WorldWideScience

Sample records for iron river quadrangle

  1. National Uranium Resource Evaluation: Iron River Quadrangle, Michigan and Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Frishman, D

    1982-09-01

    No area within the Iron River 1/sup 0/ x 2/sup 0/ Quadrangle, Michigan and Wisconsin, appears to be favorable for the existence of a minimum of 100 tons of U/sub 3/O/sub 8/ at a grade of 0.01 percent or better.

  2. Arsenic and trace metals in river water and sediments from the southeast portion of the Iron Quadrangle, Brazil.

    Science.gov (United States)

    Varejão, Eduardo V V; Bellato, Carlos R; Fontes, Maurício P F; Mello, Jaime W V

    2011-01-01

    The Iron Quadrangle has been one of the most important gold production regions in Brazil since the end of the seventeenth century. There, arsenic occurs in close association with sulfide-rich auriferous rocks. The most abundant sulfide minerals are pyrite and arsenopyrite, yet trace metal sulfides occur in subordinate phases as well. Historical mining activities have been responsible for the release of As and trace metals to both aquatic and terrestrial environments close to mining sites in the region. Therefore, this study was aimed to evaluate the distribution and mobility of As, Cd, Co, Cr, Cu, Ni, Pb, and Zn in streams in the southeast portion of the Iron Quadrangle between the municipalities of Ouro Preto and Mariana, the oldest Brazilian Au mining province. Total concentrations of some trace metals and arsenic in water were determined. The four-stage sequential extraction procedure proposed by the commission of the European Communities Bureau of Reference (BCR) was used to investigate the distribution of these elements in stream sediments. Arsenic concentration in water was > 10 μg L⁻¹ (maximum limit permitted by Brazilian environmental regulations for water destined for human consumption) at all sampling sites, varying between 36.7 and 68.3 μg L⁻¹. Sequential extraction in sediments showed high concentrations of As and trace metals associated with easily mobilized fractions.

  3. Geologic evolution of iron quadrangle on archean and early proterozoic

    International Nuclear Information System (INIS)

    Machado, N.; Noce, C.M.; Ladeira, E.A.

    1989-01-01

    The preliminary results of U-Pb geochronology of iron quadrangle. Brazil are presented, using the Davis linear regression program for determining of intersection concordance-discord and for estimation the associate mistakes. (C.G.C.)

  4. Digital bedrock geologic map of the Saxtons River quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-52A Ratcliffe, NM�and Armstrong, TR, 1996, Digital bedrock geologic map of the Saxtons River quadrangle, Vermont, USGS Open-File Report...

  5. RELATIONSHIP BETWEEN METAMORPHISM DEGREE AND LIBERATION SIZE OF COMPACT ITABIRITES FROM THE IRON QUADRANGLE

    Directory of Open Access Journals (Sweden)

    Rodrigo Fina Ferreira

    2015-06-01

    Full Text Available Iron ore exploited in Brazil can be classified into several lithological types which have distinct features. The progress of mining over time leads to scarcity of high grade iron ores, leading to the exploitation of poor, contaminated and compact ores. There is a growing trend of application of process flowsheets involving grinding to promote mineral liberation, essential condition for concentration processes. Several authors have correlated metamorphism processes of banded iron formations to mineralogical features observed on itabirites from the Iron Quadrangle, mainly the crystals size. This paper presents the implications of such variation in defining the mesh of grinding. Mineralogical characterization and grinding, desliming and flotation tests have been carried out with samples from two regions of the Iron Quadrangle subjected to different degrees of metamorphism. It was found a trend of reaching satisfactory liberation degree in coarser size for the itabirite of higher metamorphic degree, which has larger crystals. The flotation tests have confirmed the mineralogical findings.

  6. Hydrogeochemical and stream sediment reconnaissance basic data for Meade River quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 515 water samples from the Meade River Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  7. Hydrogeochemical and stream sediment reconnaissance basic data for Charley River Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 1322 water samples from the Charley River Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  8. Aerial gamma ray and magnetic survey: Powder River II Project, Gillette Quadrangle, Wyoming. Final report

    International Nuclear Information System (INIS)

    1979-04-01

    The Gillette quadrangle in northeastern Wyoming and western South Dakota contains approximately equal portions of the Powder River Basin and the Black Hills Uplift. In these two structures, a relatively thick sequence of Paleozoic and Mesozoic strata represent nearly continuous deposition over the Precambrian basement complex. The Powder River Basin also contains a thick sequence of early Tertiary rocks which cover about 50% of the surface. A stratigraphic sequence from Upper Cretaceous to Precambrian is exposed in the Black Hills Uplift to the east. Magnetic data apparently illustrate the relative depth to the Precambrian crystalline rocks, but only weakly define the boundary between the Powder River Basin and the Black Hills Uplift. The positions of some small isolated Tertiary intrusive bodies in the Black Hills Uplift are relatively well expressed. The Gillette quadrangle has been productive in terms of uranium mining, but its current status is uncertain. The producing uranium deposits occur within the Lower Cretaceous Inyan Kara Group and the Jurassic Morrison Formation in the Black Hills Uplift. Other prospects occur within the Tertiary Wasatch and Fort Union Formations in the Pumpkin Buttes - Turnercrest district, where it extends into the quadrangle from the Newcastle quadrangle to the south. These four formations, all predominantly nonmarine, contain all known uranium deposits in the Gillette quadrangle. A total of 108 groups of sample responses in the uranium window constitute anomalies as defined in Volume I. The anomalies are most frequently found in the Inyan Kara-Morrison, Wasatch and Fort Union Formations. Many anomalies occur over known mines or prospects. Others may result from unmapped uranium mines or areas where material other than uranium is mined. The remainder may relate to natural geologic features

  9. Aerial gamma ray and magnetic survey: Iron Mountain Quadrangle, Wisconsin/Michigan. Final report

    International Nuclear Information System (INIS)

    1978-04-01

    Data obtained from a high sensitivity airborne radiometric and magnetic survey of Iron Mountain Quadrangle in Wisconsin/Michigan are presented. All data are presented as corrected profiles of all radiometric variables, magnetic data, radar and barometric altimeter data, air temperature and airborne Bismuch contributions. Radiometric data presented are corrected for Compton Scatter, altitude dependence and atmospheric Bismuth. These data are also presented on microfiche, and digital magnetic tapes. In addition, anomaly maps and interpretation maps are presented relating known geology or soil distribution to the corrected radiometric/magnetic data

  10. Arsenic content in pteridophytes from the Iron Quadrangle, Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Uemura, George; Menezes, Maria Angela de Barros C.; Silva, Lucilene Guerra e; Isaias, Rosy Mary dos Santos; Salino, Alexandre

    2005-01-01

    Natural arsenic contamination is a cause for concern in many countries of the world and, in Brazil, specially in the Iron Quadrangle area, where mining activities contributed to aggravate natural contamination of this area. The discovery that a fern, Pteris vitata, hyperaccumulates arsenic led to the search of other pteridophytes species with such capacity, due to their possible use for phytoremediation of contaminated areas. In the literature cited, arsenic amounts were measured by atomic absorption, using leaf and roots samples; and only one species (Pityrogramma calomelanos) had the arsenic content of its spores measured. In a preliminary study, ferns samples from the Iron Quadrangle region were collected, identified and had their leaves processed for measurement of their arsenic content through Neutron Activation Analysis - method k 0 ; also, spores of Pteris vitata had their arsenic content measured. The results showed that: spores of P. vitata present arsenic accumulation and another fern species was found to accumulate arsenic (Adiantum raddianum). Other species that were screened confirm that, among the families of ferns already studied, species from the family Pteridaceae seems the most promising for arsenic phytoremediation purposes. Considering that two species that showed arsenic accumulation in their leaves, also presented high arsenic content in their spores, it might fasten the selection if the spores of different fern species from contaminated sites are screened first, making the process of species selection for phytoremediation faster and more efficient. (author)

  11. Arsenic content in pteridophytes from the Iron Quadrangle, Minas Gerais, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, George; Menezes, Maria Angela de Barros C.; Silva, Lucilene Guerra e [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)]. E-mail: george@cdtn.br; menezes@cdtn.br; leneguerra@bol.com.br; Isaias, Rosy Mary dos Santos; Salino, Alexandre [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas. Dept. de Botanica]. E-mail: rosy@icb.ufmg.br; salino@mono.icb.ufmg.br

    2005-07-01

    Natural arsenic contamination is a cause for concern in many countries of the world and, in Brazil, specially in the Iron Quadrangle area, where mining activities contributed to aggravate natural contamination of this area. The discovery that a fern, Pteris vitata, hyperaccumulates arsenic led to the search of other pteridophytes species with such capacity, due to their possible use for phytoremediation of contaminated areas. In the literature cited, arsenic amounts were measured by atomic absorption, using leaf and roots samples; and only one species (Pityrogramma calomelanos) had the arsenic content of its spores measured. In a preliminary study, ferns samples from the Iron Quadrangle region were collected, identified and had their leaves processed for measurement of their arsenic content through Neutron Activation Analysis - method k{sub 0}; also, spores of Pteris vitata had their arsenic content measured. The results showed that: spores of P. vitata present arsenic accumulation and another fern species was found to accumulate arsenic (Adiantum raddianum). Other species that were screened confirm that, among the families of ferns already studied, species from the family Pteridaceae seems the most promising for arsenic phytoremediation purposes. Considering that two species that showed arsenic accumulation in their leaves, also presented high arsenic content in their spores, it might fasten the selection if the spores of different fern species from contaminated sites are screened first, making the process of species selection for phytoremediation faster and more efficient. (author)

  12. Aerial gamma ray and magnetic survey: Minnesota Project, Thief River Falls quadrangle of Minnesota/North Dakota. Final report

    International Nuclear Information System (INIS)

    1979-11-01

    The Thief River Falls 1:250,000 scale quadrangle of Minnesota and North Dakota is almost everywhere covered with Wisconsin age glacial deposits (drift, lake sediments, etc.) of variable thickness. Where exposed, bedrock is Late Cretaceous age marine deposits. There are no uranium deposits (or occurrences) known within the quadrangle. Sixty-six groups of uranium samples were defined as anomalies and are discussed briefly. None of them are considered significant

  13. Preliminary assessment of arsenic concentration in a spring water area, iron quadrangle, Minas Gerais Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Maria Angela de B.C.; Magalhaes, Camila Lucia M.R., E-mail: menezes@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Reator e Tecnicas Analiticas. Laboratorio de Ativacao Neutronica; Uemura, George, E-mail: george@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Meio Ambiente; Jacimovic, Radojko, E-mail: radojko.jacimovic@ijs.si [Jozef Stefan Institute, Department of Environmental Sciences, Group for Radiochemistry and Radioecology, Ljubljana (Slovenia); Deschamps, Maria Eleonora, E-mail: leonora.deschamps@meioambiente.mg.gov.br [FEAM, Fundacao Estadual do Meio Ambiente. Universidade FUMEC, Belo Horizonte, MG (Brazil); Isaias, Rosy Mary; Salino, Alexandre, E-mail: rosy@icb.ufmg.br, E-mail: salino@icb.ufmg.br [Universidade Federal de Minas Gerais, Departamento de Botanica, UFMG, Belo Horizonte, MG (Brazil); Magalhaes, Fernando, E-mail: camila@bonsaimorrovelho.com.br [Instituto Superior de Ciencias da Saude, Curso Superior de Ciencias Biologicas, Belo Horizonte, MG (Brazil)

    2011-07-01

    The attention to environmental exposure to arsenic is increasing in the worldwide. In this scenario, a project is being developed in Santana do Morro, Iron Quadrangle, Minas Gerais, region well known due to natural and anthropogenic occurrence of arsenic. This proposal has several objectives; one of them is to start a procedure of phyto remediation in laboratory aiming at future riparian forests restoration. The main concern is the preservation of water resource and consequently the health of the inhabitants. The study place is close to a water spring. One sampling was carried out, collecting plants, soil and sediment. The Neutron Activation Analysis, k{sub 0}-method, was applied to determine the elemental concentration, using the TRIGA Mark I IPR-R1 reactor, located at CDTN/CNEN. In this paper, the results are discussed. (author)

  14. Preliminary assessment of arsenic concentration in a spring water area, iron quadrangle, Minas Gerais Brazil

    International Nuclear Information System (INIS)

    Menezes, Maria Angela de B.C.; Magalhaes, Camila Lucia M.R.; Deschamps, Maria Eleonora; Isaias, Rosy Mary; Salino, Alexandre; Magalhaes, Fernando

    2011-01-01

    The attention to environmental exposure to arsenic is increasing in the worldwide. In this scenario, a project is being developed in Santana do Morro, Iron Quadrangle, Minas Gerais, region well known due to natural and anthropogenic occurrence of arsenic. This proposal has several objectives; one of them is to start a procedure of phyto remediation in laboratory aiming at future riparian forests restoration. The main concern is the preservation of water resource and consequently the health of the inhabitants. The study place is close to a water spring. One sampling was carried out, collecting plants, soil and sediment. The Neutron Activation Analysis, k 0 -method, was applied to determine the elemental concentration, using the TRIGA Mark I IPR-R1 reactor, located at CDTN/CNEN. In this paper, the results are discussed. (author)

  15. Aerial gamma ray and magnetic survey: Powder River II Project, Newcastle Quadrangle, Wyoming. Final report

    International Nuclear Information System (INIS)

    1979-04-01

    Thick Phanerozoic sediments (greater than 17,000 ft) fill the northwest trending Powder River Basin which is the dominant tectonic structure in the Newcastle quadrangle. Lower Tertiary sediments comprise more than 85% of exposed units at the surface of the Basin. A small portion of the Black Hills Uplift occupies the eastern edge of the quadrangle. Residual magnetics clearly reflect the great depth to crystalline Precambrian basement in the Basin. The Basin/Uplift boundary is not readily observed in the magnetic data. Economic uranium deposits of roll-type configuration are present in the southwest within the Monument Hill-Box Creek District in fluvial sandstones of the Paleocene Fort Union Formation. Numerous small claims and prospects are found in the Pumpkin Buttes-Turnercrest District in the northwest. Interpretation of the radiometric data resulted in 86 statistical uranium anomalies listed for this quadrangle. Most anomalies are in the eastern-central portion of the map within Tertiary Fort Union and Wasatch Formations. However, several lie in the known uranium districts in the southwest and northwest

  16. Iron Quadrangle, Brazil. Elemental concentration determined by k0-instrumental neutron activation analysis. Part 2. Kale samples

    International Nuclear Information System (INIS)

    Menezes, M.A.B.C.; Palmieri, H.E.L.; Leonel, L.V.; Nalini, H.A.Jr.; Jacimovic, R.

    2006-01-01

    The objective of this study was to evaluate the influence of mining activity on elemental concentrations in kale grown around a mining area. Two sites studied are in the Iron Quadrangle, Minas Gerais, Brazil, considered one of the richest mineral-bearing regions in the world. One site is near mineral exploration activity and the other is an ecological area. A comparator site outside the Iron Quadrangle was also analyzed. This work focused on the determination of the elemental concentrations in kale applying the k 0 -instrumental neutron activation analysis. As the Brazilian legislation specifies values for soil only, the results for kale were compared to the literature values and it was found that the vegetable does not present any health risks. (author)

  17. The Alaskan mineral resource assessment program; background information to accompany folio of geologic and mineral resource maps of the Ambler River Quadrangle, Alaska

    Science.gov (United States)

    Mayfield, Charles F.; Tailleur, I.L.; Albert, N.R.; Ellersieck, Inyo; Grybeck, Donald; Hackett, S.W.

    1983-01-01

    The Ambler River quadrangle, consisting of 14,290 km2 (5,520 mi2) in northwest Alaska, was investigated by an interdisciplinary research team for the purpose of assessing the mineral resource potential of the quadrangle. This report provides background information for a folio of maps on the geology, reconnaissance geochemistry, aeromagnetics, Landsat imagery, and mineral resource evaluation of the quadrangle. A summary of the geologic history, radiometric dates, and fossil localities and a comprehensive bibliography are also included. The quadrangle contains jade reserves, now being mined, and potentially significant resources of copper, zinc, lead, and silver.

  18. Litterfall dynamics in a iron-rich rock outcrop complex in the southeastern portion of the Iron Quadrangle of Brazil

    Directory of Open Access Journals (Sweden)

    Eduardo André Ribeiro Valim

    2013-06-01

    Full Text Available Ecosystems on cangas (duricrust present considerable heterogeneity of habitats due to microtopographic variations, soil accumulation and a variety of plant functional groups. Therefore, spatial and temporal ecosystem processes such as litterfall are to be expected to be large, and the absence of a level of productivity represents all the facets of iron-rich landscapes. We investigated litterfall in a iron-rich rock complex in the Iron Quadrangle of Brazil, with habitats formed on different evolutionary stages of the soil, resulting in a gradient of biomass, canopy cover and community structure. The measurements were made in open field areas, dominated by herb-shrub vegetation and interspersed with islands of dense vegetation in which there were individual trees, as well as in areas of semideciduous forest. The litterfall, especially that of leaf litter, followed the gradient of woody cover and was approximately two times greater in the forest formation. However, the spatial and temporal variations in deposition were greatest in the herb-shrub areas and least in the semideciduous forest area, intermediate values being obtained for the tree island areas. The peaks in litterfall also varied among habitats, occurring in some periods of the rainy season and during the transition from rainy to dry in the herb-shrub and tree island areas, whereas they occurred at the end of the dry season in the semideciduous forest area. The results show significant differences in the patterns of litterfall among different physiognomies within the same iron-rich rock complex, indicating the need for expanded studies, focusing on the flow of matter and energy in such environments.

  19. Aerial gamma ray and magnetic survey: Powder River II Project, Ekalaka Quadrangle, Montana. Final report

    International Nuclear Information System (INIS)

    1979-04-01

    The Ekalaka quadrangle in southeastern Montana and western North and South Dakota, lies on the border between the Powder River and Williston Basins. These two basins are divided by the northwest-striking Miles City Arch. Each of the basins contains a thick sequence of Paleozoic and Mesozoic strata, with early to middle Tertiary rocks covering over 70% of the surface. No rocks older than Lower Cretaceous appear to be exposed. Magnetic data illustrate the relative depth to basement Precambrian crystalline rocks and clearly define the position of the Miles City Arch. The Ekalaka quadrangle has apparently been unproductive in terms of uranium mining though some claims (prospects) are present. These claims are located primarily in the Cretaceous Hell Creek Formation, and the Tertiary Fort Union Formation. A total of 176 groups of sample responses in the uranium window constitute anomalies as defined in Volume I. These anomalies are found most frequently in the Fort Union Formation, but several Cretaceous units have a large number of anomalies associated with their mapped locations. Few of these anomalies occur over known uranium claims or areas where material other than uranium is mined. Most of the anomalies probably relate to natural geologic features

  20. Uranium, thorium and rare earth elements distribution from different iron quadrangle spring waters

    International Nuclear Information System (INIS)

    Ferreira, Cláudia A.; Palmieri, Helena E.L.; Menezes, Maria A. de B.C.; Rodrigues, Paulo C.H.

    2017-01-01

    This study was conducted to evaluate the concentrations of thorium, uranium and the rare earth elements (REE) in 26 spring waters, as well as the patterns of the REE of the samples from the Cercadinho, Moeda and Caue aquifers in different municipalities of the Iron Quadrangle (Quadrilatero Ferrifero), located in the central-southeast of Minas Gerais state. The pH value of the ground waters ranged from 3.8 to 7.0, indicating an acid nature of most of the spring waters. The investigation of REE speciation showed that all the REEs exist in the free X"3"+ ionic forms, under the prevailing Eh and pH conditions. In the studied samples the uranium concentrations ( 1000 ng L"-"1) originating from aquifers located in Sabara, Barao de Cocais, Santa Barbara, Mario Campos, Congonhas and Lavras Novas. The REEs patterns in the spring waters from the Cercadinho, Caue and Moeda aquifers are characterized by middle REE (MREE) enrichment compared to light REE (LREE) and heavy REEs (HREE), negative Ce anomalies (except for one sample) and positive Eu anomalies in all three aquifers studied. (author)

  1. Study of airborne gamma-ray spectrometer data procedures: Wind River Basin, Wyoming, Thermopolis Quadrangle

    International Nuclear Information System (INIS)

    1979-01-01

    This volume contains the following data from the Thermopolis Quadrangle, Wind River Basin, Wyoming: statistical summary tables; flight-line averages; geologic map units; geologic map with record locations; uranium mines and occurrences, uranium location map; eU symbol anomaly map; eU/eTh symbol anomaly map; eU/K symbol anomaly map; eTh symbol anomaly map; K symbol anomaly map; eU profile anomaly map; eU/eTh profile anomaly map; eU/K profile anomaly map; eTh profile anomaly map; K profile anomaly map; eTh/K profile anomaly map; preferred anomaly maps (4- and 7-point), combined 4- and 7-point preferred anomaly map; and stacked significance factor profiles

  2. Aeromagnetic maps of the Colorado River region including the Kingman, Needles, Salton Sea, and El Centro 1 degree by 2 degrees quadrangles, California, Arizona, and Nevada

    Science.gov (United States)

    Mariano, John; Grauch, V.J.

    1988-01-01

    Aeromagnetic data for the Colorado river region have been compiled as part of the Pacific to Arizona Crustal Experiment (PACE) Project. The data are presented here in a series of six compilations for the Kingman, Needles, Salton Sea, and El Centro 1 degree by 2 degree quadrangles, California, Arizona, and Nevada, at scales of 1:250,000 and 1:750,000. The scales and map areas are identical to those used by Mariano and others (1986) to display the Bouguer and isotatic residual gravity for this region. Data were compiled separately for the Kingman quadrangle, the Needles quadrangle, and an area covering the Salton Sea quadrangle and part of the El Centro quadrangle.

  3. Uranium, thorium and rare earth elements distribution from different iron quadrangle spring waters

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cláudia A.; Palmieri, Helena E.L.; Menezes, Maria A. de B.C.; Rodrigues, Paulo C.H., E-mail: cferreiraquimica@yahoo.com.br, E-mail: help@cdtn.br, E-mail: menezes@cdtn.br, E-mail: pchr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    This study was conducted to evaluate the concentrations of thorium, uranium and the rare earth elements (REE) in 26 spring waters, as well as the patterns of the REE of the samples from the Cercadinho, Moeda and Caue aquifers in different municipalities of the Iron Quadrangle (Quadrilatero Ferrifero), located in the central-southeast of Minas Gerais state. The pH value of the ground waters ranged from 3.8 to 7.0, indicating an acid nature of most of the spring waters. The investigation of REE speciation showed that all the REEs exist in the free X{sup 3+} ionic forms, under the prevailing Eh and pH conditions. In the studied samples the uranium concentrations (<2.3-1176 ng L{sup -1}) were below the guideline level set by Brazilian legislation (Ministry of Health 518- 03/2004). Thorium concentrations ranged from <0.39-11.0 ng L{sup -1} and the sum of the REE ranged from 6.0 to 37657 ng L{sup -1}. As there are no permissible limits related for the REE and thorium for different water quality standards in Brazil, more attention must be paid to the local residents' health risk caused by spring waters (REEs were > 1000 ng L{sup -1}) originating from aquifers located in Sabara, Barao de Cocais, Santa Barbara, Mario Campos, Congonhas and Lavras Novas. The REEs patterns in the spring waters from the Cercadinho, Caue and Moeda aquifers are characterized by middle REE (MREE) enrichment compared to light REE (LREE) and heavy REEs (HREE), negative Ce anomalies (except for one sample) and positive Eu anomalies in all three aquifers studied. (author)

  4. Uranium, thorium, gross alpha and gross beta assessment in fountain waters in towns of the Iron Quadrangle, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Claudia A.; Palmieri, Helena E.L.; Menezes, Maria Angela de B.C.; Chaves, Renata D.A.; Dalmazio, Ilza, E-mail: cferreiraquimica@yahoo.com.br, E-mail: help@cdtn.br, E-mail: menezes@cdtn.br, E-mail: rda@cdtn.br, E-mail: id@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The Iron Quadrangle region is known worldwide for its diversity, both ores and rock types, which record a long and important period of Earth's history. For thousands of years erosive processes have exposed ancient rocks, Archean and Proterozoic, in this region. The concentration of uranium, thorium, gross alpha and gross beta activities has been assessed in 34 fountains water samples collected from different towns in the Iron Quadrangle. The results obtained were compared to values established by CONAMA nº 396/2008 and Decree nº 2914/2011 by the Ministry of Health. For Th in water consumption there is no value established in the Brazilian legislation and the concentrations in all samples were lower than 0.01 μg L{sup -1}. For uranium, the values ranged from less than 0.002 to 0.61 μg L{sup -1}, and all results were lower than the value allowed of 15 μg L{sup -1} and 30 μg L{sup -1} established by the legislations above, respectively. The results for the radiation levels of gross alpha and gross beta activity in some fountains waters were slightly above the limits (0.5 Bq L{sup -1} and 1.0 Bq L{sup -1}) established by CONAMA nº 396/2008 and Decreet nº 2914/2011, respectively. (author)

  5. Iron Quadrangle, Brazil. Elemental concentration determined by k0-instrumental neutron activation analysis. Part 1. Soil samples

    International Nuclear Information System (INIS)

    Menezes, M.A.B.C.; Palmieri, H.E.L.; Leonel, L.V.; Nalini, H.A.Jr.; Jacimovic, R.

    2006-01-01

    The Iron Quadrangle, Minas Gerais, Brazil, is rich in mineral occurrences and is considered one of the richest mineral-bearing regions in the world. Most investigations in this region have dealt with the determination of arsenic and mercury but so far few studies have been carried out aiming at determining other important elements. Having in mind the potential risk caused by mineral activities, this study was developed in order to assess the potential influence of the soil on foodstuffs. The soil samples were collected from three sites inside and outside the Iron Quadrangle. The samples were analyzed at the Laboratory for Neutron Activation Analysis, CDTN/CNEN by the k 0 -instrumental neutron activation analysis. This paper reports the elemental concentration determined in soil and emphasises the elements cited in the Brazilian environmental legislation for soil. This work also confirms the high elemental concentration of several minerals, however, it is difficult to distinguish the contamination from anthropogenic activities from the natural occurrence. (author)

  6. Uranium, thorium, gross alpha and gross beta assessment in fountain waters in towns of the Iron Quadrangle, Brazil

    International Nuclear Information System (INIS)

    Ferreira, Claudia A.; Palmieri, Helena E.L.; Menezes, Maria Angela de B.C.; Chaves, Renata D.A.; Dalmazio, Ilza

    2013-01-01

    The Iron Quadrangle region is known worldwide for its diversity, both ores and rock types, which record a long and important period of Earth's history. For thousands of years erosive processes have exposed ancient rocks, Archean and Proterozoic, in this region. The concentration of uranium, thorium, gross alpha and gross beta activities has been assessed in 34 fountains water samples collected from different towns in the Iron Quadrangle. The results obtained were compared to values established by CONAMA nº 396/2008 and Decree nº 2914/2011 by the Ministry of Health. For Th in water consumption there is no value established in the Brazilian legislation and the concentrations in all samples were lower than 0.01 μg L -1 . For uranium, the values ranged from less than 0.002 to 0.61 μg L -1 , and all results were lower than the value allowed of 15 μg L -1 and 30 μg L -1 established by the legislations above, respectively. The results for the radiation levels of gross alpha and gross beta activity in some fountains waters were slightly above the limits (0.5 Bq L -1 and 1.0 Bq L -1 ) established by CONAMA nº 396/2008 and Decreet nº 2914/2011, respectively. (author)

  7. Aerial gamma ray and magnetic survey: Powder River R and D Project. Portions of the: Forsyth, Hardin, Montana Quadrangles; Sheridan, Arminto, Wyoming Quadrangles. Final report

    International Nuclear Information System (INIS)

    1979-05-01

    Thick Phaneorozoic sediments (greater than 17,000 feet) fill the northwest-trending Powder River Basin, which is the dominant tectonic structure in the study area. Lower Tertiary sediments comprise over 90% of the exposed units at the surface of the Basin. Small portions of the Bighorn Uplift, Casper Arch, and Porcupine Dome occupy the western edge of the study area. Numerous small claims and prospects are found in the Pumpkin Buttes - Turnercrest District at the south end of the study area (northeastern Arminto quadrangle). No economic deposits of uranium are known to exist in the area, according to available literature. Interpretation of the radiometric data resulted in 62 statistical uranium anomalies listed for this area. Most anomalies are found in the southern half of the study area within the Tertiary Fort Union and Wasatch Formations. Some are found in Cretaceous sediments in the adjoining uplifts to the west of the Basin

  8. Hyperspectral surface materials map of quadrangle 3264, Naw Zad-Musa Qala (423) and Dihrawud (424) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral surface materials map of quadrangle 3266, Uruzgan (519) and Moqur (520) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangle 3464, Shahrak (411) and Kasi (412) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Hyperspectral surface materials map of quadrangle 3466, La`l wa Sar Jangal (507) and Bamyan (508) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  12. Hyperspectral surface materials map of quadrangle 3260, Dasht-e-Chah-e-Mazar (419) and Anar Darah (420) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  13. Hyperspectral surface materials map of quadrangle 3470, Jalalabad (511) and Chaghasaray (512) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  14. Hyperspectral surface materials map of quadrangle 3570, Tagab-e-Munjan (505) and Asmar-Kamdesh (506) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  15. Hyperspectral surface materials map of quadrangle 3364, Pasaband (417) and Markaz-e Kajiran (418) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Hyperspectral surface materials map of quadrangle 3462, Herat (409) and Chishti Sharif (410) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Hyperspectral surface materials map of quadrangle 3468, Chak-e Wardak-Siyahgird (509) and Kabul (510) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Hyperspectral surface materials map of quadrangle 3368, Ghazni (515) and Gardez (516) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangle 3162, Chakhansur (603) and Kotalak (604) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3362, Shindand (415) and Tulak (416) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangle 3366, Gizab (513) and Nawer (514) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangle 3770, Faizabad (217) and Parkhaw (218) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3566, Sangcharak (501) and Sayghan-o-Kamard (502) quadrangles, Afghanistan, showing iron-bearing minerals and other material

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangle 3670, Jurm-Kishim (223) and Zebak (224) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral surface materials map of quadrangle 3568, Pul-e Khumri (503) and Charikar (504) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral surface materials map of quadrangle 3262, Farah (421) and Hokumat-e-pur-Chaman (422) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral surface materials map of quadrangle 3164, Lashkar Gah (605) and Kandahar (606) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangle 3562, Khawja-Jir (403) and Murghab (404) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Hyperspectral Surface Materials Map of Quadrangle 3268, Khayr Kot (521) and Urgun (522) Quadrangles, Afghanistan, Showing Iron-bearing Minerals and Other Materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  12. Importance of boreal rivers in providing iron to marine waters.

    Directory of Open Access Journals (Sweden)

    Emma S Kritzberg

    Full Text Available This study reports increasing iron concentrations in rivers draining into the Baltic Sea. Given the decisive role of iron to the structure and biogeochemical function of aquatic ecosystems, this trend is likely one with far reaching consequences to the receiving system. What those consequences may be depends on the fate of the iron in estuarine mixing. We here assess the stability of riverine iron by mixing water from seven boreal rivers with artificial sea salts. The results show a gradual loss of iron from suspension with increasing salinity. However, the capacity of the different river waters to maintain iron in suspension varied greatly, i.e. between 1 and 54% of iron was in suspension at a salinity of 30. The variability was best explained by iron:organic carbon ratios in the riverine waters--the lower the ratio the more iron remained in suspension. Water with an initially low iron:organic carbon ratio could keep even higher than ambient concentrations of Fe in suspension across the salinity gradient, as shown in experiments with iron amendments. Moreover, there was a positive relationship between the molecular size of the riverine organic matter and the amount of iron in suspension. In all, the results point towards a remarkably high transport capacity of iron from boreal rivers, suggesting that increasing concentrations of iron in river mouths may result in higher concentrations of potentially bioavailable iron in the marine system.

  13. Database for the Geologic Map of the Skykomish River 30-Minute by 60-Minute Quadrangle, Washington (I-1963)

    Science.gov (United States)

    Tabor, R.W.; Frizzell, V.A.; Booth, D.B.; Waitt, R.B.; Whetten, J.T.; Zartman, R.E.

    2006-01-01

    This digital map database has been prepared from the published geologic map of the Skykomish River 30- by 60-minute quadrangle by the senior author. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. From the eastern-most edges of suburban Seattle, the Skykomish River quadrangle stretches east across the low rolling hills and broad river valleys of the Puget Lowland, across the forested foothills of the North Cascades, and across high meadowlands to the bare rock peaks of the Cascade crest. The Straight Creek Fault, a major Pacific Northwest structure which almost bisects the quadrangle, mostly separates unmetamorphosed and low-grade metamorphic Paleozoic and Mesozoic oceanic rocks on the west from medium- to high-grade metamorphic rocks on the east. Within the quadrangle the lower grade rocks are mostly Mesozoic melange units. To the east, the higher-grade terrane is mostly the Chiwaukum Schist and related gneisses of the Nason terrane and invading mid-Cretaceous stitching plutons. The Early Cretaceous Easton Metamorphic Suite crops out on both sides of the Straight Creek fault and records it's dextral displacement. On the south margin of the quadrangle, the fault separates the lower Eocene Swauk Formation on the east from the upper Eocene and Oligocene(?) Naches Formation and, farther north, its correlative Barlow Pass Volcanics the west. Stratigraphically equivalent rocks of the Puget Group crop out farther to the west. Rocks of

  14. Uranium hydrogeochemical and stream-sediment reconnaissance of the Utukok River NTMS quadrangle, Alaska

    International Nuclear Information System (INIS)

    Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.

    1982-03-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Utukok River NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1;1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  15. Rare earth elements and uranium in fountain waters from different towns of the Iron Quadrangle, MG, Brazil

    International Nuclear Information System (INIS)

    Ferreira, Claudia A.; Palmieri, Helena E.L.; Menezes, Maria Angela de B.C.

    2015-01-01

    Rare earth elements (REE) and uranium were evaluated in 34 fountain waters collected in different towns of the Iron Quadrangle (IQ), Minas Gerais, Brazil. The IQ is one of the largest and most well-known mineral deposits in the world. Not only extensive iron deposits but also hydrothermal gold deposits are found in this region. Because of the toxicological properties of REE, monitoring of groundwater which is used for drinking water may be useful if relatively high concentrations of REE are expected. The total REE (ΣREE) concentrations in fountain water range from 3 to 33395 ng L -1 . It was observed that fountains with a pH value below 5 presented higher concentration values of the determined elements proposed in this work. This is due to the fact that waters exhibiting low pH values enhance the dissolution of these elements. Moreover, for uranium the values ranged from less than < 2 to 540 ng L -1 . The highest concentrations in waters were observed only in four cities. Statistical methods such as Pearson correlation, PCA and HCA analysis were applied to the data set to shed some light on the behavior of the elements in water in this study. Three major groups with similar characteristics were identified and six diagrams of REE signatures in fountain waters were plotted according to their groupings of subdivisions. Using the REE-Post-Archean Australian Shale (PAAS) normalized patterns it was possible to verify presence of distinct REE signatures and recognize that the two samples belong to the same aquifer type. (author)

  16. Off-platform Silurian sequences in the Ambler River quadrangle: A section in Geologic studies in Alaska by the U.S. Geological Survey during 1987

    Science.gov (United States)

    Dumoulin, Julie A.; Harris, Anita G.

    1988-01-01

    Lithofacies changes in coeval upper Paleozoic rocks have been used to unravel the tectonic history of northern Alaska (for example, Mayfield and others, 1983). Conodont biostratigraphy and detailed petrologic studies are now revealing facies differences in lower Paleozoic rocks that can also be used to constrain their tectono-sedimentary framework (Dumoulin and Harris, 1987). A basic element of basin analysis is the discrimination of shallow-water shelf and platform sequences from deeper water slope and basinal deposits. This report documents several new localities of deeper water, off-platform Silurian deposits in the Ambler River quadrangle and briefly outlines some of their paleogeographic implications.

  17. Uranium hydrogeochemical and stream-sediment reconnaissance of the Charley River NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Charley River NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  18. Uranium hydrogeochemical and stream sediment reconnaissance of the Kateel River NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Kateel River NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  19. Uranium hydrogeochemical and stream-sediment reconnaissance of the Black River NTMS Quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Black River NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  20. Uranium hydrogeochemical and stream-sediment reconnaissance of the Kantishna River NTMS quadrangle, Alaska. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.

    1982-08-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Kantishna River NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report

  1. Hyperspectral surface materials map of quadrangles 3664 and 3764, Char Shengo (123), Shibirghan (124), Jalajin (117), and Kham-Ab (118) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangles 3666 and 3766, Balkh (219), Mazar-e Sharif (220), Qarqin (213), and Hazara Toghai (214) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral surface materials map of quadrangles 3668 and 3768, Baghlan (221), Taluqan (222), Imam Sahib (215), and Rustaq (216) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangles 2962 and 3062, Gawdezereh (615), Galachah (616), Chahar Burjak (609), and Khan Neshin (610) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    Hoefen, Todd M.; King, Trude V.V.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangles 3360 and 3460, Kawir-e Naizar (413), Kohe-Mahmudo-Esmailjan (414), Kol-e Namaksar (407), and Ghoriyan (408) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Analytical data and sample locality map for aqua-regia leachates of stream sediments analyzed by ICP, and emission spectrographic and ICP results for many NURE stream sediments from the Killik River Quadrangle, Alaska

    International Nuclear Information System (INIS)

    Motooka, J.M.; Adrian, B.M.; Church, S.E.; McDougal, C.M.; Fife, J.B.

    1989-01-01

    A U.S. Geological Survey report is presented giving analytical data and sample locality map for aqua-regia leachates of stream sediments analyzed by ICP, and emission spectrographic and ICP results for many NURE stream sediments from the Killik River Quadrangle, Alaska

  7. Airborne gamma-ray spectrometer and magnetometer survey, Meade River Quadrangle, Alaska. Final report

    International Nuclear Information System (INIS)

    1981-02-01

    The results obtained from an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over the Meade River map area of Alaska are presented. Based on the criteria outlined in the general section on interpretation, a total of eight uranium anomalies have been outlined on the interpretation map. Most of these are only weakly to moderately anomalous. Zones 3 and 7 are relatively better than the others though none of the anomalies are thought to be of any economic significance. No follow-up work is recommended

  8. Aerial gamma ray and magnetic survey, Powder River II Project: the Newcastle and Gillette Quadrangles of Wyoming and South Dakota; the Ekalaka Quadrangle of Montana, South and North Dakota. Volume I. Final report

    International Nuclear Information System (INIS)

    1979-04-01

    During the months of August through September 1978, geoMetrics, Inc. flew approximately 9000 line miles of high sensitivity airborne radiometric and magnetic data in eastern Wyoming and southern Montana over three 1 0 x 2 0 NTMS quadrangle (Newcastle, Gillette, and Ekalaka) as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as four volumes (one Volume I and three Volume II's) in this report. The survey area lies entirely within the northern Great Plains Physiographic Province. The deep Powder River Basin and the Black Hills Uplift are the two dominant structures in the area. Both structures strike NNW approximately parallel to each other with the Powder River Basin to the west of the Uplift. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Gold, silver, lead, copper, manganese, rare-earth elements and uranium have been mined in the Uplift. Epigenetic uranium deposits lie primarily in the Monument Hills - Box Creek and Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 368 groups of statistical values in the uranium window meet the criteria for valid anomalies and are discussed in the interpretation sections (83 in Newcastle, 109 in Gillette, and 126 in Ekalaka). Most anomalies lie in the Tertiary sediments of the Powder River Basin, but only a few are clearly related to known uranium mines or prospects. Magnetic data generally delineate the deep Powder River Basin relative to the Black Hills Uplift. Higher frequency anomalies appear related to producing oil fields and mapped sedimentary structures

  9. Aerial gamma ray and magnetic survey, Powder River II Project: the Newcastle and Gillette Quadrangles of Wyoming and South Dakota; the Ekalaka Quadrangle of Montana, South and North Dakota. Volume I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    During the months of August through September 1978, geoMetrics, Inc. flew approximately 9000 line miles of high sensitivity airborne radiometric and magnetic data in eastern Wyoming and southern Montana over three 1/sup 0/ x 2/sup 0/ NTMS quadrangle (Newcastle, Gillette, and Ekalaka) as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as four volumes (one Volume I and three Volume II's) in this report. The survey area lies entirely within the northern Great Plains Physiographic Province. The deep Powder River Basin and the Black Hills Uplift are the two dominant structures in the area. Both structures strike NNW approximately parallel to each other with the Powder River Basin to the west of the Uplift. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Gold, silver, lead, copper, manganese, rare-earth elements and uranium have been mined in the Uplift. Epigenetic uranium deposits lie primarily in the Monument Hills - Box Creek and Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 368 groups of statistical values in the uranium window meet the criteria for valid anomalies and are discussed in the interpretation sections (83 in Newcastle, 109 in Gillette, and 126 in Ekalaka). Most anomalies lie in the Tertiary sediments of the Powder River Basin, but only a few are clearly related to known uranium mines or prospects. Magnetic data generally delineate the deep Powder River Basin relative to the Black Hills Uplift. Higher frequency anomalies appear related to producing oil fields and mapped sedimentary structures.

  10. Uranium hydrogeochemical and stream sediment reconnaissance data from the area of the Noatak and portions of the Baird Mountains and Ambler River Quadrangles, Alaska

    International Nuclear Information System (INIS)

    Aamodt, P.L.; Hill, D.E.; Sharp, R.R. Jr.

    1978-05-01

    During August 1976, a total of 876 natural waters and 861 bottom sediments were collected at a nominal density of one location each 23 km 2 from streams and small lakes throughout the Noatak NTMS quadrangle, the southern two-thirds of the Baird Mountains NTMS quadrangle, and in the southwest corner of the Ambler River NTMS quadrangle. These samples were collected as part of the National Uranium Resource Evaluation program in Alaska being conducted by the Los Alamos Scientific Laboratory (LASL). The field collection and treatment of the samples were performed following strict LASL specifications. Total uranium was measured in the waters by fluorometry and in the sediments by delayed-neutron counting, using stringent quality assurance controls at the LASL. The uranium contents of the waters ranged from below the detection limit of 0.02 parts per billion (ppB) to a high of 8.38 ppB, and the uranium contents of the sediments ranged from a low of 0.3 parts per million (ppM) to a high of 34.0 ppM. In general, the locations of waters containing relatively high uranium contents were found to occur in clusters, and particularly in the headwaters of streams draining the southern slopes of the Baird Mountains. Few sediments contained relatively high uranium contents. These usually occurred singly at isolated locations scattered throughout the area. No obvious association exists between the location of high-uranium waters and sediments anywhere in the study area. The geology, mineralogy, and hydrology of this area is only generally described in the literature; therefore, it is difficult to correlate these data with particular aspects of the physical environment where individual samples were collected. However, the data do indicate that certain areas underlaid by Paleozoic sedimentary rocks and granitic intrusives within the Baird Mountains and a quartz-pebble conglomerate in the Waring Mountains may warrant more detailed field investigations

  11. Uranium Hydrogeochemical and Stream Sediment Reconnaissance data from the area of the Teller, Bendeleben, Candle, and Kateel River Quadrangles, Seward Peninsula and vicinity, Alaska

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.; Hill, D.E.

    1978-05-01

    During July-August 1976, 2026 natural waters and 2085 bottom sediments were collected from 2209 sample locations (at a nominal density of one location each 23 km 2 ) on streams and small lakes throughout the Teller, Bendeleben, Candle, and western one-third of the Kateel River NTMS quadrangles, Alaska. Total uranium was measured in the waters by fluorometry and in the sediments and a few waters by delayed-neutron counting. The uranium content of the waters ranged from below the detection limit of 0.02 parts per billion (ppB) to a high of 14.50 ppB, averaging 0.44 ppB, and that of the sediments ranged from a low of 0.2 parts per million (ppM) to a high of 107.4 ppM, averaing 3.93 ppM. The uranium data for water and sediment are separately presented--as computer listings that include pertinent field measurements from each location, as graphically portrayed concentration overlays at 1:250,000 scale for each quadrangle, and as reduced figures showing contours drawn at various concentration levels for each quadrangle--and their areal distributions are compared and correlated with the known features and uranium showings. A test of increasingly detailed methods of data evaluation shows that the more extensive the evaluation, the more useful the reconnaissance uranium data are likely to be. The validity and potential usefulness of the HSSR uranium data are conclusively substantiated by the fact that evidence of all 23 of the reported uranium showings in the 50,000-km 2 study area can be discerned. Several new locations of interest for further field investigation are identified in each of the quadrangles, and most notably in the Bendeleben Mountains. However, the data presented would appear equally useful in guiding field investigation around the uranium occurrences already known, as noteworthy samples often come from close by but on tributary drainages adjacent, opposite, or above them

  12. Aerial gamma ray and magnetic survey: Minnesota Project, Thief River Falls, Grand Forks, Fargo, Milbank, Watertown, New Ulm and St. Cloud quadrangles of North Dakota, South Dakota and Minnesota. Final report

    International Nuclear Information System (INIS)

    1979-10-01

    During the months of August and September 1979, geoMetrics, Inc., collected 12,415 line miles of high sensitivity airborne radiometric and magnetic data in adjoining portions of South Dakota and Minnesota over seven 1 by 2 degree NTMS quadrangles (Thief River Falls, Grand Forks, Fargo, Milbank, Watertown, New Ulm, and St. Cloud) as part of the Department of Energy's National Uranium Resource Evaluation Program. All radiometric and magnetic data were fully corrected and interpreted by geoMetrics and are presented as eight volumes (one Volume I and seven Volume II's). Regional geology for these seven quadrangles can be divided into two logical sections. The first comprises the surficial glacial deposits, which mantle most of the area and can be up to hundreds of feet thick. The second section consists of the underlying bedrock which is exposed in small scattered outcrops, generally along major drainages. No sedimentary structures exist within the quadrangles. As of this writing, no known uranium deposits exist within the seven quadrangles

  13. Hydrogeochemical and stream sediment reconnaissance basic data for Dodge City NTMS Quadrangle, Kansas

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Dodge City Quadrangle are reported. Field and laboratory data are presented for 756 groundwater and 321 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate that the most promising areas for uranium mineralization are as follows: (1) in the north central area of the quadrangle within close proximity to the Arkansas River, mostly from waters of the Ogallala Formation; (2) in the west central area, from groundwater samples of the Dakota and the Ogallala Formations; and (3) between the North Fork of the Cimarron River and the main Cimarron River, mostly in waters from the Ogallala Formation. Associated with the high uranium values are high concentrations for magnesium, strontium, and sulfate. Of the groundwater samples taken 81% were collected from the Ogallala Formation. Stream sediment data indicate high uranium concentrations in scattered samples in the northwestern, central, and southwestern areas of the quadrangle. Most of the samples with high uranium values were collected from the Quaternary alluvium. Associated with the high uranium values are high concentrations of barium, cerium, iron, manganese, titanium, vanadium, yttrium, and zirconium

  14. K-Ar geochronology of the Survey Pass, Ambler River and Eastern Baird Mountains quadrangles, southwestern Brooks Range, Alaska

    Science.gov (United States)

    Turner, Donald L.; Forbes, R.B.; Mayfield, C.F.

    1978-01-01

    We report 76 previously unpublished K-Ar mineral ages from 47 metamorphic and igneous rocks in the southwestern Brooks Range. The pattern of radiometric ages is complex, reflecting the complex geologic history of this area. Local and regional radiometric evidence suggests that the southern Brooks Range schist belt has, at least in part, undergone a late Precambrian metamorphism and that the parent sedimentary and igneous rocks for the metamorphic rocks dated as late Precambrian are at least this old (Precambrian Z). This schist terrane experienced a major thermal event in mid-Cretaceous time, causing widespread resetting of nearly all K-Ar mica ages. A series of apparent ages intermediate between late Precambrian and mid-Cretaceous are interpreted as indicating varying amounts of partial argon loss from older rocks during the Cretaceous event. The schist belt is characterized by dominant metasediments and subordinate metabasites and metafelsites. Blueschists occur within the schist belt from the Chandalar quadrangle westward to the Baird Mountains quadrangle, but geologic evidence does not support the existence of a fossil subduction zone.

  15. Photoreduction fuels biogeochemical cycling of iron in Spain's acid rivers

    Science.gov (United States)

    Gammons, C.H.; Nimick, D.A.; Parker, S.R.; Snyder, D.M.; McCleskey, R. Blaine; Amils, R.; Poulson, S.R.

    2008-01-01

    A number of investigations have shown that photoreduction of Fe(III) causes midday accumulations of dissolved Fe(II) in rivers and lakes, leading to large diel (24-h) fluctuations in the concentration and speciation of total dissolved iron. Less well appreciated is the importance of photoreduction in providing chemical energy for bacteria to thrive in low pH waters. Diel variations in water chemistry from the highly acidic (pH 2.3 to 3.1) Ri??o Tinto, Ri??o Odiel, and Ri??o Agrio of southwestern Spain (Iberian Pyrite Belt) resulted in daytime increases in Fe(II) concentration of 15 to 66????M at four diel sampling locations. Dissolved Fe(II) concentrations increased with solar radiation, and one of the stream sites showed an antithetic relationship between dissolved Fe(II) and Fe(III) concentrations; both results are consistent with photoreduction. The diel data were used to estimate rates of microbially catalyzed Fe(II) oxidation (1 to 3??nmol L- 1 s- 1) and maximum rates of Fe(III) photoreduction (1.7 to 4.3??nmol L- 1 s- 1). Bioenergetic calculations indicate that the latter rates are sufficient to build up a population of Fe-oxidizing bacteria to the levels observed in the Ri??o Tinto in about 30??days. We conclude that photoreduction plays an important role in the bioenergetics of the bacterial communities of these acidic rivers, which have previously been shown to be dominated by autotrophic Fe(II)-oxidizers such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans. Given the possibility of the previous existence of acidic, Fe(III)-rich water on Mars, photoreduction may be an important process on other planets, a fact that could have implications to astrobiological research. ?? 2008 Elsevier B.V. All rights reserved.

  16. Microbial Reducibility of Fe(III Phases Associated with the Genesis of Iron Ore Caves in the Iron Quadrangle, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Ceth W. Parker

    2013-11-01

    Full Text Available The iron mining regions of Brazil contain thousands of “iron ore caves” (IOCs that form within Fe(III-rich deposits. The mechanisms by which these IOCs form remain unclear, but the reductive dissolution of Fe(III (hydroxides by Fe(III reducing bacteria (FeRB could provide a microbiological mechanism for their formation. We evaluated the susceptibility of Fe(III deposits associated with these caves to reduction by the FeRB Shewanella oneidensis MR-1 to test this hypothesis. Canga, an Fe(III-rich duricrust, contained poorly crystalline Fe(III phases that were more susceptible to reduction than the Fe(III (predominantly hematite associated with banded iron formation (BIF, iron ore, and mine spoil. In all cases, the addition of a humic acid analogue enhanced Fe(III reduction, presumably by shuttling electrons from S. oneidensis to Fe(III phases. The particle size and quartz-Si content of the solids appeared to exert control on the rate and extent of Fe(III reduction by S. oneidensis, with more bioreduction of Fe(III associated with solid phases containing more quartz. Our results provide evidence that IOCs may be formed by the activities of Fe(III reducing bacteria (FeRB, and the rate of this formation is dependent on the physicochemical and mineralogical characteristics of the Fe(III phases of the surrounding rock.

  17. Occurrence of uranium in the itabiritic iron ore of Morro Agudo on the NE border of the iron Quadrangle/Minas Gerais, Brasilien

    International Nuclear Information System (INIS)

    Guba, I.

    1982-01-01

    The precambrian itabirites and hematite ores of the Morro Agudo iron ore mine on the NE border of the Quadrilatero Ferrifero in Minas Gerais/Brazil contain uranium-bearing minerals and rare-earth elements. In association with phosphates they occupy planes of joints, fractures and cleavage in the area of amphibolitic schist which is intercalated in the s 1 -planes of the itabirites and hematite ores. Preliminary analyses of the uranium-bearing minerals were made by energy dispersive X-ray spectrometry and electron microscopy. The results are presented in connection with the lithologic and tectonic features of the Morro Agudo mine. (orig.) [de

  18. Factors influencing the dissolved iron input by river water to the open ocean

    Directory of Open Access Journals (Sweden)

    R. Krachler

    2005-01-01

    Full Text Available The influence of natural metal chelators on the bio-available iron input to the ocean by river water was studied. Ferrous and ferric ions present as suspended colloidal particles maintaining the semblance of a dissolved load are coagulated and settled as their freshwater carrier is mixed with seawater at the continental boundary. However, we might argue that different iron-binding colloids become sequentially destabilized in meeting progressively increasing salinities. By use of a 59Fe tracer method, the partitioning of the iron load from the suspended and dissolved mobile fraction to storage in the sediments was measured with high accuracy in mixtures of natural river water with artificial sea water. The results show a characteristic sequence of sedimentation. Various colloids of different stability are removed from a water of increasing salinity, such as it is the case in the transition from a river water to the open sea. However, the iron transport capacities of the investigated river waters differed greatly. A mountainous river in the Austrian Alps would add only about 5% of its dissolved Fe load, that is about 2.0 µg L-1 Fe, to coastal waters. A small tributary draining a sphagnum peat-bog, which acts as a source of refractory low-molecular-weight fulvic acids to the river water, would add approximately 20% of its original Fe load, that is up to 480 µg L-1 Fe to the ocean's bio-available iron pool. This points to a natural mechanism of ocean iron fertilization by terrigenous fulvic-iron complexes originating from weathering processes occurring in the soils upstream.

  19. Factors influencing the dissolved iron input by river water to the open ocean

    Science.gov (United States)

    Krachler, R.; Jirsa, F.; Ayromlou, S.

    2005-05-01

    The influence of natural metal chelators on the bio-available iron input to the ocean by river water was studied. Ferrous and ferric ions present as suspended colloidal particles maintaining the semblance of a dissolved load are coagulated and settled as their freshwater carrier is mixed with seawater at the continental boundary. However, we might argue that different iron-binding colloids become sequentially destabilized in meeting progressively increasing salinities. By use of a 59Fe tracer method, the partitioning of the iron load from the suspended and dissolved mobile fraction to storage in the sediments was measured with high accuracy in mixtures of natural river water with artificial sea water. The results show a characteristic sequence of sedimentation. Various colloids of different stability are removed from a water of increasing salinity, such as it is the case in the transition from a river water to the open sea. However, the iron transport capacities of the investigated river waters differed greatly. A mountainous river in the Austrian Alps would add only about 5% of its dissolved Fe load, that is about 2.0 µg L-1 Fe, to coastal waters. A small tributary draining a sphagnum peat-bog, which acts as a source of refractory low-molecular-weight fulvic acids to the river water, would add approximately 20% of its original Fe load, that is up to 480 µg L-1 Fe to the ocean's bio-available iron pool. This points to a natural mechanism of ocean iron fertilization by terrigenous fulvic-iron complexes originating from weathering processes occurring in the soils upstream.

  20. Iron and copper in Plagioscion squamosissimus (Piscis: Sciaenidae) of river Orinoco, Venezuela

    International Nuclear Information System (INIS)

    Gonzalez, A. R.; Marquez, A.; Chung, S.K.

    2000-01-01

    Bauxite exploitation of the Orinoco River in recent years is an important source of heavy metals discharge in the ecosystem, changing the natural biochemical flow of these elements and their concentrations in water, sediment and organisms. Iron and copper concentrations were measured in the fish Plagioscion squamosissimus in the Orinoco river, by sampling the fish population for three months (September-November 1998) in the main channel of the middle Orinoco. The internal organs of 30 fishes per month and site were stove-dried, pulverized and dried in disecator for 30 min to use as indicators with the acid digestion method for predicting the effect of heavy metals. We found relatively high values of iron and copper concentrations in fishes of the lagoon, and high seasonal variations in the iron concentration. (Author) [es

  1. Hyperspectral surface materials map of quadrangles 2964, 2966, 3064, and 3066, Shah-Esmail (617), Reg-Alaqadari (618), Samandkhan-Karez (713), Laki-Bander (611), Jahangir-Naweran (612), and Sreh-Chena (707) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    Hoefen, Todd M.; King, Trude V.V.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Geology of the Huntsville quadrangle, Alabama

    Science.gov (United States)

    Sanford, T.H.; Malmberg, G.T.; West, L.R.

    1961-01-01

    The 7 1/2-minute Huntsville quadrangle is in south-central Madison County, Ala., and includes part of the city of Hunstville. The south, north, east, and west boundaries of the quadrangle are about 3 miles north of the Tennessee River, 15 1/2 miles south of the Tennessee line, 8 miles west of the Jackson County line, and 9 miles east of the Limestone County line. The bedrock geology of the Huntsville quadrangle was mapped by the U.S. Geological Survey in cooperation with the city of Hunstville and the Geological Survey of Alabama as part of a detailed study of the geology and ground-water resources of Madison County, with special reference to the Huntsville area. G. T. Malmberg began the geologic mapping of the county in July 1953, and completed it in April 1954. T. H. Sanford, Jr., assisted Malmberg in the final phases of the county mapping, which included measuring geologic sections with hand level and steel tape. In November 1958 Sanford, assisted by L. R. West, checked contacts and elevations in the Hunstville quadrangle; made revisions in the contact lines; and wrote the text for this report. The fieldwork for this report was completed in April 1959.

  3. Dillon quadrangle, Montana and Idaho

    International Nuclear Information System (INIS)

    Wodzicki, A.; Krason, J.

    1981-04-01

    All geologic conditions in the Dillon quadrangle (Montana and Idaho) have been thoroughly examined, and, using National Uranium Resource Evaluation criteria, environments are favorable for uranium deposits along fractured zones of Precambrian Y metasediments, in the McGowan Creek Formation, and in some Tertiary sedimentary basins. A 9-m-wide quartz-bearing fractured zone in Precambrian Y quartzites near Gibbonsville contains 175 ppM uranium, probably derived from formerly overlying Challis Volcanics by supergene processes. The Mississippian McGowan Creek Formation consists of uraniferous, black, siliceous mudstone and chert. In the Melrose district it has been fractured by a low-angle fault, and uranium has been further concentrated by circulating ground water in the 2- to 6-m-thick brecciated zones that in outcrop contain 90 to 170 ppM uranium. The Wise River, northern Divide Creek, Jefferson River, Salmon River, Horse Prairie, Beaverhead River, and upper Ruby River Basins are considered favorable for uranium deposits in sandstone. Present are suitable uraniferous source rocks such as the Boulder batholith, rhyolitic flow breccia, laharic deposits, or strongly welded tuffs; permeable sediments, including most sandstones and conglomerates, providing they do not contain devitrified glass; suitable reductants such as lignite, pyrite, or low-Eh geothermal water; and uranium occurrences

  4. Municipal Consolidation: Theoretical Inquiry and Case Study - City of Iron River, MI

    OpenAIRE

    Martin, Joseph M.

    2006-01-01

    The City of Iron River was created as a consolidated municipality in the upper peninsula of Michigan during the late 1990's. The consolidation consisted of two cities and one village with a combined 2000 census population of 3,391. Persistent population loss, combined with the decline of the economic base, reduced the viability of the individual municipal governments, placing consolidation at the forefront of options. The analysis of small, rural municipalities is outside the focus of most co...

  5. Redox speciation of particulate iron and manganese during river/ocean mixing

    International Nuclear Information System (INIS)

    Zaw, M.; Szymczak, R.; Payne, T.

    2000-01-01

    Full text: A synchrotron radiation experiment was performed at the Australian National Beamline Facility (Photon Factory, Tsukuba, Japan) to investigate changes in the physico-chemical nature of particles during estuarine mixing. X-ray absorption near edge structure spectra (XANES) analysis was used to determine solid-state redox speciation of iron and manganese throughout the river/ocean salinity transects. Particles (>0.4μm) collected using clean techniques were stored under nitrogen during TROPICS Project expeditions to the Fly and Sepik Rivers, PNG. Results indicated that initially, particulate manganese was mostly present as Mn(IV) and Mn(III) compounds with some surface-adsorbed Mn(II). Similarly, iron was present as particulate Fe(III) and Fe(II/III) compounds with some adsorbed Fe(II). During river-ocean mixing, the proportions of both Mn(II) and Fe(III) significantly increased. These observations maybe due to increasing photochemical activity in the river plume, surface-sorption of reduced species related to the estuarine residence time of particles, or enhanced scavenging of ocean-sourced elements. Copyright (2000) American Chemical Society

  6. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  7. Strength and Microstructure of Concrete with Iron Ore Tailings as Replacement for River Sand

    Science.gov (United States)

    Umara Shettima, Ali; Ahmad, Yusof; Warid Hussin, Mohd; Zakari Muhammad, Nasiru; Eziekel Babatude, Ogunbode

    2018-03-01

    River Sand is one of the basic ingredients used in the production of concrete. Consequently, continuous consumption of sand in construction industry contributes significantly to depletion of natural resources. To achieve more sustainable construction materials, this paper reports the use of iron ore tailings (IOT) as replacement for river sand in concrete production. IOT is a waste product generated from the production of iron ore and disposed to land fill without any economic value. Concrete mixtures containing different amount of IOT were designed for grade C30 with water to cement ratio of 0.60. The percentage ratios of the river sand replacements by IOT were 25%, 50%, 75% and 100%. Concrete microstructure test namely, XRD and Field Emission Scanned Electron Microscopic/Energy dispersive X-ray Spectroscopy (FESEM/EDX) were conducted for control and IOT concretes in order to determine the interaction and performance of the concrete containing IOT. Test results indicated that the slump values of 130 mm and 80 to 110 mm were recorded for the control and IOT concretes respectively. The concrete sample of 50% IOT recorded the highest compressive strength of 37.7 MPa at 28 days, and the highest flexural strength of 5.5 MPa compared to 4.7 MPa for reference concrete. The texture of the IOT is rough and angular which was able to improve the strength of the concrete.

  8. Strength and Microstructure of Concrete with Iron Ore Tailings as Replacement for River Sand

    Directory of Open Access Journals (Sweden)

    Umara Shettima Ali

    2018-01-01

    Full Text Available River Sand is one of the basic ingredients used in the production of concrete. Consequently, continuous consumption of sand in construction industry contributes significantly to depletion of natural resources. To achieve more sustainable construction materials, this paper reports the use of iron ore tailings (IOT as replacement for river sand in concrete production. IOT is a waste product generated from the production of iron ore and disposed to land fill without any economic value. Concrete mixtures containing different amount of IOT were designed for grade C30 with water to cement ratio of 0.60. The percentage ratios of the river sand replacements by IOT were 25%, 50%, 75% and 100%. Concrete microstructure test namely, XRD and Field Emission Scanned Electron Microscopic/Energy dispersive X-ray Spectroscopy (FESEM/EDX were conducted for control and IOT concretes in order to determine the interaction and performance of the concrete containing IOT. Test results indicated that the slump values of 130 mm and 80 to 110 mm were recorded for the control and IOT concretes respectively. The concrete sample of 50% IOT recorded the highest compressive strength of 37.7 MPa at 28 days, and the highest flexural strength of 5.5 MPa compared to 4.7 MPa for reference concrete. The texture of the IOT is rough and angular which was able to improve the strength of the concrete.

  9. Distribuição e especiação de mercúrio em sedimentos de áreas de garimpo de ouro do quadrilátero ferrífero (MG Distribution and speciation of mercury in sediments from gold mining sites in iron quadrangle (Minas Gerais

    Directory of Open Access Journals (Sweden)

    Cláudia Carvalhinho Windmöller

    2007-10-01

    Full Text Available The concentration and thermodesorption speciation of mercury in sediments from four different Iron Quadrangle sites impacted by gold mining activity were determined. The mercury content of some samples was considerably high (ranging from 0.04 to 1.1 µg g-1. Only Hg2+ was found and it was preferably distributed in the silt/clay fraction in all samples. Cluster analysis showed that mercury and manganese can be associated. The occurrence of cinnabar in this region as another mercury source was also discussed, corroborating earlier works showing the importance of natural mercury in the geochemical cycle of the metal in this region.

  10. Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers

    Science.gov (United States)

    Wood, Deborah; Crocket, Kirsty; Brand, Tim; Stutter, Marc; Wilson, Clare; Schröder, Christian

    2016-04-01

    Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers Wood, D.A¹, Crocket, K², Brand, T², Stutter, M³, Wilson, C¹ & Schröder, C¹ ¹Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA ²Scottish Association for Marine Science, University of the Highlands and Islands, Dunbeg, Oban, PA37 1QA ³James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH The biogeochemical iron cycle exerts significant control on the carbon cycle¹. Iron is a limiting nutrient in large areas of the world's oceans and its bioavailability controls CO2 uptake by marine photosynthesizing microorganisms. While atmospheric iron inputs to the open ocean have been extensively measured, global river inputs have likely been underestimated because most major world rivers exhibit extensive iron removal by flocculation and sedimentation during seawater mixing. Iron minerals and organic matter mutually stabilise each other², which results in a 'rusty carbon sink' in sediments³ on the one hand but may also enhance transport beyond the salinity gradient on the other. Humic-rich, high latitude rivers have a higher iron-carrying capacity⁴-⁶ but are underrepresented in iron flux calculations. The West Coast sea lochs in Scotland are fed by predominantly peatland drainage catchments, and the rivers entering the sea lochs carry a high load of organic matter. The short distance between many of these catchments and the coastal ocean facilitates source-to-sea research investigating transport, fate and mineralogy of iron-bearing colloids providing a good analogue for similar high latitude fjordic systems. We use SeaFAST+ICP-MS and Mössbauer spectroscopy to survey trace metal concentrations, with emphasis on iron concentrations, speciation and mineralogy, across salinity gradients. In combination with ultra-filtration techniques, this allows

  11. Geologic map of the Bateman Spring Quadrangle, Lander County, Nevada

    Science.gov (United States)

    Ramelli, Alan R.; Wrucke, Chester T.; House, P. Kyle

    2017-01-01

    This 1:24,000-scale geologic map of the Bateman Spring 7.5-minute quadrangle in Lander County, Nevada contains descriptions of 24 geologic units and one cross section. Accompanying text includes full unit descriptions and references. This quadrangle includes lower Paleozoic siliciclastic sedimentary rocks of the Roberts Mountain allochthon, Miocene intrusive dikes, alluvial deposits of the northern Shoshone Range piedmont, and riverine deposits of the Reese and Humboldt rivers.Significant findings include: refined age estimates for the Ordovician-Cambrian Valmy Formation and Devonian Slaven Chert, based on new fossil information; and detailed mapping of late Quaternary fault traces along the Shoshone Range fault system.

  12. Geologic map of the Western Grove quadrangle, northwestern Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.; Repetski, John E.

    2006-01-01

    This map summarizes the geology of the Western Grove 7.5-minute quadrangle in northern Arkansas that is located on the southern flank of the Ozark dome, a late Paleozoic regional uplift. The exposed bedrock of this map area comprises approximately 1,000 ft of Ordovician and Mississippian carbonate and clastic sedimentary rocks that have been mildly folded and broken by faults. A segment of the Buffalo River loops through the southern part of the quadrangle, and the river and adjacent lands form part of Buffalo National River, a park administered by the U.S. National Park Service. This geologic map provides information to better understand the natural resources of the Buffalo River watershed, particularly its karst hydrogeologic framework.

  13. Aerial gamma ray and magnetic survey: Minnesota Project, the Alpena, Blind River, Cheboygan, Escanaba, and Sault Sainte Marie quadrangles of Michigan and Wisconsin. Final report

    International Nuclear Information System (INIS)

    1980-02-01

    During the month of September, 1979, EG and G geoMetrics collected 2,547 line miles of high sensitivity airborne radiometric and magnetic data in the states of Michigan and Wisconsin in five 1 0 x 2 0 NTMS quadrangles. This project is part of the Department of Energy's National Uranium Resource Evaluation Program. All radiometric and magnetic data were fully correcthed and interpreted by geoMetrics and are presented as four Volumes (one Volume I and three Volume II's). The study area is dominated by Pleistocene glacial debris. Underlying sediments of the Michigan Basin are predominantly limestone and dolomites of Ordovician through Devonian age. No uranium deposits are known in this region, but major uranium-producing areas lie just north of the project area in Precambrian quartz-pebble conglomerates

  14. National Uranium Resource Evaluation: Greensboro Quadrangle, North Carolina and Virginia

    International Nuclear Information System (INIS)

    Dribus, J.R.; Hurley, B.W.; Lawton, D.E.; Lee, C.H.

    1982-07-01

    The Greensboro Quadrangle, North Carolina and Virginia, was evaluated to identify and delineate areas favorable for the occurrence of uranium deposits. General surface reconnaissance and geochemical sampling were carried out in all geologic environments within the quadrangle. Aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data were analyzed, and ground-truth followup studies of anomalies were conducted. Detailed surface investigations, log and core studies, and a radon emanometry survey were conducted in selected environments. The results of this investigation suggest environments favorable for allogenic uranium deposits in metamorphic rocks adjacent to the intrusive margins of the Rolesville, Castalia, Redoak, and Shelton granite plutons, and sandstone-type deposits in the sediments of the Durham and Dan River Triassic basin systems. Environments in the quadrangle considered unfavorable for uranium deposits are pegmatites and metamorphic rocks and their included veins associated with fault and shear zones

  15. Bioavailability of iron and zinc in green leafy vegetables growing in river side and local areas of Allahabad district

    Directory of Open Access Journals (Sweden)

    Bhawna Srivastava

    2014-01-01

    Full Text Available Introduction: Green Leafy Vegetables (GLVs are the treasure trove of many micronutrients.Objective: The aim of the study is to find out the commonly growing vegetables in river side and local areas of Allahabad district and to access the bioavailability of iron and zinc in selected green leafy vegetables of river side and local areas of Allahabad district.Methods: Five to four commonly grown green leafy vegetables were selected from the Arailghat, Baluaghat, Gaughat, Mahewa, Muirabad, Rajapur, Rasullabad for the study. Total iron and zinc in sample were estimated by AOAC (2005 and bioavailability of zinc and iron from various food samples was determined in vitro method described by Luten (1996. Appropriate statistical technique was adopted for analysis of study.Result: Soya leaves, Radish leaves, Amaranth, Spinach were grown in both the areas except Kulpha and Karamwa, which are commonly grown in river side area. There was a significant difference between the bioavailability of iron and zinc in GLV grown in local and river side area.Conclusion: Hence it can be concluded that there is a contamination of heavy metals which binds with the iron and zinc and make them less bioavailable in the selected GLV.

  16. Dubois Quadrangle, Idaho and Montana

    International Nuclear Information System (INIS)

    Wodzicki, A.; Krason, J.

    1981-06-01

    Within the Dubois Quadrangle (Idaho and Montana), environments favorable for uranium deposits, based on National Uranium Resource Evaluation criteria, occur in the McGowan Creek Formation and within some Tertiary sedimentary basins. The Mississippian McGowan Creek Formation consists of uraniferous, black, siliceous mudstone and chert with minor porous sedimentary channels. In the southern Beaverhead Mountains it has been fractured by a bedding-plane fault, and uranium has been further concentrated by circulating groundwater in the porous channels and brecciated zones, both of which contain about 200 ppM uranium. The northern parts of the Pahsimeroi River, Lemhi River, Medicine Lodge Creek, Horse Prairie, and Sage Creek Basins are considered favorable for sandstone-type uranium deposits. Evidence present includes suitable source rocks such as rhyolitic flow breccia, laharic deposits, or strongly welded tuffs; permeable sediments, including most sandstones and conglomerates, providing they do not contain devitrified glass; suitable reductants such as lignite, pyrite, or low-Eh geothermal water; and uranium occurrences

  17. Transfer and transformation of soil iron and implications for hydrogeomorpholocial changes in Naoli River catchment, sanjiang plain, Northeast China

    Science.gov (United States)

    Ming, J.; Xianguo, L.; Hongqing, W.; Yuanchun, Z.; Haitao, W.

    2011-01-01

    Wetland soils are characterized by alternating redox process due to the fluctuation of waterlogged conditions. Iron is an important redox substance, and its transfer and transformation in the wetland ecosystem could be an effective indicator for the environment changes. In this paper, we selected the Naoli River catchment in the Sanjiang Plain, Northeast China as the study area to analyze the dynamics of transfer and transformation of soil iron, and the relationship between iron content change and environmental factors. The results show that the total and crystalline iron contents reach the peak in the depth of 60 cm in soil profile, while the amorphous iron content is higher in the topsoil. In the upper reaches, from the low to high landscape positions, the total and crystalline iron contents decrease from 62.98 g/kg to 41.61 g/kg, 22.82 g/kg to 10.53 g/kg respectively, while the amorphous iron content increases from 2.42 g/kg to 8.88 g/kg. Amorphous iron content has positive correlation with organic matter and soil water contents, while negative correlation with pH. Moreover, both the crystalline and amorphous iron contents present no correlation with total iron content, indicating that environmental factors play a more important role in the transfer and transformation of iron other than the content of the total iron. Different redoximorphic features were found along the soil profile due to the transfer and transformation of iron. E and B horizons of wetland soil in the study area have a matrix Chroma 2 or less, and all the soil types can meet the criteria of American hydric soil indicators except albic soil. ?? Science Press, Science Press, Northeast Institute of Geography and Agroecology, CAS and Springer-Verlag Berlin Heidelberg 2011.

  18. Aerial gamma ray and magnetic survey: Powder River R and D Project. Portions of the: Forsyth and Hardin, Montana, and the Sheridan, Arminto, Newcastle, and Gillette, Wyoming Quadrangles. Final report

    International Nuclear Information System (INIS)

    1979-05-01

    During the months of August through September, 1978, geoMetrics, Inc. flew approximately 1520 line miles of high sensitivity airborne radiometric and magnetic data in Wyoming and southern Montana within four 1 0 x 2 0 NTMS quadrangles (Arminto, Sheridan, Hardin and Forsyth), and 1390 lines miles in the detail area in eastern Wyoming, as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as three volumes (one Volume I and two Volume II's) in this report. The survey area lies largely within the northern Great Plains Physiographic Province. The deep Powder River Basin is the dominant structure in the area. Portions of the Casper Arch, Big Horn Uplift, and Porcupine Dome fall within the western limits of the area. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Epigenetic uranium deposits lie primarily in the Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 62 groups of statistical values for the R and D area and 127 for the Arminto Detail in the uranium window meet the criteria for valid anomalies and are discussed in their respective interpretation sections. Most anomalies lie in the Tertiary sediments of the Powder River Basin. Some of the anomalies in the Arminto Detail are clearly related to mines or prospects

  19. Aerial gamma ray and magnetic survey: Idaho Project, Hailey, Idaho Falls, Elk City quadrangles of Idaho/Montana and Boise quadrangle, Oregon/Idaho. Final report

    International Nuclear Information System (INIS)

    1979-09-01

    During the months of July and August, 1979, geoMetrics, Inc. collected 11561 line mile of high sensitivity airborne radiometric and magnetic data in Idaho and adjoining portions of Oregon and Montana over four 1 0 x 2 0 NTMS quadrangles (Boise, Hailey, Idaho Falls, and Elk City) as part of the Department of Energy's National Uranium Resource Evaluation Program. All radiometric and magnetic data were fully corrected and interpreted by geoMetrics and are presented as five volumes (one Volume I and four Volume II's). Approximately 95 percent of the surveyed areas are occupied by exposures of intrusive and extrusive rocks. The Cretaceous-Tertiary Idaho Batholith dominates the Elk City and Hailey quadrangles. The Snake River volcanics of Cenozoic Age dominate the Idaho Falls quadrangle and southeast part of the Hailey sheet. Tertiary Columbia River basalts and Idaho volcanics cover the Boise quadrangle. There are only two uranium deposits within the four quadrangles. The main uranium producing areas of Idaho lie adjacent to the surveyed area in the Challis and Dubois quadrangles

  20. Geologic map of the Orchard 7.5' quadrangle, Morgan County, Colorado

    Science.gov (United States)

    Berry, Margaret E.; Slate, Janet L.; Hanson, Paul R.; Brandt, Theodore R.

    2015-01-01

    The Orchard 7.5' quadrangle is located along the South Platte River corridor on the semi-arid plains of eastern Colorado, and contains surficial deposits that record alluvial, eolian, and hillslope processes that have operated through environmental changes from the Pleistocene to the present. The South Platte River, originating high in the Colorado Front Range, has played a major role in shaping the geology of the quadrangle, which is situated downstream of where the last of the major headwater tributaries (St. Vrain, Big Thompson, and Cache la Poudre) join the river. Recurrent glaciation (and deglaciation) of basin headwaters affected river discharge and sediment supply far downstream, influencing alluvium deposition and terrace formation in the Orchard quadrangle. Kiowa and Bijou Creeks, unglaciated tributaries originating east of the Front Range also have played a major role by periodically delivering large volumes of sediment to the river during flood events, which may have temporarily dammed the river. Eolian sand deposits of the Greeley (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of drought. With the onset of irrigation during historic times, the South Platte River has changed from a broad, shallow, and sandy braided river with highly seasonal discharge to a much narrower, deeper river with braided-meandering transition morphology and more uniform discharge. Along this reach, the river has incised into Upper Cretaceous Pierre Shale, which, although buried by alluvial deposits in Orchard quadrangle, is locally exposed downstream along the South Platte River bluff near the Bijou Creek confluence, in some of the larger draws, and along Wildcat Creek.

  1. Geologic map and profile of the north wall of the Snake River Canyon, Eden, Murtaugh, Milner Butte, and Milner quadrangles, Idaho

    Science.gov (United States)

    Covington, H.R.; Weaver, Jean N.

    1990-01-01

    The Snake River Plain is a broad, arcuate region of low relief that extends more than 300 mi across southern Idaho. The Snake River enters the plain near Idaho Falls and flows westward along the southern margin of the eastern Snake River Plain (fig 1), a position mainly determined by the basaltic lava flows that erupted near the axis of the plain. The highly productive Snake River Plain aquifer (water table) is typically less than 500 ft below the land surface, but us deeper than 1,000 ft in a few areas. The Snake River has excavated a canyon into the nearly flat lying basaltic and sedimentary rocks of the  eastern Snake River Plain between Milner Dam and King Hill (fig. 2), a distance of almost 90 mi. For much of its length the canyon intersects the Snake River Plain aquifer, which discharges form the northern canyon wall as springs of variable size, spacing and altitude. Geologic controls on wprings are of importance because nearly 60 percent of the aquifer's discharge occurs as spring flow along this reach of the canyon. This report is one of the several that describes the geologic occurrence of the springs along the northern wall of the Snake River canyone from Milner Dam to King Hill. 

  2. National Uranium Resource Evaluation: Lewistown Quadrangle, Montana

    International Nuclear Information System (INIS)

    Culver, J.C.

    1982-09-01

    Uranium resources in the Lewistown Quadrangle, Montana, were evaluated to a depth of 1500 m (5000 ft). All existing geologic data were considered, including geologic surveys, literature, theses, radiometric surveys, oil- and water-well logs. Additional data were generated during the course of two field seasons, including the collection of more than 350 water, rock, crude oil and panned concentrate samples for analyses, sedimentary facies maps, structural geology and isopach maps, and field examination of reported areas of anomalous radioactivity. Three environments with potential for the occurrence of a minimum of 100 t of 0.01% U 3 O 8 were delineated. The most favorable environment is located in the southeastern portion of the quadrangle; here, Tertiary felsic dikes intrude four potential sandstone host rocks in the Kootenai Formation and the Colorado Shale. Structural-chemical traps for allogenic uranium are provided by the juxtaposition of oil-bearing domes. A second potential environment is located in the Eagle Sandstone in the northwestern and western portions of the quadrangle; here, anomalous water samples were obtained downtip from oxidized outcrops that are structurally related to Tertiary intrusive rocks of the Bearpaw and Highwood Mountains. Lignitic lenses and carbonaceous sandstones deposited in a near-shore lagoonal and deltaic environment provide potential reductants for hexavalent uranium in this environment. A third environment, in the Judith River Formation, was selected as favorable on the basis of water-well and gamma-ray log anomalies and their structural relationship with the Bearpaw Mountains. Organic materials are present in the Judith River Formation as potential reductants. They were deposited in a near-shore fluvial and lagoonal system similar to the depositional environment of the Jackson Group of the Texas Gulf Coast

  3. Airborne gamma-ray spectrometer and magnetometer survey: Harrison Bay Quadrangle, Alaska. Final report, Volume 1

    International Nuclear Information System (INIS)

    1981-02-01

    During the months of July and August of 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over eleven (11) 3 0 x 1 0 and one (1) 4 0 x 1 0 NTMS quadrangles of the Alaska North Slope. These include the Barrow, Wainwright, Meade River, Teshekpuk, Harrison Bay, Beechey Point, Point Lay, Utukok River, Lookout Ridge, Ikpikpuk River, Umiat, and Sagavanirktok quadrangles. This report discusses the results obtained over the Harrison Bay map area

  4. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Inmachuk, Kugruk, Kiwalik, and Koyuk River drainages, Granite Mountain, and the northern Darby Mountains, Bendeleben, Candle, Kotzebue, and Solomon quadrangles, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 653 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from an area covering portions of the Inmachuk, Kugruk, Kiwalik, and Koyuk river drainages, Granite Mountain, and the northern Darby Mountains, located in the Bendeleben, Candle, Kotzebue, and Solomon quadrangles of eastern Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract

  5. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...... of transcription factors, activation of the mitochondrial apoptotic machinery or of other cell death mechanisms. The pro-inflammatory cytokine IL-1β facilitates divalent metal transporter 1 (DMT1)-induced β-cell iron uptake and consequently ROS formation and apoptosis, and we propose that this mechanism provides...

  6. "Possible impacts of climate change on the Danube river along the Iron Gate gorge

    Science.gov (United States)

    Adamovic, M.

    2009-04-01

    The research was dedicated to foreseeing the possible impacts of climate change on water resources in eastern part of Serbia, along the Danube catchment. The Danube basin is in the eastern section of the considered RCM ( Regional climate model). For this purposes, the RCM EBU-POM according to the IPCC scenario A1B, was used in its representation of the hydrological balance over the Danube river basin along Iron Gate gorge, for the time frame 1961-1990 and 2071-2100. The Danube's catchment encompasses continental climate, as it is land-dominated by advection from the surrounding land areas. This part of Danube catchment is greatly affected by the Mediterranean climate, since the Danube runoff gives a relevant contribution of freshwater flux into the Mediterranean sea and it is dependent mostly on precipitated water of Mediterranean origin. On the other, the Dinaric-Balkan mountain chains in the west and the Carpathian mountain bow in the north and east, present distinctive morphological and climatic regions and barriers. The hydrological balance has been computed in two different, but in principle equivalent ways. The first approach, which has a more hydrological nuance, relies on establishing relationships between annual averages of the hydrological balance parameters (E, P, T) in order to get relevant coefficients. The second approach, which is more typically meteorological, relies on the calculation of the E for the time frame 2071-2100 by using the previous coefficients and getting runoff depth (h) and discharge (Q) as the final outputs. The results according to this model, show that the river flow of the Danube, in this part of its basin, will decrease over 50% with a great consequences to the dams Iron Gate I and II, their accumulations and ecosystems. Furthermore, if we take into account predictions made by IPCC which say that the south-east Europe will face temperature growth of 0.2 degrees in the next two decades for the range of SRES scenarios, makes the

  7. Fish and other faunal remains from a Late Iron Age site on the Letaba River, Kruger National Park

    Directory of Open Access Journals (Sweden)

    Ina Plug

    1991-09-01

    Full Text Available Fish remains from Late Iron Age sites in the Transvaal are relatively scarce. It seems as if the people did not utilize the riverine resources extensively. Therefore the unique assemblage of large numbers of fish bones on a Late Iron Age site, provides some insight into the fish population of a section of the Letaba River a few hundred years ago. The presence of other faunal remains provides some information on prehistoric utilization of the environment in general. Hunting strategies and aspects of herding can also be deduced from the faunal remains.

  8. Iron

    Science.gov (United States)

    ... Share: Search the ODS website Submit Search NIH Office of Dietary Supplements Consumer Datos en español Health ... eating a variety of foods, including the following: Lean meat, seafood, and poultry. Iron-fortified breakfast cereals ...

  9. Bedrock geologic map of the Spring Valley, West Plains, and parts of the Piedmont and Poplar Bluff 30'x60' quadrangles, Missouri, including the upper Current River and Eleven Point River drainage basins

    Science.gov (United States)

    Weary, David J.; Harrison, Richard W.; Orndorff, Randall C.; Weems, Robert E.; Schindler, J. Stephen; Repetski, John E.; Pierce, Herbert A.

    2015-01-01

    This map covers the drainage basins of the upper Current River and the Eleven Point River in the Ozark Plateaus physiographic province of southeastern Missouri. The two surface drainage basins are contiguous in their headwaters regions, but are separated in their lower reaches by the lower Black River basin in the southeast corner of the map area. Numerous dye-trace studies demonstrate that in the contiguous headwaters areas, groundwater flows from the Eleven Point River basin into the Current River basin. Much of the groundwater discharge of the Eleven Point River basin emanates from Big Spring, located on the Current River. This geologic map and cross sections were produced to help fulfill a need to understand the geologic framework of the region in which this subsurface flow occurs.

  10. National Uranium Resource Evaluation: Durango Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Theis, N.J.; Madson, M.E.; Rosenlund, G.C.; Reinhart, W.R.; Gardner, H.A.

    1981-06-01

    The Durango Quadrangle (2 0 ), Colorado, was evaluated using National Uranium Resource Evaluation criteria to determine environments favorable for uranium deposits. General reconnaissance, geologic and radiometric investigations, was augmented by detailed surface examination and radiometric and geochemical studies in selected areas. Eight areas favorable for uranium deposits were delineated. Favorable geologic environments include roscoelite-type vanadium-uranium deposits in the Placerville and Barlow Creek-Hermosa Creek districts, sandstone uranium deposits along Hermosa Creek, and vein uranium deposits in the Precambrian rocks of the Needle Mountains area and in the Paleozoic rocks of the Tuckerville and Piedra River Canyon areas. The major portions of the San Juan volcanic field, the San Juan Basin, and the San Luis Basin within the quadrangle were judged unfavorable. Due to lack of information, the roscoelite belt below 1000 ft (300 m), the Eolus Granite below 0.5 mi (0.8 km), and the Lake City caldera are unevaluated. The Precambrian Y melasyenite of Ute Creek and the Animas Formation within the Southern Ute Indian Reservation are unevaluated due to lack of access

  11. Geologic map of the Montauk quadrangle, Dent, Texas, and Shannon Counties, Missouri

    Science.gov (United States)

    Weary, David J.

    2015-04-30

    The Montauk 7.5-minute quadrangle is located in south-central Missouri within the Salem Plateau region of the Ozark Plateaus physiographic province. About 2,000 feet (ft) of flat-lying to gently dipping lower Paleozoic sedimentary rocks, mostly dolomite, chert, sandstone, and orthoquartzite, overlie Mesoproterozoic igneous basement rocks. Unconsolidated residuum, colluvium, terrace deposits, and alluvium overlie the sedimentary rocks. Numerous karst features, such as caves, springs, and sinkholes, have formed in the carbonate rocks. Many streams are spring fed. The topography is a dissected karst plain with elevations ranging from approximately 830 ft where the Current River exits the middle-eastern edge of the quadrangle to about 1,320 ft in sec. 16, T. 31 N., R. 7 W., in the southwestern part of the quadrangle. The most prominent physiographic features within the quadrangle are the deeply incised valleys of the Current River and its major tributaries located in the center of the map area. The Montauk quadrangle is named for Montauk Springs, a cluster of several springs that resurge in sec. 22, T. 32 N., R. 7 W. These springs supply clean, cold water for the Montauk Fish Hatchery, and the addition of their flow to that of Pigeon Creek produces the headwaters of the Current River, the centerpiece of the Ozark National Scenic Riverways park. Most of the land in the quadrangle is privately owned and used primarily for grazing cattle and horses and growing timber. A smaller portion of the land within the quadrangle is publicly owned by either Montauk State Park or the Ozark National Scenic Riverways (National Park Service). Geologic mapping for this investigation was conducted in 2007 and 2009.

  12. Ferricrete, manganocrete, and bog iron occurrences with selected sedge bogs and active iron bogs and springs in the upper Animas River watershed, San Juan County, Colorado

    Science.gov (United States)

    Yager, Douglas B.; Church, Stan E.; Verplanck, Philip L.; Wirt, Laurie

    2003-01-01

    During 1996 to 2000, the Bureau of Land Management, National Park Service, Environmental Protection Agency, United States Department of Agriculture (USDA) Forest Service, and the U.S. Geological Survey (USGS) developed a coordinated strategy to (1) study the environmental effects of historical mining on Federal lands, and (2) remediate contaminated sites that have the greatest impact on water quality and ecosystem health. This dataset provides information that contributes to these overall objectives and is part of the USGS Abandoned Mine Lands Initiative. Data presented here represent ferricrete occurrences and selected iron bogs and springs in the upper Animas River watershed in San Juan County near Silverton, Colorado. Ferricretes (stratified iron and manganese oxyhydroxide-cemented sedimentary deposits) are one indicator of the geochemical baseline conditions as well as the effect that weathering of mineralized rocks had on water quality in the Animas River watershed prior to mining. Logs and wood fragments preserved in several ferricretes in the upper Animas River watershed, collected primarily along streams, yield radiocarbon ages of modern to 9,580 years B.P. (P.L. Verplanck, D.B. Yager, and S.E. Church, work in progress). The presence of ferricrete deposits along the current stream courses indicates that climate and physiography of the Animas River watershed have been relatively constant throughout the Holocene and that weathering processes have been ongoing for thousands of years prior to historical mining activities. Thus, by knowing where ferricrete is preserved in the watershed today, land-management agencies have an indication of (1) where metal precipitation from weathering of altered rocks has occurred in the past, and (2) where this process is ongoing and may confound remediation efforts. These data are included as two coverages-a ferricrete coverage and a bogs and springs coverage. The coverages are included in ArcInfo shapefile and Arc

  13. Hydrogeochemical and stream sediment reconnaissance basic data for Grand Island NTMS Quadrangle, Nebraska/Kansas

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Grand Island Quadrangle, Nebraska/Kansas are reported. Statistical data and areal distributions for uranium and uranium-related variables are presented for 564 groundwater and 532 stream sediment samples. Also included is a brief discussion on location and geologic setting. Groundwater data indicate that uranium concentrations above the 85th percentile occur primarily in shallow wells (0 to 20 m) along or near the Platte and Republican Rivers, which flow west to east along the northern and southern portions of the quadrangle, respectively. Waters containing high concentration of uranium in the northern portion of the quadrangle occur in recent alluvium and nearby glacial deposits. In the southern portion of the quadrangle, waters containing high uranium concentrations occur in Recent alluvium and the Niobrara Chalk in the southeast. Stream sediment data indicate that uranium concentrations above the 85th percentile occur in sediments along the Platte River in the northern portion of the quadrangle and paralleling the Republican River in the southeastern portion. Sediments with high uranium values along the Platte River are derived from glacial and alluvial deposits. High uranium values paralleling the Republican River in the southeast are derived from the Niobrara Chalk, the Carlile Shale, and glacial and alluvial deposits. High U-NT and thorium values, and high values for cerium, niobium, scandium, titanium, vanadium, yttrium, and zirconium suggest the presence of clays and/or residual minerals in the southeast. Sediment derivation and the leaching of possible ash-rich loess and alluvial deposits and/or uranium-rich alkaline evaporite deposits could account for high uranium concentrations in sediment and groundwaters within the quadrangle

  14. Geologic map of the Yacolt quadrangle, Clark County, Washington

    Science.gov (United States)

    Evarts, R.C.

    2006-01-01

    The Yacolt 7.5' quadrangle is situated in the foothills of the western Cascade Range of southwestern Washington approximately 35 km northeast of Portland, Oregon. Since late Eocene time, the Cascade Range has been the locus of an active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. Volcanic and shallow-level intrusive rocks emplaced early in the history of the arc underlie most of the Yacolt quadrangle, forming a dissected and partly glaciated terrain with elevations between 250 and 2180 ft (75 and 665 m). The bedrock surface slopes irregularly but steeply to the southwest, forming the eastern margin of the Portland Basin, and weakly consolidated Miocene and younger basin-fill sediments lap up against the bedrock terrain in the southern part of the map area. A deep canyon, carved by the East Fork Lewis River that flows westward out of the Cascade Range, separates Yacolt and Bells Mountains, the two highest points in the quadrangle. Just west of the quadrangle, the river departs from its narrow bedrock channel and enters a wide alluvial floodplain. Bedrock of the Yacolt quadrangle consists of near-horizontal strata of Oligocene volcanic and volcaniclastic rocks that comprise early products of the Cascade volcanic arc. Basalt and basaltic andesite flows predominate. Most were emplaced on the flanks of a large mafic shield volcano and are interfingered with crudely bedded sections of volcanic breccia of probable lahar origin and a variety of well bedded epiclastic sedimentary rocks. At Yacolt Mountain, the volcanogenic rocks are intruded by a body of Miocene quartz diorite that is compositionally distinct from any volcanic rocks in the map area. The town of Yacolt sits in a north-northwest-trending valley apparently formed within a major fault zone. Several times during the Pleistocene, mountain glaciers moved down the Lewis River valley and spread southward into the map area

  15. Geologic map of the Hiller Mountain Quadrangle, Clark County, Nevada, and Mohave County, Arizona

    Science.gov (United States)

    Howard, Keith A.; Hook, Simon; Phelps, Geoffrey A.; Block, Debra L.

    2003-01-01

    Map Scale: 1:24,000 Map Type: colored geologic map The Hiller Mountains Quadrangle straddles Virgin Canyon in the eastern part of Lake Mead. Proterozoic gneisses and granitoid rocks underlie much of the quadrangle. They are overlain by upper Miocene basin-filling deposits of arkosic conglomerate, basalt, and the overlying Hualapai Limestone. Inception of the Colorado River followed deposition of the Hualapai Limestone and caused incision of the older rocks. Fluvial gravel deposits indicate various courses of the early river across passes through highlands of the Gold Butte-Hiller Mountains-White Hills structural block. Faults and tilted rocks in the quadrangle record tectonic extension that climaxed in middle Miocene time.

  16. Iron, Engineering and Architectural History in Crisis: Following the Case of the River Dee Bridge Disaster, 1847

    Directory of Open Access Journals (Sweden)

    William Max Taylor

    2013-10-01

    Full Text Available This paper establishes relations—historical, material and evidential connections—between two responses to a ‘crisis’. The first features in the history of industrialised iron construction, specifically period reporting on the spectacular collapse of the River Dee bridge in Cheshire, England, in 1847. The second response highlights a blind spot in the historiography of modern architecture. Robert Stephenson became suspect when his cast- and wrought-iron railway bridge across the River Dee failed, resulting in death and injury and continuing uncertainty as to its cause. At the time the incident sparked national furore, setting off a coroner’s inquest followed by a Royal Commission into the perilous state of Britain’s bridges. The inquest jury concluded no one was to blame; rather, it was an accident brought about by use of iron, an uncertain and “treacherous” metal. This explanation has failed to satisfy contemporary materials specialists who have reopened the case, albeit under different terms of reference.      The paper examines the initial verdict, firstly, in view of aspects of the social context of evidence and proof prevailing at the inquest and, secondly, given historical writing on iron construction whereby the inquest’s seemingly imprecise and arbitrary judgment is taken as sign of the subsequent progress of engineering as a practical and moral science. This paper adopts the leitmotif of ‘crisis’ to highlight a parallel history that challenges progressivist narratives of industrialised iron construction and modernist architecture. It invites reflection on the provenance and unstable forms of agency associated with engineering as a propositional and socially contingent enterprise.

  17. National Uranium Resource Evaluation: Baker Quadrangle, Oregon and Idaho

    International Nuclear Information System (INIS)

    Bernardi, M.L.; Robins, J.W.

    1982-05-01

    The Baker Quadrangle, Oregon, and Idaho, was evaluated to identify areas containing geologic environments favorable for uranium deposits. The criteria used was developed for the National Uranium Resource Evaluation program. Stream-sediment reconnaissance and detailed surface studies were augmented by subsurface-data interpretion and an aerial radiometric survey. Results indicate that lower Pliocene sedimentary rocks in the Lower Powder River Valley-Virtue Flat basin are favorable characteristics, they remain unevaluated because of lack of subsurface data. Tertiary sandstones, possibly present at depth in the Long and Cascade Valleys, also remain unevaluated due to lack of subsurface data. All remaining environments in the Baker Quadrangle are unfavorable for all classes of uranium deposits

  18. Geologic map of the Weldona 7.5' quadrangle, Morgan County, Colorado

    Science.gov (United States)

    Berry, Margaret E.; Taylor, Emily M.; Slate, Janet L.; Paces, James B.; Hanson, Paul R.; Brandt, Theodore R.

    2018-03-21

    The Weldona 7.5′ quadrangle is located on the semiarid plains of northeastern Colorado, along the South Platte River corridor where the river has incised into Upper Cretaceous Pierre Shale. The Pierre Shale is largely covered by surficial deposits that formed from alluvial, eolian, and hillslope processes operating in concert with environmental changes from the Pleistocene to the present. The South Platte River, originating high in the Colorado Rocky Mountains, has played a major role in shaping surficial geology in the map area, which is several tens of kilometers downstream from where headwater tributaries join the river. Recurrent glaciation (and deglaciation) of basin headwaters has affected river discharge and sediment supply far downstream, influencing deposition of alluvium and river incision in the Weldona quadrangle. During the Pleistocene the course of the river within the map area shifted progressively southward as it incised, and by late middle Pleistocene the river was south of its present position, cutting and filling deep paleochannels now covered by younger alluvium. The river shifted back to the north during the late Pleistocene. Kiowa and Bijou Creeks are unglaciated tributaries originating in the Colorado Piedmont east of the Front Range that also have played a major role in shaping surficial geology of the map area. Periodically during the late Pleistocene, major flood events on these tributaries deposited large volumes of sediment at their confluences, forming a broad, low-gradient fan of sidestream alluvium that could have occasionally dammed the river for short periods of time. Eolian sand deposits of the Sterling (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of prolonged drought. With the onset of irrigation and damming during historical times, the South Platte River has changed from a broad, shallow, and sandy braided river with highly

  19. Geologic map of the Weldona 7.5′ quadrangle, Morgan County, Colorado

    Science.gov (United States)

    Berry, Margaret E.; Taylor, Emily M.; Slate, Janet L.; Paces, James B.; Hanson, Paul R.; Brandt, Theodore R.

    2018-03-21

    The Weldona 7.5′ quadrangle is located on the semiarid plains of northeastern Colorado, along the South Platte River corridor where the river has incised into Upper Cretaceous Pierre Shale. The Pierre Shale is largely covered by surficial deposits that formed from alluvial, eolian, and hillslope processes operating in concert with environmental changes from the Pleistocene to the present. The South Platte River, originating high in the Colorado Rocky Mountains, has played a major role in shaping surficial geology in the map area, which is several tens of kilometers downstream from where headwater tributaries join the river. Recurrent glaciation (and deglaciation) of basin headwaters has affected river discharge and sediment supply far downstream, influencing deposition of alluvium and river incision in the Weldona quadrangle. During the Pleistocene the course of the river within the map area shifted progressively southward as it incised, and by late middle Pleistocene the river was south of its present position, cutting and filling deep paleochannels now covered by younger alluvium. The river shifted back to the north during the late Pleistocene. Kiowa and Bijou Creeks are unglaciated tributaries originating in the Colorado Piedmont east of the Front Range that also have played a major role in shaping surficial geology of the map area. Periodically during the late Pleistocene, major flood events on these tributaries deposited large volumes of sediment at their confluences, forming a broad, low-gradient fan of sidestream alluvium that could have occasionally dammed the river for short periods of time. Eolian sand deposits of the Sterling (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of prolonged drought. With the onset of irrigation and damming during historical times, the South Platte River has changed from a broad, shallow, and sandy braided river with highly

  20. Geologic map of the Murray Quadrangle, Newton County, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2016-07-06

    This map summarizes the geology of the Murray quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area is on the southern flank of the Ozark dome, an uplift that has the oldest rocks exposed at its center, in Missouri. Physiographically, the Murray quadrangle is within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and Little Buffalo River and their tributaries expose an approximately 1,600-ft-thick (488-meter-thick) sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The Buffalo National River, a park that encompasses the Buffalo River and adjacent land that is administered by the National Park Service is present at the northwestern edge of the quadrangle.Mapping for this study was carried out by field inspection of numerous sites and was compiled as a 1:24,000 geographic information system (GIS) database. Locations and elevation of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade relief and slope maps derived from a U.S. Geological Survey 10-meter digital elevation model as well as orthophotographs were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours, constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation, were drawn based on the elevations of field sites on these contacts well as other limiting information for their minimum elevations above hilltops or their maximum elevations below valley bottoms.

  1. Aerial gamma ray and magnetic survey: Minnesota Project, New Ulm quadrangle of Minnesota. Final report

    International Nuclear Information System (INIS)

    1979-11-01

    The New Ulm 1:250,000 scale quadrangle of southwestern Minnesota is entirely covered by variable thicknesses of Late Wisconsin age glacial deposits (drift). Precambrian bedrock is primarily exposed within the Minnesota River Valley, but only in very small, scattered outcrops. Approximately 50% of the bedrock is composed of Cretaceous sediments. There are no known uranium deposits (or occurrences) within the quadrangle. One hundred forty-six (146) groups of uranium samples were defined as anomalies and are discussed. None were considered significant

  2. Hydrogeochemical and stream sediment reconnaissance basic data for Ashland NTMS Quadrangle, Wisconsin; Michigan; Minnesota

    International Nuclear Information System (INIS)

    1979-01-01

    Results of a reconnaissance geochemical survey of the Ashland Quadrangle, Wisconsin; Michigan; Minnesota are reported. Field and laboratory data are presented for 312 groundwater and 383 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate that the most promising area for potential uranium mineralization occurs along the Douglas Thrust Fault in northern Douglas County, Wisconsin. The Douglas Fault brings Fond du Lac Formation sediments in contact with Chengwatana volcanics where carbonate-rich water derived from the mafic volcanics enter the arkosic Fond du Lac Formation. Another area of interest surrounds the Bad River Indian Reservation in northern Ashland and Iron Counties. The waters here are produced from red lithic sandstone and are also associated with the Douglas Fault. Water chemistry of these waters appears similar to the waters from the Douglas County area. The stream sediment data are inconclusive because of the extensive cover of glacial deposits. A moderately favorable area is present in a strip along Lake Superior in Douglas County, where sediments are derived from arkoses of the Fond du Lac Formation

  3. Aerial gamma ray and magnetic survey: Idaho Project, Idaho Falls quadrangle, Idaho. Final report

    International Nuclear Information System (INIS)

    1979-10-01

    The Idaho Falls quadrangle in southeastern Idaho lies at the juncture of the Snake River Plain, the Northern Rocky Mountains, and the Basin-Range Province. Quaternary basalts of the Snake River Plain occupy 70% of the quadrangle. The rest of the area is covered by uplifted Paleozoic, Mesozoic, and Cenozoic rocks of the Pre-Late Cenozoic Orogenic Complex. Magnetic data apparently show contributions from both shallow and deep sources. The apparent expression of intrusive and extrusive rocks of late Mesozoic and Cenozoic age tends to mask the underlying structural downtrap thought to exist under the Snake River Plain. The Idaho Falls quadrangle has been unproductive in terms of uranium mining. A single claim exists in the Sawtooth Mountains, but no information was found concerning its present status at the time of this study. A total of 169 anomalies are valid according to the criteria set forth in Volume I of this report. These anomalies are scattered throughout the quadrangle, though one large group appears to relate to unnatural radiation sources in the Reactor Test Site area. The most distinctive anomalies occur in the Permian Phosphoria Formation and the Starlight Volcanics in the Port Neuf Mountains

  4. Geologic map of the Hasty Quadrangle, Boone and Newton Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Murray, Kyle E.

    2004-01-01

    This digital geologic map compilation presents new polygon (for example, geologic map unit contacts), line (for example, fault, fold axis, and structure contour), and point (for example, structural attitude, contact elevations) vector data for the Hasty 7.5-minute quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Hasty quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Hasty quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  5. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    International Nuclear Information System (INIS)

    Campbell, J.A.

    1982-09-01

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1 0 x 2 0 Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains

  6. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J A

    1982-09-01

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1/sup 0/ x 2/sup 0/ Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains.

  7. Lower Paleozoic carbonate rocks of Baird Mountains Quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Dumoulin, J.A.; Harris, A.G.

    1985-04-01

    Lower Paleozoic carbonate rocks in the Baird Mountains quadrangle form a relatively thin (about 550 m), chiefly shallow-water succession that has been imbricately thrust and metamorphosed to lower greenschist facies. Middle and Upper Cambrian rocks - the first reported from the western Brooks Range - occur in the northeastern quarter of the quadrangle, south of Angayukaqsraq (formerly Hub) Mountain. They consist of marble grading upward into thin-bedded marble/dolostone couplets and contain pelagiellid mollusks, acetretid brachiopods, and agnostid trilobites. Sedimentologic features and the Pelagiellas indicate a shallow-water depositional environment. Overlying these rocks are Lower and Middle Ordovician marble and phyllite containing graptolites and conodonts of midshelf to basinal aspect. Upper Ordovician rocks in this area are bioturbated to laminated dolostone containing warm, shallow-water conodonts. In the Omar and Squirrel Rivers areas to the west, the Lower Ordovician carbonate rocks show striking differences in lithofacies, biofacies, and thickness. Here they are mainly dolostone with locally well-developed fenestral fabric and evaporite molds, and bioturbated to laminated orange- and gray-weathering dolomitic marble. Upper Silurian dolostone, found near Angayukaqsraq Mountain and on the central Squirrel River, contains locally abundant corals and stronmatoporoids. Devonian carbonate rocks are widely distributed in the Baird Mountains quadrangle; at least two distinct sequences have been identified. In the Omar area, Lower and Middle Devonian dolostone and marble are locally cherty and rich in megafossils. In the north-central (Nakolik River) area, Middle and Upper Devonian marble is interlayered with planar to cross-laminated quartz-carbonate metasandstone and phyllite.

  8. Geologic map of the Leadville North 7.5’ quadrangle, Eagle and Lake Counties, Colorado

    Science.gov (United States)

    Ruleman, Chester A.; Brandt, Theodore R.; Caffee, Marc W.; Goehring, Brent M.

    2018-04-24

    The Leadville North 7.5’ quadrangle lies at the northern end of the Upper Arkansas Valley, where the Continental Divide at Tennessee Pass creates a low drainage divide between the Colorado and Arkansas River watersheds. In the eastern half of the quadrangle, the Paleozoic sedimentary section dips generally 20–30 degrees east. At Tennessee Pass and Missouri Hill, the core of the Sawatch anticlinorium is mapped as displaying a tight hanging-wall syncline and foot-wall anticline within the basement-cored structure. High-angle, west-dipping, Neogene normal faults cut the eastern margin of the broad, Sawatch anticlinorium. Minor displacements along high-angle, east- and west-dipping Laramide reverse faults occurred in the core of the north-plunging anticlinorium along the western and eastern flanks of Missouri Hill. Within the western half of the quadrangle, Meso- and Paleoproterozoic metamorphic and igneous rocks are uplifted along the generally east-dipping, high-angle Sawatch fault system and are overlain by at least three generations of glacial deposits in the western part of the quadrangle. 10Be and 26Al cosmogenic nuclide ages of the youngest glacial deposits indicate a last glacial maximum age of about 21–22 kilo-annum and complete deglaciation by about 14 kilo-annum, supported by chronologic studies in adjacent drainages. No late Pleistocene tectonic activity is apparent within the quadrangle.

  9. Benthic Macroinvertebrate Communities in the Northern Tributaries of the “Iron Gates” Gorge (Danube River

    Directory of Open Access Journals (Sweden)

    Curtean-Bănăduc Angela

    2014-12-01

    Full Text Available The paper presents the structure of the benthonic macro-invertebrates communities in the Berzasca, Sirinia, Liubcova, and Mraconia rivers. The results are based on quantitative benthos samples (95 samples, collected in July 2014 from 19 sampling stations within the study area. In longitudinal profile, the benthonic macro-invertebrate communities of the Sirinia, Liubcova and Berzasca rivers displays relatively large structural variability, while the communities of the Mraconia River displays smaller structural variability. The structure of the benthonic macro-invertebrate communities correlated with the biotope characteristics indicates the good ecological status of the analysed rivers, with the exception of the Berzasca River sector downstream of the town of Berzasca and immediately upstream of the Danube junction, a sector with moderate ecological status due to negative effects from man-made modifications in the lotic biotope of the sector.

  10. Geologic map of the Fort Morgan 7.5' quadrangle, Morgan County, Colorado

    Science.gov (United States)

    Berry, Margaret E.; Taylor, Emily M.; Slate, Janet L.; Paces, James B.; Hanson, Paul R.; Brandt, Theodore R.

    2018-06-08

    The Fort Morgan 7.5′ quadrangle is located on the semiarid plains of northeastern Colorado, along the South Platte River corridor where the river has incised into Upper Cretaceous Pierre Shale. The Pierre Shale is largely covered by surficial deposits that formed from alluvial, eolian, and hillslope processes operating in concert with environmental changes from the late Pliocene to the present. The South Platte River, originating high in the Colorado Rocky Mountains, has played a major role in shaping surficial geology in the map area, which is several tens of kilometers downstream from where headwater tributaries join the river. Recurrent glaciation (and deglaciation) of basin headwaters has affected river discharge and sediment supply far downstream, influencing deposition of alluvium and river incision in the Fort Morgan quadrangle. Distribution and characteristics of the alluvial deposits indicate that during the Pleistocene the course of the river within the map area shifted progressively southward as it incised, and by late middle Pleistocene the river was south of its present position, cutting and filling a deep paleochannel near the south edge of the quadrangle. The river shifted back to the north during the late Pleistocene. Kiowa and Bijou Creeks are unglaciated tributaries originating in the Colorado Piedmont east of the Front Range that also have played a major role in shaping surficial geology of the map area. Periodically during the late Pleistocene, major flood events on these tributaries deposited large volumes of sediment at and near their confluences, forming a broad, low-gradient fan composed of sidestream alluvium that could have occasionally dammed the river for short periods of time. Wildcat Creek, also originating on the Colorado Piedmont, and the small drainage of Cris Lee Draw dissect the map area north of the river. Eolian sand deposits of the Sterling (north of river) and Fort Morgan (south of river) dune fields cover much of the

  11. Geologic map of the Strawberry Butte 7.5’ quadrangle, Meagher County, Montana

    Science.gov (United States)

    Reynolds, Mitchell W.; Brandt, Theodore R.

    2017-06-19

    The 7.5′ Strawberry Butte quadrangle in Meagher County, Montana near the southwest margin of the Little Belt Mountains, encompasses two sharply different geologic terranes.  The northern three-quarters of the quadrangle are underlain mainly by Paleoproterozoic granite gneiss, across which Middle Cambrian sedimentary rocks rest unconformably.  An ancestral valley of probable late Eocene age, eroded northwest across the granite gneiss terrane, is filled with Oligocene basalt and overlying Miocene and Oligocene sandstone, siltstone, tuffaceous siltstone, and conglomerate.  The southern quarter of the quadrangle is underlain principally by deformed Mesoproterozoic sedimentary rocks of the Newland Formation, which are intruded by Eocene biotite hornblende dacite dikes.  In this southern terrane, Tertiary strata are exposed only in a limited area near the southeast margin of the quadrangle.  The distinct terranes are juxtaposed along the Volcano Valley fault zone—a zone of recurrent crustal movement beginning possibly in Mesoproterozoic time and certainly established from Neoproterozoic–Early Cambrian to late Tertiary time.  Movement along the fault zone has included normal faulting, the southern terrane faulted down relative to the northern terrane, some reverse faulting as the southern terrane later moved up against the northern terrane, and lateral movement during which the southern terrane likely moved west relative to the northern terrane.  Near the eastern margin of the quadrangle, the Newland Formation is locally the host of stratabound sulfide mineralization adjacent to the fault zone; west along the fault zone across the remainder of the quadrangle are significant areas and bands of hematite and iron-silicate mineral concentrations related to apparent alteration of iron sulfides.  The map defines the distribution of a variety of surficial deposits, including the distribution of hematite-rich colluvium and iron-silicate boulders.  The southeast

  12. The role of iron-sulfides on cycling of organic carbon in the St Lawrence River system: Evidence of sulfur-promoted carbon sequestration?

    Science.gov (United States)

    Balind, K.; Barber, A.; Gélinas, Y.

    2017-12-01

    The biogeochemical cycle of sulfur is intimately linked with that of carbon, as well as with that of iron through the formation of iron-sulfur complexes. Iron-sulfide minerals such as mackinawite (FeS) and greigite (Fe3S4) form below the oxic/anoxic redox boundary in marine and lacustrine sediments and soils. Reactive iron species, abundant in surface sediments, can undergo reductive dissolution leading to the formation of soluble Fe(II) which can then precipitate in the form of iron sulfur species. While sedimentary iron-oxides have been thoroughly explored in terms of their ability to sorb and sequester organic carbon (OC) (Lalonde et al.; 2012), the role of FeS in the long-term preservation of OC remains undefined. In this study, we present depth profiles for carbon, iron, and sulfur in the aqueous-phase, along with data from sequential extractions of sulfur speciation in the solid-phase collected from sediment cores from the St Lawrence River and estuarine system, demonstrating the transition from fresh to saltwater sediments. Additionally, we present synthetic iron sulfur sorption experiments using both model and natural organic molecules in order to assess the importance of FeS in sedimentary carbon storage.

  13. Insights into iron sources and pathways in the Amazon River provided by isotopic and spectroscopic studies

    Science.gov (United States)

    Mulholland, Daniel Santos; Poitrasson, Franck; Boaventura, Geraldo Resende; Allard, Thierry; Vieira, Lucieth Cruz; Santos, Roberto Ventura; Mancini, Luiz; Seyler, Patrick

    2015-02-01

    The present study investigated the weathering and transport mechanisms of Fe in the Amazon River. A particular emphasis was placed on Fe partitioning, speciation, and isotopic fractionation in the contrasting waters of the Solimões and Negro rivers and their mixing zone at the beginning of the Amazon River. Samples collected in the end-member rivers and thirteen sites distributed throughout the mixing zone were processed through frontal vacuum filtration and tangential-flow ultrafiltration to separate the different suspended solid fractions, i.e., particulate (P > 0.45 μm and P > 0.22 μm), colloidal (0.22 μm > C > 5 kDa) and truly dissolved elements (TD particulate fractions yielded light isotopic compositions of -0.344‰ for P > 0.22 μm and -0.104‰ for P > 0.45 μm fractions). The mineral particulate-rich waters of the Solimões River had dissolved and colloidal fractions with light isotopic composition (-0.532‰ and -0.176‰, respectively), whereas the particulate fractions yielded δ57Fe values close to those of the continental crust (i.e., -0.029‰ for P > 0.22 μm and 0.028‰ for P > 0.45 μm). Ten kilometers downstream from the Negro and Solimões junction, the concentrations of colloidal and dissolved Fe species deviate markedly from conservative mixing. A maximum Fe loss of 43 μg/L (i.e., 50% of the dissolved and colloidal Fe) is observed 110 km downstream from the rivers junction. The contrasting Negro and Solimões Rivers isotopic compositions along the pore-sized water fractions is attributable to the biogeochemical processes involving different types of upland soils and parental materials. For instance, the isotopic composition of colloidal and dissolved Fe from the Negro River are consistent with Fe oxidation and complexation mechanisms at the interface between waterlogged podzols and river networks, as supported by strong organo-Fe complexes signals observed by EPR. Conversely, the particulate and colloidal fractions from the Solim

  14. National Uranium Resource Evaluation: Salina Quadrangle, Utah

    International Nuclear Information System (INIS)

    Lupe, R.D.; Campbell, J.A.; Franczyk, K.J.; Luft, S.J.; Peterson, F.; Robinson, K.

    1982-09-01

    Two stratigraphic units, the Late Jurassic Salt Wash Member of the Morrison Formation and the Triassic Chinle Formation, were determined to be favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the US Department of Energy in the Salina 1 x 2 0 Quadrangle, Utah. Three areas judged favorable for the Salt Wash Member are the Tidwell and Notom districts, and the Henry Mountains mineral belt. The criteria used to establish favorability were the presence of: (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Four favorable areas have been outlined for the Chinle Formation. These are the San Rafael Swell, Inter River, and the Orange Cliffs subareas and the Capitol Reef area. The criteria used to establish these areas are: the sandstone-to-mudstone ratios and the geographic distribution of the Petrified Forest Member of the Chinle Formation which is considered as the probable source for the uranium

  15. Geology and mineral resources of the Johnson City, Phenix City, and Rome 10 x 20 NTMS quadrangles

    International Nuclear Information System (INIS)

    Karfunkel, B.S.

    1981-11-01

    This document provides geologic and mineral resources data for the Savannah River Laboratory-National Uranium Resource Evaluation hydrogeochemical and stream-sediment reports for the Johnson City, Phenix City, and Rome 1 0 x 2 0 National Topographic Map Series quadrangles in the southeastern United States

  16. National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana

    International Nuclear Information System (INIS)

    Damp, J.N.; Jennings, M.D.

    1982-04-01

    The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated

  17. National uranium resource evaluation, Dickinson quadrangle, North Dakota

    International Nuclear Information System (INIS)

    Lee, C.H.; Pack, D.D.; Galipeau, J.M.; Lawton, D.E.

    1982-05-01

    The Dickinson Quadrangle, North Dakota, was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for uranium deposits. Criteria used in the evaluation were developed for the National Uranium Resource Evaluation program. The evaluation primarily consisted of a surface study, subsurface investigation, and an in-house ground-water geochemical study. These studies were augumented by aerial radiometric and hydrogeochemical and stream-sediment studies. The evaluation results indicate that the Sentinel Butte and Tongue River Members of the Fort Union Formation have environments favorable for uraniferous lignite deposits. The Sentinel Butte, Tongue River, and Ludlow Members of the Fort Union Formation are favorable for sandstone uranium deposits. Environments unfavorable for uranium deposits are the remaining Cenozoic rocks and all the rocks of the Cretaceous

  18. National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana

    Energy Technology Data Exchange (ETDEWEB)

    Damp, J N; Jennings, M D

    1982-04-01

    The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated.

  19. Effects of mine drainage on the River Hayle, Cornwall. Factors affecting concentrations of copper, zinc, and iron in water, sediments and dominant invertebrate fauna

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.E.

    1977-02-15

    Concentrations of copper, zinc and iron were measured in waters, sediments and invertebrates collected from the River Hayle. In river water at least 70% of copper and iron was associated with the ''particulate'' fraction whereas 80% of zinc was in the ''soluble'' form. Although total concentrations of zinc in water exceeded those of copper approximately ten fold, copper predominated over zinc in the sediments by a factor of approximately three. Iron was the most abundant metal recorded in both water and sediments. Seasonal differences in ''total'' metal content of waters suggested that concentrations of copper, zinc and iron increased during periods of high flow and decreased during lower flows. Copper concentrations in the sediment, unlike zinc and iron, showed markedly higher values during the summer sampling period when flows were minimal. In the ''free-living'' Trichoptera larvae, concentrations of copper and zinc in the tissue appeared to follow copper and zinc levels in the water. Similar relationships in Odonata and Plecoptera larvae were not obtained. Factors affecting animal/metal relationships are discussed with particular reference to adaptation shown by organisms exposed to high concentrations of heavy metals in their environment.

  20. Geochemistry of manganese, iron, uranium, lead-210 and major ions in the Susquehanna River

    International Nuclear Information System (INIS)

    Lewis, D.M.

    1976-01-01

    The change in water composition accompanying a change in discharge of large streams and the Susquehanna River results from the change in the proportions of the total flow composed of type waters of constant composition. This change in the flow proportions is due to the different hydrologic responses to precipitation inputs of basins underlain by different single rock types. The in-river precipitation of mine-drainage-injected Mn and Fe was studied at a pH of approximately 7. For Mn the removal from solution appears to be first order. The rate constant is 10 3 times greater than the extrapolated autocatalytic rate constant of previous laboratory experiments. The study of the removal of Fe from solution yields a first order rate constant consistent with previous laboratory experiments. Lead-210 was used as a natural tracer to study the fate of trace metals

  1. Single-edition quadrangle maps

    Science.gov (United States)

    ,

    1998-01-01

    In August 1993, the U.S. Geological Survey's (USGS) National Mapping Division and the U.S. Department of Agriculture's Forest Service signed an Interagency Agreement to begin a single-edition joint mapping program. This agreement established the coordination for producing and maintaining single-edition primary series topographic maps for quadrangles containing National Forest System lands. The joint mapping program saves money by eliminating duplication of effort by the agencies and results in a more frequent revision cycle for quadrangles containing national forests. Maps are revised on the basis of jointly developed standards and contain normal features mapped by the USGS, as well as additional features required for efficient management of National Forest System lands. Single-edition maps look slightly different but meet the content, accuracy, and quality criteria of other USGS products. The Forest Service is responsible for the land management of more than 191 million acres of land throughout the continental United States, Alaska, and Puerto Rico, including 155 national forests and 20 national grasslands. These areas make up the National Forest System lands and comprise more than 10,600 of the 56,000 primary series 7.5-minute quadrangle maps (15-minute in Alaska) covering the United States. The Forest Service has assumed responsibility for maintaining these maps, and the USGS remains responsible for printing and distributing them. Before the agreement, both agencies published similar maps of the same areas. The maps were used for different purposes, but had comparable types of features that were revised at different times. Now, the two products have been combined into one so that the revision cycle is stabilized and only one agency revises the maps, thus increasing the number of current maps available for National Forest System lands. This agreement has improved service to the public by requiring that the agencies share the same maps and that the maps meet a

  2. Geology of the Cupsuptic quadrangle, Maine

    Science.gov (United States)

    Harwood, David S.

    1966-01-01

    The Cupsuptic quadrangle, in west-central Maine, lies in a relatively narrow belt of pre-Silurian rocks extending from the Connecticut River valley across northern New Hampshire to north-central Maine. The Albee Formation, composed of green, purple, and black phyllite with interbedded-quartzite, is exposed in the core of a regional anticlinorium overlain to the southeast by greenstone of the Oquossoc Formation which in turn is overlain by black slate of the Kamankeag Formation. In the northern part of the quadrangle the Albee Formation is overlain by black slate, feldspathic graywacke, and minor greenstone of the Dixville Formation. The Kamankeag Formation is dated as 1-ate Middle Ordovician by graptolites (zone 12) found near the base of the unit. The Dixville Formation is correlated with the Kamankeag Formation and Oquossoc Formation and is considered to be Middle Ordovician. The Albee Formation is considered to be Middle to Lower Ordovician from correlations with similar rocks in northeastern and southwestern Vermont. The Oquossoc and Kamankeag Formations are correlated with the Amonoosuc and Partridge Formations of northern New Hampshire. The pre-Silurian rocks are unconformably overlain by unnamed rocks of Silurian age in the southeast, west-central, and northwest ninths of the quadrangle. The basal Silurian units are boulder to cobble polymict conglomerate and quartz-pebble conglomerate of late Lower Silurian (Upper Llandovery) age. The overlying rocks are either well-bedded slate and quartzite, silty limestone, or arenaceous limestone. Thearenaceous limestone contains Upper Silurian (Lower Ludlow) brachiopods. The stratified rocks have been intruded by three stocks of biotite-muscovite quartz monzonite, a large body of metadiorite and associated serpentinite, smaller bodies of gabbro, granodiorite, and intrusive felsite, as well as numerous diabase and quartz monzonite dikes. The metadiorite and serpentinite, and possibly the gabbro and granodiorite are Late

  3. Possible Links Among Iron Reduction, Silicate Weathering, and Arsenic Mobility in the Mississippi River Alluvial Aquifer in Louisiana

    Science.gov (United States)

    Borrok, D. M.; Lenz, R. M.; Jennings, J. E.; Gentry, M. L.; Vinson, D. S.

    2017-12-01

    The Lower Mississippi River Alluvial Aquifer (LMRAA) is a critical groundwater resource for Arkansas, Mississippi, and Louisiana. Part of the aquifer in Louisiana contains waters rich in Na, HCO3, Fe, and As. We hypothesize that CO2 generated from dissimilatory iron reduction (DIR) within the aquifer acts to weather Na-bearing silicates, contributing Na and HCO3, which may influence the mobility of As. We examined the geochemistry of the aquifer using historical and new data collected from the Louisiana Department of Environmental Quality (LDEQ). Major and trace element data were collected from about 25 wells in the LMRAA in Louisiana every three years from 2001-2016. Samples collected in 2016 were additionally analyzed for water isotopes and the δ13C of dissolved inorganic carbon (DIC). Results suggest that groundwater in the LMRAA can be broken into two broad categories, (1) water with a molar Na/Cl ratio near 1 and/or high salinity, and (2) water with excess Na (i.e., the molar concentration of Na is greater than that of Cl) that is often higher in alkalinity (up to 616 mg/L as CaCO3), Fe (up to 21 mg/L), and sometimes As (up to 67 µg/L). Concentrations of dissolved Fe were found to correlate, at least weakly, with alkalinity and Na excess. Six of the approximately 25 wells historically sampled consistently had concentrations of As >10 µg/L. These locations generally correspond with groundwater characterized by higher Fe, alkalinity, and Na-excess. Initial results for δD and δ18O suggest that more isotopically depleted waters are sourced from the Mississippi River, whereas local precipitation recharges the aquifer farther from the river (δ18O ranged from -7.5‰ to -3.5‰). Part of the δ13C-DIC variation (-17.4‰ to -10.6‰) is consistent with pH modification (6.5-7.7) along differing horizontal and vertical flow paths in the aquifer. This geochemistry appears to be controlled in part by geology. Areas nearer to the current Mississippi River where

  4. Results of investigating the macroinvertebrate community of the Danube River on the sector upstream from the Iron Gate (km 1083-1071

    Directory of Open Access Journals (Sweden)

    Paunović Momir M.

    2005-01-01

    Full Text Available The present work cites results of investigating aquatic macroinvertebrates of the Danube River on the sector upstream from the Iron Gate (KM 1083-1071. The investigated part is interesting from the hydrobiological standpoint above all due to differences of faunal composition in relation to higher sections that could be expected in view of differences in overall characteristics of the river. A rich macroinvertebrate community (84 taxa was observed. The diversity of taxa is primarily a result of habitat diversity within the given stretch. Oligochaeta and Mollusca were the principal components.

  5. Geology of the Delta, Escalante, Price, Richfield, and Salina 10 x 20 quadrangles, Utah

    International Nuclear Information System (INIS)

    Thayer, P.A.

    1981-11-01

    The National Uranium Resource Evaluation (NURE) program was established to evaluate domestic uranium resources in the continental United States and to identify areas favorable for uranium exploration. The Grand Junction Office of the Department of Energy is responsible for administering the program. The Savannah River Laboratory (SRL) is responsible for hydrogeochemical and stream-sediment reconnaissance (HSSR) of 3.9 million km 2 (1,500,000 mi 2 ) in 37 eastern and western states. This document provides geologic and mineral resources reports for the Delta, Escalante, Price, Richfield, and Salina 1 0 x 2 0 National Topographic Map Series quadrangles, Utah. The purpose of these reports is to provide background geologic and mineral resources information to aid in the interpretation of NURE geochemical reconnaissance data. Except for the Escalante Quadrangle, each report is accompanied by a geologic map and a mineral locality map (Plates 1-8, in pocket). The US Geological Survey previously published a 1 0 x 2 0 geologic map of the Escalante Quadrangle and described the uranium deposits in the area (Hackman and Wyant, 1973). NURE hydrogeochemical and stream-sediment reconnaissance data for these quadrangles have been issued previously in some of the reports included in the references

  6. National Uranium Resource Evaluation: Harrisburg Quadrangle, Pennsylvania

    International Nuclear Information System (INIS)

    Popper, G.H.P.

    1982-08-01

    The Harrisburg Quadrangle, Pennsylvania, was evaluated to identify geologic environments and delineate areas favorable for uranium deposits. The evaluation, based primarily on surface reconnaissance, was carried out for all geologic environments within the quadrangle. Aerial radiometric and hydrogeochemical and stream-sediment reconnaissance surveys provided the supplementary data used in field-work followup studies. Results of the investigation indicate that environments favorable for peneconcordant sandstone uranium deposits exist in the Devonian Catskill Formation. Near the western border of the quadrangle, this environment is characterized by channel-controlled uranium occurrences in basal Catskill strata of the Broad Top syncline. In the east-central portion of the quadrangle, the favorable environment contains non-channel-controlled uranium occurrences adjacent to the Clarks Ferry-Duncannon Members contact. All other geologic environments are considered unfavorable for uranium deposits

  7. Refurbishment and upgrading of Iron Gates I Hydroelectric and Navigation System on the Danube River

    International Nuclear Information System (INIS)

    Scvortov, F.; Vasiliu, A.; Rosca, N.

    1996-01-01

    This work shows the problems of the refurbishing the hydroelectric units of the Iron Gates 1 Hydroelectric and Navigation System, operating since 1970. Their long and intensive utilization leads to the necessity of their refurbishment. One is demonstrated by detailed studies that it is sensible and efficient to perform both rehabilitation of the existent hydroelectric units and their power increasing from 175 MW to 190 MW, and prior to all these, as a first step, to install an additional hydroelectric unit (G7) for each system with a capacity of 190 MW. Complex technical and energetic-economical problems appear in realizing this objective due to the necessity of analysing a great volume of data in view of taking a correct decision. (author). 7 figs

  8. Determination of caesium in river and sea waters by electrothermal atomic-absorption spectrometry. Interference of cobalt and iron

    International Nuclear Information System (INIS)

    Frigieri, P.; Trucco, R.; Ciaccolini, I.; Pampurini, G.

    1980-01-01

    For the enrichment or the simple recovery of caesium from river and sea waters, selective inorganic exchangers were considered. Ammonium hexacyanocobalt ferrate (NCFC) was chosen because it can be used in strongly acidic solutions (with the exception of concentrated sulphuric acid). Caesium is fully retained by the NCFC chromatographic column and can then be recovered by dissolution in hot sulphuric acid. The solution is then diluted and analysed, either directly or following caesium separation, by atomic-absorption spectrometry. To check the reliability of the analytical procedure, a series of experiments were carried out in which the possible interfering species were added to the aqueous caesium solution prior to analysis. The well known ionic interference in flame atomisation processes caused by magnesium, calcium, strontium and metals was investigated by electrothermal atomisation measurements. The experimental data showed that this effect does not occur even when these elements are present in concentrations of the order of thousands of parts per million. However, strong interferences from iron and cobalt were observed. (author)

  9. Hydrogeochemical and stream sediment reconnaissance basic data for Watertown NTMS Quadrangle, South Dakota; Minnesota

    International Nuclear Information System (INIS)

    1981-01-01

    Results of a reconnaissance geochemical survey of the Watertown Quadrangle are reported. Field and laboratory data are presented for 711 groundwater and 603 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate that high uranium concentrations are derived predominantly from glacial aquifers of variable water composition located on the Coteau des Prairies. Elements associated with high uranium values in these waters include barium, calcium, copper, iron, magnesium, selenium, sulfate, and total alkalinity. Low uranium values were observed in waters originating from the Cretaceous Dakota sandstone whose water chemistry is characterized by high concentrations of boron, sodium, and chloride. Stream sediment data indicate that high uranium concentrations are scattered across the glacial deposits of the Coteau des Prairies. A major clustering of high uranium values occurs in the eastern portion of the glaciated quadrangle and is associated with high concentrations of selenium, lithium, iron, arsenic, chromium, and vanadium. The sediment data suggest that the drift covering the Watertown Quadrangle is compositionally homogeneous, although subtle geochemical differences were observed as a result of localized contrasts in drift source-rock mineralogy and modification of elemental distributions by contemporaneous and postglacial hydrologic processes

  10. Hydrogeochemical and stream sediment reconnaissance basic data report for Williams NTMS quadrangle, Arizona

    International Nuclear Information System (INIS)

    Wagoner, J.L.

    1979-02-01

    Wet and dry sediments were collected throughout the 18,500-km 2 arid-to-semiarid region and water samples at available streams, springs, and wells. Samples were collected between August 1977 and January 1978. Results of neutron activation analyses of uranium and trace elements and other field and laboratory analyses are presented in tabular hardcopy and microfiche format. The report includes six full-size overlays for use with the Williams NTMS 1:250,000 quadrangle. Sediment samples are divided into five general groups according to the source rock from which the sediment was derived. Background uranium concentrations for the quadrangle are relatively low, ranging from 1.91 to 2.40 ppM, with the highest associated with the Precambrian igneous and metamorphic complexes of the Basin and Range province. Uranium correlates best with the rare-earth elements and iron, scandium, titanium, and manganese. Known uranium occurrences are not readily identified by the stream sediment data

  11. Geologic map of the Tuba City 30' x 60' quadrangle, Coconino County, northern Arizona

    Science.gov (United States)

    Billingsley, George H.; Stoffer, Philip W.; Priest, Susan S.

    2012-01-01

    The Tuba City 30’ x 60’ quadrangle encompasses approximately 5,018 km² (1,920 mi²) within Coconino County, northern Arizona. It is characterized by nearly flat lying to gently dipping sequences of Paleozoic and Mesozoic strata that overly tilted Precambrian strata or metasedimentary and igneous rocks that are exposed at the bottom of Grand Canyon. The Paleozoic rock sequences from Cambrian to Permian age are exposed in the walls of Grand Canyon, Marble Canyon, and Little Colorado River Gorge. Mesozoic sedimentary rocks are exposed in the eastern half of the quadrangle where resistant sandstone units form cliffs, escarpments, mesas, and local plateaus. A few Miocene volcanic dikes intrude Mesozoic rocks southwest, northwest, and northeast of Tuba City, and Pleistocene volcanic rocks representing the northernmost extent of the San Francisco Volcanic Field are present at the south-central edge of the quadrangle. Quaternary deposits mantle much of the Mesozoic rocks in the eastern half of the quadrangle and are sparsely scattered in the western half. Principal folds are the north-south-trending, east-dipping Echo Cliffs Monocline and the East Kaibab Monocline. The East Kaibab Monocline elevates the Kaibab, Walhalla, and Coconino Plateaus and parts of Grand Canyon. Grand Canyon erosion has exposed the Butte Fault beneath the east Kaibab Monocline, providing a window into the structural complexity of monoclines in this part of the Colorado Plateau. Rocks of Permian and Triassic age form the surface bedrock of Marble Plateau and House Rock Valley between the East Kaibab and Echo Cliffs Monoclines. The Echo Cliffs Monocline forms a structural boundary between the Marble Plateau to the west and the Kaibito and Moenkopi Plateaus to the east. Jurassic rocks of the Kaibito and Moenkopi Plateaus are largely mantled by extensive eolian sand deposits. A small part of the northeast-dipping Red Lake Monocline is present in the northeast corner of the quadrangle. A broad and

  12. National Uranium Resource Evaluation: Wells Quadrangle, Nevada, Idaho, and Utah

    International Nuclear Information System (INIS)

    Proffitt, J.L.; Mayerson, D.L.; Parker, D.P.; Wolverson, N.; Antrim, D.; Berg, J.; Witzel, F.

    1982-08-01

    The Wells 2 0 Quadrangle, Nevada, Idaho, and Utah, was evaluated using National Uranium Resource Evaluation criteria to delineate areas favorable for uranium deposits. Our investigation has resulted in the delineation of areas that contain Tertiary sedimentary rocks favorable for hydroallogenic deposits in the Mountain City area (Favorable Area A) and in the Oxley Peak area north of Wells (Favorable Area B). Environments considered to be unfavorable for uranium deposits include Tertiary felsic volcanic, felsic plutonic, intermediate to mafic volcanic, Paleozoic and Mesozoic sedimentary rocks, Precambrian rocks, and most Tertiary sedimentary rocks located outside the favorable areas. Present-day basins are unevaluated environments because of a paucity of adequate outcrop and subsurface data. However, the scarce data indicate that some characteristics favorable for uranium deposits are present in the Susie Creek-Tule Valley-Wild Horse basin, the Contact-Granite Range-Tijuana John stocks area, the Charleston Reservoir area, and the Wells-Marys River basin

  13. National uranium resource evaluation, Hot Springs Quadrangle, South Dakota and Nebraska

    International Nuclear Information System (INIS)

    Truesdell, D.B.; Daddazio, P.L.; Martin, T.S.

    1982-06-01

    The Hot Springs Quadrangle, South Dakota and Nebraska, was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for the occurrence of uranium deposits. The evaluation used criteria developed by the National Uranium Resource Evaluation program. Surface reconnaissance was conducted using a portable scintillometer and a gamma spectrometer. Geochemical sampling was carried out in all geologic environments accessible within the quadrangle. Additional investigations included the followup of aerial radiometric and hydrogeochemical anomalies and a subsurface study. Environments favorable for sandstone-type deposits occur in the Inyan Kara Group and Chadron Member of the White River Group. Environments favorable for marine black-shale deposits occur in the Hayden Member of the Minnelusa Formation. A small area of the Harney Peak Granite is favorable for authigenic deposits. Environments considered unfavorable for uranium deposits are the Precambrian granitic and metasedimentary rocks and Paleozoic, Mesozoic, and Tertiary sedimentary rocks other than those previously mentioned

  14. Aerial gamma ray and magnetic survey: Minnesota Project, Cheboygan and Alpena quadrangles, Michigan. Final report

    International Nuclear Information System (INIS)

    1980-02-01

    The Cheboygan and Alpena 1 0 x 2 0 quadrangles of Michigan are covered almost everywhere (United States only) with Wisconsin age glacial deposits (moraines, outwash, leak deposits, etc.) of variable thickness. Where exposed, bedrock is of Early and Middle Paleozoic age, and consists almost entirely of limestone and dolomite. There are no uranium deposits (or occurrences) known within the study area, though the Elliot Lake quartz pebble conglomerate uranium deposit lies to the north in the Canadian section of the Blind River quadrangle. Magnetic data illustrate relative depth to magnetic basement in the area. Higher frequency/amplitude wavelengths in the eastern and northern sections of the lower peninsula may be a reflection of the lithologic character of the Precambrian bedrock. Twenty-four groups of uranium samples were defined as anomalies and are discussed briefly in this report. None of them are considered significant

  15. Uranium hydrogeochemical and stream sediment reconnaissance of the McGrath and Talkeetna NTMS Quadrangles, Alaska, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Aamodt, P.L.; Jacobsen, S.I.; Hill, D.E.

    1979-04-01

    During the summer of 1977, 1268 water and 1206 sediment samples were collected from 1292 lakes and streams throughout the two quadrangles in south-central Alaska. Each of the water samples was analyzed for uranium and 12 other elements and each of the sediment samples for uranium, thorium, and 41 other elements. Uranium concentrations in water samples range from below 0.02 ppB to 19.64 ppB. In general, lake waters contain somewhat less uranium than stream waters, and the highest concentrations in both sample types were found in or near the Alaska Range. Uranium concentrations in sediment samples range from 0.10 ppM to 172.40 ppM. The highest concentrations are found in samples collected in the Alaska Range near areas of felsic igneous rocks. Sediment samples having high thorium concentrations also come from areas underlain by felsic igneous rocks in the Alaska Range. The following areas were found to be most favorable for significant uranium mineralization: (1) the Windy Fork stock on the southeastern boundary of the McGrath quadrangle; (2) an area in the northwest corner of the Talkeetna quadrangle near the Mespelt prospects; (3) the Hidden River drainage in the northeast corner of the Talkeetna quadrangle; (4) an area near Chelatna Lake in the center of the Talkeetna quadrangle; (5) the Kichatna River drainage, near the western border of the Talkeetna quadrangle; and (6) an area near the Mount Estelle pluton in the extreme southwest corner of the Talkeetna quadrangle

  16. Total and labile metals in surface sediments of the tropical river-estuary system of Marabasco (Pacific coast of Mexico): Influence of an iron mine.

    Science.gov (United States)

    Marmolejo-Rodríguez, Ana Judith; Prego, Ricardo; Meyer-Willerer, Alejandro; Shumilin, Evgueni; Cobelo-García, Antonio

    2007-01-01

    Marabasco is a tropical river-estuary system comprising the Marabasco river and the Barra de Navidad Lagoon. The river is impacted by the Peña Colorada iron mine, which produces 3.5 million tons of pellets per year. Thirteen surface sediment samples were collected in May 2005 (dry season) in order to establish background levels of Al, Cd, Co, Cu, Fe, Ni, Pb, and Zn in the system and to ascertain the potential mobility of metals in the sediments. Analyses were carried out in the fraction finer than 63 microm, and labile metals extracted according the BCR procedure. Certified reference materials were used for validation of methods. Total concentrations of Cd, Co, Cu, Ni, Pb, and Zn were in the range of 0.05-0.34, 6-95, 0.7-31, 9-26, 2-18, and 53-179 mgkg(-1), respectively; Al and Fe ranges of 24-127, and 26-69 mgg(-1) correspondingly. Cadmium was found to be significantly labile in the sediments (20-100%), followed by Co (0-35%), Ni (3-16%) and Zn (0-25%), whereas the labile fraction for Cu, Fe and Pb was almost negligible (iron mine on the Marabasco system is lower than expected when compared with other similar World systems influenced by mining activities.

  17. Airborne gamma-ray spectrometer and magnetometer survey: Crescent Quadrangle, Burns Quadrangle, Canyon City Quadrangle, Bend Quadrangle, Salem Quadrangle (Oregon). Final report

    International Nuclear Information System (INIS)

    1981-01-01

    An airborne combining radiometric and magnetic survey was performed for the Department of Energy over the area covered by the Burns, Crescent, Canyon City, Bend, and Salem, Washington 1:250,000 National Topographic Map Series, 1 0 x 2 0 quadrangle maps. The survey was a part of DOE's National Aerial Radiometric Reconnaissance program, which is in turn a part of the National Uranium Resource Evaluation program. Data were collected by a helicopter equipped with a gamma-ray spectrometer having a large crystal volume, and a high sensitivity proton precession magnetometer. The radiometric system was calibrated at the Walker Field Calibration pads and the Lake Mead Dynamic Test range. Data quality was ensured throughout the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, plotted, and contoured to produce anomaly maps based on the radiometric response of individual geological units. These maps were interpreted and an anomaly interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data processing procedures, the data display format, the interpretation rationale, and the interpretation methodology. A separate Volume II for each quadrangle contains the data displays and the interpretation results

  18. Studies on the concentrations of iron-55 in South Pacific Ocean water and marine organisms and in the Columbia River. Progress report, 1 April 1975--31 March 1976

    International Nuclear Information System (INIS)

    Jennings, C.D.

    1976-01-01

    Progress is reported on studies of the distribution of iron-55 in the marine environment. Direct measurements of iron-55 in seawater and in zooplankton showed that marine organisms concentrate iron-55 in preference to stable iron. Measurements of iron-55 in Pacific sediments gave us an indication of the amount of iron-55 getting through the water column. Measurements in organisms from different depths in the ocean and the measurements in sediments give us a clearer picture of the rate of vertical transport in the ocean. It is also quite clear that the iron-55 in sediments in the equatorial Pacific are concentrated in a very thin surface layer because samples more than a centimeter below the surface were below detectable limits, whereas most surface samples had detectable amounts of iron-55. A series of treatments of Columbia River sediments with hydrochloric acid of strengths 0.1 M, 0.25 M, 1.4 M, 6 M and boiling 6 M respectively, showed that decreasing specific activity results in each subsequent treatment, indicating that the iron-55 can be leached more easily than stable iron. This observation provides some clues to what may be happening to particles in seawater. Organisms may remove from particles the more easily removable iron-55 of higher specific activity, leaving behind particles with a lower specific activity

  19. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Greenwood quadrangle of Mississippi, Arkansas and Louisiana. Final report

    International Nuclear Information System (INIS)

    1980-08-01

    The Greenwood quadrangle covers a region largely within the Mississippi River flood plain in the extreme northern Gulf Coastal Province. Tertiary sediments in this area are relatively thick, and overlie a Mesozoic section gradually shoaling to the north. The Ouachita Tectonic Zone strikes southeasterly through the center of the quadrangle. The exposed sequence is almost entirely Recent alluvium of the flood plain area. Older Cenozoic deposits crop out in upland areas on both sides of the river valley. A search of available literature revealed no known uranium deposits. Ninety-three uranium anomalies were detected and are discussed briefly. None were considered significant, and all appeared to occur as the result of cultural and/or weather effects. Magnetic data appear to be in agreement with existing structural interpretations of the region

  20. Surficial and applied surficial geology of the Belchertown Quadrangle, Massachusetts

    Science.gov (United States)

    Caggiano, Joseph A.

    1977-01-01

    Till and stratified drift overlie maturely dissected topography in the Belchertown quadrangle, an area that straddles the New England Upland and Connecticut Valley Lowland in central Massachusetts. Lower Paleozoic, massive quartzo-feldspathic gneiss, quartzite and schist of the Pelham dome and Devonian granodiorite and quartz diorite of the Belchertown intrusive complex are in contact with Triassic arkosic fanglomerate and basalt along a lengthy normal fault separating the New England Upland from the Connecticut Valley Lowland. The orientation of striae, roches moutonnees, and streamline ridges indicate that the last Wisconsinian glacier advanced generally south 12? east. This glacier removed several meters of rock from the upland and an unknown larger quantity from the preglacial valley of the Connecticut River. Till is thin in the uplands, but several tens of feet of drift overlie bedrock in the lowland. Three lithic facies of sandy, clast-rich, non-compact, subarkosic till derived from the three major source rocks rest on bedrock or on highly weathered, compact, clast-poor, fissile probably older till. The mean for all upper till is 69.6% sand, 21.7% silt, and 8.8% clay; lower till consists of 48% sand, 23% silt and 29% clay. Mud-rich, compact, sparsely stony till in drumlins in and along the flank of the Connecticut Valley Lowland is composed of 51.5% sand, 28% silt, and 20.5% clay. Upper tills are facies equivalent deposits of the youngest Wisconsinian drift. Lower till is compact deeply weathered, jointed and stained suggesting it is correlative with other lower till in New England deposited by an earlier Wisconsinian glacier. Drumlin till may be a facies equivalent of a lower till or a mud-rich upper till derived from earlier glaciolacustrine deposits. Upper and lower till of the Belchertown quadrangle is texturally similar to other New England upper and lower tills to which they are equivalent. Both tills are interpreted as lodgment till derived from

  1. Geology of the Harper Quadrangle, Liberia

    Science.gov (United States)

    Brock, M.R.; Chidester, A.H.; Baker, M.G.W.

    1974-01-01

    As part of a program undertaken cooperatively by the Liberian Geological Survey (LGS) and the U. S. Geological Survey (USGS), under the sponsorship of the Government of Liberia and the Agency for International Development, U. S. Department of State, Liberia was mapped by geologic and geophysical methods during the period 1965 to 1972. The resulting geologic and geophysical maps are published in ten folios, each covering one quadrangle (see index map). The first systematic mapping in the Harper quadrangle was by Baker, S. P. Srivastava, and W. E. Stewart (LGS) at a scale of 1:500,000 in the vicinity of Harper in the southeastern, and of Karloke in the northeastern part of the quadrangle in 1960-61. Brock and Chidester carried out systematic mapping of the quadrangle at a scale of 1:250,000 in the period September 1971-May 1972; the geologic map was compiled from field data gathered by project geologists and private companies as indicated in the source diagram, photogeologic maps, interpretation of airborne magnetic and radiometric surveys, field mapping, and ground-based radiometric surveys in which hand-held scintillators were used. R. W. Bromery, C. S. Wotorson, and J. C. Behrendt contributed to the interpretation of geophysical data. Total-intensity aeromagnetic and total-count gamma radiation maps (Behrendt and Wotorson, in press a, b), and unpublished data derived from those maps, including the near-surface and the regional magnetic components and aeromagnetic/radiometric correlations, were used in the interpretation.

  2. Geologic map of the Ponca quadrangle, Newton, Boone, and Carroll Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Murray, Kyle E.

    2003-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, and structure contour), and point (i.e., structural attitude, contact elevations) vector data for the Ponca 7 1/2' quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Ponca quadrangle is located in Newton, Boone, and Carroll Counties about 20 km southwest of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Ponca quadrangle map provides new geologic information for better understanding groundwater flow paths and development of karst features in and adjacent to the Buffalo River watershed.

  3. Hydrogeochemical and stream sediment reconnaissance basic data for Dickinson NTMS Quadrangle, North Dakota

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Dickinson Quadrangle, North Dakota are reported. Field and laboratory data are presented for 544 groundwater and 554 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Interpretation of the groundwater data indicates that scattered localities in the central portion of the quadrangle appear most promising for uranium mineralization. High values of uranium in this area are usually found in waters of the Sentinel Butte and Tongue River Formations. Uranium is believed to be concentrated in the lignite beds of the Fort Union Group, with concentrations increasing with proximity to the pre-Oligocene unconformity. Stream sediment data indicate high uranium values distributed over the central area of the quadrangle. Uranium in stream sediments does not appear to be associated with any particular geologic unit and is perhaps following a structural trend

  4. Geohydrology and numerical simulation of groundwater flow in the central Virgin River Basin of Iron and Washington Counties, Utah

    Science.gov (United States)

    Heilweil, V.M.; Freethey, G.W.; Wilkowske, C.D.; Stolp, B.J.; Wilberg, D.E.

    2000-01-01

    Because rapid growth of communities in Washington and Iron Counties, Utah, is expected to cause an increase in the future demand for water resources, a hydrologic investigation was done to better understand ground-water resources within the central Virgin River basin. This study focused on two of the principal ground-water reservoirs within the basin: the upper Ash Creek basin ground-water system and the Navajo and Kayenta aquifer system.The ground-water system of the upper Ash Creek drainage basin consists of three aquifers: the uppermost Quaternary basin-fill aquifer, the Tertiary alluvial-fan aquifer, and the Tertiary Pine Valley monzonite aquifer. These aquifers are naturally bounded by the Hurricane Fault and by drainage divides. On the basis of measurements, estimates, and numerical simulations of reasonable values for all inflow and outflow components, total water moving through the upper Ash Creek drainage basin ground-water system is estimated to be about 14,000 acre-feet per year. Recharge to the upper Ash Creek drainage basin ground-water system is mostly from infiltration of precipitation and seepage from ephemeral and perennial streams. The primary source of discharge is assumed to be evapotranspiration; however, subsurface discharge near Ash Creek Reservoir also may be important.The character of two of the hydrologic boundaries of the upper Ash Creek drainage basin ground-water system is speculative. The eastern boundary provided by the Hurricane Fault is assumed to be a no-flow boundary, and a substantial part of the ground-water discharge from the system is assumed to be subsurface outflow beneath Ash Creek Reservoir along the southern boundary. However, these assumptions might be incorrect because alternative numerical simulations that used different boundary conditions also proved to be feasible. The hydrogeologic character of the aquifers is uncertain because of limited data. Differences in well yield indicate that there is considerable

  5. Geologic Map of the Boxley Quadrangle, Newton and Madison Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2007-01-01

    This map summarizes the geology of the Boxley 7.5-minute quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the Boxley quadrangle lies within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and its tributaries expose an approximately 1,600-ft-(490-m-)thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. Part of Buffalo National River, a park encompassing the Buffalo River and adjacent land that is administered by the National Park Service, extends through the eastern part of the quadrangle. Mapping for this study was conducted by field inspection of numerous sites and was compiled as a 1:24,000-scale geographic information system (GIS) database. Locations and elevation sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter. Hill-shade-relief and slope maps derived from a U.S. Geological Survey 10-m digital elevation model as well as orthophotos were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours were constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation based on elevations of control points as well as other limiting information on their maximum or minimum elevations.

  6. Geologic map of the Beacon Rock quadrangle, Skamania County, Washington

    Science.gov (United States)

    Evarts, Russell C.; Fleck, Robert J.

    2017-06-06

    The Beacon Rock 7.5′ quadrangle is located approximately 50 km east of Portland, Oregon, on the north side of the Columbia River Gorge, a scenic canyon carved through the axis of the Cascade Range by the Columbia River. Although approximately 75,000 people live within the gorge, much of the region remains little developed and is encompassed by the 292,500-acre Columbia River Gorge National Scenic Area, managed by a consortium of government agencies “to pro­tect and provide for the enhancement of the scenic, cultural, recreational and natural resources of the Gorge and to protect and support the economy of the Columbia River Gorge area.” As the only low-elevation corridor through the Cascade Range, the gorge is a critical regional transportation and utilities corridor (Wang and Chaker, 2004). Major state and national highways and rail lines run along both shores of the Columbia River, which also provides important water access to ports in the agricultural interior of the Pacific Northwest. Transmission lines carry power from hydroelectric facilities in the gorge and farther east to the growing urban areas of western Oregon and Washington, and natural-gas pipelines transect the corridor (Wang and Chaker, 2004). These lifelines are highly vulnerable to disruption by earthquakes, landslides, and floods. A major purpose of the work described here is to identify and map geologic hazards, such as faults and landslide-prone areas, to provide more accurate assessments of the risks associated with these features.The steep canyon walls of the map area reveal exten­sive outcrops of Miocene flood-basalt flows of the Columbia River Basalt Group capped by fluvial deposits of the ances­tral Columbia River, Pliocene lavas erupted from the axis of the Cascade arc to the east, and volcanic rocks erupted from numerous local vents. The Columbia River Basalt Group unconformably rests on a sequence of late Oligocene and early Miocene rocks of the ancestral Cascade volcanic arc

  7. Aerial gamma ray and magnetic survey, Jefferson City Quadrangle, Missouri. Final report

    International Nuclear Information System (INIS)

    1980-11-01

    The Jefferson City quadrangle covers approximately 7500 square miles at the Northwestern end of the Ozark uplift. Lithified material exposed, ranges in age from Cambrian through Pennsylvanian, but Pennsylvanian sediments dominate the surface as mapped. Some alluvium is mapped in river flood plain areas. A search of available literature revealed no known uranium deposits. A total of 95 uranium anomalies were detected and are discussed briefly in this report. All anomalies are related to cultural features, but those associated with coal mine tailings appear to have some significance. Magnetic data appear to relate to complexities in the underlying Precambrian rocks

  8. Geologic map of the Harvard Lakes 7.5' quadrangle, Park and Chaffee Counties, Colorado

    Science.gov (United States)

    Kellogg, Karl S.; Lee, Keenan; Premo, Wayne R.; Cosca, Michael A.

    2013-01-01

    The Harvard Lakes 1:24,000-scale quadrangle spans the Arkansas River Valley in central Colorado, and includes the foothills of the Sawatch Range on the west and Mosquito Range on the east. The Arkansas River valley lies in the northern end of the Rio Grande rift and is structurally controlled by Oligocene and younger normal faults mostly along the west side of the valley. Five separate pediment surfaces were mapped, and distinctions were made between terraces formed by the Arkansas River and surfaces that formed from erosion and alluviation that emanated from the Sawatch Range. Three flood deposits containing boulders as long as 15 m were deposited from glacial breakouts just north of the quadrangle. Miocene and Pliocene basin-fill deposits of the Dry Union Formation are exposed beneath terrace or pediment deposits in several places. The southwestern part of the late Eocene Buffalo Peaks volcanic center, mostly andesitic breccias and flows and ash-flow tuffs, occupy the northeastern corner of the map. Dated Tertiary intrusive rocks include Late Cretaceous or early Paleocene hornblende gabbro and hornblende monzonite. Numerous rhyolite and dacite dikes of inferred early Tertiary or Late Cretaceous age also intrude the basement rocks. Basement rocks are predominantly Mesoproterozoic granites, and subordinately Paleoproterozoic biotite gneiss and granitic gneiss.

  9. Organic matter iron and nutrient transport and nature of dissolved organic matter in the drainage basin of a boreal humic river in northern Finland

    International Nuclear Information System (INIS)

    Heikkinen, K.

    1994-01-01

    Organic carbon and iron transport into the Gulf of Bothnia and the seasonal changes in the nature of dissolved organic matter (DOM) were studied in 1983 and 1984 at the mouth of the River Kiiminkijoki, which crosses an area of minerotrophic mires in northern Finland. Organic and inorganic transport within the drainage basin was studied in the summer and autumn of 1985 and 1986. The results indicate that the dissolved organic carbon (DOC) is mainly of terrestrial origin, leaching mostly from peatlands. The DOC concentrations decrease under low flow conditions. The proportion of drifting algae as a particulate organic carbon (POC) source seems to increase in summer. The changes in the ratio of Fe/DOC, the colour of the DOM and the ratio of Fe/DOC, the colour of the DOM and the ratio of fluorescence to DOC with discharge give indications of the origin, formation, nature and fate of the DOM in the river water. Temperature-dependent microbiological processes in the formation and sedimentation of Fe-organic colloids seem to be important. Estimates are given for the amounts and transport rates of organic carbon and Fe discharged into the Gulf of Bothnia by river. High apparent molecular weight (HAMW) organic colloids are important for the organic, Fe and P transport in the basin. The DOM in the water consists mainly of fulvic acids, although humic acids are also important. The results indicate an increase in the mobilization of HAMW Fe-organic colloids in the peatlands following drainage and peat mining. The transport of inorganic nitrogen from the peatlands in the area and in the river is increasing due to peat mining. The changes in the transport of organic matter, Fe and P are less marked

  10. National Uranium Resource Evaluation, Llano Quadrangle, Texas

    International Nuclear Information System (INIS)

    Droddy, M.J.; Hovorka, S.D.

    1982-04-01

    The Llano 2 0 quadrangle was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for the occurrence of uranium deposits. The areas were delineated according to criteria established for the National Uranium Resource Evaluation program. Surface studies included investigations of uranium occurrences described in the literature, location of aerial radiometric anomalies, carborne scintillometer surveys, outcrop investigations, and followup of hydrogeochemical and stream-sediment reconnaissance data. A radon emanometry survey and investigations of electric and gamma-ray well logs, drillers' logs, and well core samples were performed to evaluate the subsurface potential of the Llano Quadrangle. An environment favorable for pegmatitic deposits is identified in the Town Mountain Granite

  11. Geology of the V28 Quadrangle: Hecate Chasma, Venus

    Science.gov (United States)

    Stofan, E. R.; Guest, J. E.; Brian, A. W.

    2000-01-01

    The Hecate Chasma Quadrangle (V28), mapped at 1:5,000,000 scale, extends from 0-25 N and 240-270 Longitude. The quadrangle has thirteen impact craters, several large volcanoes, many coronae, three chasmata, and northern Hinemoa Planitia.

  12. National uranium resource evaluation, Montrose Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Goodknight, C.S.; Ludlam, J.R.

    1981-06-01

    The Montrose Quadrangle in west-central Colorado was evaluated to identify and delineate areas favorable for the occurrence of uranium deposits according to National Uranium Resource Evaluation program criteria. General surface reconnaissance and geochemical sampling were conducted in all geologic environments in the quadrangle. Preliminary data from aerial radiometric and hydrogeochemical and stream-sediment reconnaissance were analyzed and brief followup studies were performed. Twelve favorable areas were delineated in the quadrangle. Five favorable areas contain environments for magmatic-hydrothermal uranium deposits along fault zones in the Colorado mineral belt. Five areas in parts of the Harding and Entrada Sandstones and Wasatch and Ohio Creek Formations are favorable environments for sandstone-type uranium deposits. The area of late-stage rhyolite bodies related to the Lake City caldera is a favorable environment for hydroauthigenic uranium deposits. One small area is favorable for uranium deposits of uncertain genesis. All near-surface Phanerozoic sedimentary rocks are unfavorable for uranium deposits, except parts of four formations. All near-surface plutonic igneous rocks are unfavorable for uranium deposits, except five areas of vein-type deposits along Tertiary fault zones. All near-surface volcanic rocks, except one area of rhyolite bodies and several unevaluated areas, are unfavorable for uranium. All near-surface Precambrian metamorphic rocks are unfavorable for uranium deposits. Parts of two wilderness areas, two primitive areas, and most of the subsurface environment are unevaluated

  13. National Uranium Resource Evaluation: Bozeman Quadrangle, Montana

    International Nuclear Information System (INIS)

    Lange, I.M.; Fields, R.W.; Fountain, D.M.; Moore, J.N.; Qamar, A.I.; Silverman, A.J.; Thompson, G.R.; Chadwick, R.A.; Custer, S.G.; Smith, D.L.

    1982-08-01

    The Bozeman Quadrangle, Montana, was evaluated to identify and delineate areas containing environments favorable for uranium deposits. This evaluation was conducted using methods and criteria developed for the National Uranium Resource Evaluation program. General surface reconnaissance, mapping, radiometric traverses, and geochemical sampling were performed in all geologic environments within the quadrangle. Aerial radiometric and HSSR data were evaluated and followup studies of these anomalies and most of the previously known uranium occurrences were conducted. Detailed gravity profiling was done in the Tertiary Three Forks-Gallatin Basin and the Madison and Paradise Valleys. Also, selected well waters were analyzed. Eight areas are considered favorable for sandstone uranium deposits. They include the Tertiary Three Forks-Gallatin basin, the Madison and Paradise Valleys, and five areas underlain by Cretaceous fluvial and marginal-marine sandstones. Other environments within the quadrangle are considered unfavorable for uranium deposits when judged by the program criteria. A few environments were not evaluated due to inaccessibility and/or prior knowledge of unfavorable criteria

  14. National Uranium Resource Evaluation: Bozeman Quadrangle, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Lange, I.M.; Fields, R.W.; Fountain, D.M.; Moore, J.N.; Qamar, A.I.; Silverman, A.J.; Thompson, G.R.; Chadwick, R.A.; Custer, S.G.; Smith, D.L.

    1982-08-01

    The Bozeman Quadrangle, Montana, was evaluated to identify and delineate areas containing environments favorable for uranium deposits. This evaluation was conducted using methods and criteria developed for the National Uranium Resource Evaluation program. General surface reconnaissance, mapping, radiometric traverses, and geochemical sampling were performed in all geologic environments within the quadrangle. Aerial radiometric and HSSR data were evaluated and followup studies of these anomalies and most of the previously known uranium occurrences were conducted. Detailed gravity profiling was done in the Tertiary Three Forks-Gallatin Basin and the Madison and Paradise Valleys. Also, selected well waters were analyzed. Eight areas are considered favorable for sandstone uranium deposits. They include the Tertiary Three Forks-Gallatin basin, the Madison and Paradise Valleys, and five areas underlain by Cretaceous fluvial and marginal-marine sandstones. Other environments within the quadrangle are considered unfavorable for uranium deposits when judged by the program criteria. A few environments were not evaluated due to inaccessibility and/or prior knowledge of unfavorable criteria.

  15. Geologic map of the Frisco quadrangle, Summit County, Colorado

    Science.gov (United States)

    Kellogg, Karl S.; Bartos, Paul J.; Williams, Cindy L.

    2002-01-01

    New 1:24,000-scale geologic mapping along the Interstate-70 urban corridor in western Colorado, in support of the USGS Central Region State/USGS Cooperative Geologic Mapping Project, is contributing to a more complete understanding of the stratigraphy, structure, tectonic evolution, and hazard potential of this rapidly developing region. The 1:24,000-scale Frisco quadrangle is near the headwaters of the Blue River and straddles features of the Blue River graben (Kellogg, K.S., 1999, Neogene basins of the northern Rio Grande rift?partitioning and asymmetry inherited from Laramide and older uplifts: Tectonophysics, v. 305, p. 141-152.), part of the northernmost reaches of the Rio Grande rift, a major late Oligocene to recent zone of extension that extends from Colorado to Mexico. The Williams Range thrust fault, the western structural margin of the Colorado Front Range, cuts the northeastern corner of the quadrangle. The oldest rocks in the quadrangle underlie the Tenmile Range and include biotite-sillimanite schist and gneiss, amphibolite, and migmatite that are intruded by granite inferred to be part of the 1,667-1,750 Ma Routt Plutonic Suite (Tweto, Ogden, 1987, Rock units of the Precambrian- basement in Colorado: U.S. Geological Survey Professional Paper 1321-A, 54 p.). The oldest sedimentary unit is the Pennsylvanian Maroon Formation, a sequence of red sandstone, conglomerate, and interbedded shale. The thickest sequence of sedimentary rocks is Cretaceous in age and includes at least 500 m of the Upper Cretaceous Pierre Shale. The sedimentary rocks are intruded by sills and dikes of dacite porphyry sills of Swan Mountain, dated at 44 Ma (Marvin, R.F., Mehnert, H.H., Naeser, C.W., and Zartman, R.E., 1989, U.S. Geological Survey radiometric ages, compilation ?C??Part five?Colorado, Montana, Utah, and Wyoming: Isochron/West, no. 53, p. 14-19. Simmons, E.C., and Hedge, C.E., 1978, Minor-element and Sr-isotope geochemistry of Tertiary stocks, Colorado mineral belt

  16. Degradation of the river flows and their surroundings under backwater effects of the HPP Iron Gate I - necessary reclamation and rehabilitation measures

    International Nuclear Information System (INIS)

    Perisic, M.; Mitrovic-Tutundjic, V.

    2002-01-01

    The paper presents an analysis of ecological problems of the river Danube under backwater effects of the hydroenergetic power plant (HPP) Iron Gate I. Data collected during the period of almost two decades offer possibilities for understanding of the relevant phenomena that define the water quality changes and the state of the ecosystem in this part of the river flow, effects of water purification and consequences of this process connected to high level of anthropogenic influences. This long period enables undertaking urgent measures that are necessary for the system in the context of enormous problems that are becoming more complex as time passed by. Attempts to use analyzed information to change the attitude of the authorities which was based on incorrect prognosis and results of systematic, several decades long investigations of official organizations failed to give positive results till now. Since without adequate knowledge it is impossible to plan protection measures and rehabilitation of the system, and also estimate the damage made by NATO bombing, necessity for applying experience and results tested by relevant professionals from the Danubian and broader region is emphasized. (author)

  17. Geologic quadrangle maps of the United States: geology of the Casa Diablo Mountain quadrangle, California

    Science.gov (United States)

    Rinehart, C. Dean; Ross, Donald Clarence

    1957-01-01

    The Casa Diablo Mountain quadrangle was mapped in the summers of 1952 and 1953 by the U.S. Geological Survey in cooperation with the California State Division of Mines as part of a study of potential tungsten-bearing areas.

  18. Selected hydrologic data for the central Virgin River basin area, Washington and Iron counties, Utah, 1915-97

    Science.gov (United States)

    Wilkowske, Christopher D.; Heilweil, Victor M.; Wilberg, Dale E.

    1998-01-01

    Hydrologic data were collected in Washington and Iron Counties, Utah, from 1995 to 1997 to better understand the hydrologic system. Data from earlier years also are presented. Data collected from wells include well-completion data, water-level measurements, and physical properties of the water. Data collected from springs and surface-water sites include discharge and physical properties of the water. Selected water samples collected from ground- and surface-water sites were analyzed for isotopes, chlorofluorocarbons, and dissolved gases.

  19. Description and preliminary map, airborne electromagnetic survey of parts of Iron, Baraga, and Dickson counties, Michigan

    Science.gov (United States)

    Heran, William D.; Smith, Bruce D.

    1980-01-01

    The data presented herein is from an airborne electromagnetic INPUT* survey conducted by Geoterrex Limited of Canada for the U.S. Geological Survey. The survey area is located in the central part of the Upper Peninsula of Michigan, within parts of Iron, Baraga, and Dickinson Counties. The general area covered is between 46°00' and 46°30' latitude and 88°00' and 88°30' longitude (fig. 1).The INPUT survey was flown as part of a U.S. Geological Survey CUSMAP (Conterminous United States Mineral Appraisal Program) project focusing on the Iron Riverquadrangle. The survey was flown in order to provide geophysical information which will aid in an integrated geological assessment of mineral potentials of this part of the Iron River 2 quadrangle. The flight-line spacing was chosen to maximize the aerial coverage without a loss of resolution of major lithologic and structural features. East-west flight lines were flown 400 feet above ground at 1/2-mile intervals. Aerial photos were used for navigation and the flight path was recorded on continuous-strip film. A continuously recording total field ground magnetic station was used to monitor variations in the Earth's magnetic field. One north-south line was flown to provide a tie for the magnetic data which was recorded simultaneously with the electromagnetic data by a sensor mounted in the tail of the aircraft. This report is one of two open-file reports. The map in the present report contains locations of the fiducial points, the flight lines, and preliminary locations of anomalies and conductive zones, all plotted on an air photomosaic. The latitude and longitude ticks marked on this map are only approximate due to distortion in air photos used to recover the flight line position. This map is preliminary and is not to be considered a final interpretation. The other report (Reran and Smith, 1980) contains a description of the instrument specifications, a copy of the ground station magnetic data, and a microfilm

  20. Index Grids - QUADRANGLES_24K_USGS_IN: Boundaries of 7.5-Minute Quadrangles in Indiana, (United States Geological Survey, 1:24,000 Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — QUADRANGLES_24K_USGS_IN is a polygon shapefile defining the boundaries of the USGS 7.5-minute (1:24,000-scale) quadrangles which cover the state of Indiana. Dates of...

  1. National Uranium Resource Evaluation: Lawton Quadrangle, Oklahoma and Texas

    International Nuclear Information System (INIS)

    Al-Shaieb, Z.; Thomas, R.G.; Stewart, G.F.

    1982-04-01

    Uranium resources of the Lawton Quadrangle, Oklahoma and Texas, were evaluated to a depth of 1500 m using National Uranium Resource Evaluation criteria. Five areas of uranium favorability were delineated. Diagenetically altered, quartzose and sublithic, eolian and marginal-marine sandstones of the Permian Rush Springs Formation overlying the Cement Anticline are favorable for joint-controlled deposits in sandstone, non-channel-controlled peneconcordant deposits, and Texas roll-front deposits. Three areas contain lithologies favorable for channel-controlled peneconcordant deposits: arkosic sandstones and granule conglomerates of the Permian Post Oak Conglomerate south of the Wichita Mountains; subarkosic and sublithic Lower Permian fluvio-deltaic and coastal-plain sandstones of the eastern Red River Valley; and subsurface arkosic, subarkosic, and sublithic alluvial-fan and fan-delta sandstones of the Upper Pennsylvanian-Lower Permian sequence in the eastern Hollis Basin. The coarse-grained facies of the Cambrian Quanah Granite and genetically related aplite and pegmatite dikes in the Wichita Mountains are favorable for orthomagmatic and autometasomatic deposits, respectively

  2. Geology of the Shakespeare quadrangle (H03), Mercury

    Science.gov (United States)

    Guzzetta, L.; Galluzzi, V.; Ferranti, L.; Palumbo, P.

    2017-09-01

    A 1:3M geological map of the H03 Shakespeare quadrangle of Mercury has been compiled through photointerpretation of the remotely sensed images of the NASA MESSENGER mission. This quadrangle is characterized by the occurrence of three main types of plains materials and four basin materials, pertaining to the Caloris basin, the largest impact crater on Mercury's surface. The geologic boundaries have been redefined compared to the previous 1:5M map of the quadrangle and the craters have been classified privileging their stratigraphic order rather than morphological appearance. The abundant tectonic landforms have been interpreted and mapped as thrusts or wrinkle ridges.

  3. National uranium resource evaluation: Nogales Quadrangle, Arizona

    International Nuclear Information System (INIS)

    Luning, R.H.; Brouillard, L.A.

    1982-04-01

    Literature research, surface geologic investigations, rock sampling, and radiometric surveys were conducted in the Nogales Quadrangle, Arizona, to identify environments and to delineate areas favorable for uranium deposits according to criteria formulated during the National Uranium Resource Evaluation program. The studies were augmented by aerial radiometric and hydrogeochemical and stream-sediment surveys. No favorable environments were identified. Environments that do display favorable characteristics include magmatic-hydrothermal and authigenic environments in Precambrian and Jurassic intrusives, as well as in certain Mesozoic and Cenozoic igneous and sedimentary rocks

  4. Uranium hydrogeochemical and stream sediment reconnaissance of the Rawlins NTMS quadrangle, Wyoming

    International Nuclear Information System (INIS)

    Weaver, T.A.; Morris, W.A.; Trexler, P.K.

    1978-04-01

    During the spring and winter of 1976 and January and June of 1977, 570 natural water and 1281 waterborne sediment samples were collected from 1369 locations in the Rawlins, Wyoming, NTMS quadrangle. The samples obtained from this 18 700-km 2 area were analyzed at the Los Alamos Scientific Laboratory for total uranium. The uranium concentrations in waters ranged from less than the detectable limit of 0.2 parts per billion (ppB) to 448 ppB, with a mean value of 6 ppB. The concentrations in sediments ranged from 1.2 parts per million (ppM) to 60.4 ppM, with a mean value of 4.1 ppM. Based on simple statistical analyses of these data, arbitrary anomaly thresholds were set at 50 ppB for water samples and 9 ppM for sediment samples. Eleven water and 44 sediment samples were considered anomalous; 1 anomalous water and 25 anomalous sediments could be associated with four of the five major uranium occurrences in the quadrangle. Only the Ketchum Buttes area did not show up in the data. Twelve minor reported occurrences could not be identified by the data. Eleven anomalous samples (8 waters and 3 sediments) and 13 near-anomalous samples (10 waters and 3 sediments) outline a broad area in the northeast corner of the quadrangle (corresponding to the drainage area of the Medicine Bow River) where two airborne radiometric anomalies were discovered in an earlier study. This area, and perhaps others, may warrant further, more detailed geological, geophysical, and geochemical investigations

  5. Geology and mineral resources of the Florence, Beaufort, Rocky Mount, and Norfolk 10 x 20 NTMS quadrangles. National Uranium Resource Evaluation program

    International Nuclear Information System (INIS)

    Harris, W.B.

    1982-08-01

    This document provides geologic and mineral resources data for previously-issued Savannah River Laboratory hydrogeochemical and stream sediment reports of the Beaufort, Florence, Norfolk, and Rocky Mount 1 0 x 2 0 National Topographic Map Series quadrangles in the southeastern United States. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation program

  6. Geology and mineral resources of the Florence, Beaufort, Rocky Mount, and Norfolk 1/sup 0/ x 2/sup 0/ NTMS quadrangles. National Uranium Resource Evaluation program

    Energy Technology Data Exchange (ETDEWEB)

    Harris, W.B.

    1982-08-01

    This document provides geologic and mineral resources data for previously-issued Savannah River Laboratory hydrogeochemical and stream sediment reports of the Beaufort, Florence, Norfolk, and Rocky Mount 1/sup 0/ x 2/sup 0/ National Topographic Map Series quadrangles in the southeastern United States. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation program.

  7. Speciation of chromium, copper, iron, manganese, nickel, and zinc of sediment from the Densu River by sequential extraction

    International Nuclear Information System (INIS)

    Carboo, D.; Brimah, A.K.; Debrah, C.

    1999-04-01

    Total concentrations of the broad metal spectrum and speciation of Cr, Cu, Fe, Ni, Mn and Zn in sediments of River Densu are studied in order to establish the extent of pollution and their capacity of remobilization. Eight composite samples were analyzed, major components of the sediments were studied using Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectrophotometer (AAS). From the results obtained, it can be concluded that the sediment has Cd value above the normal range. The distribution of the elements in various fractions depends largely on the element. Most of the elements have the bulk of their concentration in the residual fraction. (author)

  8. Hydrogeochemical and stream sediment reconnaissance basic data report for Williams NTMS quadrangle, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.L.

    1979-02-01

    Wet and dry sediments were collected throughout the 18,500-km/sup 2/arid-to-semiarid region and water samples at available streams, springs, and wells. Samples were collected between August 1977 and January 1978. Results of neutron activation analyses of uranium and trace elements and other field and laboratory analyses are presented in tabular hardcopy and microfiche format. The report includes six full-size overlays for use with the Williams NTMS 1:250,000 quadrangle. Sediment samples are divided into five general groups according to the source rock from which the sediment was derived. Background uranium concentrations for the quadrangle are relatively low, ranging from 1.91 to 2.40 ppM, with the highest associated with the Precambrian igneous and metamorphic complexes of the Basin and Range province. Uranium correlates best with the rare-earth elements and iron, scandium, titanium, and manganese. Known uranium occurrences are not readily identified by the stream sediment data.

  9. Airborne gamma-ray spectrometer and magnetometer survey: Forsyth quadrangle, Round Up quadrangle, Hardin quadrangle (Montana), Sheridan quadrangle, (Wyoming). Final report

    International Nuclear Information System (INIS)

    1981-01-01

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the area covered by the Forsyth, Hardin, and Sheridan, and Roundup, 1:250,000 National Topographic Map Series (NTMS), quadrangle maps. The survey was part of DOE's National Uranium Resource Evaluation (NURE) program. Data were collected by a helicopter equipped with a gamma-ray spectrometer with a large crystal volume, and with a high sensitivity proton precession magnetometer. The radiometric system was calibrated at the Walker Field Calibration Pads and the Lake Mead Dynamic Test Range. Data quality was ensured during the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, plotted, and contoured to produce anomaly maps based on the radiometric response of individual geological units. The anomalies were interpreted and an interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data collection procedures, the data processing procedures, the data presentation, the interpretation rationale, and the interpretation methodology. A separate Volume II for each quadrangle contains the data displays and the interpretation results

  10. National Uranium Resource Evaluation: Marfa Quadrangle, Texas

    International Nuclear Information System (INIS)

    Henry, C.D.; Duex, T.W.; Wilbert, W.P.

    1982-09-01

    The uranium favorability of the Marfa 1 0 by 2 0 Quadrangle, Texas, was evaluated in accordance with criteria established for the National Uranium Resource Evaluation. Surface and subsurface studies, to a 1500 m (5000 ft) depth, and chemical, petrologic, hydrogeochemical, and airborne radiometric data were employed. The entire quadrangle is in the Basin and Range Province and is characterized by Tertiary silicic volcanic rocks overlying mainly Cretaceous carbonate rocks and sandstones. Strand-plain sandstones of the Upper Cretaceous San Carlos Formation and El Picacho Formation possess many favorable characteristics and are tentatively judged as favorable for sandstone-type deposits. The Tertiary Buckshot Ignimbrite contains uranium mineralization at the Mammoth Mine. This deposit may be an example of the hydroauthigenic class; alternatively, it may have formed by reduction of uranium-bearing ground water produced during diagenesis of tuffaceous sediments of the Vieja Group. Although the presence of the deposit indicates favorability, the uncertainty in the process that formed the mineralization makes delineation of a favorable environment or area difficult. The Allen intrusions are favorable for authigenic deposits. Basin fill in several bolsons possesses characteristics that suggest favorability but which are classified as unevaluated because of insufficient data. All Precambrian, Paleozoic, other Mesozoic, and other Cenozoic environments are unfavorable

  11. Colour mapping of the Shakespeare (H-03) quadrangle of Mercury

    Science.gov (United States)

    Bott, N.; Doressoundiram, A.; Perna, D.; Zambon, F.; Carli, C.; Capaccioni, F.

    2017-09-01

    We will present a colour mapping of the Shakespeare (H-03) quadrangle of Mercury, as well as the spectral analysis and a preliminary correlation between the spectral properties and the geological units.

  12. Geologic Map of the Shakespeare Quadrangle (H03), Mercury

    Science.gov (United States)

    Guzzetta, L.; Galluzzi, V.; Ferranti, L.; Palumbo, P.

    2018-05-01

    A 1:3M geological map of the H03 Shakespeare quadrangle of Mercury has been compiled through photointerpretation of the MESSENGER images. The most prominent geomorphological feature is the Caloris basin, the largest impact crater on Mercury.

  13. Surficial geologic map of the Dillingham quadrangle, southwestern Alaska

    Science.gov (United States)

    Wilson, Frederic H.

    2018-05-14

    The geologic map of the Dillingham quadrangle in southwestern Alaska shows surficial unconsolidated deposits, many of which are alluvial or glacial in nature. The map area, part of Alaska that was largely not glaciated during the late Wisconsin glaciation, has a long history reflecting local and more distant glaciations. Late Wisconsin glacial deposits have limited extent in the eastern part of the quadrangle, but are quite extensive in the western part of the quadrangle. This map and accompanying digital files are the result of the interpretation of black and white aerial photographs from the 1950s as well as more modern imagery. Limited new field mapping in the area was conducted as part of a bedrock mapping project in the northeastern part of the quadrangle; however, extensive aerial photographic interpretation represents the bulk of the mapping effort.

  14. Bedrock Geologic Map of the Essex Junction Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG12-3, Gale, M., Kim. J., and Ruksznis, A., 2012, Bedrock Geologic Map of the essex Junction Quadrangle: Vermont Geological Survey Open File...

  15. Digital bedrock geologic map of the Cavendish quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-203A Ratcliffe, NM, 1995,�Digital bedrock geologic map of the Cavendish quadrangle, Vermont: USGS Open-File Report 95-203, 2 plates, scale...

  16. Bedrock Geologic Map of the Hinesburg Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from Thompson, P., Thompson, T.B., and Doolan, B., 2004, Bedrock Geology of the Hinesburg quadrangle, Vermont. The bedrock geologic map data at a scale...

  17. Bedrock Geologic Map of the Bristol, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG13-1 Kim, J, Weber, E, and Klepeis, K, 2013, Bedrock Geologic Map of the Bristol, VT Quadrangle: Vermont Geological Survey Open File Report...

  18. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand; Alliez, Pierre; Morvan, Jean-Marie

    2011-01-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse

  19. Bedrock Geologic Map of the Jay Peak, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG99-1 Compilation bedrock geologic map of the Jay Peak quadrangle, Compiled by B. Doolan, 1999: VGS Open-File Report VG99-1, 1 plate, scale...

  20. Geologic map of the eastern quarter of the Flagstaff 30’ x 60’ quadrangle, Coconino County, northern Arizona

    Science.gov (United States)

    Billingsley, George H.; Block, Debra L.; Hiza-Redsteer, Margaret

    2014-01-01

    The eastern quarter of the Flagstaff 30′ x 60′ quadrangle includes eight USGS 1:24,000-scale quadrangles in Coconino County, northern Arizona (fig. 1, map sheet): Anderson Canyon, Babbitt Wash, Canyon Diablo, Grand Falls, Grand Falls SE, Grand Falls SW, Grand Falls NE, and Meteor Crater. The map is bounded by lat 35° to 35°30′ N. and long 111° to 111°15′ W. and is on the southern part of the Colorado Plateaus geologic province (herein Colorado Plateau). Elevations range from 4,320 ft (1,317 m) at the Little Colorado River in the northwest corner of the map area to about 6,832 ft (2,082 m) at the southwest corner of the map. This geologic map provides an updated geologic framework for the eastern quarter of the Flagstaff 30′ x 60′ quadrangle and is adjacent to two other recent geologic maps, the Cameron and Winslow 30′ x 60′ quadrangles (Billingsley and others, 2007, 2013). This geologic map is the product of a cooperative effort between the U.S. Geological Survey (USGS) and the Navajo Nation. It provides geologic information for resource management officials of the U.S. Forest Service, the Arizona Game and Fish Department, and the Navajo Nation Reservation (herein the Navajo Nation). Funding for the map was provided by the USGS geologic mapping program, Reston, Virginia. Field work on the Navajo Nation was conducted under a permit from the Navajo Nation Minerals Department. Any persons wishing to conduct geologic investigations on the Navajo Nation must first apply for, and receive, a permit from the Navajo Nation Minerals Department, P.O. Box 1910, Window Rock, Arizona 86515, telephone (928) 871-6587.

  1. Geologic map of the Maumee quadrangle, Searcy and Marion Counties, Arkansas

    Science.gov (United States)

    Turner, Kenzie J.; Hudson, Mark R.

    2010-01-01

    This map summarizes the geology of the Maumee 7.5-minute quadrangle in northern Arkansas. The map area is in the Ozark plateaus region on the southern flank of the Ozark dome. The Springfield Plateau, composed of Mississippian cherty limestone, overlies the Salem Plateau, composed of Ordovician carbonate and clastic rocks, with areas of Silurian rocks in between. Erosion related to the Buffalo River and its tributaries, Tomahawk, Water, and Dry Creeks, has exposed a 1,200-ft-thick section of Mississippian, Silurian, and Ordovician rocks mildly deformed by faults and folds. An approximately 130-mile-long corridor along the Buffalo River forms the Buffalo National River that is administered by the National Park Service. McKnight (1935) mapped the geology of the Maumee quadrangle as part of a larger 1:125,000-scale map focused on understanding the lead and zinc deposits common in the area. Detailed new mapping for this study was compiled using a Geographic Information System (GIS) at 1:24,000 scale. Site location and elevation were obtained by using a Global Positioning Satellite (GPS) receiver in conjunction with a U.S. Geological Survey 7.5-minute topographic map and barometric altimeter. U.S. Geological Survey 10-m digital elevation model data were used to derive a hill-shade-relief map used along with digital orthophotographs to map ledge-forming units between field sites. Bedding attitudes were measured in drainage bottoms and on well-exposed ledges. Bedding measured at less than 2 degree dip is indicated as horizontal. Structure contours constructed for the base of the Boone Formation are constrained by field-determined elevations on both upper and lower formation contacts.

  2. Geologic map of the Lada Terra quadrangle (V-56), Venus

    Science.gov (United States)

    Kumar, P. Senthil; Head, James W.

    2013-01-01

    This publication provides a geological map of Lada Terra quadrangle (V–56), a portion of the southern hemisphere of Venus that extends from lat 50° S. to 70° S. and from long 0° E. to 60° E. V–56 is bordered by Kaiwan Fluctus (V–44) and Agnesi (V–45) quadrangles in the north and by Mylitta Fluctus (V–61), Fredegonde (V–57), and Hurston (V–62) quadrangles in the west, east, and south, respectively. The geological map of V–56 quadrangle reveals evidence for tectonic, volcanic, and impact processes in Lada Terra in the form of tesserae, regional extensional belts, coronae, and volcanic plains. In addition, the map also shows relative age relations such as overlapping or cross-cutting relations between the mapped geologic units. The geology observed within this quadrangle addresses (1) how coronae evolved in association with regional extensional belts and (2) how tesserae, regional plains, and impact craters, which are also significant geological units observed in Lada Terra quadrangle, were formed.

  3. USGS 1:24000 (7 1/2 Minute) Quadrangle Index

    Data.gov (United States)

    Minnesota Department of Natural Resources — Mathematically generated grid representing USGS 7 1/2 Minute Quadrangle Map outlines. Quadrangle names and standard identifiers are included with the data set.

  4. Geologic map of the St. Joe quadrangle, Searcy and Marion Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2009-01-01

    This map summarizes the geology of the St. Joe 7.5-minute quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the St. Joe quadrangle lies within the Springfield Plateau, a topographic surface generally held up by Mississippian cherty limestone. The quadrangle also contains isolated mountains (for example, Pilot Mountain) capped by Pennsylvanian rocks that are erosional outliers of the higher Boston Mountains plateau to the south. Tomahawk Creek, a tributary of the Buffalo River, flows through the eastern part of the map area, enhancing bedrock erosion. Exposed bedrock of this region comprises an approximately 1,300-ft-thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The geology of the St. Joe quadrangle was mapped by McKnight (1935) as part of a larger area at 1:125,000 scale. The current map confirms many features of this previous study, but it also identifies new structures and uses a revised stratigraphy. Mapping for this study was conducted by field inspection of numerous sites and was compiled as a 1:24,000-scale geographic information system (GIS) database. Locations and elevations of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade-relief and slope maps derived from a U.S. Geological Survey 10-m digital elevation model as well as U.S. Geological Survey orthophotographs from 2000 were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strikes and dips of beds were typically measured along stream drainages or at well-exposed ledges. Beds dipping less

  5. Geologic map of the Big Delta B-2 quadrangle, east-central Alaska

    Science.gov (United States)

    Day, Warren C.; Aleinikoff, John N.; Roberts, Paul; Smith, Moira; Gamble, Bruce M.; Henning, Mitchell W.; Gough, Larry P.; Morath, Laurie C.

    2003-01-01

    New 1:63,360-scale geologic mapping of the Big Delta B-2 quadrangle provides important data on the structural setting and age of geologic units, as well as on the timing of gold mineralization plutonism within the Yukon-Tanana Upland of east-central Alaska. Gold exploration has remained active throughout the region in response to the discovery of the Pogo gold deposit, which lies within the northwestern part of the quadrangle near the south bank of the Goodpaster River. Geologic mapping and associated geochronological and geochemical studies by the U.S. Geological Survey (USGS) and the Alaska Department of Natural Resources, Division of Mining and Water Management, provide baseline data to help understand the regional geologic framework. Teck Cominco Limited geologists have provided the geologic mapping for the area that overlies the Pogo gold deposit as well as logistical support, which has lead to a much improved and informative product. The Yukon-Tanana Upland lies within the Tintina province in Alaska and consists of Paleozoic and possibly older(?) supracrustal rocks intruded by Paleozoic (Devonian to Mississippian) and Cretaceous plutons. The oldest rocks in the Big Delta B-2 quadrangle are Paleozoic gneisses of both plutonic and sedimentary origin. Paleozoic deformation, potentially associated with plutonism, was obscured by intense Mesozoic deformation and metamorphism. At least some of the rocks in the quadrangle underwent tectonism during the Middle Jurassic (about 188 Ma), and were subsequently deformed in an Early Cretaceous contractional event between about 130 and 116 Ma. New U-Pb SHRIMP data presented here on zircons from the Paleozoic biotite gneisses record inherited cores that range from 363 Ma to about 2,130 Ma and have rims of euhedral Early Cretaceous metamorphic overgrowths (116 +/- 4 Ma), interpreted to record recrystallization during Cretaceous west-northwest-directed thrusting and folding. U-Pb SHRIMP dating of monazite from a Paleozoic

  6. Instrument specifications and geophysical records for airborne electromagnetic survey of parts of Iron, Baraga, and Dickson Counties, Michigan

    Science.gov (United States)

    Heran, William D.; Smith, Bruce D.

    1980-01-01

    The data presented herein is from an airborne electromagnetic INPUT* survey conducted by Geoterrex Limited of Canada for the U.S. Geological Survey. The survey area is located in the central part of the Upper Peninsula of Michigan, within parts of Iron, Baraga, and Dickinson Counties. The general area covered is between 46°00' and 46°30' latitude and 88°00' and 88°30' longitude (fig. 1).The INPUT survey was flown as part of a U.S. Geological Survey CUSMAP (Conterminous United States Mineral Appraisal Program) project focusing on the Iron Riverquadrangle. The survey was flown in order to provide geophysical information which will aid in an integrated geological assessment of mineral potentials of this part of the Iron Riverquadrangle. The flight line spacing was chosen to maximize the areal coverage without a loss of resolution of major lithologic and structural features.East-west flight lines were flown 400 feet above ground at 1/2 mile intervals. Aerial photos were used for navigation, and the flight path was recorded on continuous-strip film. A continuously recording total field ground magnetic station was used to monitor variations in the Earth's magnetic field. One north-south line was flown to provide a tie for the magnetic data, which was recorded simultaneously with the electromagnetic data by a sensor mounted in the tail of the aircraft. This report is one of two open-file reports. The map in the other report Heran and Smith (1980) shows locations of the fiducial points, the flight lines, preliminary locations of anomalies and conductive zones; all plotted on an air photomosaic. The latitude and longitude ticks marked on this map are only approximate due to distortion in air photos used to recover the flight line position. This map is preliminary and is not to be considered a final interpretation. The present report contains a description of the instrument specifications, a copy of the ground station magnetic data, and a record of the

  7. Aerial gamma ray and magnetic survey, Mississippi and Florida airborne survey: Mobile quadrangle of Louisiana, Mississippi and Alabama. Final report

    International Nuclear Information System (INIS)

    1980-10-01

    The Mobile quadrangle covers 5000 square miles of land east of the Mississippi River delta area. The area overlies thick sections of the Gulf of Mexico Basin. Surficial exposures are dominated by Recent and Pleistocene sediment. A search of available literature revealed no known uranium deposits. A total of 41 uranium anomalies were detected and are discussed briefly in this report. None were considered significant and all appear to relate to cultural features. Magnetic data appears to be in agreement with existing structural interpretations of the area

  8. Aerial gamma ray and magnetic survey, Mississippi and Florida airborne survey: Baton Rouge quadrangle, Louisiana and Mississippi. Final report

    International Nuclear Information System (INIS)

    1980-10-01

    The Baton Rouge quadrangle covers 8250 square miles in the Mississippi River delta area. The area overlies thick sections of the Gulf of Mexico Basin. Surficial exposures are dominated by Recent and Pleistocene sediment. A search of available literature revealed no known uranium deposits. A total of 87 uranium anomalies were detected and are discussed briefly in this report. None were considered significant and all appear to relate to cultural features. Magnetic data appears to be in agreement with existing structural interpretations of the area

  9. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Jackson quadrangle of Mississippi and Louisiana. Final report

    International Nuclear Information System (INIS)

    1980-07-01

    The Jackson quadrangle covers a region largely within the Mississippi River flood plain. In the extreme northern Gulf Coastal Physiographic Province. Underlying Mesozoic and Cenozoic sediments of the Mississippi Embayment are relatively thick. Exposed sediments are largely Quaternary in age, though older Cenozoic material of both marine and nonmarine origin are exposed in areas adjacent to the flood plain in the east. A search of the available literature revealed no known uranium deposits. Seventy-three uranium anomalies were detected and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data appears to be in agreement with existing structural interpretations of the region

  10. Topographic Map of Quadrangle 3468, Chak Wardak Syahgerd (509) and Kabul (510) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  11. Topographic Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  12. Topographic Map of Quadrangle 3364, Pasa-Band (417) and Kejran (418) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  13. Topographic Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  14. Topographic Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  15. Topographic Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  16. Topographic Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  17. Topographic Map of Quadrangle 3466, Lal-Sarjangal (507) and Bamyan (508) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  18. Topographic Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  19. Topographic Map of Quadrangle 3670, Jam-Kashem (223) and Zebak (224) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  20. Topographic Map of Quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  1. Topographic Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  2. Topographic Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  3. Topographic Map of Quadrangle 3264, Nawzad-Musa-Qala (423) and Dehrawat (424) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  4. Topographic Map of Quadrangle 3462, Herat (409) and Chesht-Sharif (410) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  5. Topographic Map of Quadrangle 3262, Farah (421) and Hokumat-E-Pur-Chaman (422) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  6. National uranium resource evaluation Prescott Quadrangle Arizona

    International Nuclear Information System (INIS)

    May, R.T.; White, D.L.; Nystrom, R.J.

    1982-01-01

    The Prescott Quadrangle was evaluated for uranium favorability by means of a literature search, examination of uranium occurrences, regional geochemical sampling of Precambrian rocks, limited rubidium-strontium studies, scintillometer traverses, measurement of stratigraphic sections, subsurface studies, and an aerial radiometric survey. A limited well-water sampling program for Cenozoic basins was also conducted. Favorability criteria used were those developed for the National Uranium Resource Evaluation. Five geologic environments are favorable for uranium. Three are in Tertiary rocks of the Date Creek-Artillery Basin, Big Sandy Valley, and Walnut Grove Basin. Two are in Precambrian rocks in the Bagdad and Wickenburg areas. Unfavorable areas include the southwestern crystalline terrane, the Paleozoic and Mesozoic beds, and metamorphic and plutonic Precambrian rocks of the Bradshaw and Weaver Mountains. Unevaluated areas are the basalt-covered mesas, alluvium-mantled Cenozoic basins, the Hualapai Mountains, and the Kellwebb Mine

  7. National Uranium Resource Evaluation, Tonopah quadrangle, Nevada

    International Nuclear Information System (INIS)

    Hurley, B.W.; Parker, D.P.

    1982-04-01

    The Tonopah Quadrangle, Nevada, was evaluated using National Uranium Resource Evaluation criteria to identify and delineate areas favorable for uranium deposits. Investigations included reconnaissance and detailed surface geologic and radiometric studies, geochemical sampling and evaluation, analysis and ground-truth followup of aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data, and subsurface data evaluation. The results of these investigations indicate environments favorable for hydroallogenic uranium deposits in Miocene lacustrine sediments of the Big Smoky Valley west of Tonopah. The northern portion of the Toquima granitic pluton is favorable for authigenic uranium deposits. Environments considered unfavorable for uranium deposits include Quaternary sediments; intermediate and mafic volcanic and metavolcanic rocks; Mesozoic, Paleozoic, and Precambrian sedimentary and metasedimentary rocks; those plutonic rocks not included within favorable areas; and those felsic volcanic rocks not within the Northumberland and Mount Jefferson calderas

  8. National Uranium Resource Evaluation: Okanogan Quadrangle, Washington

    International Nuclear Information System (INIS)

    Bernardi, M.L.; Powell, L.K.; Wicklund, M.A.

    1982-06-01

    The Okanogan Quadrangle, Washington, was evaluated to identify and delineate areas containing environments favorable for the occurrence of uranium deposits using criteria developed for the National Uranium Resource Evaluation program. Reconnaissance and detailed surface studies were augmented by aerial radiometric surveys and hydrogeochemical and stream-sediment reconnaissance studies. The results of the investigations indicate six environments favorable for uranium deposits. They are unclassified, anatectic, allogenic, and contact-metasomatic deposits in Late Precambrian and (or) Early Paleozoic mantling metamorphic core-complex rocks of the Kettle gneiss dome; magmatic-hydrothermal deposits in the Gold Creek pluton, the Magee Creek pluton, the Wellington Peak pluton, and the Midnite Mine pluton, all located in the southeast quadrant of the quadrangle; magmatic-hydrothermal allogenic deposits in Late Paleozoic and (or) Early Mesozoic black shales in the Castle Mountain area; allogenic deposits in Early Paleozoic metasedimentary rocks in the Harvey Creek area and in Late Precambrian metasedimentary rocks in the Blue Mountain area; and sandstone deposits in Eocene sedimentary rocks possibly present in the Enterprise Valley. Seven geologic units are considered unfavorable for uranium deposits. They are all the remaining metamorphic core-complex rocks, Precambrian metasedimentary rocks,Tertiary sedimentary and volcanic rocks, and all Pleistocene and Recent deposits; and, excluding those rocks in the unevaluated areas, include all the remaining plutonic rocks, Paleozoic miogeoclinical rocks, and Upper Paleozoic and Mesozoic eugeosynclinal rocks. Three areas, the Cobey Creek-Frosty Creek area, the Oregon City Ridge-Wilmont Creek area, and the area underlain by the Middle Cambrian Metaline Formation and its stratigraphic equivalents may possibly be favorable but are unevaluated due to lack of data

  9. Benthic iron and phosphorus release from river dominated shelf sediments under varying bottom water O2 concentrations.

    Science.gov (United States)

    Ghaisas, N. A.; Maiti, K.; White, J. R.

    2017-12-01

    Phosphorus (P) cycling in coastal ocean is predominantly controlled by river discharge and biogeochemistry of the sediments. In coastal Louisiana, sediment biogeochemistry is strongly influenced by seasonally fluctuating bottom water O2, which, in turn transitions the shelf sediments from being a sink to source of P. Sediment P-fluxes were 9.73 ± 0.76 mg / m2 /d and 0.67±0.16 mg/m2/d under anaerobic and aerobic conditions respectively, indicating a 14 times higher P-efflux from oxygen deprived sediments. A high sedimentary oxygen consumption rate of 889 ± 33.6 mg/m2/d was due to organic matter re-mineralization and resulted in progressively decreasing the water column dissolved O2 , coincident with a P-flux of 7.2 ± 5.5 mg/m2/d from the sediment. Corresponding water column flux of Fe total was 19.7 ± 7.80 mg/m2/d and the sediment-TP decreased from 545 mg/Kg to 513 mg/Kg. A simultaneous increase in pore water Fe and P concentrations in tandem with a 34.6% loss in sedimentary Fe-bound P underscores the importance of O2 on coupled Fe- P biogeochemistry. This study suggests that from a 14,025 sq. km hypoxia area, Louisiana shelf sediments can supply 1.33x105 kg P/day into the water column compared to 0.094 x 105 kg P/day during the fully aerobic water column conditions.

  10. Surficial geologic map of the Elizabethtown 30' x 60' quadrangle, North Carolina

    Science.gov (United States)

    Weems, Robert E.; Lewis, William C.; Crider, E. Allen

    2011-01-01

    The Elizabethtown 30' x 60' quadrangle is located in southeastern North Carolina between Fayetteville and Wilmington. Most of the area is flat to gently rolling, although steep slopes occur locally along some of the larger streams. Total relief in the area is slightly over 210 feet (ft), with elevations ranging from slightly less than 10 ft above sea level along the Black River (east of Rowan in the southeastern corner of the map) to slightly over 220 ft in the northwestern corner northeast of Hope Mills. The principal streams in the area are the Cape Fear, Black, South, and Lumber Rivers, which on average flow from northwest to southeast across the map area. The principal north-south roads are Interstate Route 95, Interstate Route 40, U.S. Route 117, U.S. Route 301, U.S. Route 421, and U.S. Route 701, and the principal east-west roads are N.C. State Route 241 and N.C. State Route 41. This part of North Carolina is primarily rural and agricultural. The largest communities in and adjacent to the area are Elizabethtown, Hope Mills, Clinton, Warsaw, and Lumberton. The map lies entirely within the Atlantic Coastal Plain physiographic province. Outstanding features of this area are the large number of sand-rimmed Carolina bays, five of which contain enough water to constitute natural lakes: Bay Tree Lake, Salter Lake, Little Singletary Lake, Singletary Lake, and White Lake. These are associated with widespread windblown sand deposits on which are grown abundant crops of blueberries. The extent and distribution of these deposits have been estimated based on a combination of augerhole, outcrop, and light-detection and ranging (LIDAR) data. The geology of the Elizabethtown 30' x 60' quadrangle was originally mapped on 32 7.5-minute quadrangles at 1:24,000 scale and then compiled on this 1:100,000-scale base. The base-map topographic contours on this compilation are shown in meters; the cross sections, structure contours, and well and corehole basement elevations have been

  11. Uranium hydrogeochemical and stream sediment reconnaissance of the thermopolis NTMS Quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Maassen, L.W.

    1980-08-01

    The Los Alamos Scientific Laboratory conducted a hydrogeochemical and stream sediment reconnaissance for uranium in the Thermopolis National Topographic Map Series quadrangle, Wyoming. Totals of 920 water and 1821 sediment samples were collected from 1977 locations at an average density of one sample location per 9 km 2 over an 18,000-km 2 area. Water samples were collected from streams, springs, and wells; sediment samples were collected from streams and springs. The uranium contents of water samples range from below the detection limit of 0.02 ppB to 307.98 ppB with a median of 0.56 ppB. Six clusters of anomalous water samples were delineated within the Wind River Basin and are associated predominantly with the Wind River formation. Two clusters of anomalous waters were collected on the southern margin of the Bighorn Basin and are associated with sandstone and shales of Permian through Cretaceous age. The uranium contents of sediment samples range from 0.43 to 94.65 ppM with a median of 2.90 ppM. Most sediment samples with uranium concentrations of greater than 12 ppM are underlain by Precambrian crystalline rocks of the Wind River Range; this area contains the highest uranium values found in sediments from the Thermopolis quadrangle. Other samples containing greater than 12 ppM uranium are found associated with the Wind River and Aycross formations along the northern margin of the Wind River Basin, and one sample was collected from Precambrian granitic terrain of the Owl Creek Mountains

  12. A simple and portable colorimeter using a red-green-blue light-emitting diode and its application to the on-site determination of nitrite and iron in river-water.

    Science.gov (United States)

    Suzuki, Yasutada; Aruga, Terutomi; Kuwahara, Hiroyuki; Kitamura, Miki; Kuwabara, Tetsuo; Kawakubo, Susumu; Iwatsuki, Masaaki

    2004-06-01

    A portable colorimeter using a red-green-blue light-emitting diode as a light source has been developed. An embedded controller sequentially turns emitters on and off, and acquires the signals detected by two photo diodes synchronized with their blinking. The controller calculates the absorbance and displays it on a liquid-crystal display. The whole system, including a 006P dry cell, is contained in a 100 x 70 x 50 mm aluminum case and its mass is 280 g. This colorimeter was successfully applied to the on-site determination of nitrite and iron in river-water.

  13. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  14. Geology of the Lachesis Tessera Quadrangle (V-18), Venus

    Science.gov (United States)

    McGowan, Eileen M.; McGill, George G.

    2010-01-01

    The Lachesis Tessera Quadrangle (V-18) lies between 25deg and 50deg north, 300deg and 330deg east. Most of the quadrangle consists of "regional plains" (1) of Sedna and Guinevere Planitiae. A first draft of the geology has been completed, and the tentative number of mapped units by terrain type is: tesserae - 2; plains - 4; ridge belts - 1; fracture belts - 1 (plus embayed fragments of possible additional belts); coronae - 5; central volcanoes - 2; shield flows - 2; paterae - 1; impact craters - 13; undifferentiated flows - 1; bright materials - 1.

  15. Geological mapping of the Kuiper quadrangle (H06) of Mercury

    Science.gov (United States)

    Giacomini, Lorenza; Massironi, Matteo; Galluzzi, Valentina

    2017-04-01

    Kuiper quadrangle (H06) is located at the equatorial zone of Mercury and encompasses the area between longitudes 288°E - 360°E and latitudes 22.5°N - 22.5°S. The quadrangle was previously mapped for its most part by De Hon et al. (1981) that, using Mariner10 data, produced a final 1:5M scale map of the area. In this work we present the preliminary results of a more detailed geological map (1:3M scale) of the Kuiper quadrangle that we compiled using the higher resolution of MESSENGER data. The main basemap used for the mapping is the MDIS (Mercury Dual Imaging System) 166 m/pixel BDR (map-projected Basemap reduced Data Record) mosaic. Additional datasets were also taken into account, such as DLR stereo-DEM of the region (Preusker et al., 2016), global mosaics with high-incidence illumination from the east and west (Chabot et al., 2016) and MDIS global color mosaic (Denevi et al., 2016). The preliminary geological map shows that the western part of the quadrangle is characterized by a prevalence of crater materials (i.e. crater floor, crater ejecta) which were distinguished into three classes on the basis of their degradation degree (Galluzzi et al., 2016). Different plain units were also identified and classified as: (i) intercrater plains, represented by densely cratered terrains, (ii) intermediate plains, which are terrains with a moderate density of superposed craters, and (iii) smooth plains, which are poorly cratered volcanic deposits emplaced mainly on the larger crater floors. Finally, several structures were mapped all over the quadrangle. Most of these features are represented by thrusts, some of which appear to form systematic alignments. In particular, two main thrust systems have been identified: i) the "Thakur" system, a 1500 km-long system including several scarps with a NNE-SSW orientation, located at the edge between the Kuiper and Beethoven (H07) quadrangles; ii) the "Santa Maria" system, located at the centre of the quadrangle. It is a 1700 km

  16. National Uranium Resource Evaluation: Hutchinson Quadrangle, Kansas

    International Nuclear Information System (INIS)

    Fair, C.L.; Smit, D.E.; Gundersen, J.N.

    1982-08-01

    Surface reconnaissance and detailed subsurface studies were done within the Hutchinson Quadrangle, Kansas, to evaluate uranium favorability in accordance with National Uranium Resource Evaluation criteria. These studies were designed in part to follow up prior airborne radiometric, hydrogeochemical, and stream-sediment surveys. Over 4305 well records were examined in the subsurface phase of this study. The results of these investigations indicate environments favorable for channel-controlled peneconcordant sandstone deposits in rocks of Cretaceous age and for Wyoming and Texas roll-type deposits in sandstones of Pennsylvanian age. The Cretaceous sandstone environments exhibit favorable characteristics such as a bottom unconformity; high bedload; braided, fluvial channels; large-scale cross-bedding; and an anomalous outcrop. The Pennsylvanian sandstone environments exhibit favorable characteristics such as arkosic cross-bedded sandstones, included pyrite and organic debris, interbedded shales, and gamma-ray log anomalies. Environments considered unfavorable for uranium deposits are limestone and dolomite environments, marine black shale environments, evaporative precipitate environments, and some fluvial sandstone environments. Environments considered unevaluated due to insufficient data include Precambrian plutonic, metamorphic, and sedimentary rocks, even though a large number of thin sections were available for study

  17. National Uranium Resource Evaluation: Manhattan Quadrangle, Kansas

    International Nuclear Information System (INIS)

    Fair, C.L.; Smit, D.E.

    1982-08-01

    Surface reconnaissance and detailed subsurface studies were conducted in the Manhattan Quadrangle, Kansas, to evaluate uranium favorability using National Uranium Resource Evaluation criteria. These studies were designed in part to follow up airborne radiometric and hydrogeochemical and stream-sediment surveys. More than 600 well records were examined in the subsurface phase of the study. Results of these investigations indicate environments favorable for channel-controlled peneconcordant sandstone uranium deposits in Cretaceous rocks and for Wyoming roll-type deposits in Pennsylvanian sandstones. The Cretaceous sandstone environments exhibit such favorable characteristics as a bottom unconformity, high bed load, braided fluvial channels, large-scale cross-bedding, and one anomalous outcrop. The Pennsylvanian sandstone environments exhibit such favorable characteristics as arkosic cross-bedded sandstones, included pyrite and organic debris, interbedded shales, and gamma-ray log anomalies. Environments considered unfavorable for uranium deposits are limestone and dolomite environments, marine black shale environments, evaporative precipitate environments, and some fluvial sandstone environments. Environments considered unevaluated because not enough data were available include Precambrian plutonic, metamorphic, and sedimentary rocks, even though a large number of thin sections were available for study

  18. National uranium resource evaluation: Williams quadrangle, Arizona

    International Nuclear Information System (INIS)

    O'Neill, A.J.; Nystrom, R.J.; Thiede, D.S.

    1981-03-01

    Geologic environments of the Williams Quadrangle, Arizona, were evaluated for uranium favorability by means of literature research, uranium-occurrence investigation and other surface studies, subsurface studies, aerial radiometric data, hydrogeochemical data, and rock-sample analytic data. Favorability criteria are those of the National Uranium Resource Evaluation program. Three geologic environments are favorable for uranium: the Tertiary fluvial rocks of the Colorado Plateau where they unconformably overlie impermeable bed rock (for channel-controlled peneconcordant deposits); collapse breccia pipes in Paleozoic strata of the Colorado Plateau (for vein-type deposits in sedimentary rocks); and Precambrian crystalline rocks of the Hualapai, Peacock, and Aquarius Mountains, and Cottonwood and Grand Wash Cliffs (for magmatic-hydrothermal deposits). Unfavorable geologic environments are: Tertiary and Quaternary volcanic rocks, Tertiary and Quaternary sedimentary rocks of the Colorado Plateau, nearly all Paleozoic and Mesozoic sedimentary rocks, and the Precambrian-Cambrian unconformity of the Grand Wash Cliffs area. Tertiary rocks in Cenozoic basins and Precambrian crystalline rocks in the Grand Canyon region and in parts of the Aquarius Mountains and Cottonwood and Grand Wash Cliffs are unevaluated

  19. Uranium Immobilization in an Iron-Rich Rhizosphere of a Native Wetland Plant from the Savannah River Site under Reducing Conditions

    Science.gov (United States)

    The hypothesis of this study was that iron plaque formed on the roots of wetland plants and their rhizospheres create environmental conditions favorable for iron reducing bacteria that promote the in situ immobilization of uranium. Greenhouse microcosm studies were conducted usin...

  20. Geologic map of the Ganiki Planitia quadrangle (V-14), Venus

    Science.gov (United States)

    Grosfils, Eric B.; Long, Sylvan M.; Venechuk, Elizabeth M.; Hurwitz, Debra M.; Richards, Joseph W.; Drury, Dorothy E.; Hardin, Johanna

    2011-01-01

    The Ganiki Planitia (V-14) quadrangle on Venus, which extends from 25° N. to 50° N. and from 180° E. to 210° E., derives its name from the extensive suite of plains that dominates the geology of the northern part of the region. With a surface area of nearly 6.5 x 106 km2 (roughly two-thirds that of the United States), the quadrangle is located northwest of the Beta-Atla-Themis volcanic zone and southeast of the Atalanta Planitia lowlands, areas proposed to be the result of large scale mantle upwelling and downwelling, respectively. The region immediately south of Ganiki Planitia is dominated by Atla Regio, a major volcanic rise beneath which localized upwelling appears to be ongoing, whereas the area just to the north is dominated by the orderly system of north-trending deformation belts that characterize Vinmara Planitia. The Ganiki Planitia quadrangle thus lies at the intersection between several physiographic regions where extensive mantle flow-induced tectonic and volcanic processes are thought to have occurred. The geology of the V-14 quadrangle is characterized by a complex array of volcanic, tectonic, and impact-derived features. There are eleven impact craters with diameters from 4 to 64 km, as well as four diffuse 'splotch' features interpreted to be the product of near-surface bolide explosions. Tectonic activity has produced heavily deformed tesserae, belts of complex deformation and rifts as well as a distributed system of fractures and wrinkle ridges. Volcanic activity has produced extensive regional plains deposits, and in the northwest corner of the quadrangle these plains host the initial (or terminal) 700 km of the Baltis Vallis canali, an enigmatic volcanic feature with a net length of ~7,000 km that is the longest channel on Venus. Major volcanic centers in V-14 include eight large volcanoes and eight coronae; all but one of these sixteen features was noted during a previous global survey. The V-14 quadrangle contains an abundance of minor

  1. Geologic map of the Vail West quadrangle, Eagle County, Colorado

    Science.gov (United States)

    Scott, Robert B.; Lidke, David J.; Grunwald, Daniel J.

    2002-01-01

    This new 1:24,000-scale geologic map of the Vail West 7.5' quadrangle, as part of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area on the southwest flank of the Gore Range. Bedrock strata include Miocene tuffaceous sedimentary rocks, Mesozoic and upper Paleozoic sedimentary rocks, and undivided Early(?) Proterozoic metasedimentary and igneous rocks. Tuffaceous rocks are found in fault-tilted blocks. Only small outliers of the Dakota Sandstone, Morrison Formation, Entrada Sandstone, and Chinle Formation exist above the redbeds of the Permian-Pennsylvanian Maroon Formation and Pennsylvanian Minturn Formation, which were derived during erosion of the Ancestral Front Range east of the Gore fault zone. In the southwestern area of the map, the proximal Minturn facies change to distal Eagle Valley Formation and the Eagle Valley Evaporite basin facies. The Jacque Mountain Limestone Member, previously defined as the top of the Minturn Formation, cannot be traced to the facies change to the southwest. Abundant surficial deposits include Pinedale and Bull Lake Tills, periglacial deposits, earth-flow deposits, common diamicton deposits, common Quaternary landslide deposits, and an extensive, possibly late Pliocene landslide deposit. Landscaping has so extensively modified the land surface in the town of Vail that a modified land-surface unit was created to represent the surface unit. Laramide movement renewed activity along the Gore fault zone, producing a series of northwest-trending open anticlines and synclines in Paleozoic and Mesozoic strata, parallel to the trend of the fault zone. Tertiary down-to-the-northeast normal faults are evident and are parallel to similar faults in both the Gore Range and the Blue River valley to the northeast; presumably these are related to extensional deformation that occurred during formation of the northern end of the

  2. Hydrogeochemical and stream sediment reconnaissance basic data report for Winnemucca NTMS Quadrangle, Nevada

    International Nuclear Information System (INIS)

    Puchlik, K.P.

    1978-05-01

    Results are presented of the geochemical reconnaissance sampling in the Winnemucca 1 0 x 2 0 quadrangle of the National Topographic Map Series (NTMS). Wet and dry sediment samples were collected throughout the 18,770-km 2 arid to semi-arid area and water samples at available streams, springs and wells. Results of neutron activation analyses are presented of uranium and trace elements and other measurements made in the field and laboratory in tabular hardcopy and microfiche format. The report includes 5 full-size overlays for use with the Winnemucca NTMS 1:250,000 quadrangle. Water sampling sites, water-sample uranium and thorium concentrations, sediment sampling sites, and sediment-sample total uranium and thorium concentrations are shown on the separate overlays. General geological and structural descriptions of the area are given and the 12 known uranium occurrences are described. The results indicate that the uranium geochemistry of the area is diverse. High concentrations (greater than 5 ppM) of uranium in sediments are associated mainly with rhyolitic ash falls and flows and silicic intrusives. In defining areas of interest the ratio of relatively insoluble thorium to uranium was considered. The anomalies as defined are then the sediment samples containing low Th/U and high uranium concentrations. These areas consist mainly of fluvial-lacustrine units. Most known uranium occurrences were also identified by this technique. The main Humboldt River shows an irregular increase in uranium concentration downstream which may be related to agricultural modification of the stream flow. U/Cl ratios were used to evaluate the effects of evaporative concentration. Of interest are spring and tributary waters containing high U/Cl and high uranium values. These waters mainly drain acid intrusives, silicic volcanic rocks and related sediments. One such area is the Shoshone and Cortez Mountains

  3. Digital bedrock geologic map of the Andover quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-31A Ratcliffe, N.M., 1996,�Digital bedrock geologic map of the Andover quadrangle, Vermont: USGS Open-File Report 96-31-A, 2 plates, scale...

  4. Geology of the Horse Range Mesa quadrangle, Colorado

    Science.gov (United States)

    Cater, Fred W.; Bush, A.L.; Bell, Henry; Withington, C.F.

    1953-01-01

    The Horse Range Mesa quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of the quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary strictures in sandstones of favorable composition.

  5. Geological Mapping of the Debussy Quadrangle (H-14) Preliminary Results

    Science.gov (United States)

    Pegg, D. L.; Rothery, D. A.; Balme, M. R.; Conway, S. J.

    2018-05-01

    We present the current status of geological mapping of the Debussy quadrangle. Mapping underway as part of a program to map the entire planet at a scale of 1:3M using MESSENGER data in preparation for the BepiColombo mission.

  6. Surficial geology of Panther Lake Quadrangle, Oswego County, New York

    Science.gov (United States)

    Miller, Todd S.

    1981-01-01

    The location and extent of eight kinds of surficial deposits in Panther Lake quadrangle, Oswego County, N.Y., are mapped on a 7.5-minute U.S. Geological Survey topographic map. The map was compiled to indicate the lithology and potential for groundwater development at any specific location. (USGS)

  7. Digital bedrock geologic map of the Weston quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-526A Ratcliffe, NM�and Burton, WC, 1996,�Digital bedrock geologic map of the Weston quadrangle, Vermont: USGS Open-File Report 96-526, 2...

  8. Digital bedrock geologic map of the Chester quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-576A Ratcliffe, N.M., 1995,�Digital bedrock geologic map of the Chester quadrangle, Vermont: USGS Open-File Report 95-576, 2 plates, scale...

  9. Digital bedrock geologic map of the Plymouth quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG94-654A Walsh, G.J., and Ratcliffe, N.M., 1994,�Digital bedrock geologic map of the Plymouth quadrangle, Vermont: USGS Open-File Report 94-654, 2...

  10. Digital bedrock geologic map of the Johnson quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-2 Thompson, PJ�and Thompson, TB, 1998,�Digital bedrock geologic map of the Johnson quadrangle, Vermont: VGS Open-File Report VG98-2, 2 plates,...

  11. Digital bedrock geologic map of the Rochester quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-33A Walsh, GJ�and Falta, CK, 1996, Digital bedrock geologic map of the Rochester quadrangle, Vermont: USGS Open-File Report 96-33-A, 2 plates,...

  12. Digital bedrock geologic map of the Eden quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-3 Kim, J, Springston, G, and Gale, M, 1998,�Digital bedrock geologic map of the Eden quadrangle, Vermont: VGS Open-File Report VG98-3, 2...

  13. Geologic map of the Agnesi quadrangle (V-45), Venus

    Science.gov (United States)

    Hansen, Vicki L.; Tharalson, Erik R.

    2014-01-01

    The Agnesi quadrangle (V–45), named for centrally located Agnesi crater, encompasses approximately 6,500,000 km2 extending from lat 25° to 50° S. and from long 30° to 60° E. The V–45 quadrangle lies within Venus’ lowland broadly between highlands Ovda Regio to the northeast and Alpha Regio to the west. The region ranges in altitude from 6,051 to 6,054 km, with an average of ~6,052 km, which is essentially mean planetary radius. The quadrangle displays a wide range of features including large to small arcuate exposures of ribbon-tessera terrain (Hansen and Willis, 1998), ten lowland coronae, two montes, 13 pristine impact craters, and long but localized volcanic flows sourced to the west in V–44. Shield terrain (Hansen, 2005) occurs across much of the V–45 quadrangle. Although V–45 lies topographically within the lowland, it includes only one planitia (Fonueha Planitia), perhaps because the features mentioned decorate it.

  14. THE JAMES MADISON WOOD QUADRANGLE, STEPHENS COLLEGE, COLUMBIA, MISSOURI.

    Science.gov (United States)

    MCBRIDE, WILMA

    THE JAMES MADISON WOOD QUADRANGLE AT STEPHENS COLLEGE IS A COMPLEX OF BUILDINGS DESIGNED TO MAKE POSSIBLE A FLEXIBLE EDUCATIONAL ENVIRONMENT. A LIBRARY HOUSES A GREAT VARIETY OF AUDIO-VISUAL RESOURCES AND BOOKS. A COMMUNICATION CENTER INCORPORATES TELEVISION AND RADIO FACILITIES, A FILM PRODUCTION STUDIO, AND AUDIO-VISUAL FACILITIES. THE LEARNING…

  15. Surficial geology of Hannibal Quadrangle, Oswego County, New York

    Science.gov (United States)

    Miller, Todd S.

    1981-01-01

    The location and extent of 10 kinds of surficial deposits in part of Hannibal quadrangle, Oswego County, N.Y., are mapped on a 7.5-minute U.S. Geological Survey topographic map. The map was compiled to indicate the lithology and potential for ground-water development at any specific location. (USGS)

  16. Modern shelf ice, equatorial Aeolis Quadrangle, Mars

    Science.gov (United States)

    Brakenridge, G. R.

    1993-01-01

    As part of a detailed study of the geological and geomorphological evolution of Aeolis Quadrangle, I have encountered evidence suggesting that near surface ice exists at low latitudes and was formed by partial or complete freezing of an inland sea. The area of interest is centered at approximately -2 deg, 196 deg. As seen in a suite of Viking Orbiter frames obtained at a range of approximately 600 km, the plains surface at this location is very lightly cratered or uncratered, and it is thus of late Amazonian age. Extant topographic data indicate that the Amazonian plains at this location occupy a trough whose surface lies at least 1000 m below the Mars datum. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. In either case, the thin (a few meters at most) high albedo, low thermal inertia cover of aeolian materials was instrumental in allowing ice preservation, and at least the lower portions of this dust cover may be cemented by water ice. Detailed mapping using Viking stereopairs and quantitative comparisons to terrestrial shelf ice geometries are underway.

  17. Geologic Map of the Greenaway Quadrangle (V-24), Venus

    Science.gov (United States)

    Lang, Nicholas P.; Hansen, Vicki L.

    2010-01-01

    The Greenaway quadrangle (V-24; lat 0 degrees -25 degrees N., long 120 degrees -150 degrees E.), Venus, derives its name from the impact crater Greenaway, centered at lat 22.9 degrees N., long 145.1 degrees E., in the northeastern part of the quadrangle. Greenaway was a well-noted writer and illustrator of children`s books in Britain during the nineteenth century. In Greenaway`s honor, the Library Association of Great Britain presents the annual Kate Greenaway Medal to an illustrator living and publishing in Britain who has produced the most distinguished children`s book illustrations for that year. The Greenaway quadrangle occupies an 8,400,000 km2 equatorial swath of lowlands and highlands. The map area is bounded by the crustal plateau, Thetis Regio, to the south and Gegute Tessera to the west. The rest of the quadrangle consists of part of Llorona Planitia, which is part of the vast lowlands that cover about 80 percent of Venus` surface. The southern map area marks the north edge of Aphrodite Terra, including Thetis Regio, that includes the highest topography in the quadrangle with elevations reaching >1 km above the Mean Planetary Radius (MPR; 6,051.84 km). Northern Aphrodite Terra abruptly slopes north to Llorona Planitia. A broad northeast-trending topographic arch pocked with coronae separates two northeast-trending elongate basins, Llorona Planitia on the east, that form depositional centers for shield and coronae-sourced materials; both basins drop to elevations of history for this region, which in turn provides insights into volcanic and tectonic processes that shaped the Venusian surface. Map relations illustrate that aerially expansive shield terrain (unit st) played a primary role and coronae played a secondary role in volcanic resurfacing across the map area.

  18. Geohydrology and numerical simulation of ground-water flow in the central Virgin River basin of Iron and Washington Countries, Utah

    Science.gov (United States)

    Heilweil, V.M.; Freethey, G.W.; Wilkowske, C.D.; Stolp, B.J.; Wilberg, D.E.

    2000-01-01

    Because rapid growth of communities in Washington and Iron Counties, Utah, is expected to cause an increase in the future demand for water resources, a hydrologic investigation was done to better understand ground-water resources within the central Virgin River basin. This study focused on two of the principal ground-water reservoirs within the basin: the upper Ash Creek basin ground-water system and the Navajo and Kayenta aquifer system. The ground-water system of the upper Ash Creek drainage basin consists of three aquifers: the uppermost Quaternary basin-fill aquifer, the Tertiary alluvial-fan aquifer, and the Tertiary Pine Valley monzonite aquifer. These aquifers are naturally bounded by the Hurricane Fault and by drainage divides. On the basis of measurements, estimates, and numerical simulations of reasonable values for all inflow and outflow components, total water moving through the upper Ash Creek drainage basin ground-water system is estimated to be about 14,000 acre-feet per year. Recharge to the upper Ash Creek drainage basin ground-water system is mostly from infiltration of precipitation and seepage from ephemeral and perennial streams. The primary source of discharge is assumed to be evapotranspiration; however, subsurface discharge near Ash Creek Reservoir also may be important. The character of two of the hydrologic boundaries of the upper Ash Creek drainage basin ground-water system is speculative. The eastern boundary provided by the Hurricane Fault is assumed to be a no-flow boundary, and a substantial part of the ground-water discharge from the system is assumed to be subsurface outflow beneath Ash Creek Reservoir along the southern boundary. However, these assumptions might be incorrect because alternative numerical simulations that used different boundary conditions also proved to be feasible. The hydrogeologic character of the aquifers is uncertain because of limited data. Difference in well yield indicate that there is considerable

  19. Digital bedrock geologic map of the Arlington quadrangle and a Vermont portion of the Shushan quadrangle, Vermont: USGS Open-File Report 95-483, 2 plates, scale 1:24000

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-483A Lyttle, PT,�Digital bedrock geologic map of the Arlington quadrangle and a Vermont portion of the Shushan quadrangle, Vermont: USGS...

  20. Uranium hydrogeochemical and stream sediment reconnaissance of the Lime Hills and Tyonek NTMS Quadrangles, Alaska, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Jacobsen, S.I.; Aamodt, P.L.; Sharp, R.R. Jr.

    1979-01-01

    The U contents of the 671 waters from the Lime Hills quadrangle range from below 0.02 ppB to a high of 11.29 ppB. U contents of the 667 sediments from this quadrangle range from a low of 0.1 ppM to a high of 94.9 ppM. Both waters and sediments containing relatively high U concentrations are found to cluster in association with plutonic rocks in the Alaska Range, and particularly so in the vicinity of the Tired Pup batholith and Mount Estelle pluton. The U contents of 575 waters from the Tyonek quadrangle range from below the detection limit to 13.13 ppB. Relatively high U concentrations in waters were found to cluster near the Mount Estelle pluton and undifferentiated igneous, metasedimentary, and volcanic rocks in the Alaska Range and in Pleistocene deposits along the Castle Mountain fault. Uranium contents in 502 sediments from the Tyonek quadrangle range from 0.1 to 58 ppM. Most sediment samples having high U concentrations are from locations near the Mount Estelle pluton and Styx River batholith in the Alaska Range. Data for samples collected in the Alaska Range and the two flanking lowlands were also examined separately. Water samples from all source types in the Alaska Range had a higher mean U concentration (0.85 ppB) than those from the Western Lowland (0.34 ppB) or the Susitna Lowland (0.51 ppB). The mean U concentrations for lake water samples from the Alaska Range and the lowland areas are similar. Sediment samples from streams and lakes in the Alaska Range have a markedly higher mean U concentration (7.00 ppM) than sediment samples from either the Western Lowland (2.46 ppM) or the Susitna Lowland area

  1. Geologic and geophysical maps and volcanic history of the Kelton Pass SE and Monument Peak SW Quadrangles, Box Elder County, Utah

    Science.gov (United States)

    Felger, Tracey J.; Miller, David; Langenheim, Victoria; Fleck, Robert J.

    2016-01-01

    The Kelton Pass SE and Monument Peak SW 7.5' quadrangles are located in Box Elder County, northwestern Utah (figure 1; plate 1). The northern boundary of the map area is 8.5 miles (13.7 km) south of the Utah-Idaho border, and the southern boundary reaches the edge of mud flats at the north end of Great Salt Lake. Elevations range from 4218 feet (1286 m) along the mud flats to 5078 feet (1548 m) in the Wildcat Hills. Deep Creek forms a prominent drainage between the Wildcat Hills and Cedar Hill. The closest towns are the ranching communities of Snowville, Utah (10 miles [16 km] to the northeast) (figure 1), and Park Valley, Utah (10 miles [16 km] to the west).The Kelton Pass SE and Monument Peak SW 7.5' quadrangles are located entirely within southern Curlew Valley, which drains south into Great Salt Lake, and extends north of the area shown on figure 1 into Idaho. Curlew Valley is bounded on the west by the Raft River Mountains and on the east by the Hansel Mountains (figure 1). Sedimentary and volcanic bedrock exposures within the quadrangles form the Wildcat Hills, Cedar Hill, and informally named Middle Shield (figure 1). Exposed rocks and deposits are Permian to Holocene in age, and include the Permian quartz sandstone and orthoquartzite of the Oquirrh Formation (Pos), tuffaceous sedimentary rocks of the Miocene Salt Lake Formation (Ts), Pliocene basaltic lava flows (Tb) and dacite (Tdw), Pleistocene rhyolite (Qrw) and basalt (Qb), and Pleistocene and Holocene surficial deposits of alluvial, lacustrine, and eolian origin. Structurally, the map area is situated in the northeastern Basin and Range Province, and is inferred to lie within the hanging wall of the late Miocene detachment faults exposed in the Raft River Mountains to the northwest (e.g., Wells, 1992, 2009; figure 1).This mapping project was undertaken to produce a comprehensive, large-scale geologic map of the Wildcat Hills, as well as to improve understanding of the volcanic and tectonic evolution of

  2. Digital data for preliminary geologic map of the Mount Hood 30- by 60-minute quadrangle, northern Cascade Range, Oregon

    Science.gov (United States)

    Lina Ma,; Sherrod, David R.; Scott, William E.

    2014-01-01

    The Mount Hood 30- by 60-minute quadrangle covers the axis and east flank of the Cascade Range in northern Oregon. Its namesake, Mount Hood volcano, dominates the view in the northwest quarter of the quadrangle, but the entire area is underlain by Oligocene and younger volcanic and volcaniclastic rocks of the Cascade Range. Since the time of the Columbia River Basalt Group about 15 million years (m.y.) ago, the locus and composition of Cascade Range volcanism have shifted sporadically across the map area. Andesitic eruptions were predominant in the western part from about 14 to 10 m.y. ago (Salmon and Sandy Rivers area), producing the Rhododendron Formation and overlying lava flows. From about 8 to 6.5 m.y. ago, lithic pyroclastic debris of the Dalles Formation was shed by chiefly andesitic volcanoes in the north-central part of the map area (Hood River valley escarpment). Andesitic to dacitic volcanism was again predominant about 5 to 3 m.y. ago, with known eruptive centers located from Lookout Mountain westward to Lolo Pass, probably including the area now occupied by Mount Hood. A major episode of mafic volcanism-basalt and basaltic andesite-began about 3-4 m.y. ago and lasted until about 2 m.y. ago. Volcanism since about 2 m.y. ago has been concentrated along the axis of the High Cascades. North and south of Mount Hood these youngest rocks are predominantly basaltic andesite lava flows; whereas at Mount Hood itself, andesite is predominant, forming pyroclastic and debris-flow deposits and lava flows.

  3. Uranium hydrogeochemical and stream sediment reconnaissance of the Arminto NTMS quadrangle, Wyoming, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Morgan, T.L.

    1979-11-01

    During the summers of 1976 and 1977, 570 water and 1249 sediment samples were collected from 1517 locations within the 18,000-km 2 area of the Arminto NTMS quadrangle of central Wyoming. Water samples were collected from wells, springs, streams, and artifical ponds; sediment samples were collected from wet and dry streams, springs, and wet and dry ponds. All water samples were analyzed for 13 elements, including uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit to 84.60 parts per billion (ppb) with a mean of 4.32 ppb. All water sample types except pond water samples were considered as a single population in interpreting the data. Pond water samples were excluded due to possible concentration of uranium by evaporation. Most of the water samples containing greater than 20 ppb uranium grouped into six clusters that indicate possible areas of interest for further investigation. One cluster is associated with the Pumpkin Buttes District, and two others are near the Kaycee and Mayoworth areas of uranium mineralization. The largest cluster is located on the west side of the Powder River Basin. One cluster is located in the central Big Horn Basin and another is in the Wind River Basin; both are in areas underlain by favorable host units. Uranium concentrations in sediment samples range from 0.08 parts per million (ppm) to 115.50 ppm with a mean of 3.50 ppm. Two clusters of sediment samples over 7 ppm were delineated. The first, containing the two highest-concentration samples, corresponds with the Copper Mountain District. Many of the high uranium concentrations in samples in this cluster may be due to contamination from mining or prospecting activity upstream from the sample sites. The second cluster encompasses a wide area in the Wind River Basin along the southern boundary of the quadrangle

  4. Uranium hydrogeochemical and stream sediment reconnaissance of the Arminto NTMS quadrangle, Wyoming, including concentrations of forty-three additional elements

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, T.L.

    1979-11-01

    During the summers of 1976 and 1977, 570 water and 1249 sediment samples were collected from 1517 locations within the 18,000-km/sup 2/ area of the Arminto NTMS quadrangle of central Wyoming. Water samples were collected from wells, springs, streams, and artifical ponds; sediment samples were collected from wet and dry streams, springs, and wet and dry ponds. All water samples were analyzed for 13 elements, including uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit to 84.60 parts per billion (ppb) with a mean of 4.32 ppb. All water sample types except pond water samples were considered as a single population in interpreting the data. Pond water samples were excluded due to possible concentration of uranium by evaporation. Most of the water samples containing greater than 20 ppb uranium grouped into six clusters that indicate possible areas of interest for further investigation. One cluster is associated with the Pumpkin Buttes District, and two others are near the Kaycee and Mayoworth areas of uranium mineralization. The largest cluster is located on the west side of the Powder River Basin. One cluster is located in the central Big Horn Basin and another is in the Wind River Basin; both are in areas underlain by favorable host units. Uranium concentrations in sediment samples range from 0.08 parts per million (ppm) to 115.50 ppm with a mean of 3.50 ppm. Two clusters of sediment samples over 7 ppm were delineated. The first, containing the two highest-concentration samples, corresponds with the Copper Mountain District. Many of the high uranium concentrations in samples in this cluster may be due to contamination from mining or prospecting activity upstream from the sample sites. The second cluster encompasses a wide area in the Wind River Basin along the southern boundary of the quadrangle.

  5. Topographic Map of Quadrangle 3368 and Part of Quadrangle 3370, Ghazni (515), Gardez (516), and Jaji-Maydan (517) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  6. Geologic map of the Rifle Falls quadrangle, Garfield County, Colorado

    Science.gov (United States)

    Scott, Robert B.; Shroba, Ralph R.; Egger, Anne

    2001-01-01

    New 1:24,000-scale geologic map of the Rifle Falls 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift. Bedrock strata include the Upper Cretaceous Iles Formation through Ordovician and Cambrian units. The Iles Formation includes the Cozzette Sandstone and Corcoran Sandstone Members, which are undivided. The Mancos Shale is divided into three members, an upper member, the Niobrara Member, and a lower member. The Lower Cretaceous Dakota Sandstone, the Upper Jurassic Morrison Formation, and the Entrada Sandstone are present. Below the Upper Jurassic Entrada Sandstone, the easternmost limit of the Lower Jurassic and Upper Triassic Glen Canyon Sandstone is recognized. Both the Upper Triassic Chinle Formation and the Lower Triassic(?) and Permian State Bridge Formation are present. The Pennsylvanian and Permian Maroon Formation is divided into two members, the Schoolhouse Member and a lower member. All the exposures of the Middle Pennsylvanian Eagle Evaporite intruded into the Middle Pennsylvanian Eagle Valley Formation, which includes locally mappable limestone beds. The Middle and Lower Pennsylvanian Belden Formation and the Lower Mississippian Leadville Limestone are present. The Upper Devonian Chaffee Group is divided into the Dyer Dolomite, which is broken into the Coffee Pot Member and the Broken Rib Member, and the Parting Formation. Ordovician through Cambrian units are undivided. The southwest flank of the White River uplift is a late Laramide structure that is represented by the steeply southwest-dipping Grand Hogback, which is only present in the southwestern corner of the map area, and less steeply southwest-dipping older strata that flatten to nearly horizontal attitudes in the northern part of the map area. Between these two is a large-offset, mid

  7. Stratigraphy, tectonic and ore potential of pre-cambrian unities from Serro region-MG (Mato Grosso quadrangle)

    International Nuclear Information System (INIS)

    Assis, L.C. de.

    1982-01-01

    Geological and stratigraphic elements of the Proterozoic units of the Serro region, Mato Grosso Quadrangle, show the absence of the faciological transition between the Espinhaco Group and the Minas Supergroup. Occurs in this region is a lithostratigraphical sequence of four distinct units: the Crystalline Basement; the Volcano-Sedimentary Sequence of Serro; the Minas Supergroup. The ore potential of the region includes: quartz veins, within the Galho do Miguel Formation; diamond, within the Sopa conglomerates; gold, in alluvial deposits and remobilized in quartz veins of the Sopa-Brumadinho Formation; bauxite, in the metabasics; uranium in the metaconglomerates of Moeda Formation; iron, in Caue Formation; chromium, gold and base metals in the Volcano-Sedimentary Sequence of Serro. Emphasis is given to the characterization of the Volcano-Sedimentary Sequence of Serro and its mineralization that is characterized as a stratiform massif with important volcano-sedimentary contribution, possible, a greenstone belt, with high gold-bearing potential. (author)

  8. Bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire

    Science.gov (United States)

    Rankin, Douglas W.

    2018-04-20

    The bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire, covers an area of approximately 73 square miles (189 square kilometers) in west-central New Hampshire. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. A large part of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Devonian sedimentary, volcanic, and plutonic rocks.The Bronson Hill anticlinorium is the apex of the Middle Ordovician to earliest-Silurian Bronson Hill magmatic arc that contains the Ammonoosuc Volcanics, Partridge Formation, and Oliverian Plutonic Suite, and extends from Maine, through western New Hampshire (down the eastern side of the Connecticut River), through southern New England to Long Island Sound. The deformed and partially eroded arc is locally overlain by a relatively thin Silurian section of metasedimentary rocks (Clough Quartzite and Fitch Formation) that thickens to the east. The Silurian section near Littleton is disconformably overlain by a thicker, Lower Devonian section that includes mostly metasedimentary and minor metavolcanic rocks of the Littleton Formation. The Bronson Hill anticlinorium is bisected by a series of northeast-southwest trending Mesozoic normal faults. Primarily among them is the steeply northwest-dipping Ammonoosuc fault that divides older and younger units (lower and upper sections) of the Ammonoosuc Volcanics. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of slate, phyllite, ironstone, chert, sandstone, and pelite. The Albee Formation underlies the Ammonoosuc Volcanics and is predominantly composed of interbedded metamorphosed sandstone

  9. Geologic map of the Washington West 30’ × 60’ quadrangle, Maryland, Virginia, and Washington D.C.

    Science.gov (United States)

    Lyttle, Peter T.; Aleinikoff, John N.; Burton, William C.; Crider, E. Allen; Drake, Avery A.; Froelich, Albert J.; Horton, J. Wright; Kasselas, Gregorios; Mixon, Robert B.; McCartan, Lucy; Nelson, Arthur E.; Newell, Wayne L.; Pavlides, Louis; Powars, David S.; Southworth, C. Scott; Weems, Robert E.

    2018-01-02

    The Washington West 30’ × 60’ quadrangle covers an area of approximately 4,884 square kilometers (1,343 square miles) in and west of the Washington, D.C., metropolitan area. The eastern part of the area is highly urbanized, and more rural areas to the west are rapidly being developed. The area lies entirely within the Chesapeake Bay drainage basin and mostly within the Potomac River watershed. It contains part of the Nation's main north-south transportation corridor east of the Blue Ridge Mountains, consisting of Interstate Highway 95, U.S. Highway 1, and railroads, as well as parts of the Capital Beltway and Interstate Highway 66. Extensive Federal land holdings in addition to those in Washington, D.C., include the Marine Corps Development and Education Command at Quantico, Fort Belvoir, Vint Hill Farms Station, the Naval Ordnance Station at Indian Head, the Chesapeake and Ohio Canal National Historic Park, Great Falls Park, and Manassas National Battlefield Park. The quadrangle contains most of Washington, D.C.; part or all of Arlington, Culpeper, Fairfax, Fauquier, Loudoun, Prince William, Rappahannock, and Stafford Counties in northern Virginia; and parts of Charles, Montgomery, and Prince Georges Counties in Maryland.The Washington West quadrangle spans four geologic provinces. From west to east these provinces are the Blue Ridge province, the early Mesozoic Culpeper basin, the Piedmont province, and the Coastal Plain province. There is some overlap in ages of rocks in the Blue Ridge and Piedmont provinces. The Blue Ridge province, which occupies the western part of the quadrangle, contains metamorphic and igneous rocks of Mesoproterozoic to Early Cambrian age. Mesoproterozoic (Grenville-age) rocks are mostly granitic gneisses, although older metaigneous rocks are found as xenoliths. Small areas of Neoproterozoic metasedimentary rocks nonconformably overlie Mesoproterozoic rocks. Neoproterozoic granitic rocks of the Robertson River Igneous Suite intruded

  10. Geologic map of the Lower Valley quadrangle, Caribou County, Idaho

    Science.gov (United States)

    Oberlindacher, H. Peter; Hovland, R. David; Miller, Susan T.; Evans, James G.; Miller, Robert J.

    2018-04-05

    The Lower Valley 7.5-minute quadrangle, located in the core of the Southeast Idaho Phosphate Resource Area, includes Mississippian to Triassic marine sedimentary rocks, Pliocene to Pleistocene basalt, and Tertiary to Holocene surficial deposits. The Mississippian to Triassic marine sedimentary sequence was deposited on a shallow shelf between an emergent craton to the east and the Antler orogenic belt to the west. The Meade Peak Phosphatic Shale Member of the Permian Phosphoria Formation hosts high-grade deposits of phosphate that were the subject of geologic studies through much of the 20th century. Open-pit mining of the phosphate has been underway within and near the Lower Valley quadrangle for several decades.

  11. Geologic Map of the Weaverville 15' Quadrangle, Trinity County, California

    Science.gov (United States)

    Irwin, William P.

    2009-01-01

    The Weaverville 15' quadrangle spans parts of five generally north-northwest-trending accreted terranes. From east to west, these are the Eastern Klamath, Central Metamorphic, North Fork, Eastern Hayfork, and Western Hayfork terranes. The Eastern Klamath terrane was thrust westward over the Central Metamorphic terrane during early Paleozoic (Devonian?) time and, in Early Cretaceous time (approx. 136 Ma), was intruded along its length by the massive Shasta Bally batholith. Remnants of overlap assemblages of the Early Cretaceous (Hauterivian) Great Valley sequence and the Tertiary Weaverville Formation cover nearly 10 percent of the quadrangle. The base of the Eastern Klamath terrane in the Weaverville quadrangle is a peridotite-gabbro complex that probably is correlative to the Trinity ophiolite (Ordovician), which is widely exposed farther north beyond the quadrangle. In the northeast part of the Weaverville quadrangle, the peridotite-gabbro complex is overlain by the Devonian Copley Greenstone and the Mississippian Bragdon Formation. Where these formations were intruded by the Shasta Bally batholith, they formed an aureole of gneissic and other metamorphic rocks around the batholith. Westward thrusting of the Eastern Klamath terrane over an adjacent body of mafic volcanic and overlying quartzose sedimentary rocks during Devonian time formed the Salmon Hornblende Schist and the Abrams Mica Schist of the Central Metamorphic terrane. Substantial beds of limestone in the quartzose sedimentary unit, generally found near the underlying volcanic rock, are too metamorphosed for fossils to have survived. Rb-Sr analysis of the Abrams Mica Schist indicates a metamorphic age of approx. 380 Ma. West of Weavervillle, the Oregon Mountain outlier of the Eastern Klamath terrane consists mainly of Bragdon Formation(?) and is largely separated from the underlying Central Metamorphic terrane by serpentinized peridotite that may be a remnant of the Trinity ophiolite. The North Fork

  12. National uranium resource evaluation: Clifton Quadrangle, Arizona and New Mexico

    International Nuclear Information System (INIS)

    White, D.L.; Foster, M.

    1982-05-01

    The Clifton Quadrangle, Arizona and New Mexico, was evaluated to identify environments and delineate areas favorable for uranium deposits. The evaluation used criteria formulated for the National Uranium Resource Evaluation program. Evidence for the evaluation was based on surface studies, hydrogeochemical and stream-sediment reconnaissance, and aerial radiometric surveys. The quadrangle encompasses parts of three physiographic provinces: the Colorado Plateau, the transition zone, and the Basin and Range. The one environment determined, during the present study, to be favorable for uranium deposits is the Whitewater Creek member of the Cooney tuff, which is favorable for magmatic-hydrothermal uranium deposits on the west side of the Bursum caldera. No other areas were favorable for uranium deposits in sandstone, limestone, volcanogenic, igneous, or metamorphic environments. The subsurface is unevaluated because of lack of information, as are areas where access is a constraint

  13. Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus

    Science.gov (United States)

    Kumar, P. Senthil; Head, James W., III

    2009-01-01

    Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationship) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.

  14. Geologic Mapping of the Devana Chasma (V-29) Quadrangle, Venus

    Science.gov (United States)

    Tandberg, E. R.; Bleamaster, L. F., III

    2010-01-01

    The Devana Chasma quadrangle (V-29; 0-25degN/270-300degE) is situated over the northeastern apex of the Beta-Atla-Themis (BAT) province and includes the southern half of Beta Regio, the northern and transitional segments of the Devana Chasma complex, the northern reaches of Phoebe Regio, Hyndla Regio, and Nedolya Tesserae, and several smaller volcano-tectonic centers and impact craters.

  15. Geological Map of the Fredegonde (V-57) Quadrangle, Venus

    Science.gov (United States)

    Ivanov, M. A.; Head, J. W.

    2009-01-01

    The area of V-57, the Fredegonde quadrangle (50-75degS, 60-120degE, Fig.1), is located within the eastern portion of Lada Terra within the topographic province of midlands (0-2 km above MPR [1,2]). Midlands form the most abundant portion of the surface of Venus and are characterized by diverse sets of units and structures [3-11]. The area of the Fredegonde quadrangle is in contact with the elevated portion of Lada Terra to the W and with the lowland of Aino Planitia to the NE. The transitions of the mid-lands to the lowlands and highlands are, thus, one of the main themes of the geology within the V-57 quadrangle. The character of the transitions and distribution and sequence of units/structures in the midlands are crucially important in understanding the time and modes of formation of this topographic province. The most prominent features in the map area are linear deformational zones consisting of swarms of grooves and graben and large coronae. The zones characterize the central and NW portions of the map area and represent regionally important, broad (up to 100s km wide) ridges that are 100s m high. Relatively small (100s km across, 100s m deep) equidimensional basins occur between the corona-groove-chains in the west and border the central chain from the east. Here we describe units that make up the surface within the V-57 quadrangle and present a summary of our geological map that shows the areal distribution of the major groups of units.

  16. National Uranium Resource Evaluation: Aztec quadrangle, New Mexico and Colorado

    International Nuclear Information System (INIS)

    Green, M.W.

    1982-09-01

    Areas and formations within the Aztec 1 0 x 2 0 Quadrangle, New Mexico and Colorado considered favorable for uranium endowment of specified minimum grade and tonnage include, in decreasing order of favorability: (1) the Early Cretaceous Burro Canyon Formation in the southeastern part of the Chama Basin; (2) the Tertiary Ojo Alamo Sandstone in the east-central part of the San Juan Basin; and (3) the Jurassic Westwater Canyon and Brushy Basin Members of the Morrison Formation in the southwestern part of the quadrangle. Favorability of the Burro Canyon is based on the presence of favorable host-rock facies, carbonaceous material and pyrite to act as a reductant for uranium, and the presence of mineralized ground in the subsurface of the Chama Basin. The Ojo Alamo Sandstone is considered favorable because of favorable host-rock facies, the presence of carbonaceous material and pyrite to act as a reductant for uranium, and the presence of a relatively large subsurface area in which low-grade mineralization has been encountered in exploration activity. The Morrison Formation, located within the San Juan Basin adjacent to the northern edge of the Grants mineral belt, is considered favorable because of mineralization in several drill holes at depths near 1500 m (5000 ft) and because of favorable facies relationships extending into the Aztec Quadrangle from the Grants mineral belt which lies in the adjacent Albuquerque and Gallup Quadrangles. Formations considered unfavorable for uranium deposits of specified tonnage and grade include the remainder of sedimentary and igneous formations ranging from Precambrian to Quaternary in age. Included under the unfavorable category are the Cutler Formation of Permian age, and Dakota Sandstone of Late Cretaceous age, and the Nacimiento and San Jose Formations of Tertiary age

  17. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Natchez quadrangle of, of Mississippi and Louisiana. Final report

    International Nuclear Information System (INIS)

    1980-07-01

    The Natchez quadrangle covers a region within and adjacent to the Mississippi River flood plain in the northern Gulf Coastal Physiographic Province. The underlying Mesozoic and Cenozoic sediments of the Mississippi Embayment are extremely thick and contain many piercement structures. Exposed sediments consist largely of recent alluvium in the flood plain area, and Cenozoic sediments of marine and nonmarine origin in adjacent areas. A search of available literature revealed no known uranium deposits in the area. Eighty-three uranium anomalies were found, using the selection criteria set forth in Appendix A, and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data suggests extremely deep sources, and some possible structural complexity in the source area

  18. Geologic Map of the Diana Chasma Quadrangle (V-37), Venus

    Science.gov (United States)

    Hansen, V.L.; DeShon, H.R.

    2002-01-01

    Introduction The Diana Chasma quadrangle (V-37), an equatorial region between 0° to 25° S. and 150° to 180° E. that encompasses ~8,400,000 km2, is broadly divided into southern Rusalka Planitia in the north, eastern Aphrodite Terra in the central region, and unnamed regions to the south. Geologic mapping constrains the temporal and spatial relations of the major features, which include a tessera inlier, Markham crater, six large coronae (300-675 km diameter), four smaller coronae (150-225 km diameter), Diana and Dali chasmata, a large fracture zone, and southern Rusalka Planitia. Eastern Aphrodite Terra, marked here by large coronae, deep chasmata, and an extensive northeast-trending fracture zone, extends from Atla Regio to Thetis Regio. The large coronae are part of a chain of such features that includes Inari Corona to the west-southwest and Zemina Corona to the northeast. V-37 quadrangle is bounded on the north by Rusalka Planitia and on the south by Zhibek Planitia. International Astronomical Union (IAU) approved and provisional nomenclature and positions for geographic features within Diana Chasma quadrangle are shown on the geologic map. [Note: Atahensik Corona was referred to as Latona Corona in much previously published literature.

  19. National Uranium Resource Evaluation: Lovelock Quadrangle, Nevada and California

    International Nuclear Information System (INIS)

    Berry, V.P.; Bradley, M.T.; Nagy, P.A.

    1982-08-01

    Uranium resources of the Lovelock Quadrangle, Nevada and California, were evaluated to a depth of 1500 m using available surface and subsurface geological information. Uranium occurrences reported in the literature and in reports of the Atomic Energy Commission were located, sampled, and described in detail. Areas of anomalous radioactivity, as interpreted from the aerial radiometric reconnaissance survey and from the hydrochemical and stream-sediment reconnaissance survey reports, were also investigated. A general reconnaissance of the geologic environments exposed in surface outcrops was carried out; and over 400 rock, sediment, and water geochemical analyses were made from the samples taken. Additionally, 119 rock samples were petrographically studied. A total of 21 occurrences were located, sampled, and described in detail. Six uranium occurrences, previously unreported in the literature, were located during hydrogeochemical and stream-sediment reconnaissance, aerial radiometric reconnaissance survey followup, or general outcrop reconnaissance. Nine areas of uranium favorability were delineated within the Lovelock Quadrangle. One area, which contains the basal units of the Hartford Hill Rhyolite, is favorable for hydroallogenic uranium deposits. Eight areas are favorable for uranium deposits in playa sediments. These playas are considered favorable for nonmarine carbonaceous sediment deposits and evaporative deposits. The total volume of rock in favorable areas of the Lovelock Quadrangle is estimated to be 190 km 3 . The remaining geologic units are considered to be unfavorable for uranium deposits. These include upper Paleozoic and Mesozoic volcanic, plutonic, sedimentary, and metamorphic rocks. Also unfavorable are Tertiary and Quaternary volcanic flows and intrusive phases, tuffs, and sediments

  20. Database for the geologic map of the Bend 30- x 60-minute quadrangle, central Oregon

    Science.gov (United States)

    Koch, Richard D.; Ramsey, David W.; Sherrod, David R.; Taylor, Edward M.; Ferns, Mark L.; Scott, William E.; Conrey, Richard M.; Smith, Gary A.

    2010-01-01

    The Bend 30- x 60-minute quadrangle has been the locus of volcanism, faulting, and sedimentation for the past 35 million years. It encompasses parts of the Cascade Range and Blue Mountain geomorphic provinces, stretching from snowclad Quaternary stratovolcanoes on the west to bare rocky hills and sparsely forested juniper plains on the east. The Deschutes River and its large tributaries, the Metolius and Crooked Rivers, drain the area. Topographic relief ranges from 3,157 m (10,358 ft) at the top of South Sister to 590 m (1,940 ft) at the floor of the Deschutes and Crooked Rivers where they exit the area at the north-central edge of the map area. The map encompasses a part of rapidly growing Deschutes County. The city of Bend, which has over 70,000 people living in its urban growth boundary, lies at the south-central edge of the map. Redmond, Sisters, and a few smaller villages lie scattered along the major transportation routes of U.S. Highways 97 and 20. This geologic map depicts the geologic setting as a basis for structural and stratigraphic analysis of the Deschutes basin, a major hydrologic discharge area on the east flank of the Cascade Range. The map also provides a framework for studying potentially active faults of the Sisters fault zone, which trends northwest across the map area from Bend to beyond Sisters. This digital release contains all of the information used to produce the geologic map published as U.S. Geological Survey Geologic Investigations Series I-2683 (Sherrod and others, 2004). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains files to view or print the geologic map and accompanying descriptive pamphlet from I-2683.

  1. Hydrogeochemical and stream sediment reconnaissance basic data for Lubbock NTMS Quadrangle, Texas

    International Nuclear Information System (INIS)

    1979-01-01

    Field and laboratory data are presented for 994 groundwater and 602 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Interpretation of the groundwater data indicate that the area which appears most promising for uranium mineralization is located in the southwestern part of the quadrangle, particularly in Crosby, Garza, Lynn, and Lubbock Counties. The waters produced from the Ogallala Formation in this area have high values for arsenic, molybdenum, selenium, and vanadium. Groundwaters from the Dockum Group in Garza County where uranium is associated with selenium, molybdenum, and copper indicate potential for uranium mineralization. Uranium is generally associated with copper, iron, and sulfate in the Permian aquifers reflecting the red bed evaporite lithology of those units. The stream sediment data indicate that the Dockum Group has the highest potential for uranium mineralization, particularly in and around Garza County. Associated elements indicate that uranium may occur in residual minerals or in hydrous manganese oxides. Sediment data also indicate that the Blaine Formation shows limited potential for small red bed copper-uranium deposits

  2. Geologic Map of the Tower Peak Quadrangle, Central Sierra Nevada, California

    Science.gov (United States)

    Wahrhaftig, Clyde

    2000-01-01

    Introduction The Tower Peak quadrangle, which includes northernmost Yosemite National Park, is located astride the glaciated crest of the central Sierra Nevada and covers an exceptionally well-exposed part of the Sierra Nevada batholith. Granitic plutonic rocks of the batholith dominate the geology of the Tower Peak quadrangle, and at least 18 separate pre-Tertiary intrusive events have been identified. Pre-Cretaceous metamorphic rocks crop out in the quadrangle in isolated roof pendants and septa. Tertiary volcanic rocks cover granitic rocks in the northern part of the quadrangle, but are not considered in this brief summary. Potassium-argon (K-Ar) age determinations for plutonic rocks in the quadrangle range from 83 to 96 million years (Ma), including one of 86 Ma for the granodiorite of Lake Harriet (Robinson and Kistler, 1986). However, a rubidium-strontium whole-rock isochron age of 129 Ma has been obtained for the Lake Harriet pluton (Robinson and Kistler, 1986), which field evidence indicates is the oldest plutonic body within the quadrangle. This suggests that some of the K-Ar ages record an episode of resetting during later thermal events and are too young. The evidence indicates that all the plutonic rocks are of Cretaceous age, with the youngest being the Cathedral Peak Granodiorite at about 83 Ma. The pre-Tertiary rocks of the Tower Peak quadrangle fall into two groups: (1) an L-shaped area of older plutonic and metamorphic rocks, 3 to 10 km wide, that extends diagonally both northeast and southeast from near the center of the quadrangle; and (2) a younger group of large, probably composite intrusions that cover large areas in adjacent quadrangles and extend into the Tower Peak quadrangle from the east, north, and southwest.

  3. Geochemistry of some banded iron-formations of the archean ...

    Indian Academy of Sciences (India)

    Diagenetic fluids from the sea floor sediments and river water might have played .... (in wt%) of the banded iron-formations of Archaean supracrustal belts (Iron Ore Group) of Jharkhand–Orissa region. Gandhamardan. Deo river section. H/1/1 H/1/2 H/1/3 H/1/4 H/1/5 .... indicate that contamination by pyroclastic debris.

  4. Drainage areas of the Potomac River basin, West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.; Hunt, Michelle L.; Stewart, Donald K.

    1996-01-01

    This report contains data for 776 drainage-area divisions of the Potomac River Basin, from the headwaters to the confluence of the Potomac River and the Shenandoah River. Data, compiled in downstream order, are listed for streams with a drainage area of approximately 2 square miles or larger within West Virginia and for U.S. Geological Survey streamflow-gaging stations. The data presented are the stream name, the geographical limits in river miles, the latitude and longitude of the point, the name of the county, and the 7 1/2-minute quadrangle in which the point lies, and the drainage area of that site. The total drainage area of the Potomac River Basin downstream of the confluence of the Shenandoah River at the State boundary is 9,367.29 square miles.

  5. Preliminary geologic map of the Turayf Quadrangle, sheet 31C, and part of the An Nabk quadrangle, sheet 31B, Kingdom of Saudi Arabia

    Science.gov (United States)

    Meissner, C.R.; Riddler, G.P.; Van Eck, Marcel; Aspinall, N.C.; Farasani, A.M.; Dini, S.M.

    1989-01-01

    The An Nabk and Turayf quadrangles lie at the northern border of the Kingdom of Saudi Arabia. Middle and upper Cenozoic sedimentary and volcanic rocks form the surface of the quadrangles, and sedimentary rocks of the Paleozoic, Mesozoic, and lower Cenozoic are found in the subsurface. The Paleozoic and Mesozoic rocks, described from drill hole records, include the Tabuk, Upper Sudair, Lower Jilh and Aruma formations which are mostly of marine origin.

  6. Organic complexation and translocation of ferric iron in podzols of the Negro River watershed. Separation of secondary Fe species from Al species

    Science.gov (United States)

    Fritsch, E.; Allard, Th.; Benedetti, M. F.; Bardy, M.; do Nascimento, N. R.; Li, Y.; Calas, G.

    2009-04-01

    The development of podzols in lateritic landscapes of the upper Amazon basin contributes to the exportation of organic carbon and associated metals in the black waters of the Negro River watershed. We have investigated the distribution of Fe III in the clay-size fraction of eight organic-rich horizons of waterlogged plateau podzols, to unravel the weathering conditions and mechanisms that control its transfer to the rivers. The speciation and amount of Fe III stored in residual mineral phases of laterites, or bound to organic compounds of weakly and well-expressed podzols, were determined by electron paramagnetic resonance spectroscopy combined with chemical analyses. Reducing conditions restrict the production of organo-Fe complexes in the subsoil B-horizons of waterlogged podzols and most of the Fe 2+ released from the dissolution of Fe-oxides is exported to the rivers via the perched groundwater. However, significant amounts of diluted Fe III bound to organic ligands (Fe IIIOM) and nano Fe-oxides are produced at the margin of the depression in the topsoil A horizons of weakly expressed podzols due to shorter periods of anoxia. The downward translocation of organically bound metals from topsoil A to subsoil B-horizons of podzols occurs in shorter distances for Fe than it does for Al. This separation of secondary Fe species from Al species is attributed to the physical fractionation of their organic carriers in texture contrasted B-horizons of podzols, as well as to the effect of pH on metal speciation in soil solutions and metal binding onto soil organic ligands (mostly for Al). This leads us to consider the topsoil A horizons of weakly expressed podzols, as well as the subsoil Bh horizon of better-expressed ones, as the main sources for the transfer of Fe IIIOM to the rivers. The concentration of Fe IIIOM rises from soil sources to river colloids, suggesting drastic biogeochemical changes in more oxygenated black waters of the Negro River watershed. The

  7. Topographic Map of Quadrangle 3570, Tagab-E-Munjan (505) and Asmar-Kamdesh (506) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  8. Topographic Map of Quadrangles 3062 and 2962, Charburjak (609), Khanneshin (610), Gawdezereh (615), and Galachah (616) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  9. Topographic Map of Quadrangle 3566, Sang-Charak (501) and Sayghan-O-Kamard (502) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  10. Geological Map of the Fredegonade (V-57) Quadrangle, Venus: Status Report

    Science.gov (United States)

    Ivanov, M. A.; Head, J. W.

    2010-01-01

    The Fredegonde quadrangle (V-57; 50-75degS, 60-120degE, Fig. 1) corresponds to the northeastern edge of Lada Terra and covers a broad area of the topographic province of midlands (0-2 km above MPR [1,2]). This province is most abundant on Venus and displays a wide variety of units and structures [3-11]. The sequence of events that formed the characteristic features of the midlands is crucially important in understanding of the timing and modes of evolution of this topographic province. Topographically, the Fredegonde quadrangle is within a transition zone between the elevated portion of Lada Terra to the west (Quetzalpetlatl-Boala Coronae rise, approx.3.5 km) and the lowland of Aino Planitia to the north and northeast (approx.-0.5 km). This transition is one of the key features of the V-57 quadrangle. In this respect the quadrangle resembles the region of V-4 quadrangle [12] that shows transition between the midlands and the lowlands of Atalanta Planitia. One of the main goals of our mapping within the V-57 quadrangle is comparison of this region with the other transitional topographic zones such as quadrangles V-4 and V-3 [13]. The most prominent features in the V-57 quadrangle are linear deformational zones of grooves and large coronae. The zones characterize the central and NW portions of the map area and represent broad (up to 100s of km wide) ridges that are 100s of m high. Morphologically and topographically, these zones are almost identical to the groove belt/corona complexes at the western edge of Atalanta Planitia [12]. Within the Fredegonde area, however, the zones are oriented at high angles to the general trend of elongated Aino Planitia, whereas within the V-4 quadrangle they are parallel to the edge of Atalanta Planitia. Relatively small (100s of km across, 100s of m deep) equidimensional basins occur between the corona-groove-chains in the area of V-57 quadrangle. These basins are similar to those that populate the area of the V-3 quadrangle [13

  11. Geologic map of the Alamosa 30’ × 60’ quadrangle, south-central Colorado

    Science.gov (United States)

    Thompson, Ren A.; Shroba, Ralph R.; Michael N. Machette,; Fridrich, Christopher J.; Brandt, Theodore R.; Cosca, Michael A.

    2015-10-15

    The Alamosa 30'× 60' quadrangle is located in the central San Luis Basin of southern Colorado and is bisected by the Rio Grande. The Rio Grande has headwaters in the San Juan Mountains of Colorado and ultimately discharges into the Gulf of Mexico 3,000 kilometers (km) downstream. Alluvial floodplains and associated deposits of the Rio Grande and east-draining tributaries, La Jara Creek and Conejos River, occupy the north-central and northwestern part of the map area. Alluvial deposits of west-draining Rio Grande tributaries, Culebra and Costilla Creeks, bound the Costilla Plain in the south-central part of the map area. The San Luis Hills, a northeast-trending series of flat-topped mesas and hills, dominate the landscape in the central and southwestern part of the map and preserve fault-bound Neogene basin surfaces and deposits. The Precambrian-cored Sangre de Cristo Mountains rise to an elevation of nearly 4,300 meters (m), almost 2,000 m above the valley floor, in the eastern part of the map area. In total, the map area contains deposits that record surficial, tectonic, sedimentary, volcanic, magmatic, and metamorphic processes over the past 1.7 billion years.

  12. Perfect Octagon Quadrangle Systems with an upper C4-system and a large spectrum

    Directory of Open Access Journals (Sweden)

    Luigia Berardi

    2011-02-01

    Full Text Available An octagon quadrangle is the graph consisting of an 8-cycle (x1, x2,..., x8 with two additional chords: the edges {x1, x4} and {x5, x8}. An octagon quadrangle system of order ν and index λ [OQS] is a pair (X,H, where X is a finite set of ν vertices and H is a collection of edge disjoint octagon quadrangles (called blocks which partition the edge set of λKν defined on X. An octagon quadrangle system Σ=(X,H of order ν and index λ is said to be upper C4-perfect if the collection of all of the upper 4-cycles contained in the octagon quadrangles form a μ-fold 4-cycle system of order ν; it is said to be upper strongly perfect, if the collection of all of the upper 4-cycles contained in the octagon quadrangles form a μ-fold 4-cycle system of order ν and also the collection of all of the outside 8-cycles contained in the octagon quadrangles form a ρ-fold 8-cycle system of order ν. In this paper, the authors determine the spectrum for these systems, in the case that it is the largest possible.

  13. Geologic map of the Rusalka Planitia Quadrangle (V-25), Venus

    Science.gov (United States)

    Young, Duncan A.; Hansen, Vicki L.

    2003-01-01

    The Rusalka Planitia quadrangle (herein referred to as V-25) occupies an 8.1 million square kilometer swath of lowlands nestled within the eastern highlands of Aphrodite Terra on Venus. The region (25?-0? N., 150?-180? E.) is framed by the crustal plateau Thetis Regio to the southwest, the coronae of the Diana-Dali chasmata complex to the south, and volcanic rise Atla Regio to the west. Regions to the north, and the quadrangle itself, are part of the vast lowlands, which cover four-fifths of the surface of Venus. The often-unspectacular lowlands of Venus are typically lumped together as ridged or regional plains. However, detailed mapping reveals the mode of resurfacing in V-25's lowlands: a mix of corona-related flow fields and local edifice clusters within planitia superimposed on a background of less clearly interpretable extended flow fields, large volcanoes, probable corona fragments, and edifice-flow complexes. The history detailed within the Rusalka Planitia quadrangle is that of the extended evolution of long-wavelength topographic basins in the presence of episodes of extensive corona-related volcanism, pervasive low-intensity small-scale eruptions, and an early phase of regional circumferential shortening centered on central Aphrodite Terra. Structural reactivation both obscures and illuminates the tectonic development of the region. The data are consistent with progressive lithospheric thickening, although the critical lack of an independent temporal marker on Venus severely hampers our ability to test this claim and correlate between localities. Two broad circular basins dominate V-25 geology: northern Rusalka Planitia lies in the southern half of the quadrangle, whereas the smaller Llorona Planitia sits along the northwestern corner of V-25. Similar large topographic basins occur throughout the lowlands of Venus, and gravity data suggest that some basins may represent dynamic topography over mantle downwellings. Both planitiae include coronae and

  14. Geologic map of the Lakshmi Planum quadrangle (V-7), Venus

    Science.gov (United States)

    Ivanov, Mikhail A.; Head, James W.

    2010-01-01

    The Lakshmi Planum quadrangle is in the northern hemisphere of Venus and extends from lat 50 degrees to 75 degrees N., and from long 300 degrees to 360 degrees E. The elevated volcanic plateau of Lakshmi Planum, which represents a very specific and unique class of highlands on Venus, dominates the northern half of the quadrangle. The surface of the planum stands 3-4 km above mean planetary radius and the plateau is surrounded by the highest Venusian mountain ranges, 7-10 km high. Before the Magellan mission, the geology of the Lakshmi Planum quadrangle was known on the basis of topographic data acquired by the Pioneer-Venus and Venera-15/16 altimeter and radar images received by the Arecibo telescope and Venera-15/16 spacecraft. These data showed unique topographic and morphologic structures of the mountain belts, which have no counterparts elsewhere on Venus, and the interior volcanic plateau with two large and low volcanic centers and large blocks of tessera-like terrain. From the outside, Lakshmi Planum is outlined by a zone of complexly deformed terrains that occur on the regional outer slope of Lakshmi. Vast low-lying plains surround this zone. After acquisition of the Venera-15/16 data, two classes of hypotheses were formulated to explain the unique structure of Lakshmi Planum and its surrounding. The first proposed that the western portion of Ishtar Terra, dominated by Lakshmi Planum, was a site of large-scale upwelling while the alternative hypothesis considered this region as a site of large-scale downwelling and underthrusting. Early Magellan results showed important details of the general geology of this area displayed in the Venera-15/16 images. Swarms of extensional structures and massifs of tesserae populate the southern slope of Lakshmi. The zone of fractures and grabens form a giant arc thousands of kilometers long and hundreds of kilometers wide around the southern flank of Lakshmi Planum. From the north, the deformational zones consist mostly of

  15. Uranium hydrogeochemical and stream sediment reconnaissance of the Bozeman NTMS quadrangle, Montana

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1978-11-01

    A total of 1251 water and 1536 sediment samples were collected from 1586 locations over a 17 400-km 2 area at a nominal density of one location per 10 km 2 . Samples were collected predominantly from surface streams although 38 ground water locations were also sampled. The uranium concentrations in waters sampled range from below the detection limit of 0.20 ppB to 41.35 ppB, with a mean concentration of 1.17 ppB. Waters with anomalous uranium concentrations as defined were found in tributaries of the Boulder River which drain Precambrian rocks in the Beartooth Mountains and in tributaries of the Three Forks basin which are underlain predominantly by Tertiary-Quaternary sediments. The two areas appearing most favorable for future exploration on the basis of water data are in the Three Forks basin in the vicinity of the Madison plateau and in a district about 20 km due west of Three Forks. Sediment samples from the quadrangle were found to have uranium concentrations that range from 0.90 ppM to 94.30 ppM, with a mean concentration of 3.71 ppM. The majority of anomalous sediment samples were collected from areas underlain by Precambrian rocks. Based on the data from sediments, the areas appearing most favorable for future exploration include the tributaries of the Boulder River in the Beartooth Mountains, the northern part of the Madison Range, and the Tobacco Root Mountains just north of Virginia City. The uranium concentrations in the sediments from these areas are probably associated with uraniferous siliceous veins or pegmatites

  16. Mercury: Photomosaic of the Shakespeare Quadrangle (Northern Half) H-3

    Science.gov (United States)

    1974-01-01

    This computer generated photomosaic from Mariner 10 is of the northern half of Mercury's Shakespeare Quadrangle, named for the ancient Shakespeare crater located on the lower edge to the left of center. This portion of the quadrangle covers the geographic region from 45 to 70 degrees north latitude and from 90 to 180 degrees longitude. The photomosaic was produced using computer techniques and software developed in the Image Processing Laboratory of NASA's Jet Propulsion Laboratory. The pictures have been high-pass filtered and contrast enhanced to accentuate surface detail, and geometrically transformed into a Lambert conformal projection.The illuminated surface observed by Mariner 10 as it first approached Mercury is dominated by craters and basins. In marked contrast to this view, the surface photographed after the flyby exhibited features totally different, including large basins and extensive relatively smooth areas with few craters. The most striking feature in this region of the planet is a huge circular basin, 1300 kilometers in diameter, that was undoubtedly produced from a tremendous impact comparable to the event that formed the Imbrium basin on the Moon. This prominent Mercurian structure in the Shakespeare and Tolstoj quadrangles (lower left corner of this image), named Caloris Planitia, is filled with material forming a smooth surface or plain that appears similar in many respects to the lunar maria.The above material was taken from the following publication... Davies, M. E., S. E. Dwornik, D. E. Gault, and R. G. Strom, Atlas of Mercury, NASA SP-423 (1978).The Mariner 10 mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science.

  17. National Uranium Resource Evaluation: Athens Quadrangle, Georgia and South Carolina

    International Nuclear Information System (INIS)

    Lee, C.H.

    1979-09-01

    Reconnaissance and detailed geologic and radiometric investigations were conducted throughout the Athens Quadrangle, Georgia and South Carolina, to evaluate the uranium favorability using National Uranium Resource Evaluation criteria. Surface and subsurface studies were augmented by aerial radiometric surveys, emanometry studies and hydrogeochemical and stream-sediment reconnaissance studies. The results of the investigations indicate environments favorable for allogenic deposits in metamorphic rocks adjacent to granite plutons, and Texas roll-type sandstone deposits in the Coastal Plain Province. Environments considered unfavorable for uranium deposits are the placers of the Monazite Belt, pegmatites, and base- and precious-metal veins associated with faults and shear zones in metamorphic rocks

  18. Stratigraphy and Observations of Nepthys Mons Quadrangle (V54), Venus

    Science.gov (United States)

    Bridges, N. T.

    2001-01-01

    Initial mapping has begun in Venus' Nepthys Mons Quadrangle (V54, 300-330 deg. E, 25-50 deg. S). Major research areas addressed are how the styles of volcanism and tectonism have changed with time, the evolution of shield volcanoes, the evolution of coronae, the characteristics of plains volcanism, and what these observations tell us about the general geologic history of Venus. Reported here is a preliminary general stratigraphy and several intriguing findings. Additional information is contained in the original extended abstract.

  19. Drainage divides, Massachusetts; Blackstone and Thames River basins

    Science.gov (United States)

    Krejmas, Bruce E.; Wandle, S. William

    1982-01-01

    Drainage boundaries for selected subbasins of the Blackstone and Thames River basins in eastern Hampden, eastern Hampshire, western Norfolk, southern Middlesex, and southern Worcester Counties, Massachusetts, are delineated on 12 topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for streams where the drainage area is greater than 3 square miles. Successive sites along watercourses are indicated where the intervening area is at least 6 miles on tributary streams or 15 square miles along the Blackstone River, French River, or Quinebaug River. (USGS)

  20. Uranium hydrogeochemical and stream sediment reconnaissance of the Gillette NTMS quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Warren, R.G.; George, W.E.; Minor, M.M.; Simi, O.R.; Talcott, C.L.; Hensley, W.K.; Cheadle, J.M. III.

    1980-08-01

    During 1976 and 1977, 752 water and 843 sediment samples were collected from 1419 locations within the 17 700-km 2 area of the Gillette quadrangle, Wyoming. Water samples were collected primarily from wells, and also from springs, ponds, and streams; sediment samples were collected primarily from stream channels, and also from springs and ponds. Each water sample was analyzed for uranium and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit of 0.02 to 212.20 ppB and have a median of 1.10 ppB. The highest background uranium concentrations, as well as the highest individual uranium values, are in areas where favorable host units for uranium mineralization crop out. These units are the Wasatch and Fort Union formations in the Powder River Basin and the Inyan Kara group in the Black Hills. Uranium concentrations in sediment samples range from 0.64 to 29.83 ppM and have a median of 3.24 ppM. Background uranium concentrations are strongly controlled by the exposed geologic unit, and range from 4 to 8 ppM for the Cretaceous Colorado group to 1 to 3 ppM for the Triassic and Paleozoic units exposed in the Black Hills. Several areas where the Wasatch and Fort Union formations are exposed exhibit uranium concentrations in sediment samples that are slightly, but distinctly, above background values for these units. All of these areas are also associated with notably high uranium concentrations in water samples. Because epigenetic uranium mineralization in economically important areas can exhibit a similar geochemical signature, these areas within the Gillette quadrangle should be further examined for the possible presence of uranium mineralization

  1. Topographic Map of Quadrangle 3768 and 3668, Imam-Saheb (215), Rustaq (216), Baghlan (221), and Taloqan (222) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the

  2. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, North Region: Volume 7

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the North Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the North Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  3. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, South East Region: Volume 5

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the South East Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the South East Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  4. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, South West Region: Volume 9

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the South West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the South West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  5. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, East Region: Volume 4

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the East Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the East Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  6. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, Mid West Region: Volume 8

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the Mid West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the Mid West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  7. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, North West Region: Volume 11

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the North West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the North West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  8. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, West Region: Volume 10

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  9. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, Mid East Region: Volume 6

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the Mid East Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the Mid East Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  10. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  11. The geology and ore deposits of the Bisbee quadrangle, Arizona

    Science.gov (United States)

    Ransome, Frederick Leslie

    1904-01-01

    The Bisbee quadrangle lies in Cochise County, in the southeastern part of Arizona, within what has been called in a previous paper the mountain region of the Territory. It is inclosed between meridians 109 ° 45' and 110 ° 00' and parallels 31° 30' and 31 ° 20', the latter being locally the Mexican boundary line. The area of the quadrangle is about 170 square miles, and includes the southeastern half of the Mule Mountains, one of the smaller of the isolated ranges so characteristic of the mountain region of Arizona. The Mule Mountains, while less markedly linear than the Dragoon, Huachuca, Chiricahua, and other neighboring ranges, have a general northwest-southeast trend. They may be considered as extending from the old mining town of Tombstone to the Mexican border, a distance of about 30 miles. On the northeast they are separated by the broad fiat floor of Sulphur Spring Valley form the Chiricahua Range, and on the southwest by the similar broad valley of the Rio San Pedro from the Huachuca Range (Pl. V, A). 

  12. Geologic map of the Themis Regio quadrangle (V-53), Venus

    Science.gov (United States)

    Stofan, Ellen R.; Brian, Antony W.

    2012-01-01

    The Themis Regio quadrangle (V-53), Venus, has been geologically mapped at 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program. The quadrangle extends from lat 25° to 50° S. and from long 270° to 300° E. and encompasses the Themis Regio highland, the surrounding plains, and the southernmost extension of Parga Chasmata. Themis Regio is a broad regional topographic high with a diameter of about 2,000 km and a height of about 0.5 km that has been interpreted previously as a hotspot underlain by a mantle plume. The Themis rise is dominated by coronae and lies at the terminus of the Parga Chasmata corona chain. Themis Regio is the only one of the three corona-dominated rises that contains significant extensional deformation. Fractures and grabens are much less common than along the rest of Parga Chasmata and are embayed by corona-related flows in places. Rift and corona formation has overlapped in time at Themis Regio.

  13. National Uranium Resource Evaluation: Crystal City Quadrangle, Texas

    International Nuclear Information System (INIS)

    Greimel, T.C.

    1982-08-01

    The uranium resources of the Crystal City Quadrangle, Texas, were evaluated to a depth of 1500 m using surface and subsurface geologic information. Uranium occurrences reported in the literature, in reports of the US Atomic Energy Commission and the US Geological Survey Computerized Resources Information Bank, were located, described, and sampled. Geochemical anomalies interpreted from hydrogeochemical and stream-sediment reconnaissance were also investigated and sampled in detail. Areas of uranium favorability in the subsurface were located through interpretation of lithofacies patterns and structure derived from electric-log data. Gamma-ray well logs and results of geochemical sample analyses were used as supportive data in locating these areas. Fifteen surface and subsurface favorable areas were delineated in the quadrangle. Eight are in fluvial and genetically associated facies of the Pliocene Goliad Sandstone, Miocene Oakville Sandstone, Miocene Catahoula Tuff, and Oligocene Frio Clay. One area encompasses strand plain-barrier bar, fluvial-deltaic, and lagoonal-margin facies of the Eocene Jackson Group. Two areas are in strand plain-barrier bar and probable fluvial facies of the Eocene Yegua Formation. Four areas are in fluvial-deltaic, barrier-bar, and lagoonal-margin facies of the Eocene Queen City Formation and stratigraphically equivalent units. Seventeen geologic units are considered unfavorable, and seven are unevaluated due to lack of data

  14. Digital bedrock geologic map of parts of the Huntington, Richmond, Bolton and Waterbury quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-9A Thompson, PJ�and Thompson, TB, 1995, Digital bedrock geologic map of parts of the Huntington, Richmond, Bolton and Waterbury quadrangles,...

  15. Airborne gamma-ray spectrometer and magnetometer survey: New Rockford quadrangle, North Dakota. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    Volume II contains the flight path, radiometric multi-parameter stacked profiles, magnetic and ancillary parameter stacked profiles, histograms, and anomaly maps for the New Rockford Quadrangle in North Dakota

  16. Surficial geology of the Cabot 7 1/2 minute quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG2016-3 Springston, G., 2016, Surficial geology of the Cabot 7 1/2 minute quadrangle, Vermont:�Vermont Geological Survey Open File Report...

  17. Digital and preliminary bedrock geologic map of the Wallingford quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-335A Burton, WC, and Ratcliffe, NM, 2000, Digital and preliminary bedrock geologic map of the Wallingford quadrangle, Vermont: USGS Open-File...

  18. Digital and preliminary bedrock geologic map of the Pico Peak quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-226A Walsh, G. J., and Ratcliffe, N.M., 1998,�Digital and preliminary bedrock geologic map of the Pico Peak quadrangle, Vermont: USGS...

  19. Digital and preliminary bedrock geologic map of the Chittenden quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG97-854A Ratcliffe, NM, 1997,�Digital and preliminary bedrock geologic map of the Chittenden quadrangle, Vermont: USGS Open-File Report 97-854, 1...

  20. Digital and preliminary bedrock geologic map of the Mount Carmel quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-330A Ratcliffe, N.M., and Walsh, G. J., 1998,�Digital and preliminary bedrock geologic map of the Mount Carmel quadrangle, Vermont: USGS...

  1. USGS 1:12000 (Quarter 7 1/2 Minute) Quadrangle Index

    Data.gov (United States)

    Minnesota Department of Natural Resources — This is a mathematically generated grid in which each polygon represents one quarter of a standard USGS 7 1/2 minute quadrangle. The result is a 3 3/4 minute...

  2. Digital bedrock geologic map of the Mount Snow & Readsboro quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-DM1 Ratcliffe, NM, 1995, Digital bedrock geologic map of the Mount Snow & Readsboro quadrangles, Vermont, scale 1:24000, The bedrock...

  3. Digital bedrock geologic map of the Morrisville quadrangle,�Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-1 Springston, G., Kim, J., and Applegate, G.S., 1998,�Digital bedrock geologic map of the Morrisville quadrangle,�Vermont: VGS Open-File...

  4. Bedrock geologic map of parts of the Eden, Albany, Lowell, and Irasburg quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG09-4 (Digitized draft of VG97-5): Kim, J., 2009, Bedrock geologic map of parts of the Eden, Albany, Lowell, and Irasburg quadrangles, VGS...

  5. Digital compilation bedrock geologic map of part of the Waitsfield quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-03�Digital compilation bedrock geologic map of part of the Waitsfield quadrangle, Vermont: VGS Open-File Report VG96-3A, 2 plates, scale...

  6. Digital data for the Hazens Notch and a portion of the Lowell quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG03-3B Digital data for the Hazens Notch and a portion of the Lowell quadrangles, Vermont: Vermont Geological Survey Open File Report VG03-3B, The...

  7. Bedrock Geologic Map of the Mount Mansfield 7.5 Minute Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG2017-2 Thompson, P. J., and Thompson, T. B., 2017, Bedrock Geologic Map of the Mount Mansfield 7.5 Minute Quadrangle, Vermont: VGS Open-File...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, ... iron-fortified foods that have iron added. Vegetarian diets can provide enough iron if you choose nonmeat ...

  9. Preliminary geologic map of the Thaniyat Turayf Quadrangle, sheet 29C, Kingdom of Saudi Arabia

    Science.gov (United States)

    Meissner, C.R.; Dini, S.M.; Farasani, A.M.; Riddler, G.P.; Smith, G.H.; Griffin, M.B.; Van Eck, Marcel

    1990-01-01

    The Thaniyat Turayf quadrangle, sheet 29C, lies in the northwestern part of Saudi Arabia near the border with Jordan. The quadrangle is located between lat 29°00'-30°00' N. and long 37°30'-39°00' E. It includes the southwestern rim of the Sirhan-Turayf Basin and is underlain by Silurian to Miocene- Pliocene sedimentary rocks that are partly covered by surficial duricrust, sand, and gravel.

  10. Airborne gamma-ray spectrometer and magnetometer survey: Lund quadrangle, Ely quadrangle, Nevada. Volume I. Final report

    International Nuclear Information System (INIS)

    1980-01-01

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the area covered by the Ely and Lund 1:250,000 National Topographic Map Series (NTMS quadrangle maps). The survey was part of DOE's National Uranium Resource Evaluation (NURE) Aerial Radiometric Reconnaissance program. Data were collected by a helicopter equipped with a gamma-ray spectrometer having a large crystal volume, and a high sensitivity proton precession magnetometer. The radiometric system was calibrated at the Walker Field Calibration pads and the Lake Mead Dynamic Test range. Data quality was ensured during the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, plotted, and contoured to produce anomaly maps based on the radiometric response of individual geological units. The maps were interpreted and an anomaly interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data processing procedures, the data display format, the interpretation rationale, and interpretation methodology. Volume II contains the data displays for a quadrangle and the interpretation results

  11. IRON DOME

    African Journals Online (AJOL)

    6 Israeli Navy 'First Arm of the Sea: The Successful Interception of the Iron Dome Rocket .... sky to destroy them whilst in flight to minimise civilian casualties. ..... Including The Moon and Celestial Bodies.53 Demeyere further emphasises the.

  12. Iron overdose

    Science.gov (United States)

    ... tracing) X-ray to detect and track iron tablets through the stomach and intestines Treatment may include: ... BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016: ...

  13. Speciation and quantification of Hg in sediments contaminated by artisanal gold mining in the Gualaxo do Norte River, Minas Gerais, SE, Brazil.

    Science.gov (United States)

    da Penha Rhodes, Valdilene; de Lena, Jorge Carvalho; Santolin, Camila Vidal Alves; da Silva Pinto, Thais; Mendes, Louise Aparecida; Windmöller, Cláudia Carvalhinho

    2017-12-28

    The Iron Quadrangle in SE Brazil was, in the eighteenth century, one of the most important Au producing regions of Brazil. In this region, gold is produced, even today, by artisanal methods that use Hg to increase the extraction efficiency with no control of Hg release to water systems and the atmosphere. In this context, the Gualaxo do Norte River is of particular interest; its springs are located in the Doce River basin, an important Brazilian basin that supplies water for 3.5 million people. The main goal of this work was to quantify and speciate the Hg in the sediments of the Gualaxo do Norte River using a direct mercury analyzer and gas chromatography-pyrolysis-atomic fluorescence detection system. Statistical analyses consisted of principal component analysis, aiming to assess interactions among elements and species and to group the variables in factors affecting the properties of sediment. The results show that total Hg (THg) and methylmercury (CH 3 Hg + ) concentrations in samples ranged from 209 to 1207 μg kg -1 and from 0.07 to 1.00 μg kg -1 , respectively (methylation percentages from 0.01 to 0.27%). Thermal desorption analysis showed that mercury is mainly present in the oxidized form, and correlation analyses pointed to a relationship between THg and MnO, indicating that manganese can oxidize and/or adsorb Hg. Together, MO and CH 3 Hg + are important parameters in the third principal component, indicating the influence of OM on the methylation process. This first investigation on Hg methylation in this small-scale gold mining area points to the possibility of Hg bioaccumulation and to the need of better understanding the biogeochemical cycle of Hg in this area. Samples were collected in 2012, prior to the 2015 Fundão Dam disaster. The results are also a record of the characteristics of the sediment prior to that event.

  14. National Uranium Resource Evaluation: Lamar quadrangle, Colorado and Kansas

    International Nuclear Information System (INIS)

    Maarouf, A.M.; Johnson, V.C.

    1982-01-01

    Uranium resources of the Lamar Quadrangle, Colorado and Kansas, were evaluated using National Uranium Resource Evaluation criteria. The environment favorable for uranium is the Lower Cretaceous Dakota Sandstone in the area east of John Martin Reservoir for south Texas roll-type sandstone deposits. Carbonaceous trash and sulfides are abundant in the Dakota Sandstone. The unit underlies a thick Upper Cretaceous section that contains bentonitic beds and uraniferous marine black shale. Water samples from the Dakota Sandstone aquifer contain as much as 122 ppB U 3 O 8 . Geologic units considered unfavorable include most of the Paleozoic rocks, except in the Brandon Fault area; the Upper Cretaceous rocks; and the Ogallala Formation. The Dockum Group, Morrison Formation, and Lytle Member of the Purgatoire Formation are unevaluated because of lack of data

  15. National uranium resource evaluation, Rapid City Quadrangle, South Dakota

    International Nuclear Information System (INIS)

    Nanna, R.F.; Milton, E.J.

    1982-04-01

    The Rapid City (1 0 x 2 0 ) Quadrangle, South Dakota, was evaluated for environments favorble for uranium deposits to a depth of 1500 m. Criteria used were those of the National Uranium Resource Evaluation. Field reconnaissance involved the use of hand-held scintillometers to investigate uranium occurrences reported in the literature and anomalies in aerial radiometric surveys, and geochemical samples of stream sediments and well waters. Gamma-ray logs were used to define the favorable environments in the subsurface. Environments favorable for sandstone-type uranium deposits occur in the Inyan Kara Group, the Fox Hills Sandstone, and the Hell Creek Formation. Environments considered unfavorable for uranium deposits include all Precambrian, Paleozoic, Mesozoic, and Tertiary rocks other than those identified as favorable

  16. Reconnaissance geologic map of the Hyampom 15' quadrangle, Trinity County, California

    Science.gov (United States)

    Irwin, William P.

    2010-01-01

    The Hyampom 15' quadrangle lies west of the Hayfork 15' quadrangle in the southern part of the Klamath Mountains geologic province of northern California. It spans parts of four generally northwest-trending tectono- stratigraphic terranes of the Klamath Mountains, the Eastern Hayfork, Western Hayfork, Rattlesnake Creek, and Western Jurassic terranes, as well as, in the southwest corner of the quadrangle, a small part of the Pickett Peak terrane of the Coast Range province. Remnants of the Cretaceous Great Valley overlap sequence that once covered much of the pre-Cretaceous bedrock of the quadrangle are now found only as a few small patches in the northeast corner of the quadrangle. Fluvial and lacustrine deposits of the mid-Tertiary Weaverville Formation crop out in the vicinity of the village of Hyampom. The Eastern Hayfork terrane is a broken formation and m-lange of volcanic and sedimentary rocks that include blocks of chert and limestone. The chert has not been sampled; however, chert from the same terrane in the Hayfork quadrangle contains radiolarians of Permian and Triassic ages, but none clearly of Jurassic age. Limestone at two localities contains late Paleozoic foraminifers. Some of the limestone from the Eastern Klamath terrane in the Hayfork quadrangle contains faunas of Tethyan affinity. The Western Hayfork terrane is part of an andesitic volcanic arc that was accreted to the western edge of the Eastern Hayfork terrane. It consists mainly of metavolcaniclastic andesitic agglomerate and tuff, as well as argillite and chert, and it includes the dioritic Ironside Mountain batholith that intruded during Middle Jurassic time (about 170 Ma). This intrusive body provides the principal constraint on the age of the terrane. The Rattlesnake Creek terrane is a melange consisting mostly of highly dismembered ophiolite. It includes slabs of serpentinized ultramafic rock, basaltic volcanic rocks, radiolarian chert of Triassic and Jurassic ages, limestone containing

  17. National Uranium Resource Evaluation: Albuquerque Quadrangle, New Mexico

    International Nuclear Information System (INIS)

    Green, M.W.

    1982-09-01

    Areas and formations within the Albuquerque 1 0 x 2 0 Quadrangle, New Mexico designated as favorable, in order of decreasing relative favorability, include: (1) the Westwater Canyon and Brushy Basin Members of the Morrison Formation; (2) the Todilto Limestone of Late Jurassic age; (3) the Dakota Sandstone of Early and Late Cretaceous age; (4) the Ojo Alamo Sandstone of Tertiary age on the eastern side of the San Juan Basin; (5) the Galisteo Formation of Tertiary age within the Hagan Basin, in the eastern part of the Albuquerque Quadrangle; and (6) the Menefee Formation of Late Cretaceous age in the eastern part of the San Juan Basin. Favorability of the Westwater Canyon and Brushy Basin is based on the presence of favorable facies and sandstone-to-shale ratios, the presence of large masses of detrital and humic organic matter in sandstone host rocks, low to moderate dip of host beds, high radioactivity of outcropping rocks, numerous uranium occurrences, and the presence of large subsurface uranium deposits. The Todilto Limestone is considered favorable because of the presence of numerous medium to small uranium deposits in association with intraformational folds and with detrital and humic organic matter. The Dakota Sandstone is considered favorable only in areas within the Grants mineral belt where Tertiary faulting has allowed movement of uranium-bearing groundwater from the underlying Morrison Formation into organic-rich sandstone in the basal part of the Dakota. The Menefee Formation is locally favorable in the area of La Ventana Mesa where the control for known uranium deposits is both structural and stratigraphic. The Ojo Alamo Sandstone and the Galisteo Formations are considered favorable because of favorable facies, the presence of organic matter and pyrite; and low- to medium-grade mineral occurrences

  18. National Uranium Resource Evaluation: Moab Quadrangle, Colorado and Utah

    International Nuclear Information System (INIS)

    Campbell, J.A.; Franczyk, K.J.; Lupe, R.D.; Peterson, F.

    1982-09-01

    Portions of the Salt Wash Member of the Morrison, the Chinle, the Rico, the Cutler, and the Entrada Formations are favorable for uranium deposits that meet the minimum size and grade requirements of the US Department of Energy within the Moab 1' x 2' Quadrangle, Utah and Colorado. Nine areas are judged favorable for the Late Jurassic Salt Wash Member. The criteria used to evaluate these areas as favorable include the presence of (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Three favorable areas have been outlined for the Late Triassic Chinle Formation. The criteria used to evaluate these areas are the sandstone-to-shale ratios for the Chinle Formation and the distribution of the Petrified Forest Member of the Chinle, which is considered the source for the uranium. Two favorable areas have been delineated for the Permian Cutler Formation, and one for the Permian Rico Formation. The criteria used to outline favorable areas are the distribution of favorable facies within each formation. Favorable facies are those that are a result of deposition in environments that are transitional between fluvial and marine. One favorable area is outlined in the Jurassic Entrada Sandstone in the southeastern corner of the quadrangle in the Placerville district. Boundaries for this area were established by geologic mapping

  19. Map Showing Geologic Terranes of the Hailey 1°x2° Quadrangle and the western part of the Idaho Falls 1°x2° Quadrangle, south-central Idaho

    Data.gov (United States)

    Department of the Interior — The paper version of Map Showing Geologic Terranes of the Hailey 1°x2° Quadrangle and the western part of the Idaho Falls 1°x2° Quadrangle, south-central Idaho was...

  20. Geologic map of the Fraser 7.5-minute quadrangle, Grand County, Colorado

    Science.gov (United States)

    Shroba, Ralph R.; Bryant, Bruce; Kellogg, Karl S.; Theobald, Paul K.; Brandt, Theodore R.

    2010-01-01

    The geologic map of the Fraser quadrangle, Grand County, Colo., portrays the geology along the western boundary of the Front Range and the eastern part of the Fraser basin near the towns of Fraser and Winter Park. The oldest rocks in the quadrangle include gneiss, schist, and plutonic rocks of Paleoproterozoic age that are intruded by younger plutonic rocks of Mesoproterozoic age. These basement rocks are exposed along the southern, eastern, and northern margins of the quadrangle. Fluvial claystone, mudstone, and sandstone of the Upper Jurassic Morrison Formation, and fluvial sandstone and conglomeratic sandstone of the Lower Cretaceous Dakota Group, overlie Proterozoic rocks in a small area near the southwest corner of the quadrangle. Oligocene rhyolite tuff is preserved in deep paleovalleys cut into Proterozoic rocks near the southeast corner of the quadrangle. Generally, weakly consolidated siltstone and minor unconsolidated sediments of the upper Oligocene to upper Miocene Troublesome Formation are preserved in the post-Laramide Fraser basin. Massive bedding and abundant silt suggest that loess or loess-rich alluvium is a major component of the siltstone in the Troublesome Formation. A small unnamed fault about one kilometer northeast of the town of Winter Park has the youngest known displacement in the quadrangle, displacing beds of the Troublesome Formation. Surficial deposits of Pleistocene and Holocene age are widespread in the Fraser quadrangle, particularly in major valleys and on slopes underlain by the Troublesome Formation. Deposits include glacial outwash and alluvium of non-glacial origin; mass-movement deposits transported by creep, debris flow, landsliding, and rockfall; pediment deposits; tills deposited during the Pinedale and Bull Lake glaciations; and sparse diamictons that may be pre-Bull Lake till or debris-flow deposits. Some of the oldest surficial deposits may be as old as Pliocene.

  1. NURE aerial gamma ray and magnetic reconnaissance survey, Thorpe area, Scranton NK18-8 Quadrangle. Volume I. Narrative report

    International Nuclear Information System (INIS)

    1978-02-01

    A rotary wing combined airborne high sensitivity gamma-ray and magnetic survey of four 1:250,000 quadrangles covering portions of Pennsylvania, New Jersey, and New York was made. The results are given for the Scranton NK18-8 quadrangle

  2. Reconnaissance geologic map of the Dubakella Mountain 15 quadrangle, Trinity, Shasta, and Tehama Counties, California

    Science.gov (United States)

    Irwin, William P.; Yule, J. Douglas; Court, Bradford L.; Snoke, Arthur W.; Stern, Laura A.; Copeland, William B.

    2011-01-01

    The Dubakella Mountain 15' quadrangle is located just south of the Hayfork quadrangle and just east of the Pickett Peak quadrangle. It spans a sequence of four northwest-trending tectonostratigraphic terranes of the Klamath Mountains geologic province that includes, from east to west, the Eastern Hayfork, Western Hayfork, Rattlesnake Creek, and Western Jurassic terranes, as well as, in the southwest corner of the quadrangle, part of a fifth terrane, the Pickett Peak terrane of the Coast Ranges geologic province. The Eastern Hayfork terrane is a broken formation and melange of volcanic and sedimentary rocks that include blocks of limestone and chert. The limestone contains late Permian microfossils of Tethyan faunal affinity. The chert contains radiolarians of Mesozoic age, mostly Triassic, but none clearly Jurassic. The Western Hayfork terrane is an andesitic volcanic arc that consists mainly of agglomerate, tuff, argillite, and chert, and includes the Wildwood pluton. That pluton is related to the Middle Jurassic (about 170 Ma) Ironside Mountain batholith that is widely exposed farther north beyond the Dubakella Mountain quadrangle. The Rattlesnake Creek terrane is a highly disrupted ophiolitic melange of probable Late Triassic or Early Jurassic age. Although mainly ophiolitic, the melange includes blocks of plutonic rocks (about 200 Ma) of uncertain genetic relation. Some scattered areas of well-bedded mildly slaty detrital rocks of the melange appear similar to Galice Formation (unit Jg) and may be inliers of the nearby Western Jurassic terrane. The Western Jurassic terrane consists mainly of slaty to phyllitic argillite, graywacke, and stretched-pebble conglomerate and is correlative with the Late Jurassic Galice Formation of southwestern Oregon. The Pickett Peak terrane, the most westerly of the succession of terranes of the Dubakella Mountain quadrangle, is mostly fine-grained schist that includes the blueschist facies mineral lawsonite and is of Early

  3. Revised preliminary geologic map of the Rifle Quadrangle, Garfield County, Colorado

    Science.gov (United States)

    Shroba, R.R.; Scott, R.B.

    1997-01-01

    The Rifle quadrangle extends from the Grand Hogback monocline into the southeastern part of the Piceance basin. In the northeastern part of the map area, the Wasatch Formation is nearly vertical, and over a distance of about 1 km, the dip decreases sharply from about 70-85o to about 15-30o toward the southwest. No evidence of a fault in this zone of sharp change in dip is observed but exposures in the Shire Member of the Wasatch Formation are poor, and few marker horizons that might demonstrate offset are distinct. In the central part of the map area, the Shire Member is essentially flat lying. In the south and southwest part of the map area, the dominant dip is slightly to the north, forming an open syncline that plunges gently to the northwest. Evidence for this fold also exists in the subsurface from drill-hole data. According to Tweto (1975), folding of the early Eocene to Paleocene Wasatch Formation along the Grand Hogback reqired an early Eocene age for the last phase of Laramide compression. We find the attitude of the Wasatch Formation to be nearly horizontal, essentially parallel to the overlying Anvil Points Member of the Eocene Green River Formation; therefore, we have no information that either confirms or disputes that early Eocene was the time of the last Laramide event. Near Rifle Gap in the northeast part of the map area, the Mesaverde Group locally dips about 10o less steeply than the overlying Wasatch Formation, indicating that not only had the formation of the Hogback monocline not begun by the time the Wasatch was deposited at this locality, but the underlying Mesaverde Group was locally tilted slightly toward the present White River uplift. Also the basal part of the Atwell Gulch Member of the Wasatch Formation consists of fine-grained mudstones and siltstones containing sparse sandstone and rare conglomerates, indicating that the source of sediment was not from erosion of the adjacent Upper Cretaceous Mesaverde Group. The most likely source of

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich foods, especially during certain stages of life when more iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... that are good sources of iron include dried beans, dried fruits, eggs, lean red meat, salmon, iron- ... of iron, including iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark ...

  6. Iron in diet

    Science.gov (United States)

    ... Reasonable amounts of iron are also found in lamb, pork, and shellfish. Iron from vegetables, fruits, grains, ... strawberries, tomatoes, and potatoes) also increase iron absorption. Cooking foods in a cast-iron skillet can also ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... from developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, ... iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron- ... iron-deficiency anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for your body to absorb iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, ... iron deficiency. Endurance athletes lose iron through their gastrointestinal tracts. They also lose iron through the breakdown of ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron in your body is low. For this reason, other iron tests are also done. Ferritin measure ... iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... develop new therapies for conditions that affect the balance of iron in the body and lead to ... Disease Control and Prevention) Iron - Health Professional Fact Sheet (NIH) Iron Dietary Supplement Fact Sheet (NIH) Iron- ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... to moderate iron-deficiency anemia, or red blood cell transfusion for severe iron-deficiency anemia. You may ... body needs iron to make healthy red blood cells. Iron-deficiency anemia usually develops over time because ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... enough iron-rich foods, such as meat and fish, may result in you getting less than the ... pregnancy. Good sources of iron are meat, poultry, fish, and iron-fortified foods that have iron added. ...

  14. Iron Dextran Injection

    Science.gov (United States)

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... and severity. Treatments may include iron supplements, procedures, surgery, and dietary ... iron supplements, also called iron pills or oral iron, by mouth once or several times a ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, eggs, ... is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...

  17. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Research Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  19. Iron and iron derived radicals

    International Nuclear Information System (INIS)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fast! Think small! In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab

  20. Aerial gamma ray and magnetic survey: Tarpon Springs and Orlando quadrangles, Florida. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    The Tarpon Springs and Orlando quadrangles cover 7850 square miles of central peninsular Florida. Cretaceous and younger platform deposits overlie a complex core of Precambrian, Paleozoic and early Mesozoic crystalline rocks and sediments. Tertiary and Quaternary platform deposits and alluvium cover the surface. Extensive mining for phosphates is taking place in certain areas of the two quadrangles. No known uranium deposits are present within the quadrangles, but the phosphates are known to contain higher than normal amounts of uranium. Statistical analysis resulted in the selection of 47 anomalies. All appear to be related to culture, but some that are associated with the phosphate region have extremely high apparent uranium values. Detailed resource study should concentrate on the phosphates and on the possibility of uranium recovery as a by-product of phosphate mining

  1. Hydrogeochemical and stream sediment reconnaissance basic data for Dallas NTMS Quadrangle, Texas

    International Nuclear Information System (INIS)

    1981-01-01

    Results of a reconnaissance geochemical survey of the Dallas Quadrangle, Texas are reported. Field and laboratory data are presented for 284 groundwater and 545 stream sediment samples. Statistical and areal distribution plots of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided. Groundwater produced from the Navarro Group, Neylandville Formation, Marlbrook Marl, and the Glen Rose and Twin Mountains Formations exhibit anomalous uranium (> 9.05 ppB) and specific conductance (> 1871 μmhos/cm) values. The anomalies represent a southern extension of a similar trend observed in the Sherman Quadrangle, K/UR-110. Stream sediments representing the Eagle Ford Group and Woodbine Formation exhibit the highest concentrations of total and hot-acid-soluble uranium and thorium of samples collected in the Dallas Quadrangle. The U/TU value indicates that > 80% of this uranium is present in a soluble form

  2. Data release on the Salton Sea Quadrangle, California and Arizona. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Chew, R.T. III; Antrim, D.R.

    1982-10-01

    The purpose of the National Uranium Resource Evaluation (NURE) was to delineate and evaluate all geologic environments favorable for the occurrence of uranium deposits. A favorable environment was defined as having the potential to contain an occurrence of at least 100 tons of U 3 O 8 at an average grade of not less than 0.01% U 3 O 8 . In the Salton Sea Quadrangle, reported uranium occurrences were evaluated, and geologic environments thought to be favorable were examined. This report includes the field data collected during that work and a summary of the quadrangle geology and uranium favorability. This is the final report to be prepared on this quadrangle under the NURE program

  3. Geologic Mapping in Nogal Peak Quadrangle: Geochemistry, Intrusive Relations and Mineralization in the Sierra Blanca Igneous Complex, New Mexico

    Science.gov (United States)

    Goff, F.; Kelley, S. A.; Lawrence, J. R.; Cikowski, C. T.; Krier, D. J.; Goff, C. J.; McLemore, V. T.

    2011-12-01

    Nogal Peak quadrangle is located in the northern Sierra Blanca Igneous Complex (SBIC) and contains most of the White Mountain Wilderness (geologic map is available at http://geoinfo.nmt.edu/publications/maps/geologic/ofgm/details.cfml?Volume=134). The geology of the quad consists of a late Eocene to Oligocene volcanic pile (Sierra Blanca Volcanics, mostly alkali basalt to trachyte) intruded by a multitude of dikes, plugs and three stocks: Rialto, 31.4 Ma (mostly syenite), Three Rivers, ca. 29 to 27 Ma (quartz syenite intruded by subordinate alkali granite), and Bonito Lake, 26.6 Ma (mostly monzonite). Three Rivers stock is partially surrounded by alkali rhyolites that geochemically resemble the alkali granites. The circular shape of the stock and surrounding rhyolites suggests they form the root of a probable caldera. SBIC rocks have compositions typical of those found within the Rocky Mountain alkaline belt and those associated with continental rift zone magmatism. Because the volcanic host rocks are deeply eroded, intrusive relations with the stocks are well exposed. Most contacts at stock margins are near vertical. Roof pendants are common near some contacts and stoped blocks up to 700 m long are found within the Three Rivers stock. Contacts, pendants and stoped blocks generally display some combination of hornfelsing, brecciation, fracturing, faulting and mineralization. Sierra Blanca Volcanics display hydrothermal alteration increasing from argillic in the NW sector of the quad to high-temperature porpylitic near stock margins. Retrograde phyllic alteration occurs within breccia pipes and portions of the stocks. Mineral deposits consist of four types: Placer Au, fissure veins (mostly Ag-Pb-Zn±Au), breccia pipes (Au-Mo-Cu), and porphyry Mo-Cu. A singular pipe on the SW margin of Bonito Lake stock contains sapphire-lazulite-alunite. Although Au has been intermittently mined in the quad since 1865, best production of Au originated around the turn of the last

  4. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Russellville quadrangle, Arkansas

    International Nuclear Information System (INIS)

    1980-09-01

    The Russellville quadrangle in north central Arkansas overlies thick Paleozoic sediments of the Arkoma Basin. These Paleozoics dominate surface exposure except where covered by Quaternary alluvial materials. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. Eighty-eight groups of uranium samples were defined as anomalies and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data show character that suggest structural and/or lithologic complexity, but imply relatively deep-seated sources

  5. Airborne gamma-ray spectrometer and magnetometer survey: Aberdeen quadrangle, South Dakota. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    During the months of June through October, 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. This report discusses the results obtained over the Aberdeen, South Dakota map area. The final data are presented in four different forms: on magnetic tape; on microfiche; in graphic form as profiles and histograms; and in map form as anomaly maps, flight path maps, and computer printer maps

  6. Geologic map of the Stephens City quadrangle, Clark, Frederick, and Warren Counties, Virginia

    Science.gov (United States)

    Weary, D.J.; Orndorff, R.C.; Aleman-Gonzalez, W.

    2006-01-01

    The Stephens City 1:24,000-scale quadrangle is one of several quadrangles in Frederick County, Virginia being mapped by geologists from the U.S. Geological Survey in Reston, VA with funding from the National Cooperative Geologic Mapping Program. This work is part of a project being lead by the U.S. Geological Survey Water Resources Discipline, Virginia District, to investigate the geologic framework and groundwater resources of Frederick County as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia.

  7. Aerial gamma ray and magnetic survey: Kansas City Quadrangle of Kansas and Missouri. Final report

    International Nuclear Information System (INIS)

    1980-11-01

    The Kansas City quadrangle covers approximately 7400 square miles in northwestern Missouri and northeastern Kansas. It overlies the southeastern edge of the Forest City Basin, which contains predominantly Paleozoic sediments. Permian and Pennsylvanian formations cover much of the surface, but Quaternary sedimentation dominates certain regions of the quadrangle. A search of available literature revealed no known uranium deposits. A total of 102 uranium anomalies were detected and are discussed briefly. None were considered significant and all appear to be related to cultural features. Magnetic data appears to correlate directly with underlying Precambrian material

  8. Aerial gamma ray and magnetic survey: Mason City quadrangle, Iowa and Minnesota. Final report

    International Nuclear Information System (INIS)

    1981-02-01

    The Mason City quadrangle covers 6900 miles of the northern Midwestern Physiographic Province in northern Iowa and southern Minnesota. The surface is largely covered by Quaternary glacial and related deposits. The subglacial surface is exposed only in the northeast and is composed of thin Mesozoic and Paleozoic sediments overlying Precambrian basement. A search of available literature revealed no known uranium deposits. A total of 89 uranium anomalies were detected and briefly described in this report. None were considered significant, and all appear to be related to cultural features. Concentrations of K, U, and T are extremely low throughout the quadrangle. Magnetic data appear to illustrate complexities in the underlying Precambrian

  9. Aerial gama ray and magnetic survey: Lawrence Quadrangle of Kansas and Missouri. Final report

    International Nuclear Information System (INIS)

    1980-11-01

    The Lawrence quadrangle covers approximately 7500 square miles in Kansas and Missouri over the western edge of the Ozark Uplift. Sediments in this area are mostly Pennsylvanian and Permian sandstone, shale, limestone, and coal. As mapped, these are the dominant units in the quadrangle. A search of available literature revealed no known uranium deposits. A total of 94 uranium anomalies were detected and are discussed briefly. Most appear to be related to cultural features. Those associated with coal mine tailings appear to be most significant. Magnetic data appears to relate to complexities in the Precambrian basement

  10. National Uranium Resource Evaluation: Albany Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Field, M T; Truesdell, D B

    1982-09-01

    The Albany 1/sup 0/ x 2/sup 0/ Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Areas of favorable geology and aeroradioactivity anomalies were examined and sampled. Most Triassic and Jurassic sediments in the Connecticut Basin, in the central part of the quadrangle, were found to be favorable for sandstone uranium deposits. Some Precambrian units in the southern Green Mountains of Vermont were found favorable for uranium deposits in veins in metamorphic rocks.

  11. National Uranium Resource Evaluation: Albany Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire

    International Nuclear Information System (INIS)

    Field, M.T.; Truesdell, D.B.

    1982-09-01

    The Albany 1 0 x 2 0 Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Areas of favorable geology and aeroradioactivity anomalies were examined and sampled. Most Triassic and Jurassic sediments in the Connecticut Basin, in the central part of the quadrangle, were found to be favorable for sandstone uranium deposits. Some Precambrian units in the southern Green Mountains of Vermont were found favorable for uranium deposits in veins in metamorphic rocks

  12. Airborne gamma-ray spectrometer and magnetometer survey, Devils Lake quadrangle, North Dakota. Final report

    International Nuclear Information System (INIS)

    1981-05-01

    During the months of June through October, 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. This report discusses the results obtained over the Devil's Lake map area of North Dakota. The final data are presented in four different forms: on magnetic tape; on microfiche; in graphic form as profiles and histograms; and in map form as anomaly maps, flight path maps, and computer printer maps

  13. Arsenic enrichment in estuarine sediments-impact of iron and manganese mining

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, M.; Joseph, T.; Balachandran, K.K.; Nair, K.K.C.; Paimpillii, J.S.

    River Mandovi and Zuari, Goa (west coast of India) are flowing through iron and manganese mining areas and are heavily used for iron and manganese ore transport. This region generates 25-30 million tons of mining rejects per year. The iron ore...

  14. Northern part, Ten Mile and Taunton River basins

    Science.gov (United States)

    Williams, John R.; Willey, Richard E.

    1967-01-01

    The northern part of the Ten Mile and Taunton River basins is an area of about 195 square miles within Norfolk, Plymouth, and Bristol Counties in southeastern Massachusetts. The northern boundary of the area (plate 1) is the drainage divide separating these basins from that of the Charles, Neponset, and Weymouth River basins. The western boundary is, for the most part, the divide separating the basins from the Blackstone River basin. The eastern boundary is at the edge of the Brockton-Pembroke area (Petersen, 1962; Petersen and Shaw, 1961). The southern boundary in Seekonk is the northern limit of the East Providence quadrangle, for which a ground-water map was prepared by Allen and Gorman (1959); eastward, the southern boundaries of the city of Attleboro and the towns of Norton, Easton, and West Bridgewater form the southern boundary of the area.

  15. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Ruzicka, Alex M.; Haack, Henning; Chabot, Nancy L.

    2017-01-01

    By far most of the melted and differentiated planetesimals that have been sampled as meteorites are metal-rich iron meteorites or stony iron meteorites. The parent asteroids of these meteorites accreted early and differentiated shortly after the solar system formed, producing some of the oldest...... and interpretations for iron and stony iron meteorites (Plate 13.1). Such meteorites provide important constraints on the nature of metal-silicate separation and mixing in planetesimals undergoing partial to complete differentiation. They include iron meteorites that formed by the solidification of cores...... (fractionally crystallized irons), irons in which partly molten metal and silicates of diverse types were mixed together (silicate-bearing irons), stony irons in which partly molten metal and olivine from cores and mantles were mixed together (pallasites), and stony irons in which partly molten metal...

  16. FORTRAN computer programs to process Savannah River Laboratory hydrogeochemical and stream-sediment reconnaissance data

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; D'Andrea, R.F. Jr.

    1980-03-01

    FORTRAN computer programs have been written to read, edit, and reformat the hydrogeochemical and stream-sediment reconnaissance data produced by Savannah River Laboratory for the National Uranium Resource Evaluation program. The data are presorted by Savannah River Laboratory into stream sediment, ground water, and stream water for each 1 0 x 2 0 quadrangle. Extraneous information is eliminated, and missing analyses are assigned a specific value (-99999.0). Negative analyses are below the detection limit; the absolute value of a negative analysis is assumed to be the detection limit

  17. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    International Nuclear Information System (INIS)

    Santos, E.S.; Robinson, K.; Geer, K.A.; Blattspieler, J.G.

    1982-09-01

    Uranium resources of the Newcastle 1 0 x2 0 Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group

  18. Geologic Map of the Helen Planitia Quadrangle (V-52), Venus

    Science.gov (United States)

    Lopez, Ivan; Hansen, Vicki L.

    2008-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Helen Planitia quadrangle (V-52), located in the southern hemisphere of Venus between lat 25 deg S. and 50 deg S. and between long 240 deg E. and 270 deg E., covers approximately 8,000,000 km2. Regionally, the map area is located at the southern limit of an area of enhanced tectonomagmatic activity and extensional deformation, marked by a triangle that has highland apexes at Beta, Atla, and Themis Regiones (BAT anomaly) and is connected by the large extensional belts of Devana, Hecate, and Parga Chasmata. The BAT anomaly covers approximately 20 percent of the Venusian surface.

  19. Mesa NTMS 10 x 20 quadrangle area. Supplemental data report

    International Nuclear Information System (INIS)

    Koller, G.R.

    1980-01-01

    This data report presents supplemental analytical results for stream sediments and ground water. The samples were collected as part of the SRL-NURE reconnaissance in the National Topographic Map Series (NTMS) Mesa 1 0 x 2 0 quadrangle. Results are reported for 24 elements (Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, Th, W, Y, Zn, and extractable U) in sediments and 31 elements (Ag, Al, As, B, Ba, Be, Ca, Ce, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Sc, Se, Si, Sr, Th, Ti, V, Y, Zn, and Zr) as well as pH, alkalinity, and conductivity in ground water. Field data and NAA data will be open-filed when they are available. Microfiche cards have been placed in a pocket on the last page of this report. These cards contain the following information: Cards marked Pg. 1, Pg. 2, and Pg. 3 contain histograms, cumulative frequency plots, and areal distribution plots for sediment samples. The card marked Plate 1 is a site-code map for sediment samples

  20. National Uranium Resource Evaluation, Tularosa Quadrangle, New Mexico

    International Nuclear Information System (INIS)

    Berry, V.P.; Nagy, P.A.; Spreng, W.C.; Barnes, C.W.; Smouse, D.

    1981-12-01

    Uranium favorability of the Tularosa Quadrangle, New Mexico, was evaluated to a depth of 1500 m using National Uranium Resource Evaluation criteria. Uranium occurrences reported in the literature were located, sampled, and described in detail. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, and geochemical anomalies, interpreted from hydrogeochemical and stream-sediment reconnaissance, were also investigated. Additionally, several hundred rock samples were studied in thin section, and supplemental geochemical analyses of rock and water samples were completed. Fluorometric analyses were completed for samples from the Black Range Primitive Area to augment previously available geochemical data. Subsurface favorability was evaluated using gamma-ray logs and descriptive logs of sample cuttings. One area of uranium favorability was delineated, based on the data made available from this study. This area is the Nogal Canyon cauldron margin zone. Within the zone, characterized by concentric and radial fractures, resurgent doming, ring-dike volcanism, and intracauldron sedimentation, uranium conentration is confined to magmatic-hydrothermal and volcanogenic uranium deposits

  1. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E S; Robinson, K; Geer, K A; Blattspieler, J G

    1982-09-01

    Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.

  2. Hydro-geological studies at the PINSTECH quadrangle

    International Nuclear Information System (INIS)

    Mehmood, K.; Qureshi, A.A.; Khattak, N.; Akram, M.; Farooq, M.

    2000-05-01

    In order to save the huge amount of water bill and to overcome the shortage of water supply during summer, a resistivity survey was carried out to locate some suitable water bearing horizons within the PINSTECH Quadrangle. Eight shallow bore holes yielding limited amount of water supply were also drilled on trial basis. The work so far done indicates the existence of two water-bearing horizons in this area. a. A shallow water bearing horizon present at the contact of recent alluvium with bedrock at a depth between 7-20 meters. b. A deep water bearing horizon present erratically in the sandstone of Kamlial Formation at a depth between 85-180 meters. On the basis of resistivity measurements, thirteen sites have been earmarked which may contain water bearing zones in the deep horizon. Out of these, nine sites have been classified as the favorable and four as semi-favorable sites. A geological survey of the area was also carried out. The Kamlial sandstone, indicated by the resistivity survey to contain water bearing zones, is less porous with low permeability. Therefore it is not a favorable lithology to contain an aquifer to produce a good water discharge. However, the hole/s penetrating through a faulted/fractured zone being charged through a stream in the vicinity may yield water. (author)

  3. National Uranium Resource Evaluation: Wichita Falls Quadrangle, Texas and Oklahoma

    International Nuclear Information System (INIS)

    Edwards, M.B.; Andersen, R.L.

    1982-08-01

    The uranium favorability of the Wichita Falls Quadrangle, Texas and Oklahoma, was determined by using National Uranium Resource Evaluation criteria; by subsurface studies of structure, facies distribution, and gamma-ray anomalies in well logs to a depth of 1500 m; and by surface studies involving extensive field sampling and radiometric surveying. These were supplemented by both aerial radiometric and hydrogeochemical and stream-sediment reconnaissance studies. Favorable environments were identified in fluviodeltaic to fan-delta sandstones in the upper Strawn, Canyon, and Cisco Groups (Pennsylvania to Lower Permian), which occur exclusively in the subsurface. Evaluation was based on the presence of a good uranium source, abundant feldspar, good hydrogeologic characteristics, association with carbonaceous shales, presence of coal and oil fields, and anomalies in gamma logs. Additional favorable environments include deltaic to alluvial sandstones in the Wichita-Albany Group (Lower Permian), which crops out widely and occurs in the shallow subsurface. Evaluation was based on high uranium values in stream-sediment samples, a small uranium occurrence located during the field survey, anomalous gamma logs, good uranium source, and hydrogeologic characteristics. Unfavorable environments include Cambrian to Permian limestones and shales. Pennsylvanian to Permian fluviodeltaic systems that have poor uranium sources, and Permian, Cretaceous, and Pleistocene formations that lack features characteristic of known uranium occurrences

  4. River engineering

    NARCIS (Netherlands)

    De Vries, M.

    1993-01-01

    One dimension models - basic eauations, analytical models, numberical models. One dimensional models -suspended load, roughness and resistance of river beds. Solving river problems - tools, flood mitigation, bank protection.

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency anemia is a ... address the cause of your iron deficiency, such as any underlying bleeding. If undiagnosed or untreated, iron- ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  7. Iron-Deficiency Anemia

    Science.gov (United States)

    ... To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  8. Surface gamma-ray survey of the Barre West quadrangle, Washington and Orange Counties, Vermont

    Science.gov (United States)

    Walsh, Gregory J.; Satkoski, Aaron M.

    2005-01-01

    This study was designed to determine the levels of naturally occurring radioactivity in bedrock from surface measurements at outcrops during the course of 1:24,000-scale geologic mapping and to determine which rock types were potential sources of radionuclides. Elevated levels of total alpha particle radiation (gross alpha) occur in a public water system in Montpelier, Vermont. Measured gross alpha levels in the Murray Hill water system (Vermont Dept. of Environmental Conservation, unpub. data, 2005) have exceeded the maximum contaminant level of 15 picocuries per liter (pCi/l) set by the Environmental Protection Agency (EPA) (EPA, 2000). The Murray Hill system began treatment for radium in 1999. Although this treatment was successful, annual monitoring for gross alpha, radium, and uranium continues as required (Jon Kim, written communication, 2005). The water system utilizes a drilled bedrock well located in the Silurian-Devonian Waits River Formation. Kim (2002) summarized radioactivity data for Vermont, and aside from a statewide assessment of radon in public water systems (Manning and Ladue, 1986) and a single flight line from the National Uranium Resource Evaluation (NURE) (Texas Instruments, 1976) (fig. 1), no data are available to identify the potential sources of naturally occurring radioactivity in the local bedrock. Airborne gamma-ray surveys are typically used for large areas (Duval, 2001, 2002), and ground-based surveys are more commonly used for local site assessments. For example, ground-based surveys have been used for fault mapping (Iwata and others, 2001), soil mapping (Roberts and others, 2003), environmental assessments (Stromswold and Arthur, 1996), and mineral exploration (Jubeli and others, 1998). Duval (1980) summarized the methods and applications of gamma- ray spectrometry. In this study, we present the results from a ground-based gamma-ray survey of bedrock outcrops in the 7.5-minute Barre West quadrangle, Vermont. Other related and

  9. Uranium hydrogeochemical and stream sediment reconnaissance of the vernal NTMS quadrangle, Utah/Colorado, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Purson, J.D.

    1980-08-01

    The Los Alamos Scientific Laboratory conducted a geochemical reconnaissance for uranium in the Vernal NTMS quadrangle, Utah/Colorado, in the summers of 1977 and 1978. Totals of 422 water and 1552 sediment samples were collected from 1652 locations. These samples were collected at an average density of one sample location per 11 km 2 over an 18,800 km 2 area. Water samples were collected from streams and springs. Only those samples containing >10 ppB uranium for waters and >8 ppM uranium for sediments are discussed; however, all field and analytical data are included in the appendixes. The uranium concentrations in waters range from below the detection limit of 0.01 ppB to 108.04 ppB, with a mean uranium concentration for all water types of 3.11 ppB. Three clusters of samples containing relatively high uranium values are defined; they are associated with the Duchesne River formation, the Mancos shale, or the Uinta Mountain group and Browns Park formations. A few of the samples having the highest uranium values are associated with host rocks favorable for significant uranium mineralization. Sediments collected in this study have uranium concentrations that range between 0.70 ppM and 56.70 ppM, with a mean of 3.46 ppM. The majority of sediment samples with relatively high uranium concentrations were collected from one area in the Sand Wash basin in the northeastern corner of the quadrangle and are associated with the Wasatch formation. None of the water clusters define areas of significant interest; however, the area having high uranium values in sediments is worthy of further study

  10. Hydrogeochemical and stream sediment reconnaissance basic data for Nabesna Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 1236 water samples from the Nebesna Quadrangle, Alaska. The samples were collected by Los Alamos Scientific Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  11. Hydrogeochemical and stream sediment reconnaissance basic data for Preston Quadrangle, Wyoming; Idaho

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 410 water samples and 702 sediment samples from the Preston Quadrangle, Wyoming; Idaho. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-70(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  12. Hydrogeochemical and stream sediment reconnaissance basic data for Aztec Quadrangle, New Mexico

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 331 water samples and 1693 sediment samples from the Aztec Quadrangle, New Mexico. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-129(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  13. Hydrogeochemical and stream sediment reconnaissance basic data for Harrison Bay quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 328 water samples from the Harrison Bay Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  14. Hydrogeochemical and stream sdeiment reconnaissance basic data for Brownfield Quadrangle, New Mexico; Texas

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 452 water samples and 351 sediment samples from the Brownfield Quadrangle, New Mexico; Texas. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-103(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  15. Hydrogeochemical and stream sediment reconnaissance basic data for Iditarod Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 1410 water samples from the Iditarod Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  16. Geologic Map of the Challis 1°x2° Quadrangle, Idaho

    Data.gov (United States)

    Department of the Interior — The paper version of The geology of the Challis 1°x2° quadrangle, was compiled by Fred Fisher, Dave McIntyre and Kate Johnson in 1992. The geology was compiled on a...

  17. Preliminary Bedrock Geologic Map of the Old Lyme Quadrangle, New London and Middlesex Counties, Connecticut

    Science.gov (United States)

    Walsh, Gregory J.; Scott, Robert B.; Aleinikoff, John N.; Armstrong, Thomas R.

    2006-01-01

    This report presents a preliminary map of the bedrock geology of the Old Lyme quadrangle, New London and Middlesex Counties, Connecticut. The map depicts contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The map was published as part of a study of fractured bedrock aquifers and regional tectonics.

  18. Hydrogeochemical and stream sediment reconnaissance basic data for Rawlings quadrangle, Wyoming

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 454 water samples and 1279 sediment samples from the Rawlins Quadrangle, Wyoming. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-81(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  19. Hydrogeochemical and stream sediment reconnaissance basic data for Milbank NTMS Quadrangle, Minnesota; North Dakota; South Dakota

    International Nuclear Information System (INIS)

    1981-01-01

    Results of a reconnaissance geochemical survey are reported for the Milbank Quadrangle, Minnesota; North Dakota; South Dakota. Statistical data and areal distributions for uranium and uranium-related variables are presented for 662 groundwater and 319 stream sediment samples. Also included is a brief discussion on location and geologic setting

  20. Hydrogeochemical and stream sediment reconnaissance basic data for St. Michael Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 159 water samples from the St. Michael Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  1. Hydrogeochemical and stream sediment reconnaissance basic data for Ruby Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 693 water samples from the Ruby Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  2. DIGITAL GEOLOGIC MAP OF SHERMAN QUADRANGLE, NORTH CENTRAL TEXAS (CD-ROM)

    Science.gov (United States)

    This compact disc contains digital data sets of the surficial geology and geologic faults for the 1:250,000-scale Sherman quadrangle, North Central Texas, and can be used to make geologic maps, and determine approximate areas and locations of various geologic units. The source d...

  3. Hydrogeochemical and stream sediment reconnaissance basic data for Beaver Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 642 water samples from the Beaver Quadrangle, Alaska. The samples were collected by Los Alamos Scientific Laboratory; laboratory analysis and data reporting were done by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  4. Digital and preliminary bedrock geologic map of the Rutland quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-121A Ratcliffe, N.M., 1998,�Digital and preliminary bedrock geologic map of the Rutland quadrangle, Vermont: USGS Open-File Report 98-121-A, 1...

  5. Digital bedrock geologic map of the Gilson Mountain quadrangle,�Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-7A Doolan, B, 1995,�Digital bedrock geologic map of the Gilson Mountain quadrangle,�Vermont: VGS Open-File Report VG95-7A, 2 plates, scale...

  6. Airborne gamma-ray spectrometer and magnetometer survey, Mitchell Quadrangle, South Dakota. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the Mitchell map area. The purpose of this program is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1479 line miles are in this quadrangle

  7. Aerial gamma ray and magnetic survey: Idaho Project, Hailey quadrangle of Idaho. Final report

    International Nuclear Information System (INIS)

    1979-12-01

    The Hailey quadrangle in central Idaho lies at the boundary between the Northern Rocky Mountains and the western Cordilleran Physiographic Provinces. The area is dominated by intrusives of the Idaho and Sawtooth Batholiths, but contains considerable exposures of Tertiary and Quaternary volcanics, and Paleozoic sedimentary rocks. Magnetic data apparently show some expression of the intrusives of the Idaho Batholith. Areas of faulted Paleozoic and Tertiary rocks appear to express themselves as roughly defined regions of high frequency/high amplitude wavelengths. The Hailey quadrangle has been unproductive in terms of uranium mining, though some prospects do exist south of the town of Hailey. The quadrangle contains significant exposures of the Tertiary Challis Formation (primarily volcanics) which has been productive in other areas to the north. A total of 161 anomalies are valid according to the criteria set forth in Volume I of this report. These anomalies are scattered throughout the quadrangle. The most distinctive groups of anomalies are associated with Tertiary igneous rocks in the mountainous areas

  8. Hydrogeochemical and stream sediment reconnaissance basic data for Big Delta Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 1380 water samples from the Big Delta Quadrangle, Alaska. The samples were collected by Los Alamos Scientific Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  9. Hydrogeochemical and stream sediment reconnaissance basic data for Cheyenne Quadrangle, Wyoming

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 884 water samples and 598 sediment samples from the Cheyenne Quadrangle, Wyoming. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-106(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  10. Airborne gamma-ray spectrometer and magnetometer survey, New Rockford Quadrangle, North Dakota. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the New Rockford map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1397 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  11. Airborne gamma-ray spectrometer and magnetometer survey: Huron quadrangle, South Dakota. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the Huron map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1459 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  12. Hydrogeochemical and stream sediment reconnaissance basic data for Silver City Quadrangle, New Mexico; Arizona

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 405 water samples and 736 sediment samples from the Silver City Quadrangle, New Mexico; Arizona. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-69(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... making new blood cells. Visit our Aplastic Anemia Health Topic to learn more. ... recommend that you take iron supplements, also called iron pills or oral iron, by mouth once or several times a ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... red meat, salmon, iron-fortified breads and cereals, peas, tofu, dried fruits, and dark green leafy vegetables. ... stored iron has been used. Ferritin is a protein that helps store iron in your body. Reticulocyte ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... drinking black tea, which reduces iron absorption. Other treatments If you have chronic kidney disease and iron- ... and lifestyle changes to avoid complications. Follow your treatment plan Do not stop taking your prescribed iron ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... diagnoses you with iron-deficiency anemia, your treatment will depend on the cause and severity of the ... of iron. The recommended daily amounts of iron will depend on your age, sex, and whether you ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... heart failure . Increased risk of infections Motor or cognitive development delays in children Pregnancy complications, such as ... iron-deficiency anemia may require intravenous (IV) iron therapy or a blood transfusion . Iron supplements Your doctor ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for iron-deficiency anemia. Lifestyle habits Certain lifestyle habits may increase your risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, such ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... because your body’s intake of iron is too low. Low intake of iron can happen because of blood ... delivery or giving birth to a baby with low birth weight In people with chronic conditions, iron- ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... breastfeeding. Recommended daily iron intake for children and adults. The table lists the recommended amounts of iron, ... increased need for iron during growth spurts. Older adults, especially those over age 65. Unhealthy environments Children ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... girls. From birth to 6 months, babies need 0.27 mg of iron. This number goes up ... screen blood donors for low iron stores. Reliable point-of-care testing may help identify iron deficiency ...

  2. Iron metabolism and toxicity

    International Nuclear Information System (INIS)

    Papanikolaou, G.; Pantopoulos, K.

    2005-01-01

    Iron is an essential nutrient with limited bioavailability. When present in excess, iron poses a threat to cells and tissues, and therefore iron homeostasis has to be tightly controlled. Iron's toxicity is largely based on its ability to catalyze the generation of radicals, which attack and damage cellular macromolecules and promote cell death and tissue injury. This is lucidly illustrated in diseases of iron overload, such as hereditary hemochromatosis or transfusional siderosis, where excessive iron accumulation results in tissue damage and organ failure. Pathological iron accumulation in the liver has also been linked to the development of hepatocellular cancer. Here we provide a background on the biology and toxicity of iron and the basic concepts of iron homeostasis at the cellular and systemic level. In addition, we provide an overview of the various disorders of iron overload, which are directly linked to iron's toxicity. Finally, we discuss the potential role of iron in malignant transformation and cancer

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... amount of iron, and medical conditions that make it hard for your body to absorb iron from ... hepcidin. Hepcidin prevents iron from leaving cells where it is stored or from being absorbed in the ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... bleeding. If undiagnosed or untreated, iron-deficiency anemia can cause serious complications, including heart failure and development ... iron is too low. Low intake of iron can happen because of blood loss, consuming less than ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-fortified foods that have iron added. Vegetarian diets can provide enough iron if you choose nonmeat ... Anemia in Chronic Kidney Disease (National Institute of Diabetes and Digestive and Kidney Diseases) Avoiding Anemia (National ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... lean red meat, salmon, iron-fortified breads and cereals, peas, tofu, dried fruits, and dark green leafy ... sources of iron, including iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... starch. Restless legs syndrome Shortness of breath Weakness Complications Undiagnosed or untreated iron-deficiency anemia may cause ... as complete blood count and iron studies. Prevent complications over your lifetime To prevent complications from iron- ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... you do not have enough iron in your body. People with mild or moderate iron-deficiency anemia ... and where to find more information. Causes Your body needs iron to make healthy red blood cells. ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... from developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, eggs, lean red meat, ... signs of iron-deficiency anemia include: Brittle nails ...

  10. Taking iron supplements

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007478.htm Taking iron supplements To use the sharing features on this page, ... levels. You may also need to take iron supplements as well to rebuild iron stores in your ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... fruits, eggs, lean red meat, salmon, iron-fortified breads and cereals, peas, tofu, dried fruits, and dark ... choose nonmeat sources of iron, including iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... ESAs are usually used with iron therapy or IV iron, or when iron therapy alone is not enough. Look for Living With will discuss what your doctor may recommend, including lifelong lifestyle changes ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... and pregnancy. Good sources of iron are meat, poultry, fish, and iron-fortified foods that have iron ... Anemia Restless Legs Syndrome Von Willebrand Disease Other Resources NHLBI resources Your Guide to Anemia [PDF, 1. ...

  14. Geologic Map of the Lavinia Planitia Quadrangle (V-55), Venus

    Science.gov (United States)

    Ivanov, Mikhail A.; Head, James W.

    2001-01-01

    Introduction The Lavinia Planitia quadrangle (V-55) is in the southern hemisphere of Venus and extends from 25 to 50 south latitude and from 330 to 360 longitude. It covers the central and northern part of Lavinia Planitia and parts of its margins. Lavinia Planitia consists of a centralized, deformed lowland flooded by volcanic deposits and surrounded by Dione Regio to the west (Keddie and Head, 1995), Alpha Regio tessera (Bindschadler and others, 1992a) and Eve Corona (Stofan and others, 1992) to the northeast, itself an extensive rift zone and coronae belt to the east and south (Baer and others, 1994; Magee and Head, 1995), Mylitta Fluctus to the south (Magee Roberts and others, 1992), and Helen Planitia to the southwest (Senske and others, 1991). In contrast to other areas on Venus, the Lavinia Planitia area is one of several large, relatively equidimensional lowlands (basins) and as such is an important region for the analysis of processes of basin formation and volcanic flooding. Before the Magellan mission, Lavinia Planitia was known on the basis of Pioneer-Venus altimetry to be a lowland area (Pettengill and others, 1980);. Arecibo radar images showed that Lavinia Plaitia was surrounded by several corona-like features and rift-like fractures parallel to the basin margin to the east and south (Senske and others, 1991; Campbell and others, 1990). Arecibo data further revealed that the interior contained complex patterns of deformational features in the form of belts and volcanic plains, and several regions along the margins were seen to be the sources of extensive outpourings of digitate lava flows into the interior (Senske and others, 1991; Campbell and others, 1990). Early Magellan results showed that the ridge belts are composed of complex structures of both extensional and contractional origin (Squyres and others, 1992; Solomon and others, 1992) and that the complex lava flows (fluctus) along the margins (Magee Roberts and others, 1992) emanated from a

  15. Multisource data set integration and characterization of uranium mineralization for the Montrose Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Bolivar, S.L.; Balog, S.H.; Campbell, K.; Fugelso, L.E.; Weaver, T.A.; Wecksung, G.W.

    1981-04-01

    Several data-classification schemes were developed by the Los Alamos National Laboratory to detect potential uranium mineralization in the Montrose 1 0 x 2 0 quadrangle, Colorado. A first step was to develop and refine the techniques necessary to digitize, integrate, and register various large geological, geochemical, and geophysical data sets, including Landsat 2 imagery, for the Montrose quadrangle, Colorado, using a grid resolution of 1 km. All data sets for the Montrose quadrangle were registered to the Universal Transverse Mercator projection. The data sets include hydrogeochemical and stream sediment analyses for 23 elements, uranium-to-thorium ratios, airborne geophysical survey data, the locations of 90 uranium occurrences, a geologic map and Landsat 2 (bands 4 through 7) imagery. Geochemical samples were collected from 3965 locations in the 19 200 km 2 quadrangle; aerial data were collected on flight lines flown with 3 to 5 km spacings. These data sets were smoothed by universal kriging and interpolated to a 179 x 119 rectangular grid. A mylar transparency of the geologic map was prepared and digitized. Locations for the known uranium occurrences were also digitized. The Landsat 2 imagery was digitally manipulated and rubber-sheet transformed to quadrangle boundaries and bands 4 through 7 were resampled to both a 1-km and 100-m resolution. All possible combinations of three, for all data sets, were examined for general geologic correlations by utilizing a color microfilm output. Subsets of data were further examined for selected test areas. Two classification schemes for uranium mineralization, based on selected test areas in both the Cochetopa and Marshall Pass uranium districts, are presented. Areas favorable for uranium mineralization, based on these schemes, were identified and are discussed

  16. Reconnaissance geology of the Jibal Matalli Quadrangle, sheet 27/40 D, Kingdom of Saudi Arabia

    Science.gov (United States)

    Ekren, E.B.

    1984-01-01

    The Jibal Matalli quadrangle lies along the northern boundary of the Arabian Shield about 90 km west-southwest of Ha'il. The quadrangle consists of about 45 percent Precambrian bedrock, 50 percent Quaternary deposits, and 5 percent sedimentary cover rocks. The Precambrian rocks include volcaniclastic and volcanic rocks that are slightly metamorphosed and various granitic plutons. The volcaniclastic and volcanic rocks are correlated with the Hulayfah group and the Hadn formation. The older Hulayfah is principally basalt of probably submarine origin that has locally been metamorphosed to greenschist facies. The Hadn is composed of submarine and subaerial deposits. These consist of volcanic-derived sandstone and siltstone and lesser amounts of chiefly rhyolite volcanic rocks. In most areas, the Hadn shows little in the way of metamorphic effects, but locally it too has been metamorphosed to greenschist facies. The volcanic rocks of the Hadn include ash-flow tuffs; some appear to be water-laid, but others are subaerial. The oldest pluton is diorite, those of intermediate age are monzogranite and syenogranite, and the youngest are alkali feldspar granites. The largest pluton, a metaluminous, low-calcium, biotite monzogranite, occupies much of the southern part of the quadrangle. The alkali feldspar granites are mostly peralkaline; the two youngest are particularly so. The latter two are located in the southwest and southeast corners of the quadrangle, and both contain arfvedsonite and kataphorite. The pluton in the southeast grades outward from a peraluminous core to a peralkaline, comenditic peripheral zone and is inferred to be genetically related to a spectacular, west-trending comendite dike swarm in the southern half of the quadrangle.

  17. Surface geology of Williston 7.5-minute quadrangle, Aiken and Barnwell Counties, South Carolina

    International Nuclear Information System (INIS)

    Willoughby, R.H.; Nystrom, P.G. Jr.; Denham, M.E.; Eddy, C.A.; Price, L.K.

    1994-01-01

    Detailed geologic mapping has shown the distribution and lithologic character of stratigraphic units and sedimentary deposits in Williston quadrangle. A middle Eocene stratigraphic unit correlative with the restricted McBean Formation is the oldest unit at the surface. The McBean-equivalent unit occurs at low elevations along drainages in the north of the quadrangle but does not crop out. These beds are typically very fine- to fine-grained quartz sand, locally with abundant black organic matter and less commonly with calcium carbonate. The uppermost middle Eocene Orangeburg District bed, commonly composed of loose, clay-poor, very fine- to fine-grained quartz sand, occurs at the surface in the north and southwest of the quadrangle with sparse exposure. The upper Eocene Dry Branch Formation occurs on valley slopes throughout the quadrangle. The Dry Branch is composed of medium- to very coarse-grained quartz sand with varying amounts on interstitial clay and lesser bedded clay. The upper Eocene Tobacco road Sand occurs on upper valley slopes and some interfluves and consists of very fine-grained quartz sand to quartz granules. The upper Middle Miocene to lower Upper Miocene upland unit caps the interfluves and is dominantly coarse-grained quartz sand to quartz granules, with included granule-size particles of white clay that are weathered feldspars. Loose, incohesive quartzose sands of the eolian Pinehurst Formation, Upper Miocene to Lower Pliocene, occur on the eastern slopes of some interfluves in the north of the quadrangle. Quartz sand with varying included humic matter occurs in Carolina bays, and loose deposits of windblown sand occur on the rims of several Carolina bays. Quaternary alluvium fills the valley floors

  18. Aerial gamma ray and magnetic survey: Idaho Project, Elk City quadrangle of Idaho/Montana. Final report

    International Nuclear Information System (INIS)

    1979-11-01

    The Elk City quadrangle in north central Idaho and western Montana lies within the Northern Rocky Mountain province. The area is dominated by instrusives of the Idaho and Sawtooth Batholiths, but contains significant exposures of Precambrian metamorphics and Tertiary volcanics. Magnetic data apparently show some expression of the intrusives of the Idaho Batholith. Areas of faulted Precambrian and Tertiary rocks appear to express themselves as well defined regions of high frequency and high amplitudes wavelengths. The Elk City quadrangle has been unproductive in terms of uranium mining, though it contains significant exposures of the Challis Formation, which has been productive in other areas south of the quadrangle. A total of 238 anomalies are valid according to the criteria set forth in Volume I of this report. These anomalies are scattered throughout the quadrangle. The most distinctive group of anomalies with peak apparent uranium concentrations of 10.0 ppM eU or greater

  19. Surficial Geologic Map of the Southern Two-Thirds of the Woodbury Quadrangle, Vermont, Washington County, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG2015-3 Springston, G, Thomas, E, and Kim, J, 2015,�Surficial Geologic Map of the Southern Two-Thirds of the Woodbury Quadrangle, Vermont,...

  20. Digital and preliminary bedrock geologic map of the Townshend 7.5 x 15 minute quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-335A Armstrong, T.R., and Ratcliffe, N.M., 1998, Digital and preliminary bedrock geologic map of the Townshend 7.5 x 15 minute quadrangle,...

  1. Digital and preliminary bedrock geologic map of the Vermont part of the Hartland quadrangle, Windsor County, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-123A Walsh, G. J., 1998,�Digital and preliminary bedrock geologic map of the Vermont part of the Hartland quadrangle, Windsor County, Vermont:...

  2. Quaternary Geologic Map of the Lake Superior 4° x 6° Quadrangle, United States and Canada

    Data.gov (United States)

    Department of the Interior — The Quaternary Geologic Map of the Lake Superior 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as...

  3. Aerial gamma ray and magnetic survey: Nebraska/Texas Project, the Alliance and Scottsbluff quadrangles of Nebraska. Final report

    International Nuclear Information System (INIS)

    1979-12-01

    During the months of September and October 1979, EG and G geoMetrics collected 3156 line miles of high sensitivity airborne radiometric and magnetic data in the state of Nebraska in two 1 by 2 degree NTMS quadrangles. This project is part of the Department of Energy's National Uranium Resource Evaluation Program. All radiometric and magnetic data were fully corrected and interpreted by geoMetrics and are presented as three Volumes (one Volume I and two Volume II's). Both quadrangles are dominated by Tertiary nonmarine strata, though the Sand Hills in the eastern central portion of the area is covered by Quaternary dune sand. Some Late Cretaceous marine shales are exposed in the northwest quadrant of Alliance quadrangle. No uranium deposits are known in this area, but outcrops of shales thought to be uraniferous outcrop in the Alliance quadrangle

  4. Genetics Home Reference: iron-refractory iron deficiency anemia

    Science.gov (United States)

    ... refractory iron deficiency anemia Iron-refractory iron deficiency anemia Printable PDF Open All Close All Enable Javascript ... expand/collapse boxes. Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  5. Geologic map of the west half of the Blythe 30' by 60' quadrangle, Riverside County, California and La Paz County, Arizona

    Science.gov (United States)

    Stone, Paul

    2006-01-01

    The Blythe 30' by 60' quadrangle is located along the Colorado River between southeastern California and western Arizona. This map depicts the geology of the west half of the Blythe quadrangle, which is mostly in California. The map area is a desert terrain consisting of mountain ranges surrounded by extensive alluvial fans and plains, including the flood plain of the Colorado River which covers the easternmost part of the area. Mountainous parts of the area, including the Big Maria, Little Maria, Riverside, McCoy, and Mule Mountains, consist of structurally complex rocks that range in age from Proterozoic to Miocene. Proterozoic gneiss and granite are overlain by Paleozoic to Early Jurassic metasedimentary rocks (mostly marble, quartzite, and schist) that are lithostratigraphically similar to coeval formations of the Colorado Plateau region to the east. The Paleozoic to Jurassic strata were deposited on the tectonically stable North American craton. These rocks are overlain by metamorphosed Jurassic volcanic rocks and are intruded by Jurassic plutonic rocks that represent part of a regionally extensive, northwest-trending magmatic arc. The overlying McCoy Mountains Formation, a very thick sequence of weakly metamorphosed sandstone and conglomerate of Jurassic(?) and Cretaceous age, accumulated in a rapidly subsiding depositional basin south of an east-trending belt of deformation and east of the north-trending Cretaceous Cordilleran magmatic arc. The McCoy Mountains Formation and older rocks were deformed, metamorphosed, and locally intruded by plutonic rocks in the Late Cretaceous. In Oligocene(?) to Miocene time, sedimentary and minor volcanic deposits accumulated locally, and the area was deformed by faulting. Tertiary rocks and their Proterozoic basement in the Riverside and northeastern Big Maria Mountains are in the upper plate of a low-angle normal (detachment) fault that lies within a region of major Early to Middle Miocene crustal extension. Surficial

  6. Topographic Map of Quadrangles 3060 and 2960, Qala-I-Fath (608), Malek-Sayh-Koh (613), and Gozar-E-Sah (614) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  7. Topographic Map of Quadrangles 3666 and 3766, Balkh (219), Mazar-I-Sharif (220), Qarqin (213), and Hazara Toghai (214) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  8. Topographic Map of Quadrangle 3470 and the Northern Edge of 3370, Jalal-Abad (511), Chaghasaray (512), and Northernmost Jaji-Maydan (517) Quadrangles, Afg

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  9. Topographic Map of Quadrangles 3764 and 3664, Jalajin (117), Kham-Ab (118), Char Shangho (123), and Sheberghan (124) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  10. Topographic Map of Quadrangles 3168 and 3268, Yahya-Wona (703), Wersek (704), Khayr-Kot (521), and Urgon (522) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  11. Topographic Map of Quadrangles 3770 and 3870, Maymayk (211), Jamarj-I-Bala (212), Faydz-Abad (217), and Parkhaw (218) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  12. Topographic Map of Quadrangles 3560 and 3562, Sir-Band (402), Khawja-Jir (403), and Bala-Murghab (404) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  13. Topographic Map of Quadrangles 3260 and 3160, Dasht-E-Chahe-Mazar (419), Anardara (420), Asparan (601), and Kang (602) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  14. Topographic Map of Quadrangles 3460 and 3360, Kol-I-Namaksar (407), Ghuryan (408), Kawir-I-Naizar (413), and Kohe-Mahmudo-Esmailjan (414) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... increased need for iron during growth spurts. Older adults, especially those over age ... athletes. Athletes, especially young females, are at risk for iron deficiency. Endurance ...

  16. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.

    2014-01-01

    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...... to that continuing on Earth – although on much smaller length- and timescales – with melting of the metal and silicates; differentiation into core, mantle, and crust; and probably extensive volcanism. Iron and stony-iron meteorites are our only available analogues to materials found in the deep interiors of Earth...

  17. Bouguer gravity anomaly and isostatic residual gravity maps of the Tonopah 1 degree by 2 degrees Quadrangle, central Nevada

    Science.gov (United States)

    Plouff, Donald

    1992-01-01

    These gravity maps are part of a folio of maps of the Tonopah 1 degree by 2 degrees quadrangle, Nevada, prepared under the Conterminous United States Mineral Assessment Program. Each product of the folio is designated by a different letter symbol, starting with A, in the MF-1877 folio. The quadrangle encompasses an area of about 19,500 km2  in the west central part of Nevada.

  18. Two-dimensional coherence analysis of magnetic and gravity data from the Casper Quadrangle, Wyoming. Final report

    International Nuclear Information System (INIS)

    1981-01-01

    Volume II contains the following: gravity station location map; complete Bouguer gravity map; total magnetic map; gravity data copper area detrended continued 1 km; magnetic data Casper Wyoming continued 1 km; upward continued coherent gravity maps; magnetic field reduced to the pole/pseudo gravity map; geology map-Casper Quadrangle; magnetic interpretation map-Casper Quadrangle; gravity interpretation map; magnetic interpretation cross section; magnetic profiles; flight line map and uranium occurrences

  19. Aerial gamma ray and magnetic survey: Minnesota Project, Grand Forks quadrangle of Minnesota/North Dakota. Final report

    International Nuclear Information System (INIS)

    1979-12-01

    The Grand Forks 1:250,000 scale quadrangle of Minnesota and North Dakota is almost everywhere covered with Wisconsin age glacial deposits (drift, lake sediments, etc.) of variable thickness. Where exposed, bedrock is Late Cretaceous age marine deposits. There are no uranium deposits (or occurrences) known within the quadrangle. Seventy-eight (78) groups of uranium samples were defined as anomalies and are discussed briefly in this report. None of them are considered significant

  20. Lidar-revised geologic map of the Poverty Bay 7.5' quadrangle, King and Pierce Counties, Washington

    Science.gov (United States)

    Tabor, Rowland W.; Booth, Derek B.; Troost, Kathy Goetz

    2014-01-01

    For this map, we interpreted a 6-ft-resolution lidar digital elevation model combined with the geology depicted on the Geologic Map of the Poverty Bay 7.5' Quadrangle, King and Pierce Counties, Washington (Booth and others, 2004b). The authors of the 2004 map described, interpreted, and located the geology on the 1:24,000-scale topographic map of the Poverty Bay 7.5' quadrangle.

  1. Aerial gamma ray and magnetic survey: Minnesota Project, Fargo quadrangle of Minnesota/North Dakota. Final report

    International Nuclear Information System (INIS)

    1979-12-01

    The Fargo 1:250,000 scale quadrangle of Minnesota and North Dakota is almost everywhere covered with Wisconsin age glacial deposits (drift, lake sediments, etc.) of variable thickness. Where exposed, bedrock is Late Cretaceous age marine deposits. There are no uranium deposits (or occurrences) known within the quadrangle. Eighty-two (82) groups of uranium samples were defined as anomalies and are discussed briefly in this report. None of them are considered significant

  2. Aerial gamma ray and magnetic survey: Minnesota Project, Watertown quadrangle of South Dakota/Minnesota. Final report

    International Nuclear Information System (INIS)

    1979-10-01

    The Watertown 1:250,000 scale quadrangle of South Dakota/Minnesota is everywhere covered by variable thicknesses of Wisconsin age glacial deposits (drift). Bedrock is nowhere exposed, but is thought to be composed of primarily Cretaceous sediments. There are no known uranium deposits (or occurrences) within the quadrangle. Sixty-seven (67) groups of uranium samples were defined as anomalies and are discussed in the report. None of them are considered significant

  3. Iron from Zealandic bog iron ore -

    DEFF Research Database (Denmark)

    Lyngstrøm, Henriette Syrach

    2011-01-01

    og geologiske materiale, metallurgiske analyser og eksperimentel arkæologiske forsøg - konturerne af en jernproduktion med udgangspunkt i den sjællandske myremalm. The frequent application by archaeologists of Werner Christensen’s distribution map for the occurrence of bog iron ore in Denmark (1966...... are sketched of iron production based on bog iron ore from Zealand....

  4. Applicability of attrition of iron ore in floating

    International Nuclear Information System (INIS)

    Fortes, Fabiana Fonseca

    2010-01-01

    The aim of this study is to investigate the possibility to increase metal recovery in the flotation of iron ore with the implementation of a stage of scrubbing followed by dispersion. The minerals in question stems from two mines located in the western portion of the Iron Quadrangle and differ mainly with respect to the percentage of hematite and porous and the presence of aggregated masses. These characteristics were compared to those of other minerals that have succeeded with the adoption of this technique. Tests were conducted at bench scale scrubbing, desliming and concentration by flotation with the blend of ore from both mines. Were varied stirring time and pH. The chemical results of desliming and flotation products in the different conditions were compared. The presence of porous hematite is relevant in a mine, mainly due to the occurrence of earthy goethite, alumina carrier of the contaminant. The step desliming is insufficient for the removal of harmful sludge flotation. Laboratory experiments showed that the scrubbing of the pulp of iron ore of Minas de Capitao do Mato and Tamandua, agitated for 10 minutes followed by desliming amid scattered, promotes increased metal recovery by about 17% and increases the selectivity of 40 % compared to the results of the scrubbing and without dispersion. The scrubbing of hematite ore followed by desliming amid scattered can bring gains in improving the quality of pellet feed fine if deployed industrially. (author)

  5. Iron interference in arsenic absorption by different plant species, analysed by neutron activation, k0-method

    International Nuclear Information System (INIS)

    Uemura, George; Matos, Ludmila Vieira da Silva; Silva, Maria Aparecida da; Menezes, Maria Angela de Barros Correia

    2009-01-01

    Natural arsenic contamination is a cause for concern in many countries of the world including Argentina, Bangladesh, Chile, China, India, Mexico, Thailand, United States of America and also in Brazil, specially in the Iron Quadrangle area, where mining activities have been contributing to aggravate natural contamination. Among other elements, iron is capable to interfere with the arsenic absorption by plants; iron ore has been proposed to remediate areas contaminated by the mentioned metalloid. In order to verify if iron can interfere with arsenic absorption by different taxa of plants, specimens of Brassicacea and Equisetaceae were kept in a 1/4 Murashige and Skoog basal salt solution (M and S), with 10 μgL -1 of arsenic acid. And varying concentrations of iron. The specimens were analysed by neutron activation analysis, k 0 -method, a routine technique in CDTN, and also very appropriate for arsenic studies. The preliminary results were quite surprising, showing that iron can interfere with arsenic absorption by plants, but in different ways, according to the species studied. (author)

  6. Native iron

    DEFF Research Database (Denmark)

    Brooks, Charles Kent

    2015-01-01

    System, was reduced. The oxidized outer layers of the Earth have formed by two processes. Firstly, water is decomposed to oxygen and hydrogen by solar radiation in the upper parts of the atmosphere, the light hydrogen diffusing to space, leaving oxygen behind. Secondly, plants, over the course......, hematite, or FeO.Fe2O3, magnetite), with carbon in the form of coke. This is carried out in a blast furnace. Although the Earth's core consists of metallic iron, which may also be present in parts of the mantle, this is inaccessible to us, so we must make our own. In West Greenland, however, some almost......We live in an oxidized world: oxygen makes up 22 percent of the atmosphere and by reacting with organic matter produces most of our energy, including the energy our bodies use to function: breathe, think, move, etc. It has not always been thus. Originally the Earth, in common with most of the Solar...

  7. Reconnaissance Geologic Map of the Hayfork 15' Quadrangle, Trinity County, California

    Science.gov (United States)

    Irwin, William P.

    2010-01-01

    The Hayfork 15' quadrangle is located just west of the Weaverville 15' quadrangle in the southern part of the Klamath Mountains geologic province of northern California. It spans parts of six generally north-northwest-trending tectonostratigraphic terranes that are, from east to west, the Eastern Klamath, Central Metamorphic, North Fork, Eastern Hayfork, Western Hayfork, and Rattlesnake Creek terranes. Remnants of a once-widespread postaccretionary overlap assemblage, the Cretaceous Great Valley sequence, crop out at three localities in the southern part of the Hayfork quadrangle. The Tertiary fluvial and lacustrine Weaverville Formation occupies a large, shallow, east-northeast-trending graben in the south half of the quadrangle. The small area of Eastern Klamath terrane is part of the Oregon Mountain outlier, which is more widely exposed to the east in the Weaverville 15' quadrangle. It was originally mapped as a thrust plate of Bragdon(?) Formation, but it is now thought by some to be part of an outlier of Yreka terrane that has been dislocated 60 km southward by the La Grange Fault. The Central Metamorphic terrane, which forms the footwall of the La Grange Fault, was formed by the eastward subduction of oceanic crustal basalt (the Salmon Hornblende Schist) and its overlying siliceous sediments with interbedded limestone (the Abrams Mica Schist) beneath the Eastern Klamath terrane. Rb-Sr analysis of the Abrams Mica Schist indicates a Middle Devonian metamorphic age of approximately 380 Ma, which probably represents the age of subduction. The North Fork terrane, which is faulted against the western boundary of the Central Metamorphic terrane, consists of the Permian(?) North Fork ophiolite and overlying broken formation and melange of Permian to Early Jurassic (Pliensbachian) marine metasedimentary and metavolcanic rocks. The ophiolite, which crops out along the western border of the terrane, is thrust westward over the Eastern Hayfork terrane. The Eastern

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... blocks the intestine from taking up iron. Other medical conditions Other medical conditions that may lead to iron-deficiency anemia ... daily amount of iron. If you have other medical conditions that cause iron-deficiency anemia , such as ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español ... bleeding Consuming less than recommended daily amounts of iron Iron-deficiency anemia can be caused by getting ...

  10. Serum iron test

    Science.gov (United States)

    Fe+2; Ferric ion; Fe++; Ferrous ion; Iron - serum; Anemia - serum iron; Hemochromatosis - serum iron ... A blood sample is needed. Iron levels are highest in the morning. Your health care provider will likely have you do this test in the morning.

  11. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... also are hoping to determine which iron supplements work best to treat iron-deficiency anemia in children who do not consume the daily recommended amount of iron. Read less Participate in NHLBI Clinical Trials We lead or sponsor many studies related to iron-deficiency anemia. See if you ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... peas, tofu, dried fruits, and dark green leafy vegetables. Foods rich in vitamin C, such as oranges, strawberries, ... iron are meat, poultry, fish, and iron-fortified foods that have iron ... green leafy vegetables. You can also take an iron supplement. Follow ...

  14. Iron deficiency anemia

    Science.gov (United States)

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  15. Geology of Tapanti quadrangle (1:50 000), Costa Rica

    International Nuclear Information System (INIS)

    Sojo, Dennis; Denyer, Percy; Gazel, Esteban; Alvarado, Guillermo E.

    2017-01-01

    A geologic map scale 1:50 000, stratigraphic and structural of the 509 km 2 of the Tapanti quadrangle is presented. The Tapanti quadrant is located in the central region of Costa Rica and belongs to the Central Costa Rica Deformed Belt (CCRDB). The CCRDB was a consequence of the interaction of the Cocos Ridge and the Western edge of the Panama microplate. Petrographic, geochemistry and paleontological analyzes were performed by selecting samples collected in the more than 100 field visits, with more than 300 outcrops raised. The geological information was compiled in a Geographical Information System. Lambert North coordinate system was employed. Aerial and topographic photographs from the TERRA Project 1997 and Digital Elevation Model were used. 18 rock samples were analyzed petrographically to discard altered samples. Rock samples were screened. The gravels or grains obtained were washed with deionized water in an ultrasonic stack. Gravel with signs of alteration were discarded by stereoscopic microscope. The powder obtained from the spraying of 25 mg of gravel each sample was melted and combined with Lithium tetraborate (Li2B4O7) and poured into glass discs. The discs were analyzed to determine concentrations of major elements and traced through of X-Ray Fluorescence in a Bruker S4 Pioner, and by a mass spectrometer (LA-ICP-MS) in a Micromass Platform ICP-MS, respectively. The oldest rocks mapped in this work are Miocene in age and they belongs to Pacacua, Pena Negra and Coris formations, than form the western edge of the Candelaria basin. Three igneous events were distinguished. First, the Miocene volcanic arc, which is represented by the rocks of La Cruz Formation and the clasts of Pacacua Formation. Another period of igneous activity was recorded in Grifo Alto and Doan formations and the Tapanti Intrusive, with an age range of 0.6-0.03 Ma. From a geochemical point of view a change in the composition of magmatism was remarkable between 10 to 6 Ma, expressed

  16. Reconnaissance geology of the Thaniyah Quadrangle, sheet 20/42 C, Kingdom of Saudi Arabia

    Science.gov (United States)

    Greene, Robert C.

    1983-01-01

    The Thaniyah quadrangle, sheet 20/42 C, is located in the transition zone between the Hijaz Mountains and the Najd Plateau of southwestern Saudi Arabia between lat 20?00' and 20?30' N., long 42?00' to 42?30' E. The quadrangle is underlain by Precambrian metavolcanic, metasedimentary, plutonic, and dike rocks. Metavolcanic rocks consist of metamorphosed basalt and andesite with minor dacite and rhyolite and underlie three discontinuous northwest-trending belts. Metasedimentary rocks are confined to small areas underlain by quartzite, metasandstone, marble, and calc-silicate rock. Plutonic rocks include an extensive unit of tonalite and quartz diorite and a smaller unit of diorite and quartz diorite, which occupy much of the central part of the quadrangle. A small body of diorite and gabbro and a two-part zone of tonalite gneiss are also present. All of these plutonic rocks are assigned to the An Nimas batholith. Younger plutonic rocks include extensive graphic granite and rhyolite in the northeastern part of the quadrangle and several smaller bodies of granitic rocks and of gabbro. The metavolcanic rocks commonly have strong foliation with northwest strike and steep to vertical dip. Diorite and quartz diorite are sheared and brecciated and apparently syntectonic. Tonalite and quartz diorite are both foliate and nonfoliate and were intruded in episodes both preceding and following shearing. The granitic rocks and gabbro are post-tectonic. Trends of faults and dikes are mostly related to the Najd faulting episode. Radiometric ages, mostly from adjacent quadrangles, suggest that the An Nimas batholith is 835 to 800 Ma, gabbro and granite, except the graphic granite and rhyolite unit, are about 640 to 615 Ma, and the graphic granite and rhyolite 575 to 565 Ma old. Metavolcanic rocks similar to those hosting copper and gold mineralization in the Wadi Shuwas mining district adjacent to the southwestern part of the quadrangle are abundant. An ancient copper mine was

  17. Little Rock and El Dorado 10 x 20 NTMS quadrangles and adjacent areas, Arkansas: data report (abbreviated)

    International Nuclear Information System (INIS)

    Steel, K.F.; Cook, J.R.

    1981-07-01

    This abbreviated data report presents results of ground water and stream sediment reconnaissance in the National Topographic Map Series Little Rock 1 0 x 2 0 quadrangle (Cleveland, Dallas, and Howard Counties do not have stream sediment analyses); the El Dorado 1 0 x 2 0 quadrangle (only Clark County has stream sediment analyses); the western part (Lonoke and Jefferson Counties) of Helena 1 0 x 2 0 quadrangle; the southern part (Franklin, Logan, Yell, Perry, Faulkner, and Lonoke Counties) of Russellville 1 0 x 2 0 quadrangle; and the southwestern corner (Ashley County) of the Greenwood 1 0 x 2 0 quadrangle. Stream samples were collected at 943 sites in the Little Rock quadrangle, 806 sites in the El Dorado quadrangle, 121 sites in the Helena area, 292 sites in the Russellville area, and 77 in the Greenwood area. Ground water samples were collected at 1211 sites in the Little Rock quadrangle, 1369 sites in the El Dorado quadrangle, 186 sites in the Helena area, 470 sites in the Russellville area, and 138 sites in the Greenwood area. Stream sediment and stream water samples were collected from small streams at nominal density of one site per 21 square kilometers in rural areas. Ground water samples were collected at a nominal density of one site per 13 square kilometers. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water. Field measurements and observations are reported for each site. Uranium concentrations in the sediments ranged from less than 0.1 ppM to 23.5 ppM with a mean of 1.7 ppM. The ground water uranium mean concentration is 0.113 ppB, and the uranium concentrations range from less than 0.002 ppB to 15.875 ppB. High ground water uranium values in the Ouachita Mountain region of the Little Rock quadrangle appear to be associated with Ordovician black shale units

  18. Saga of Clinch River

    International Nuclear Information System (INIS)

    Young, W.H.

    1984-01-01

    An epic struggle in the US Congress between what the author calls the forces of transcendence and the forces of experience over development of a breeder reactor for electric power generation is described in this article. The project was started by President Nixon, survived repeated attacks under President Carter, and ironically succumbed under a strong supporter, President Reagan, as a result of an unlikely coalition of conservative organizations and Republican politicians. The broader meanings of the demise of the Clinch River project are examined on several levels, examining the significance for the nation's energy future and for the nation's political future

  19. Charles River

    Science.gov (United States)

    Information on the efforts of the US EPA, the Commonwealth of Massachusetts, the municipalities within the Charles River Watershed and nongovernmental organizations to improve the water quality of the Charles River.

  20. Iron absorption in relation to iron status

    International Nuclear Information System (INIS)

    Magnusson, B.; Bjoern-Rasmussen, E.; Hallberg, L.; Rossander, L.

    1981-01-01

    The absorption from a 3 mg dose of ferrous iron was measured in 250 male subjects. The absorption was related to the log concentration of serum ferritin in 186 subjects of whom 99 were regular blood donors (r= -0.76), and to bone marrow haemosiderin grading in 52 subjects with varying iron status. The purpose was to try and establish a percentage absorption from such a dose that is representative of subjects who are borderline iron deficient. This information is necessary for food iron absorption studies in order (1) to calculate the absorption of iron from the diet at a given iron status and (2) compare the absorption of iron from different meals studied in different groups of subjects by different investigarors. The results suggest that an absorption of about 40% of a 3 mg reference dose of ferrous iron is given in a fasting state, roughly corresponds to the absorption in borderline-iron-deficient subjects. The results indicate that this 40% absorption value corresponds to a serum ferritin level of 30 μg/l and that food iron absorption in a group of subjects should be expressed preferably as the absorption corresponding to a reference-dose absorption of 45%, or possibly a serum ferritin level of 30 μg/l. (author)

  1. Alligator Rivers Region

    International Nuclear Information System (INIS)

    1992-01-01

    An introduction to the Alligator Rivers Region is presented. It contains general information regarding the physiography, climate, hydrology and mining of the region. The Alligator Rivers Region is within an ancient basin, the Pine Creek Geosyncline, which has an area of approximately 66000 km 2 . The Geosyncline has a history of mineral exploitation dating back to 1865, during which time 16 metals have been extracted (silver, arsenic, gold, bismuth, cadmium, cobalt, copper, iron, manganese, molybdenum, lead, tin, tantalum, uranium, tungsten, zinc). Uranium exploration in the Pine Creek Geosyncline was stimulated by the discovery in 1949 of secondary uranium mineralisation near Rum June, 70 km south-east of Darwin. This was followed by a decade of intense exploration activity resulting in the discoveries of economic uranium ore bodies at Rum Jungle and in the upper reaches of the South Alligator River Valley. All the known major uranium deposits of the East Alligator River uranium field have been discovered since 1969. The present known resources of the Geosyncline are approximately 360 000 tonnes of contained U 3 O 8 . 2 refs., 2 figs., 1 tab

  2. National uranium resource evaluation. Raton Quadrangle New Mexico and Colorado. Final report

    International Nuclear Information System (INIS)

    Reid, B.E.; Griswold, G.B.; Jacobsen, L.C.; Lessard, R.H.

    1980-12-01

    Using National Uranium Resource Evaluation criteria, the Raton Quadrangle (New Mexico and Colorado) contains one environment favorable for uranium deposits, the permeable arkosic sandstone members of the Pennsylvanian-Permian Sangre de Cristo Formation for either peneconcordant or roll-type deposits. The favorable parts of the Sangre de Cristo lie mostly in the subsurface in the Raton and Las Vegas Basins in the eastern part of the quadrangle. An area in the Costilla Peak Massif was investigated for uranium by determining geochemical anomalies in stream sediments and spring waters. Further work will be required to determine plutonic environment type. Environments unfavorable for uranium deposits include the Ogallala, Raton, and Vermejo Formations, the Trinidad Sandstone, the Pierre Shale, the Colorado Group, the Dakota Sandstone, the Morrison Formation, the Entrada and Glorieta Sandstones, Mississippian and Pennsylvanian rocks, quartz-pebble conglomerates, pegmatities, and Tertiary granitic stocks

  3. Aerial gamma ray and magnetic survey: Marion quadrangle, Ohio. Final report

    International Nuclear Information System (INIS)

    1981-06-01

    The Marion quadrangle covers a 7200 square mile area of central Ohio located within the Midwestern Physiographic Province. Up to 5000 feet of Paleozoic strata overlie the east dipping Precambrian basement. Flat lying Quaternary glacial sediments cover most of the surface within the quadrangle. A search of available literature revealed no known uranium deposits. Ninety-nine uranium anomalies were detected and are duscussed briefly. Radiometric data appear to reflect a preference for uranium occurrences in glacial moraine tills, and a minimum likelihood of occurrence in Paleozoic bedrock. Some of the largest anomalies appear to be culturally induced and no anomaly was considered to represent a significant amount of naturally occurring uranium. The magnetic data contrast somewhat with the existing structural interpretation of the area. The generally increasng magnetic gradient from west to east is interrupted by many features whose sources may be attributed to undefined lithologic and/or structural elements in the Precambrian basement

  4. Stratigraphy of the Perrine and Nun Sulci quadrangles (Jg-2 and Jg-5), Ganymede

    Science.gov (United States)

    Mcgill, George E.; Squyres, Steven W.

    1991-01-01

    Dark and light terrain materials in the Perrine and Nun Sulci quadrangles are divided into nine map units, four dark, and five light. These are placed in time-stratigraphic sequence primarily by means of embayment and cross-cutting relationships. Dark terrain is generally more heavily cratered and thus older that light terrain but, at least in these quadrangles, crater densities are not reliable indicators of relative ages among the four dark material units. The four mapped material units within dark terrain are: cratered dark materials (dc), grooved dark materials (dg), transitional dark materials (di), and dark materials, undivided (d). The five mapped units within light terrain are: intermediate light materials (li), grooved light materials (lg), irregularly grooved light materials (lgl), smooth light materials (ls), and light materials, undivided.

  5. National uranium resource evaluation, Las Vegas Quadrangle, Nevada, Arizona, and California

    International Nuclear Information System (INIS)

    Johnson, C.; Glynn, J.

    1982-03-01

    The Las Vegas 1 0 x 2 0 quadrangle, Nevada, Arizona, and California, contains rocks and structures from Precambrian through Holocene in age. It lies within the Basin and Range physiographic province adjacent to the westernmost portion of the Colorado Plateau. Miocene nonmarine sedimentary rocks of the Horse Spring Formation contain in excess of 100 tons U 3 O 8 in deposits at a grade of 0.01% or greater, and therefore meet National Uranium Resource Evaluation base criteria for uranium favorability. One favorable area lies in the South Virgin Mountains at the type locality of the Horse Spring Formation, although the favorable environment extends into the unevaluated Lake Mead National Recreation Area and Desert National Wildlife Range. Environments within the Las Vegas Quadrangle considered unfavorable for uranium include the Shinarump Conglomerate member of the Triassic Chinle Formation, Mesozoic sediments of the Glen Canyon Group, Precambrian pegmatites, Pliocene and Quaternary calcrete, Laramide thrust faults, and a late Precambrian unconformity

  6. Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle

    Science.gov (United States)

    Gregg, T. K. P.; Yingst, R. A.

    2009-01-01

    Since the first lunar mapping program ended in the 1970s, new topographical, multispectral, elemental and albedo imaging datasets have become available (e.g., Clementine, Lunar Prospector, Galileo). Lunar science has also advanced within the intervening time period. A new systematic lunar geologic mapping effort endeavors to build on the success of earlier mapping programs by fully integrating the many disparate datasets using GIS software and bringing to bear the most current understanding of lunar geologic history. As part of this program, we report on a 1:2,500,000-scale preliminary map of a subset of Lunar Quadrangle 10 ("LQ-10" or the "Marius Quadrangle," see Figures 1 and 2), and discuss the first-order science results. By generating a geologic map of this region, we can constrain the stratigraphic and geologic relationships between features, revealing information about the Moon s chemical and thermal evolution.

  7. Reconnaissance surficial geologic map of the Taylor Mountains quadrangle, southwestern Alaska

    Science.gov (United States)

    Wilson, Frederic H.

    2015-09-28

    This map and accompanying digital files are the result of the interpretation of aerial photographs from the 1950s as well as more modern imagery. The area, long considered a part of Alaska that was largely not glaciated (see Karlstrom, 1964; Coulter and others, 1965; or Péwé, 1975), actually has a long history reflecting local and more distant glaciations. An unpublished photogeologic map of the Taylor Mountains quadrangle from the 1950s by J.N. Platt Jr. was useful in the construction of this map. Limited new field mapping in the area was conducted as part of a mapping project in the Dillingham quadrangle to the south (Wilson and others, 2003); however, extensive aerial photograph interpretation represents the bulk of the mapping effort. The accompanying digital files show the sources for each line and geologic unit shown on the map.

  8. Geological Evolution of the Ganiki Planitia Quadrangle (V14) on Venus

    Science.gov (United States)

    Grosfils, E. B.; Drury, D. E.; Hurwitz, D. M.; Kastl, B.; Long, s. M.; Richards, J. W.; Venechuk, E. M.

    2005-01-01

    The Ganiki Planitia quadrangle (25-50degN, 180-210degE) is located north of Atla Regio, south of Vinmara Planitia, and southeast of Atalanta Planitia. The region contains a diverse array of volcanic-, tectonic- and impact-derived features, and the objectives for the ongoing mapping effort are fivefold: 1) explore the formation and evolution of radiating dike swarms within the region, 2) use the diverse array of volcanic deposits to further test the neutral buoyancy hypothesis proposed to explain the origin of reservoir-derived features, 3&4) unravel the volcanic and tectonic evolution in this area, and 5) explore the implications of 1-4 for resurfacing mechanisms. Here we summarize our onging analysis of the material unit stratigraphy in the quadrangle, data central to meeting the aforementioned objectives successfully.

  9. Hydrochemistry of the Parauari-Maues Acu river basin (Amazon region, Brazil)

    International Nuclear Information System (INIS)

    Bringel, S.R.B.

    1980-08-01

    The chemical composition of the Parauari-Maues Acu basin is studied through the determination of pH, calcium, magnesium, iron, chloride, sodium, potassium, zinc, copper and manganese. Four expeditions were made and samples were collected in 16 different points of the main course. Chemical analysis of the rivers waters shows seasonal flutuations of the concentrations of the elements in the main river as well as in the main afluents like Nambi river, Amana river and Urupadi river. (Author) [pt

  10. Geology of the Birmingham, Gadsden, and Montgomery 10 x 20 NTMS Quadrangles, Alabama

    International Nuclear Information System (INIS)

    Copeland, C.W.; Beg, M.A.

    1979-04-01

    This document is a facsimile edition (with accompanying maps) of geologic reports on the Birmingham, Gadsden, and Montgomery 1 0 x 2 0 NTMS quadrangles prepared for SRL by the Geological Survey of Alabama. The purpose of these reports is to provide background geologic information to aid in the interpretation of NURE geochemical reconnaissance data. Each report includes descriptions of economic mineral localities as well as a mineral locality map and a geologic map

  11. Geology of the Birmingham, Gadsden, and Montgomery 10 x 20 NTMS quadrangles, Alabama

    International Nuclear Information System (INIS)

    Copeland, C.W.; Beg, M.A.

    1979-04-01

    This document is a facsimile edition (with accompanying maps) of geologic reports on the Birmingham, Gadsden, and Montgomery 1 0 x 2 0 NTMS quadrangles prepared for SRL by the Geological Survey of Alabama. Purpose of these reports is to provide background geologic information to aid in the interpretation of NURE geochemical reconnaissance data. Each report includes descriptions of economic mineral localities as well as a mineral locality map and a geologic map

  12. HIGH-RESOLUTION TOPOGRAPHY OF MERCURY FROM MESSENGER ORBITAL STEREO IMAGING – THE SOUTHERN HEMISPHERE QUADRANGLES

    Directory of Open Access Journals (Sweden)

    F. Preusker

    2018-04-01

    Full Text Available We produce high-resolution (222 m/grid element Digital Terrain Models (DTMs for Mercury using stereo images from the MESSENGER orbital mission. We have developed a scheme to process large numbers, typically more than 6000, images by photogrammetric techniques, which include, multiple image matching, pyramid strategy, and bundle block adjustments. In this paper, we present models for map quadrangles of the southern hemisphere H11, H12, H13, and H14.

  13. Geologic Mapping of Impact Craters and the Mahuea Tholus Construct: A Year Three Progress Report for the Mahuea Tholus (V-49) Quadrangle, Venus

    Science.gov (United States)

    Lang, N. P.; Covley, M. T.; Beltran, J.; Rogers, K.; Thomson, B. J.

    2018-06-01

    We are reporting on our year three status of mapping the V-49 quadrangle (Mahuea Tholus). Our mapping efforts over this past year emphasized the 13 impact craters in the quadrangle as well as larger-scale mapping of the Mahuea Tholus construct.

  14. Hydrogeochemical and stream sediment reconnaissance basic data report for Kingman NTMS Quadrangle, Arizona, California, and Nevada

    International Nuclear Information System (INIS)

    Qualheim, B.J.

    1978-07-01

    This report presents the results of the geochemical reconnaissance sampling in the Kingman 1 x 2 quadrangle of the National Topographical Map Series (NTMS). Wet and dry sediment samples were collected throughout the 18,770-km arid to semiarid area and water samples at available streams, springs, and wells. Neutron activation analysis of uranium and trace elements and other measurements made in the field and laboratory are presented in tabular hardcopy and microfiche format. The report includes five full-size overlays for use with the Kingman NTMS 1 : 250,000 quadrangle. Water sampling sites, water sample uranium concentrations, water-sample conductivity, sediment sampling sites, and sediment-sample total uranium and thorium concentrations are shown on the separate overlays. General geological and structural descriptions of the area are included and known uranium occurrences on this quadrangle are delineated. Results of the reconnaissance are briefly discussed and related to rock types in the final section of the report. The results are suggestive of uranium mineralization in only two areas: the Cerbat Mountains and near some of the western intrusives

  15. Airborne gamma-ray spectrometer and magnetometer survey: Alturas quadrangle, California. Final report

    International Nuclear Information System (INIS)

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2 0 x 1 0 NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1 0 x 2 0 areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Alturas, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1631.6 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the Atlin NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Altin NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Only 6 samples were taken in the Atlin Quadrangle. Appendix A describes the sample media and summarizes the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into stream-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Information on the field and analytical procedures used by the Los Alamos National laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report. Chemical analysis and field data for water samples from this quadrangle were open filed by the DOE Grand Junction Office as GJX-166

  17. Aerial gamma-ray and magnetic survey, Columbus Quadrangle, Ohio. Final report

    International Nuclear Information System (INIS)

    1981-07-01

    The Columbus quadrangle covers a 7100 square mile area of south central Ohio which is located within the Midwestern Physiographic Province. Up to 6000 feet of Paleozoic strata overlie the east dipping Precambrian basement. Flat lying Quaternary glacial sediments cover a large part of the surface in the north and west regions of the quadrangle. A search of available literature revealed no known uranium deposits. Ninety-nine uranium anomalies were detected and are disussed briefly. Radiometric data reflect the presence of two zones of higher than average uranium anomaly occurrences. One zone is the northerly continuation of a trend observed in a contiguous quadrangle and occurs over undifferentiated Devonian and Mississippian sediments. Some anomalies appear to be culturally induced such as those in the vicinity of the city of Columbus. The outlined area in Figure 3 (indicated by a dashed contour line) should be considered for further investigation. The magnetic data indicate more structural complexity in underlying rocks than inferred by the structural interpretation of the area. The broad zones with long wavelength magnetic signatures on the east are interrupted further west by many small magnetic features whose sources may be attributed to undefined lithologic and/or structural elements in the Precambrian basement

  18. Hydrogeochemical and stream sediment reconnaissance basic data report for Kingman NTMS Quadrangle, Arizona, California, and Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Qualheim, B.J.

    1978-07-01

    This report presents the results of the geochemical reconnaissance sampling in the Kingman 1 x 2 quadrangle of the National Topographical Map Series (NTMS). Wet and dry sediment samples were collected throughout the 18,770-km arid to semiarid area and water samples at available streams, springs, and wells. Neutron activation analysis of uranium and trace elements and other measurements made in the field and laboratory are presented in tabular hardcopy and microfiche format. The report includes five full-size overlays for use with the Kingman NTMS 1 : 250,000 quadrangle. Water sampling sites, water sample uranium concentrations, water-sample conductivity, sediment sampling sites, and sediment-sample total uranium and thorium concentrations are shown on the separate overlays. General geological and structural descriptions of the area are included and known uranium occurrences on this quadrangle are delineated. Results of the reconnaissance are briefly discussed and related to rock types in the final section of the report. The results are suggestive of uranium mineralization in only two areas: the Cerbat Mountains and near some of the western intrusives.

  19. Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus

    Science.gov (United States)

    Ivanov, M. A.; Head, J. W.

    2009-01-01

    The Fortuna Tessera quadrangle (50-75 N, 0-60 E) is a large region of tessera [1] that includes the major portion of Fortuna and Laima Tesserae [2]. Near the western edge of the map area, Fortuna Tessera is in contact with the highest moun-tain belt on Venus, Maxwell Montes. Deformational belts of Sigrun-Manto Fossae (extensional structures) and Au ra Dorsa (contractional structures) separate the tessera regions. Highly deformed terrains correspond to elevated regions and mildly deformed units are with low-lying areas. The sets of features within the V-2 quadrangle permit us to address the following important questions: (1) the timing and processes of crustal thickening/thinning, (2) the nature and origin of tesserae and deformation belts and their relation to crustal thickening processes, (3) the existence or absence of major evolutionary trends of volcanism and tectonics. The key feature in all of these problems is the regional sequence of events. Here we present description of units that occur in the V-2 quadrangle, their regional correlation chart (Fig. 1), and preliminary geological map of the region (Fig. 2).

  20. Airborne gamma-ray spectrometer and magnetometer survey: Susanville quadrangle, California. Final report

    International Nuclear Information System (INIS)

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2 0 x 1 0 NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1 0 x 2 0 areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Susanville, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1642.8 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States