin which inhibited the activity of integrase did not prevent its nuclear translocation. Human lactoferricin and lactoferrin 1-11 did not inhibit HIV-1 integrase nuclear translocation despite their ability to attenuate the enzyme activity. The discrepancy between the findings on reduction of HIV-1 activity and inhibition of nuclear translocation of HIV-1 integrase was due to the different mechanisms involved. A similar reasoning can also be applied to the different inhibitory potencies of the milk peptides on different HIV enzymes, i.e., nuclear translocation.

  18. Fusion of Taq DNA polymerase with single-stranded DNA binding-like protein of Nanoarchaeum equitans-Expression and characterization.

    Directory of Open Access Journals (Sweden)

    Marcin Olszewski

    Full Text Available DNA polymerases are present in all organisms and are important enzymes that synthesise DNA molecules. They are used in various fields of science, predominantly as essential components for in vitro DNA syntheses, known as PCR. Modern diagnostics, molecular biology and genetic engineering need DNA polymerases which demonstrate improved performance. This study was aimed at obtaining a new NeqSSB-TaqS fusion DNA polymerase from the Taq DNA Stoffel domain and a single-stranded DNA binding-like protein of Nanoarchaeum equitans in order to significantly improve the properties of DNA polymerase. The DNA coding sequence of Taq Stoffel DNA polymerase and the nonspecific DNA-binding protein of Nanoarchaeum equitans (NeqSSB-like protein were fused. A novel recombinant gene was obtained which was cloned into the pET-30 Ek/LIC vector and introduced into E. coli for expression. The recombinant enzyme was purified and its enzymatic properties including DNA polymerase activity, PCR amplification rate, thermostability, processivity and resistance to inhibitors, were tested. The yield of the target protein reached approximately 18 mg/l after 24 h of the IPTG induction. The specific activity of the polymerase was 2200 U/mg. The recombinant NeqSSB-TaqS exhibited a much higher extension rate (1000 bp template in 20 s, processivity (19 nt, thermostability (half-life 35 min at 95°C and higher tolerance to PCR inhibitors (0.3-1.25% of whole blood, 0.84-13.5 μg of lactoferrin and 4.7-150 ng of heparin than Taq Stoffel DNA polymerase. Furthermore, our studies show that NeqSSB-TaqS DNA polymerase has a high level of flexibility in relation to Mg2+ ions (from 1 to 5 mM and KCl or (NH42SO4 salts (more than 60 mM and 40 mM, respectively. Using NeqSSB-TaqS DNA polymerase instead of the Taq DNA polymerase could be a better choice in many PCR applications.

  19. Human lactoferrin stimulates skin keratinocyte function and wound re-epithelialization.

    Science.gov (United States)

    Tang, L; Wu, J J; Ma, Q; Cui, T; Andreopoulos, F M; Gil, J; Valdes, J; Davis, S C; Li, J

    2010-07-01

    Human lactoferrin (hLF), a member of the transferrin family, is known for its antimicrobial and anti-inflammatory effects. Recent studies on various nonskin cell lines indicate that hLF may have a stimulatory effect on cell proliferation. To study the potential role of hLF in wound re-epithelialization. The effects of hLF on cell growth, migration, attachment and survival were assessed, with a rice-derived recombinant hLF (holo-rhLF), using proliferation analysis, scratch migration assay, calcein-AM/propidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) method, respectively. The mechanisms of hLF on cell proliferation and migration were explored using specific pathway inhibitors. The involvement of lactoferrin receptor low-density lipoprotein receptor-related protein 1 (LRP1) was examined with RNA interference technique. An in vivo swine second-degree burn wound model was also used to assess wound re-epithelialization. Studies revealed that holo-rhLF significantly stimulated keratinocyte proliferation which could be blocked by mitogen-activated protein kinase (MAPK) kinase 1 inhibitor. Holo-rhLF also showed strong promoting effects on keratinocyte migration, which could be blocked by either inhibition of the MAPK, Src and Rho/ROCK pathways, or downregulation of the LRP1 receptor. With cells under starving or 12-O-tetradecanoylphorbol-13-acetate exposure, the addition of holo-rhLF was found greatly to increase cell viability and inhibit cell apoptosis. Additionally, holo-rhLF significantly increased the rate of wound re-epithelialization in swine second-degree burn wounds. Our studies demonstrate the direct effects of holo-rhLF on wound re-epithelialization including the enhancement of keratinocyte proliferation and migration as well as the protection of cells from apoptosis. The data strongly indicate its potential therapeutic applications in wound healing.

  20. DNA-binding proteins essential for protein-primed bacteriophage ø29 DNA replication

    Directory of Open Access Journals (Sweden)

    Margarita Salas

    2016-08-01

    Full Text Available Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5’ ends of the DNA. This protein, called terminal protein (TP, is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3’-5’ exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding

  1. Aluminium fluoride and magnesium, activators of heterotrimeric GTP-binding proteins, affect high-affinity binding of the fungal toxin fusicoccin to the fusicoccin-binding protein in oat root plasma membranes.

    NARCIS (Netherlands)

    de Boer, A.H.; Van der Molen, G.W.; Prins, H.B.A.; Korthout, H.A.A.J.; van der Hoeven, P.C.J.

    1994-01-01

    The fusicoccin-binding protein was solubilised from purified oat root plasma membranes. The solubilised protein retained full binding activity, provided that protease inhibitors were included. Sodium fluoride reduced the high-affinity [H-3]fusicoccin binding to almost zero in a

  2. Synthesis of iron oxide nanoparticles in Listeria innocua Dps (DNA-binding protein from starved cells): a study with the wild-type protein and a catalytic centre mutant.

    Science.gov (United States)

    Ceci, Pierpaolo; Chiancone, Emilia; Kasyutich, Oksana; Bellapadrona, Giuliano; Castelli, Lisa; Fittipaldi, Maria; Gatteschi, Dante; Innocenti, Claudia; Sangregorio, Claudio

    2010-01-11

    A comparative analysis of the magnetic properties of iron oxide nanoparticles grown in the cavity of the DNA-binding protein from starved cells of the bacterium Listeria innocua, LiDps, and of its triple-mutant lacking the catalytic ferroxidase centre, LiDps-tm, is presented. TEM images and static and dynamic magnetic and electron magnetic resonance (EMR) measurements reveal that, under the applied preparation conditions, namely alkaline pH, high temperature (65 degrees C), exclusion of oxygen, and the presence of hydrogen peroxide, maghemite and/or magnetite nanoparticles with an average diameter of about 3 nm are mineralised inside the cavities of both LiDps and LiDps-tm. The magnetic nanoparticles (MNPs) thus formed show similar magnetic properties, with superparamagnetic behaviour above 4.5 K and a large magnetic anisotropy. Interestingly, in the EMR spectra an absorption at half-field is observed, which can be considered as a manifestation of the quantum behaviour of the MNPs. These results indicate that Dps proteins can be advantageously used for the production of nanomagnets at the interface between molecular clusters and traditional MNPs and that the presence of the ferroxidase centre, though increasing the efficiency of nanoparticle formation, does not affect the nature and fine structure of the MNPs. Importantly, the self-organisation of MNP-containing Dps on HRTEM grids suggests that Dps-enclosed MNPs can be deposited on surfaces in an ordered fashion.

  3. Expression of Iron-Related Proteins Differentiate Non-Cancerous and Cancerous Breast Tumors

    Directory of Open Access Journals (Sweden)

    Sara Pizzamiglio

    2017-02-01

    Full Text Available We have previously reported hepcidin and ferritin increases in the plasma of breast cancer patients, but not in patients with benign breast disease. We hypothesized that these differences in systemic iron homeostasis may reflect alterations in different iron-related proteins also play a key biochemical and regulatory role in breast cancer. Thus, here we explored the expression of a bundle of molecules involved in both iron homeostasis and tumorigenesis in tissue samples. Enzyme-linked immunosorbent assay (ELISA or reverse-phase protein array (RPPA, were used to measure the expression of 20 proteins linked to iron processes in 24 non-cancerous, and 56 cancerous, breast tumors. We found that cancerous tissues had higher level of hepcidin than benign lesions (p = 0.012. The univariate analysis of RPPA data highlighted the following seven proteins differentially expressed between non-cancerous and cancerous breast tissue: signal transducer and transcriptional activator 5 (STAT5, signal transducer and activator of transcription 3 (STAT3, bone morphogenetic protein 6 (BMP6, cluster of differentiation 74 (CD74, transferrin receptor (TFRC, inhibin alpha (INHA, and STAT5_pY694. These findings were confirmed for STAT5, STAT3, BMP6, CD74 and INHA when adjusting for age. The multivariate statistical analysis indicated an iron-related 10-protein panel effective in separating non-cancerous from cancerous lesions including STAT5, STAT5_pY694, myeloid differentiation factor 88 (MYD88, CD74, iron exporter ferroportin (FPN, high mobility group box 1 (HMGB1, STAT3_pS727, TFRC, ferritin heavy chain (FTH, and ferritin light chain (FTL. Our results showed an association between some iron-related proteins and the type of tumor tissue, which may provide insight in strategies for using iron chelators to treat breast cancer.

  4. Drosophila DNA-Binding Proteins in Polycomb Repression

    Directory of Open Access Journals (Sweden)

    Maksim Erokhin

    2018-01-01

    Full Text Available The formation of individual gene expression patterns in different cell types is required during differentiation and development of multicellular organisms. Polycomb group (PcG proteins are key epigenetic regulators responsible for gene repression, and dysregulation of their activities leads to developmental abnormalities and diseases. PcG proteins were first identified in Drosophila, which still remains the most convenient system for studying PcG-dependent repression. In the Drosophila genome, these proteins bind to DNA regions called Polycomb response elements (PREs. A major role in the recruitment of PcG proteins to PREs is played by DNA-binding factors, several of which have been characterized in detail. However, current knowledge is insufficient for comprehensively describing the mechanism of this process. In this review, we summarize and discuss the available data on the role of DNA-binding proteins in PcG recruitment to chromatin.

  5. Effect of cobratoxin binding on the normal mode vibration within acetylcholine binding protein.

    Science.gov (United States)

    Bertaccini, Edward J; Lindahl, Erik; Sixma, Titia; Trudell, James R

    2008-04-01

    Recent crystal structures of the acetylcholine binding protein (AChBP) have revealed surprisingly small structural alterations upon ligand binding. Here we investigate the extent to which ligand binding may affect receptor dynamics. AChBP is a homologue of the extracellular component of ligand-gated ion channels (LGICs). We have previously used an elastic network normal-mode analysis to propose a gating mechanism for the LGICs and to suggest the effects of various ligands on such motions. However, the difficulties with elastic network methods lie in their inability to account for the modest effects of a small ligand or mutation on ion channel motion. Here, we report the successful application of an elastic network normal mode technique to measure the effects of large ligand binding on receptor dynamics. The present calculations demonstrate a clear alteration in the native symmetric motions of a protein due to the presence of large protein cobratoxin ligands. In particular, normal-mode analysis revealed that cobratoxin binding to this protein significantly dampened the axially symmetric motion of the AChBP that may be associated with channel gating in the full nAChR. The results suggest that alterations in receptor dynamics could be a general feature of ligand binding.

  6. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    Science.gov (United States)

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-08-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.

  7. Binding free energy analysis of protein-protein docking model structures by evERdock.

    Science.gov (United States)

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-14

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  8. Digestion proteomics: tracking lactoferrin truncation and peptide release during simulated gastric digestion.

    Science.gov (United States)

    Grosvenor, Anita J; Haigh, Brendan J; Dyer, Jolon M

    2014-11-01

    The extent to which nutritional and functional benefit is derived from proteins in food is related to its breakdown and digestion in the body after consumption. Further, detailed information about food protein truncation during digestion is critical to understanding and optimising the availability of bioactives, in controlling and limiting allergen release, and in minimising or monitoring the effects of processing and food preparation. However, tracking the complex array of products formed during the digestion of proteins is not easily accomplished using classical proteomics. We here present and develop a novel proteomic approach using isobaric labelling to mapping and tracking protein truncation and peptide release during simulated gastric digestion, using bovine lactoferrin as a model food protein. The relative abundance of related peptides was tracked throughout a digestion time course, and the effect of pasteurisation on peptide release assessed. The new approach to food digestion proteomics developed here therefore appears to be highly suitable not only for tracking the truncation and relative abundance of released peptides during gastric digestion, but also for determining the effects of protein modification on digestibility and potential bioavailability.

  9. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  10. Predicting the binding patterns of hub proteins: a study using yeast protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Carson M Andorf

    Full Text Available Protein-protein interactions are critical to elucidating the role played by individual proteins in important biological pathways. Of particular interest are hub proteins that can interact with large numbers of partners and often play essential roles in cellular control. Depending on the number of binding sites, protein hubs can be classified at a structural level as singlish-interface hubs (SIH with one or two binding sites, or multiple-interface hubs (MIH with three or more binding sites. In terms of kinetics, hub proteins can be classified as date hubs (i.e., interact with different partners at different times or locations or party hubs (i.e., simultaneously interact with multiple partners.Our approach works in 3 phases: Phase I classifies if a protein is likely to bind with another protein. Phase II determines if a protein-binding (PB protein is a hub. Phase III classifies PB proteins as singlish-interface versus multiple-interface hubs and date versus party hubs. At each stage, we use sequence-based predictors trained using several standard machine learning techniques.Our method is able to predict whether a protein is a protein-binding protein with an accuracy of 94% and a correlation coefficient of 0.87; identify hubs from non-hubs with 100% accuracy for 30% of the data; distinguish date hubs/party hubs with 69% accuracy and area under ROC curve of 0.68; and SIH/MIH with 89% accuracy and area under ROC curve of 0.84. Because our method is based on sequence information alone, it can be used even in settings where reliable protein-protein interaction data or structures of protein-protein complexes are unavailable to obtain useful insights into the functional and evolutionary characteristics of proteins and their interactions.We provide a web server for our three-phase approach: http://hybsvm.gdcb.iastate.edu.

  11. Cystatin C and lactoferrin concentrations in biological fluids as possible prognostic factors in eye tumor development

    Directory of Open Access Journals (Sweden)

    Mariya A. Dikovskaya

    2013-08-01

    Full Text Available Objectives. To investigate the possible role of cystatin C in eye biological fluids locally and in serum and lactoferrin revealing anti-tumor activity in eye tumor development. Background. The increased number of eye tumors was registered recently not only in the countries with high insolation, but also in the northern countries including Russia (11 cases per million of population. Search for new biological markers is important for diagnosis and prognosis in eye tumors. Cystatin C, an endogenous inhibitor of cysteine proteases, plays an important protective role in several tumors. Lactoferrin was shown to express anti-tumor and antiviral activities. It was hypothesized that cystatin C and lactoferrin could serve as possible biomarkers in the diagnosis of malignant and benign eye tumors. Study design. A total of 54 patients with choroidal melanoma and benign eye tumors were examined (part of them undergoing surgical treatment. Serum, tear fluid and intraocular fluid samples obtained from the anterior chamber of eyes in patients with choroidal melanoma were studied. Methods. Cystatin C concentration in serum and eye biological fluids was measured by commercial ELISA kits for human (BioVendor, Czechia; lactoferrin concentration – by Lactoferrin-strip D 4106 ELISA test systems (Vector-BEST, Novosibirsk Region, Russia. Results. Cystatin C concentration in serum of healthy persons was significantly higher as compared to tear and intraocular fluids. In patients with choroidal melanoma, increased cystatin C concentration was similar in tear fluid of both the eyes. Lactoferrin level in tear fluid of healthy persons was significantly higher than its serum level. Significantly increased lactoferrin concentration in tear fluid was noted in patients with benign and malignant eye tumors. Conclusion. Increased level of cystatin C in tear fluid seems to be a possible diagnostic factor in the eye tumors studied. However, it does not allow us to differentiate

  12. Effect of oxidative stress induced by intracranial iron overload on central pain after spinal cord injury.

    Science.gov (United States)

    Meng, Fan Xing; Hou, Jing Ming; Sun, Tian Sheng

    2017-02-08

    Central pain (CP) is a common clinical problem in patients with spinal cord injury (SCI). Recent studies found the pathogenesis of CP was related to the remodeling of the brain. We investigate the roles of iron overload and subsequent oxidative stress in the remodeling of the brain after SCI. We established a rat model of central pain after SCI. Rats were divided randomly into four groups: SCI, sham operation, SCI plus deferoxamine (DFX) intervention, and SCI plus nitric oxide synthase (NOS) inhibitor treatment. Pain behavior was observed and thermal pain threshold was measured regularly, and brain levels of iron, transferrin receptor 1 (TfR1), ferritin (Fn), and lactoferrin (Lf), were detected in the different groups 12 weeks after establishment of the model. Rats demonstrated self-biting behavior after SCI. Furthermore, the latent period of thermal pain was reduced and iron levels in the hind limb sensory area, hippocampus, and thalamus increased after SCI. Iron-regulatory protein (IRP) 1 levels increased in the hind limb sensory area, while Fn levels decreased. TfR1 mRNA levels were also increased and oxidative stress was activated. Oxidative stress could be inhibited by ferric iron chelators and NOS inhibitors. SCI may cause intracranial iron overload through the NOS-iron-responsive element/IRP pathway, resulting in central pain mediated by the oxidative stress response. Iron chelators and oxidative stress inhibitors can effectively relieve SCI-associated central pain.

  13. Exploring the binding sites and binding mechanism for hydrotrope encapsulated griseofulvin drug on γ-tubulin protein.

    Directory of Open Access Journals (Sweden)

    Shubhadip Das

    Full Text Available The protein γ-tubulin plays an important role in centrosomal clustering and this makes it an attractive therapeutic target for treating cancers. Griseofulvin, an antifungal drug, has recently been used to inhibit proliferation of various types of cancer cells. It can also affect the microtubule dynamics by targeting the γ-tubulin protein. So far, the binding pockets of γ-tubulin protein are not properly identified and the exact mechanism by which the drug binds to it is an area of intense speculation and research. The aim of the present study is to investigate the binding mechanism and binding affinity of griseofulvin on γ-tubulin protein using classical molecular dynamics simulations. Since the drug griseofulvin is sparingly soluble in water, here we also present a promising approach for formulating and achieving delivery of hydrophobic griseofulvin drug via hydrotrope sodium cumene sulfonate (SCS cluster. We observe that the binding pockets of γ-tubulin protein are mainly formed by the H8, H9 helices and S7, S8, S14 strands and the hydrophobic interactions between the drug and γ-tubulin protein drive the binding process. The release of the drug griseofulvin from the SCS cluster is confirmed by the coordination number analysis. We also find hydrotrope-induced alteration of the binding sites of γ-tubulin protein and the weakening of the drug-protein interactions.

  14. Detection of secondary binding sites in proteins using fragment screening.

    Science.gov (United States)

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren

    2015-12-29

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  15. SCOWLP classification: Structural comparison and analysis of protein binding regions

    Directory of Open Access Journals (Sweden)

    Anders Gerd

    2008-01-01

    Full Text Available Abstract Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions

  16. Trans-acting translational regulatory RNA binding proteins.

    Science.gov (United States)

    Harvey, Robert F; Smith, Tom S; Mulroney, Thomas; Queiroz, Rayner M L; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa; Lilley, Kathryn S; Willis, Anne E

    2018-05-01

    The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans-acting regulatory RNA-binding proteins (RBPs) are necessary to provide mRNA-specific translation, and these interact with 5' and 3' untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans-acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans-acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans-acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Translation Regulation Translation > Translation Mechanisms. © 2018 Medical Research Council and University of Cambridge. WIREs RNA published by Wiley Periodicals, Inc.

  17. Current understanding of iron homeostasis.

    Science.gov (United States)

    Anderson, Gregory J; Frazer, David M

    2017-12-01

    Iron is an essential trace element, but it is also toxic in excess, and thus mammals have developed elegant mechanisms for keeping both cellular and whole-body iron concentrations within the optimal physiologic range. In the diet, iron is either sequestered within heme or in various nonheme forms. Although the absorption of heme iron is poorly understood, nonheme iron is transported across the apical membrane of the intestinal enterocyte by divalent metal-ion transporter 1 (DMT1) and is exported into the circulation via ferroportin 1 (FPN1). Newly absorbed iron binds to plasma transferrin and is distributed around the body to sites of utilization with the erythroid marrow having particularly high iron requirements. Iron-loaded transferrin binds to transferrin receptor 1 on the surface of most body cells, and after endocytosis of the complex, iron enters the cytoplasm via DMT1 in the endosomal membrane. This iron can be used for metabolic functions, stored within cytosolic ferritin, or exported from the cell via FPN1. Cellular iron concentrations are modulated by the iron regulatory proteins (IRPs) IRP1 and IRP2. At the whole-body level, dietary iron absorption and iron export from the tissues into the plasma are regulated by the liver-derived peptide hepcidin. When tissue iron demands are high, hepcidin concentrations are low and vice versa. Too little or too much iron can have important clinical consequences. Most iron deficiency reflects an inadequate supply of iron in the diet, whereas iron excess is usually associated with hereditary disorders. These disorders include various forms of hemochromatosis, which are characterized by inadequate hepcidin production and, thus, increased dietary iron intake, and iron-loading anemias whereby both increased iron absorption and transfusion therapy contribute to the iron overload. Despite major recent advances, much remains to be learned about iron physiology and pathophysiology. © 2017 American Society for Nutrition.

  18. Characterization of cap binding proteins associated with the nucleus

    International Nuclear Information System (INIS)

    Patzelt, E.

    1986-04-01

    Eucaryotic mRNAs a carry 7-methylguanosine triphosphate residue (called cap structure) at their 5' terminus. The cap plays an important role in RNA recognition. Cap binding proteins (CBP) of HeLa cells were identified by photoaffinity labelling using the cap analogue γ-( 32 P)-(4-(benzoyl-phenyl)methylamido)-7-methylguanosine-5'-triphosphate (BP-m 7 GTP). Photoreaction of this cap analogue with HeLa cell initiation factors resulted in specific labelling of two polypeptides of Msub(r) 37000 and 26000. The latter was also labelled in crude initiation factors prepared from reticulocytes and is identical to the cap binding protein CBP I previously identified. These cap binding proteins were also affinity labelled in poliovirus infected cell extracts. Photoaffinity reaction with BP-m 7 GTP of whole HeLa cell homogenate showed three additional polypeptides with Msub(r) 120000, 89000 and 80000. These cap binding proteins were found to be associated with the nucleus and are therefore referred to as nuclear cap binding proteins, i.e. NCBP 1, NCBP 2 and NCBP 3. They were also present in splicing extracts. Photoaffinity labelling in these nuclear extracts was differentially inhibited by various cap analogues and capped mRNAs. Affinity chromatography on immobilized globin mRNA led to a partial separation of the three nuclear cap binding proteins. Chromatography on m 7 GTP-Sepharose resulted in a specific binding of NCBP 3. The different behaviour of the cap binding proteins suggests that they are functionally distinct and that they might be involved in different processes requiring cap recognition. (Author)

  19. The distribution of iron between the metal-binding sites of transferrin human serum.

    Science.gov (United States)

    Williams, J; Moreton, K

    1980-02-01

    The Makey & Seal [(1976) Biochim. Biophys. Acta 453, 250--256] method of polyacrylamide-gel electrophoresis in buffer containing 6 M-urea was used to determine the distribution of iron between the N-terminal and C-terminal iron-binding sites of transferrin in human serum. In fresh serum the two sites are unequally occupied; there is preferential occupation of the N-terminal site. On incubation of the serum at 37 degrees C the preference of iron for the N-terminal site becomes more marked. On storage of serum at -15 degrees C the iron distribution changes so that there is a marked preference for the C-terminal site. Dialysis of serum against buffer at pH 7.4 also causes iron to be bound much more strongly by the C-terminal than by the N-terminal site. The original preference for the N-terminal site can be resroted to the dialysed serum by addition of the diffusible fraction.

  20. Dietary lactoferrin supplementation to gilts during gestation and lactation improves pig production and immunity.

    Directory of Open Access Journals (Sweden)

    Marefa Jahan

    Full Text Available Lactoferrin (LF, a sialylated iron-binding glycoprotein, performs multiple beneficial functions including modulating immunity and improves neurodevelopment, health and growth performance. Maternal LF intervention for gilts (first parity sows on the performance of gilts and their offspring remains unknown. In the current study gilts were fed with a commercial pig feed supplemented with 1g LF /day (treatment group or 1g milk casein/day (control group from day 1 post mating throughout pregnancy and lactation for about 135 days. The milk production and body weight gain was monitored. The immunoglobulin concentrations in the serum of gilts and piglets were measured using ELISA. Our study showed that maternal LF supplementation to the gilt (1 significantly increased milk production at different time points (day 1, 3, 7 and 19 of lactation compared to the control (p<0.001; (2 significantly increased body weight gain of their piglets during the first 19 days of life compared to the control group (p<0.05; (3 tended to increase pregnancy rate, litter size and birth weight, number of piglets born alive, and decrease the number of dead and intrauterine growth restriction (IUGR piglets; (4 significantly increased the concentration of serum IgA in gilt and serum sIgA in piglet (p<0.05. In summary, maternal Lf intervention in gilts can improve milk production, pig production and serum IgA and sIgA levels, and therefore plays a key role in shaping the performance of their progeny.

  1. Probing protein phosphatase substrate binding

    DEFF Research Database (Denmark)

    Højlys-Larsen, Kim B.; Sørensen, Kasper Kildegaard; Jensen, Knud Jørgen

    2012-01-01

    Proteomics and high throughput analysis for systems biology can benefit significantly from solid-phase chemical tools for affinity pull-down of proteins from complex mixtures. Here we report the application of solid-phase synthesis of phosphopeptides for pull-down and analysis of the affinity...... profile of the integrin-linked kinase associated phosphatase (ILKAP), a member of the protein phosphatase 2C (PP2C) family. Phosphatases can potentially dephosphorylate these phosphopeptide substrates but, interestingly, performing the binding studies at 4 °C allowed efficient binding to phosphopeptides......, without the need for phosphopeptide mimics or phosphatase inhibitors. As no proven ILKAP substrates were available, we selected phosphopeptide substrates among known PP2Cδ substrates including the protein kinases: p38, ATM, Chk1, Chk2 and RSK2 and synthesized directly on PEGA solid supports through a BAL...

  2. Further biochemical characterization of Mycobacterium leprae laminin-binding proteins

    Directory of Open Access Journals (Sweden)

    M.A.M. Marques

    2001-04-01

    Full Text Available It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.

  3. An overview of the prediction of protein DNA-binding sites.

    Science.gov (United States)

    Si, Jingna; Zhao, Rui; Wu, Rongling

    2015-03-06

    Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  4. Structure of the nucleotide-binding domain of a dipeptide ABC transporter reveals a novel iron-sulfur cluster-binding domain.

    Science.gov (United States)

    Li, Xiaolu; Zhuo, Wei; Yu, Jie; Ge, Jingpeng; Gu, Jinke; Feng, Yue; Yang, Maojun; Wang, Linfang; Wang, Na

    2013-02-01

    Dipeptide permease (Dpp), which belongs to an ABC transport system, imports peptides consisting of two or three L-amino acids from the matrix to the cytoplasm in microbes. Previous studies have indicated that haem competes with dipeptides to bind DppA in vitro and in vivo and that the Dpp system can also translocate haem. Here, the crystal structure of DppD, the nucleotide-binding domain (NBD) of the ABC-type dipeptide/oligopeptide/nickel-transport system from Thermoanaerobacter tengcongensis, bound with ATP, Mg(2+) and a [4Fe-4S] iron-sulfur cluster is reported. The N-terminal domain of DppD shares a similar structural fold with the NBDs of other ABC transporters. Interestingly, the C-terminal domain of DppD contains a [4Fe-4S] cluster. The UV-visible absorbance spectrum of DppD was consistent with the presence of a [4Fe-4S] cluster. A search with DALI revealed that the [4Fe-4S] cluster-binding domain is a novel structural fold. Structural analysis and comparisons with other ABC transporters revealed that this iron-sulfur cluster may act as a mediator in substrate (dipeptide or haem) binding by electron transfer and may regulate the transport process in Dpp ABC transport systems. The crystal structure provides a basis for understanding the properties of ABC transporters and will be helpful in investigating the functions of NBDs in the regulation of ABC transporter activity.

  5. Microbicidal effect of the lactoferrin peptides Lactoferricin17-30, Lactoferrampin265-284, and Lactoferrin chimera on the parasite Entamoeba histolytica

    NARCIS (Netherlands)

    López-Soto, F.; León-Sicairos, N.; Nazmi, K.; Bolscher, J.G.; de la Garza, M.

    2010-01-01

    Entamoeba histolytica is a parasitic protozoan that produces amoebiasis, an intestinal disease characterized by ulcerative colitis and dysentery. In some cases, trophozoites can travel to the liver leading to hepatic abscesses and death. Recently, lactoferrin and lactoferricin B have been shown to

  6. MicroRNA-related genetic variants in iron regulatory genes, dietary iron intake, microRNAs and lung cancer risk.

    Science.gov (United States)

    Zhang, L; Ye, Y; Tu, H; Hildebrandt, M A; Zhao, L; Heymach, J V; Roth, J A; Wu, X

    2017-05-01

    Genetic variations in MicroRNA (miRNA) binding sites may alter structural accessibility of miRNA binding sites to modulate risk of cancer. This large-scale integrative multistage study was aimed to evaluate the interplay of genetic variations in miRNA binding sites of iron regulatory pathway, dietary iron intake and lung cancer (LC) risk. The interplay of genetic variant, dietary iron intake and LC risk was assessed in large-scale case-control study. Functional characterization of the validated SNP and analysis of target miRNAs were performed. We found that the miRNA binding site SNP rs1062980 in 3' UTR of Iron-Responsive Element Binding protein 2 gene (IREB2) was associated with a 14% reduced LC risk (P value = 4.9×10 - 9). Comparing to AA genotype, GG genotype was associated with a 27% reduced LC risk. This association was evident in males and ever-smokers but not in females and never-smokers. Higher level of dietary iron intake was significantly associated with 39% reduced LC risk (P value = 2.0×10 - 8). This association was only present in individuals with AG + AA genotypes with a 46% reduced risk (P value = 1.0×10 - 10), but not in GG genotype. The eQTL-analysis showed that rs1062980 significantly alters IREB2 expression level. Rs1062980 is predicted to alter a miR-29 binding site on IREB2 and indeed the expression of miR-29 is inversely correlated with IREB2 expression. Further, we found that higher circulating miR-29a level was significantly associated with 78% increased LC risk. The miRNA binding site SNP rs1062980 in iron regulatory pathway, which may alter the expression of IREB2 potentially through modulating the binding of miR-29a, together with dietary iron intake may modify risk of LC both individually and jointly. These discoveries reveal novel pathway for understanding lung cancer tumorigenesis and risk stratification. © The Author 2017. Published by Oxford University Press on behalf of the European Society for

  7. Mitochondrial iron accumulation exacerbates hepatic toxicity caused by hepatitis C virus core protein

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, Shuichi; Ito, Konomi; Watanabe, Haruna; Nakano, Takafumi [Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 (Japan); Moriya, Kyoji; Shintani, Yoshizumi; Fujie, Hajime; Tsutsumi, Takeya; Miyoshi, Hideyuki; Fujinaga, Hidetake; Shinzawa, Seiko; Koike, Kazuhiko [Department of Internal Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Horie, Toshiharu, E-mail: t.horie@thu.ac.jp [Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 (Japan)

    2015-02-01

    Patients with long-lasting hepatitis C virus (HCV) infection are at major risk of hepatocellular carcinoma (HCC). Iron accumulation in the livers of these patients is thought to exacerbate conditions of oxidative stress. Transgenic mice that express the HCV core protein develop HCC after the steatosis stage and produce an excess of hepatic reactive oxygen species (ROS). The overproduction of ROS in the liver is the net result of HCV core protein-induced dysfunction of the mitochondrial respiratory chain. This study examined the impact of ferric nitrilacetic acid (Fe-NTA)-mediated iron overload on mitochondrial damage and ROS production in HCV core protein-expressing HepG2 (human HCC) cells (Hep39b cells). A decrease in mitochondrial membrane potential and ROS production were observed following Fe-NTA treatment. After continuous exposure to Fe-NTA for six days, cell toxicity was observed in Hep39b cells, but not in mock (vector-transfected) HepG2 cells. Moreover, mitochondrial iron ({sup 59}Fe) uptake was increased in the livers of HCV core protein-expressing transgenic mice. This increase in mitochondrial iron uptake was inhibited by Ru360, a mitochondrial Ca{sup 2+} uniporter inhibitor. Furthermore, the Fe-NTA-induced augmentation of mitochondrial dysfunction, ROS production, and cell toxicity were also inhibited by Ru360 in Hep39b cells. Taken together, these results indicate that Ca{sup 2+} uniporter-mediated mitochondrial accumulation of iron exacerbates hepatocyte toxicity caused by the HCV core protein. - Highlights: • Iron accumulation in the livers of patients with hepatitis C virus (HCV) infection is thought to exacerbate oxidative stress. • The impact of iron overload on mitochondrial damage and ROS production in HCV core protein-expressing cells were examined. • Mitochondrial iron uptake was increased in the livers of HCV core protein-expressing transgenic mice. • Ca{sup 2+} uniporter-mediated mitochondrial accumulation of iron exacerbates

  8. Dominant Alcohol-Protein Interaction via Hydration-Enabled Enthalpy-Driven Binding Mechanism

    Science.gov (United States)

    Chong, Yuan; Kleinhammes, Alfred; Tang, Pei; Xu, Yan; Wu, Yue

    2015-01-01

    Water plays an important role in weak associations of small drug molecules with proteins. Intense focus has been on binding-induced structural changes in the water network surrounding protein binding sites, especially their contributions to binding thermodynamics. However, water is also tightly coupled to protein conformations and dynamics, and so far little is known about the influence of water-protein interactions on ligand binding. Alcohols are a type of low-affinity drugs, and it remains unclear how water affects alcohol-protein interactions. Here, we present alcohol adsorption isotherms under controlled protein hydration using in-situ NMR detection. As functions of hydration level, Gibbs free energy, enthalpy, and entropy of binding were determined from the temperature dependence of isotherms. Two types of alcohol binding were found. The dominant type is low-affinity nonspecific binding, which is strongly dependent on temperature and the level of hydration. At low hydration levels, this nonspecific binding only occurs above a threshold of alcohol vapor pressure. An increased hydration level reduces this threshold, with it finally disappearing at a hydration level of h~0.2 (g water/g protein), gradually shifting alcohol binding from an entropy-driven to an enthalpy-driven process. Water at charged and polar groups on the protein surface was found to be particularly important in enabling this binding. Although further increase in hydration has smaller effects on the changes of binding enthalpy and entropy, it results in significant negative change in Gibbs free energy due to unmatched enthalpy-entropy compensation. These results show the crucial role of water-protein interplay in alcohol binding. PMID:25856773

  9. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for

  10. Nuclear and Cytoplasmic Delivery of Lactoferrin in Glioma using Chitosan Nanoparticles: Cellular Location Dependent-Action of Lactoferrin.

    Science.gov (United States)

    Tammam, Salma N; Azzazy, Hassan M E; Lamprecht, Alf

    2018-05-23

    Lactoferrin (Lf) exerts anti-cancer effects on glioma, however, the exact mechanism remains unclear. Despite possessing a nuclear localization sequence (NLS), Lf was found to allocate only in the cytoplasm of glioma 261. Lf was therefore loaded into nuclear and cytoplasmic targeted nanoparticles (NPs) to determine whether nuclear delivery of Lf would enhance its anti-cancer effect. Upon treatment with 300 and 800 µg/mL Lf loaded chitosan NPs, nuclear targeted Lf-NPs showed 1.3 and 2.7 folds increase in cell viability, whereas cytoplasmic targeted Lf-NPs at 300 µg/mL decreased cell viability by 0.8 folds in comparison to free Lf and controls. Results suggest that the cytotoxicity of Lf on glioma is attributable to its cytoplasmic allocation. Nuclear delivery of Lf induced cell proliferation rather than cytotoxicity, indicating that the mode of action of Lf in glioma is cell location dependent. This calls for caution about the general use of Lf as an anti-cancer protein. Copyright © 2018. Published by Elsevier B.V.

  11. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding.

    Science.gov (United States)

    Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A

    2013-06-14

    Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.

  12. Research field development ou iron-sulfur proteins by the Moessbauer spectroscopy and EPR

    International Nuclear Information System (INIS)

    Arsenio, T.P.; Taft, C.A.

    1984-01-01

    A research line on iron sulfides (chemical and structurally seemed with the iron-sulfur proteins), implanted and developed at CBPF-Brazil, using the same theoretical and experimental models used in the development of the research field on iron-sulfur proteins is reported. The techniques used are Moessbauer spectroscopy and EPR. (L.C.) [pt

  13. Ion Binding Energies Determining Functional Transport of ClC Proteins

    Science.gov (United States)

    Yu, Tao; Guo, Xu; Zou, Xian-Wu; Sang, Jian-Ping

    2014-06-01

    The ClC-type proteins, a large family of chloride transport proteins ubiquitously expressed in biological organisms, have been extensively studied for decades. Biological function of ClC proteins can be reflected by analyzing the binding situation of Cl- ions. We investigate ion binding properties of ClC-ec1 protein with the atomic molecular dynamics simulation approach. The calculated electrostatic binding energy results indicate that Cl- at the central binding site Scen has more binding stability than the internal binding site Sint. Quantitative comparison between the latest experimental heat release data isothermal titration calorimetry (ITC) and our calculated results demonstrates that chloride ions prefer to bind at Scen than Sint in the wild-type ClC-ec1 structure and prefer to bind at Sext and Scen than Sint in mutant E148A/E148Q structures. Even though the chloride ions make less contribution to heat release when binding to Sint and are relatively unstable in the Cl- pathway, they are still part contributors for the Cl- functional transport. This work provides a guide rule to estimate the importance of Cl- at the binding sites and how chloride ions have influences on the function of ClC proteins.

  14. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E.; Korgsdam, A.-M.; Jørgensen, H.F.

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...... was validated by the identification of known prokaryotic and eukaryotic DNA-binding proteins, and its use provided evidence that poly(ADP-ribose) polymerase exhibits DNA sequence-specific binding to DNA....

  15. Protein Binding Capacity of Different Forages Tannin

    Science.gov (United States)

    Yusiati, L. M.; Kurniawati, A.; Hanim, C.; Anas, M. A.

    2018-02-01

    Eight forages of tannin sources(Leucaena leucocephala, Arachis hypogaea, Mimosa pudica, Morus alba L, Swietenia mahagoni, Manihot esculenta, Gliricidia sepium, and Bauhinia purpurea)were evaluated their tannin content and protein binding capacity. The protein binding capacity of tannin were determined using precipitation of bovine serum albumin (BSA). Swietenia mahagonihas higest total tannin level and condensed tannin (CT) compared with other forages (P<0.01). The Leucaena leucocephala has highest hydrolysable tannin (HT) level (P<0.01). The total and condensed tannin content of Swietenia mahagoni were 11.928±0.04 mg/100 mg and 9.241±0.02mg/100mg dry matter (DM) of leaves. The hydrolysable tannin content of Leucaena leucocephala was 5.338±0.03 mg/100 mg DM of leaves. Binding capacity was highest in Swietenia mahagoni and Leucaena leucocephala compared to the other forages (P<0.01). The optimum binding of BSA to tannin in Leucaena leucocephala and Swietenia mahagoniwere1.181±0.44 and 1.217±0.60mg/mg dry matter of leaves. The present study reports that Swietenia mahagoni has highest of tannin content and Leucaena leucocephala and Swietenia mahagoni capacity of protein binding.

  16. Colorectal mucus binds DC-SIGN and inhibits HIV-1 trans-infection of CD4+ T-lymphocytes.

    Directory of Open Access Journals (Sweden)

    Martijn J Stax

    Full Text Available Bodily secretions, including breast milk and semen, contain factors that modulate HIV-1 infection. Since anal intercourse caries one of the highest risks for HIV-1 transmission, our aim was to determine whether colorectal mucus (CM also contains factors interfering with HIV-1 infection and replication. CM from a number of individuals was collected and tested for the capacity to bind DC-SIGN and inhibit HIV-1 cis- or trans-infection of CD4+ T-lymphocytes. To this end, a DC-SIGN binding ELISA, a gp140 trimer competition ELISA and HIV-1 capture/ transfer assays were utilized. Subsequently we aimed to identify the DC-SIGN binding component through biochemical characterization and mass spectrometry analysis. CM was shown to bind DC-SIGN and competes with HIV-1 gp140 trimer for binding. Pre-incubation of Raji-DC-SIGN cells or immature dendritic cells (iDCs with CM potently inhibits DC-SIGN mediated trans-infection of CD4+ T-lymphocytes with CCR5 and CXCR4 using HIV-1 strains, while no effect on direct infection is observed. Preliminary biochemical characterization demonstrates that the component seems to be large (>100kDa, heat and proteinase K resistant, binds in a α1-3 mannose independent manner and is highly variant between individuals. Immunoprecipitation using DC-SIGN-Fc coated agarose beads followed by mass spectrometry indicated lactoferrin (fragments and its receptor (intelectin-1 as candidates. Using ELISA we showed that lactoferrin levels within CM correlate with DC-SIGN binding capacity. In conclusion, CM can bind the C-type lectin DC-SIGN and block HIV-1 trans-infection of both CCR5 and CXCR4 using HIV-1 strains. Furthermore, our data indicate that lactoferrin is a DC-SIGN binding component of CM. These results indicate that CM has the potential to interfere with pathogen transmission and modulate immune responses at the colorectal mucosa.

  17. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues.

    Science.gov (United States)

    Ma, Xin; Guo, Jing; Sun, Xiao

    2016-01-01

    DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.

  18. IGF binding proteins.

    Science.gov (United States)

    Bach, Leon A

    2017-12-18

    Insulin-like growth factor binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellularly; (ii) interaction with and modulation of other growth factor pathways including EGF, TGF- and VEGF; and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.

  19. Ligand Binding Domain Protein in Tetracycline-Inducible Expression

    African Journals Online (AJOL)

    Purpose: To investigate tetracycline-inducible expression system for producing clinically usable, highquality liver X receptor ligand-binding domain recombinant protein. Methods: In this study, we have expressed and purified the recombinant liver X receptor β-ligand binding domain proteins in E. coli using a tetracycline ...

  20. An Overview of the Prediction of Protein DNA-Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-03-01

    Full Text Available Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  1. STRUCTURAL FEATURES OF PLANT CHITINASES AND CHITIN-BINDING PROTEINS

    NARCIS (Netherlands)

    BEINTEMA, JJ

    1994-01-01

    Structural features of plant chitinases and chitin-binding proteins are discussed. Many of these proteins consist of multiple domains,of which the chitin-binding hevein domain is a predominant one. X-ray and NMR structures of representatives of the major classes of these proteins are available now,

  2. A tool for calculating binding-site residues on proteins from PDB structures

    Directory of Open Access Journals (Sweden)

    Hu Jing

    2009-08-01

    Full Text Available Abstract Background In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB that consists of the protein of interest and its interacting partner(s and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. Results In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. Conclusion The developed tool is very useful for the research on protein binding site analysis and prediction.

  3. Plant RNA binding proteins for control of RNA virus infection

    Directory of Open Access Journals (Sweden)

    Sung Un eHuh

    2013-12-01

    Full Text Available Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific binding. Host plants intensively use RNA binding proteins for defense against viral infections in nature. In this mini review, we will summarize the function of some host RNA binding proteins which act in a sequence-specific binding manner to the infecting virus RNA. It is important to understand how plants effectively suppresses RNA virus infections via RNA binding proteins, and this defense system can be potentially developed as a synthetic virus defense strategy for use in crop engineering.

  4. Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins.

    Science.gov (United States)

    Chen, Eileen; Joseph, Simpson

    2015-07-01

    Translational control is a common mechanism used to regulate gene expression and occur in bacteria to mammals. Typically in translational control, an RNA-binding protein binds to a unique sequence in the mRNA to regulate protein synthesis by the ribosomes. Alternatively, a protein may bind to or modify a translation factor to globally regulate protein synthesis by the cell. Here, we review translational control by the fragile X mental retardation protein (FMRP), the absence of which causes the neurological disease, fragile X syndrome (FXS). Copyright © 2015 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  5. A synthetic peptide with the putative iron binding motif of amyloid precursor protein (APP does not catalytically oxidize iron.

    Directory of Open Access Journals (Sweden)

    Kourosh Honarmand Ebrahimi

    Full Text Available The β-amyloid precursor protein (APP, which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II just as in ferritin. We measured the ferroxidase activity indirectly (i by the incorporation of the Fe(III product of the ferroxidase reaction into transferrin and directly (ii by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II oxidation by molecular oxygen. Zn(II binds to transferrin and diminishes its Fe(III incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.

  6. Detection and properties of A-factor-binding protein from Streptomyces griseus

    International Nuclear Information System (INIS)

    Miyake, K.; Horinouchi, S.; Yoshida, M.; Chiba, N.; Mori, K.; Nogawa, N.; Morikawa, N.; Beppu, T.

    1989-01-01

    The optically active form of tritium-labeled A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone), a pleiotropic autoregulator responsible for streptomycin production, streptomycin resistance, and sporulation in Streptomyces griseus, was chemically synthesized. By using the radioactive A-factor, a binding protein for A-factor was detected in the cytoplasmic fraction of this organism. The binding protein had an apparent molecular weight of approximately 26,000, as determined by gel filtration. Scatchard analysis suggested that A-factor bound the protein in the molar ratio of 1:1 with a binding constant, Kd, of 0.7 nM. The number of the binding protein was roughly estimated to be 37 per genome. The inducing material virginiae butanolide C (VB-C), which has a structure very similar to that of A-factor and is essential for virginiamycin production in Streptomyces virginiae, did not inhibit binding. In addition, no protein capable of specifically binding 3 H-labeled VB-C was found in S. griseus. Together with the observation that VB-C had almost no biological activity on the restoration of streptomycin production or sporulation in an A-factor-deficient mutant of S. griseus, these results indicated that the binding protein had a strict ligand specificity. Examination for an A-factor-binding protein in Streptomyces coelicolor A3(2) and Streptomyces lividans showed the absence of any specifically binding protein

  7. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il Hwan; Pham, Van; Jablonka, Willy; Goodman, Walter G.; Ribeiro, José M. C.; Andersen, John F.

    2017-07-27

    Juvenile hormone (JH) is a key regulator of insect development and reproduction. In adult mosquitoes, it is essential for maturation of the ovary and normal male reproductive behavior, but how JH distribution and activity is regulated after secretion is unclear. Here, we report a new type of specific JH-binding protein, given the name mosquito juvenile hormone-binding protein (mJHBP), which circulates in the hemolymph of pupal and adult Aedes aegypti males and females. mJHBP is a member of the odorant-binding protein (OBP) family, and orthologs are present in the genomes of Aedes, Culex, and Anopheles mosquito species. Using isothermal titration calorimetry, we show that mJHBP specifically binds JH II and JH III but not eicosanoids or JH derivatives. mJHBP was crystallized in the presence of JH III and found to have a double OBP domain structure reminiscent of salivary “long” D7 proteins of mosquitoes. We observed that a single JH III molecule is contained in the N-terminal domain binding pocket that is closed in an apparent conformational change by a C-terminal domain-derived α-helix. The electron density for the ligand indicated a high occupancy of the natural 10R enantiomer of JH III. Of note, mJHBP is structurally unrelated to hemolymph JHBP from lepidopteran insects. A low level of expression of mJHBP in Ae. aegypti larvae suggests that it is primarily active during the adult stage where it could potentially influence the effects of JH on egg development, mating behavior, feeding, or other processes.

  8. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone.

    Science.gov (United States)

    Kim, Il Hwan; Pham, Van; Jablonka, Willy; Goodman, Walter G; Ribeiro, José M C; Andersen, John F

    2017-09-15

    Juvenile hormone (JH) is a key regulator of insect development and reproduction. In adult mosquitoes, it is essential for maturation of the ovary and normal male reproductive behavior, but how JH distribution and activity is regulated after secretion is unclear. Here, we report a new type of specific JH-binding protein, given the name mosquito juvenile hormone-binding protein (mJHBP), which circulates in the hemolymph of pupal and adult Aedes aegypti males and females. mJHBP is a member of the odorant-binding protein (OBP) family, and orthologs are present in the genomes of Aedes , Culex , and Anopheles mosquito species. Using isothermal titration calorimetry, we show that mJHBP specifically binds JH II and JH III but not eicosanoids or JH derivatives. mJHBP was crystallized in the presence of JH III and found to have a double OBP domain structure reminiscent of salivary "long" D7 proteins of mosquitoes. We observed that a single JH III molecule is contained in the N-terminal domain binding pocket that is closed in an apparent conformational change by a C-terminal domain-derived α-helix. The electron density for the ligand indicated a high occupancy of the natural 10 R enantiomer of JH III. Of note, mJHBP is structurally unrelated to hemolymph JHBP from lepidopteran insects. A low level of expression of mJHBP in Ae. aegypti larvae suggests that it is primarily active during the adult stage where it could potentially influence the effects of JH on egg development, mating behavior, feeding, or other processes.

  9. Unique structure and stability of HmuY, a novel heme-binding protein of Porphyromonas gingivalis.

    Directory of Open Access Journals (Sweden)

    Halina Wójtowicz

    2009-05-01

    Full Text Available Infection, survival, and proliferation of pathogenic bacteria in humans depend on their capacity to impair host responses and acquire nutrients in a hostile environment. Among such nutrients is heme, a co-factor for oxygen storage, electron transport, photosynthesis, and redox biochemistry, which is indispensable for life. Porphyromonas gingivalis is the major human bacterial pathogen responsible for severe periodontitis. It recruits heme through HmuY, which sequesters heme from host carriers and delivers it to its cognate outer-membrane transporter, the TonB-dependent receptor HmuR. Here we report that heme binding does not significantly affect the secondary structure of HmuY. The crystal structure of heme-bound HmuY reveals a new all-beta fold mimicking a right hand. The thumb and fingers pinch heme iron through two apical histidine residues, giving rise to highly symmetric octahedral iron co-ordination. The tetrameric quaternary arrangement of the protein found in the crystal structure is consistent with experiments in solution. It shows that thumbs and fingertips, and, by extension, the bound heme groups, are shielded from competing heme-binding proteins from the host. This may also facilitate heme transport to HmuR for internalization. HmuY, both in its apo- and in its heme-bound forms, is resistant to proteolytic digestion by trypsin and the major secreted proteases of P. gingivalis, gingipains K and R. It is also stable against thermal and chemical denaturation. In conclusion, these studies reveal novel molecular properties of HmuY that are consistent with its role as a putative virulence factor during bacterial infection.

  10. Mechanism of iron uptake by the pathogenic yeast, Candida albicans

    International Nuclear Information System (INIS)

    Ismail, A.

    1986-01-01

    C. albicans requires iron for growth and phenotypic development. When deprived of iron, mycelium and bud formation was suppressed. Survival of the organism was also reduced under iron-limiting conditions. The combination of elevated temperature and iron-deprivation further reduced phenotypic development and survival of the yeast. The combination of elevated temperature and iron starvation resulted in a decrease in both the growth rate and siderophore production. However, with time, the cells were able to show partial recovery in the growth rate which occurred concomitantly with an increase in siderophore production. In order for siderophores to be utilized, ferri-siderophore receptors must be produced. The receptor was shown to be located in the plasma membrane of the yeast. Scatchard analysis of the binding of ferri-siderophores to plasma membrane receptors showed an increase in receptor affinity and number of binding sites in iron-starved cells when compared to control cells. Autoradiograms of the 58 Fe-siderophore-protein complex following SDS-PAGE separation of candidal proteins revealed the presence of a ferri-siderophore receptor of approximately 10,000 daltons. C. albicans strains which lacked the ability to synthesize phenolate siderophore maintained a phenolate receptor and bound candidal phenolate siderophore better than non-candidal phenolate siderophores

  11. Cooking Chicken Breast Reduces Dialyzable Iron Resulting from Digestion of Muscle Proteins

    Directory of Open Access Journals (Sweden)

    Aditya S. Gokhale

    2014-01-01

    Full Text Available The purpose of this research was to study the effect of cooking chicken breast on the production of dialyzable iron (an in vitro indicator of bioavailable iron from added ferric iron. Chicken breast muscle was cooked by boiling, baking, sautéing, or deep-frying. Cooked samples were mixed with ferric iron and either extracted with acid or digested with pepsin and pancreatin. Total and ferrous dialyzable iron was measured after extraction or digestion and compared to raw chicken samples. For uncooked samples, dialyzable iron was significantly enhanced after both extraction and digestion. All cooking methods led to markedly reduced levels of dialyzable iron both by extraction and digestion. In most cooked, digested samples dialyzable iron was no greater than the iron-only (no sample control. Cooked samples showed lower levels of histidine and sulfhydryls but protein digestibility was not reduced, except for the sautéed sample. The results showed that, after cooking, little if any dialyzable iron results from digestion of muscle proteins. Our research indicates that, in cooked chicken, residual acid-extractable components are the most important source of dialyzable iron.

  12. Cooking Chicken Breast Reduces Dialyzable Iron Resulting from Digestion of Muscle Proteins.

    Science.gov (United States)

    Gokhale, Aditya S; Mahoney, Raymond R

    2014-01-01

    The purpose of this research was to study the effect of cooking chicken breast on the production of dialyzable iron (an in vitro indicator of bioavailable iron) from added ferric iron. Chicken breast muscle was cooked by boiling, baking, sautéing, or deep-frying. Cooked samples were mixed with ferric iron and either extracted with acid or digested with pepsin and pancreatin. Total and ferrous dialyzable iron was measured after extraction or digestion and compared to raw chicken samples. For uncooked samples, dialyzable iron was significantly enhanced after both extraction and digestion. All cooking methods led to markedly reduced levels of dialyzable iron both by extraction and digestion. In most cooked, digested samples dialyzable iron was no greater than the iron-only (no sample) control. Cooked samples showed lower levels of histidine and sulfhydryls but protein digestibility was not reduced, except for the sautéed sample. The results showed that, after cooking, little if any dialyzable iron results from digestion of muscle proteins. Our research indicates that, in cooked chicken, residual acid-extractable components are the most important source of dialyzable iron.

  13. Conformational Dynamics of the Receptor Protein Galactose/Glucose Binding Protein

    Science.gov (United States)

    Messina, Troy; Talaga, David

    2006-03-01

    We have performed time-correlated single photon counting (TCSPC) anisotropy and Stokes Shift measurements on bulk solutions of galactose/glucose binding protein. Site-directed mutagenesis was used to provide a single cysteine amino acid near the sugar-binding center of the protein (glutamine 26 to cysteine -- Q26C). The cysteine was covalently labeled with the environmentally-sensitive fluorophore acrylodan, and a long-lived ruthenium complex was covalently attached to the N-terminus to provide a fluorescent reference. The TCSPC data were analyzed using global convolute-and-compare fitting routines over the entire glucose titration and temperature range to provide minimal reduced chi-squared values and the highest time resolution possible. Using a standard ligand-binding model, the resulting distributions show that the closed (ligand-bound) conformation exists even at zero glucose concentration. At 20^oC, the relative abundance of this conformation is as high as 40%. The temperature dependence of this conformational study will be discussed and related to the ligand-binding free energy surface.

  14. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    Science.gov (United States)

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  15. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    Directory of Open Access Journals (Sweden)

    Mihaly Varadi

    Full Text Available Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  16. In vitro binding of germanium to proteins of rice shoots

    International Nuclear Information System (INIS)

    Matsumoto, Hideaki; Takahashi, Eiichi

    1976-01-01

    The possibility of in vitro binding between proteins of rice shoots and germanium (Ge) was investigated. The proteins in mixtures of aqueous extracts of rice shoots and radioactive germanium ( 68 GeO 2 ) were fractionated. The binding of radioactivity to the proteins was observed even after 5 successive fractionation steps from the original mixtures. At the final fractionation step using polyacrylamide gel electrophoresis, a constant proportionality between protein concentration and associated radioactivity was found in most samples although not all. These results indicate that the binding of 68 Ge to proteins is not due to the simple adsorption by proteins. (auth.)

  17. Probing binding hot spots at protein-RNA recognition sites.

    Science.gov (United States)

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-29

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.

    Science.gov (United States)

    Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima

    2012-08-27

    In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.

  19. Characterization of a Chitin-Binding Protein from Bacillus thuringiensis HD-1.

    Directory of Open Access Journals (Sweden)

    Naresh Arora

    Full Text Available Strains of Bacillus thuringiensis produce insecticidal proteins. These strains have been isolated from diverse ecological niches, such as soil, phylloplane, insect cadavers and grain dust. To effectively propagate, these strains produce a range of molecules that facilitate its multiplication in a competing environment. In this report, we have examined synthesis of a chitin-binding protein and evaluated its effect on fungi encountered in environment and its interaction with insecticidal proteins synthesized by B. thuringiensis. The gene encoding chitin-binding protein has been cloned and expressed. The purified protein has been demonstrated to interact with Cry insecticidal protein, Cry1Ac by Circular Dichrosim spectroscopy (CD and in vitro pull down assays. The chitin-binding protein potentiates insecticidal activity of bacillar insecticidal protein, Cry1Ac. Further, chitin-binding protein was fungistatic against several soil fungi. The chitin binding protein is expressed in spore mother cell and deposited along with insecticidal protein, Cry1Ac. It interacts with Cry1Ac to potentiate its insecticidal activity and facilitate propagation of Bacillus strain in environment by inhibiting growth of certain fungi.

  20. Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Vesa Kirjavainen

    Full Text Available Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS O-antigen (O-ag and outer core (OC do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp, an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host.

  1. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    Science.gov (United States)

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Physicochemical characterization of mineral (iron/zinc) bound caseinate and their mineral uptake in Caco-2 cells.

    Science.gov (United States)

    Shilpashree, B G; Arora, Sumit; Kapila, Suman; Sharma, Vivek

    2018-08-15

    Milk proteins (especially caseins) are widely accepted as good vehicle for the delivery of various bioactive compounds including minerals. Succinylation is one of the most acceptable chemical modification techniques to enhance the mineral binding ability of caseins. Addition of minerals to succinylated proteins may alter their physicochemical and biochemical properties. Physicochemical characteristics of succinylated sodium caseinate (S.NaCN)-mineral (iron/zinc) complexes were elucidated. Chromatographic behaviour and fluorescence intensity confirmed the structural modification of S.NaCN upon binding with minerals. The bound mineral from protein complexes showed significantly higher (P < 0.05) in vitro bioavailability (mineral uptake) than mineral salts in Caco-2 cells. Also, iron bound S.NaCN showed higher cellular ferritin formation than iron in its free form. These mineral bound protein complexes with improved bioavailability could safely replace inorganic fortificants in various functional food formulations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Influence of specific amino acid side-chains on the antimicrobial activity and structure of bovine lactoferrampin.

    Science.gov (United States)

    Haney, Evan F; Nazmi, Kamran; Bolscher, Jan G M; Vogel, Hans J

    2012-06-01

    Lactoferrin is an 80 kDa iron binding protein found in the secretory fluids of mammals and it plays a major role in host defence. An antimicrobial peptide, lactoferrampin, was identified through sequence analysis of bovine lactoferrin and its antimicrobial activity against a wide range of bacteria and yeast species is well documented. In the present work, the contribution of specific amino acid residues of lactoferrampin was examined to evaluate the role that they play in membrane binding and bilayer disruption. The structures of all the bovine lactoferrampin derivatives were examined with circular dichroism and nuclear magnetic resonance spectroscopy, and their interactions with phospholipids were evaluated with differential scanning calorimetry and isothermal titration calorimetry techniques. From our results it is apparent that the amphipathic N-terminal helix anchors the peptide to membranes with Trp 268 and Phe 278 playing important roles in determining the strength of the interaction and for inducing peptide folding. In addition, the N-terminal helix capping residues (DLI) increase the affinity for negatively charged vesicles and they mediate the depth of membrane insertion. Finally, the unique flexibility in the cationic C-terminal region of bovine lactoferrampin does not appear to be essential for the antimicrobial activity of the peptide.

  4. Quantifying drug-protein binding in vivo

    International Nuclear Information System (INIS)

    Buchholz, B; Bench, G; Keating III, G; Palmblad, M; Vogel, J; Grant, P G; Hillegonds, D

    2004-01-01

    Accelerator mass spectrometry (AMS) provides precise quantitation of isotope labeled compounds that are bound to biological macromolecules such as DNA or proteins. The sensitivity is high enough to allow for sub-pharmacological (''micro-'') dosing to determine macromolecular targets without inducing toxicities or altering the system under study, whether it is healthy or diseased. We demonstrated an application of AMS in quantifying the physiologic effects of one dosed chemical compound upon the binding level of another compound in vivo at sub-toxic doses [4].We are using tissues left from this study to develop protocols for quantifying specific binding to isolated and identified proteins. We also developed a new technique to quantify nanogram to milligram amounts of isolated protein at precisions that are comparable to those for quantifying the bound compound by AMS

  5. Self-assembled polymersomes conjugated with lactoferrin as novel drug carrier for brain delivery.

    Science.gov (United States)

    Yu, Yuan; Pang, Zhiqing; Lu, Wei; Yin, Qi; Gao, Huile; Jiang, Xinguo

    2012-01-01

    To develop a novel brain drug delivery system based on self-assembled poly(ethyleneglycol)-poly (D,L-lactic-co-glycolic acid) (PEG-PLGA) polymersomes conjugated with lactoferrin (Lf-POS). The brain delivery properties of Lf-POS were investigated and optimized. Three formulations of Lf-POS, with different densities of lactoferrin on the surface of polymersomes, were prepared and characterized. The brain delivery properties in mice were investigated using 6-coumarin as a fluorescent probe loaded in Lf-POS (6-coumarin-Lf-POS). A neuroprotective peptide, S14G-humanin, was incorporated into Lf-POS (SHN-Lf-POS); a protective effect on the hippocampuses of rats treated by Amyloid-β(25-35) was investigated by immunohistochemical analysis. The results of brain delivery in mice demonstrated that the optimized number of lactoferrin conjugated per polymersome was 101. This obtains the greatest blood-brain barrier (BBB) permeability surface area(PS) product and percentage of injected dose per gram brain (%ID/g brain). Immunohistochemistry revealed the SHN-Lf-POS had a protective effect on neurons of rats by attenuating the expression of Bax and caspase-3 positive cells. Meanwhile, the activity of choline acetyltransferase (ChAT) had been increased compared with negative controls. These results suggest that lactoferrin functionalized self-assembled PEG-PLGA polymersomes could be a promising brain-targeting peptide drug delivery system via intravenous administration.

  6. Identification and characterization of riboflavin-binding proteins in human circulation

    International Nuclear Information System (INIS)

    Innis-Whitehouse, W.S.A.

    1988-01-01

    Riboflavin binding by plasma proteins from healthy human subjects was examined by equilibrium dialysis and binding was observed to vary over a greater than 10-fold range. Upon fractionation of plasma by gel filtration, the major riboflavin-binding components eluted with albumin and gamma-globulins. Albumin was purified and found to bind riboflavin only very weakly, although FMN and photo-chemical degradation products were more tightly bound. Most of the binding occurred in the gamma-globulin fraction and was attributed to immunoglobulins because the binding proteins and immunoglobulins copurified using various methods, were removed by treatment of plasma with protein A-agarose, and were coincident upon immuno-electrophoresis followed by autoradiography to detect [2- 14 C]-riboflavin. Binding differences among plasma samples were reflected in the binding recovered with the immunoglobulin fractions; however, there was not a direct relationship between the amount of immunoglobulin and the amount of [2- 14 C]riboflavin bound. Hence, it appeared that the binding was due to a subfraction of immunoglobulins

  7. NifI inhibits nitrogenase by competing with Fe protein for binding to the MoFe protein

    International Nuclear Information System (INIS)

    Dodsworth, Jeremy A.; Leigh, John A.

    2007-01-01

    Reduction of substrate by nitrogenase requires direct electron transfer from the Fe protein to the MoFe protein. Inhibition of nitrogenase activity in Methanococcus maripaludis occurs when the regulatory protein NifI 1,2 binds the MoFe protein. This inhibition is relieved by 2-oxoglutarate. Here we present evidence that NifI 1,2 binding prevents association of the two nitrogenase components. Increasing amounts of Fe protein competed with NifI 1,2 , decreasing its inhibitory effect. NifI 1,2 prevented the co-purification of MoFe protein with a mutant form of the Fe protein that forms a stable complex with the MoFe protein, and NifI 1,2 was unable to bind to an AlF 4 - -stabilized Fe protein:MoFe protein complex. NifI 1,2 inhibited ATP- and MoFe protein-dependent oxidation of the Fe protein, and 2OG relieved this inhibition. These results support a model where NifI 1,2 competes with the Fe protein for binding to MoFe protein and prevents electron transfer

  8. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins.

    Science.gov (United States)

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements.

  9. Discrete persistent-chain model for protein binding on DNA.

    Science.gov (United States)

    Lam, Pui-Man; Zhen, Yi

    2011-04-01

    We describe and solve a discrete persistent-chain model of protein binding on DNA, involving an extra σ(i) at a site i of the DNA. This variable takes the value 1 or 0, depending on whether or not the site is occupied by a protein. In addition, if the site is occupied by a protein, there is an extra energy cost ɛ. For a small force, we obtain analytic expressions for the force-extension curve and the fraction of bound protein on the DNA. For higher forces, the model can be solved numerically to obtain force-extension curves and the average fraction of bound proteins as a function of applied force. Our model can be used to analyze experimental force-extension curves of protein binding on DNA, and hence deduce the number of bound proteins in the case of nonspecific binding. ©2011 American Physical Society

  10. [Determination of plasma protein binding rate of arctiin and arctigenin with ultrafiltration].

    Science.gov (United States)

    Han, Xue-Ying; Wang, Wei; Tan, Ri-Qiu; Dou, De-Qiang

    2013-02-01

    To determine the plasma protein binding rate of arctiin and arctigenin. The ultrafiltration combined with HPLC was employed to determine the plasma protein binding rate of arctiin and arctigenin as well as rat plasma and healthy human plasma proteins. The plasma protein binding rate of arctiin with rat plasma at the concentrations of 64. 29, 32.14, 16.07 mg x L(-1) were (71.2 +/- 2.0)%, (73.4 +/- 0.61)%, (78.2 +/- 1.9)%, respectively; while the plasma protein binding rate of arctiin with healthy human plasma at the above concentrations were (64.8 +/- 3.1)%, (64.5 +/- 2.5)%, (77.5 +/- 1.7)%, respectively. The plasma protein binding rate of arctigenin with rat plasma at the concentrations of 77.42, 38.71, 19.36 mg x L(-1) were (96.7 +/- 0.41)%, (96.8 +/- 1.6)%, (97.3 +/- 0.46)%, respectively; while the plasma protein binding rate of arctigenin with normal human plasma at the above concentrations were (94.7 +/- 3.1)%, (96.8 +/- 1.6)%, (97.9 +/- 1.3)%, respectively. The binding rate of arctiin with rat plasma protein was moderate, which is slightly higher than the binding rate of arctiin with healthy human plasma protein. The plasma protein binding rates of arctigenin with both rat plasma and healthy human plasma are very high.

  11. A phylogenomic profile of hemerythrins, the nonheme diiron binding respiratory proteins

    Directory of Open Access Journals (Sweden)

    Mizuguchi Kenji

    2008-09-01

    Full Text Available Abstract Background Hemerythrins, are the non-heme, diiron binding respiratory proteins of brachiopods, priapulids and sipunculans; they are also found in annelids and bacteria, where their functions have not been fully elucidated. Results A search for putative Hrs in the genomes of 43 archaea, 444 bacteria and 135 eukaryotes, revealed their presence in 3 archaea, 118 bacteria, several fungi, one apicomplexan, a heterolobosan, a cnidarian and several annelids. About a fourth of the Hr sequences were identified as N- or C-terminal domains of chimeric, chemotactic gene regulators. The function of the remaining single domain bacterial Hrs remains to be determined. In addition to oxygen transport, the possible functions in annelids have been proposed to include cadmium-binding, antibacterial action and immunoprotection. A Bayesian phylogenetic tree revealed a split into two clades, one encompassing archaea, bacteria and fungi, and the other comprising the remaining eukaryotes. The annelid and sipunculan Hrs share the same intron-exon structure, different from that of the cnidarian Hr. Conclusion The phylogenomic profile of Hrs demonstrated a limited occurrence in bacteria and archaea and a marked absence in the vast majority of multicellular organisms. Among the metazoa, Hrs have survived in a cnidarian and in a few protostome groups; hence, it appears that in metazoans the Hr gene was lost in deuterostome ancestor(s after the radiata/bilateria split. Signal peptide sequences in several Hirudinea Hrs suggest for the first time, the possibility of extracellular localization. Since the α-helical bundle is likely to have been among the earliest protein folds, Hrs represent an ancient family of iron-binding proteins, whose primary function in bacteria may have been that of an oxygen sensor, enabling aerophilic or aerophobic responses. Although Hrs evolved to function as O2 transporters in brachiopods, priapulids and sipunculans, their function in

  12. Tertiary structural changes and iron release from human serum transferrin.

    Science.gov (United States)

    Mecklenburg, S L; Donohoe, R J; Olah, G A

    1997-08-01

    Iron release from human serum transferrin was investigated by comparison of the extent of bound iron, measured by charge transfer absorption band intensity (465 nm), with changes observed by small-angle solution X-ray scattering (SAXS) for a series of equilibrated samples between pH 5.69 and 7.77. The phosphate buffers used in this study promote iron release at relatively high pH values, with an empirical pK of 6.9 for the convolved release from the two sites. The spectral data reveal that the N-lobe release is nearly complete by pH 7.0, while the C-lobe remains primarily metal-laden. Conversely, the radius of gyration, Rg, determined from the SAXS data remains constant between pH 7.77 and 7.05, and the evolution of Rg between its value observed for the diferric protein at pH 7.77 (31.2+/-0.2 A) and that of the apo protein at pH 5.69 (33.9+/-0.4 A) exhibits an empirical pK of 6.6. While Rg is effectively constant in the pH range associated with iron release from the N-lobe, the radius of gyration of cross-section, Rc, increases from 16.9+/-0.2 A to 17.6+/-0.2 A. Model simulations suggest that two different rotations of the NII domain relative to the NI domain about a hinge deep in the iron-binding cleft of the N-lobe, one parallel with and one perpendicular to the plane of the iron-binding site, can be significantly advanced relative to their holo protein positions while yielding constant Rg and increased Rc values consistent with the scattering data. Rotation of the CII domain parallel with the C-lobe iron-binding site plane can partially account for the increased Rg values measured at low pH; however, no reasonable combined repositioning of the NII and CII domains yields the experimentally observed increase in Rg.

  13. Predicting binding affinities of protein ligands from three-dimensional models: application to peptide binding to class I major histocompatibility proteins

    DEFF Research Database (Denmark)

    Rognan, D; Lauemoller, S L; Holm, A

    1999-01-01

    A simple and fast free energy scoring function (Fresno) has been developed to predict the binding free energy of peptides to class I major histocompatibility (MHC) proteins. It differs from existing scoring functions mainly by the explicit treatment of ligand desolvation and of unfavorable protein...... coordinates of the MHC-bound peptide have first been determined with an accuracy of about 1-1.5 A. Furthermore, it may be easily recalibrated for any protein-ligand complex.......) and of a series of 16 peptides to H-2K(k). Predictions were more accurate for HLA-A2-binding peptides as the training set had been built from experimentally determined structures. The average error in predicting the binding free energy of the test peptides was 3.1 kJ/mol. For the homology model-derived equation...

  14. The RNA-binding protein repertoire of Arabidopsis thaliana

    KAUST Repository

    Marondedze, Claudius

    2016-07-11

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.

  15. Relationship between salivary immunoglobulin a, lactoferrin and lysozyme flow rates and lifestyle factors in Japanese children: a cross-sectional study.

    Science.gov (United States)

    Ide, Momo; Saruta, Juri; To, Masahiro; Yamamoto, Yuko; Sugimoto, Masahiro; Fuchida, Shinya; Yokoyama, Mina; Kimoto, Shigenari; Tsukinoki, Keiichi

    2016-10-01

    The antimicrobial substances in saliva contribute to the maintenance of both oral health and overall health of the body. Therefore, the associations among immunoglobulin A (IgA), lactoferrin and lysozyme flow rates in the saliva of children, and their relationships with the physical attributes and lifestyle factors of children, were examined. Saliva was collected from 90 children who visited the Kanagawa Dental University Hospital Pediatric Dentistry, and questionnaires were completed by guardians. IgA, lactoferrin and lysozyme concentrations were measured in the saliva samples using enzyme-linked immunosorbent assays (ELISAs). The IgA flow rate in saliva increased as age, height and weight increased. A correlation was found between lactoferrin and lysozyme flow rates. When the antimicrobial substance flow rates in the saliva were divided into two groups of 22 children each based on the highest and lowest quartiles, children with either a low or high IgA flow rate also had a high or low lactoferrin flow rate, respectively. The same pattern was observed for lactoferrin and lysozyme flow rates. There is a high probability that the IgA flow rate in the saliva of children reflects and corresponds to the developmental status of immune function as the child ages and increases in height and weight. The flow rates of lactoferrin and lysozyme were correlated in children. In addition, regarding lifestyle factors, the duration of sleep and lactoferrin flow rate were also related.

  16. Predicting nucleic acid binding interfaces from structural models of proteins.

    Science.gov (United States)

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2012-02-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Copyright © 2011 Wiley Periodicals, Inc.

  17. Analysis of electric moments of RNA-binding proteins: implications for mechanism and prediction

    Directory of Open Access Journals (Sweden)

    Sarai Akinori

    2011-02-01

    Full Text Available Abstract Background Protein-RNA interactions play important role in many biological processes such as gene regulation, replication, protein synthesis and virus assembly. Although many structures of various types of protein-RNA complexes have been determined, the mechanism of protein-RNA recognition remains elusive. We have earlier shown that the simplest electrostatic properties viz. charge, dipole and quadrupole moments, calculated from backbone atomic coordinates of proteins are biased relative to other proteins, and these quantities can be used to identify DNA-binding proteins. Closely related, RNA-binding proteins are investigated in this study. In particular, discrimination between various types of RNA-binding proteins, evolutionary conservation of these bulk electrostatic features and effect of conformational changes by complex formation are investigated. Basic binding mechanism of a putative RNA-binding protein (HI1333 from Haemophilus influenza is suggested as a potential application of this study. Results We found that similar to DNA-binding proteins (DBPs, RNA-binding proteins (RBPs also show significantly higher values of electric moments. However, higher moments in RBPs are found to strongly depend on their functional class: proteins binding to ribosomal RNA (rRNA constitute the only class with all three of the properties (charge, dipole and quadrupole moments being higher than control proteins. Neural networks were trained using leave-one-out cross-validation to predict RBPs from control data as well as pair-wise classification capacity between proteins binding to various RNA types. RBPs and control proteins reached up to 78% accuracy measured by the area under the ROC curve. Proteins binding to rRNA are found to be best distinguished (AUC = 79%. Changes in dipole and quadrupole moments between unbound and bound structures were small and these properties are found to be robust under complex formation. Conclusions Bulk electric

  18. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Directory of Open Access Journals (Sweden)

    Yu Zhu

    2015-11-01

    Full Text Available Chitin-binding proteins (CBPs are present in many species and they act in a variety of biological processes. We analyzed a Pteromalus puparum venom apparatus proteome and transcriptome and identified a partial gene encoding a possible CBP. Here, we report cloning a full-length cDNA of a sequence encoding a chitin-binding-like protein (PpCBP from P. puparum, a pupal endoparasitoid of Pieris rapae. The cDNA encoded a 96-amino-acid protein, including a secretory signal peptide and a chitin-binding peritrophin-A domain. Phylogenetic analysis of chitin binding domains (CBDs of cuticle proteins and peritrophic matrix proteins in selected insects revealed that the CBD of PpCBP clustered with the CBD of Nasonia vitripennis. The PpCBP is specifically expressed in the venom apparatus of P. puparum, mostly in the venom gland. PpCBP expression was highest at day one after adult eclosion and much lower for the following five days. We produced a recombinant PpCBP and binding assays showed the recombinant protein selectively binds chitin but not cellulose in vitro. We infer that PpCBP serves a structural role in the venom reservoir, or may be injected into the host to help wound healing of the host exoskeleton.

  19. Protective effects of lactoferrin chimera and bovine lactoferrin in a mouse model of enterohaemorrhagic Escherichia coli O157:H7 infection

    NARCIS (Netherlands)

    Flores-Villaseñor, H.; Canizalez-Román, A.; Velazquez-Roman, J.; Nazmi, K.; Bolscher, J.G.M.; Leon-Sicairos, N.

    2012-01-01

    Mice orally infected with enterohaemorrhagic Escherichia coli (EHEC) O157:H7 were used to evaluate the activity of bovine lactoferrin (bLF) and the synthetic peptide LFchimera. Groups of BALB/c mice inoculated intragastrically with EHEC O157:H7 showed chronic intestinal infection with the pathogen

  20. Pro-protein convertases control the maturation and processing of the iron-regulatory protein, RGMc/hemojuvelin

    Directory of Open Access Journals (Sweden)

    Rotwein Peter

    2008-04-01

    Full Text Available Abstract Background Repulsive guidance molecule c (RGMc or hemojuvelin, a glycosylphosphatidylinositol-linked glycoprotein expressed in liver and striated muscle, plays a central role in systemic iron balance. Inactivating mutations in the RGMc gene cause juvenile hemochromatosis (JH, a rapidly progressing iron storage disorder with severe systemic manifestations. RGMc undergoes complex biosynthetic steps leading to membrane-bound and soluble forms of the protein, including both 50 and 40 kDa single-chain species. Results We now show that pro-protein convertases (PC are responsible for conversion of 50 kDa RGMc to a 40 kDa protein with a truncated COOH-terminus. Unlike related molecules RGMa and RGMb, RGMc encodes a conserved PC recognition and cleavage site, and JH-associated RGMc frame-shift mutants undergo COOH-terminal cleavage only if this site is present. A cell-impermeable peptide PC inhibitor blocks the appearance of 40 kDa RGMc in extra-cellular fluid, as does an engineered mutation in the conserved PC recognition sequence, while the PC furin cleaves 50 kDa RGMc in vitro into a 40 kDa molecule with an intact NH2-terminus. Iron loading reduces release of RGMc from the cell membrane, and diminishes accumulation of the 40 kDa species in cell culture medium. Conclusion Our results define a role for PCs in the maturation of RGMc that may have implications for the physiological actions of this critical iron-regulatory protein.

  1. Identification of Arsenic Direct-Binding Proteins in Acute Promyelocytic Leukaemia Cells

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2015-11-01

    Full Text Available The identification of arsenic direct-binding proteins is essential for determining the mechanism by which arsenic trioxide achieves its chemotherapeutic effects. At least two cysteines close together in the amino acid sequence are crucial to the binding of arsenic and essential to the identification of arsenic-binding proteins. In the present study, arsenic binding proteins were pulled down with streptavidin and identified using a liquid chromatograph-mass spectrometer (LC-MS/MS. More than 40 arsenic-binding proteins were separated, and redox-related proteins, glutathione S-transferase P1 (GSTP1, heat shock 70 kDa protein 9 (HSPA9 and pyruvate kinase M2 (PKM2, were further studied using binding assays in vitro. Notably, PKM2 has a high affinity for arsenic. In contrast to PKM2, GSTP1and HSPA9 did not combine with arsenic directly in vitro. These observations suggest that arsenic-mediated acute promyelocytic leukaemia (APL suppressive effects involve PKM2. In summary, we identified several arsenic binding proteins in APL cells and investigated the therapeutic mechanisms of arsenic trioxide for APL. Further investigation into specific signal pathways by which PKM2 mediates APL developments may lead to a better understanding of arsenic effects on APL.

  2. DMPD: LPS-binding proteins and receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 9665271 LPS-binding proteins and receptors. Fenton MJ, Golenbock DT. J Leukoc Biol.... 1998 Jul;64(1):25-32. (.png) (.svg) (.html) (.csml) Show LPS-binding proteins and receptors. PubmedID 9665271 Title LPS-binding prot...eins and receptors. Authors Fenton MJ, Golenbock DT. Publication J Leukoc Biol. 199

  3. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  4. Multi-Copper Oxidases and Human Iron Metabolism

    Science.gov (United States)

    Vashchenko, Ganna; MacGillivray, Ross T. A.

    2013-01-01

    Multi-copper oxidases (MCOs) are a small group of enzymes that oxidize their substrate with the concomitant reduction of dioxygen to two water molecules. Generally, multi-copper oxidases are promiscuous with regards to their reducing substrates and are capable of performing various functions in different species. To date, three multi-copper oxidases have been detected in humans—ceruloplasmin, hephaestin and zyklopen. Each of these enzymes has a high specificity towards iron with the resulting ferroxidase activity being associated with ferroportin, the only known iron exporter protein in humans. Ferroportin exports iron as Fe2+, but transferrin, the major iron transporter protein of blood, can bind only Fe3+ effectively. Iron oxidation in enterocytes is mediated mainly by hephaestin thus allowing dietary iron to enter the bloodstream. Zyklopen is involved in iron efflux from placental trophoblasts during iron transfer from mother to fetus. Release of iron from the liver relies on ferroportin and the ferroxidase activity of ceruloplasmin which is found in blood in a soluble form. Ceruloplasmin, hephaestin and zyklopen show distinctive expression patterns and have unique mechanisms for regulating their expression. These features of human multi-copper ferroxidases can serve as a basis for the precise control of iron efflux in different tissues. In this manuscript, we review the biochemical and biological properties of the three human MCOs and discuss their potential roles in human iron homeostasis. PMID:23807651

  5. Genome-wide identification, sequence characterization, and protein-protein interaction properties of DDB1 (damaged DNA binding protein-1)-binding WD40-repeat family members in Solanum lycopersicum.

    Science.gov (United States)

    Zhu, Yunye; Huang, Shengxiong; Miao, Min; Tang, Xiaofeng; Yue, Junyang; Wang, Wenjie; Liu, Yongsheng

    2015-06-01

    One hundred DDB1 (damaged DNA binding protein-1)-binding WD40-repeat domain (DWD) family genes were identified in the S. lycopersicum genome. The DWD genes encode proteins presumably functioning as the substrate recognition subunits of the cullin4-ring ubiquitin E3 ligase complex. These findings provide candidate genes and a research platform for further gene functionality and molecular breeding study. A subclass of DDB1 (damaged DNA binding protein-1)-binding WD40-repeat domain (DWD) family proteins has been demonstrated to function as the substrate recognition subunits of the cullin4-ring ubiquitin E3 ligase complex. However, little information is available about the cognate subfamily genes in tomato (S. lycopersicum). In this study, based on the recently released tomato genome sequences, 100 tomato genes encoding DWD proteins that potentially interact with DDB1 were identified and characterized, including analyses of the detailed annotations, chromosome locations and compositions of conserved amino acid domains. In addition, a phylogenetic tree, which comprises of three main groups, of the subfamily genes was constructed. The physical interaction between tomato DDB1 and 14 representative DWD proteins was determined by yeast two-hybrid and co-immunoprecipitation assays. The subcellular localization of these 14 representative DWD proteins was determined. Six of them were localized in both nucleus and cytoplasm, seven proteins exclusively in cytoplasm, and one protein either in nucleus and cytoplasm, or exclusively in cytoplasm. Comparative genomic analysis demonstrated that the expansion of these subfamily members in tomato predominantly resulted from two whole-genome triplication events in the evolution history.

  6. Expression of Duodenal Iron Transporter Proteins in Diabetic Patients with and without Iron Deficiency Anemia

    Directory of Open Access Journals (Sweden)

    Efrat Broide

    2018-01-01

    Full Text Available The role of iron transport proteins in the pathogenesis of anemia in patients with diabetes mellitus (T2DM is still unclear. We investigated the expression of duodenal transporter proteins in diabetic patients with and without iron deficiency anemia (IDA. Methods. Overall, 39 patients were included: 16 with T2DM and IDA (group A, 11 with T2DM without IDA (group B, and 12 controls (group C. Duodenal mucosal expression of divalent metal transporter 1 (DMT1, ferroportin 1 (FPN, hephaestin (HEPH, and transferrin receptor 1 (TfR was evaluated by Western blotting. Chronic disease activity markers were measured as well. Results. FPN expression was increased in group A compared to group B and controls: 1.17 (0.72–1.46, 0.76 (0.53–1.04, and 0.71 (0.64–0.86, respectively (p=0.011. TfR levels were over expressed in groups A and B compared to controls: 0.39 (0.26–0.61, 0.36 (0.24–0.43, and 0.18 (0.16–0.24, respectively, (p=0.004. The three groups did not differ significantly with regard to cellular HEPH and DMT1 expression. The normal CRP and serum ferritin levels, accompanied with normal FPN among diabetic patients without IDA, do not support the association of IDA with chronic inflammatory state. Conclusion. In patients with T2DM and IDA, duodenal iron transport protein expression might be dependent on body iron stores rather than by chronic inflammation or diabetes per se.

  7. Serotonin binding in vitro by releasable proteins from human blood platelets

    International Nuclear Information System (INIS)

    Heemstra, V.L.

    1983-11-01

    Among the substances released from human blood platelets are serotonin and various proteins. It was hypothesized that one of these proteins binds serotonin and that serotonin might be important to the protein's function or that the protein might be important to serotonin's function. Two platelet-specific proteins, platelet factor 4 (PF4) and β-thromboglobulin (βTG) were found to bind serotonin in vitro. Endogenous PF4 was isolated by serotonin-affinity chromatography and was identified by radioimmunoassay. Purified [ 125 I] -PF4 and native PF4 bound to and eluted from a serotonin-affinity column similarly. Ultrafiltration of the homologous protein, βTG, with [ 14 C]-serotonin demonstrated binding of about 8 moles serotonin per mole tetrameric βTG with a dissociation constant of about 4 X 10(sup-8) M. Equilibrium dialysis of PF4 with radiolabelled serotonin was attempted, but no binding constant values were obtained because serotonin apparently bound to the dialysis membrane. Since EDTA was one of the two agents that eluted PF4 from the serotonin-affinity gel, calcium binding by PF4 was investigated by equilibrium dialysis. Evidence was obtained for positively cooperative binding of calcium ions by PF4. It is concluded that PF4 and βTG bind serotonin in vitro, that they may also bind in vivo when platelets undergo release, and that the functions of serotonin, PF4 and βTG may be mediated in part by serotonin-protein associations

  8. Differential plasma protein binding to metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Deng, Zhou J; Mortimer, Gysell; Minchin, Rodney F; Schiller, Tara; Musumeci, Anthony; Martin, Darren

    2009-01-01

    Nanoparticles rapidly interact with the proteins present in biological fluids, such as blood. The proteins that are adsorbed onto the surface potentially dictate the biokinetics of the nanomaterials and their fate in vivo. Using nanoparticles with different sizes and surface characteristics, studies have reported the effects of physicochemical properties on the composition of adsorbed plasma proteins. However, to date, few studies have been conducted focusing on the nanoparticles that are commonly exposed to the general public, such as the metal oxides. Using previously established ultracentrifugation approaches, two-dimensional gel electrophoresis and mass spectrometry, the current study investigated the binding of human plasma proteins to commercially available titanium dioxide, silicon dioxide and zinc oxide nanoparticles. We found that, despite these particles having similar surface charges in buffer, they bound different plasma proteins. For TiO 2 , the shape of the nanoparticles was also an important determinant of protein binding. Agglomeration in water was observed for all of the nanoparticles and both TiO 2 and ZnO further agglomerated in biological media. This led to an increase in the amount and number of different proteins bound to these nanoparticles. Proteins with important biological functions were identified, including immunoglobulins, lipoproteins, acute-phase proteins and proteins involved in complement pathways and coagulation. These results provide important insights into which human plasma proteins bind to particular metal oxide nanoparticles. Because protein absorption to nanoparticles may determine their interaction with cells and tissues in vivo, understanding how and why plasma proteins are adsorbed to these particles may be important for understanding their biological responses.

  9. The expression of selenium-binding protein 1 is decreased in uterine leiomyoma

    Directory of Open Access Journals (Sweden)

    Quddus M Ruhul

    2010-12-01

    Full Text Available Abstract Background Selenium has been shown to inhibit cancer development and growth through the mediation of selenium-binding proteins. Decreased expression of selenium-binding protein 1 has been reported in cancers of the prostate, stomach, colon, and lungs. No information, however, is available concerning the roles of selenium-binding protein 1 in uterine leiomyoma. Methods Using Western Blot analysis and immunohistochemistry, we examined the expression of selenium-binding protein 1 in uterine leiomyoma and normal myometrium in 20 patients who had undergone hysterectomy for uterine leiomyoma. Results and Discussion The patient age ranged from 34 to 58 years with a mean of 44.3 years. Proliferative endometrium was seen in 8 patients, secretory endometrium in 7 patients, and atrophic endometrium in 5 patients. Two patients showed solitary leiomyoma, and eighteen patients revealed 2 to 5 tumors. Tumor size ranged from 1 to 15.5 cm with a mean of 4.3 cm. Both Western Blot analysis and immunohistochemistry showed a significant lower level of selenium-binding protein 1 in leiomyoma than in normal myometrium. Larger tumors had a tendency to show a lower level of selenium-binding protein 1 than smaller ones, but the difference did not reach a statistical significance. The expression of selenium-binding protein 1 was the same among patients with proliferative, secretory, and atrophic endometrium in either leiomyoma or normal myometrium. Also, we did not find a difference of selenium-binding protein 1 level between patients younger than 45 years and older patients in either leiomyoma or normal myometrium. Conclusions Decreased expression of selenium-binding protein 1 in uterine leiomyoma may indicate a role of the protein in tumorigenesis. Our findings may provide a basis for future studies concerning the molecular mechanisms of selenium-binding protein 1 in tumorigenesis as well as the possible use of selenium in prevention and treatment of uterine

  10. A conserved NAD+ binding pocket that regulates protein-protein interactions during aging.

    Science.gov (United States)

    Li, Jun; Bonkowski, Michael S; Moniot, Sébastien; Zhang, Dapeng; Hubbard, Basil P; Ling, Alvin J Y; Rajman, Luis A; Qin, Bo; Lou, Zhenkun; Gorbunova, Vera; Aravind, L; Steegborn, Clemens; Sinclair, David A

    2017-03-24

    DNA repair is essential for life, yet its efficiency declines with age for reasons that are unclear. Numerous proteins possess Nudix homology domains (NHDs) that have no known function. We show that NHDs are NAD + (oxidized form of nicotinamide adenine dinucleotide) binding domains that regulate protein-protein interactions. The binding of NAD + to the NHD domain of DBC1 (deleted in breast cancer 1) prevents it from inhibiting PARP1 [poly(adenosine diphosphate-ribose) polymerase], a critical DNA repair protein. As mice age and NAD + concentrations decline, DBC1 is increasingly bound to PARP1, causing DNA damage to accumulate, a process rapidly reversed by restoring the abundance of NAD + Thus, NAD + directly regulates protein-protein interactions, the modulation of which may protect against cancer, radiation, and aging. Copyright © 2017, American Association for the Advancement of Science.

  11. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    OpenAIRE

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-01-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly ...

  12. A novel signal transduction protein: Combination of solute binding and tandem PAS-like sensor domains in one polypeptide chain: Periplasmic Ligand Binding Protein Dret_0059

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Wilton, R. [Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Cuff, M. E. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Structural Biology Center, Argonne National Laboratory, Argonne Illinois 60439; Endres, M. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Babnigg, G. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Edirisinghe, J. N. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne Illinois 60439; Computation Institute, University of Chicago, Chicago Illinois 60637; Henry, C. S. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne Illinois 60439; Computation Institute, University of Chicago, Chicago Illinois 60637; Joachimiak, A. [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Structural Biology Center, Argonne National Laboratory, Argonne Illinois 60439; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago Illinois 60637; Schiffer, M. [Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439; Pokkuluri, P. R. [Biosciences Division, Argonne National Laboratory, Argonne Illinois 60439

    2017-03-06

    We report the structural and biochemical characterization of a novel periplasmic ligand-binding protein, Dret_0059, from Desulfohalobium retbaense DSM 5692, an organism isolated from the Salt Lake Retba in Senegal. The structure of the protein consists of a unique combination of a periplasmic solute binding protein (SBP) domain at the N-terminal and a tandem PAS-like sensor domain at the C-terminal region. SBP domains are found ubiquitously and their best known function is in solute transport across membranes. PAS-like sensor domains are commonly found in signal transduction proteins. These domains are widely observed as parts of many protein architectures and complexes but have not been observed previously within the same polypeptide chain. In the structure of Dret_0059, a ketoleucine moiety is bound to the SBP, whereas a cytosine molecule is bound in the distal PAS-like domain of the tandem PAS-like domain. Differential scanning flourimetry support the binding of ligands observed in the crystal structure. There is significant interaction between the SBP and tandem PAS-like domains, and it is possible that the binding of one ligand could have an effect on the binding of the other. We uncovered three other proteins with this structural architecture in the non-redundant sequence data base, and predict that they too bind the same substrates. The genomic context of this protein did not offer any clues for its function. We did not find any biological process in which the two observed ligands are coupled. The protein Dret_0059 could be involved in either signal transduction or solute transport.

  13. Binding Direction-Based Two-Dimensional Flattened Contact Area Computing Algorithm for Protein-Protein Interactions.

    Science.gov (United States)

    Kang, Beom Sik; Pugalendhi, GaneshKumar; Kim, Ku-Jin

    2017-10-13

    Interactions between protein molecules are essential for the assembly, function, and regulation of proteins. The contact region between two protein molecules in a protein complex is usually complementary in shape for both molecules and the area of the contact region can be used to estimate the binding strength between two molecules. Although the area is a value calculated from the three-dimensional surface, it cannot represent the three-dimensional shape of the surface. Therefore, we propose an original concept of two-dimensional contact area which provides further information such as the ruggedness of the contact region. We present a novel algorithm for calculating the binding direction between two molecules in a protein complex, and then suggest a method to compute the two-dimensional flattened area of the contact region between two molecules based on the binding direction.

  14. CD/MCD/VTVH-MCD Studies of Escherichia coli Bacterioferritin Support a Binuclear Iron Cofactor Site.

    Science.gov (United States)

    Kwak, Yeonju; Schwartz, Jennifer K; Huang, Victor W; Boice, Emily; Kurtz, Donald M; Solomon, Edward I

    2015-12-01

    Ferritins and bacterioferritins (Bfrs) utilize a binuclear non-heme iron binding site to catalyze oxidation of Fe(II), leading to formation of an iron mineral core within a protein shell. Unlike ferritins, in which the diiron site binds Fe(II) as a substrate, which then autoxidizes and migrates to the mineral core, the diiron site in Bfr has a 2-His/4-carboxylate ligand set that is commonly found in diiron cofactor enzymes. Bfrs could, therefore, utilize the diiron site as a cofactor rather than for substrate iron binding. In this study, we applied circular dichroism (CD), magnetic CD (MCD), and variable-temperature, variable-field MCD (VTVH-MCD) spectroscopies to define the geometric and electronic structures of the biferrous active site in Escherichia coli Bfr. For these studies, we used an engineered M52L variant, which is known to eliminate binding of a heme cofactor but to have very minor effects on either iron oxidation or mineral core formation. We also examined an H46A/D50A/M52L Bfr variant, which additionally disrupts a previously observed mononuclear non-heme iron binding site inside the protein shell. The spectral analyses define a binuclear and an additional mononuclear ferrous site. The biferrous site shows two different five-coordinate centers. After O2 oxidation and re-reduction, only the mononuclear ferrous signal is eliminated. The retention of the biferrous but not the mononuclear ferrous site upon O2 cycling supports a mechanism in which the binuclear site acts as a cofactor for the O2 reaction, while the mononuclear site binds the substrate Fe(II) that, after its oxidation to Fe(III), migrates to the mineral core.

  15. Coupling ligand recognition to protein folding in an engineered variant of rabbit ileal lipid binding protein.

    Science.gov (United States)

    Kouvatsos, Nikolaos; Meldrum, Jill K; Searle, Mark S; Thomas, Neil R

    2006-11-28

    We have engineered a variant of the beta-clam shell protein ILBP which lacks the alpha-helical motif that caps the central binding cavity; the mutant protein is sufficiently destabilised that it is unfolded under physiological conditions, however, it unexpectedly binds its natural bile acid substrates with high affinity forming a native-like beta-sheet rich structure and demonstrating strong thermodynamic coupling between ligand binding and protein folding.

  16. The interrelationship between ligand binding and self-association of the folate binding protein

    DEFF Research Database (Denmark)

    Holm, Jan; Schou, Christian; Babol, Linnea N.

    2011-01-01

    The folate binding protein (FBP) regulates homeostasis and intracellular trafficking of folic acid, a vitamin of decisive importance in cell division and growth. We analyzed whether interrelationship between ligand binding and self-association of FBP plays a significant role in the physiology of ...

  17. Suicide inactivation of cytochrome P-450 by methoxsalen. Evidence for the covalent binding of a reactive intermediate to the protein moiety

    International Nuclear Information System (INIS)

    Labbe, G.; Descatoire, V.; Beaune, P.; Letteron, P.; Larrey, D.; Pessayre, D.

    1989-01-01

    Incubation of rat liver microsomes with [3H]methoxsalen and NADPH resulted in the covalent binding of a methoxsalen intermediate to proteins comigrating with cytochromes P-450 UT-A, PB-B/D, ISF-G and PCN-E. Binding was increased by pretreatments with phenobarbital, beta-naphthoflavone (beta NF) and dexamethasone. Such pretreatments also increased the loss of CO-binding capacity either after administration of methoxsalen, or after incubation of hepatic microsomes with methoxsalen and NADPH. Immunoprecipitation of the methoxsalen metabolite-protein adducts in phenobarbital-induced microsomes was moderate with anti-UT-A antibodies, but marked with anti-PB-B/D and anti-PCN-E antibodies. Immunoprecipitation was observed also with anti-ISF-G (anti-beta NF-B) antibodies in beta NF-induced microsomes. Methoxsalen (0.25 mM) inhibited markedly the benzphetamine demethylase activity of phenobarbital-induced microsomes and the erythromycin demethylase activity of dexamethasone-induced microsomes. Whereas methoxsalen itself did not produce any binding spectrum, in contrast either in vivo administration of methoxsalen or incubation in vitro with methoxsalen and NADPH resulted in a low-to-high spin conversion of cytochrome P-450 as suggested by the appearance of a spectrum analogous to a type I binding spectrum. This low-to-high spin conversion was apparently due to a methoxsalen intermediate (probably, covalently bound to the protein and preventing partial sixth ligation of the iron). We conclude that suicide inactivation of cytochrome P-450 by methoxsalen is related to the covalent binding of a methoxsalen intermediate to the protein moiety of several cytochrome P-450 isoenzymes (including UT-A, PB-B/D, PCN-E as well as ISF-G and/or beta NF-B)

  18. Cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  19. Functional assignment to JEV proteins using SVM.

    Science.gov (United States)

    Sahoo, Ganesh Chandra; Dikhit, Manas Ranjan; Das, Pradeep

    2008-01-01

    Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP).

  20. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins

    OpenAIRE

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their func...

  1. Does protein binding modulate the effect of angiotensin II receptor antagonists?

    Directory of Open Access Journals (Sweden)

    Marc P Maillard

    2001-03-01

    Full Text Available IntroductionAngiotensin II AT 1-receptor antagonists are highly bound to plasma proteins (≥ 99%. With some antagonists, such as DuP-532, the protein binding was such that no efficacy of the drug could be demonstrated clinically. Whether protein binding interferes with the efficacy of other antagonists is not known. We have therefore investigated in vitro how plasma proteins may affect the antagonistic effect of different AT1-receptor antagonists.MethodsA radio-receptor binding assay was used to analyse the interaction between proteins and the ability of various angiotensin II (Ang II antagonists to block AT1-receptors. In addition, the Biacore technology, a new technique which enables the real-time monitoring of binding events between two molecules, was used to evaluate the dissociation rate constants of five AT1-receptor antagonists from human serum albumin.ResultsThe in vitro AT 1-antagonistic effects of different Ang II receptor antagonists were differentially affected by the presence of human plasma, with rightward shifts of the IC50 ranging from one to several orders of magnitude. The importance of the shift correlates with the dissociation rate constants of these drugs from albumin. Our experiments also show that the way that AT1-receptor antagonists bind to proteins differs from one compound to another. These results suggest that the interaction with plasma proteins appears to modulate the efficacy of some Ang II antagonists.ConclusionAlthough the high binding level of Ang II receptor antagonist to plasma proteins appears to be a feature common to this class of compounds, the kinetics and characteristics of this binding is of great importance. With some antagonists, protein binding interferes markedly with their efficacy to block AT1-receptors.

  2. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family.

    Science.gov (United States)

    Antonets, Denis V; Nepomnyashchikh, Tatyana S; Shchelkunov, Sergei N

    2010-10-27

    Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein.

  3. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity.

    Science.gov (United States)

    Bollimpelli, V Satish; Kumar, Prashant; Kumari, Sonali; Kondapi, Anand K

    2016-05-01

    Curcumin is known to have neuroprotective role and possess antioxidant, anti-inflammatory activities. Rotenone, a flavonoid induced neurotoxicity in dopaminergic cells is being widely studied in Parkinson's Disease (PD) research. In the present study, curcumin loaded lactoferrin nano particles prepared by sol-oil chemistry were used to protect dopaminergic cell line SK-N-SH against rotenone induced neurotoxicity. These curcumin loaded nano particles were of 43-60 nm diameter size and around 100 nm hydrodynamic size as assessed by transmission electron microscopy, atomic force microscopy and dynamic light scattering analysis respectively. The encapsulation efficiency was 61.3% ± 2.4%. Cellular uptake of curcumin through these nano particles was confirmed by confocal imaging and spectrofluorimetric analysis. The curcumin loaded lactoferrin nanoparticles showed greater intracellular drug uptake, sustained retention and greater neuroprotection than soluble counterpart. Neuroprotective activity was characterized through viability assays and by estimating ROS levels. Furthermore rotenone induced PD like features were characterized by decrease in tyrosine hydroxylase expression and increase in α-synuclein expression. Taken together curcumin loaded lactoferrin nanoparticles could be a promising drug delivery strategy against neurotoxicity in dopaminergic neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Evaluating the binding efficiency of pheromone binding protein with its natural ligand using molecular docking and fluorescence analysis

    Science.gov (United States)

    Ilayaraja, Renganathan; Rajkumar, Ramalingam; Rajesh, Durairaj; Muralidharan, Arumugam Ramachandran; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2014-06-01

    Chemosignals play a crucial role in social and sexual communication among inter- and intra-species. Chemical cues are bound with protein that is present in the pheromones irrespective of sex are commonly called as pheromone binding protein (PBP). In rats, the pheromone compounds are bound with low molecular lipocalin protein α2u-globulin (α2u). We reported farnesol is a natural endogenous ligand (compound) present in rat preputial gland as a bound volatile compound. In the present study, an attempt has been made through computational method to evaluating the binding efficiency of α2u with the natural ligand (farnesol) and standard fluorescent molecule (2-naphthol). The docking analysis revealed that the binding energy of farnesol and 2-naphthol was almost equal and likely to share some binding pocket of protein. Further, to extrapolate the results generated through computational approach, the α2u protein was purified and subjected to fluorescence titration and binding assay. The results showed that the farnesol is replaced by 2-naphthol with high hydrophobicity of TYR120 in binding sites of α2u providing an acceptable dissociation constant indicating the binding efficiency of α2u. The obtained results are in corroboration with the data made through computational approach.

  5. Prevention of iron- and copper-mediated DNA damage by catecholamine and amino acid neurotransmitters, L-DOPA, and curcumin: metal binding as a general antioxidant mechanism.

    Science.gov (United States)

    García, Carla R; Angelé-Martínez, Carlos; Wilkes, Jenna A; Wang, Hsiao C; Battin, Erin E; Brumaghim, Julia L

    2012-06-07

    Concentrations of labile iron and copper are elevated in patients with neurological disorders, causing interest in metal-neurotransmitter interactions. Catecholamine (dopamine, epinephrine, and norepinephrine) and amino acid (glycine, glutamate, and 4-aminobutyrate) neurotransmitters are antioxidants also known to bind metal ions. To investigate the role of metal binding as an antioxidant mechanism for these neurotransmitters, L-dihydroxyphenylalanine (L-DOPA), and curcumin, their abilities to prevent iron- and copper-mediated DNA damage were quantified, cyclic voltammetry was used to determine the relationship between their redox potentials and DNA damage prevention, and UV-vis studies were conducted to determine iron and copper binding as well as iron oxidation rates. In contrast to amino acid neurotransmitters, catecholamine neurotransmitters, L-DOPA, and curcumin prevent significant iron-mediated DNA damage (IC(50) values of 3.2 to 18 μM) and are electrochemically active. However, glycine and glutamate are more effective at preventing copper-mediated DNA damage (IC(50) values of 35 and 12.9 μM, respectively) than L-DOPA, the only catecholamine to prevent this damage (IC(50) = 73 μM). This metal-mediated DNA damage prevention is directly related to the metal-binding behaviour of these compounds. When bound to iron or copper, the catecholamines, amino acids, and curcumin significantly shift iron oxidation potentials and stabilize Fe(3+) over Fe(2+) and Cu(2+) over Cu(+), a factor that may prevent metal redox cycling in vivo. These results highlight the disparate antioxidant activities of neurotransmitters, drugs, and supplements and highlight the importance of considering metal binding when identifying antioxidants to treat and prevent neurodegenerative disorders.

  6. Changes in serum iron, total iron binding capacity and transferrin ...

    African Journals Online (AJOL)

    Background: Iron is a vital constituent of cells but in excess may be harmful and is associated with a raised risk for some malignant diseases including breast cancer. We aimed to study changes in iron profile in Sudanese females newly diagnosed with breast cancer. Methods: A case- control study in which serum iron, Total ...

  7. Chromate Binding and Removal by the Molybdate-Binding Protein ModA.

    Science.gov (United States)

    Karpus, Jason; Bosscher, Michael; Ajiboye, Ifedayo; Zhang, Liang; He, Chuan

    2017-04-04

    Effective and cheap methods and techniques for the safe removal of hexavalent chromate from the environment are in increasingly high demand. High concentrations of hexavalent chromate have been shown to have numerous harmful effects on human biology. We show that the E. coli molybdate-binding protein ModA is a genetically encoded tool capable of removing chromate from aqueous solutions. Although previously reported to not bind chromate, we show that ModA binds chromate tightly and is capable of removing chromate to levels well below current US federal standards. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. HFE gene: Structure, function, mutations, and associated iron abnormalities.

    Science.gov (United States)

    Barton, James C; Edwards, Corwin Q; Acton, Ronald T

    2015-12-15

    The hemochromatosis gene HFE was discovered in 1996, more than a century after clinical and pathologic manifestations of hemochromatosis were reported. Linked to the major histocompatibility complex (MHC) on chromosome 6p, HFE encodes the MHC class I-like protein HFE that binds beta-2 microglobulin. HFE influences iron absorption by modulating the expression of hepcidin, the main controller of iron metabolism. Common HFE mutations account for ~90% of hemochromatosis phenotypes in whites of western European descent. We review HFE mapping and cloning, structure, promoters and controllers, and coding region mutations, HFE protein structure, cell and tissue expression and function, mouse Hfe knockouts and knockins, and HFE mutations in other mammals with iron overload. We describe the pertinence of HFE and HFE to mechanisms of iron homeostasis, the origin and fixation of HFE polymorphisms in European and other populations, and the genetic and biochemical basis of HFE hemochromatosis and iron overload. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Actin, actin-binding proteins, and actin-related proteins in the nucleus.

    Science.gov (United States)

    Kristó, Ildikó; Bajusz, Izabella; Bajusz, Csaba; Borkúti, Péter; Vilmos, Péter

    2016-04-01

    Extensive research in the past decade has significantly broadened our view about the role actin plays in the life of the cell and added novel aspects to actin research. One of these new aspects is the discovery of the existence of nuclear actin which became evident only recently. Nuclear activities including transcriptional activation in the case of all three RNA polymerases, editing and nuclear export of mRNAs, and chromatin remodeling all depend on actin. It also became clear that there is a fine-tuned equilibrium between cytoplasmic and nuclear actin pools and that this balance is ensured by an export-import system dedicated to actin. After over half a century of research on conventional actin and its organizing partners in the cytoplasm, it was also an unexpected finding that the nucleus contains more than 30 actin-binding proteins and new classes of actin-related proteins which are not able to form filaments but had evolved nuclear-specific functions. The actin-binding and actin-related proteins in the nucleus have been linked to RNA transcription and processing, nuclear transport, and chromatin remodeling. In this paper, we attempt to provide an overview of the wide range of information that is now available about actin, actin-binding, and actin-related proteins in the nucleus.

  10. Characterization of fatty acid binding by the P2 myelin protein

    International Nuclear Information System (INIS)

    Gudaitis, P.G.; Weise, M.J.

    1987-01-01

    In recent years, significant sequence homology has been found between the P2 protein of peripheral myelin and intracellular retinoid- and fatty acid-binding proteins. They have found that salt extracts of bovine intradural nerve roots contain the P2 basic protein in association with free fatty acid. Preliminary results from quantitative analyses showed a ratio of 0.4-1.1 fatty acid (mainly oleate and palmitate) per P2 molecule. P2/ligand interactions were partially characterized using ( 3 H)-oleate in gel permeation assays and binding studies using lipidex to separated bound and free fatty acid. Methyloleate was found to displace ( 3 H)-oleate from P2, indicating that ligand binding interactions are predominantly hydrophobic in nature. On the other hand, myristic acid and retinol did not inhibit the binding of oleate to the protein, results consistent with a decided affinity for long chain fatty acids but not for the retinoids. The binding between P2 and oleic acid showed an apparent Kd in the micromolar range, a value comparable to those found for other fatty acid-binding proteins. From these results they conclude that P2 shares not only structural homology with certain fatty acid binding proteins but also an ability to bind long chain fatty acids. Although the significance of these similarities is not yet clear, they may, by analogy, expect P2 to have a role in PNS lipid metabolism

  11. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng

    2015-12-03

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  12. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng; Hu, ShanShan; Zhang, Jun; Gao, Xin; Li, Jinyan; Xia, Junfeng; Wang, Bing

    2015-01-01

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  13. 2-Oxoglutarate levels control adenosine nucleotide binding by Herbaspirillum seropedicae PII proteins.

    Science.gov (United States)

    Oliveira, Marco A S; Gerhardt, Edileusa C M; Huergo, Luciano F; Souza, Emanuel M; Pedrosa, Fábio O; Chubatsu, Leda S

    2015-12-01

    Nitrogen metabolism in Proteobacteria is controlled by the Ntr system, in which PII proteins play a pivotal role, controlling the activity of target proteins in response to the metabolic state of the cell. Characterization of the binding of molecular effectors to these proteins can provide information about their regulation. Here, the binding of ATP, ADP and 2-oxoglutarate (2-OG) to the Herbaspirillum seropedicae PII proteins, GlnB and GlnK, was characterized using isothermal titration calorimetry. Results show that these proteins can bind three molecules of ATP, ADP and 2-OG with homotropic negative cooperativity, and 2-OG binding stabilizes the binding of ATP. Results also show that the affinity of uridylylated forms of GlnB and GlnK for nucleotides is significantly lower than that of the nonuridylylated proteins. Furthermore, fluctuations in the intracellular concentration of 2-OG in response to nitrogen availability are shown. Results suggest that under nitrogen-limiting conditions, PII proteins tend to bind ATP and 2-OG. By contrast, after an ammonium shock, a decrease in the 2-OG concentration is observed causing a decrease in the affinity of PII proteins for ATP. This phenomenon may facilitate the exchange of ATP for ADP on the ligand-binding pocket of PII proteins, thus it is likely that under low ammonium, low 2-OG levels would favor the ADP-bound state. © 2015 FEBS.

  14. Identification of arsenite-and arsenic diglutathione-binding proteins in human hepatocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Mizumura, Ayano; Watanabe, Takayuki [Graduate School of Pharmaceutical Sciences, Chiba University, Yayoi, Inage, Chiba 263-8522 (Japan); Kobayashi, Yayoi [Graduate School of Pharmaceutical Sciences, Chiba University, Yayoi, Inage, Chiba 263-8522 (Japan); Environmental Health Sciences Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Hirano, Seishiro [Graduate School of Pharmaceutical Sciences, Chiba University, Yayoi, Inage, Chiba 263-8522 (Japan); Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)

    2010-01-15

    It is generally accepted that trivalent arsenicals are more toxic than the corresponding pentavalent arsenicals, since trivalent arsenicals bind the thiol groups of biomolecules, leading to a deterioration in cellular functions. In the present study, we prepared three different arsenic-bound sepharoses and investigated the binding of hepatic cytosolic proteins to pentavalent, trivalent, and glutathione-conjugated trivalent arsenicals. SDS-PAGE showed no proteins bound to pentavalent arsenic specifically. In contrast, we found a number of proteins that have specific and high affinity for trivalent arsenic. Two of those proteins were identified: protein disulfide isomerase-related protein 5 (PDSIRP5) and peroxiredoxin 1/enhancer protein (PRX1/EP). These proteins have vicinal cysteines, as previously reported. In contrast, one of the prominent proteins that did not bind to trivalent arsenic was identified as calreticulin precursor. Although there are 3 cysteines in calreticulin precursor, two of the cysteines are spaced more than 25 amino acids apart. Five synthetic peptides containing 2 vicinal cysteines were prepared to study whether they would inhibit the binding of PDSIRP5, PRX1/EP, and other arsenic-binding proteins to trivalent arsenicals. Only two of the five peptides effectively inhibited binding, suggesting that other amino acids besides the 2 vicinal cysteines may modulate the affinity of cysteine-rich proteins for trivalent arsenicals. We further investigated hepatic cytosolic proteins that bound specifically to glutathione-conjugated trivalent arsenic, which is the most abundant form of arsenical in bile fluid. Four proteins that bound specifically to glutathione-conjugated trivalent arsenic were identified; interestingly, these proteins were different from the trivalent arsenic-binding proteins. These results suggest that although glutathione-conjugation is an important process in the metabolism, excretion, and detoxification of arsenicals, glutathione

  15. Plant ice-binding (antifreeze) proteins

    Science.gov (United States)

    Proteins that determine the temperature at which ice crystals will form in water-based solutions in cells and tissues, that bind to growing ice crystals, thus affecting their size, and