WorldWideScience

Sample records for iron oxide core

  1. Core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2004-01-01

    We present studies of the magnetic properties of core-shell iron-iron oxide nanoparticles. By combining Mossbauer and X-ray absorption spectroscopy we have been able to measure the change from a Fe3O4-like to a gamma-Fe2O3-like composition from the interface to the surface. Furthermore, we have...

  2. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  3. Magnetization measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Pearce, Carolyn; McCloy, John S.

    2014-12-02

    Magnetite (Fe3O4) and core-shell iron/iron-oxide (Fe/Fe3O4) nanomaterials prepared by a cluster deposition system were irradiated with 5.5 MeV Si2+ ions and the structures determined by x-ray diffraction as consisting of 100% magnetite and 36/64 wt% Fe/FeO, respectively. However, x-ray magnetic circular dichroism (XMCD) indicates similar surfaces in the two samples, slightly oxidized and so having more Fe3+ than the expected magnetite structure, with XMCD intensity much lower for the irradiated core-shell samples indicating weaker magnetism. X-ray absorption spectroscopy (XAS) data lack the signature for FeO, but the irradiated core-shell system consists of Fe-cores with ~13 nm of separating oxide crystallite, so it is likely that FeO exists deeper than the probe depth of the XAS (~5 nm). Exchange bias (Hex) for both samples becomes increasingly negative as temperature is lowered, but the irradiated Fe3O4 sample shows greater sensitivity of cooling field on Hex. Loop asymmetries and Hex sensitivities of the irradiated Fe3O4 sample are due to interfaces and interactions between grains which were not present in samples before irradiation as well as surface oxidation. Asymmetries in the hysteresis curves of the irradiated core/shell sample are related to the reversal mechanism of the antiferromagnetic FeO and possibly some near surface oxidation.

  4. Iron/iron oxide core-shell nanoclusters for biomedical applications

    International Nuclear Information System (INIS)

    Qiang You; Antony, Jiji; Sharma, Amit; Nutting, Joseph; Sikes, Daniel; Meyer, Daniel

    2006-01-01

    Biocompatible magnetic nanoparticles have been found promising in several biomedical applications for tagging, imaging, sensing and separation in recent years. Most magnetic particles or beads currently used in biomedical applications are based on ferromagnetic iron oxides with very low specific magnetic moments of about 20-30 emu/g. Here we report a new approach to synthesize monodispersed core-shell nanostructured clusters with high specific magnetic moments above 200 emu/g. Iron nanoclusters with monodispersive size of diameters from 2 nm to 100 nm are produced by our newly developed nanocluster source and go to a deposition chamber, where a chemical reaction starts, and the nanoclusters are coated with iron oxides. HRTEM Images show the coatings are very uniform and stable. The core-shell nanoclusters are superparamagnetic at room temperature for sizes less than 15 nm, and then become ferromagnetic when the cluster size increases. The specific magnetic moment of core-shell nanoclusters is size dependent, and increases rapidly from about 80 emu/g at the cluster size of around 3 nm to over 200 emu/g up to the size of 100 nm. The use of high magnetic moment nanoclusters for biomedical applications could dramatically enhance the contrast for MRI, reduce the concentration of magnetic particle needs for cell separation, or make drug delivery possible with much lower magnetic field gradients

  5. Gold nanorod@iron oxide core-shell heterostructures: synthesis, characterization, and photocatalytic performance.

    Science.gov (United States)

    Li, Yue; Zhao, Junwei; You, Wenlong; Cheng, Danhong; Ni, Weihai

    2017-03-17

    Iron oxides are directly coated on the surface of cetyl-trimethylammonium bromide (CTAB)-capped gold nanorods (AuNRs) in aqueous solutions at room temperature, which results in AuNR@Fe 2 O 3 , AuNR@Fe 3 O 4 , and AuNR@Fe 2 O 3 @Fe 3 O 4 core-shell heterostructures. The iron oxide shells are uniform, smooth, with characteristic porous structure, and their thickness can be readily tuned. The shell formation is highly dependent on the reaction parameters including pH and CTAB concentration. The Fe 2 O 3 shell is amorphous and exhibits nearly zero remanence and coercivity, while the Fe 3 O 4 shell is ferromagnetic with a low saturation magnetization of about 0.5 emu g -1 due to its low crystallinity and the porous structure. At elevated temperatures achieved by plasmonic heating of the Au core, the Fe 2 O 3 shell transforms from amorphous to γ-Fe 2 O 3 and α-Fe 2 O 3 phases, while the Fe 3 O 4 phase disappears because of the oxidation of Fe 2+ . A 1.4-fold increase of photocatalytic performance is observed due to the plasmonic resonance provided by the Au core. The photocatalytic efficiency of Fe 3 O 4 is about 1.7-fold higher than Fe 2 O 3 as more surface defects are present on the Fe 3 O 4 shell, promoting the adsorption and activation of reagents on the surface during the catalytic reactions. This approach can be readily extended to other nanostructures including Au spherical nanoparticles and nanostars. These highly uniform and multifunctional core-shell heterostructures can be of great potential in a variety of energy, magnetic, and environment applications.

  6. Iron-carbonate interaction at Earth's core-mantle boundary

    Science.gov (United States)

    Dorfman, S. M.; Badro, J.; Nabiei, F.; Prakapenka, V.; Gillet, P.

    2015-12-01

    Carbon storage and flux in the deep Earth are moderated by oxygen fugacity and interactions with iron-bearing phases. The amount of carbon stored in Earth's mantle versus the core depends on carbon-iron chemistry at the core-mantle boundary. Oxidized carbonates subducted from Earth's surface to the lowermost mantle may encounter reduced Fe0 metal from disproportionation of Fe2+ in lower mantle silicates or mixing with the core. To understand the fate of carbonates in the lowermost mantle, we have performed experiments on sandwiches of single-crystal (Ca0.6Mg0.4)CO3 dolomite and Fe foil in the laser-heated diamond anvil cell at lower mantle conditions of 49-110 GPa and 1800-2500 K. Syntheses were conducted with in situ synchrotron X-ray diffraction to identify phase assemblages. After quench to ambient conditions, samples were sectioned with a focused Ga+ ion beam for composition analysis with transmission electron microscopy. At the centers of the heated spots, iron melted and reacted completely with the carbonate to form magnesiowüstite, iron carbide, diamond, magnesium-rich carbonate and calcium carbonate. In samples heated at 49 and 64 GPa, the two carbonates exhibit a eutectoid texture. In the sample heated at 110 GPa, the carbonates form rounded ~150-nm-diameter grains with a higher modal proportion of interspersed diamonds. The presence of reduced iron in the deep lower mantle and core-mantle boundary region will promote the formation of diamonds in carbonate-bearing subducted slabs. The complete reaction of metallic iron to oxides and carbides in the presence of mantle carbonate supports the formation of these phases at the Earth's core-mantle boundary and in ultra-low velocity zones.

  7. Magnetothermal release of payload from iron oxide/silica drug delivery agents

    Energy Technology Data Exchange (ETDEWEB)

    Luong, T.T., E-mail: thientai.luong@chem.kuleuven.be [KU Leuven, Department of Chemistry, Celestijnenlaan 200D, Heverlee 3001 (Belgium); Hanoi National University of Education, Faculty of Chemistry, Xuan Thuy 136, Cau Giay, Hanoi (Viet Nam); Knoppe, S.; Bloemen, M.; Brullot, W.; Strobbe, R. [KU Leuven, Department of Chemistry, Celestijnenlaan 200D, Heverlee 3001 (Belgium); Locquet, J.-P. [KU Leuven, Department of Physics, Celestijnenlaan 200D, Heverlee 3001 (Belgium); Verbiest, T. [KU Leuven, Department of Chemistry, Celestijnenlaan 200D, Heverlee 3001 (Belgium)

    2016-10-15

    The release of covalently bound Rhodamine B from iron oxide/mesoporous silica core/shell nanoparticles under magnetically induced heating was studied. The system acts as a model to study drug delivery and payload release under magnetothermal heating. - Graphical abstract: The release of covalently bound Rhodamine B from iron oxide/mesoporous silica core/shell nanoparticles under magnetically induced heating was studied. - Highlights: • Iron oxide/mesoporous-SiO{sub 2} core-shell NPs were synthesized. • The dye was covalently bound to SiO{sub 2} shells. • The release of dye under magnetothermal heating was studied. • The results are relevant for controlled drug release.

  8. Iron(III) species formed during iron(II) oxidation and iron-core formation in bacterioferritin of Escherichia coli

    International Nuclear Information System (INIS)

    Hawkins, C.; Treffry, A.; Mackey, J.; Williams, J.M.; Andrews, S.C.; Guest, J.R.; Harrison, P.M.

    1996-01-01

    This paper describes a preliminary investigation of the mechanisms of Fe(II) oxidation and storage of Fe(III) in the bacterioferritin of Escherichia coli (EcBFR). Using Moessbauer spectroscopy to examine the initial oxidation of iron by EcBFR it is confirmed that this ferritin exhibits 'ferroxidase' activity and is shown that dimeric and monomeric iron species are produced as intermediates. The characteristics of ferroxidase activity in EcBFR is compare d with those of human H-chain ferritin (HuHF) and discuss the different Moessbauer parameters of their dimeric iron with reference to the structures of their di-metal sites. In addition, it is presented preliminary findings suggesting that after an initial 'burst', the rate of oxidation is greatly reduced, possibly due to blockage of the ferroxidase centre by bound iron. A new component, not found in HuHF and probably representing a small cluster of Fe(III) atoms, is reported

  9. Shape-Controlled Synthesis of Magnetic Iron Oxide@SiO₂-Au@C Particles with Core-Shell Nanostructures.

    Science.gov (United States)

    Li, Mo; Li, Xiangcun; Qi, Xinhong; Luo, Fan; He, Gaohong

    2015-05-12

    The preparation of nonspherical magnetic core-shell nanostructures with uniform sizes still remains a challenge. In this study, magnetic iron oxide@SiO2-Au@C particles with different shapes, such as pseduocube, ellipsoid, and peanut, were synthesized using hematite as templates and precursors of magnetic iron oxide. The as-obtained magnetic particles demonstrated uniform sizes, shapes, and well-designed core-shell nanostructures. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) analysis showed that the Au nanoparticles (AuNPs) of ∼6 nm were uniformly distributed between the silica and carbon layers. The embedding of the metal nanocrystals into the two different layers prevented the aggregation and reduced the loss of the metal nanocrystals during recycling. Catalytic performance of the peanut-like particles kept almost unchanged without a noticeable decrease in the reduction of 4-nitrophenol (4-NP) in 8 min even after 7 cycles, indicating excellent reusability of the particles. Moreover, the catalyst could be readily recycled magnetically after each reduction by an external magnetic field.

  10. Large enhanced dielectric permittivity in polyaniline passivated core-shell nano magnetic iron oxide by plasma polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Joy, Lija K.; Sooraj, V.; Sethulakshmi, N.; Anantharaman, M. R., E-mail: mraiyer@yahoo.com [Department of Physics, Cochin University of Science and Technology, Cochin-682022, Kerala (India); Sajeev, U. S. [Department of Physics, Government College, Kottayam-686613, Kerala (India); Nair, Swapna S. [Department of Physics, School of Mathematical and Physical Sciences, Central University of Kerala, Kasargode-671123, Kerala (India); Narayanan, T. N. [CSIR-Central Electrochemical Research Institute, Karaikkudi-630006, Tamil Nadu (India); Ajayan, P. M. [Department of Material Science and Nano Engineering, Rice University, 6100 Main Street, Houston, Texas 7700 (United States)

    2014-03-24

    Commercial samples of Magnetite with size ranging from 25–30 nm were coated with polyaniline by using radio frequency plasma polymerization to achieve a core shell structure of magnetic nanoparticle (core)–Polyaniline (shell). High resolution transmission electron microscopy images confirm the core shell architecture of polyaniline coated iron oxide. The dielectric properties of the material were studied before and after plasma treatment. The polymer coated magnetite particles exhibited a large dielectric permittivity with respect to uncoated samples. The dielectric behavior was modeled using a Maxwell–Wagner capacitor model. A plausible mechanism for the enhancement of dielectric permittivity is proposed.

  11. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications

    Science.gov (United States)

    Amstad, Esther; Textor, Marcus; Reimhult, Erik

    2011-07-01

    Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface presentation of functionalities. This review is focused on different aspects of the stability of superparamagnetic iron oxide NPs, from its practical definition to its implementation by molecular design of the dispersant shell around the iron oxide core and further on to its influence on the magnetic properties of the superparamagnetic iron oxide NPs. Special attention is given to the selection of molecular anchors for the dispersant shell, because of their importance to ensure colloidal and functional stability of sterically stabilized superparamagnetic iron oxide NPs. We further detail how dispersants have been optimized to gain close control over iron oxide NP stability, size and functionalities by independently considering the influences of anchors and the attached sterically repulsive polymer brushes. A critical evaluation of different strategies to stabilize and functionalize core-shell superparamagnetic iron oxide NPs as well as a brief introduction to characterization methods to compare those strategies is given.Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface

  12. Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles

    International Nuclear Information System (INIS)

    Primc, Darinka; Belec, Blaž; Makovec, Darko

    2016-01-01

    Composite nanoparticles can be synthesized by coating a shell made of one material onto core nanoparticles made of another material. Here we report on a novel method for coating a magnetic iron oxide onto the surface of core nanoparticles in an aqueous suspension. The method is based on the heterogeneous nucleation of an initial product of Fe"3"+/Fe"2"+ co-precipitation on the core nanoparticles. The close control of the supersaturation of the precipitating species required for an exclusively heterogeneous nucleation and the growth of the shell were achieved by immobilizing the reactive Fe"3"+ ions in a nitrate complex with urea ([Fe((CO(NH_2)_2)_6](NO_3)_3) and by using solid Mg(OH)_2 as the precipitating reagent. The slow thermal decomposition of the complex at 60 °C homogeneously releases the reactive Fe"3"+ ions into the suspension of the core nanoparticles. The key stage of the process is the thermal hydrolysis of the released Fe"3"+ ions prior to the addition of Mg(OH)_2. The thermal hydrolysis results in the formation of γ-FeOOH, exclusively at the surfaces of the core nanoparticles. After the addition of the solid hydroxide Mg(OH)_2, the pH increases and at pH ~ 5.7 the Fe"2"+ precipitates and reacts with the γ-FeOOH to form magnetic iron oxide with a spinel structure (spinel ferrite) at the surfaces of the core nanoparticles. The proposed low-temperature method for the synthesis of composite nanoparticles is capable of forming well-defined interfaces between the two components, important for the coupling of the different properties. The procedure is environmentally friendly, inexpensive, and appropriate for scaling up to mass production.Graphical abstract

  13. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    60, No. 3. — journal of. March 2003 physics pp. 415–422. Maximum stellar iron core mass. F W GIACOBBE. Chicago Research Center/American Air Liquide ... iron core compression due to the weight of non-ferrous matter overlying the iron cores within large .... thermal equilibrium velocities will tend to be non-relativistic.

  14. Mitochondrial iron accumulation exacerbates hepatic toxicity caused by hepatitis C virus core protein

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, Shuichi; Ito, Konomi; Watanabe, Haruna; Nakano, Takafumi [Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 (Japan); Moriya, Kyoji; Shintani, Yoshizumi; Fujie, Hajime; Tsutsumi, Takeya; Miyoshi, Hideyuki; Fujinaga, Hidetake; Shinzawa, Seiko; Koike, Kazuhiko [Department of Internal Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Horie, Toshiharu, E-mail: t.horie@thu.ac.jp [Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 (Japan)

    2015-02-01

    Patients with long-lasting hepatitis C virus (HCV) infection are at major risk of hepatocellular carcinoma (HCC). Iron accumulation in the livers of these patients is thought to exacerbate conditions of oxidative stress. Transgenic mice that express the HCV core protein develop HCC after the steatosis stage and produce an excess of hepatic reactive oxygen species (ROS). The overproduction of ROS in the liver is the net result of HCV core protein-induced dysfunction of the mitochondrial respiratory chain. This study examined the impact of ferric nitrilacetic acid (Fe-NTA)-mediated iron overload on mitochondrial damage and ROS production in HCV core protein-expressing HepG2 (human HCC) cells (Hep39b cells). A decrease in mitochondrial membrane potential and ROS production were observed following Fe-NTA treatment. After continuous exposure to Fe-NTA for six days, cell toxicity was observed in Hep39b cells, but not in mock (vector-transfected) HepG2 cells. Moreover, mitochondrial iron ({sup 59}Fe) uptake was increased in the livers of HCV core protein-expressing transgenic mice. This increase in mitochondrial iron uptake was inhibited by Ru360, a mitochondrial Ca{sup 2+} uniporter inhibitor. Furthermore, the Fe-NTA-induced augmentation of mitochondrial dysfunction, ROS production, and cell toxicity were also inhibited by Ru360 in Hep39b cells. Taken together, these results indicate that Ca{sup 2+} uniporter-mediated mitochondrial accumulation of iron exacerbates hepatocyte toxicity caused by the HCV core protein. - Highlights: • Iron accumulation in the livers of patients with hepatitis C virus (HCV) infection is thought to exacerbate oxidative stress. • The impact of iron overload on mitochondrial damage and ROS production in HCV core protein-expressing cells were examined. • Mitochondrial iron uptake was increased in the livers of HCV core protein-expressing transgenic mice. • Ca{sup 2+} uniporter-mediated mitochondrial accumulation of iron exacerbates

  15. Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters

    Directory of Open Access Journals (Sweden)

    Jiji Antony

    2006-01-01

    Full Text Available Nanoporous films of core-shell iron nanoclusters have improved possibilities for remediation, chemical reactivity rate, and environmentally favorable reaction pathways. Conventional methods often have difficulties to yield stable monodispersed core-shell nanoparticles. We produced core-shell nanoclusters by a cluster source that utilizes combination of Fe target sputtering along with gas aggregations in an inert atmosphere at 7∘C. Sizes of core-shell iron-iron oxide nanoclusters are observed with transmission electron microscopy (TEM. The specific surface areas of the porous films obtained from Brunauer-Emmett-Teller (BET process are size-dependent and compared with the calculated data.

  16. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    An analytical method of estimating the mass of a stellar iron core, just prior to core collapse, is described in this paper. The method employed depends, in part, upon an estimate of the true relativistic mass increase experienced by electrons within a highly compressed iron core, just prior to core collapse, and is significantly ...

  17. Human nitric oxide biomarker as potential NO donor in conjunction with superparamagnetic iron oxide @ gold core shell nanoparticles for cancer therapeutics.

    Science.gov (United States)

    Singh, Nimisha; Patel, Khushbu; Sahoo, Suban K; Kumar, Rajender

    2018-03-01

    Nitric oxide releasing superparamagnetic (Fe 3 O 4 -Au@NTHP) nanoparticles were synthesized by conjugation of human biomarker of nitric oxide, N-nitrosothioproline with iron oxide-gold (Fe 3 O 4 -Au) core shell nanoparticles. The structure and morphology of the prepared nanoparticles were confirmed by ATR-FTIR, HR-TEM, EDAX, XPS, DLS and VSM measurements. N-nitrosothioproline is a natural molecule and nontoxic to humans. Thus, the core shell nanoparticles prepared were highly biocompatible. The prepared Fe 3 O 4 -Au@NTHP nanoparticles also provided an excellent release of nitric oxide in dark and upon light irradiation for cancer treatment. The amount of NO release was controllable with the wavelength of light and time of irradiation. The developed nanoparticles provided efficient cellular uptake and good cytotoxicity in picomolar range when tested on HeLa cancerous cells. These nanoparticles on account of their controllable NO release can also be used to release small amount of NO for killing cancerous cells without any toxic effect. Furthermore, the magnetic and photochemical properties of these nanoparticles provides dual platform for magneto therapy and phototherapy for cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A novel thermal decomposition approach for the synthesis of silica-iron oxide core–shell nanoparticles

    International Nuclear Information System (INIS)

    Kishore, P.N.R.; Jeevanandam, P.

    2012-01-01

    Highlights: ► Silica-iron oxide core–shell nanoparticles have been synthesized by a novel thermal decomposition approach. ► The silica-iron oxide core–shell nanoparticles are superparamagnetic at room temperature. ► The silica-iron oxide core–shell nanoparticles serve as good photocatalyst for the degradation of Rhodamine B. - Abstract: A simple thermal decomposition approach for the synthesis of magnetic nanoparticles consisting of silica as core and iron oxide nanoparticles as shell has been reported. The iron oxide nanoparticles were deposited on the silica spheres (mean diameter = 244 ± 13 nm) by the thermal decomposition of iron (III) acetylacetonate, in diphenyl ether, in the presence of SiO 2 . The core–shell nanoparticles were characterized by X-ray diffraction, infrared spectroscopy, field emission-scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy, diffuse reflectance spectroscopy, and magnetic measurements. The results confirm the presence of iron oxide nanoparticles on the silica core. The core–shell nanoparticles are superparamagnetic at room temperature indicating the presence of iron oxide nanoparticles on silica. The core–shell nanoparticles have been demonstrated as good photocatalyst for the degradation of Rhodamine B.

  19. Advantages of iron core in a tokamak

    International Nuclear Information System (INIS)

    Bettis, E.S.; Ballou, J.K.; Becraft, W.R.; Peng, Y.K.M.; Watts, H.L.

    1977-01-01

    A quantitative comparison of the iron core vs air core concepts was carried out on a preliminary basis by using a representative tokamak reactor design with the following self-consistent reference parameters. In the area of plasma engineering, poloidal field and MHD equilibrium considerations with an unsaturated iron core is discussed. The question of proper poloidal field coils to maintain D-shaped plasmas of relatively high anti β (7%) with a saturated iron core is also discussed. Estimates of the required iron core size, volt seconds, magnetic flux and its influence on force loading on the superconducting toroidal field coils are shown. Conceptual designs of the mechanical structure of an iron core device are presented. Favorable impacts on the OH power supply cost and complexity are indicated

  20. X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Radu, T., E-mail: Teodora.Radu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj Napoca (Romania); Iacovita, C. [Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349, Cluj-Napoca (Romania); Benea, D. [Faculty of Physics, Babes Bolyai University, 400271, Cluj-Napoca (Romania); Turcu, R. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj Napoca (Romania)

    2017-05-31

    Highlights: • Characterization of three types of iron oxides magnetic nanoparticles. • A correlation between valence band XPS and the degree of iron oxidation is proposed. • Theoretical contributions of Fe in tetragonal and octahedral environment are shown. - Abstract: We report X-ray photoelectron spectroscopy (XPS) results on iron oxide magnetic nanoparticle (Fe{sub 3}O{sub 4}) synthesized using solvothermal reduction in the presence of polyethylene glycol. The magnetite obtained was employed as precursor for the synthesis of γ-Fe{sub 2}O{sub 3} (by oxygen dissociation) which in turn was transformed into α-Fe{sub 2}O{sub 3}. We confirmed the magnetite, maghemite and hematite structure by Fourier Transformed Spectroscopy (FTIR) and X-ray diffraction (XRD). The analysis of the XPS core level and valence band (VB) photoemission spectra for all investigated samples is discussed in terms of the degree of iron oxidation. This is of fundamental importance to better understand the electronic structure of the obtained iron oxide nanoparticles in order to control and improve their quality for specific biomedical applications. Moreover, theoretical band structure calculations are performed for magnetite and the separate contributions of Fe in tetragonal and octahedral environment are shown.

  1. Integrity of 111In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse

    International Nuclear Information System (INIS)

    Wang, Haotian; Kumar, Rajiv; Nagesha, Dattatri; Duclos, Richard I.; Sridhar, Srinivas; Gatley, Samuel J.

    2015-01-01

    Introduction: Iron-oxide nanoparticles can act as contrast agents in magnetic resonance imaging (MRI), while radiolabeling the same platform with nuclear medicine isotopes allows imaging with positron emission tomography (PET) or single-photon emission computed tomography (SPECT), modalities that offer better quantification. For successful translation of these multifunctional imaging platforms to clinical use, it is imperative to evaluate the degree to which the association between radioactive label and iron oxide core remains intact in vivo. Methods: We prepared iron oxide nanoparticles stabilized by oleic acid and phospholipids which were further radiolabeled with 59 Fe, 14 C-oleic acid, and 111 In. Results: Mouse biodistributions showed 111 In preferentially localized in reticuloendothelial organs, liver, spleen and bone. However, there were greater levels of 59 Fe than 111 In in liver and spleen, but lower levels of 14 C. Conclusions: While there is some degree of dissociation between the 111 In labeled component of the nanoparticle and the iron oxide core, there is extensive dissociation of the oleic acid component

  2. Exploring Microbial Iron Oxidation in Wetland Soils

    Science.gov (United States)

    Wang, J.; Muyzer, G.; Bodelier, P. L. E.; den Oudsten, F.; Laanbroek, H. J.

    2009-04-01

    sequences all represented novel culturable iron oxidizers most closely related to Gallionella spp. Based on their nucleotide sequences four groups could be identified, which were comparable to the DGGE banding pattern obtained before with the gradient tubes enrichments. The above mentioned nested PCR-DGGE method was used to study the distribution and community composition of Gallionella-like iron-oxidizing bacteria under the influence of plants species, soil depth, as well as season. Soil samples from Appels, Belgium, an intertidal, freshwater marsh known to hold intensive iron cycling, were taken from 5 different vegetation types in April, July and October 2007. Soil cores were sliced at 1-cm intervals and subjected to chemical and molecular analyses. The DGGE patterns showed that the community of iron-oxidizing bacteria differed with vegetation type, and sediment depth. Samples taken in autumn held lower diversity in Gallionella-related iron oxidizers than those sampled in spring and summer.

  3. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    DEFF Research Database (Denmark)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume

    2009-01-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent ......Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate...... precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria...... and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All...

  4. Iron Oxide Nanoparticles: Tunable Size Synthesis and Analysis in Terms of the Core-Shell Structure and Mixed Coercive Model

    Science.gov (United States)

    Phong, P. T.; Oanh, V. T. K.; Lam, T. D.; Phuc, N. X.; Tung, L. D.; Thanh, Nguyen T. K.; Manh, D. H.

    2017-04-01

    Iron oxide nanoparticles (NPs) are currently a very active research field. To date, a comprehensive study of iron oxide NPs is still lacking not only on the size dependence of structural phases but also in the use of an appropriate model. Herein, we report on a systematic study of the structural and magnetic properties of iron oxide NPs prepared by a co-precipitation method followed by hydrothermal treatment. X-ray diffraction and transmission electron microscopy reveal that the NPs have an inverse spinel structure of iron oxide phase (Fe3O4) with average crystallite sizes ( D XRD) of 6-19 nm, while grain sizes ( D TEM) are of 7-23 nm. In addition, the larger the particle size, the closer the experimental lattice constant value is to that of the magnetite structure. Magnetic field-dependent magnetization data and analysis show that the effective anisotropy constants of the Fe3O4 NPs are about five times larger than that of their bulk counterpart. Particle size ( D) dependence of the magnetization and the non-saturating behavior observed in applied fields up to 50 kOe are discussed using the core-shell structure model. We find that with decreasing D, while the calculated thickness of the shell of disordered spins ( t ˜ 0.3 nm) remains almost unchanged, the specific surface areas S a increases significantly, thus reducing the magnetization of the NPs. We also probe the coercivity of the NPs by using the mixed coercive Kneller and Luborsky model. The calculated results indicate that the coercivity rises monotonously with the particle size, and are well matched with the experimental ones.

  5. Extrap with iron-cored coils

    International Nuclear Information System (INIS)

    Lehnert, B.

    1985-05-01

    In Extrap configurations there is a high average beta value with respect to the plasma confinement volume. The externally imposed magnetic field which is required for stabilization therefore comes out to have a rather moderate strength, even under expected reactor conditions. As a consequence, this field can be generated not only by conventional external conductor arrangements, but also by iron-cored coils being operated below the saturation limit. A proposal for such iron-cored coil systems is presented in this paper. As compared to conventional conductors, this has the advantage of localizing the magnetic energy of the externally imposed magnetic field mainly to the discharge vessel and the plasma volume, thereby increasing the engineering beta value substantially. Also the problems of the coil stresses and of irradiation of the coils appear to become simplified, as well as replacement of the coil system. A main limitation of this proposal is due to combination of iron core saturation with the required stabilization effect from an ion Larmor radius of sufficient relative magnitude. This limitaion requires further investigation, especially in the full-scale reactor case. Also the modifications of the field geometry by iron core shaping needs further analysis. (Author)

  6. 21 CFR 186.1374 - Iron oxides.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Iron oxides. 186.1374 Section 186.1374 Food and... Substances Affirmed as GRAS § 186.1374 Iron oxides. (a) Iron oxides (oxides of iron, CAS Reg. No. 1332-37-2) are undefined mixtures of iron (II) oxide (CAS Reg. No. 1345-25-1, black cubic crystals) and iron (III...

  7. Optimization of Iron Oxide Tracer Synthesis for Magnetic Particle Imaging

    Directory of Open Access Journals (Sweden)

    Sabina Ziemian

    2018-03-01

    Full Text Available The optimization of iron oxide nanoparticles as tracers for magnetic particle imaging (MPI alongside the development of data acquisition equipment and image reconstruction techniques is crucial for the required improvements in image resolution and sensitivity of MPI scanners. We present a large-scale water-based synthesis of multicore superparamagnetic iron oxide nanoparticles stabilized with dextran (MC-SPIONs. We also demonstrate the preparation of single core superparamagnetic iron oxide nanoparticles in organic media, subsequently coated with a poly(ethylene glycol gallic acid polymer and phase transferred to water (SC-SPIONs. Our aim was to obtain long-term stable particles in aqueous media with high MPI performance. We found that the amplitude of the third harmonic measured by magnetic particle spectroscopy (MPS at 10 mT is 2.3- and 5.8-fold higher than Resovist for the MC-SPIONs and SC-SPIONs, respectively, revealing excellent MPI potential as compared to other reported MPI tracer particle preparations. We show that the reconstructed MPI images of phantoms using optimized multicore and specifically single-core particles are superior to that of commercially available Resovist, which we utilize as a reference standard, as predicted by MPS.

  8. Iron oxides in acid mine drainage environments and their association with bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, F G; Tazaki, K; Fyfe, W S

    1989-01-20

    A variety of iron oxides were identified by X-ray diffraction in sediments receiving acid drainage from mine tailing and coal refuse impoundments. Small amounts of goethite and hematite were found in the sediment samples. However, the major iron oxide species was ferrihydrite which gave diffuse diffraction bands at angles corresponding to d2.5, 2.2 and 1.5 Angstrom. Main core line binding energies in Fe (2p) and O (1s) X-ray photoelectron spectra were consistent with the hydrous nature and predominance of ferrihydrite. Electron microscopy and energy-dispersive X-ray spectroscopy also showed that individual bacterial cells promoted the development of iron oxide mineralization. The bacterial associated iron oxides were similar to those in the bulk sediment samples, and exhibited structures conforming to the presence of chemisorbed sulfate or silicate anions. 23 refs., 3 figs.

  9. Characterization and uranium bioleaching performance of mixed iron- and sulfur-oxidizers versus iron-oxidizers

    International Nuclear Information System (INIS)

    Qian Li; Jing Sun; Dexin Ding; Qingliang Wang; Wenge Shi; Eming Hu; Xiaoyu Jiang; University of South China, Hengyang; Xingxing Wang

    2017-01-01

    In order to develop and apply mixed iron- and sulfur-oxidizers in uranium bioleaching, the characteristics of a mixed iron- and sulfur-oxidizing consortium (Consortium ISO) were comparatively investigated versus an iron-oxidizing consortium (Consortium IO). The results showed, the Consortium ISO exerted stronger oxidative ability and acid-producing ability than Consortium IO did. The synergy of sulfur-oxidizers and iron-oxidizers could change the structure and properties of the passivation substance, and work positively for eliminating the accumulation of passivation substance. In the bioleaching process, the uranium bioleaching experiments showed the recovery percentage of uranium reached 99.5% with Consortium ISO, 6.3% more than that of Consortium IO. (author)

  10. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Kayal, S.; Ramanujan, R.V.

    2010-01-01

    Magnetic drug targeting is a drug delivery system that can be used in locoregional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by coprecipitation of iron oxide followed by coating with polyvinyl alcohol (PVA). Characterization was carried out using X-ray diffraction, TEM, TGA, FTIR and VSM techniques. The magnetic core of the carriers was magnetite (Fe 3 O 4 ), with average size of 10 nm. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. The amount of PVA bound to the iron oxide nanoparticles were estimated by thermogravimetric analysis (TGA) and the attachment of PVA to the iron oxide nanoparticles was confirmed by FTIR analysis. Doxorubicin (DOX) drug loading and release profiles of PVA coated iron oxide nanoparticles showed that up to 45% of adsorbed drug was released in 80 h, the drug release followed the Fickian diffusion-controlled process. The binding of DOX to the PVA was confirmed by FTIR analysis. The present findings show that DOX loaded PVA coated iron oxide nanoparticles are promising for magnetically targeted drug delivery.

  11. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  12. 'NC100150', a preparation of iron oxide nanoparticles ideal for positive-contrast MR angiography.

    Science.gov (United States)

    Kellar, K E; Fujii, D K; Gunther, W H; Briley-Saebø, K; Spiller, M; Koenig, S H

    1999-08-01

    A laboratory-scale synthesis of NC100150 (iron oxide particles with an oxidized starch coating) was characterized by magnetization measurements (vibrating sample magnetometry, VSM), relaxometry (1/T1 NMRD profiles and 1/T2 at 10 and 20 MHz), and dynamic light scattering (photon correlation spectroscopy, PCS). The results were related to give a self-consistent physical description of the particles: a water-impenetrable part making up 12% of the total particle volume, 82% of this volume consisting of an iron oxide core and the remaining 18% consisting of an oxidized starch rind; and, a water-penetrable part making up 88% of the total particle volume, consisting of oxidized starch polymers and entrained water molecules. Relating the magnetization to the relaxometry results required that the oxidized starch coating slows the diffusivity of solvent water molecules in the vicinity of the iron oxide cores. The effect of the organic coating on water diffusivity, not previously considered in the application of relaxation theory to iron oxide nanoparticles, is supported by the much greater (factor of about 2) diameter obtained from the dynamic light scattering measurements in comparison to that obtained from the magnetization measurements. The present work shows that three physical techniques--VSM, relaxometry, and PCS--are needed for properly assessing iron oxide nanoparticles for use as contrast agents for magnetic resonance angiography (MRA). It is also shown that NC100150 has a narrow range of diameters and the smallest value of r2/r1 reported to date, an asset for MRA.

  13. Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers

    DEFF Research Database (Denmark)

    Huang, Li‐Zhi; Ayala‐Luis, Karina B.; Fang, Liping

    2013-01-01

    hydroxide planar layer were preserved during the oxidation, as shown by FTIR spectroscopy. The high positive charge in the hydroxide layer produced by the oxidation of iron(II) to iron(III) is partially compensated by the deprotonation of hydroxy groups, as shown by X‐ray photoelectron spectroscopy...... between the alkyl chains of the intercalated dodecanoate anions play a crucial role in stabilizing the structure and hindering the collapse of the iron(II)–iron(III) (hydr)oxide structure during oxidation. This is the first report describing the formation of a stable planar layered octahedral iron......(III) (hydr)oxide. oxGRC12 shows promise as a sorbent and host for hydrophobic reagents, and as a possible source of single planar layers of iron(III) (hydr)oxide....

  14. 21 CFR 73.2250 - Iron oxides.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Iron oxides. 73.2250 Section 73.2250 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2250 Iron oxides. (a) Identity. The color additives iron oxides consist of any one or any combination of synthetically prepared iron oxides, including the...

  15. A Holistic Model That Physicochemically Links Iron Oxide - Apatite and Iron Oxide - Copper - Gold Deposits to Magmas

    Science.gov (United States)

    Simon, A. C.; Reich, M.; Knipping, J.; Bilenker, L.; Barra, F.; Deditius, A.; Lundstrom, C.; Bindeman, I. N.

    2015-12-01

    Iron oxide-apatite (IOA) and iron oxide-copper-gold deposits (IOCG) are important sources of their namesake metals and increasingly for rare earth metals in apatite. Studies of natural systems document that IOA and IOCG deposits are often spatially and temporally related with one another and coeval magmatism. However, a genetic model that accounts for observations of natural systems remains elusive, with few observational data able to distinguish among working hypotheses that invoke meteoric fluid, magmatic-hydrothermal fluid, and immiscible melts. Here, we use Fe and O isotope data and high-resolution trace element (e.g., Ti, V, Mn, Al) data of individual magnetite grains from the world-class Los Colorados (LC) IOA deposit in the Chilean Iron Belt to elucidate the origin of IOA and IOCG deposits. Values of d56Fe range from 0.08‰ to 0.26‰, which are within the global range of ~0.06‰ to 0.5‰ for magnetite formed at magmatic conditions. Values of δ18O for magnetite and actinolite are 2.04‰ and 6.08‰, respectively, consistent with magmatic values. Ti, V, Al, and Mn are enriched in magnetite cores and decrease systematically from core to rim. Plotting [Al + Mn] vs. [Ti + V] indicates that magnetite cores are consistent with magmatic and/or magmatic-hydrothermal (i.e., porphyry) magnetites. Decreasing Al, Mn, Ti, V is consistent with a cooling trend from porphyry to Kiruna to IOCG systems. The data from LC are consistent with the following new genetic model for IOA and IOCG systems: 1) magnetite cores crystallize from silicate melt; 2) these magnetite crystals are nucleation sites for aqueous fluid that exsolves and scavenges inter alia Fe, P, S, Cu, Au from silicate melt; 3) the magnetite-fluid suspension is less dense that the surrounding magma, allowing ascent; 4) as the suspension ascends, magnetite grows in equilibrium with the fluid and takes on a magmatic-hydrothermal character (i.e., lower Al, Mn, Ti, V); 5) during ascent, magnetite, apatite and

  16. Size distribution of magnetic iron oxide nanoparticles using Warren-Averbach XRD analysis

    Science.gov (United States)

    Mahadevan, S.; Behera, S. P.; Gnanaprakash, G.; Jayakumar, T.; Philip, J.; Rao, B. P. C.

    2012-07-01

    We use the Fourier transform based Warren-Averbach (WA) analysis to separate the contributions of X-ray diffraction (XRD) profile broadening due to crystallite size and microstrain for magnetic iron oxide nanoparticles. The profile shape of the column length distribution, obtained from WA analysis, is used to analyze the shape of the magnetic iron oxide nanoparticles. From the column length distribution, the crystallite size and its distribution are estimated for these nanoparticles which are compared with size distribution obtained from dynamic light scattering measurements. The crystallite size and size distribution of crystallites obtained from WA analysis are explained based on the experimental parameters employed in preparation of these magnetic iron oxide nanoparticles. The variation of volume weighted diameter (Dv, from WA analysis) with saturation magnetization (Ms) fits well to a core shell model wherein it is known that Ms=Mbulk(1-6g/Dv) with Mbulk as bulk magnetization of iron oxide and g as magnetic shell disorder thickness.

  17. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    Science.gov (United States)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  18. Facile and sustainable synthesis of shaped iron oxide nanoparticles: effect of iron precursor salts on the shapes of iron oxides.

    Science.gov (United States)

    Sayed, Farheen N; Polshettiwar, Vivek

    2015-05-05

    A facile and sustainable protocol for synthesis of six different shaped iron oxides is developed. Notably, all the six shapes of iron oxides can be synthesised using exactly same synthetic protocol, by simply changing the precursor iron salts. Several of the synthesised shapes are not reported before. This novel protocol is relatively easy to implement and could contribute to overcome the challenge of obtaining various shaped iron oxides in economical and sustainable manner.

  19. Characterization of the oleic acid/iron oxide nanoparticle interface by magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Masur, S., E-mail: sabrina.masur@uni-due.de; Zingsem, B.; Marzi, T.; Meckenstock, R.; Farle, M.

    2016-10-01

    The synthesis of colloidal nanoparticles involves surfactant molecules, which bind to the particle surface and stabilize nanoparticles against aggregation. In many cases these protecting shells also can be used for further functionalization. In this study, we investigated monodisperse single crystalline iron oxide core/shell nanoparticles (Fe{sub x}O{sub y}-NPs) in situ covered with an oleic acid layer which showed two electron spin resonance (ESR) signals. The nanoparticles with the ligands attached were characterized by transmission electron microscopy (TEM) and ferro- and paramagnetic resonance (FMR, EPR). Infrared spectroscopy confirmed the presence of the functional groups and revealed that the oleic acid (OA) is chemisorbed as a carboxylate on the iron oxide and is coordinated symmetrically to the oxide atoms. We show that the EPR signal of the OA ligand molecule can be used as a local probe to determine the temperature changes at the surface of the nanoparticle. - Highlights: • Monodisperse single crystalline iron oxide core/shell nanoparticles (Fe{sub x}O{sub y}-NPs) in situ covered with an oleic acid layer two electron spin resonance (ESR) signals. • We show that the EPR signal of the OA ligand molecule can be used as a local probe to determine the temperature changes at the surface of the nanoparticle.

  20. Nitric oxide activation by distal redox modulation in tetranuclear iron nitrosyl complexes.

    Science.gov (United States)

    de Ruiter, Graham; Thompson, Niklas B; Lionetti, Davide; Agapie, Theodor

    2015-11-11

    A series of tetranuclear iron complexes displaying a site-differentiated metal center was synthesized. Three of the metal centers are coordinated to our previously reported ligand, based on a 1,3,5-triarylbenzene motif with nitrogen and oxygen donors. The fourth (apical) iron center is coordinatively unsaturated and appended to the trinuclear core through three bridging pyrazolates and an interstitial μ4-oxide moiety. Electrochemical studies of complex [LFe3(PhPz)3OFe][OTf]2 revealed three reversible redox events assigned to the Fe(II)4/Fe(II)3Fe(III) (-1.733 V), Fe(II)3Fe(III)/Fe(II)2Fe(III)2 (-0.727 V), and Fe(II)2Fe(III)2/Fe(II)Fe(III)3 (0.018 V) redox couples. Combined Mössbauer and crystallographic studies indicate that the change in oxidation state is exclusively localized at the triiron core, without changing the oxidation state of the apical metal center. This phenomenon is assigned to differences in the coordination environment of the two metal sites and provides a strategy for storing electron and hole equivalents without affecting the oxidation state of the coordinatively unsaturated metal. The presence of a ligand-binding site allowed the effect of redox modulation on nitric oxide activation by an Fe(II) metal center to be studied. Treatment of the clusters with nitric oxide resulted in binding of NO to the apical iron center, generating a {FeNO}(7) moiety. As with the NO-free precursors, the three reversible redox events are localized at the iron centers distal from the NO ligand. Altering the redox state of the triiron core resulted in significant change in the NO stretching frequency, by as much as 100 cm(-1). The increased activation of NO is attributed to structural changes within the clusters, in particular, those related to the interaction of the metal centers with the interstitial atom. The differences in NO activation were further shown to lead to differential reactivity, with NO disproportionation and N2O formation performed by the more

  1. Superparamagnetic iron oxides for MRI

    International Nuclear Information System (INIS)

    Weissleder, R.; Reimer, P.

    1993-01-01

    Pharmaceutical iron oxide preparations have been used as MRI contrast agents for a variety of purposes. These agents predominantly decrease T2 relaxation times and therefore cause a decrease in signal intensity of tissues that contain the agent. After intravenous administration, dextran-coated iron oxides typically accumulate in phagocytic cells in liver and spleen. Clinical trials have shown that iron oxide increases lesion/liver and lesion/spleen contrast, that more lesions can be depicted than on plain MRI or CT, and that the size threshold for lesion detection decreases. Decreased uptake of iron oxides in liver has been observed in hepatitis and cirrhosis, potentially allowing the assessment of organ function. More recently a variety of novel, target-specific monocrystalline iron oxides compounds have been used for receptor and immunospecific images. Future development of targeted MRI contrast agents is critical for organ- or tissue-specific quantitative and functional MRI. (orig.)

  2. Superparamagnetic iron oxides for MRI

    Energy Technology Data Exchange (ETDEWEB)

    Weissleder, R [MGH-NMR Center, Dept. of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Reimer, P [MGH-NMR Center, Dept. of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); [Inst. fuer Klinische Radiologie, Zentrale Roentgendiagnostik, Westfaelische-Wilhelms-Univ., Muenster (Germany)

    1993-06-01

    Pharmaceutical iron oxide preparations have been used as MRI contrast agents for a variety of purposes. These agents predominantly decrease T2 relaxation times and therefore cause a decrease in signal intensity of tissues that contain the agent. After intravenous administration, dextran-coated iron oxides typically accumulate in phagocytic cells in liver and spleen. Clinical trials have shown that iron oxide increases lesion/liver and lesion/spleen contrast, that more lesions can be depicted than on plain MRI or CT, and that the size threshold for lesion detection decreases. Decreased uptake of iron oxides in liver has been observed in hepatitis and cirrhosis, potentially allowing the assessment of organ function. More recently a variety of novel, target-specific monocrystalline iron oxides compounds have been used for receptor and immunospecific images. Future development of targeted MRI contrast agents is critical for organ- or tissue-specific quantitative and functional MRI. (orig.)

  3. Carbon Solubility in Silicon-Iron-Bearing Metals during Core Formation on Mercury

    Science.gov (United States)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent; Rapp, Jennifer F.; Danielson, Lisa R.; Keller, Lindsay P.; Righter, Kevin

    2016-01-01

    Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft showed the surface of Mercury has high S abundances (approximately 4 wt%) and low Iron(II) Oxide abundances (less than 2 wt%). Based on these extreme values, the oxygen fugacity of Mercury's surface materials was estimated to be approximately 3 to 7 log(sub 10) units below the IW buffer (Delta IW-3 to Delta IW-7). This highly reducing nature of the planet has resulted in a large core and relatively thin mantle, extending to only approximately 420 km depth (corresponding to a core-mantle boundary pressure of approximately 4-7 GPa) within the planet. Furthermore, MESSENGER results have suggested the presence of carbon on the surface of the planet. Previous experimental results from have also suggested the possibility of a primary floatation crust on Mercury composed of graphite, produced after a global magma ocean event. With these exotic conditions of this compositional end-member planet, it begs the question, what is the core composition of Mercury? Although no definitive conclusion has been reached, previous studies have made advances towards answering this question. Riner et al. and Chen et al. looked at iron sulfide systems and implemented various crystallization and layered core scenarios to try and determine the composition and structure of Mercury's core. Malavergne et al. examined core crystallization scenarios in the presence of sulfur and silicon. Hauck et al. used the most recent geophysical constraints from the MESSENGER spacecraft to model the internal structure of Mercury, including the core, in a iron-sulfur-silicon system. More recently, Chabot et al. conducted a series of metal-silicate partitioning experiments in a iron-sulfur-silicon system. These results showed the core of Mercury has the potential to contain more than 15 wt% silicon. However, with the newest results from MESSENGER's low altitude campaign, carbon is another

  4. Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Won; Kim, Jeong Jin; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, Dong Woo [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2016-03-15

    There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

  5. Accelerated dissolution of iron oxides in ice

    Directory of Open Access Journals (Sweden)

    D. Jeong

    2012-11-01

    Full Text Available Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4, the dissolution of iron oxides was greatly enhanced in the ice phase compared to that in water. The dissolved iron was mainly in the ferric form, which indicates that the dissolution is not a reductive process. The extent of dissolved iron was greatly affected by the kind of organic complexing ligands and the surface area of iron oxides. The iron dissolution was most pronounced with high surface area iron oxides and in the presence of strong iron binding ligands. The enhanced dissolution of iron oxides in ice is mainly ascribed to the "freeze concentration effect", which concentrates iron oxide particles, organic ligands, and protons in the liquid like ice grain boundary region and accelerates the dissolution of iron oxides. The ice-enhanced dissolution effect gradually decreased when decreasing the freezing temperature from −10 to −196 °C, which implies that the presence and formation of the liquid-like ice grain boundary region play a critical role. The proposed phenomenon of enhanced dissolution of iron oxides in ice may provide a new pathway of bioavailable iron production. The frozen atmospheric ice with iron-containing dust particles in the upper atmosphere thaws upon descending and may provide bioavailable iron upon deposition onto the ocean surface.

  6. On the collapse of iron stellar cores

    International Nuclear Information System (INIS)

    Barkat, Z.; Rakavy, G.; Reiss, Y.; Wilson, J.R.

    1975-01-01

    The collapse of iron stellar cores is investigated to see whether the outward shock produced by the bounce at neutron star density is sufficient to burn appreciable amounts of the envelope around the iron core. Several models were tried, and in all cases no appreciable burn took place; hence no explosion results from the collapse of these models

  7. Iron, Oxidative Stress and Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Taifeng Zhuang

    2014-09-01

    Full Text Available Both iron deficiency and hyperglycemia are highly prevalent globally for pregnant women. Iron supplementation is recommended during pregnancy to control iron deficiency. The purposes of the review are to assess the oxidative effects of iron supplementation and the potential relationship between iron nutrition and gestational diabetes. High doses of iron (~relative to 60 mg or more daily for adult humans can induce lipid peroxidation in vitro and in animal studies. Pharmaceutical doses of iron supplements (e.g., 10× RDA or more for oral supplements or direct iron supplementation via injection or addition to the cell culture medium for a short or long duration will induce DNA damage. Higher heme-iron intake or iron status measured by various biomarkers, especially serum ferritin, might contribute to greater risk of gestational diabetes, which may be mediated by iron oxidative stress though lipid oxidation and/or DNA damage. However, information is lacking about the effect of low dose iron supplementation (≤60 mg daily on lipid peroxidation, DNA damage and gestational diabetes. Randomized trials of low-dose iron supplementation (≤60 mg daily for pregnant women are warranted to test the relationship between iron oxidative stress and insulin resistance/gestational diabetes, especially for iron-replete women.

  8. Plasma current sustainment after iron core saturation in the STOR-M tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Mitarai, O., E-mail: omitarai@ktmail.tokai-u.jp [Kumamoto Liberal Arts Education Center, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto 862-8652 (Japan); Ding, Y.; Hubeny, M.; Lu, Y.; Onchi, T.; McColl, D.; Xiao, C.; Hirose, A. [Plasma Physics Laboratory, University of Saskatchewan, 116 Science Place, Saskatoon, SK S7N 5E2 (Canada)

    2014-10-15

    Highlights: • Plasma current can be started up by small iron core without central solenoid. • Iron core removes central solenoid. • Plasma current can be maintained after iron core saturation. • Hysteresis curve shows the partial core saturation. • Image field from iron core is estimated during discharge. • Spherical tokamak reactor without CS is proposed using the small iron core. - Abstract: We propose to use of a small iron core transformer to start up the plasma current in a spherical tokamak (ST) reactor without central solenoid (CS). Taking advantage of the high aspect ratio of the STOR-M iron core tokamak, we have demonstrated that the plasma current up to 10–15 kA can be started up using the outer Ohmic heating (OH) coils without CS, and that the plasma current can be maintained further by increasing the outer OH coil current during iron core saturation phase. When the magnetizing current reaches 1.2 kA and the iron core becomes saturated, the third capacitor bank connected to the outer OH coils is discharged to maintain the plasma current. The plasma current is slightly increased and maintained for additional 5 ms as expected from numerical calculations. Core saturation has been clearly observed on the hysteresis curve. This is the first experimental demonstration of the feasibility of slow transition from the iron core to air core transformer phase without CS. The results implies that a plasma current can be initiated by a small iron core and could be ramped up by additional heating and vertical field after iron core saturation in future STs without CS.

  9. Ferroxidase-Mediated Iron Oxide Biomineralization

    DEFF Research Database (Denmark)

    Zeth, Kornelius; Hoiczyk, Egbert; Okuda, Mitsuhiro

    2016-01-01

    Iron oxide biomineralization occurs in all living organisms and typically involves protein compartments ranging from 5 to 100nm in size. The smallest iron-oxo particles are formed inside dodecameric Dps protein cages, while the structurally related ferritin compartments consist of twice as many......, translocation, oxidation, nucleation, and storage, that are mediated by ferroxidase centers. Thus, compartmentalized iron oxide biomineralization yields uniform nanoparticles strictly determined by the sizes of the compartments, allowing customization for highly diverse nanotechnological applications....... identical protein subunits. The largest known compartments are encapsulins, icosahedra made of up to 180 protein subunits that harbor additional ferritin-like proteins in their interior. The formation of iron-oxo particles in all these compartments requires a series of steps including recruitment of iron...

  10. Roentgenoelectronic investigation into oxidation of iron-chromium and iron-chromium-nickel alloys

    International Nuclear Information System (INIS)

    Akimov, A.G.; Rozenfel'd, I.L.; Kazanskij, L.P.; Machavariani, G.V.

    1978-01-01

    Kinetics of iron-chromium and iron-chromium-nickel alloy oxidation (of the Kh13 and Kh18N10T steels) in oxygen was investigated using X-ray electron spectroscopy. It was found that according to X-ray electron spectra chromium oxidation kinetics in the iron-chromium alloy differs significantly from oxidation kinetics of chromium pattern. Layer by layer X-ray electron analysis showed that chromium is subjected to a deeper oxidation as compared to iron, and accordingly, Cr 2 O 3 layer with pure iron impregnations is placed between the layer of mixed oxide (Fe 3 O 4 +Cr 2 O 3 ) and metal. A model of the iron-chromium alloy surface is suggested. The mixed oxide composition on the steel surface is presented as spinel Fesub(2+x)Crsub(1-x)Osub(y)

  11. 21 CFR 73.3125 - Iron oxides.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Iron oxides. 73.3125 Section 73.3125 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3125 Iron oxides. (a) Identity and specifications. The color additive iron oxides (CAS Reg. No. 1332-37-2), Color Index No. 77491, shall conform in...

  12. Chemical synthesis and characterization of hollow dopamine coated, pentagonal and flower shaped magnetic iron oxide nanoparticles

    Science.gov (United States)

    Riasat, Rabia; Kaynat, Sumbal

    2018-04-01

    Iron oxide nanoparticles have gained attention recently in the field of nanoscience and technology due to their unique physicochemical properties. We hereby chemically synthesized novel pentagonal flower shaped iron oxide nanoparticles by thermal decomposition of iron penta-carbonyl in a two way annealing process. Controlled oxidation by acid etching was performed for these nanoparticles. At first 13 nm core shell nanoparticles of iron oxide (Fe/Fe3O4) were synthesized at 120°C annealing temperature that act as template material. The core shell nanoparticles then converted into porous hollow core shell nanoparticles (PH Fe/ Fe3O4) in a two way annealing process of heating, first at 100°C then at 250°C and heating rate of 5°C was kept constant throughout the reaction time. X-Ray diffraction (XRD) was done for the phase confirmation of as synthesized nanoparticles. Transmission electron microscopy (TEM) and higher resolution transmission electron microscopy (HRTEM) clearly shows the flower like nanoparticles that are approx. 16 nm-18 nm in size having the 4-5 nm core of Fe and 1-2 nm of the pores in the shell while the cavity between the shell and core is about 2 nm and the shell is 4-5 nm in diameter according to the TEM micrographs. The as prepared nanoparticles were then surface functionalized by dopamine polymer to make them water dispersible. Fourier transform Infrared spectroscopy confirmed the dopamine coating on the nanoparticles and the magnetic saturation of 38 emu/g of nanoparticles was analyzed by vibrating sample magnetometer (VSM). Magnetic saturation persists in the dopamine coated nanoparticles. These nanoparticles were surface functionalized with dopamine and show dispersity in the aqueous media and can further be exploited in many nano-biotechnological applications including target specific therapeutic applications for several diseases.

  13. First order study for an iron core OH system for TNS

    International Nuclear Information System (INIS)

    Ballou, J.K.; Schultz, J.

    1977-01-01

    A simple comparison has been made between an air core and an iron core ohmic heating system for a particular device, and it was shown that the peak power requirements can be substantially reduced by the use of an iron core to power levels handled by industry today. It was also shown that for an ohmic heating system initiated plasma that the cost of the iron core ohmic heating power system (iron core, dual rectifier, and DC switch) is less than the cost for a subset of the power system for an air core system (dual rectifier and DC switch). There is considerable work being done on other methods of initiating the plasma none of which seem to be incompatible with the use of an iron core system

  14. Tuning dipolar magnetic interactions by controlling individual silica coating of iron oxide nanoparticles

    Science.gov (United States)

    Rivas Rojas, P. C.; Tancredi, P.; Moscoso Londoño, O.; Knobel, M.; Socolovsky, L. M.

    2018-04-01

    Single and fixed size core, core-shell nanoparticles of iron oxides coated with a silica layer of tunable thickness were prepared by chemical routes, aiming to generate a frame of study of magnetic nanoparticles with controlled dipolar interactions. The batch of iron oxides nanoparticles of 4.5 nm radii, were employed as cores for all the coated samples. The latter was obtained via thermal decomposition of organic precursors, resulting on nanoparticles covered with an organic layer that was subsequently used to promote the ligand exchange in the inverse microemulsion process, employed to coat each nanoparticle with silica. The amount of precursor and times of reaction was varied to obtain different silica shell thicknesses, ranging from 0.5 nm to 19 nm. The formation of the desired structures was corroborated by TEM and SAXS measurements, the core single-phase spinel structure was confirmed by XRD, and superparamagnetic features with gradual change related to dipolar interaction effects were obtained by the study of the applied field and temperature dependence of the magnetization. To illustrate that dipolar interactions are consistently controlled, the main magnetic properties are presented and analyzed as a function of center to center minimum distance between the magnetic cores.

  15. Scalable high-affinity stabilization of magnetic iron oxide nanostructures by a biocompatible antifouling homopolymer

    KAUST Repository

    Luongo, Giovanni; Campagnolo, Paola; Perez, Jose E.; Kosel, Jü rgen; Georgiou, Theoni K.; Regoutz, Anna; Payne, David J; Stevens, Molly M.; Ryan, Mary P.; Porter, Alexandra E; Dunlop, Iain E

    2017-01-01

    Iron oxide nanostructures have been widely developed for biomedical applications, due to their magnetic properties and biocompatibility. In clinical application, the stabilization of these nanostructures against aggregation and non-specific interactions is typically achieved using weakly anchored polysaccharides, with better-defined and more strongly anchored synthetic polymers not commercially adopted due to complexity of synthesis and use. Here, we show for the first time stabilization and biocompatibilization of iron oxide nanoparticles by a synthetic homopolymer with strong surface anchoring and a history of clinical use in other applications, poly(2-methacryloyloxyethy phosphorylcholine) (poly(MPC)). For the commercially important case of spherical particles, binding of poly(MPC) to iron oxide surfaces and highly effective individualization of magnetite nanoparticles (20 nm) are demonstrated. Next-generation high-aspect ratio nanowires (both magnetite/maghemite and core-shell iron/iron oxide) are furthermore stabilized by poly(MPC)-coating, with nanowire cytotoxicity at large concentrations significantly reduced. The synthesis approach is exploited to incorporate functionality into the poly(MPC) chain is demonstrated by random copolymerization with an alkyne-containing monomer for click-chemistry. Taking these results together, poly(MPC) homopolymers and random copolymers offer a significant improvement over current iron oxide nanoformulations, combining straightforward synthesis, strong surface-anchoring and well-defined molecular weight.

  16. Scalable high-affinity stabilization of magnetic iron oxide nanostructures by a biocompatible antifouling homopolymer

    KAUST Repository

    Luongo, Giovanni

    2017-10-12

    Iron oxide nanostructures have been widely developed for biomedical applications, due to their magnetic properties and biocompatibility. In clinical application, the stabilization of these nanostructures against aggregation and non-specific interactions is typically achieved using weakly anchored polysaccharides, with better-defined and more strongly anchored synthetic polymers not commercially adopted due to complexity of synthesis and use. Here, we show for the first time stabilization and biocompatibilization of iron oxide nanoparticles by a synthetic homopolymer with strong surface anchoring and a history of clinical use in other applications, poly(2-methacryloyloxyethy phosphorylcholine) (poly(MPC)). For the commercially important case of spherical particles, binding of poly(MPC) to iron oxide surfaces and highly effective individualization of magnetite nanoparticles (20 nm) are demonstrated. Next-generation high-aspect ratio nanowires (both magnetite/maghemite and core-shell iron/iron oxide) are furthermore stabilized by poly(MPC)-coating, with nanowire cytotoxicity at large concentrations significantly reduced. The synthesis approach is exploited to incorporate functionality into the poly(MPC) chain is demonstrated by random copolymerization with an alkyne-containing monomer for click-chemistry. Taking these results together, poly(MPC) homopolymers and random copolymers offer a significant improvement over current iron oxide nanoformulations, combining straightforward synthesis, strong surface-anchoring and well-defined molecular weight.

  17. Iron-rich Oxides at the Core-mantle Boundary

    Science.gov (United States)

    Wicks, J. K.; Jackson, J. M.; Sturhahn, W.; Bower, D. J.; Zhuravlev, K. K.; Prakapenka, V.

    2013-12-01

    Seismic observations near the base of the core-mantle boundary (CMB) have detected 5-20 km thick patches in which the seismic wave velocities are reduced by up to 30%. These ultra-low velocity zones (ULVZs) have been interpreted as aggregates of partially molten material (e.g. Williams and Garnero 1996, Hernlund and Jellinek, 2010) or as solid, iron-enriched residues (e.g. Knittle and Jeanloz, 1991; Mao et al., 2006; Wicks et al., 2010), typically based on proposed sources of velocity reduction. The stabilities of these structure types have been explored through dynamic models that have assembled a relationship between ULVZ stability and density (Hernlund and Tackley, 2007; Bower et al., 2010). Now, to constrain the chemistry and mineralogy of ULVZs, more information is needed on the relationship between density and sound velocity of candidate phases. We present the pressure-volume-temperature equation of state of (Mg0.06 57Fe0.94)O determined up to pressures of 120 GPa and temperatures of 2000 K. Volume was measured with X-ray diffraction at beamline 13-ID-D of the Advanced Photon Source (APS), where high pressures and temperatures are achieved in a diamond anvil cell with in-situ laser heating. Sample assemblies were prepared using dehydrated NaCl as an insulator and neon as a pressure transmitting medium. We present results with and without iron as a buffer and thermal pressure gauge. We have also determined the room temperature Debye velocity (VD) of (Mg0.06 57Fe0.94)O using nuclear resonant inelastic x-ray scattering and in-situ X-ray diffraction, up to 80 GPa at 3-ID-B of the APS. The effect of the electronic environment of the iron sites on the velocities was tracked in-situ using synchrotron Moessbauer spectroscopy. Using our measured equation of state, the seismically relevant compressional (VP) and shear (VS) wave velocities were calculated from the Debye velocities. We combine these studies with a simple mixing model to predict the properties of a solid

  18. Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy, Manjunath; Vehkamäki, Marko [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Kukli, Kaupo, E-mail: kaupo.kukli@helsinki.fi [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); University of Tartu, Institute of Physics, W. Ostwald 1, EE-50411 Tartu (Estonia); Dimri, Mukesh Chandra [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Kemell, Marianna; Hatanpää, Timo; Heikkilä, Mikko J. [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Mizohata, Kenichiro [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 Helsinki (Finland); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Ritala, Mikko; Leskelä, Markku [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-07-29

    Bismuth iron oxide films with varying contributions from Fe{sub 2}O{sub 3} or Bi{sub 2}O{sub 3} were prepared using atomic layer deposition. Bismuth (III) 2,3-dimethyl-2-butoxide, was used as the bismuth source, iron(III) tert-butoxide as the iron source and water vapor as the oxygen source. The films were deposited as stacks of alternate Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} layers. Films grown at 140 °C to the thickness of 200–220 nm were amorphous, but crystallized upon post-deposition annealing at 500 °C in nitrogen. Annealing of films with intermittent bismuth and iron oxide layers grown to different thicknesses influenced their surface morphology, crystal structure, composition, electrical and magnetic properties. Implications of multiferroic performance were recognized in the films with the remanent charge polarization varying from 1 to 5 μC/cm{sup 2} and magnetic coercivity varying from a few up to 8000 A/m. - Highlights: • Bismuth iron oxide thin films were grown by atomic layer deposition at 140 °C. • The major phase formed in the films upon annealing at 500 °C was BiFeO{sub 3}. • BiFeO{sub 3} films and films containing excess Bi favored electrical charge polarization. • Slight excess of iron oxide enhanced saturative magnetization behavior.

  19. Carbon-Supported Iron Oxide Particles

    DEFF Research Database (Denmark)

    Meaz, T.; Mørup, Steen; Koch, C. Bender

    1996-01-01

    A carbon black ws impregnated with 6 wt% iron using an aqueous solution of iron nitrate. The impregnated carbon was initially dried at 125 C. The effect of heating of the iron oxide phase was investigated at temperatures between 200 and 600 C using Mossbauer spectroscopy. All heat treatments were...... done in an oxygen-containing atmosphere. Ferrihydrite is formed and is stable at and below a temperature of 300 C. At 600 C small particles of maghemite is the dominant iron oxide. A transformation reaction is suggested....

  20. Preparation of yttrium iron garnet (YIG) by modified domestic iron oxide

    International Nuclear Information System (INIS)

    Mozaffari, M.; Amighian

    2002-01-01

    Iron oxide by product of a local steel complex was modified to use for preparation of Yttrium iron garnet (YIG). The improvement was necessary to reduce impurities, especially the Si0 2 and Cl contents, which have deteriorative effects on magnetic properties and equipment used for preparation of the samples. The modified iron oxide was then mixed with Yttrium oxide of Merck Company in appropriate proportion to obtain a stoichiometric single phase YIG, using the conventional ceramic technique. XRD and SEM equipments were used to identify the resulting phases and microstructure respectively. Magnetic parameters were measured by VSM. Curie temperature of the samples was obtained by DTG (M) method. The results were compared with those obtained from samples that made by Merck iron oxide. There are small differences between the results. This was discussed according to extra pores and minute secondary phase in the samples made by domestic iron oxide. (Author)

  1. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    Science.gov (United States)

    Scholz, Florian; Löscher, Carolin R.; Fiskal, Annika; Sommer, Stefan; Hensen, Christian; Lomnitz, Ulrike; Wuttig, Kathrin; Göttlicher, Jörg; Kossel, Elke; Steininger, Ralph; Canfield, Donald E.

    2016-11-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface. Even in the anoxic water of oxygen minimum zones, where iron solubility should be enhanced, most of the iron is rapidly re-precipitated. To constrain the mechanism(s) of iron removal in anoxic ocean regions we explored the sediment and water in the oxygen minimum zone off Peru. During our sampling campaign the water column featured two distinct redox boundaries separating oxic from nitrate-reducing (i.e., nitrogenous) water and nitrogenous from weakly sulfidic water. The sulfidic water mass in contact with the shelf sediment contained elevated iron concentrations >300 nM. At the boundary between sulfidic and nitrogenous conditions, iron concentrations dropped sharply to <20 nM coincident with a maximum in particulate iron concentration. Within the iron gradient, we found an increased expression of the key functional marker gene for nitrate reduction (narG). Part of this upregulation was related to the activity of known iron-oxidizing bacteria. Collectively, our data suggest that iron oxidation and removal is induced by nitrate-reducing microbes, either enzymatically through anaerobic iron oxidation or by providing nitrite for an abiotic reaction. Given the important role that iron plays in nitrogen fixation, photosynthesis and respiration, nitrate-dependent iron oxidation likely represents a key-link between the marine biogeochemical cycles of nitrogen, oxygen and carbon.

  2. When Density Functional Approximations Meet Iron Oxides.

    Science.gov (United States)

    Meng, Yu; Liu, Xing-Wu; Huo, Chun-Fang; Guo, Wen-Ping; Cao, Dong-Bo; Peng, Qing; Dearden, Albert; Gonze, Xavier; Yang, Yong; Wang, Jianguo; Jiao, Haijun; Li, Yongwang; Wen, Xiao-Dong

    2016-10-11

    Three density functional approximations (DFAs), PBE, PBE+U, and Heyd-Scuseria-Ernzerhof screened hybrid functional (HSE), were employed to investigate the geometric, electronic, magnetic, and thermodynamic properties of four iron oxides, namely, α-FeOOH, α-Fe 2 O 3 , Fe 3 O 4 , and FeO. Comparing our calculated results with available experimental data, we found that HSE (a = 0.15) (containing 15% "screened" Hartree-Fock exchange) can provide reliable values of lattice constants, Fe magnetic moments, band gaps, and formation energies of all four iron oxides, while standard HSE (a = 0.25) seriously overestimates the band gaps and formation energies. For PBE+U, a suitable U value can give quite good results for the electronic properties of each iron oxide, but it is challenging to accurately get other properties of the four iron oxides using the same U value. Subsequently, we calculated the Gibbs free energies of transformation reactions among iron oxides using the HSE (a = 0.15) functional and plotted the equilibrium phase diagrams of the iron oxide system under various conditions, which provide reliable theoretical insight into the phase transformations of iron oxides.

  3. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.

    Science.gov (United States)

    Wang, Chongmin; Baer, Donald R; Amonette, James E; Engelhard, Mark H; Antony, Jiji; Qiang, You

    2009-07-01

    An iron (Fe) nanoparticle exposed to air at room temperature will be instantly covered by an oxide shell that is typically approximately 3 nm thick. The nature of this native oxide shell, in combination with the underlying Fe(0) core, determines the physical and chemical behavior of the core-shell nanoparticle. One of the challenges of characterizing core-shell nanoparticles is determining the structure of the oxide shell, that is, whether it is FeO, Fe(3)O(4), gamma-Fe(2)O(3), alpha-Fe(2)O(3), or something else. The results of prior characterization efforts, which have mostly used X-ray diffraction and spectroscopy, electron diffraction, and transmission electron microscopic imaging, have been framed in terms of one of the known Fe-oxide structures, although it is not necessarily true that the thin layer of Fe oxide is a known Fe oxide. In this Article, we probe the structure of the oxide shell on Fe nanoparticles using electron energy loss spectroscopy (EELS) at the oxygen (O) K-edge with a spatial resolution of several nanometers (i.e., less than that of an individual particle). We studied two types of representative particles: small particles that are fully oxidized (no Fe(0) core) and larger core-shell particles that possess an Fe core. We found that O K-edge spectra collected for the oxide shell in nanoparticles show distinct differences from those of known Fe oxides. Typically, the prepeak of the spectra collected on both the core-shell and the fully oxidized particles is weaker than that collected on standard Fe(3)O(4). Given the fact that the origin of this prepeak corresponds to the transition of the O 1s electron to the unoccupied state of O 2p hybridized with Fe 3d, a weak pre-edge peak indicates a combination of the following four factors: a higher degree of occupancy of the Fe 3d orbital; a longer Fe-O bond length; a decreased covalency of the Fe-O bond; and a measure of cation vacancies. These results suggest that the coordination configuration in

  4. Iron oxide surfaces

    Science.gov (United States)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  5. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments.

    Science.gov (United States)

    Hori, Tomoyuki; Aoyagi, Tomo; Itoh, Hideomi; Narihiro, Takashi; Oikawa, Azusa; Suzuki, Kiyofumi; Ogata, Atsushi; Friedrich, Michael W; Conrad, Ralf; Kamagata, Yoichi

    2015-01-01

    Reduction of crystalline Fe(III) oxides is one of the most important electron sinks for organic compound oxidation in natural environments. Yet the limited number of isolates makes it difficult to understand the physiology and ecological impact of the microorganisms involved. Here, two-stage cultivation was implemented to selectively enrich and isolate crystalline iron(III) oxide reducing microorganisms in soils and sediments. Firstly, iron reducers were enriched and other untargeted eutrophs were depleted by 2-years successive culture on a crystalline ferric iron oxide (i.e., goethite, lepidocrocite, hematite, or magnetite) as electron acceptor. Fifty-eight out of 136 incubation conditions allowed the continued existence of microorganisms as confirmed by PCR amplification. High-throughput Illumina sequencing and clone library analysis based on 16S rRNA genes revealed that the enrichment cultures on each of the ferric iron oxides contained bacteria belonging to the Deltaproteobacteria (mainly Geobacteraceae), followed by Firmicutes and Chloroflexi, which also comprised most of the operational taxonomic units (OTUs) identified. Venn diagrams indicated that the core OTUs enriched with all of the iron oxides were dominant in the Geobacteraceae while each type of iron oxides supplemented selectively enriched specific OTUs in the other phylogenetic groups. Secondly, 38 enrichment cultures including novel microorganisms were transferred to soluble-iron(III) containing media in order to stimulate the proliferation of the enriched iron reducers. Through extinction dilution-culture and single colony isolation, six strains within the Deltaproteobacteria were finally obtained; five strains belonged to the genus Geobacter and one strain to Pelobacter. The 16S rRNA genes of these isolates were 94.8-98.1% identical in sequence to cultured relatives. All the isolates were able to grow on acetate and ferric iron but their physiological characteristics differed considerably in

  6. 21 CFR 73.1200 - Synthetic iron oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically prepared...

  7. 21 CFR 73.200 - Synthetic iron oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically prepared...

  8. Toroidal equilibrium in an iron-core reversed field pinch

    International Nuclear Information System (INIS)

    Miller, G.

    1984-04-01

    An analytical theory of toroidal equilibrium in the ZT-40M reversed field pinch is obtained, including effects of iron cores and resistive shell. The iron cores alter the form of the equilibrium condition and cause the equilibrium to be unstable on the shell resistive time scale

  9. Experimental evidence of body centered cubic iron in Earth's core

    Science.gov (United States)

    Hrubiak, R.; Meng, Y.; Shen, G.

    2017-12-01

    The Earth's core is mainly composed of iron. While seismic evidence has shown a liquid outer core and a solid inner core, the crystalline nature of the solid iron at the core condition remains debated, largely due to the difficulties in experimental determination of exact polymorphs at corresponding pressure-temperature conditions. We have examined crystal structures of iron up to 220 GPa and 6000 K with x-ray diffraction using a double-sided laser heating system at HPCAT, Advanced Photon Source. The iron sample is confined in a small chamber surrounded by single crystal MgO. The laser power can be modulated together with temperature measurements. The modulated heating of iron in an MgO single crystal matrix allows for microstructure analysis during heating and after the sample is quenched. We present experimental evidence of a body-centered-cubic (BCC) iron from about 100 GPa and 3000 K to at least 220 GPa and 4000 K. The observed BCC phase may be consistent with a theoretically predicted BCC phase that is dynamically stable in similar pressure-temperature conditions [1]. We will discuss the stability region of the BCC phase and the melting curve of iron and their implications in the nature of the Earth's inner core. References: A. B. Belonoshko et al., Nat. Geosci., 1-6 (2017).

  10. Thermally stimulated iron oxide transformations and magnetic behaviour of cerium dioxide/iron oxide reactive sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Luňáček, J., E-mail: jiri.lunacek@vsb.cz [Department of Physics, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Department 606, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Životský, O. [Department of Physics, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Department 606, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Jirásková, Y. [CEITEC IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Buršík, J. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Janoš, P. [Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem (Czech Republic)

    2016-10-15

    The present paper is devoted to detailed study of the magnetically separable sorbents based on a cerium dioxide/iron oxide composite annealed at temperatures T{sub a} = 773 K, 873 K, and 973 K. The X-ray diffraction and high resolution transmission electron microscopy are used to determine the phase composition and microstructure morphology. Mössbauer spectroscopy at room (300 K) and low (5 K) temperatures has contributed to more exact identification of iron oxides and their transformations Fe{sub 3}O{sub 4} → γ-Fe{sub 2}O{sub 3} (ε-Fe{sub 2}O{sub 3}) → α-Fe{sub 2}O{sub 3} in dependence on calcination temperature. Different iron oxide phase compositions and grain size distributions influence the magnetic characteristics determined from the room- and low-temperature hysteresis loop measurements. The results are supported by zero-field-cooled and field-cooled magnetization measurements allowing a quantitative estimation of the grain size distribution and its effect on the iron oxide transformations. - Highlights: •Magnetically separable sorbents based on a CeO{sub 2}/Fe{sub 2}O{sub 3} composite were investigated. •Microstructure of sorbents was determined by XRD, TEM and Mössbauer spectroscopy. •Magnetic properties were studied by hysteresis loops at room- and low-temperatures. •Phase transitions of iron oxides with increasing annealing temperature are observed.

  11. Bio-inspired Iron Catalysts for Hydrocarbon Oxidations

    Energy Technology Data Exchange (ETDEWEB)

    Que, Jr., Lawrence [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-03-22

    Stereoselective oxidation of C–H and C=C bonds are catalyzed by nonheme iron enzymes. Inspired by these bioinorganic systems, our group has been exploring the use of nonheme iron complexes as catalysts for the oxidation of hydrocarbons using H2O2 as an environmentally friendly and atom-efficient oxidant in order to gain mechanistic insights into these novel transformations. In particular, we have focused on clarifying the nature of the high-valent iron oxidants likely to be involved in these transformations.

  12. Iron oxide nanoparticles: the Influence of synthesis method and size on composition and magnetic properties

    International Nuclear Information System (INIS)

    Carvalho, M.D.; Henriques, F.; Ferreira, L.P.; Godinho, M.; Cruz, M.M.

    2013-01-01

    Iron oxide nanoparticles with mean diameter ranging from 7 to 20 nm were synthesized using two routes: the precipitation method in controlled atmosphere and a reduction–precipitation method under air, in some cases followed by a hydrothermal treatment. The smallest nanoparticles were obtained by the reduction–precipitation method. In order to establish the composition of the iron oxide nanoparticles and its relation with size, the morphological, structural and magnetic properties of the prepared samples were investigated using X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy and SQUID magnetometry. The results allow to conclude that the nanoparticles can be essentially described as Fe 3−x O 4 , x decreasing with the particle size increase. The composition and magnetic behavior of the synthesized iron oxide nanoparticles are directly related with their size. The overall results are compatible with a core@shell structure model, where a magnetite core is surrounded by an oxidized magnetite layer (labeled as maghemite), the magnetite core dimension depending on the average particle size. - Graphical abstract: TEM images and Mössbauer spectroscopy spectra of Fe 3−x O 4 samples with different sizes. Highlights: ► Fe 3−x O 4 nanoparticles with a mean size between 7 and 20 nm were synthesized. ► The smallest nanoparticles were obtained by a reduction precipitation method, under air. ► The increase of particles size was succeeded using a hydrothermal treatment at 150 °C. ► The magnetic properties of the nanoparticles are directly related with their size

  13. Amorphous structure of iron oxide of bacterial origin

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hideki; Fujii, Tatsuo [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Asaoka, Hiroshi [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Kusano, Yoshihiro [Department of Fine and Applied Arts, Kurashiki University of Science and the Arts, Kurashiki, Okayama 712-8505 (Japan); Ikeda, Yasunori [Research Institute for Production Development, Sakyo-ku, Kyoto 606-0805 (Japan); Nakanishi, Makoto [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Benino, Yasuhiko; Nanba, Tokuro [Graduate School of Environmental Science, Okayama University, Okayama 700-8530 (Japan); Takada, Jun, E-mail: jtakada@cc.okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan)

    2012-12-14

    In nature, there are various iron oxides produced by the water-habitant bacterial group called 'iron-oxidizing bacteria'. These iron oxides have been studied mainly from biological and geochemical perspectives. Today, attempts are made to use such iron oxides as novel functional materials in several applications. However, their quantitative structural characteristics are still unclear. We studied the structure of iron oxide of microtubular form consisting of amorphous nanoparticles formed by an iron-oxidizing bacterium, Leptothrix ochracea, using a combination of high-energy X-ray diffraction and reverse Monte Carlo simulation. We found that its structure consists of a framework of corner- and edge-sharing distorted FeO{sub 6} octahedral units, while SiO{sub 4} tetrahedral units are isolated in the framework. The results reveal the atomic arrangement of iron oxide of bacterial origin, which is essential for investigating its potential as a functional material. -- Highlights: Black-Right-Pointing-Pointer The amorphous structure of bacterial iron oxide was investigated. Black-Right-Pointing-Pointer The structure was simulated by high-energy X-ray diffraction and reverse Monte Carlo simulation. Black-Right-Pointing-Pointer The structure was constructed of a framework of corner- and edge-sharing distorted FeO{sub 6} octahedral units. Black-Right-Pointing-Pointer SiO{sub 4} tetrahedral units were distributed isolatedly in the framework of FeO{sub 6} octahedral units.

  14. Diffusion of hydrogen in iron oxides

    International Nuclear Information System (INIS)

    Bruzzoni, P.

    1993-01-01

    The diffusion of hydrogen in transitions metals oxides has been recently studied at room temperature through the permeability electrochemical technique. This work studies thin oxide layers grown in air or in presence of oxidizing atmospheres at temperatures up to 200 deg C. The substrate was pure iron with different superficial treatments. It was observed that these oxides reduce up to three magnitudes orders, the hydrogen stationary flux through membranes of usual thickness in comparison with iron membranes free of oxide. (Author)

  15. Selectivity in the oxidative dehydrogenation of butene on zinc-iron oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kung, H.H.; Kundalkar, B.; Kung, M.C.; Cheng, W.H.

    1980-02-21

    Adsorption, temperature-programed desorption, and pulse reaction studies of cis-2-butene and butadiene on spinel zinc ferrite by previously described methods provided evidence that the selectivity for oxidative dehydrogenation of butenes increases when zinc is added to the iron oxide catalyst because selective oxidation and complete oxidation proceed on separate sites, as they do on pure iron; because the density of sites for selective oxidation is higher and the density of sites for complete combustion is lower than on pure iron oxide; and because the activity of the combustion sites is lower.

  16. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires

    Science.gov (United States)

    Leandro Londoño-Calderón, César; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-01

    A straightforward method for the synthesis of CoFe2.7/CoFe2O4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe2O4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  17. Enhanced bio-compatibility of ferrofluids of self-assembled superparamagnetic iron oxide-silica core-shell nanoparticles

    Digital Repository Service at National Institute of Oceanography (India)

    Narayanan, T.N.; Mary, A.P.R.; Swalih, P.K.A.; Kumar, D.S.; Makarov, D.; Albrecht, M.; Puthumana, J.; Anas, A.; Anantharaman, A.

    -interacting, monodispersed and hence the synthesis of such nanostructures has great relevance in the realm of nanoscience. Silica-coated superparamagnetic iron oxide nanoparticles based ferrofluids were prepared using polyethylene glycol as carrier fluid by employing a...

  18. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments.

    Science.gov (United States)

    Egger, Matthias; Rasigraf, Olivia; Sapart, Célia J; Jilbert, Tom; Jetten, Mike S M; Röckmann, Thomas; van der Veen, Carina; Bândă, Narcisa; Kartal, Boran; Ettwig, Katharina F; Slomp, Caroline P

    2015-01-06

    Methane is a powerful greenhouse gas and its biological conversion in marine sediments, largely controlled by anaerobic oxidation of methane (AOM), is a crucial part of the global carbon cycle. However, little is known about the role of iron oxides as an oxidant for AOM. Here we provide the first field evidence for iron-dependent AOM in brackish coastal surface sediments and show that methane produced in Bothnian Sea sediments is oxidized in distinct zones of iron- and sulfate-dependent AOM. At our study site, anthropogenic eutrophication over recent decades has led to an upward migration of the sulfate/methane transition zone in the sediment. Abundant iron oxides and high dissolved ferrous iron indicate iron reduction in the methanogenic sediments below the newly established sulfate/methane transition. Laboratory incubation studies of these sediments strongly suggest that the in situ microbial community is capable of linking methane oxidation to iron oxide reduction. Eutrophication of coastal environments may therefore create geochemical conditions favorable for iron-mediated AOM and thus increase the relevance of iron-dependent methane oxidation in the future. Besides its role in mitigating methane emissions, iron-dependent AOM strongly impacts sedimentary iron cycling and related biogeochemical processes through the reduction of large quantities of iron oxides.

  19. Metal ion binding to iron oxides

    Science.gov (United States)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  20. Iron oxides characterization by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Basurto Sanchez, R.

    1993-01-01

    In this work rust development on low carbon wire surface after the conformation process at different temperatures was studied by Moessbauer spectroscopy. The characterization was made by determining the following spectral parameters; 1) Quadrupole splitting, 2) Isomer shift, and 3) Magnetic splitting. The area quantification determined the percentage amount of three different iron oxides. These iron oxides were: a) Wustite (Fe O), b) Hematite (Fe 2 O 3 ), and c) Magnetite (Fe 3 O 4 ) which were present in the rust studied. With the results it was possible to establish the best temperature to favor the development of each of these iron oxides. (Author)

  1. Reduction of vibrational interference from the iron core on HBTXIA

    International Nuclear Information System (INIS)

    Wilcock, P.D.

    1981-01-01

    The HBTXIA machine is a toroidal reversed field pinch which utilises a 1 volt second iron core. This paper looks briefly at the sources of vibration from the iron core and describes the design of a novel support system that has been installed to minimise the transmission of vibration to plasma diagnostics and other equipment during the machine pulse. Vibration measurements on the completed installation when the core is driven to saturation are reported and compared with calculations for a ground mounted core. (author)

  2. Fabrication and characterization of iron oxide dextran composite layers

    Science.gov (United States)

    Iconaru, S. L.; Predoi, S. A.; Beuran, M.; Ciobanu, C. S.; Trusca, R.; Ghita, R.; Negoi, I.; Teleanu, G.; Turculet, S. C.; Matei, M.; Badea, Monica; Prodan, A. M.

    2018-02-01

    Super paramagnetic iron oxide nanoparticles such as maghemite have been shown to exhibit antimicrobial properties [1-5]. Moreover, the iron oxide nanoparticles have been proposed as a potential magnetically controllable antimicrobial agent which could be directed to a specific infection [3-5]. The present research has focused on studies of the surface and structure of iron oxide dextran (D-IO) composite layers surface and structure. These composite layers were deposited on Si substrates. The structure of iron oxide dextran composite layers was investigated by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) while the surface morphology was evaluated by Scanning Electron Microscopy (SEM). The structural characterizations of the iron oxide dextran composite layers revealed the basic constituents of both iron and dextran structure. Furthermore, the in vitro evaluation of the antifungal effect of the complex layers, which have been shown revealed to be active against C. albicans cells at distinct intervals of time, is exhibited. Our research came to confirm the fungicidal effect of iron oxide dextran composite layers. Also, our results suggest that iron oxide dextran surface may be used for medical treatment of biofilm associated Candida infections.

  3. Deactivation of iron oxide used in the steam-iron process to produce hydrogen

    NARCIS (Netherlands)

    Bleeker, M.F.; Veringa, H.J.; Kersten, Sascha R.A.

    2009-01-01

    In the steam-iron process pure hydrogen can be produced from any hydrocarbon feedstock by using a redox cycle of iron oxide. One of the main problems connected to the use of the iron oxide is the inherent structural changes that take place during oxygen loading and unloading leading to severe

  4. Equilibrium and stability studies for an iron-core tokamak with a poloidal divertor

    International Nuclear Information System (INIS)

    Solano, E.R.; Neilson, G.H.; Lao, L.L.

    1989-01-01

    A study of plasma equilibrium and stability in a tokamak with an unsaturated iron core is presented. A spool model is developed for the iron. Both, a simplified force balance code and a Grad-Shafranov solver are used to study the plasma equilibrium. It is observed that the iron can strongly modify the conditions for equilibrium and stability, and in some cases an infinite cylinder model for the iron core is not adequate. New criteria for plasma position stability in the presence of an iron core are introduced. 17 refs., 4 figs., 3 tabs

  5. On the crystalline structures of iron oxides formed during the removal process of iron in water

    International Nuclear Information System (INIS)

    Cho, Bongyeon; Fujita, Kenji; Oda, Katsuro; Ino, Hiromitsu

    1993-01-01

    The iron oxide samples collected from both filtration and batch reactors were analysed by X-ray diffraction and Moessbauer spectroscopy. In the filtration of water containing iron, the oxidized form of iron was determined to be ferrihydrite. In contrast, in the batch experiment without filtration, iron was oxidized to microcrystalline goethite. (orig.)

  6. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    Science.gov (United States)

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances. Copyright © 2014. Published by Elsevier B.V.

  7. Defluoridation by Bacteriogenic Iron Oxides: Sorption Studies

    Science.gov (United States)

    Evans, K.; Ferris, F.

    2009-05-01

    At concentrations above 1 mg/L, fluoride in drinking water can lead to dental and skeletal fluorosis, a disease that causes mottling of the teeth, calcification of ligaments, crippling bone deformities and many other physiological disorders that can, ultimately, lead to death. Conservative estimates are that fluorosis afflicts tens of millions of people worldwide. As there is no treatment for fluorosis, prevention is the only means of controlling the disease. While numerous defluoridation techniques have been explored, no single method has been found to be both effective and inexpensive enough to implement widely. Our research began in India, with a large-scale geochemical study of the groundwater in a fluoride-contaminated region of Orissa. Having developed a better understanding of the geochemical relationships that exist between fluoride and other parameters present in an affected area, as well as the complex relationships that arise among those parameters that can impact the presence of fluoride, we began investigating certain remediation scenarios involving iron oxides. A common approach to remediation involves the partitioning of fluoride from groundwater by sorption onto a variety of materials, one of the most effective of which is iron oxide whose surface area acts as a scavenger for fluoride. In the presence of iron oxidizing bacteria, the oxidation rate of iron has been shown to be ˜6 times greater than in their absence; fluoride should, therefore, be removed from an aqueous environment by bacteriogenic iron oxides (BIOS) much more quickly than by abiotic iron oxides. Most recently, sorption studies have been conducted using both BIOS and synthetic hydrous ferric oxides in order to compare the behavior between biotic and abiotic sorbents. These studies have provided sorption isotherms that allow comparison of fluoride removed by sorption to BIOS versus synthetic iron oxides. Sorption affinity constants have also been determined, which allow for the

  8. Reduction Behaviors of Carbon Composite Iron Oxide Briquette Under Oxidation Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Woo; Kim, Kang-Min; Kwon, Jae-Hong; Han, Jeong-Whan [Inha University, Incheon (Korea, Republic of); Son, Sang-Han [POSCO, Pohang (Korea, Republic of)

    2017-01-15

    The carbon composite iron oxide briquette (CCB) is considered a potential solution to the upcoming use of low grade iron resources in the ironmaking process. CCB is able to reduce raw material cost by enabling the use of low grade powdered iron ores and coal. Additionally, the fast reduction of iron oxides by direct contact with coal can be utilized. In this study, the reduction behaviors of CCB were investigated in the temperature range of 200-1200 ℃ under oxidizing atmosphere. Briquettes were prepared by mixing iron ore and coal in a weight ratio of 8:2. Then reduction experiments were carried out in a mixed gas atmosphere of N{sub 2}, O{sub 2}, and CO{sub 2}. Compressive strength tests and quantitative analysis were performed by taking samples at each target temperature. In addition, the reduction degree depending on the reaction time was evaluated by off-gas analysis during the reduction test. It was found that the compressive strength and the metallization degree of the reduced briquettes increased with increases in the reaction temperature and holding time. However, it tended to decrease when the re-oxidation phenomenon was caused by injected oxygen. The degree of reduction reached a maximum value in 26 minutes. Therefore, the re-oxidation phenomenon becomes dominant after 26 minutes.

  9. The end of the iron-core age.

    Science.gov (United States)

    Lyttleton, R. A.

    1973-01-01

    The terrestrial planets aggregated essentially from small particles, to begin as solid cool bodies with the same general compositions, and there is no possibility of an iron-core developing within any of them at any stage. Their differing internal and surface properties receive ready explanation from their different masses which determine whether the pressures within are sufficient to bring about phase-changes. The claim that the terrestrial core can be identified by means of shock-wave data as nickel-iron is based on theoretical misconception, whereas the actual seismic data establish an uncompressed-density value much lower than any such mixture could have. The onset of the Ramsey phase-change in the earth takes the form of a rapid initial collapse to produce a large core in metallic state which thereafter continues to grow secularly as a result of radioactive heating and leads to reduction of surface-area at long last adequate to account for folded and thrusted mountain-building.

  10. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments.

    Science.gov (United States)

    Bonnefoy, Violaine; Holmes, David S

    2012-07-01

    This minireview presents recent advances in our understanding of iron oxidation and homeostasis in acidophilic Bacteria and Archaea. These processes influence the flux of metals and nutrients in pristine and man-made acidic environments such as acid mine drainage and industrial bioleaching operations. Acidophiles are also being studied to understand life in extreme conditions and their role in the generation of biomarkers used in the search for evidence of existing or past extra-terrestrial life. Iron oxidation in acidophiles is best understood in the model organism Acidithiobacillus ferrooxidans. However, recent functional genomic analysis of acidophiles is leading to a deeper appreciation of the diversity of acidophilic iron-oxidizing pathways. Although it is too early to paint a detailed picture of the role played by lateral gene transfer in the evolution of iron oxidation, emerging evidence tends to support the view that iron oxidation arose independently more than once in evolution. Acidic environments are generally rich in soluble iron and extreme acidophiles (e.g. the Leptospirillum genus) have considerably fewer iron uptake systems compared with neutrophiles. However, some acidophiles have been shown to grow as high as pH 6 and, in the case of the Acidithiobacillus genus, to have multiple iron uptake systems. This could be an adaption allowing them to respond to different iron concentrations via the use of a multiplicity of different siderophores. Both Leptospirillum spp. and Acidithiobacillus spp. are predicted to synthesize the acid stable citrate siderophore for Fe(III) uptake. In addition, both groups have predicted receptors for siderophores produced by other microorganisms, suggesting that competition for iron occurs influencing the ecophysiology of acidic environments. Little is known about the genetic regulation of iron oxidation and iron uptake in acidophiles, especially how the use of iron as an energy source is balanced with its need to take up

  11. Synthesis and characterization of dextran-coated iron oxide nanoparticles

    Science.gov (United States)

    Predescu, Andra Mihaela; Matei, Ecaterina; Berbecaru, Andrei Constantin; Pantilimon, Cristian; Drăgan, Claudia; Vidu, Ruxandra; Predescu, Cristian; Kuncser, Victor

    2018-03-01

    Synthesis and characterization of iron oxide nanoparticles coated with a large molar weight dextran for environmental applications are reported. The first experiments involved the synthesis of iron oxide nanoparticles which were coated with dextran at different concentrations. The synthesis was performed by a co-precipitation technique, while the coating of iron oxide nanoparticles was carried out in solution. The obtained nanoparticles were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction spectrometry, Fourier transform infrared spectroscopy and superconducting quantum interference device magnetometry. The results demonstrated a successful coating of iron oxide nanoparticles with large molar weight dextran, of which agglomeration tendency depended on the amount of dextran in the coating solution. SEM and TEM observations have shown that the iron oxide nanoparticles are of about 7 nm in size.

  12. Bioconjugated iron oxide nanocubes: synthesis, functionalization, and vectorization.

    Science.gov (United States)

    Wortmann, Laura; Ilyas, Shaista; Niznansky, Daniel; Valldor, Martin; Arroub, Karim; Berger, Nadja; Rahme, Kamil; Holmes, Justin; Mathur, Sanjay

    2014-10-08

    A facile bottom-up approach for the synthesis of inorganic/organic bioconjugated nanoprobes based on iron oxide nanocubes as the core with a nanometric silica shell is demonstrated. Surface coating and functionalization protocols developed in this work offered good control over the shell thickness (8-40 nm) and enabled biovectorization of SiO2@Fe3O4 core-shell structures by covalent attachment of folic acid (FA) as a targeting unit for cellular uptake. The successful immobilization of folic acid was investigated both quantitatively (TGA, EA, XPS) and qualitatively (AT-IR, UV-vis, ζ-potential). Additionally, the magnetic behavior of the nanocomposites was monitored after each functionalization step. Cell viability studies confirmed low cytotoxicity of FA@SiO2@Fe3O4 conjugates, which makes them promising nanoprobes for targeted internalization by cells and their imaging.

  13. Zero-valent iron treatment of dark brown colored coffee effluent: Contributions of a core-shell structure to pollutant removals.

    Science.gov (United States)

    Tomizawa, Mayuka; Kurosu, Shunji; Kobayashi, Maki; Kawase, Yoshinori

    2016-12-01

    The decolorization and total organic carbon (TOC) removal of dark brown colored coffee effluent by zero-valent iron (ZVI) have been systematically examined with solution pH of 3.0, 4.0, 6.0 and 8.0 under oxic and anoxic conditions. The optimal decolorization and TOC removal were obtained at pH 8.0 with oxic condition. The maximum efficiencies of decolorization and TOC removal were 92.6 and 60.2%, respectively. ZVI presented potential properties for pollutant removal at nearly neutral pH because of its core-shell structure in which shell or iron oxide/hydroxide layer on ZVI surface dominated the decolorization and TOC removal of coffee effluent. To elucidate the contribution of the core-shell structure to removals of color and TOC at the optimal condition, the characterization of ZVI surface by scanning electron microscopy (SEM) with an energy dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) was conducted. It was confirmed that the core-shell structure was formed and the shell on ZVI particulate surface and the precipitates formed during the course of ZVI treatment consisted of iron oxides and hydroxides. They were significantly responsible for decolorization and TOC removal of coffee effluent via adsorption to shell on ZVI surface and inclusion into the precipitates rather than the oxidative degradation by OH radicals and the reduction by emitted electrons. The presence of dissolved oxygen (DO) enhanced the formation of the core-shell structure and as a result improved the efficiency of ZVI treatment for the removal of colored components in coffee effluents. ZVI was found to be an efficient material toward the treatment of coffee effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. One step paired electrochemical synthesis of iron and iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Ordoukhanian Juliet

    2016-09-01

    Full Text Available In this study, a new one step paired electrochemical method is developed for simultaneous synthesis of iron and iron oxide nanoparticles. iron and iron oxide are prepared as cathodic and anodic products from iron (ii sulfate aqueous solution in a membrane divided electrolytic cell by the pulsed current electrosynthesis. Because of organic solvent-free and electrochemical nature of the synthesis, the process could be considered as green and environmentally friendly. The reduction of energy consumption and low cost are the other significant advantages of this new method that would have a great application potential in the chemical industry. The nanostructure of prepared samples was characterized by Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The magnetic properties were studied by vibrating sample magnetometer (VsM.

  15. Soft template strategy to synthesize iron oxide-titania yolk-shell nanoparticles as high-performance anode materials for lithium-ion battery applications.

    Science.gov (United States)

    Lim, Joohyun; Um, Ji Hyun; Ahn, Jihoon; Yu, Seung-Ho; Sung, Yung-Eun; Lee, Jin-Kyu

    2015-05-18

    Yolk-shell-structured nanoparticles with iron oxide core, void, and a titania shell configuration are prepared by a simple soft template method and used as the anode material for lithium ion batteries. The iron oxide-titania yolk-shell nanoparticles (IO@void@TNPs) exhibit a higher and more stable capacity than simply mixed nanoparticles of iron oxide and hollow titania because of the unique structure obtained by the perfect separation between iron oxide nanoparticles, in combination with the adequate internal void space provided by stable titania shells. Moreover, the structural effect of IO@void@TNPs clearly demonstrates that the capacity retention value after 50 cycles is approximately 4 times that for IONPs under harsh operating conditions, that is, when the temperature is increased to 80 °C. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preparation and characterization of polyindole - iron oxide nanocomposite electrolyte

    International Nuclear Information System (INIS)

    Rajasudha, G.; Stephen, A.; Narayanan, V.

    2009-01-01

    Full text: A novel polyindole-iron oxide containing LiClO 4 solid polymer electrolyte has been prepared. The diverse property of magnetic nanoparticle has elicited wide interest from the point of view of technological applications. Their properties are known to be strongly dependent on size, anisotropy and inter particle interactions. The proton conducting materials has received considerable attention as electrolyte materials in technological applications such as fuel cells, sensors and electrochromic display. In this work, polyindole-iron oxide nanocomposite containing LiClO 4 was prepared by in situ polymerization. The indole was polymerized in the presence of iron oxide, using ammonium peroxy disulphate as an oxidizing agent. The polyindole-iron oxide nanocomposite was characterized by XRD, IR, SEM, TGA and TEM. The iron oxide nano particles was incorporated into polyindole and was confirmed by XRD and Fourier transform infrared (FTIR) spectroscopy. The surface Morphology and thermal stability were studied by thermogravimetric analysis (TGA) and SEM respectively. The ionic conductivity of polyindole electrolyte was analyzed from impedance spectrum. The prepared polyindole-iron oxide nanocomposite could be used as solid electrolyte in lithium ion batteries

  17. Radiation-induced synthesis of gold, iron-oxide composite nanoparticles

    International Nuclear Information System (INIS)

    Seino, Satoshi; Yamamoto, Takao; Nakagawa, Takashi; Kinoshita, Takuya; Kojima, Takao; Taniguchi, Ryoichi; Okuda, Shuichi

    2007-01-01

    Composite nanoparticles consisting of magnetic iron oxide nanoparticles and gold nanoparticles were synthesized using gamma-rays or electron beam. Ionizing irradiation induces the generation of reducing species inside the aqueous solution, and gold ions are reduced to form metallic Au nanoparticles. The size of Au nanoparticles depended on the dose rate and the concentration of support iron oxide. The gold nanoparticles on iron oxide nanoparticles selectively adsorb biomolecules via Au-S bonding. By using magnetic property of the support iron oxide nanoparticles, the composite nanoparticles are expected as a new type of magnetic nanocarrier for biomedical applications. (author)

  18. Hydrothermal oxidation in the Biwabik Iron Formation, MN, USA

    Science.gov (United States)

    Losh, Steven; Rague, Ryan

    2018-02-01

    Precambrian iron formations throughout the world, notably in Australia, Brazil, and South Africa, show evidence of hypogene (≥ 110 °C, mostly > 250 °C) oxidation, alteration, and silica dissolution as a result of tectonic or magmatic activity. Although hydrothermal oxidation has been proposed for the prototype Lake Superior-type iron formation, the Biwabik Iron Formation in Minnesota (USA), it has not been documented there. By examining oxidized and unoxidized Biwabik Iron Formation in three mines, including material from high-angle faults that are associated with oxidation, we document an early hypogene oxidation event ( 175 °C) involving medium-salinity aqueous fluids (8.4 ± 4.9 wt% NaCl equiv) that infiltrated iron formation along high-angle faults. At the Hibbing Taconite Mine, hydrothermal fluids oxidized iron carbonates and silicates near faults, producing goethite ± quartz. In contrast with much of the oxidized iron ores on the Mesabi Range, silica was not removed but rather recrystallized during this event, perhaps lying in a rock-dominated system at low cumulative fluid flux. During the hydrothermal oxidation event in the Hibbing Taconite deposit, quartz-filled microfractures and irregular inclusions commonly formed in coarse variably oxidized magnetite, currently the ore mineral: these inclusions degrade the ore by introducing excess silica in magnetic concentrate. Hydrothermal oxidation at Hibbing Taconite Mine is overprinted by later, relatively minor supergene oxidation both along faults and near the surface, which locally dissolved quartz. At the Fayal Reserve Mine, widespread silicate and carbonate gangue dissolution and iron oxidation was followed by precipitation of pyrite, Mn-siderite, apatite, and other minerals in void spaces, which prevented post-oxidation compaction and significant volume loss in the sampled rocks. Although definitive temperature data for this assemblage are needed, the weight of evidence indicates that this

  19. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jefferson F.D.F.; Costa, Mateus C.; Louro, Sonia R.W.; Bruno, Antonio C., E-mail: acbruno@puc-rio.br

    2017-03-15

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10{sup −7} Am{sup 2}. We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am{sup 2}/kg (i.e 0.4%) at saturation and below 0.5 Am{sup 2}/kg (i.e. 10%) at remanence. - Highlights: • A low-cost portable Hall magnetometer probe has been built. • The Hall magnetometer probe can be attached to any electromagnet. • The Hall probe was calibrated and successfully compared to industry standard magnetometers. • The Hall probe was able to measure iron oxide nanoparticles with different coatings.

  20. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Araujo, Jefferson F.D.F.; Costa, Mateus C.; Louro, Sonia R.W.; Bruno, Antonio C.

    2017-01-01

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10 −7 Am 2 . We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am 2 /kg (i.e 0.4%) at saturation and below 0.5 Am 2 /kg (i.e. 10%) at remanence. - Highlights: • A low-cost portable Hall magnetometer probe has been built. • The Hall magnetometer probe can be attached to any electromagnet. • The Hall probe was calibrated and successfully compared to industry standard magnetometers. • The Hall probe was able to measure iron oxide nanoparticles with different coatings.

  1. Characterization of tetraethylene glycol passivated iron nanoparticles

    International Nuclear Information System (INIS)

    Nunes, Eloiza da Silva; Viali, Wesley Renato; Silva, Sebastião William da; Coaquira, José Antonio Huamaní; Garg, Vijayendra Kumar; Oliveira, Aderbal Carlos de; Morais, Paulo César; Jafelicci Júnior, Miguel

    2014-01-01

    Graphical abstract: - Highlights: • Metallic iron nanoparticles were passivated in tetraethylene glycol media. • Passivated nanoparticles presented pomegranate-like core@shell structure. • Passivation of metallic iron correlates with the tetraethylene glycol degradation. • Boron enriched metallic iron phase was more susceptible to oxidation. • The iron oxide shell was identified as Fe 3 O 4 with a mass fraction of 43:53 related to αFe. - Abstract: The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90–120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe 3 O 4 ) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron–iron oxide were 145 emu g −1 and 131 emu g −1 , respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy

  2. Oxidative Stress and the Homeodynamics of Iron Metabolism

    Science.gov (United States)

    Bresgen, Nikolaus; Eckl, Peter M.

    2015-01-01

    Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress. PMID:25970586

  3. Sulfidation of alumina-supported iron and iron-molybdenum oxide catalysts

    NARCIS (Netherlands)

    Ramselaar, W.L.T.M.; Crajé, M.W.J.; Hadders, R.H.; Gerkema, E.; Beer, de V.H.J.; Kraan, van der A.M.

    1990-01-01

    The transition of alumina-supported iron and iron-molybdenum catalysts from the oxidic precursor to the sulfided catalysts was systematically studied by means of in-situ Mössbauer spectroscopy at room temperature. This enabled the adjudgement of various sulfidic phases in the sulfided catalysts. The

  4. Iron Oxide Deposition from Aqueous Solution and Iron Formations on Mars

    Science.gov (United States)

    Catling, David; Moore, Jeff

    2000-01-01

    Iron formations are ancient, laminated chemical sediments containing at least 15 wt% Fe. We discuss possible mechanisms for their formation in aqueous environments on early Mars. Such iron oxide deposits may be detectable today.

  5. Efficient MRI labeling of endothelial progenitor cells: design of thiolated surface stabilized superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Shahnaz, Gul; Kremser, Christian; Reinisch, Andreas; Vetter, Anja; Laffleur, Flavia; Rahmat, Deni; Iqbal, Javed; Dünnhaupt, Sarah; Salvenmoser, Willi; Tessadri, Richard; Griesser, Ulrich; Bernkop-Schnürch, Andreas

    2013-11-01

    The aim of this study was to design thiolated surface stabilized superparamagnetic iron oxide nanoparticles (TSS-SPIONs) for efficient internalization with high MRI sensitivity. TSS-SPIONs were developed by chelation between thiolated chitosan-thioglycolic acid (chitosan-TGA) hydrogel and iron ions (Fe(2+)/Fe(3+)). Likely, unmodified chitosan hydrogel SPIONs (UC-SPIONs) and uncoated SPIONs were used as control. Moreover, TSS-SPIONs were investigated regarding to their iron core size, hydrodynamic diameter, zeta potential, iron contents, molar relaxivities (r1 and r2), and cellular internalization. TSS-SPIONs demonstrated an iron oxide core diameter (crystallite size by XRD) of 3.1 ± 0.02 nm, a hydrodynamic diameter of 94 ± 20 nm, a zeta potential of +21 ± 5 mV, and an iron content of 3.6 ± 0.9 mg/mL. In addition, internalization of TSS-SPIONs into human endothelial progenitor cells (EPC) from umbilical cord blood was more than threefold and 17-fold higher in contrast to UC-SPIONs and SPIONs, respectively. With twofold lower incubation iron concentration of TSS-SPIONs, more than threefold higher internalization was achieved as compared to Resovist®. Also, cell viability of more than 90% was observed in the presence of TSS-SPIONs after 24h. The molar MR relaxivities (r2) value at 1.5 T was threefold higher than that of Resovist® and demonstrated that TSS-SPIONs have the potential as very effective T2 contrast-enhancement agent. According to these findings, TSS-SPIONs with efficient internalization, lower cytotoxicity, and high MRI sensitivity seem to be promising for cell tracking. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Phosphorus Retention (32P) by synthetic iron oxides

    International Nuclear Information System (INIS)

    Bittencourt, V.C.; Montanheiro, M.N.S.

    1975-02-01

    The P retention by iron oxides was characterized as a chemical adsorption process followed by a physical adsorption. The former process was very intense with initial amounts of added P but after a certain surface saturation is reached physical interaction occurs. It was supposed that the chemically adsorbed phosphate confers a negative charge on the iron oxides particles, which repels any further physical adsorbtion of the anion. However due to diffusion of phosphate ions into the internal layers of the iron oxides, their surface can retain further amounts of P [pt

  7. Effect of iron oxide loading on magnetoferritin structure in solution as revealed by SAXS and SANS.

    Science.gov (United States)

    Melníková, L; Petrenko, V I; Avdeev, M V; Garamus, V M; Almásy, L; Ivankov, O I; Bulavin, L A; Mitróová, Z; Kopčanský, P

    2014-11-01

    Synthetic biological macromolecule of magnetoferritin containing an iron oxide core inside a protein shell (apoferritin) is prepared with different content of iron. Its structure in aqueous solution is analysed by small-angle synchrotron X-ray (SAXS) and neutron (SANS) scattering. The loading factor (LF) defined as the average number of iron atoms per protein is varied up to LF=800. With an increase of the LF, the scattering curves exhibit a relative increase in the total scattered intensity, a partial smearing and a shift of the match point in the SANS contrast variation data. The analysis shows an increase in the polydispersity of the proteins and a corresponding effective increase in the relative content of magnetic material against the protein moiety of the shell with the LF growth. At LFs above ∼150, the apoferritin shell undergoes structural changes, which is strongly indicative of the fact that the shell stability is affected by iron oxide presence. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Effect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI

    Directory of Open Access Journals (Sweden)

    Farzaneh Hajesmaeelzadeh

    2016-02-01

    Full Text Available Objective(s:Iron oxide nanoparticles have found prevalent applications in various fields including drug delivery, cell separation and as contrast agents. Super paramagnetic iron oxide (SPIO nanoparticles allow researchers and clinicians to enhance the tissue contrast of an area of interest by increasing the relaxation rate of water. In this study, we evaluate the dependency of hydrodynamic size of iron oxide nanoparticles coated with Polyethylene  glycol (PEG on their relativities with 3 Tesla clinical MRI. Materials and Methods: We used three groups of nanoparticles with nominal sizes 20, 50 and 100 nm with a core size of 8.86 nm, 8.69 nm and 10.4 nm that they were covered with PEG 300 and 600 Da. A clinical magnetic resonance scanner determines the T1 and T2 relaxation times for various concentrations of PEG-coated nanoparticles. Results: The size measurement by photon correlation spectroscopy showed the hydrodynamic sizes of MNPs with nominal 20, 50 and 100 nm with 70, 82 and 116 nm for particles with PEG 600 coating and 74, 93 and 100 nm for  particles with PEG 300 coating, respectively. We foud that the relaxivity decreased with increasing overall particle size (via coating thickness. Magnetic resonance imaging showed that by increasing the size of the nanoparticles, r2/r1 increases linearly. Conclusion: According to the data obtained from this study it can be concluded that increments in coating thickness have more influence on relaxivities compared to the changes in core size of magnetic nanoparticles.

  9. Iron oxides as a cause of GPR reflections

    NARCIS (Netherlands)

    van Dam, R.L.; Schlager, W.; Dekkers, M.; Huisman, J.A.

    2002-01-01

    Iron oxides frequently occur as secondary precipitates in both modern and ancient sediments and may form bands or irregular patterns. We show from time-domain reflectometry (TDR) field studies that goethite iron-oxide precipitates significantly lower the electromagnetic wave velocity of sediments.

  10. Labeling Efficacy of Superparamagnetic Iron Oxide Nanoparticles to Human Neural Stem Cells: Comparison of Ferumoxides, Monocrystalline Iron Oxide, Cross-linked Iron Oxide (CLIO)-NH2 and tat-CLIO

    International Nuclear Information System (INIS)

    Song, Mi Yeoun; Moon, Woo Kyung; Kim, Yun Hee; Song, In Chan; Yoon, Byung Woo; Lim, Dong Yeol

    2007-01-01

    We wanted to compare the human neural stem cell (hNSC) labeling efficacy of different superparamagnetic iron oxide nanoparticles (SPIONs), namely, ferumoxides, monocrystalline iron oxide (MION), cross-linked iron oxide (CLIO)-NH 2 and tat-CLIO. The hNSCs (5x10 5 HB1F3 cells/ml) were incubated for 24 hr in cell culture media that contained 25 μg/ml of ferumoxides, MION or CLIO-NH 2 , and with or without poly-L-lysine (PLL) and tat-CLIO. The cellular iron uptake was analyzed qualitatively with using a light microscope and this was quantified via atomic absorption spectrophotometry. The visibility of the labeled cells was assessed with MR imaging. The incorporation of SPIONs into the hNSCs did not affect the cellular proliferations and viabilities. The hNSCs labeled with tat-CLIO showed the longest retention, up to 72 hr, and they contained 2.15± 0.3 pg iron/cell, which are 59 fold, 430 fold and six fold more incorporated iron than that of the hNSCs labeled with ferumoxides, MION or CLIO-NH 2 , respectively. However, when PLL was added, the incorporation of ferumoxides, MION or CLIO-NH 2 into the hNSCs was comparable to that of tat-CLIO. For MR imaging, hNSCs can be efficiently labeled with tat-CLIO alone or with a combination of ferumoxides, MION, CLIO-NH 2 and the transfection agent PLL

  11. Labeling Efficacy of Superparamagnetic Iron Oxide Nanoparticles to Human Neural Stem Cells: Comparison of Ferumoxides, Monocrystalline Iron Oxide, Cross-linked Iron Oxide (CLIO)-NH2 and tat-CLIO

    Science.gov (United States)

    Song, Miyeoun; Kim, Yunhee; Lim, Dongyeol; Song, In-Chan; Yoon, Byung-Woo

    2007-01-01

    Objective We wanted to compare the human neural stem cell (hNSC) labeling efficacy of different superparamagnetic iron oxide nanoparticles (SPIONs), namely, ferumoxides, monocrystalline iron oxide (MION), cross-linked iron oxide (CLIO)-NH2 and tat-CLIO. Materials and Methods The hNSCs (5 × 105 HB1F3 cells/ml) were incubated for 24 hr in cell culture media that contained 25 µg/ml of ferumoxides, MION or CLIO-NH2, and with or without poly-L-lysine (PLL) and tat-CLIO. The cellular iron uptake was analyzed qualitatively with using a light microscope and this was quantified via atomic absorption spectrophotometry. The visibility of the labeled cells was assessed with MR imaging. Results The incorporation of SPIONs into the hNSCs did not affect the cellular proliferations and viabilities. The hNSCs labeled with tat-CLIO showed the longest retention, up to 72 hr, and they contained 2.15 ± 0.3 pg iron/cell, which are 59 fold, 430 fold and six fold more incorporated iron than that of the hNSCs labeled with ferumoxides, MION or CLIO-NH2, respectively. However, when PLL was added, the incorporation of ferumoxides, MION or CLIO-NH2 into the hNSCs was comparable to that of tat-CLIO. Conclusion For MR imaging, hNSCs can be efficiently labeled with tat-CLIO alone or with a combination of ferumoxides, MION, CLIO-NH2 and the transfection agent PLL. PMID:17923778

  12. Characterization of tetraethylene glycol passivated iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Eloiza da Silva; Viali, Wesley Renato [Laboratório de Materiais Magnéticos e Coloides, Departamento de Físico-química, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP 14801-970 (Brazil); Silva, Sebastião William da; Coaquira, José Antonio Huamaní; Garg, Vijayendra Kumar; Oliveira, Aderbal Carlos de [Instituto de Física, Núcleo de Física Aplicada, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); Morais, Paulo César [Instituto de Física, Núcleo de Física Aplicada, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Jafelicci Júnior, Miguel, E-mail: jafeli@iq.unesp.br [Laboratório de Materiais Magnéticos e Coloides, Departamento de Físico-química, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP 14801-970 (Brazil)

    2014-10-01

    Graphical abstract: - Highlights: • Metallic iron nanoparticles were passivated in tetraethylene glycol media. • Passivated nanoparticles presented pomegranate-like core@shell structure. • Passivation of metallic iron correlates with the tetraethylene glycol degradation. • Boron enriched metallic iron phase was more susceptible to oxidation. • The iron oxide shell was identified as Fe{sub 3}O{sub 4} with a mass fraction of 43:53 related to αFe. - Abstract: The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90–120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe{sub 3}O{sub 4}) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron–iron oxide were 145 emu g{sup −1} and 131 emu g{sup −1}, respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy.

  13. High pressure Moessbauer spectroscopy of perovskite iron oxide

    International Nuclear Information System (INIS)

    Nasu, Saburo; Suenaga, Tomoya; Morimoto, Shotaro; Kawakami, Takateru; Kuzushita, Kaori; Takano, Mikio

    2003-01-01

    High-pressure 57 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO 3 , CaFeO 3 and La 1/3 Sr 2/3 O 3 . The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  14. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water

    Energy Technology Data Exchange (ETDEWEB)

    Gui Minghui; Smuleac, Vasile [University of Kentucky, Department of Chemical and Materials Engineering (United States); Ormsbee, Lindell E. [University of Kentucky, Department of Civil Engineering (United States); Sedlak, David L. [University of California at Berkeley, Department of Civil and Environmental Engineering (United States); Bhattacharyya, Dibakar, E-mail: db@engr.uky.edu [University of Kentucky, Department of Chemical and Materials Engineering (United States)

    2012-05-15

    The potential for using hydroxyl radical (OH{sup Bullet }) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H{sub 2}O{sub 2} addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80-100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Moessbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H{sub 2}O{sub 2} by NP surface generated OH{sup Bullet} were investigated. Depending on the ratio of iron and H{sub 2}O{sub 2}, TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.

  15. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water

    International Nuclear Information System (INIS)

    Gui Minghui; Smuleac, Vasile; Ormsbee, Lindell E.; Sedlak, David L.; Bhattacharyya, Dibakar

    2012-01-01

    The potential for using hydroxyl radical (OH • ) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H 2 O 2 addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80–100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Mössbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H 2 O 2 by NP surface generated OH • were investigated. Depending on the ratio of iron and H 2 O 2 , TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.

  16. Structural transformations of heat-treated bacterial iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hideki, E-mail: hideki-h@cc.okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan); Fujii, Tatsuo [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Nakanishi, Koji [Office of Society-Academia Collaboration for Innovation, Kyoto University, Uji 611-0011 (Japan); Yogi, Chihiro [SR Center, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Peterlik, Herwig [Faculty of Physics, University of Vienna, A-1090 Vienna (Austria); Nakanishi, Makoto [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Takada, Jun [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan)

    2015-04-01

    A bacterial siliceous iron oxide microtubule (diameter: ca. 1 μm, 15Fe{sub 2}O{sub 3}·8SiO{sub 2}·P{sub 2}O{sub 5}·30H{sub 2}O) produced by Leptothrix ochracea was heat treated in air and its structural transformation was investigated in detail by microscopy, diffractometry, and spectroscopy. Although the heat-treated bacterial iron oxide retained its original microtubular structure, its nanoscopic, middle-range, and local structures changed drastically. Upon heat treatment, nanosized pores were formed and their size changed depending on temperature. The Fe–O–Si linkages were gradually cleaved with increasing temperature, causing the progressive separation of Fe and Si ions into iron oxide and amorphous silicate phases, respectively. Concomitantly, global connectivity and local structure of FeO{sub 6} octahedra in the iron oxide nanoparticles systematically changed depending on temperature. These comprehensive investigations clearly revealed various structural changes of the bacterial iron oxide which is an important guideline for the future exploration of novel bio-inspired materials. - Highlights: • Structural transformation of a bacterial iron oxide microtubule was investigated. • Si–O–Fe was cleaved with increasing temperature to form α-Fe{sub 2}O{sub 3}/silicate composite. • Crystallization to 2Fh started at 500 °C to give α-Fe{sub 2}O{sub 3} >700 °C. • FeO{sub 6} octahedra were highly distorted <500 °C. • Formation of face-sharing FeO{sub 6} was promoted >500 °C, releasing the local strain of FeO{sub 6}.

  17. The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria.

    Science.gov (United States)

    Zhang, Zhennan; Yin, Naiyi; Du, Huili; Cai, Xiaolin; Cui, Yanshan

    2016-05-01

    Arsenic (As) is a redox-active metalloid whose toxicity and mobility in soil depend on its oxidation state. Arsenite [As(III)] can be oxidized by microbes and adsorbed by minerals in the soil. However, the combined effects of these abiotic and biotic processes are not well understood. In this study, the fate of arsenic in the presence of an isolated As(III)-oxidizing bacterium (Pseudomonas sp. HN-1, 10(9) colony-forming units (CFUs)·ml(-1)) and three iron oxides (goethite, hematite, and magnetite at 1.6 g L(-1)) was determined using batch experiments. The total As adsorption by iron oxides was lower with bacteria present and was higher with iron oxides alone. The total As adsorption decreased by 78.6%, 36.0% and 79.7% for goethite, hematite and magnetite, respectively, due to the presence of bacteria. As(III) adsorbed on iron oxides could also be oxidized by Pseudomonas sp. HN-1, but the oxidation rate (1.3 μmol h(-1)) was much slower than the rate in the aqueous phase (96.2 μmol h(-1)). Therefore, the results of other studies with minerals only might overestimate the adsorptive capacity of solids in natural systems; the presence of minerals might hinder As(III) oxidation by microbes. Under aerobic conditions, in the presence of iron oxides and As(III)-oxidizing bacteria, arsenic is adsorbed onto iron oxides within the adsorption capacity, and As(V) is the primary form in the solid and aqueous phases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Whey Peptide-Iron Complexes Increase the Oxidative Stability of Oil-in-Water Emulsions in Comparison to Iron Salts.

    Science.gov (United States)

    Caetano-Silva, Maria Elisa; Barros Mariutti, Lilian Regina; Bragagnolo, Neura; Bertoldo-Pacheco, Maria Teresa; Netto, Flavia Maria

    2018-02-28

    Food fortification with iron may favor lipid oxidation in both food matrices and the human body. This study aimed at evaluating the effect of peptide-iron complexation on lipid oxidation catalyzed by iron, using oil-in-water (O/W) emulsions as a model system. The extent of lipid oxidation of emulsions containing iron salts (FeSO 4 or FeCl 2 ) or iron complexes (peptide-iron complexes or ferrous bisglycinate) was evaluated during 7 days, measured as primary (peroxide value) and secondary products (TBARS and volatile compounds). Both salts catalyzed lipid oxidation, leading to peroxide values 2.6- to 4.6-fold higher than the values found for the peptide-iron complexes. The addition of the peptide-iron complexes resulted in the formation of lower amounts of secondary volatiles of lipid oxidation (up to 78-fold) than those of iron salts, possibly due to the antioxidant activity of the peptides and their capacity to keep iron apart from the lipid phase, since the iron atom is coordinated and takes part in a stable structure. The peptide-iron complexes showed potential to reduce the undesirable sensory changes in food products and to decrease the side effects related to free iron and the lipid damage of cell membranes in the organism, due to the lower reactivity of iron in the complexed form.

  19. Design of Magnetic Gelatine/Silica Nanocomposites by Nanoemulsification: Encapsulation versus in Situ Growth of Iron Oxide Colloids

    Directory of Open Access Journals (Sweden)

    Joachim Allouche

    2014-07-01

    Full Text Available The design of magnetic nanoparticles by incorporation of iron oxide colloids within gelatine/silica hybrid nanoparticles has been performed for the first time through a nanoemulsion route using the encapsulation of pre-formed magnetite nanocrystals and the in situ precipitation of ferrous/ferric ions. The first method leads to bi-continuous hybrid nanocomposites containing a limited amount of well-dispersed magnetite colloids. In contrast, the second approach allows the formation of gelatine-silica core-shell nanostructures incorporating larger amounts of agglomerated iron oxide colloids. Both magnetic nanocomposites exhibit similar superparamagnetic behaviors. Whereas nanocomposites obtained via an in situ approach show a strong tendency to aggregate in solution, the encapsulation route allows further surface modification of the magnetic nanocomposites, leading to quaternary gold/iron oxide/silica/gelatine nanoparticles. Hence, such a first-time rational combination of nano-emulsion, nanocrystallization and sol-gel chemistry allows the elaboration of multi-component functional nanomaterials. This constitutes a step forward in the design of more complex bio-nanoplatforms.

  20. Iron accumulation with age, oxidative stress and functional decline.

    Directory of Open Access Journals (Sweden)

    Jinze Xu

    2008-08-01

    Full Text Available Identification of biological mediators in sarcopenia is pertinent to the development of targeted interventions to alleviate this condition. Iron is recognized as a potent pro-oxidant and a catalyst for the formation of reactive oxygen species in biological systems. It is well accepted that iron accumulates with senescence in several organs, but little is known about iron accumulation in muscle and how it may affect muscle function. In addition, it is unclear if interventions which reduced age-related loss of muscle quality, such as calorie restriction, impact iron accumulation. We investigated non-heme iron concentration, oxidative stress to nucleic acids in gastrocnemius muscle and key indices of sarcopenia (muscle mass and grip strength in male Fischer 344 X Brown Norway rats fed ad libitum (AL or a calorie restricted diet (60% of ad libitum food intake starting at 4 months of age at 8, 18, 29 and 37 months of age. Total non-heme iron levels in the gastrocnemius muscle of AL rats increased progressively with age. Between 29 and 37 months of age, the non-heme iron concentration increased by approximately 200% in AL-fed rats. Most importantly, the levels of oxidized RNA in gastrocnemius muscle of AL rats were significantly increased as well. The striking age-associated increase in non-heme iron and oxidized RNA levels and decrease in sarcopenia indices were all attenuated in the calorie restriction (CR rats. These findings strongly suggest that the age-related iron accumulation in muscle contributes to increased oxidative damage and sarcopenia, and that CR effectively attenuates these negative effects.

  1. Chronic exposure to iron oxide, chromium oxide, and nickel oxide fumes of metal dressers in a steelworks

    Science.gov (United States)

    Jones, J. Graham; Warner, C. G.

    1972-01-01

    Graham Jones, J., and Warner, C. G. (1972).Brit. J. industr. Med.,29, 169-177. Chronic exposure to iron oxide, chromium oxide, and nickel oxide fumes of metal dressers in a steelworks. Occupational and medical histories, smoking habits, respiratory symptoms, chest radiographs, and ventilatory capacities were studied in 14 steelworkers employed as deseamers of steel ingots for periods of up to 16 years. The men were exposed for approximately five hours of each working shift to fume concentrations ranging from 1·3 to 294·1 mg/m3 made up mainly of iron oxide with varying proportions of chromium oxide and nickel oxide. Four of the men, with 14 to 16 years' exposure, showed radiological evidence of pneumoconiosis classified as ILO categories 2 or 3. Of these, two had pulmonary function within the normal range and two had measurable loss of function, moderate in one case and mild in the other. Many observers would diagnose these cases as siderosis but the authors consider that this term should be reserved for cases exposed to pure iron compounds. The correct diagnosis is mixed-dust pneumoconiosis and the loss of pulmonary function is caused by the effects of the mixture of metallic oxides. It is probable that inhalation of pure iron oxide does not cause fibrotic pulmonary changes, whereas the inhalation of iron oxide plus certain other substances obviously does. Images PMID:5021996

  2. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Chiemi; Ushimaru, Kazunori [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Horiishi, Nanao [Bengala Techno Laboratory, 9-5-1006, 1-1 Kodai, Miyamae-ku, Kawasaki 216-0007 (Japan); Tsuge, Takeharu [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kitamoto, Yoshitaka, E-mail: kitamoto.y.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-05-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites.

  3. Manganese and iron oxidation by fungi isolated from building stone.

    Science.gov (United States)

    de la Torre, M A; Gomez-Alarcon, G

    1994-01-01

    Acid and nonacid generating fungal strains isolated from weathered sandstone, limestone, and granite of Spanish cathedrals were assayed for their ability to oxidize iron and manganese. In general, the concentration of the different cations present in the mineral salt media directly affected Mn(IV) oxide formation, although in some cases, the addition of glucose and nitrate to the culture media was necessary. Mn(II) oxidation in acidogenic strains was greater in a medium containing the highest concentrations of glucose, nitrate, and manganese. High concentrations of Fe(II), glucose, and mineral salts were optimal for iron oxidation. Mn(IV) precipitated as oxides or hydroxides adhered to the mycelium. Most of the Fe(III) remained in solution by chelation with organic acids excreted by acidogenic strains. Other metabolites acted as Fe(III) chelators in nonacidogenic strains, although Fe(III) deposits around the mycelium were also detected. Both iron and manganese oxidation were shown to involve extracellular, hydrosoluble enzymes, with maximum specific activities during exponential growth. Strains able to oxidize manganese were also able to oxidize iron. It is concluded that iron and manganese oxidation reported in this work were biologically induced by filamentous fungi mainly by direct (enzymatic) mechanisms.

  4. Mechanistic Study of Monodisperse Iron Oxide Nanocrystals ...

    African Journals Online (AJOL)

    To gain better insight into the formation of iron oxide nanocrystals from the solution phase thermal decomposition of iron (III) oleate complex, different reaction conditions including time, heating ramp, as well as concentrations of iron oleate precursor and oleic acid ligand were systematically varied and the resulting ...

  5. A novel approach to linearization of the electromagnetic parameters of tokamaks with an iron core

    Energy Technology Data Exchange (ETDEWEB)

    Fu, P. E-mail: fupeng@mail.ipp.ac.cn; Liu, Z.Z.; Zou, J.H

    2002-05-01

    The equivalent model of an iron core tokamak is developed, in which the electromagnetic parameters of several pairs of coils in opposite series (PCOS) are not dependent on the saturation of the iron core during tokamak operation. With this the electromagnetic parameters of all the coils in an iron core tokamak can be linearized, As an example, the electromagnetic parameters of Hefei Super-conductive Tokamak with iron core (HT-7) are linearized, and it is in good agreement with the experimental results. The linearization approach can be applied in real time plasma control and electromagnetic analysis.

  6. Synthesis and magnetic characterizations of uniform iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Jiang, FuYi; Li, XiaoYi; Zhu, Yuan; Tang, ZiKang

    2014-01-01

    Uniform iron oxide nanoparticles with a cubic shape were prepared by the decomposition of homemade iron oleate in 1-octadecene with the presence of oleic acid. The particle shape and size uniformity are sensitive to the quantity of oleic acid. XRD, HRTEM and SAED results indicated that the main phase content of as-prepared iron oxide nanoparticles is Fe 3 O 4 with an inverse spinel structure. Magnetic measurements revealed that the as-prepared iron oxide nanoparticles display a ferromagnetic behavior with a blocking temperature of 295 K. At low temperatures the magnetic anisotropy of the aligned nanoparticles caused the appearance of a hysteresis loop.

  7. Morphology and oxide shell structure of iron nanoparticles grown by sputter-gas-aggregation

    International Nuclear Information System (INIS)

    Wang, C M; Baer, D R; Amonette, J E; Engelhard, M H; Qiang, Y; Antony, J

    2007-01-01

    The crystal faceting planes and oxide coating structures of core-shell structured iron/iron-oxide nanoparticles synthesized by a sputter-gas-aggregation process were studied using transmission electron microscopy (TEM), electron diffraction and Wulff shape construction. The particles grown by this process and deposited on a support in a room temperature process have been compared with particles grown and deposited at high temperature as reported in the literature. It has been found that the Fe nanoparticles formed at RT are invariantly faceted on the {100} lattice planes and truncated by the {110} planes at different degrees. A substantial fraction of particles are confined only by the 6{100} planes (not truncated by the {110} planes); this contrasts with the Fe particles formed at high temperature (HT) for which a predominance of {110} planes has been reported. Furthermore, at RT no particle was identified to be only confined by the 12{110} planes, which is relatively common for the particles formed at HT. The Fe cubes defined by the 6{100} planes show a characteristic inward relaxation along the and directions and the reason for this behaviour is not fully understood. The oxide shell on the Fe{100} plane maintains an orientation relationship: Fe(001) parallel Fe 3 O 4 (001) and Fe[100] parallel Fe 3 O 4 [110], which is the same as the oxide formed on a bulk Fe(001) through thermal oxidation. Orientation of the oxide that forms on the Fe{110} facets differs from that on Fe{001}: therefore, properties of core-shell structured Fe nanoparticle faceted primarily with one type of lattice plane may be fully different from that faceted with another type of lattice plane

  8. Magnetic and gravity gradiometry framework for Mesoproterozoic iron oxide-apatite and iron oxide-copper-gold deposits, southeast Missouri, USA

    Science.gov (United States)

    McCafferty, Anne E.; Phillips, Jeffrey; Driscoll, Rhonda L.

    2016-01-01

    High-resolution airborne magnetic and gravity gradiometry data provide the geophysical framework for evaluating the exploration potential of hidden iron oxide deposits in Mesoproterozoic basement rocks of southeast Missouri. The data are used to calculate mineral prospectivity for iron oxide-apatite (IOA) ± rare earth element (REE) and iron oxide-copper-gold (IOCG) deposits. Results delineate the geophysical footprints of all known iron oxide deposits and reveal several previously unrecognized prospective areas. The airborne data are also inverted to three-dimensional density and magnetic susceptibility models over four concealed deposits at Pea Ridge (IOA ± REE), Boss (IOCG), Kratz Spring (IOA), and Bourbon (IOCG). The Pea Ridge susceptibility model shows a magnetic source that is vertically extensive and traceable to a depth of greater than 2 km. A smaller density source, located within the shallow Precambrian basement, is partly coincident with the magnetic source at Pea Ridge. In contrast, the Boss models show a large (625-m-wide), vertically extensive, and coincident dense and magnetic stock with shallower adjacent lobes that extend more than 2,600 m across the shallow Precambrian paleosurface. The Kratz Spring deposit appears to be a smaller volume of iron oxides and is characterized by lower density and less magnetic rock compared to the other iron deposits. A prospective area identified south of the Kratz Spring deposit shows the largest volume of coincident dense and nonmagnetic rock in the subsurface, and is interpreted as prospective for a hematite-dominant lithology that extends from the top of the Precambrian to depths exceeding 2 km. The Bourbon deposit displays a large bowl-shaped volume of coincident high density and high-magnetic susceptibility rock, and a geometry that suggests the iron mineralization is vertically restricted to the upper parts of the Precambrian basement. In order to underpin the evaluation of the prospectivity and three

  9. Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides

    International Nuclear Information System (INIS)

    Braga, Tiago P.; Vasconcelos, Igor F.; Sasaki, Jose M.; Fabris, J.D.; Oliveira, Diana Q.L. de; Valentini, Antoninho

    2010-01-01

    Materials containing hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides were obtained from a chemical precursor prepared by admixing chitosan and iron and aluminum hydroxides. The oxides were first characterized with scanning electron microscopy, X-ray diffraction, and Moessbauer spectroscopy. Scanning electron microscopy micrographs showed the size distribution of the resulting spheres to be highly homogeneous. The occurrence of nano-composites containing aluminum oxides and iron oxides was confirmed from powder X-ray diffraction patterns; except for the sample with no aluminum, the superparamagnetic relaxation due to iron oxide particles were observed from Moessbauer spectra obtained at 298 and 110 K; the onset six line-spectrum collected at 20 K indicates a magnetic ordering related to the blocking relaxation effect for significant portion of small spheres in the sample with a molar ratio Al:Fe of 2:1.

  10. IRON AND FREE RADICAL OXIDATIONS IN CELL MEMBRANES

    Science.gov (United States)

    Schafer, Freya Q.; Yue Qian, Steven; Buettner, Garry R.

    2013-01-01

    Brain tissue being rich in polyunsaturated fatty acids, is very susceptible to lipid peroxidation. Iron is well known to be an important initiator of free radical oxidations. We propose that the principal route to iron-mediated lipid peroxidations is via iron-oxygen complexes rather than the reaction of iron with hydrogen peroxide, the Fenton reaction. To test this hypothesis, we enriched leukemia cells (K-562 and L1210 cells) with docosahexaenoic acid (DHA) as a model for brain tissue, increasing the amount of DHA from approximately 3 mole % to 32 mole %. These cells were then subjected to ferrous iron and dioxygen to initiate lipid peroxidation in the presence or absence of hydrogen peroxide. Lipid-derived radicals were detected using EPR spin trapping with α-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN). As expected, lipid-derived radical formation increases with increasing cellular lipid unsaturation. Experiments with Desferal demonstrate that iron is required for the formation of lipid radicals from these cells. Addition of iron to DHA-enriched L1210 cells resulted in significant amounts of radical formation; radical formation increased with increasing amount of iron. However, the exposure of cells to hydrogen peroxide before the addition of ferrous iron did not increase cellular radical formation, but actually decreased spin adduct formation. These data suggest that iron-oxygen complexes are the primary route to the initiation of biological free radical oxidations. This model proposes a mechanism to explain how catalytic iron in brain tissue can be so destructive. PMID:10872752

  11. Evaluation of the properties of iron oxide-filled castor oil polyurethane

    Directory of Open Access Journals (Sweden)

    Eleonora Mussatti

    2013-02-01

    Full Text Available The aim of this study was to obtain and evaluate the electrical, thermal and mechanical properties of iron oxide-filled castor oil polyurethane (PU/Fe2O3. The iron oxide used in this study was a residue derived from the steel pickling process of a Brazilian steel rolling industry. Polymeric composites with different iron oxide volume fractions (2.5, 5.0, 7.5, 10.0 and 12.5% were prepared through the casting process followed by compression molding at room temperature. The composites were analyzed by FTIR, XRD and densities, tensile strength, Young's modulus, electrical and thermal conductivities measurements. By increasing the iron oxide content, the apparent density, tensile strength, Young's modulus and electrical conductivity values of the composites were also increased. The iron oxide additions did not change significantly the value of thermal conductivity (from 0.191 W.mK-1 for PU up to 0.340 W.mK-1 for PU enriched with 12.5% v/v of iron oxide. Thus, even at the higher iron oxide concentration, the compounds as well as the pure polyurethane can be classified as thermal insulators.

  12. Evaluation of the Properties of Iron Oxide-Filled Castor Oil Polyurethane

    Directory of Open Access Journals (Sweden)

    Eleonora Mussatti

    2012-01-01

    Full Text Available The aim of this study was to obtain and evaluate the electrical, thermal and mechanical properties of iron oxide-filled castor oil polyurethane (PU/Fe2O3. The iron oxide used in this study was a residue derived from the steel pickling process of a Brazilian steel rolling industry. Polymeric composites with different iron oxide volume fractions (2.5, 5.0, 7.5, 10.0 and 12.5% were prepared through the casting process followed by compression molding at room temperature. The composites were analyzed by FTIR, XRD and densities, tensile strength, Young's modulus, electrical and thermal conductivities measurements. By increasing the iron oxide content, the apparent density, tensile strength, Young's modulus and electrical conductivity values of the composites were also increased. The iron oxide additions did not change significantly the value of thermal conductivity (from 0.191 W.mK-1 for PU up to 0.340 W.mK-1 for PU enriched with 12.5% v/v of iron oxide. Thus, even at the higher iron oxide concentration, the compounds as well as the pure polyurethane can be classified as thermal insulators.

  13. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, Moshe Ben, E-mail: mosheinspain@hotmail.com [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100 (Israel); Calmano, Wolfgang [Institute of Environmental Technology and Energy Economics, Technical University of Hamburg-Harburg, 21073 Hamburg (Germany); Adin, Avner [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100 (Israel)

    2009-11-15

    The processes of iron oxidation in an electroflocculation cell were investigated for a pH range of 5-9 and electric currents of 0.05-0.4 A (equivalent current densities of 8.6-69 A/m{sup 2}). At all pH values and electric currents investigated, it was demonstrated and proven that for all practical purposes, the form of iron that dissolves from the anode is Fe{sup 2+} (ferrous). The difference between the amount of theoretical dissolution as calculated by Faraday's law and the amount of observed dissolved iron ions may indicate two phenomena in electrochemical cells. The first is possible dissolution of the anode even without the operation of an electric current; this led to higher theoretical dissolution rates at lower pH. The second is the participation of some of the electrons of the electric current in reactions other than anode dissolution which led to lower theoretical dissolution rates at higher pH. Those other reactions did not lead to an increase in the local oxidation saturation level near the anode and did not affect iron-oxidation rates in the electroflocculation processes. The oxidation rates of the dissolved Fe{sup 2+} (ferrous) to Fe{sup 3+} (ferric) ions in electroflocculation processes were strongly dependent on the pH and were similar to the known oxidation rates of iron in non-electrochemical cells.

  14. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell

    International Nuclear Information System (INIS)

    Sasson, Moshe Ben; Calmano, Wolfgang; Adin, Avner

    2009-01-01

    The processes of iron oxidation in an electroflocculation cell were investigated for a pH range of 5-9 and electric currents of 0.05-0.4 A (equivalent current densities of 8.6-69 A/m 2 ). At all pH values and electric currents investigated, it was demonstrated and proven that for all practical purposes, the form of iron that dissolves from the anode is Fe 2+ (ferrous). The difference between the amount of theoretical dissolution as calculated by Faraday's law and the amount of observed dissolved iron ions may indicate two phenomena in electrochemical cells. The first is possible dissolution of the anode even without the operation of an electric current; this led to higher theoretical dissolution rates at lower pH. The second is the participation of some of the electrons of the electric current in reactions other than anode dissolution which led to lower theoretical dissolution rates at higher pH. Those other reactions did not lead to an increase in the local oxidation saturation level near the anode and did not affect iron-oxidation rates in the electroflocculation processes. The oxidation rates of the dissolved Fe 2+ (ferrous) to Fe 3+ (ferric) ions in electroflocculation processes were strongly dependent on the pH and were similar to the known oxidation rates of iron in non-electrochemical cells.

  15. High pressure Moessbauer spectroscopy of perovskite iron oxide

    CERN Document Server

    Nasu, S; Morimoto, S; Kawakami, T; Kuzushita, K; Takano, M

    2003-01-01

    High-pressure sup 5 sup 7 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO sub 3 , CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 O sub 3. The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO sub 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  16. Relating Magnetic Properties and High Hyperthermia Performance of Iron Oxide Nanoflowers

    DEFF Research Database (Denmark)

    Bender, Philipp; Fock, Jeppe; Frandsen, Cathrine

    2018-01-01

    We investigated in depth the interrelations among structure, magnetic properties, relaxation dynamics and magnetic hyperthermia performance of magnetic nanoflowers. The nanoflowers are about 39 nm in size, and consist of densely packed iron oxide cores. They display a remanent magnetization, which...... we explain by the exchange coupling between the cores, but we observe indications for internal spin disorder. By polarized small angle neutron scattering we unambiguously confirm that on average the nanoflowers are preferentially magnetized along one direction. The extracted discrete relaxation time...... distribution of the colloidally dispersed particles indicates the presence of three distinct relaxation contributions. We can explain the two slower processes by Brownian and classical Néel relaxation, respectively. The additionally observed very fast relaxation contributions are attributed by us...

  17. Iron oxide redox chemistry and nuclear fuel disposal

    International Nuclear Information System (INIS)

    Jobe, D.J.; Lemire, R.J.; Taylor, P.

    1997-04-01

    Solubility and stability data for iron (III) oxides and aqueous Fe(II) and Fe(III) species are reviewed, and selected values are used to calculate potential-pH diagrams for the iron system at temperatures of 25 and 100 deg C, chloride activities {C1 - } = 10 -2 and 1 mol/kg, total carbonate activity {C T } = 10 -3 mol/kg, and iron(III) oxide/oxyhydroxide solubility products (25 deg C values) K sp = {Fe 3+ }{OH - } 3 = 10 -38.5 , 10 -40 and 10 -42 . The temperatures and anion concentrations bracket the range of conditions expected in a Canadian nuclear fuel waste disposal vault. The three solubility products represent a conservative upper limit, a most probable value, and a minimum credible value, respectively, for the iron oxides likely to be important in controlling redox conditions in a disposal vault for CANDU nuclear reactor fuel. Only in the first of these three cases do the calculated redox potentials significantly exceed values under which oxidative dissolution of the fuel may occur. (author)

  18. Ferrite grade iron oxides from ore rejects

    Indian Academy of Sciences (India)

    Iron oxyhydroxides and hydroxides were synthesized from chemically beneficiated high SiO2/Al2O3 low-grade iron ore (57.49% Fe2O3) rejects and heated to get iron oxides of 96–99.73% purity. The infrared band positions, isothermal weight loss and thermogravimetric and chemical analysis established the chemical ...

  19. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride.

    Science.gov (United States)

    Mallick, Neha; Anwar, Mohammed; Asfer, Mohammed; Mehdi, Syed Hassan; Rizvi, Mohammed Moshahid Alam; Panda, Amulya Kumar; Talegaonkar, Sushama; Ahmad, Farhan Jalees

    2016-10-20

    Chondroitin-4-sulfate (CS), a glycosaminoglycan, was used to prepare CS-capped super-paramagnetic iron oxide nanoparticles, which were further employed for loading a water-soluble chemotherapeutic agent (doxorubicin hydrochloride, DOX). CS-capped SPIONs have potential biomedical application in cancer targeting. The optimized formulation had a hydrodynamic size of 91.2±0.8nm (PDI; 0.228±0.004) and zeta potential of -49.1±1.66mV. DOX was loaded onto the formulation up to 2% (w/w) by physical interaction with CS. TEM showed nano-sized particles having a core-shell structure. XRD confirmed crystal phase of iron oxide. FT-IR conceived the interaction of iron oxide with CS as bidentate chelation and also confirmed DOX loading. Vibration sample magnetometry confirmed super-paramagnetic nature of nanoparticles, with saturation magnetization of 0.238emug(-1). In vitro release profile at pH 7.4 showed that 96.67% of DOX was released within 24h (first order kinetics). MTT assay in MCF7 cells showed significantly higher (p<0.0001) cytotoxicity for DOX in SPIONs than DOX solution (IC50 values 6.294±0.4169 and 11.316±0.1102μgmL(-1), respectively). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Ultrafine ferromagnetic iron oxide nanoparticles: Facile synthesis by low temperature decomposition of iron glycerolate

    Energy Technology Data Exchange (ETDEWEB)

    Bartůněk, Vilém, E-mail: vilem.bartunek@vscht.cz [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Průcha, David [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Švecová, Marie [Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Ulbrich, Pavel [Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Huber, Štěpán; Sedmidubský, David; Jankovský, Ondřej [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic)

    2016-09-01

    We synthesized dark colored ultrafine – sub 10 nm iron oxide nanoparticles by a facile and low temperature process based on thermal decomposition of an affordable precursor – iron glycerolate. Simultaneous thermal analysis (STA) was used to study the thermal behaviour during the decomposition. The iron glycerolate was thoroughly analysed by various methods. The size of the iron nanoparticles was determined from XRD patterns and by transmission electron microscopy (TEM) and their composition has been confirmed by XPS. Magnetic properties of the nanoparticles were studied by vibrating sample magnetometry. The prepared single phase material exhibiting ferromagnetic properties is usable in a wide range of applications and may be suitable even for large scale industrial applications. - Highlights: • Iron glycerolate prepared and characterised. • Iron oxide nanoparticles prepared by thermal decomposition of iron glycerolate. • STA used to study the decomposition. • Products characterised by XRD, XPS, FT-IR, SEM and TEM. • Magnetic behaviour of monophasic samples determined.

  1. Iron oxide and gold nanoparticles in cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gotman, Irena, E-mail: gotman@technion.ac.il; Gutmanas, Elazar Y., E-mail: gutmanas@technion.ac.il [Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 32000 Israel (Israel); Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Psakhie, Sergey G. [Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Lozhkomoev, Aleksandr S. [Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2016-08-02

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  2. Photoreductive dissolution of iron oxides trapped in ice and its environmental implications.

    Science.gov (United States)

    Kim, Kitae; Choi, Wonyong; Hoffmann, Michael R; Yoon, Ho-Il; Park, Byong-Kwon

    2010-06-01

    The availability of iron has been thought to be a main limiting factor for the productivity of phytoplankton and related with the uptake of atmospheric CO(2) and algal blooms in fresh and sea waters. In this work, the formation of bioavailable iron (Fe(II)(aq)) from the dissolution of iron oxide particles was investigated in the ice phase under both UV and visible light irradiation. The photoreductive dissolution of iron oxides proceeded slowly in aqueous solution (pH 3.5) but was significantly accelerated in polycrystalline ice, subsequently releasing more bioavailable ferrous iron upon thawing. The enhanced photogeneration of Fe(II)(aq) in ice was confirmed regardless of the type of iron oxides [hematite, maghemite (gamma-Fe(2)O(3)), goethite (alpha-FeOOH)] and the kind of electron donors. The ice-enhanced dissolution of iron oxides was also observed under visible light irradiation, although the dissolution rate was much slower compared with the case of UV radiation. The iron oxide particles and organic electron donors (if any) in ice are concentrated and aggregated in the liquid-like grain boundary region (freeze concentration effect) where protons are also highly concentrated (lower pH). The enhanced photodissolution of iron oxides should occur in this confined boundary region. We hypothesized that electron hopping through the interconnected grain boundaries of iron oxide particles facilitates the separation of photoinduced charge pairs. The outdoor experiments carried out under ambient solar radiation of Ny-Alesund (Svalbard, 78 degrees 55'N) also showed that the generation of dissolved Fe(II)(aq) via photoreductive dissolution is enhanced when iron oxides are trapped in ice. Our results imply that the ice(snow)-covered surfaces and ice-cloud particles containing iron-rich mineral dusts in the polar and cold environments provide a source of bioavailable iron when they thaw.

  3. Synthesis and applications of nano-structured iron oxides/hydroxides

    African Journals Online (AJOL)

    ... in numerous synthesis processes. This review outlines the work being carried out on synthesis of iron oxides in nano form and their various applications. Keywords: nano iron oxides, synthesis, catalysts, magnetic properties, biomedical application. International Journal of Engineering, Science and Technology, Vol. 2, No.

  4. Progress in electrochemical synthesis of magnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Ramimoghadam, Donya; Bagheri, Samira; Hamid, Sharifah Bee Abd

    2014-01-01

    Recently, magnetic iron oxide particles have been emerged as significant nanomaterials due to its extensive range of application in various fields. In this regard, synthesis of iron oxide nanoparticles with desirable properties and high potential applications are greatly demanded. Therefore, investigation on different iron oxide phases and their magnetic properties along with various commonly used synthetic techniques are remarked and thoroughly described in this review. Electrochemical synthesis as a newfound method with unique advantages is elaborated, followed by design approaches and key parameters to control the properties of the iron oxide nanoparticles. Additionally, since the dispersion of iron oxide nanoparticles is as important as its preparation, surface modification issue has been a serious challenge which is comprehensively discussed using different surfactants. Despite the advantages of the electrochemical synthesis method, this technique has been poorly studied and requires deep investigations on effectual parameters such as current density, pH, electrolyte concentration etc. - Highlights: • IONPs are applied in chemical industries, medicine, magnetic storage etc. • Electrochemical synthesis (EC) is convenient, eco-friendly, selective and low-cost. • EC key factors are current density, pH, electrolyte concentration, electrode type. • Organic, inorganic and biological materials can be used to modify IONPs’ surface. • The physicochemical properties of IONPs can be controlled by adding surfactants

  5. Selectivity and Activity of Iron Molybdate Catalysts in Oxidation of Methanol

    Directory of Open Access Journals (Sweden)

    Khalid Khazzal Hummadi

    2009-06-01

    Full Text Available The selectivity and activity of iron molybdate catalysts prepared by different methods are compared with those of a commercial catalyst in the oxidation of methanol to formaldehyde in a continuous tubular bed reactor at 200-350 oC (473-623 oK, 10 atm (1013 kPa, with a methanol-oxygen mixture fixed at 5.5% by volume methanol: air ratio. The iron(III molybdate catalyst prepared by co-precipitation and filtration had a selectivity towards formaldehyde in methanol oxidation comparable with a commercial catalyst; maximum selectivity (82.3% was obtained at 573oK when the conversion was 59.7%. Catalysts prepared by reacting iron (III and molybdate by kneading or precipitation followed by evaporation, omitting a filtration stage, were less active and less selective. The selectivity-activity relationships of these catalysts as a function of temperature were discussed in relation to the method of preparation, surface areas and composition. By combing this catalytic data with data from the patent literature we demonstrate a synergy between iron and molybdenum in regard to methanol oxidation to formaldehyde; the optimum composition corresponded to an iron mole fraction 0.2-0.3. The selectivity to formaldehyde was practically constant up to an iron mole fraction 0.3 and then decreased at higher iron concentrations. The iron component can be regarded as the activity promoter. The iron molybdate catalysts can thus be related to other two-component MoO3-based selective oxidation catalysts, e.g. bismuth and cobalt molybdates. The iron oxide functions as a relatively basic oxide abstracting, in the rate-controlling step, a proton from the methyl of a bound methoxy group of chemisorbed methanol. It was proposed that a crucial feature of the sought after iron(III molybdate catalyst is the presence of -O-Mo-O-Fe-O-Mo-O- groups as found in the compound Fe2(MoO43 and for Fe3+ well dispersed in MoO3 generally. At the higher iron(III concentrations the loss of

  6. Magnetic behavior of iron oxide nanoparticle-biomolecule assembly

    International Nuclear Information System (INIS)

    Kim, Taegyun; Reis, Lynn; Rajan, Krishna; Shima, Mutsuhiro

    2005-01-01

    Iron oxide nanoparticles of 8-20 nm in size were investigated as an assembly with biomolecules synthesized in an aqueous solution. The magnetic behavior of the biomolecule-nanoparticles assembly depends sensitively on the morphology and hence the distribution of the nanoparticles, where the dipole coupling between the nanoparticles governs the overall magnetic behavior. In assemblies of iron oxide nanoparticles with trypsin, we observe a formation of unusual self-alignment of nanoparticles within trypsin molecules. In such an assembly structure, the magnetic particles tend to exhibit a lower spin-glass transition temperature than as-synthesized bare iron oxide nanoparticles probably due to reduced interparticle couplings within the molecular matrix. The observed self-alignment of nanoparticles in biomolecules may be a useful approach for directed nanoparticles assembly

  7. Iron oxide nanotubes synthesized via template-based electrodeposition

    Science.gov (United States)

    Lim, Jin-Hee; Min, Seong-Gi; Malkinski, Leszek; Wiley, John B.

    2014-04-01

    Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition. In the case of magnetite nanotubes, which consist of slightly larger nanoparticles, magnetization curves show ferromagnetism with weak coercivity at room temperature, while FC-ZFC curves exhibit the Verwey transition at 125 K.Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition

  8. High rate flame synthesis of highly crystalline iron oxide nanorods

    International Nuclear Information System (INIS)

    Merchan-Merchan, W; Taylor, A M; Saveliev, A V

    2008-01-01

    Single-step flame synthesis of iron oxide nanorods is performed using iron probes inserted into an opposed-flow methane oxy-flame. The high temperature reacting environment of the flame tends to convert elemental iron into a high density layer of iron oxide nanorods. The diameters of the iron oxide nanorods vary from 10 to 100 nm with a typical length of a few microns. The structural characterization performed shows that nanorods possess a highly ordered crystalline structure with parameters corresponding to cubic magnetite (Fe 3 O 4 ) with the [100] direction oriented along the nanorod axis. Structural variations of straight nanorods such as bends, and T-branched and Y-branched shapes are frequently observed within the nanomaterials formed, opening pathways for synthesis of multidimensional, interconnected networks

  9. Adsorption of poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) polymers on zinc, zinc oxide, iron, and iron oxide surfaces.

    Science.gov (United States)

    Seifert, Susan; Simon, Frank; Baumann, Giesela; Hietschold, Michael; Seifert, Andreas; Spange, Stefan

    2011-12-06

    The adsorption of poly(vinyl formamide) (PVFA) and the statistic copolymers poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) onto zinc and iron metal particles as well as their oxides was investigated. The adsorbates were characterized by means of XPS, DRIFT spectroscopy, wet chemical analysis, and solvatochromic probes. Dicyano-bis-(1,10-phenanthroline)-iron(II) (1), 3-(4-amino-3-methylphenyl)-7-phenyl-benzo-[1,2-b:4,5-b']difuran-2,6-dione (2), and 4-tert-butyl-2-(dicyano-methylene)-5-[4-(diethylamino)-benzylidene]-Δ(3)-thiazoline (3) as solvatochromic probes were coadsorbed onto zinc oxide to measure various effects of surface polarity. The experimental findings showed that the adsorption mechanism of PVFA and PVFA-co-PVAm strongly depends on the degree of hydrolysis of PVFA and pH values and also on the kind of metal or metal oxide surfaces that were employed as adsorbents. The adsorption mechanism of PVFA/PVFA-co-PVAm onto zinc oxide and iron oxide surfaces is mainly affected by electrostatic interactions. Particularly in the region of pH 5, the adsorption of PVFA/PVFA-co-PVAm onto zinc and iron metal particles is additionally influenced by redox processes, dissolution, and complexation reactions. © 2011 American Chemical Society

  10. Persulfate activation by iron oxide-immobilized MnO2 composite: identification of iron oxide and the optimum pH for degradations.

    Science.gov (United States)

    Jo, Young-Hoon; Do, Si-Hyun; Kong, Sung-Ho

    2014-01-01

    Iron oxide-immobilized manganese oxide (MnO2) composite was prepared and the reactivity of persulfate (PS) with the composite as activator was investigated for degradation of carbon tetrachloride and benzene at various pH levels. Brunauer-Emmett-Teller (BET) surface area of the composite was similar to that of pure MnO2 while the pore volume and diameter of composite was larger than those of MnO2. Scanning electron microscopy couples with energy dispersive spectroscopy (SEM-EDS) showed that Fe and Mn were detected on the surface of the composite, and X-ray diffraction (XRD) analysis indicated the possibilities of the existence of various iron oxides on the composite surface. Furthermore, the analyses of X-ray photoelectron (XPS) spectra revealed that the oxidation state of iron was identified as 1.74. In PS/composite system, the same pH for the highest degradation rates of both carbon tetrachloride and benzene were observed and the value of pH was 9. Scavenger test was suggested that both oxidants (i.e. hydroxyl radical, sulfate radical) and reductant (i.e. superoxide anion) were effectively produced when PS was activated with the iron-immobilized MnO2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Ultrasonic-assisted synthesis and magnetic studies of iron oxide/MCM-41 nanocomposite

    International Nuclear Information System (INIS)

    Ursachi, Irina; Vasile, Aurelia; Ianculescu, Adelina; Vasile, Eugeniu; Stancu, Alexandru

    2011-01-01

    Highlights: → A quick and facile route for the synthesis of iron oxide/MCM-41 nanocomposite. → Magnetic nanoparticles were stabilized inside the pores of mesoporous silica MCM-41. → The pore size of MCM-41 dictates the properties of iron oxide nanoparticles. → The procedure provides a narrow size distribution of magnetic nanoparticles. - Abstract: Iron oxide nanoparticles were stabilized within the pores of mesoporous silica MCM-41 amino-functionalized by a sonochemical method. Formation of iron oxide nanoparticles inside the mesoporous channels of amino-functionalized MCM-41 was realized by wet impregnation using iron nitrate, followed by calcinations at 550 deg. C in air. The effect of functionalization level on structural and magnetic properties of obtained nanocomposites was studied. The resulting materials were characterized by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy and selected area electron diffraction (HRTEM and SAED), vibrating sample and superconducting quantum interface magnetometers (VSM and SQUID) and nitrogen adsorption-desorption isotherms measurements. The HRTEM images reveal that the most of the iron oxide nanoparticles were dispersed inside the mesopores of silica matrix and the pore diameter of the amino-functionalized MCM-41 matrix dictates the particle size of iron oxide nanoparticles. The obtained material possesses mesoporous structure and interesting magnetic properties. Saturation magnetization value of magnetic iron oxide nanopatricles stabilized in MCM-41 amino-functionalized by in situ sonochemical synthesis was 1.84 emu g -1 . An important finding is that obtained magnetic nanocomposite materials exhibit enhanced magnetic properties than those of iron oxide/MCM-41 nanocomposite obtained by conventional method. The described method is providing a rather short preparation time and a narrow size distribution of iron oxide nanoparticles.

  12. Iron oxides, divalent cations, silica, and the early earth phosphorus crisis

    DEFF Research Database (Denmark)

    Jones, C.; Nomosatryo, S.; Crowe, S.A.

    2015-01-01

    As a nutrient required for growth, phosphorus regulates the activity of life in the oceans. Iron oxides sorb phosphorus from seawater, and through the Archean and early Proterozoic Eons, massive quantities of iron oxides precipitated from the oceans, producing a record of seawater chemistry...... that is preserved as banded iron formations (BIFs) today. Here we show that Ca2+, Mg2+, and silica in seawater control phosphorus sorption onto iron oxides, influencing the record of seawater phosphorus preserved in BIFs. Using a model for seawater cation chemistry through time, combined with the phosphorus...... waters shifted from phosphorus to iron limiting....

  13. Neutrophilic iron-oxidizing bacteria: occurrence and relevance in biological drinking water treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    2013-01-01

    Rapid sand filtration (RSF) is an economical way to treat anoxic groundwater around the world. It consists of groundwater aeration followed by passage through a sand filter. The oxidation and removal of ferrous iron, which is commonly found in anoxic groundwaters, is often believed to be a fully...... role of FeOB in iron removal at waterworks using RSF technologies....... physicochemical process. However, persistently low temperatures in RSF across Denmark may negatively affect the kinetics of chemical oxidation. The slower chemical oxidation of ferrous iron may increase the chances for iron bioconversion by neutrophilic iron-oxidizing bacteria (FeOB), which are found naturally...

  14. Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Paula I.P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Laia, César A.T. [Laboratório Associado para a Química Verde (LAQV), REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Carvalho, Alexandra [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Pereira, Laura C.J.; Coutinho, Joana T. [C2TN, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139,7, 2695-066 Bobadela LRS (Portugal); Ferreira, Isabel M.M., E-mail: imf@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Novo, Carlos M.M. [Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT/UNL, 1349-008 Lisboa (Portugal); Borges, João Paulo, E-mail: jpb@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal)

    2016-10-15

    Highlights: • Superparamagnetic iron oxide nanoparticles were stabilized with oleic acid. • Maximum stabilization was achieved at neutral pH. • Magnetic resonance imaging and magnetic hyperthermia applications were tested. • The produced nanoparticles are viable for both biomedical applications. - Abstract: Iron oxide nanoparticles (Fe{sub 3}O{sub 4}, IONPs) are promising candidates for several biomedical applications such as magnetic hyperthermia and as contrast agents for magnetic resonance imaging (MRI). However, their colloidal stability in physiological conditions hinders their application requiring the use of biocompatible surfactant agents. The present investigation focuses on obtaining highly stable IONPs, stabilized by the presence of an oleic acid bilayer. Critical aspects such as oleic acid concentration and pH were optimized to ensure maximum stability. NPs composed of an iron oxide core with an average diameter of 9 nm measured using transmission electron microscopy (TEM) form agglomerates with an hydrodynamic diameter of around 170 nm when dispersed in water in the presence of an oleic acid bilayer, remaining stable (zeta potential of −120 mV). Magnetic hyperthermia and the relaxivities measurements show high efficiency at neutral pH which enables their use for both magnetic hyperthermia and MRI.

  15. Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications

    International Nuclear Information System (INIS)

    Soares, Paula I.P.; Laia, César A.T.; Carvalho, Alexandra; Pereira, Laura C.J.; Coutinho, Joana T.; Ferreira, Isabel M.M.; Novo, Carlos M.M.; Borges, João Paulo

    2016-01-01

    Highlights: • Superparamagnetic iron oxide nanoparticles were stabilized with oleic acid. • Maximum stabilization was achieved at neutral pH. • Magnetic resonance imaging and magnetic hyperthermia applications were tested. • The produced nanoparticles are viable for both biomedical applications. - Abstract: Iron oxide nanoparticles (Fe_3O_4, IONPs) are promising candidates for several biomedical applications such as magnetic hyperthermia and as contrast agents for magnetic resonance imaging (MRI). However, their colloidal stability in physiological conditions hinders their application requiring the use of biocompatible surfactant agents. The present investigation focuses on obtaining highly stable IONPs, stabilized by the presence of an oleic acid bilayer. Critical aspects such as oleic acid concentration and pH were optimized to ensure maximum stability. NPs composed of an iron oxide core with an average diameter of 9 nm measured using transmission electron microscopy (TEM) form agglomerates with an hydrodynamic diameter of around 170 nm when dispersed in water in the presence of an oleic acid bilayer, remaining stable (zeta potential of −120 mV). Magnetic hyperthermia and the relaxivities measurements show high efficiency at neutral pH which enables their use for both magnetic hyperthermia and MRI.

  16. Synthesis of iron oxide nanoparticles via sonochemical method and their characterization

    Institute of Scientific and Technical Information of China (English)

    Amir Hassanjani-Roshan; Mohammad Reza Vaezi; Ali Shokuhfar; Zohreh Rajabali

    2011-01-01

    Preparation of iron oxide (α-Fe2O3) nanoparticles was carried out via a sonochemical process. The process parameters such as temperature,sonication time and power of ultrasonication play important roles in the size and morphology of the final products. The iron oxide nanoparticles were characterized by transmission electron microscopy,X-ray powder diffraction,and thermogravimetric and differential thermal analyses. From transmission electron microscopy observations,the size of the iron oxide nanoparticles is estimated to be significantly smaller than 19 nm. X-ray diffraction data of the powder after annealing provide direct evidence that the iron oxide was formed during the sonochemical process.

  17. Neutrophilic Iron Oxidizing Bacteria: Occurrence and Relevance in Biological Drinking Water Treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    Rapid sand filtration (RSF) is an economical way to treat anoxic groundwater around the world. It consists of groundwater aeration followed by passage through a sand filter. The oxidation and removal of ferrous iron, which is commonly found in anoxic groundwaters, is often believed to be a fully......, neutrophilic iron oxidizers were present at the level of up to 7 105 cells per gram sediment. The spatial abundance and diversity of FeOB inferred by DGGE fingerprinting differed greatly both between and within individual sand filters. The results suggest a larger than assumed role of FeOB in iron removal...... physicochemical process. However, persistently low temperatures in RSF across Denmark may negatively affect the kinetics of chemical oxidation. The slower chemical oxidation of ferrous iron may increase the chances for iron bioconversion by neutrophilic iron-oxidizing bacteria (FeOB), which are found naturally...

  18. Synthesis of iron oxide nanoparticles of narrow size distribution on ...

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. We report here the preparation of nanoparticles of iron oxide in the presence of polysaccharide templates. ... using different chemical methods viz. sonochemical, sol- .... 3.2 Characterization of iron oxide prepared by template assisted ...

  19. Iron oxide nanoparticle-micelles (ION-micelles for sensitive (molecular magnetic particle imaging and magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Lucas W E Starmans

    Full Text Available BACKGROUND: Iron oxide nanoparticles (IONs are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. METHODS AND RESULTS: IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles. Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles bound to blood clots. CONCLUSIONS: The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular MPI and warrants further investigation of the Fib

  20. Hydrogen production by ethanol partial oxidation over nano-iron oxide catalysts produced by chemical vapour synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael Ahmed Abou Taleb Sayed

    2011-01-13

    This work presents the experimental results of the synthesis of unsupported and supported SiC iron oxide nanoparticles and their catalytic activity towards ethanol partial oxidation. For comparison, further unsupported iron oxide phases were investigated towards the ethanol partial oxidation. These {gamma}-Fe{sub 2}O{sub 3} and {alpha}/{gamma}-Fe{sub 2}O{sub 3} phase catalysts were prepared by the CVS method using Fe(CO){sub 5} as precursor, supplied by another author. The {alpha}-Fe{sub 2}O{sub 3} and SiC nanoparticles were prepared by the CVS method using a home made hot wall reactor technique at atmospheric pressure. Ferrocene and tetramethylsilane were used as precursor for the production process. Process parameters of precursor evaporation temperature, precursor concentration, gas mixture velocity and gas mixture dilution were investigated and optimised to produce particle sizes in a range of 10 nm. For Fe{sub 2}O{sub 3}/SiC catalyst series production, a new hot wall reactor setup was used. The particles were produced by simultaneous thermal decomposition of ferrocene and tetramethylsilane in one reactor from both sides. The production parameters of inlet tube distance inside the reactor, precursor evaporation temperature and carrier gas flow were investigated to produce a series of samples with different iron oxide content. The prepared catalysts composition, physical and chemical properties were characterized by XRD, EDX, SEM, BET surface area, FTIR, XPS and dynamic light scattering (DLS) techniques. The catalytic activity for the ethanol gas-phase oxidation was investigated in a temperature range from 260 C to 290 C. The product distributions obtained over all catalysts were analysed with mass spectrometry analysis tool. The activity of bulk Fe{sub 2}O{sub 3} and SiC nanoparticles was compared with prepared nano-iron oxide phase catalysts. The reaction parameters, such as reaction temperature and O{sub 2}/ethanol ratio were investigated. The catalysts

  1. Sorption of trace amounts of gallium (III) on iron (III) oxide

    International Nuclear Information System (INIS)

    Music, S.; Gessner, M.; Wolf, R.H.H.

    1979-01-01

    The sorption of trace amounts of gallium(III) on iron(III) oxide has been studied as a function of pH. Optimum conditions have been found for the preconcentration of traces of gallium(III) by iron(III) oxide. The influence of surface active substances and of complexing agents on the sorption of trace amounts of gallium(III) on iron(III) oxide has been also studied. (orig.) [de

  2. Sorption of trace amounts of gallium (III) on iron (III) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Music, S; Gessner, M; Wolf, R H.H. [Institut Rudjer Boskovic, Zagreb (Yugoslavia)

    1979-01-01

    The sorption of trace amounts of gallium(III) on iron(III) oxide has been studied as a function of pH. Optimum conditions have been found for the preconcentration of traces of gallium(III) by iron(III) oxide. The influence of surface active substances and of complexing agents on the sorption of trace amounts of gallium(III) on iron(III) oxide has been also studied.

  3. Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run.

    Science.gov (United States)

    Grettenberger, Christen L; Pearce, Alexandra R; Bibby, Kyle J; Jones, Daniel S; Burgos, William D; Macalady, Jennifer L

    2017-04-01

    Acid mine drainage (AMD) is a major environmental problem affecting tens of thousands of kilometers of waterways worldwide. Passive bioremediation of AMD relies on microbial communities to oxidize and remove iron from the system; however, iron oxidation rates in AMD environments are highly variable among sites. At Scalp Level Run (Cambria County, PA), first-order iron oxidation rates are 10 times greater than at other coal-associated iron mounds in the Appalachians. We examined the bacterial community at Scalp Level Run to determine whether a unique community is responsible for the rapid iron oxidation rate. Despite strong geochemical gradients, including a >10-fold change in the concentration of ferrous iron from 57.3 mg/liter at the emergence to 2.5 mg/liter at the base of the coal tailings pile, the bacterial community composition was nearly constant with distance from the spring outflow. Scalp Level Run contains many of the same taxa present in other AMD sites, but the community is dominated by two strains of Ferrovum myxofaciens , a species that is associated with high rates of Fe(II) oxidation in laboratory studies. IMPORTANCE Acid mine drainage pollutes more than 19,300 km of rivers and streams and 72,000 ha of lakes worldwide. Remediation is frequently ineffective and costly, upwards of $100 billion globally and nearly $5 billion in Pennsylvania alone. Microbial Fe(II) oxidation is more efficient than abiotic Fe(II) oxidation at low pH (P. C. Singer and W. Stumm, Science 167:1121-1123, 1970, https://doi.org/10.1126/science.167.3921.1121). Therefore, AMD bioremediation could harness microbial Fe(II) oxidation to fuel more-cost-effective treatments. Advances will require a deeper understanding of the ecology of Fe(II)-oxidizing microbial communities and the factors that control their distribution and rates of Fe(II) oxidation. We investigated bacterial communities that inhabit an AMD site with rapid Fe(II) oxidation and found that they were dominated by two

  4. Magnetic iron oxide for contrast-enhanced MR imaging

    International Nuclear Information System (INIS)

    Fahlvik, A.K.

    1991-05-01

    The main objective of this experimental work has been to study the biological fate and the contrast enhancing potential of a model preparation of magnetic iron oxide (MSM) after intravenous injection to rodents. This was achieved by: Studying in vitro contrast efficacy of various magnetic iron oxide preparations by relaxation analysis. Studying in vivo contrast efficacy of MSM by relaxation analysis and NMR imaging. Studying the biodistribution and bioelimination of MSM in independent experiments using relaxation analysis, radioactivity studies and histological techniques. Studying interactions of MSM with target cells and target organelles using ex vivo techniques. Based on the presented experimental study, the MSM model preparation of magnetic iron oxide seems to fulfill basic requirements of NMR contrast agents: efficient proton relaxation, specific in vivo distribution, and biological tolerance. 177 refs., 5 figs., 2 tabs

  5. Self-assembly of a superparamagnetic raspberry-like silica/iron oxide nanocomposite using epoxy-amine coupling chemistry.

    Science.gov (United States)

    Cano, Manuel; de la Cueva-Méndez, Guillermo

    2015-02-28

    The fabrication of colloidal nanocomposites would benefit from controlled hetero-assembly of ready-made particles through covalent bonding. Here we used epoxy-amine coupling chemistry to promote the self-assembly of superparamagnetic raspberry-like nanocomposites. This adaptable method induced the covalent attachment of iron oxide nanoparticles sparsely coated with amine groups onto epoxylated silica cores in the absence of other reactants.

  6. Synthesis and Evaluation of Nanostructured Gold-Iron Oxide Catalysts for the Oxidative Dehydrogenation of Cyclohexane

    Science.gov (United States)

    Wu, Peng

    Shape-controlled iron oxide and gold-iron oxide catalysts with a cubic inverse spinel structure were studied in this thesis for the oxidative dehydrogenation of cyclohexane. The structure of iron oxide and gold-iron oxide catalysts has no major impact on their oxidative dehydrogenation activity. However, the product selectivity is influenced. Both cyclohexene and benzene are formed on bare iron oxide nanoshapes, while benzene is the only dehydrogenation product in the presence of gold. The selectivity of benzene over CO2 depends strongly on the stability of the iron oxide support and the gold-support interaction. The highest benzene yield has been observed on gold-iron oxide octahedra. {111}-bound nanooctahedra are highly stable in reaction conditions at 300 °C, while {100}-bound nanocubes start to sinter above 250 °C. The highest benzene yield has been observed on gold-iron oxide nanooctahedra, which are likely to have gold atoms, and few-atom gold clusters strongly-bound on their surface. Cationic gold appears to be the active site for benzene formation. An all-organic method to prepare Au-FeOx nano-catalysts is needed due to the inconvenience of the half-organic, half-inorganic synthesis process discussed above. Several methods from the literature to prepare gold-iron oxide nanocomposites completely in organic solvents were reviewed and followed. FeOx Au synthesis procedures in literatures are initially designed for a Au content of over 70%. This approach was tried here to prepare composites with a much lower Au content (2-5 atom. %). Heat treatment is required to bond Au and FeOx NPs in the organic-phase syntheses. Au-FeOx-4 was obtained as a selective catalyst for the ODH of cyclohexane. A Audelta+ peak is observed in the UV-Vis spectrum of sample Au-FeOx-4. This different Au delta+ form may be cationic Au nano-clusters interacting with the FeOx support. It has been demonstrated that cationic gold is responsible for dehydrogenation behavior. Furthermore, the

  7. Microanalysis of iron oxidation state in iron oxides using X Ray Absorption Near Edge Structure (XANES)

    Science.gov (United States)

    Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.

  8. Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications

    International Nuclear Information System (INIS)

    Predoi, D.; Ciobanu, C.S.; Radu, M.; Costache, M.; Dinischiotu, A.; Popescu, C.; Axente, E.; Mihailescu, I.N.; Gyorgy, E.

    2012-01-01

    Iron oxide nanoparticles were prepared by chemical co-precipitation method. The nanoparticles were mixed with dextran in distilled water. The obtained solutions were frozen in liquid nitrogen and used as targets during matrix assisted pulsed laser evaporation for the growth of hybrid, iron oxide nanoparticles-dextran thin films. Fourier Transform Infrared Spectroscopy and X-ray diffraction investigations revealed that the obtained films preserve the structure and composition of the initial, non-irradiated iron oxide-dextran composite material. The biocompatibility of the iron oxide-dextran thin films was demonstrated by 3-(4.5 dimethylthiazol-2yl)-2.5-diphenyltetrazolium bromide-based colorimetric assay, using human liver hepatocellular carcinoma cells. - Highlights: ► Hybrid, dextran-iron oxide nanoparticles and thin films. ► Laser immobilization. ► Biocompatibility of dextran-iron oxide nanoparticles.

  9. Effect of superconducting solenoid model cores on spanwise iron magnet roll control

    Science.gov (United States)

    Britcher, C. P.

    1985-01-01

    Compared with conventional ferromagnetic fuselage cores, superconducting solenoid cores appear to offer significant reductions in the projected cost of a large wind tunnel magnetic suspension and balance system. The provision of sufficient magnetic roll torque capability has been a long-standing problem with all magnetic suspension and balance systems; and the spanwise iron magnet scheme appears to be the most powerful system available. This scheme utilizes iron cores which are installed in the wings of the model. It was anticipated that the magnetization of these cores, and hence the roll torque generated, would be affected by the powerful external magnetic field of the superconducting solenoid. A preliminary study has been made of the effect of the superconducting solenoid fuselage model core concept on the spanwise iron magnet roll torque generation schemes. Computed data for one representative configuration indicate that reductions in available roll torque occur over a range of applied magnetic field levels. These results indicate that a 30-percent increase in roll electromagnet capacity over that previously determined will be required for a representative 8-foot wind tunnel magnetic suspension and balance system design.

  10. Thermochemically active iron titanium oxide materials

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric Nicholas; Miller, James E.

    2018-01-16

    A thermal oxidation-reduction cycle is disclosed that uses iron titanium oxide as the reactive material. The cycle may be used for the thermal splitting of water and/or carbon dioxide to form hydrogen and/or carbon monoxide. The formed compounds may be used as syngas precursors to form fuels.

  11. Iron-titanium oxide minerals and magnetic susceptibility anomalies in the Mariano Lake-Lake Valley cores - Constraints on conditions of uranium mineralization in the Morrison Formation, San Juan Basin, New Mexico

    International Nuclear Information System (INIS)

    Reynolds, R.L.; Fishman, N.S.; Scott, J.H.; Hudson, M.R.

    1986-01-01

    Petrographic study of the Mariano Lake-Lake Valley cores reveals three distinct zones of postdepositional alteration of detrital Fe-Ti (iron-titanium) oxide minerals in the Westwater Canyon Member of the Upper Jurassic Morrisson Formation. In the uranium-bearing and adjacent portions of the Westwater Canyon, these detrital Fe-Ti oxide minerals have been thoroughly altered by leaching of iron. Stratigraphically lower parts of the Westwater Canyon and the underlying Recapture Member are characterized by preservation of Fe-Ti oxide grains, primarily magnetite and ilmenite, and of hematite, and by an absence or uranium concentrations. Partly destroyed Fe-Ti oxide minerals occupy an interval between the zones of destruction and preservation. Alteration patterns of the Fe-Ti oxide minerals are reflected in bore-hole magnetic susceptibility logs. Magnetic susceptibility response in the upper parts of the Westwater Canyon Member is flat and uniformly <500 μSI units, but at greater depths it fluctuates sharply, from <1,000 to nearly 8,000 μSI units. The boundary between uniformly low and high magnetic susceptibility response corresponds closely to the interval that divides the zone of completely altered from the zone of preserved detrital Fe-Ti oxide minerals. The alteration pattern suggests that solutions responsible for destruction of the Fe-ti oxide minerals originated in the overlying Brushy Basin Member of the Morrison Formation. Previous studies indicate that these solutions were rich in soluble organic matter and perhaps in uranium. Uranium precipitation may have been controlled by a vertically fluctuation interface between organic-rich solutions and geochemically different fluids in which the detrital Fe-Ti oxide minerals were preserved

  12. Solid-state Water-mediated Transport Reduction of Nanostructured Iron Oxides

    International Nuclear Information System (INIS)

    Smirnov, Vladimir M.; Povarov, Vladimir G.; Voronkov, Gennadii P.; Semenov, Valentin G.; Murin, Igor' V.; Gittsovich, Viktor N.; Sinel'nikov, Boris M.

    2001-01-01

    The Fe 2+ /Fe 3+ ratio in two-dimensional iron oxide nanosructures (nanolayers with a thickness of 0.3-1.5 nm on silica surface) may be precisely controlled using the transport reduction (TR) technique. The species ≡-O-Fe(OH) 2 and (≡Si-O-) 2 -FeOH forming the surface monolayer are not reduced at 400-600 deg. C because of their covalent bonding to the silica surface, as demonstrated by Moessbauer spectroscopy. Iron oxide microparticles (microstructures) obtained by the impregnation technique, being chemically unbound to silica, are subjected to reduction at T ≥ 500 deg. C with formation of metallic iron in the form of α-Fe. Transport reduction of supported nanostructures (consisting of 1 or 4 monolayers) at T ≥ 600 deg. C produces bulk iron(II) silicate and metallic iron phases. The structural-chemical transformations occurring in transport reduction of supported iron oxide nanolayers are proved to be governed by specific phase processes in the nanostructures themselves

  13. Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Osborne, Elizabeth A; Atkins, Tonya M; Kauzlarich, Susan M; Gilbert, Dustin A; Liu Kai; Louie, Angelique Y

    2012-01-01

    Currently, magnetic iron oxide nanoparticles are the only nanosized magnetic resonance imaging (MRI) contrast agents approved for clinical use, yet commercial manufacturing of these agents has been limited or discontinued. Though there is still widespread demand for these particles both for clinical use and research, they are difficult to obtain commercially, and complicated syntheses make in-house preparation unfeasible for most biological research labs or clinics. To make commercial production viable and increase accessibility of these products, it is crucial to develop simple, rapid and reproducible preparations of biocompatible iron oxide nanoparticles. Here, we report a rapid, straightforward microwave-assisted synthesis of superparamagnetic dextran-coated iron oxide nanoparticles. The nanoparticles were produced in two hydrodynamic sizes with differing core morphologies by varying the synthetic method as either a two-step or single-step process. A striking benefit of these methods is the ability to obtain swift and consistent results without the necessity for air-, pH- or temperature-sensitive techniques; therefore, reaction times and complex manufacturing processes are greatly reduced as compared to conventional synthetic methods. This is a great benefit for cost-effective translation to commercial production. The nanoparticles are found to be superparamagnetic and exhibit properties consistent for use in MRI. In addition, the dextran coating imparts the water solubility and biocompatibility necessary for in vivo utilization. (paper)

  14. Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging.

    Science.gov (United States)

    Osborne, Elizabeth A; Atkins, Tonya M; Gilbert, Dustin A; Kauzlarich, Susan M; Liu, Kai; Louie, Angelique Y

    2012-06-01

    Currently, magnetic iron oxide nanoparticles are the only nanosized magnetic resonance imaging (MRI) contrast agents approved for clinical use, yet commercial manufacturing of these agents has been limited or discontinued. Though there is still widespread demand for these particles both for clinical use and research, they are difficult to obtain commercially, and complicated syntheses make in-house preparation unfeasible for most biological research labs or clinics. To make commercial production viable and increase accessibility of these products, it is crucial to develop simple, rapid and reproducible preparations of biocompatible iron oxide nanoparticles. Here, we report a rapid, straightforward microwave-assisted synthesis of superparamagnetic dextran-coated iron oxide nanoparticles. The nanoparticles were produced in two hydrodynamic sizes with differing core morphologies by varying the synthetic method as either a two-step or single-step process. A striking benefit of these methods is the ability to obtain swift and consistent results without the necessity for air-, pH- or temperature-sensitive techniques; therefore, reaction times and complex manufacturing processes are greatly reduced as compared to conventional synthetic methods. This is a great benefit for cost-effective translation to commercial production. The nanoparticles are found to be superparamagnetic and exhibit properties consistent for use in MRI. In addition, the dextran coating imparts the water solubility and biocompatibility necessary for in vivo utilization.

  15. Molecular and parametric imaging with iron oxides

    International Nuclear Information System (INIS)

    Matuszewski, L.; Bremer, C.; Tombach, B.; Heindel, W.

    2007-01-01

    Superparamagnetic iron oxide (SPIO) contrast agents, clinically established for high resolution magnetic resonance imaging of reticuloendothelial system containing anatomical structures, can additionally be exploited for the non-invasive characterization and quantification of pathology down to the molecular level. In this context, SPIOs can be applied for non-invasive cell tracking, quantification of tissue perfusion and target specific imaging, as well as for the detection of gene expression. This article provides an overview of new applications for clinically approved iron oxides as well of new, modified SPIO contrast agents for parametric and molecular imaging. (orig.) [de

  16. Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions.

    Science.gov (United States)

    Yin, Yongyuan; Guo, Xuetao; Peng, Dan

    2018-08-01

    Maize straw modified by iron and manganese oxides was synthesized via a simple and environmentally friendly method. Three maize straw materials, the original maize straw, maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides, were detected by SEM, BET, XPS, XRD and FTIR. The results showed that maize straw was successfully modified and maize straw modified by iron and manganese oxides has a larger surface area than MS. According to the experimental data, the sorption trend could conform to the pseudo-second-order kinetic model well, and the sorption ability of tylosin on sorbents followed the order of original maize straw oxides iron and manganese oxides. The study indicated that manganese oxides and iron-manganese oxides could significantly enhance the sorption capacity of original maize straw. The sorption isotherm data of tylosin on original maize straw fit a linear model well, while Freundlich models were more suitable for maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides. The pH, ionic strength and temperature can affect the sorption process. The sorption mechanisms of tylosin on iron and manganese oxides modified maize straw were attribute to the surface complexes, electrostatic interactions, H bonding and hydrophobic interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance.

    Science.gov (United States)

    Simberg, Dmitri; Park, Ji-Ho; Karmali, Priya P; Zhang, Wan-Ming; Merkulov, Sergei; McCrae, Keith; Bhatia, Sangeeta N; Sailor, Michael; Ruoslahti, Erkki

    2009-08-01

    In order to understand the role of plasma proteins in the rapid liver clearance of dextran-coated superparamagnetic iron oxide (SPIO) in vivo, we analyzed the full repertoire of SPIO-binding blood proteins using novel two-dimensional differential mass spectrometry approach. The identified proteins showed specificity for surface domains of the nanoparticles: mannan-binding lectins bound to the dextran coating, histidine-rich glycoprotein and kininogen bound to the iron oxide part, and the complement lectin and contact clotting factors were secondary binders. Nanoparticle clearance studies in knockout mice suggested that these proteins, as well as several previously identified opsonins, do not play a significant role in the SPIO clearance. However, both the dextran coat and the iron oxide core remained accessible to specific probes after incubation of SPIO in plasma, suggesting that the nanoparticle surface could be available for recognition by macrophages, regardless of protein coating. These data provide guidance to rational design of bioinert, long-circulating nanoparticles.

  18. Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Predoi, D.; Ciobanu, C.S. [National Institute for Physics of Materials, P.O. Box MG 07, Bucharest, Magurele (Romania); Radu, M.; Costache, M.; Dinischiotu, A. [Molecular Biology Center, University of Bucharest, 91-95 Splaiul Independentei, 76201, Bucharest 5 (Romania); Popescu, C.; Axente, E.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiations Physics, P. O. Box MG 36, 77125 Bucharest (Romania); Gyorgy, E., E-mail: egyorgy@cin2.es [National Institute for Lasers, Plasma and Radiations Physics, P. O. Box MG 36, 77125 Bucharest (Romania); Consejo Superior de Investigaciones Cientificas, Centre d' Investigacions en Nanociencia i Nanotecnologia (CSIC-CIN2), Campus UAB, 08193 Bellaterra (Spain)

    2012-02-01

    Iron oxide nanoparticles were prepared by chemical co-precipitation method. The nanoparticles were mixed with dextran in distilled water. The obtained solutions were frozen in liquid nitrogen and used as targets during matrix assisted pulsed laser evaporation for the growth of hybrid, iron oxide nanoparticles-dextran thin films. Fourier Transform Infrared Spectroscopy and X-ray diffraction investigations revealed that the obtained films preserve the structure and composition of the initial, non-irradiated iron oxide-dextran composite material. The biocompatibility of the iron oxide-dextran thin films was demonstrated by 3-(4.5 dimethylthiazol-2yl)-2.5-diphenyltetrazolium bromide-based colorimetric assay, using human liver hepatocellular carcinoma cells. - Highlights: Black-Right-Pointing-Pointer Hybrid, dextran-iron oxide nanoparticles and thin films. Black-Right-Pointing-Pointer Laser immobilization. Black-Right-Pointing-Pointer Biocompatibility of dextran-iron oxide nanoparticles.

  19. Regeneration of iron oxide containing pellets used for hot gas clean up

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A.; Heeney, P.; Furimsky, E. (CANMET, Ottawa, Ontario (Canada). Energy Research Laboratories)

    1989-09-01

    Four iron-containing pelletized solids used for H{sub 2}S removal from hot gas were oxidized in a Cahn electrobalance and in a fixed bed reactor. The main reactions included the sequence in which FeS was oxidized to iron sulphate which then decomposed rapidly yielding SO{sub 2} and iron oxides. The oxidation occurred predominantly on the outer surface of the pellets. 12 refs., 5 figs., 5 tabs.

  20. Iron oxides photochemical dissolution

    International Nuclear Information System (INIS)

    Blesa, M.A.; Litter, M.I.

    1987-01-01

    This work was intended to study the light irradiation influence of diverse wave-lengths on iron oxides dissolution in aqueous solutions. The objectives of this work were: the exploration of photochemical processes with the aim of its eventual application in: a) decontamination and chemical cleaning under special conditions; b) materials for solar energy conversion. (Author)

  1. Synthesis and heating effect of iron/iron oxide composite and iron oxide nanoparticles.

    Science.gov (United States)

    Zeng, Q; Baker, I; Loudis, J A; Liao, Y F; Hoopes, P J

    2007-02-09

    Fe/Fe oxide nanoparticles, in which the core consists of metallic Fe and the shell is composed of Fe oxides, were obtained by reduction of an aqueous solution of FeCl 3 within a NaBH 4 solution, or, using a water-in-oil micro-emulsion with CTAB as the surfactant. The reduction was performed either in an inert atmosphere or in air, and passivation with air was performed to produce the Fe/Fe 3 O 4 core/shell composite. Phase identification and particle size were determined by X-ray diffraction and TEM. Thermal analysis was performed using a differential scanning calorimeter. The quasistatic magnetic properties were measured using a VSM, and the specific absorption rates (SARs) of both Fe oxide and Fe/Fe 3 O 4 composite nanoparticles either dispersed in methanol or in an epoxy resin were measured by Luxtron fiber temperature sensors in an alternating magnetic field of 150 Oe at 250 kHz. It was found that the preparation conditions, including the concentrations of solutions, the mixing procedure and the heat treatment, influence the particle size, the crystal structure and consequently the magnetic properties of the particles. Compared with Fe oxides, the saturation magnetization ( M S ) of Fe/Fe 3 O 4 particles (100-190 emu/g) can be twice as high, and the coercivity ( H C ) can be tunable from several Oe to several hundred Oe. Hence, the SAR of Fe/Fe 3 O 4 composite nanoparticles can be much higher than that of Fe oxides, with a maximum SAR of 345 W/g. The heating behavior is related to the magnetic behavior of the nanoparticles.

  2. Magnetic and Mössbauer spectroscopy studies of nanocrystalline iron oxide aerogels

    DEFF Research Database (Denmark)

    Carpenter, E.E.; Long, J.W.; Rolison, D.R.

    2006-01-01

    A sol-gel synthesis was used to produce iron oxide aerogels. These nanocrystalline aerogels have a pore-solid structure similar to silica aerogels but are composed entirely of iron oxides. Mössbauer experiments and x-ray diffraction showed that the as-prepared aerogel is an amorphous or poorly...... crystalline iron oxide, which crystallized as a partially oxidized magnetite during heating in argon. After further heat treatment in air, the nanocrystallites are fully converted to maghemite. The particles are superparamagnetic at high temperatures, but the magnetic properties are strongly influenced...

  3. Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer

    International Nuclear Information System (INIS)

    Yu, William W; Chang, Emmanuel; Sayes, Christie M; Drezek, Rebekah; Colvin, Vicki L

    2006-01-01

    A facile method was developed for completely transferring high quality monodisperse iron oxide nanocrystals from organic solvents to water. The as-prepared aqueous dispersions of iron oxide nanocrystals were extremely stable and could be functionalized for bioconjugation with biomolecules. These iron oxide nanocrystals showed negligible cytotoxicity to human breast cancer cells (SK-BR-3) and human dermal fibroblast cells. This method is general and versatile for many organic solvent-synthesized nanoparticles, including fluorescent semiconductor nanocrystals

  4. Electron uptake by iron-oxidizing phototrophic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Bose, A; Gardel, EJ; Vidoudez, C; Parra, EA; Girguis, PR

    2014-02-26

    Oxidation-reduction reactions underlie energy generation in nearly all life forms. Although most organisms use soluble oxidants and reductants, some microbes can access solid-phase materials as electron-acceptors or -donors via extracellular electron transfer. Many studies have focused on the reduction of solid-phase oxidants. Far less is known about electron uptake via microbial extracellular electron transfer, and almost nothing is known about the associated mechanisms. Here we show that the iron-oxidizing photoautotroph Rhodopseudomonas palustris TIE-1 accepts electrons from a poised electrode, with carbon dioxide as the sole carbon source/electron acceptor. Both electron uptake and ruBisCo form I expression are stimulated by light. Electron uptake also occurs in the dark, uncoupled from photosynthesis. Notably, the pioABC operon, which encodes a protein system essential for photoautotrophic growth by ferrous iron oxidation, influences electron uptake. These data reveal a previously unknown metabolic versatility of photoferrotrophs to use extracellular electron transfer for electron uptake.

  5. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles

    Science.gov (United States)

    Ali, Attarad; Zafar, Hira; Zia, Muhammad; ul Haq, Ihsan; Phull, Abdul Rehman; Ali, Joham Sarfraz; Hussain, Altaf

    2016-01-01

    Recently, iron oxide nanoparticles (NPs) have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs. PMID:27578966

  6. From iron coordination compounds to metal oxide nanoparticles.

    Science.gov (United States)

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel; Cazacu, Maria

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe 2 III Fe II O(CH 3 COO) 6 (H 2 O) 3 ]·2H 2 O (FeAc1), μ 3 -oxo trinuclear iron(III) acetate, [Fe 3 O(CH 3 COO) 6 (H 2 O) 3 ]NO 3 ∙4H 2 O (FeAc2), iron furoate, [Fe 3 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeF), iron chromium furoate, FeCr 2 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  7. From iron coordination compounds to metal oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Mihail Iacob

    2016-12-01

    Full Text Available Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2IIIFeIIO(CH3COO6(H2O3]·2H2O (FeAc1, μ3-oxo trinuclear iron(III acetate, [Fe3O(CH3COO6(H2O3]NO3∙4H2O (FeAc2, iron furoate, [Fe3O(C4H3OCOO6(CH3OH3]NO3∙2CH3OH (FeF, iron chromium furoate, FeCr2O(C4H3OCOO6(CH3OH3]NO3∙2CH3OH (FeCrF, and an iron complex with an original macromolecular ligand (FePAZ were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination or using a nonconventional energy source (i.e., microwave or ultrasonic treatment to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  8. Liquid Phase Plasma Synthesis of Iron Oxide/Carbon Composite as Dielectric Material for Capacitor

    Directory of Open Access Journals (Sweden)

    Heon Lee

    2014-01-01

    Full Text Available Iron oxide/carbon composite was synthesized using a liquid phase plasma process to be used as the electrode of supercapacitor. Spherical iron oxide nanoparticles with the size of 5~10 nm were dispersed uniformly on carbon powder surface. The specific capacitance of the composite increased with increasing quantity of iron oxide precipitate on the carbon powder up to a certain quantity. When the quantity of the iron oxide precipitate exceeds the threshold, however, the specific capacitance was rather reduced by the addition of precipitate. The iron oxide/carbon composite containing an optimum quantity (0.33 atomic % of iron oxide precipitate exhibited the smallest resistance and the largest initial resistance slope.

  9. Underestimation of phosphorus fraction change in the supernatant after phosphorus adsorption onto iron oxides and iron oxide-natural organic matter complexes.

    Science.gov (United States)

    Yan, Jinlong; Jiang, Tao; Yao, Ying; Wang, Jun; Cai, Yuanli; Green, Nelson W; Wei, Shiqiang

    2017-05-01

    The phosphorus (P) fraction distribution and formation mechanism in the supernatant after P adsorption onto iron oxides and iron oxide-humic acid (HA) complexes were analyzed using the ultrafiltration method in this study. With an initial P concentration of 20mg/L (I=0.01mol/L and pH=7), it was shown that the colloid (1kDa-0.45μm) component of P accounted for 10.6%, 11.6%, 6.5%, and 4.0% of remaining total P concentration in the supernatant after P adsorption onto ferrihydrite (FH), goethite (GE), ferrihydrite-humic acid complex (FH-HA), goethite-humic acid complex (GE-HA), respectively. The oxide aggregates was the main mechanism for the formation of the colloid P in the supernatant. And colloidal adsorbent particles co-existing in the supernatant were another important reason for it. Additionally, dissolve organic matter dissolved from iron oxide-HA complexes could occupy large adsorption sites of colloidal iron causing less colloid P in the supernatant. Ultimately, we believe that the findings can provide a new way to deeply interpret the geochemical cycling of P, even when considering other contaminants such as organic pollutants, heavy metal ions, and arsenate at the sediment/soil-water interface in the real environment. Copyright © 2016. Published by Elsevier B.V.

  10. The production of iron oxide during peridotite serpentinization: Influence of pyroxene

    Directory of Open Access Journals (Sweden)

    Ruifang Huang

    2017-11-01

    Full Text Available Serpentinization produces molecular hydrogen (H2 that can support communities of microorganisms in hydrothermal fields; H2 results from the oxidation of ferrous iron in olivine and pyroxene into ferric iron, and consequently iron oxide (magnetite or hematite forms. However, the mechanisms that control H2 and iron oxide formation are poorly constrained. In this study, we performed serpentinization experiments at 311 °C and 3.0 kbar on olivine (with <5% pyroxene, orthopyroxene, and peridotite. The results show that serpentine and iron oxide formed when olivine and orthopyroxene individually reacted with a saline starting solution. Olivine-derived serpentine had a significantly lower FeO content (6.57 ± 1.30 wt.% than primary olivine (9.86 wt.%, whereas orthopyroxene-derived serpentine had a comparable FeO content (6.26 ± 0.58 wt.% to that of primary orthopyroxene (6.24 wt.%. In experiments on peridotite, olivine was replaced by serpentine and iron oxide. However, pyroxene transformed solely to serpentine. After 20 days, olivine-derived serpentine had a FeO content of 8.18 ± 1.56 wt.%, which was significantly higher than that of serpentine produced in olivine-only experiments. By contrast, serpentine after orthopyroxene had a slightly higher FeO content (6.53 ± 1.01 wt.% than primary orthopyroxene. Clinopyroxene-derived serpentine contained a significantly higher FeO content than its parent mineral. After 120 days, the FeO content of olivine-derived serpentine decreased significantly (5.71 ± 0.35 wt.%, whereas the FeO content of orthopyroxene-derived serpentine increased (6.85 ± 0.63 wt.% over the same period. This suggests that iron oxide preferentially formed after olivine serpentinization. Pyroxene in peridotite gained some Fe from olivine during the serpentinization process, which may have led to a decrease in iron oxide production. The correlation between FeO content and SiO2 or Al2O3 content in olivine- and

  11. Dextran-modified iron oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Hradil, Jiří; Pisarev, A. G.; Babič, Michal; Horák, Daniel

    2007-01-01

    Roč. 5, 1-2 (2007), s. 162-168 ISSN 1672-2515 R&D Projects: GA ČR GA203/05/2256 Institutional research plan: CEZ:AV0Z40500505 Keywords : iron oxide * nanoparticles * dextran Subject RIV: CD - Macromolecular Chemistry

  12. Adsorption of trace elements of radionuclides on hydrous iron oxides

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.

    1988-01-01

    Factors that influence the adsorption of trace elements or radionuclides on hydrous iron oxides were investigated. The adsorption of monovalent cations (Cs + , Rb + ) on hydrous iron oxides is not strongly pH-dependent and it can be regarded as nonspecific. On the other hand, the adsorption of Ag + , divalent cations (Zn 2+ , Cd 2+ , Mn 2+ , Sr 2+ ) or trivalent cations (Cr 3+ , La 3+ , Ce 3+ , Eu 3+ , Gd 3+ , Er 3+ , Yb 3+ ) is strongly pH-dependent. The regularities of the adsorption of these cations on hydrous iron oxides are discussed. The differences in the adsorption behaviour of some divalent and trivalent cations are also explained. Freshly precipitated iron(III) hydroxide can be used for the decontamination of radionuclides from low-level waste solutions. However, the efficacy of decontamination depends on the oxidation state and the chemical properties of radionuclides. (author) 40 refs.; 9 figs

  13. Linear-chain assemblies of iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dhak, Prasanta; Kim, Min-Kwan; Lee, Jae Hyeok; Kim, Miyoung; Kim, Sang-Koog, E-mail: sangkoog@snu.ac.kr

    2017-07-01

    Highlights: • Hydrothermal synthesis of pure phase 200 nm Fe{sub 3}O{sub 4} nanoparticles. • Studies of linear-chain assemblies of iron oxide nanosphere by FESEM. • Micromagnetic simulations showed the presence of 3D vortex states. • The B.E. for different numbers of particles in linear chain assemblies were calculated. - Abstract: We synthesized iron oxide nanoparticles using a simple hydrothermal approach and found several types of segments of their linear-chain self-assemblies as observed by field emission scanning electron microscopy. X-ray diffraction and transmission electron microscopy measurements confirm a well-defined single-phase FCC structure. Vibrating sample magnetometry measurements exhibit a ferromagnetic behavior. Micromagnetic numerical simulations show magnetic vortex states in the nanosphere model. Also, calculations of binding energies for different numbers of particles in the linear-chain assemblies explain a possible mechanism responsible for the self-assemblies of segments of the linear chains of nanoparticles. This work offers a step towards linear-chain self-assemblies of iron oxide nanoparticles and the effect of magnetic vortex states in individual nanoparticles on their binding energy.

  14. Influence of the aggregation, concentration, and viscosity on the nanomagnetism of iron oxide nanoparticle colloids for magnetic hyperthermia

    International Nuclear Information System (INIS)

    Cabrera, David; Camarero, Julio; Ortega, Daniel; Teran, Francisco J.

    2015-01-01

    Iron oxide nanoparticles have become ubiquitous in many biomedical applications, acting as core elements in an increasing number of therapeutic and diagnostic modalities. These applications mainly rely on their static and dynamic magnetic properties, through which they can be remotely actuated. However, little attention has been paid to understand the variation of the magnetic response of nanoparticles inside cells or tissues, despite of the remarkable changes reported to date. In this article, we provide some hints to analyze the influence of the biological matrix on the magnetism of iron oxide nanoparticles. To this aim, we propose the assessment of the heating efficiency of magnetic colloids against nanoparticle aggregation, concentration, and viscosity in order to mimic the fate of nanoparticles upon cell internalization

  15. Influence of the aggregation, concentration, and viscosity on the nanomagnetism of iron oxide nanoparticle colloids for magnetic hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, David; Camarero, Julio; Ortega, Daniel; Teran, Francisco J., E-mail: francisco.teran@imdea.org [Ciudad Universitaria de Cantoblanco, IMDEA Nanociencia (Spain)

    2015-03-15

    Iron oxide nanoparticles have become ubiquitous in many biomedical applications, acting as core elements in an increasing number of therapeutic and diagnostic modalities. These applications mainly rely on their static and dynamic magnetic properties, through which they can be remotely actuated. However, little attention has been paid to understand the variation of the magnetic response of nanoparticles inside cells or tissues, despite of the remarkable changes reported to date. In this article, we provide some hints to analyze the influence of the biological matrix on the magnetism of iron oxide nanoparticles. To this aim, we propose the assessment of the heating efficiency of magnetic colloids against nanoparticle aggregation, concentration, and viscosity in order to mimic the fate of nanoparticles upon cell internalization.

  16. Biological Properties of Iron Oxide Nanoparticles for Cellular and Molecular Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Claus-Christian Glüer

    2010-12-01

    Full Text Available Superparamagnetic iron-oxide particles (SPIO are used in different ways as contrast agents for magnetic resonance imaging (MRI: Particles with high nonspecific uptake are required for unspecific labeling of phagocytic cells whereas those that target specific molecules need to have very low unspecific cellular uptake. We compared iron-oxide particles with different core materials (magnetite, maghemite, different coatings (none, dextran, carboxydextran, polystyrene and different hydrodynamic diameters (20–850 nm for internalization kinetics, release of internalized particles, toxicity, localization of particles and ability to generate contrast in MRI. Particle uptake was investigated with U118 glioma cells und human umbilical vein endothelial cells (HUVEC, which exhibit different phagocytic properties. In both cell types, the contrast agents Resovist, B102, non-coated Fe3O4 particles and microspheres were better internalized than dextran-coated Nanomag particles. SPIO uptake into the cells increased with particle/iron concentrations. Maximum intracellular accumulation of iron particles was observed between 24 h to 36 h of exposure. Most particles were retained in the cells for at least two weeks, were deeply internalized, and only few remained adsorbed at the cell surface. Internalized particles clustered in the cytosol of the cells. Furthermore, all particles showed a low toxicity. By MRI, monolayers consisting of 5000 Resovist-labeled cells could easily be visualized. Thus, for unspecific cell labeling, Resovist and microspheres show the highest potential, whereas Nanomag particles are promising contrast agents for target-specific labeling.

  17. Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems.

    Directory of Open Access Journals (Sweden)

    Jarrod J Scott

    Full Text Available Chemolithoautotrophic iron-oxidizing bacteria play an essential role in the global iron cycle. Thus far, the majority of marine iron-oxidizing bacteria have been identified as Zetaproteobacteria, a novel class within the phylum Proteobacteria. Marine iron-oxidizing microbial communities have been found associated with volcanically active seamounts, crustal spreading centers, and coastal waters. However, little is known about the presence and diversity of iron-oxidizing communities at hydrothermal systems along the slow crustal spreading center of the Mid-Atlantic Ridge. From October to November 2012, samples were collected from rust-colored mats at three well-known hydrothermal vent systems on the Mid-Atlantic Ridge (Rainbow, Trans-Atlantic Geotraverse, and Snake Pit using the ROV Jason II. The goal of these efforts was to determine if iron-oxidizing Zetaproteobacteria were present at sites proximal to black smoker vent fields. Small, diffuse flow venting areas with high iron(II concentrations and rust-colored microbial mats were observed at all three sites proximal to black smoker chimneys. A novel, syringe-based precision sampler was used to collect discrete microbial iron mat samples at the three sites. The presence of Zetaproteobacteria was confirmed using a combination of 16S rRNA pyrosequencing and single-cell sorting, while light micros-copy revealed a variety of iron-oxyhydroxide structures, indicating that active iron-oxidizing communities exist along the Mid-Atlantic Ridge. Sequencing analysis suggests that these iron mats contain cosmopolitan representatives of Zetaproteobacteria, but also exhibit diversity that may be uncommon at other iron-rich marine sites studied to date. A meta-analysis of publically available data encompassing a variety of aquatic habitats indicates that Zetaproteobacteria are rare if an iron source is not readily available. This work adds to the growing understanding of Zetaproteobacteria ecology and suggests

  18. Chronic Iron Limitation Confers Transient Resistance to Oxidative Stress in Marine Diatoms.

    Science.gov (United States)

    Graff van Creveld, Shiri; Rosenwasser, Shilo; Levin, Yishai; Vardi, Assaf

    2016-10-01

    Diatoms are single-celled, photosynthetic, bloom-forming algae that are responsible for at least 20% of global primary production. Nevertheless, more than 30% of the oceans are considered "ocean deserts" due to iron limitation. We used the diatom Phaeodactylum tricornutum as a model system to explore diatom's response to iron limitation and its interplay with susceptibility to oxidative stress. By analyzing physiological parameters and proteome profiling, we defined two distinct phases: short-term (chronic (>5 d, phase II) iron limitation. While at phase I no significant changes in physiological parameters were observed, molecular markers for iron starvation, such as Iron Starvation Induced Protein and flavodoxin, were highly up-regulated. At phase II, down-regulation of numerous iron-containing proteins was detected in parallel to reduction in growth rate, chlorophyll content, photosynthetic activity, respiration rate, and antioxidant capacity. Intriguingly, while application of oxidative stress to phase I and II iron-limited cells similarly oxidized the reduced glutathione (GSH) pool, phase II iron limitation exhibited transient resistance to oxidative stress, despite the down regulation of many antioxidant proteins. By comparing proteomic profiles of P. tricornutum under iron limitation and metatranscriptomic data of an iron enrichment experiment conducted in the Pacific Ocean, we propose that iron-limited cells in the natural environment resemble the phase II metabolic state. These results provide insights into the trade-off between optimal growth rate and susceptibility to oxidative stress in the response of diatoms to iron quota in the marine environment. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.

    Science.gov (United States)

    Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M

    2015-11-01

    A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration--a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder.

  20. Evaluation of tumoral enhancement by superparamagnetic iron oxide particles: comparative studies with ferumoxtran and anionic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Brillet, P-Y.; Gazeau, F.; Luciani, A.; Bessoud, B.; Cuenod, C.-A.; Siauve, N.; Pons, J.-N.; Poupon, J.; Clement, O.

    2005-01-01

    This study was designed to compare tumor enhancement by superparamagnetic iron oxide particles, using anionic iron oxide nanoparticles (AP) and ferumoxtran. In vitro, relaxometry and media with increasing complexity were used to assess the changes in r2 relaxivity due to cellular internalization. In vivo, 26 mice with subcutaneously implanted tumors were imaged for 24 h after injection of particles to describe kinetics of enhancement using T1 spin echo, T2 spin echo, and T2 fast spin echo sequences. In vitro, the r2 relaxivity decreased over time (0-4 h) when AP were uptaken by cells. The loss of r2 relaxivity was less pronounced with long (Hahn Echo) than short (Carr-Purcell-Meiboom-Gill) echo time sequences. In vivo, our results with ferumoxtran showed an early T2 peak (1 h), suggesting intravascular particles and a second peak in T1 (12 h), suggesting intrainterstitial accumulation of particles. With AP, the late peak (24 h) suggested an intracellular accumulation of particles. In vitro, anionic iron oxide nanoparticles are suitable for cellular labeling due to a high cellular uptake. Conversely, in vivo, ferumoxtran is suitable for passive targeting of tumors due to a favorable biodistribution. (orig.)

  1. Water clustering on nanostructured iron oxide films

    DEFF Research Database (Denmark)

    Merte, Lindsay Richard; Bechstein, Ralf; Peng, G.

    2014-01-01

    , but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer...... islands form on the bare film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous...

  2. Steam explosions of molten iron oxide drops: easier initiation at small pressurizations

    International Nuclear Information System (INIS)

    Nelson, L.S.; Duda, P.M.

    1982-01-01

    Steam explosions caused by hot molten materials contacting liquid water following a possible light water nuclear reactor core overheat have been investigated by releasing single drops of a core melt simulant, molten iron oxide, into liquid water. Small steam explosions were triggered shortly afterwards by applying a pressure pulse to the water. The threshold peak pulse level above which an explosion always occurs was studied at ambient pressures between 0.083 and 1.12 MPa. It was found that the threshold decreased to a minimum in the range 0.2 - 0.8 MPa and then increased again. The effect of easier initiation as ambient pressure increases may have an important role in the triggering and propagation of a large scale steam explosion through a coarsely premixed dispersion of melt in water. (U.K.)

  3. Safety assessment of chronic oral exposure to iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Chamorro, Susana; Vaquero, María Pilar; Brenes, Agustín; Gutiérrez, Lucía; Salas, Gorka; Luengo, Yurena; Verdoy, Dolores; José Teran, Francisco

    2015-01-01

    Iron oxide nanoparticles with engineered physical and biochemical properties are finding a rapidly increasing number of biomedical applications. However, a wide variety of safety concerns, especially those related to oral exposure, still need to be addressed for iron oxide nanoparticles in order to reach clinical practice. Here, we report on the effects of chronic oral exposure to low doses of γ-Fe 2 O 3 nanoparticles in growing chickens. Animal observation, weight, and diet intake reveal no adverse signs, symptoms, or mortality. No nanoparticle accumulation was observed in liver, spleen, and duodenum, with feces as the main excretion route. Liver iron level and duodenal villi morphology reflect the bioavailability of the iron released from the partial transformation of γ-Fe 2 O 3 nanoparticles in the acid gastric environment. Duodenal gene expression studies related to the absorption of iron from γ-Fe 2 O 3 nanoparticles indicate the enhancement of a ferric over ferrous pathway supporting the role of mucins. Our findings reveal that oral administration of iron oxide nanoparticles is a safe route for drug delivery at low nanoparticle doses. (paper)

  4. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    International Nuclear Information System (INIS)

    Xi Dong; Luo Xiaoping; Lu Qianghua; Yao Kailun; Liu Zuli; Ning Qin

    2008-01-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method

  5. Effect of bicarbonate on iron-mediated oxidation of low-density lipoprotein

    Science.gov (United States)

    Arai, Hirofumi; Berlett, Barbara S.; Chock, P. Boon; Stadtman, Earl R.

    2005-07-01

    Oxidation of low-density lipoprotein (LDL) may play an important role in atherosclerosis. We studied the effects of bicarbonate/CO2 and phosphate buffer systems on metal ion-catalyzed oxidation of LDL to malondialdehyde (MDA) and to protein carbonyl and MetO derivatives. Our results revealed that LDL oxidation in mixtures containing free iron or heme derivatives was much greater in bicarbonate/CO2 compared with phosphate buffer. However, when copper was substituted for iron in these mixtures, the rate of LDL oxidation in both buffers was similar. Iron-catalyzed oxidation of LDL was highly sensitive to inhibition by phosphate. Presence of 0.3-0.5 mM phosphate, characteristic of human serum, led to 30-40% inhibition of LDL oxidation in bicarbonate/CO2 buffer. Iron-catalyzed oxidation of LDL to MDA in phosphate buffer was inhibited by increasing concentrations of albumin (10-200 μM), whereas MDA formation in bicarbonate/CO2 buffer was stimulated by 10-50 μM albumin but inhibited by higher concentrations. However, albumin stimulated the oxidation of LDL proteins to carbonyl derivatives at all concentrations examined in both buffers. Conversion of LDL to MDA in bicarbonate/CO2 buffer was greatly stimulated by ADP, ATP, and EDTA but only when EDTA was added at a concentration equal to that of iron. At higher than stoichiometric concentrations, EDTA prevented oxidation of LDL. Results of these studies suggest that interactions between bicarbonate and iron or heme derivatives leads to complexes with redox potentials that favor the generation of reactive oxygen species and/or to the generation of highly reactive CO2 anion or bicarbonate radical that facilitates LDL oxidation. Freely available online through the PNAS open access option.Abbreviations: LDL, low-density lipoprotein; MDA, malondialdehyde; MetO, methionine sulfoxide.

  6. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide

    International Nuclear Information System (INIS)

    Li, F.B.; Li, X.M.; Zhou, S.G.; Zhuang, L.; Cao, F.; Huang, D.Y.; Xu, W.; Liu, T.X.; Feng, C.H.

    2010-01-01

    The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (α-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of α-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe 2+ + α-FeOOH and the system of DIRB + α-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of α-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. - This is the first case reporting the reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.

  7. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.B., E-mail: cefbli@soil.gd.c [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Li, X.M. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Zhou, S.G.; Zhuang, L. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Cao, F. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Huang, D.Y.; Xu, W.; Liu, T.X. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Feng, C.H. [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China)

    2010-05-15

    The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (alpha-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of alpha-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe{sup 2+} + alpha-FeOOH and the system of DIRB + alpha-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of alpha-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. - This is the first case reporting the reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.

  8. Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions.

    Science.gov (United States)

    de Vet, W W J M; Dinkla, I J T; Rietveld, L C; van Loosdrecht, M C M

    2011-11-01

    Iron oxidation under neutral conditions (pH 6.5-8) may be a homo- or heterogeneous chemically- or a biologically-mediated process. The chemical oxidation is supposed to outpace the biological process under slightly alkaline conditions (pH 7-8). The iron oxidation kinetics and growth of Gallionella spp. - obligatory chemolithotrophic iron oxidizers - were assessed in natural, organic carbon-containing water, in continuous lab-scale reactors and full-scale groundwater trickling filters in the Netherlands. From Gallionella cell numbers determined by qPCR, balances were made for all systems. The homogeneous chemical iron oxidation occurred in accordance with the literature, but was retarded by a low water temperature (13 °C). The contribution of the heterogeneous chemical oxidation was, despite the presence of freshly formed iron oxyhydroxides, much lower than in previous studies in ultrapure water. This could be caused by the adsorption of natural organic matter (NOM) on the iron oxide surfaces. In the oxygen-saturated natural water with a pH ranging from 6.5 to 7.7, Gallionella spp. grew uninhibited and biological iron oxidation was an important, and probably the dominant, process. Gallionella growth was not even inhibited in a full-scale filter after plate aeration. From this we conclude that Gallionella spp. can grow under neutral pH and fully aerated conditions when the chemical iron oxidation is retarded by low water temperature and inhibition of the autocatalytic iron oxidation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Iron oxide/cassava starch-supported Ziegler-Natta catalysts for in situ ethylene polymerization.

    Science.gov (United States)

    Chancharoenrith, Sittikorn; Kamonsatikul, Choavarit; Namkajorn, Montree; Kiatisevi, Supavadee; Somsook, Ekasith

    2015-03-06

    Iron oxide nanoparticles were used as supporters for in situ polymerization to produce polymer nanocomposites with well-dispersed fillers in polymer matrix. Iron oxide could be sustained as colloidal solutions by cassava starch to produce a good dispersion of iron oxide in the matrix. New supports based on iron oxide/cassava starch or cassava starch for Ziegler-Natta catalysts were utilized as heterogeneous supporters for partially hydrolyzed triethylaluminum. Then, TiCl4 was immobilized on the supports as catalysts for polymerization of ethylene. High-density polyethylene (HDPE) composites were obtained by the synthesized catalysts. A good dispersion of iron oxide/cassava starch particles was observed in the synthesized polymer matrix promoting to good mechanical properties of HDPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Composition of MBE-grown iron oxide films

    NARCIS (Netherlands)

    Voogt, F.C; Hibma, T; Smulders, P.J M; Niesen, L

    A wide range of iron oxides have been grown epitaxially on MgO(100) substrates using a dual beam technique in which the deposited iron is oxidised by a beam of NO2 particles. At high fluxes magnetite (Fe3-deltaO4) phases with compositions between near-stoichiometric magnetite (Fe3O4, delta = 0) and

  11. Body iron is a contributor to oxidative damage of DNA

    DEFF Research Database (Denmark)

    Tuomainen, Tomi-Pekka; Loft, Steffen; Nyyssönen, Kristiina

    2007-01-01

    The transition metal iron is catalytically highly active in vitro, and not surprisingly, body iron has been suggested to promote oxidative stress in vivo. In the current analysis we studied the association of serum ferritin concentration and serum soluble transferrin receptor concentration.......17 (95% CI 0.08-0.26, P = 0.001), and serum soluble transferrin receptor to ferritin concentration ratio (TfR/ferritin) predicted the excretion rate at B = - 0.13 (95% CI - 0.21 to - 0.05, P = 0.002). Our data suggest that body iron contributes to excess oxidative stress already at non-iron overload...

  12. Iron Oxide as an MRI Contrast Agent for Cell Tracking

    Science.gov (United States)

    Korchinski, Daniel J.; Taha, May; Yang, Runze; Nathoo, Nabeela; Dunn, Jeff F.

    2015-01-01

    Iron oxide contrast agents have been combined with magnetic resonance imaging for cell tracking. In this review, we discuss coating properties and provide an overview of ex vivo and in vivo labeling of different cell types, including stem cells, red blood cells, and monocytes/macrophages. Furthermore, we provide examples of applications of cell tracking with iron contrast agents in stroke, multiple sclerosis, cancer, arteriovenous malformations, and aortic and cerebral aneurysms. Attempts at quantifying iron oxide concentrations and other vascular properties are examined. We advise on designing studies using iron contrast agents including methods for validation. PMID:26483609

  13. Evaluation of the properties of iron oxide-filled castor oil polyurethane

    OpenAIRE

    Mussatti, Eleonora; Merlini, Claudia; Barra, Guilherme Mariz de Oliveira; Güths, Saulo; Oliveira, Antonio Pedro Novaes de; Siligardi, Cristina

    2012-01-01

    The aim of this study was to obtain and evaluate the electrical, thermal and mechanical properties of iron oxide-filled castor oil polyurethane (PU/Fe2O3). The iron oxide used in this study was a residue derived from the steel pickling process of a Brazilian steel rolling industry. Polymeric composites with different iron oxide volume fractions (2.5, 5.0, 7.5, 10.0 and 12.5%) were prepared through the casting process followed by compression molding at room temperature. The composites were ana...

  14. DLVO and XDLVO calculations for bacteriophage MS2 adhesion to iron oxide particles.

    Science.gov (United States)

    Park, Jeong-Ann; Kim, Song-Bae

    2015-10-01

    In this study, batch experiments were performed to examine the adhesion of bacteriophage MS2 to three iron oxide particles (IOP1, IOP2 and IOP3) with different particle properties. The characteristics of MS2 and iron oxides were analyzed using various techniques to construct the classical DLVO and XDLVO potential energy profiles between MS2 and iron oxides. X-ray diffractometry peaks indicated that IOP1 was mainly composed of maghemite (γ-Fe2O3), but also contained some goethite (α-FeOOH). IOP2 was composed of hematite (α-Fe2O3) and IOP3 was composed of iron (Fe), magnetite (Fe3O4) and iron oxide (FeO). Transmission electron microscope images showed that the primary particle size of IOP1 (γ-Fe2O3) was 12.3±4.1nm. IOP2 and IOP3 had primary particle sizes of 167±35nm and 484±192nm, respectively. A surface angle analyzer demonstrated that water contact angles of IOP1, IOP2, IOP3 and MS2 were 44.83, 64.00, 34.33 and 33.00°, respectively. A vibrating sample magnetometer showed that the magnetic saturations of IOP1, IOP2 and IOP3 were 176.87, 17.02 and 946.85kA/m, respectively. Surface potentials measured in artificial ground water (AGW; 0.075mM CaCl2, 0.082mM MgCl2, 0.051mM KCl, and 1.5mM NaHCO3; pH7.6) indicated that iron oxides and MS2 were negatively charged in AGW (IOP1=-0.0185V; IOP2=-0.0194V; IOP3=-0.0301V; MS2=-0.0245V). Batch experiments demonstrated that MS2 adhesion to iron oxides was favorable in the order of IOP1>IOP2>IOP3. This tendency was well predicted by the classical DLVO model. In the DLVO calculations, both the sphere-plate and sphere-sphere geometries predicted the same trend of MS2 adhesion to iron oxides. Additionally, noticeable differences were not found between the DLVO and XDLVO interaction energy profiles, indicating that hydrophobic interactions did not play a major role; electrostatic interactions, however, did influence MS2 adhesion to iron oxides. Furthermore, the aggregation of iron oxides was investigated with a modified XDLVO

  15. Chitosan-iron oxide nanocomposite based electrochemical aptasensor for determination of malathion

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, Nirmal, E-mail: nirmalprabhakar@gmail.com; Thakur, Himkusha; Bharti, Anu; Kaur, Navpreet

    2016-10-05

    An electrochemical aptasensor based on chitosan-iron oxide nanocomposite (CHIT-IO) film deposited on fluorine tin Oxide (FTO) was developed for the detection of malathion. Iron oxide nanoparticles were prepared by co-precipitation method and characterized by Transmission electron microscopy and UV–Visible spectroscopy. The biotinylated DNA aptamer sequence specific to the malathion was immobilized onto the iron oxide doped-chitosan/FTO electrode by using streptavidin as linking molecule. Various characterization studies like Field Emission-Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Electrochemical studies were performed to attest the successful fabrication of bioelectrodes. Experimental parameters like aptamer concentration, response time, stability of electrode and reusability studies were optimized. Aptamer immobilized chitosan-iron oxide nanocomposite (APT/SA/CHIT-IO/FTO) bioelectrodes exhibited LOD of about 0.001 ng/mL within 15 min and spike-in studies revealed about 80–92% recovery of malathion from the lettuce leaves and soil sample. - Highlights: • An electrochemical aptasensor for the detection of Malathion has been developed. • Chitosan-iron oxide NP deposited FTO sheets provides platform for aptamer immobilization. • Aptasensor has efficiency to detect malathion upto 0.001 ng/mL within 15 min.

  16. Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties.

    Science.gov (United States)

    Bardhan, Rizia; Grady, Nathaniel K; Ali, Tamer; Halas, Naomi J

    2010-10-26

    It is well-known that the geometry of a nanoshell controls the resonance frequencies of its plasmon modes; however, the properties of the core material also strongly influence its optical properties. Here we report the synthesis of Au nanoshells with semiconductor cores of cuprous oxide and examine their optical characteristics. This material system allows us to systematically examine the role of core material on nanoshell optical properties, comparing Cu(2)O core nanoshells (ε(c) ∼ 7) to lower core dielectric constant SiO(2) core nanoshells (ε(c) = 2) and higher dielectric constant mixed valency iron oxide nanoshells (ε(c) = 12). Increasing the core dielectric constant increases nanoparticle absorption efficiency, reduces plasmon line width, and modifies plasmon energies. Modifying the core medium provides an additional means of tailoring both the near- and far-field optical properties in this unique nanoparticle system.

  17. Chronic Iron Limitation Confers Transient Resistance to Oxidative Stress in Marine Diatoms1

    Science.gov (United States)

    Graff van Creveld, Shiri; Rosenwasser, Shilo; Vardi, Assaf

    2016-01-01

    Diatoms are single-celled, photosynthetic, bloom-forming algae that are responsible for at least 20% of global primary production. Nevertheless, more than 30% of the oceans are considered “ocean deserts” due to iron limitation. We used the diatom Phaeodactylum tricornutum as a model system to explore diatom’s response to iron limitation and its interplay with susceptibility to oxidative stress. By analyzing physiological parameters and proteome profiling, we defined two distinct phases: short-term (5 d, phase II) iron limitation. While at phase I no significant changes in physiological parameters were observed, molecular markers for iron starvation, such as Iron Starvation Induced Protein and flavodoxin, were highly up-regulated. At phase II, down-regulation of numerous iron-containing proteins was detected in parallel to reduction in growth rate, chlorophyll content, photosynthetic activity, respiration rate, and antioxidant capacity. Intriguingly, while application of oxidative stress to phase I and II iron-limited cells similarly oxidized the reduced glutathione (GSH) pool, phase II iron limitation exhibited transient resistance to oxidative stress, despite the down regulation of many antioxidant proteins. By comparing proteomic profiles of P. tricornutum under iron limitation and metatranscriptomic data of an iron enrichment experiment conducted in the Pacific Ocean, we propose that iron-limited cells in the natural environment resemble the phase II metabolic state. These results provide insights into the trade-off between optimal growth rate and susceptibility to oxidative stress in the response of diatoms to iron quota in the marine environment. PMID:27503604

  18. Body iron is a contributor to oxidative damage of DNA

    DEFF Research Database (Denmark)

    Tuomainen, T.P.; Loft, Steffen Huitfeldt; Nyyssonen, K.

    2007-01-01

    The transition metal iron is catalytically highly active in vitro, and not surprisingly, body iron has been suggested to promote oxidative stress in vivo. In the current analysis we studied the association of serum ferritin concentration and serum soluble transferrin receptor concentration...... with daily urinary 8-hydroxydeoxyguanosine excretion, a marker of oxidative stress, in 48 mildly dyslipidemic men in East Finland. In multivariate linear regression analyses allowing for age, smoking, body mass index and physical exercise, serum ferritin concentration predicted the excretion rate at B = 0.......17 (95% CI 0.08-0.26, P = 0.001), and serum soluble transferrin receptor to ferritin concentration ratio (TfR/ferritin) predicted the excretion rate at B = - 0.13 (95% CI - 0.21 to - 0.05, P = 0.002). Our data suggest that body iron contributes to excess oxidative stress already at non-iron overload...

  19. Investigation of carrier oil stabilized iron oxide nanoparticles and its ...

    African Journals Online (AJOL)

    Iron oxide nanoparticles were synthesized by co-precipitation method. The polyunsaturated carrier oil (flaxseed oil) is used as a stabilizing agent for iron oxide nanoparticles. Kirby Bauer method was used to investigate the antibiotic sensitivity of carrier oil stabilized and uncoated SPIONs at 10 and 20 μg/L on Gram-positive ...

  20. Metallorganic routes to nanoscale iron and titanium oxide particles encapsulated in mesoporous alumina: formation, physical properties, and chemical reactivity.

    Science.gov (United States)

    Schneider, J J; Czap, N; Hagen, J; Engstler, J; Ensling, J; Gütlich, P; Reinoehl, U; Bertagnolli, H; Luis, F; de Jongh, L J; Wark, M; Grubert, G; Hornyak, G L; Zanoni, R

    2000-12-01

    Iron and titanium oxide nanoparticles have been synthesized in parallel mesopores of alumina by a novel organometallic "chimie douce" approach that uses bis(toluene)iron(0) (1) and bis(toluene)titanium(0) (2) as precursors. These complexes are molecular sources of iron and titanium in a zerovalent atomic state. In the case of 1, core shell iron/iron oxide particles with a strong magnetic coupling between both components, as revealed by magnetic measurements, are formed. Mössbauer data reveal superparamagnetic particle behavior with a distinct particle size distribution that confirms the magnetic measurements. The dependence of the Mössbauer spectra on temperature and particle size is explained by the influence of superparamagnetic relaxation effects. The coexistence of a paramagnetic doublet and a magnetically split component in the spectra is further explained by a distribution in particle size. From Mössbauer parameters the oxide phase can be identified as low-crystallinity ferrihydrite oxide. In agreement with quantum size effects observed in UV-visible studies, TEM measurements determine the size of the particles in the range 5-8 nm. The particles are mainly arranged alongside the pore walls of the alumina template. TiO2 nanoparticles are formed by depositing 2 in mesoporous alumina template. This produces metallic Ti, which is subsequently oxidized to TiO2 (anatase) within the alumina pores. UV-visible studies show a strong quantum confinement effect for these particles. From UV-visible investigations the particle size is determined to be around 2 nm. XPS analysis of the iron- and titania- embedded nanoparticles reveal the presence of Fe2O3 and TiO2 according to experimental binding energies and the experimental line shapes. Ti4+ and Fe3+ are the only oxidation states of the particles which can be determined by this technique. Hydrogen reduction of the iron/iron-oxide nanoparticles at 500 degrees C under flowing H2/N2 produces a catalyst, which is active

  1. Iron oxides and their applications in catalytic processes: a review

    OpenAIRE

    Oliveira, Luiz C. A.; Fabris, José D.; Pereira, Márcio C.

    2013-01-01

    A review of most of the reported studies on the use of iron oxides as catalyst in specific processes, namely Haber-Bosch reaction, Fischer-Tropsch synthesis, Fenton oxidation and photolytic molecular splitting of water to produce gaseous hydrogen, was carried out. An essential overview is thus presented, intending to address the fundamental meaning, as well as the corresponding chemical mechanisms, and perspectives on new technological potentialities of natural and synthetic iron oxides, more...

  2. Arc-Discharge Synthesis of Iron Encapsulated in Carbon Nanoparticles for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    S. Chaitoglou

    2014-01-01

    Full Text Available The objective of the present work is to improve the protection against the oxidation that usually appears in core@shell nanoparticles. Spherical iron nanoparticles coated with a carbon shell were obtained by a modified arc-discharge reactor, which permits controlling the diameter of the iron core and the carbon shell of the particles. Oxidized iron nanoparticles involve a loss of the magnetic characteristics and also changes in the chemical properties. Our nanoparticles show superparamagnetic behavior and high magnetic saturation owing to the high purity α-Fe of core and to the high core sealing, provided by the carbon shell. A liquid iron precursor was injected in the plasma spot dragged by an inert gas flow. A fixed arc-discharge current of 40 A was used to secure a stable discharge, and several samples were produced at different conditions. Transmission electron microscopy indicated an iron core diameter between 5 and 9 nm. Selected area electron diffraction provided evidences of a highly crystalline and dense iron core. The magnetic properties were studied up to 5 K temperature using a superconducting quantum interference device. The results reveal a superparamagnetic behaviour, a narrow size distribution (σg=1.22, and an average diameter of 6 nm for nanoparticles having a blocking temperature near 40 K.

  3. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.

    Science.gov (United States)

    Miot, J; Benzerara, K; Morin, G; Bernard, S; Beyssac, O; Larquet, E; Kappler, A; Guyot, F

    2009-06-01

    In phosphate-rich environments, vivianite (Fe(II)(3)(PO(4))(2), 8H(2)O) is an important sink for dissolved Fe(II) and is considered as a very stable mineral due to its low solubility at neutral pH. In the present study, we report the mineralogical transformation of vivianite in cultures of the nitrate-reducing iron-oxidizing bacterial strain BoFeN1 in the presence of dissolved Fe(II). Vivianite was first transformed into a greenish phase consisting mostly of an amorphous mixed valence Fe-phosphate. This precipitate became progressively orange and the final product of iron oxidation consisted of an amorphous Fe(III)-phosphate. The sub-micrometer analysis by scanning transmission X-ray microscopy of the iron redox state in samples collected at different stages of the culture indicated that iron was progressively oxidized at the contact of the bacteria and at a distance from the cells in extracellular minerals. Iron oxidation in the extracellular minerals was delayed by a few days compared with cell-associated Fe-minerals. This led to strong differences of Fe redox in between these two types of minerals and finally to local heterogeneities of redox within the sample. In the absence of dissolved Fe(II), vivianite was not significantly transformed by BoFeN1. Whereas Fe(II) oxidation at the cell contact is most probably directly catalyzed by the bacteria, vivianite transformation at a distance from the cells might result from oxidation by nitrite. In addition, processes leading to the export of Fe(III) from bacterial oxidation sites to extracellular minerals are discussed including some involving colloids observed by cryo-transmission electron microscopy in the culture medium.

  4. Geologic field notes and geochemical analyses of outcrop and drill core from Mesoproterozoic rocks and iron-oxide deposits and prospects of southeast Missouri

    Science.gov (United States)

    Day, Warren C.; Granitto, Matthew

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources/Missouri Geological Survey, undertook a study from 1988 to 1994 on the iron-oxide deposits and their host Mesoproterozoic igneous rocks in southeastern Missouri. The project resulted in an improvement of our understanding of the geologic setting, mode of formation, and the composition of many of the known deposits and prospects and the associated rocks of the St. Francois terrane in Missouri. The goal for this earlier work was to allow the comparison of Missouri iron-oxide deposits in context with other iron oxide-copper ± uranium (IOCG) types of mineral deposits observed globally. The raw geochemical analyses were released originally through the USGS National Geochemical Database (NGDB, http://mrdata.usgs.gov). The data presented herein offers all of the field notes, locations, rock descriptions, and geochemical analyses in a coherent package to facilitate new research efforts in IOCG deposit types. The data are provided in both Microsoft Excel (Version Office 2010) spreadsheet format (*.xlsx) and MS-DOS text formats (*.txt) for ease of use by numerous computer programs.

  5. Experimental investigation and thermodynamic simulation of the uranium oxide-zirconium oxide-iron oxide system in air

    Czech Academy of Sciences Publication Activity Database

    Petrov, Y. B.; Udalov, Y. P.; Šubrt, Jan; Bakardjieva, Snejana; Sázavský, P.; Kiselová, M.; Selucký, P.; Bezdička, Petr; Joumeau, C.; Piluso, P.

    2011-01-01

    Roč. 37, č. 2 (2011), s. 212-229 ISSN 1087-6596 Institutional research plan: CEZ:AV0Z40320502 Keywords : uranium oxide * zirconium oxide * iron oxide * fusibility curve * oxygen partial pressure * crystallization * phase composition Subject RIV: CA - Inorganic Chemistry Impact factor: 0.492, year: 2011

  6. RGD-conjugated iron oxide magnetic nanoparticles for magnetic resonance imaging contrast enhancement and hyperthermia.

    Science.gov (United States)

    Zheng, S W; Huang, M; Hong, R Y; Deng, S M; Cheng, L F; Gao, B; Badami, D

    2014-03-01

    The purpose of this study was to develop a specific targeting magnetic nanoparticle probe for magnetic resonance imaging and therapy in the form of local hyperthermia. Carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticles with carboxyl groups were coupled to cyclic arginine-glycine-aspartic peptides for integrin α(v)β₃ targeting. The particle size, magnetic properties, heating effect, and stability of the arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide were measured. The arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide demonstrates excellent stability and fast magneto-temperature response. Magnetic resonance imaging signal intensity of Bcap37 cells incubated with arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide was significantly decreased compared with that incubated with plain ultrasmall superparamagnetic iron oxide. The preferential uptake of arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide by target cells was further confirmed by Prussian blue staining and confocal laser scanning microscopy.

  7. Red Dawn: Characterizing Iron Oxide Minerals in Atmospheric Dust

    Science.gov (United States)

    Yauk, K.; Ottenfeld, C. F.; Reynolds, R. L.; Goldstein, H.; Cattle, S.; Berquo, T. S.; Moskowitz, B. M.

    2012-12-01

    Atmospheric dust is comprised of many components including small amounts of iron oxide minerals. Although the iron oxides make up a small weight percent of the bulk dust, they are important because of their roles in ocean fertilization, controls on climate, and as a potential health hazard to humans. Here we report on the iron oxide mineralogy in dust from a large dust storm, dubbed Red Dawn, which engulfed eastern Australia along a 3000 km front on 23 September 2009. Red Dawn originated from the lower Lake Eyre Basin of South Australia, western New South Wales (NSW) and southwestern Queensland and was the worst dust storm to have hit the city of Sydney in more than 60 years. Dust samples were collected from various locations across eastern Australia (Lake Cowal, Orange, Hornsby, Sydney) following the Red Dawn event. Our dust collection provides a good opportunity to study the physical and mineralogical properties of iron oxides from Red Dawn using a combination of reflectance spectroscopy, Mössbauer spectroscopy (MB), and magnetic measurements. Magnetization measurements from 20-400 K reveal that magnetite/maghemite, hematite and goethite are present in all samples with magnetite occurring in trace amounts (effects (d< 100 nm). Finally, we compared reflectance with a magnetic parameter (hard isothermal remanent magnetization, HIRM) for ferric oxide abundance to assess the degree to which ferric oxide in these samples might absorb solar radiation. In samples for which both parameters were obtained, HIRM and average reflectance over the visible wavelengths are correlated as a group (r2=0.24). These results indicate that the ferric oxide minerals in Red Dawn dust absorb solar radiation. Much of this ferric oxide occurs likely as grain coatings of nanohematite and nanogoethite, thereby providing high surface area to enhance absorption of solar radiation.

  8. Iron snow in the Martian core?

    Science.gov (United States)

    Davies, Christopher J.; Pommier, Anne

    2018-01-01

    The decline of Mars' global magnetic field some 3.8-4.1 billion years ago is thought to reflect the demise of the dynamo that operated in its liquid core. The dynamo was probably powered by planetary cooling and so its termination is intimately tied to the thermochemical evolution and present-day physical state of the Martian core. Bottom-up growth of a solid inner core, the crystallization regime for Earth's core, has been found to produce a long-lived dynamo leading to the suggestion that the Martian core remains entirely liquid to this day. Motivated by the experimentally-determined increase in the Fe-S liquidus temperature with decreasing pressure at Martian core conditions, we investigate whether Mars' core could crystallize from the top down. We focus on the "iron snow" regime, where newly-formed solid consists of pure Fe and is therefore heavier than the liquid. We derive global energy and entropy equations that describe the long-timescale thermal and magnetic history of the core from a general theory for two-phase, two-component liquid mixtures, assuming that the snow zone is in phase equilibrium and that all solid falls out of the layer and remelts at each timestep. Formation of snow zones occurs for a wide range of interior and thermal properties and depends critically on the initial sulfur concentration, ξ0. Release of gravitational energy and latent heat during growth of the snow zone do not generate sufficient entropy to restart the dynamo unless the snow zone occupies at least 400 km of the core. Snow zones can be 1.5-2 Gyrs old, though thermal stratification of the uppermost core, not included in our model, likely delays onset. Models that match the available magnetic and geodetic constraints have ξ0 ≈ 10% and snow zones that occupy approximately the top 100 km of the present-day Martian core.

  9. Effect of Iron Oxides (Ordinary and Nano and Municipal Solid Waste Compost (MSWC Coated Sulfur on Wheat (Triticum aestivum L. Plant Iron Concentration and Growth

    Directory of Open Access Journals (Sweden)

    S Mazaherinia

    2011-02-01

    Full Text Available Abstract A greenhouse study was conducted to compare the effects of ordinary iron oxide (0.02-0.06 mm and nano iron oxide (25-250 nm and five levels of both iron oxides (0, 0.05, 0.1, 0.5, and 1.0 %w/w and two levels of sulfurous granular compost (MSW (0 and 2% w/w on plant height, spike length, grain weight per spike, total plant dry matter weight and thousands grain weight of wheat. The experimental factors were combined in factorial arrangement in a completely randomized design with 3 replications. Results showed that nano iron oxide was superior over ordinary iron oxide in all parameters studied. Fe concentration, spike length, plant height, grain weight per spike, total plant dry weight and thousands grain weight showed increasing trend per increase in both of iron oxides levels. Also, all parameters studied in sulfurous granular compost (MSW treatment were superior over granular compost without sulfurous (MSW. This increase in all parameters were significantly higher when urban solid waste compost coated with sulfur coupled with nano iron oxide compared to urban sulfurous granular compost (MSW along with ordinary iron oxide. Keywords: Sulfurous granular compost (MSW, Nano and ordinary iron oxides, Wheat

  10. Chromium Elimination from Water by use of Iron Oxide Nanoparticles Absorbents

    Directory of Open Access Journals (Sweden)

    S Shokraei

    2014-09-01

    Results: results showed that best absorbent is soil absorbent and iron oxide nanoparticles, with maximum removal percent equal to 96.2%. Also best turnover was obtained from 8837 ppm of primary concentration of heavy metal. In other hand, in other experiments that used from iron oxide nanoparticles, adding of nanoparticles caused to increase in chrome absorption and conversion of Cr6+ to Cr3+. Conclusion: with use of the results of this study can be said that Combining of iron oxide nanoparticles with chrome removal filters can be convert Cr6+ to Cr3+, and process turnover will increased.

  11. Preparation of nano-iron oxide red pigment powders by use of cyanided tailings

    International Nuclear Information System (INIS)

    Li Dengxin; Gao Guolong; Meng Fanling; Ji Chong

    2008-01-01

    On one hand, cyanided tailings are one kind of pollutants. On the other hand, they contain a lot of valuable elements. So utilization of them can bring social and environmental benefits. In this paper, cyanided tailings were used to prepare nano-iron oxide red pigment powders by an ammonia process with urea as precipitant. At first, cyanided tailings were oxidized by nitric acid. Then, the oxidizing mixture was separated into solid and liquid parts. The liquid mixture was reduced by scrap iron and the impurity of it was removed by use of NH 3 .H 2 O. Then, the seed crystal of γ-FeOOH was obtained, when the pure liquid reacted with ammonia liquid at the selected experimental conditions. At last, nano-iron oxide red pigment powders were prepared. The structure, morphology and size distribution of seed crystal and iron oxide red were characterized systematically by means of X-ray diffraction (XRD), transmission electron microscope (TEM) and laser particle size analyzer (LPSA). The results revealed that typical iron oxide nanoparticles were α-Fe 2 O 3 with particle size of 50-70 nm. Furthermore, the factors that affected the hue and quality of the seed crystal and iron oxide red pigment were also discussed

  12. Synthesis and controllable oxidation of monodisperse cobalt-doped wüstite nanoparticles and their core-shell stability and exchange-bias stabilization.

    Science.gov (United States)

    Chen, Chih-Jung; Chiang, Ray-Kuang; Kamali, Saeed; Wang, Sue-Lein

    2015-09-14

    Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ∼4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (H(E)), an enhanced coercivity field (H(C)), and a pronounced vertical shift, thus indicating the presence of a strong exchange bias coupling effect. More importantly, the onset temperature of H(E) was found to be higher than 200 K, which suggests that cobalt doping increases the Néel temperature (T(N)) of the CWT core. In general, the results show that the homogeneous dispersion of Co in iron precursors improves the stability of the final CWT nanoparticles. Moreover, the CoFe2O4 shells formed following oxidation increase the oxidation resistance of the CWT cores and enhance their anisotropy energy.

  13. Females Are Protected From Iron-Overload Cardiomyopathy Independent of Iron Metabolism: Key Role of Oxidative Stress.

    Science.gov (United States)

    Das, Subhash K; Patel, Vaibhav B; Basu, Ratnadeep; Wang, Wang; DesAulniers, Jessica; Kassiri, Zamaneh; Oudit, Gavin Y

    2017-01-23

    Sex-related differences in cardiac function and iron metabolism exist in humans and experimental animals. Male patients and preclinical animal models are more susceptible to cardiomyopathies and heart failure. However, whether similar differences are seen in iron-overload cardiomyopathy is poorly understood. Male and female wild-type and hemojuvelin-null mice were injected and fed with a high-iron diet, respectively, to develop secondary iron overload and genetic hemochromatosis. Female mice were completely protected from iron-overload cardiomyopathy, whereas iron overload resulted in marked diastolic dysfunction in male iron-overloaded mice based on echocardiographic and invasive pressure-volume analyses. Female mice demonstrated a marked suppression of iron-mediated oxidative stress and a lack of myocardial fibrosis despite an equivalent degree of myocardial iron deposition. Ovariectomized female mice with iron overload exhibited essential pathophysiological features of iron-overload cardiomyopathy showing distinct diastolic and systolic dysfunction, severe myocardial fibrosis, increased myocardial oxidative stress, and increased expression of cardiac disease markers. Ovariectomy prevented iron-induced upregulation of ferritin, decreased myocardial SERCA2a levels, and increased NCX1 levels. 17β-Estradiol therapy rescued the iron-overload cardiomyopathy in male wild-type mice. The responses in wild-type and hemojuvelin-null female mice were remarkably similar, highlighting a conserved mechanism of sex-dependent protection from iron-overload-mediated cardiac injury. Male and female mice respond differently to iron-overload-mediated effects on heart structure and function, and females are markedly protected from iron-overload cardiomyopathy. Ovariectomy in female mice exacerbated iron-induced myocardial injury and precipitated severe cardiac dysfunction during iron-overload conditions, whereas 17β-estradiol therapy was protective in male iron-overloaded mice.

  14. Electrochemical reduction of nitroaromatic compounds by single sheet iron oxide coated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Zhi, E-mail: lizhi@plen.ku.dk [Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK–1871 Frederiksberg C (Denmark); Hansen, Hans Christian B. [Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK–1871 Frederiksberg C (Denmark); Bjerrum, Morten Jannik [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK–2100 København Ø (Denmark)

    2016-04-05

    Highlights: • Composite layers of single sheet iron oxides were coated on indium tin oxide electrodes. • Single sheet iron oxide is an electro-catalyst for reduction of nitroaromatic compounds in aqueous solution. • The reduction is well explained by a diffusion layer model. • The charge properties of the nitrophenols have an important influence on reduction. • Low-cost iron oxide based materials are promising electro-catalyst for water treatment. - Abstract: Nitroaromatic compounds are substantial hazard to the environment and to the supply of clean drinking water. We report here the successful reduction of nitroaromatic compounds by use of iron oxide coated electrodes, and demonstrate that single sheet iron oxides formed from layered iron(II)-iron(III) hydroxides have unusual electrocatalytic reactivity. Electrodes were produced by coating of single sheet iron oxides on indium tin oxide electrodes. A reduction current density of 10 to 30 μA cm{sup −2} was observed in stirred aqueous solution at pH 7 with concentrations of 25 to 400 μM of the nitroaromatic compound at a potential of −0.7 V vs. SHE. Fast mass transfer favors the initial reduction of the nitroaromatic compound which is well explained by a diffusion layer model. Reduction was found to comprise two consecutive reactions: a fast four-electron first-order reduction of the nitro-group to the hydroxylamine-intermediate (rate constant = 0.28 h{sup −1}) followed by a slower two-electron zero-order reduction resulting in the final amino product (rate constant = 6.9 μM h{sup −1}). The zero-order of the latter reduction was attributed to saturation of the electrode surface with hydroxylamine-intermediates which have a more negative half-wave potential than the parent compound. For reduction of nitroaromatic compounds, the SSI electrode is found superior to metal electrodes due to low cost and high stability, and superior to carbon-based electrodes in terms of high coulombic efficiency and

  15. Interaction of aromatic amines with iron oxides: implications for prebiotic chemistry.

    Science.gov (United States)

    Shanker, Uma; Singh, Gurinder; Kamaluddin

    2013-06-01

    The interaction of aromatic amines (aniline, p-chloroaniline, p-toludine and p-anisidine) with iron oxides (goethite, akaganeite and hematite) has been studied. Maximum uptake of amines was observed around pH 7. The adsorption data obtained at neutral pH were found to follow Langmuir adsorption. Anisidine was found to be a better adsorbate probably due to its higher basicity. In alkaline medium (pH > 8), amines reacted on goethite and akaganeite to give colored products. Analysis of the products by GC-MS showed benzoquinone and azobenzene as the reaction products of aniline while p-anisidine afforded a dimer. IR analysis of the amine-iron oxide hydroxide adduct suggests that the surface acidity of iron oxide hydroxides is responsible for the interaction. The present study suggests that iron oxide hydroxides might have played a role in the stabilization of organic molecules through their surface activity and in prebiotic condensation reactions.

  16. Microwave-Assisted Combustion Synthesis of Nano Iron Oxide/Iron-Coated Activated Carbon, Anthracite, Cellulose Fiber, and Silica, with Arsenic Adsorption Studies

    Directory of Open Access Journals (Sweden)

    Mallikarjuna N. Nadagouda

    2011-01-01

    Full Text Available Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber, and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was completed within a few minutes. The method used no additional fuel and nitrate, which is present in the precursor itself, to drive the reaction. The obtained samples were then characterized with X-ray mapping, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDS, selected area diffraction pattern (SAED, transmission electron microscopy (TEM, X-ray diffraction (XRD, and inductively coupled plasma (ICP spectroscopy. The size of the iron oxide/iron nanoparticle-coated activated carbon, anthracite, cellulose fiber, and silica samples were found to be in the nano range (50–400 nm. The iron oxide/iron nanoparticles mostly crystallized into cubic symmetry which was confirmed by SAED. The XRD pattern indicated that iron oxide/iron nano particles existed in four major phases. That is, γ-Fe2O3, α-Fe2O3, Fe3O4, and Fe. These iron-coated activated carbon, anthracite, cellulose fiber, and silica samples were tested for arsenic adsorption through batch experiments, revealing that few samples had significant arsenic adsorption.

  17. Nanoparticulate NaA zeolite composites for MRI: Effect of iron oxide content on image contrast

    Science.gov (United States)

    Gharehaghaji, Nahideh; Divband, Baharak; Zareei, Loghman

    2018-06-01

    In the current study, Fe3O4/NaA nanocomposites with various amounts of Fe3O4 (3.4, 6.8 & 10.2 wt%) were synthesized and characterized to study the effect of nano iron oxide content on the magnetic resonance (MR) image contrast. The cell viability of the nanocomposites was investigated by MTT assay method. T2 values as well as r2 relaxivities were determined with a 1.5 T MRI scanner. The results of the MTT assay confirmed the nanocomposites cytocompatibility up to 6.8% of the iron oxide content. Although the magnetization saturations and susceptibility values of the nanocomposites were increased as a function of the iron oxide content, their relaxivity was decreased from 921.78 mM-1 s-1 for the nanocomposite with the lowest iron oxide content to 380.16 mM-1 s-1 for the highest one. Therefore, Fe3O4/NaA nanocomposite with 3.4% iron oxide content led to the best MR image contrast. Nano iron oxide content and dispersion in the nanocomposites structure have important role in the nanocomposite r2 relaxivity and the MR image contrast. Aggregation of the iron oxide nanoparticles is a limiting factor in using of the high iron oxide content nanocomposites.

  18. Inhibitory Effect Evaluation of Glycerol-Iron Oxide Thin Films on Methicillin-Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    C. L. Popa

    2015-01-01

    Full Text Available The main purpose of this study was to evaluate the inhibitory effect of glycerol- iron oxide thin films on Methicillin-Resistant Staphylococcus aureus (MRSA. Our results suggest that glycerol-iron oxide thin films could be used in the future for various biomedical and pharmaceutical applications. The glycerol-iron oxide thin films have been deposited by spin coating method on a silicon (111 substrate. The structural properties have been studied by X-ray diffraction (XRD and scanning electron spectroscopy (SEM. The XRD investigations of the prepared thin films demonstrate that the crystal structure of glycerol-iron oxide nanoparticles was not changed after spin coating deposition. On the other hand, the SEM micrographs suggest that the size of the glycerol-iron oxide microspheres increased with the increase of glycerol exhibiting narrow size distributions. The qualitative depth profile of glycerol-iron oxide thin films was identified by glow discharge optical emission spectroscopy (GDOES. The GDOES spectra revealed the presence of the main elements: Fe, O, C, H, and Si. The antimicrobial activity of glycerol-iron oxide thin films was evaluated by measuring the zone of inhibition. After 18 hours of incubation at 37°C, the diameters of the zones of complete inhibition have been measured obtaining values around 25 mm.

  19. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release

    International Nuclear Information System (INIS)

    Tai, L-A; Wang, Y-C; Wang, Y-J; Yang, C-S; Tsai, P-J; Lo, L-W

    2009-01-01

    Iron oxide nanoparticles can serve as a heating source upon alternative magnetic field (AMF) exposure. Iron oxide nanoparticles can be mixed with thermosensitive nanovehicles for hyperthermia-induced drug release, yet such a design and mechanism may not be suitable for controllable drug release applications in which the tissues are susceptible to environmental temperature change such as brain tissue. In the present study, iron oxide nanoparticles were entrapped inside of thermosensitive liposomes for AMF-induced drug release while the environmental temperature was maintained at a constant level. Carboxyfluorescein was co-entrapped with the iron oxide nanoparticles in the liposomes as a model compound for monitoring drug release and environmental temperature was maintained with a water circulator jacket. These experiments have been successfully performed in solution, in phantom and in anesthetized animals. Furthermore, the thermosensitive liposomes were administered into rat forearm skeletal muscle, and the release of carboxylfluorescein triggered by the external alternative magnetic field was monitored by an implanted microdialysis perfusion probe with an on-line laser-induced fluorescence detector. In the future such a device could be applied to simultaneous magnetic resonance imaging and non-invasive drug release in temperature-sensitive applications.

  20. Direct measurement of thermal conductivity in solid iron at planetary core conditions.

    Science.gov (United States)

    Konôpková, Zuzana; McWilliams, R Stewart; Gómez-Pérez, Natalia; Goncharov, Alexander F

    2016-06-02

    The conduction of heat through minerals and melts at extreme pressures and temperatures is of central importance to the evolution and dynamics of planets. In the cooling Earth's core, the thermal conductivity of iron alloys defines the adiabatic heat flux and therefore the thermal and compositional energy available to support the production of Earth's magnetic field via dynamo action. Attempts to describe thermal transport in Earth's core have been problematic, with predictions of high thermal conductivity at odds with traditional geophysical models and direct evidence for a primordial magnetic field in the rock record. Measurements of core heat transport are needed to resolve this difference. Here we present direct measurements of the thermal conductivity of solid iron at pressure and temperature conditions relevant to the cores of Mercury-sized to Earth-sized planets, using a dynamically laser-heated diamond-anvil cell. Our measurements place the thermal conductivity of Earth's core near the low end of previous estimates, at 18-44 watts per metre per kelvin. The result is in agreement with palaeomagnetic measurements indicating that Earth's geodynamo has persisted since the beginning of Earth's history, and allows for a solid inner core as old as the dynamo.

  1. Microbial Oxidation of Iron Sulfides in Anaerobic Environments

    DEFF Research Database (Denmark)

    Vaclavkova, Sarka

    Abstract (shortened): Iron sulfides (FeSx), representing 0.04-10 % of Danish dry soil weight, oxidize in a presence of oxygen, releasing sulfuric acid and free iron. Environmental impact of FeSx oxidation is commonly seen on agricultural sites cultivated by drainage as acid sulfate soil formation....... MISON was found to count for about 1/3 of the net NO3- reduction in MISON active environments, despite the presence of alternative electron donor, organic carbon. The rate of MISON was found to be dependent on the available reactive surface area of FeSx and on the microorganism involved. The findings...

  2. Recovery of iron oxide from coal fly ash

    Science.gov (United States)

    Dobbins, Michael S.; Murtha, Marlyn J.

    1983-05-31

    A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

  3. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    Energy Technology Data Exchange (ETDEWEB)

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  4. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Guan, E-mail: huangg66@126.com; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-30

    Graphical abstract: A biomimetic catalyst of iron-tetrakis(4-sulfonatophenyl)porphyrin immobilized on powdered chitosan achieves efficient cyclohexane oxidation with high ketone and alcohol yields. - Highlights: • Fe (TPPS)/pd-CTS is an excellent catalyst for cyclohexane oxidation. • Amino ligation alters the electron cloud density around the iron cation. • Amino coordination likely reduces the activation energy of Fe (TPPS). • The catalyst achieved 22.9 mol% yields of cyclohexanone and cyclohexanol. - Abstract: This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O{sub 2}. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  5. Effect of the number of iron oxide nanoparticle layers on the magnetic properties of nanocomposite LbL assemblies

    International Nuclear Information System (INIS)

    Dincer, Ilker; Tozkoparan, Onur; German, Sergey V.; Markin, Alexey V.; Yildirim, Oguz; Khomutov, Gennady B.; Gorin, Dmitry A.; Venig, Sergey B.; Elerman, Yalcin

    2012-01-01

    Aqueous colloidal suspension of iron oxide nanoparticles has been synthesized. Z-potential of iron oxide nanoparticles stabilized by citric acid was −35±3 mV. Iron oxide nanoparticles have been characterized by the light scattering method and transmission electron microscopy. The polyelectrolyte/iron oxide nanoparticle thin films with different numbers of iron oxide nanoparticle layers have been prepared on the surface of silicon substrates via the layer-by-layer assembly technique. The physical properties and chemical composition of nanocomposite thin films have been studied by atomic force microscopy, magnetic force microscopy, magnetization measurements, Raman spectroscopy. Using the analysis of experimental data it was established, that the magnetic properties of nanocomposite films depended on the number of iron oxide nanoparticle layers, the size of iron oxide nanoparticle aggregates, the distance between aggregates, and the chemical composition of iron oxide nanoparticles embedded into the nanocomposite films. The magnetic permeability of nanocomposite coatings has been calculated. The magnetic permeability values depend on the number of iron oxide nanoparticle layers in nanocomposite film. - Highlights: ► The magnetic properties of nanocomposite films depended on the number of iron oxide nanoparticle layers. ► The iron oxide nanoparticle phase in nanocomposite coatings is a mixture of magnetite and maghemite phases. ► The magnetite and maghemite phases depend on a number of iron oxide nanoparticle layers because the iron oxide nanoparticles are oxidized from magnetite to maghemite.

  6. Oxidative stability of a heme iron-fortified bakery product: Effectiveness of ascorbyl palmitate and co-spray-drying of heme iron with calcium caseinate.

    Science.gov (United States)

    Alemán, Mercedes; Bou, Ricard; Tres, Alba; Polo, Javier; Codony, Rafael; Guardiola, Francesc

    2016-04-01

    Fortification of food products with iron is a common strategy to prevent or overcome iron deficiency. However, any form of iron is a pro-oxidant and its addition will cause off-flavours and reduce a product's shelf life. A highly bioavailable heme iron ingredient was selected to fortify a chocolate cream used to fill sandwich-type cookies. Two different strategies were assessed for avoiding the heme iron catalytic effect on lipid oxidation: ascorbyl palmitate addition and co-spray-drying of heme iron with calcium caseinate. Oxidation development and sensory acceptability were monitored in the cookies over one-year of storage at room temperature in the dark. The addition of ascorbyl palmitate provided protection against oxidation and loss of tocopherols and tocotrienols during the preparation of cookies. In general, ascorbyl palmitate, either alone or in combination with the co-spray-dried heme iron, prevented primary oxidation and hexanal formation during storage. The combination of both strategies resulted in cookies that were acceptable from a sensory point of view after 1year of storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Adsorption of arsenic(V) by iron-oxide-coated diatomite (IOCD).

    Science.gov (United States)

    Pan, Yi-Fong; Chiou, Cary T; Lin, Tsair-Fuh

    2010-09-01

    PURPOSES AND AIMS: Economically efficient methods for removing arsenic from the drinking water supply are urgently needed in many parts of the world. Iron oxides are known to have a strong affinity for arsenic in water. However, they are commonly present in the forms of fine powder or floc, which limits their utility in water treatment. In this study, a novel granular adsorbent, iron-oxide-coated diatomite (IOCD), was developed and examined for its adsorption of arsenic from water. An industrial-grade diatomite was used as the iron oxide support. The diatomite was first acidified and dried and then coated with iron oxide up to five times. The prepared IOCD samples were characterized for their morphology, composition, elemental content, and crystal properties by various instruments. Experiments of equilibrium and kinetic adsorption of As(V) on IOCD were conducted using 0.1- and 2-L polyethylene bottles, respectively, at different pH and temperatures. Iron oxide (alpha-Fe(2)O(3) hematite) coated onto diatomite greatly improves (by about 30 times) the adsorption of As(V) from water by IOCD as compared to using raw diatomite. This improvement was attributed to increases in both surface affinity and surface area of the IOCD. The surface area of IOCD increased to an optimal value. However, as the IOCD surface area (93 m(2)/g) was only 45% higher than that of raw diatomite (51 m(2)/g), the enhanced As(V) adsorption resulted primarily from the enhanced association of negatively charged As(V) ions with the partial positive surface charge of the iron oxide. The As(V) adsorption decreased when the solution pH was increased from 3.5 to 9.5, as expected from the partial charge interaction between As(V) and IOCD. The adsorption data at pH 5.5 and 7.5 could be well fitted to the Freundlich equation. A moderately high exothermic heat was observed for the As(V) adsorption, with the calculated molar isosteric heat ranging from -4 to -9 kcal/mol. The observed heats fall between those

  8. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    Science.gov (United States)

    Saito, Tatsuya; Tsuruta, Hijiri; Watanabe, Asako; Ishimine, Tomoyuki; Ueno, Tomoyuki

    2018-04-01

    We developed Fe/FeSiAl soft magnetic powder cores (SMCs) for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (˜20 kHz). We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k) of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  9. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    Directory of Open Access Journals (Sweden)

    Tatsuya Saito

    2018-04-01

    Full Text Available We developed Fe/FeSiAl soft magnetic powder cores (SMCs for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (∼20 kHz. We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  10. Formation and Transformation of Iron Oxide-Kaolinite Associations in the Presence of Iron(II)

    NARCIS (Netherlands)

    Wei, S.Y.; Liu, F.; Feng, X.H.; Tan, W.F.; Koopal, L.K.

    2011-01-01

    Iron oxide-kaolinite associations are important components of tropical and subtropical soils and have significant influence on the physical and chemical properties of soils. In this study, the formation and transformation of Fe oxide-kaolinite associations as a function of pH, temperature, and time

  11. Contribution to the study of iron-manganese alloy oxidation in oxygen at high temperatures

    International Nuclear Information System (INIS)

    Olivier, Francoise

    1972-01-01

    This research thesis reports a systematic investigation of the oxidation of three relatively pure iron-manganese alloys in oxygen, under atmospheric pressure, and between 400 and 1000 C, these alloys being annealed as well as work-hardened. It also compares their behaviour with that of non-alloyed iron oxidized under the same conditions. The author describes the experimental techniques and installations, discusses the morphology of oxide films formed under the experimental conditions, discusses the film growth kinetics which is studied by thermogravimetry, proposes interpretations of results, and outlines the influence of manganese addition to iron on iron oxidation

  12. Thermodynamic Characterization of Iron Oxide-Aqueous Fe(2+) Redox Couples.

    Science.gov (United States)

    Gorski, Christopher A; Edwards, Rebecca; Sander, Michael; Hofstetter, Thomas B; Stewart, Sydney M

    2016-08-16

    Iron is present in virtually all terrestrial and aquatic environments, where it participates in redox reactions with surrounding metals, organic compounds, contaminants, and microorganisms. The rates and extent of these redox reactions strongly depend on the speciation of the Fe2+ and Fe3+ phases, although the underlying reasons remain unclear. In particular, numerous studies have observed that Fe2+ associated with iron oxide surfaces (i.e., oxide-associated Fe2+) often reduces oxidized contaminants much faster than aqueous Fe2+ alone. Here, we tested two hypotheses related to this observation by determining if solutions containing two commonly studied iron oxides—hematite and goethite—and aqueous Fe2+ reached thermodynamic equilibrium over the course of a day. We measured reduction potential (EH) values in solutions containing these oxides at different pH values and aqueous Fe2+ concentrations using mediated potentiometry. This analysis yielded standard reduction potential (EH0) values of 768 ± 1 mV for the aqueous Fe2+–goethite redox couple and 769 ± 2 mV for the aqueous Fe2+–hematite redox couple. These values were in excellent agreement with those calculated from existing thermodynamic data, and the data could be explained by the presence of an iron oxide lowering EH values of aqueous Fe3+/Fe2+ redox couples.

  13. Synthesis engineering of iron oxide raspberry-shaped nanostructures.

    Science.gov (United States)

    Gerber, O; Pichon, B P; Ihiawakrim, D; Florea, I; Moldovan, S; Ersen, O; Begin, D; Grenèche, J-M; Lemonnier, S; Barraud, E; Begin-Colin, S

    2017-01-07

    Magnetic porous nanostructures consisting of oriented aggregates of iron oxide nanocrystals display very interesting properties such as a lower oxidation state of magnetite, and enhanced saturation magnetization in comparison with individual nanoparticles of similar sizes and porosity. However, the formation mechanism of these promising nanostructures is not well understood, which hampers the fine tuning of their magnetic properties, for instance by doping them with other elements. Therefore the formation mechanism of porous raspberry shaped nanostructures (RSNs) synthesized by a one-pot polyol solvothermal method has been investigated in detail from the early stages by using a wide panel of characterization techniques, and especially by performing original in situ HR-TEM studies in temperature. A time-resolved study showed the intermediate formation of an amorphous iron alkoxide phase with a plate-like lamellar structure (PLS). Then, the fine investigation of PLS transformation upon heating up to 500 °C confirmed that the synthesis of RSNs involves two iron precursors: the starting one (hydrated iron chlorides) and the in situ formed iron alkoxide precursor which decomposes with time and heating and contributes to the growth step of nanostructures. Such an understanding of the formation mechanism of RSNs is necessary to envision efficient and rational enhancement of their magnetic properties.

  14. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.

    Science.gov (United States)

    Jeong, Daun; Kim, Kitae; Min, Dae Wi; Choi, Wonyong

    2015-11-03

    Dissolution of iron from mineral dust particles greatly depends upon the type and amount of copresent inorganic anions. In this study, we investigated the roles of sulfate, chloride, nitrate, and perchlorate on the dissolution of maghemite and lepidocrocite in ice under both dark and UV irradiation and compared the results with those of their aqueous counterparts. After 96 h of reaction, the total dissolved iron in ice (pH 3 before freezing) was higher than that in the aqueous phase (pH 3) by 6-28 times and 10-20 times under dark and UV irradiation, respectively. Sulfuric acid was the most efficient in producing labile iron under dark condition, whereas hydrochloric acid induced the most dissolution of the total and ferrous iron in the presence of light. This ice-induced dissolution result was also confirmed with Arizona Test Dust (AZTD). In the freeze-thaw cycling test, the iron oxide samples containing chloride, nitrate, or perchlorate showed a similar extent of total dissolved iron after each cycling while the sulfate-containing sample rapidly lost its dissolution activity with repeating the cycle. This unique phenomenon observed in ice might be related to the freeze concentration of protons, iron oxides, and inorganic anions in the liquid-like ice grain boundary region. These results suggest that the ice-enhanced dissolution of iron oxides can be a potential source of bioavailable iron, and the acid anions critically influence this process.

  15. Diblock-copolymer-mediated self-assembly of protein-stabilized iron oxide nanoparticle clusters for magnetic resonance imaging.

    Science.gov (United States)

    Tähkä, Sari; Laiho, Ari; Kostiainen, Mauri A

    2014-03-03

    Superparamagnetic iron oxide nanoparticles (SPIONs) can be used as efficient transverse relaxivity (T2 ) contrast agents in magnetic resonance imaging (MRI). Organizing small (Doxide) diblock copolymer (P2QVP-b-PEO) to mediate the self-assembly of protein-cage-encapsulated iron oxide (γ-Fe2 O3 ) nanoparticles (magnetoferritin) into stable PEO-coated clusters. This approach relies on electrostatic interactions between the cationic N-methyl-2-vinylpyridinium iodide block and magnetoferritin protein cage surface (pI≈4.5) to form a dense core, whereas the neutral ethylene oxide block provides a stabilizing biocompatible shell. Formation of the complexes was studied in aqueous solvent medium with dynamic light scattering (DLS) and cryogenic transmission electron microcopy (cryo-TEM). DLS results indicated that the hydrodynamic diameter (Dh ) of the clusters is approximately 200 nm, and cryo-TEM showed that the clusters have an anisotropic stringlike morphology. MRI studies showed that in the clusters the longitudinal relaxivity (r1 ) is decreased and the transverse relaxivity (r2 ) is increased relative to free magnetoferritin (MF), thus indicating that clusters can provide considerable contrast enhancement. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Non-chondritic iron isotope ratios in planetary mantles as a result of core formation

    Science.gov (United States)

    Elardo, Stephen M.; Shahar, Anat

    2017-02-01

    Information about the materials and conditions involved in planetary formation and differentiation in the early Solar System is recorded in iron isotope ratios. Samples from Earth, the Moon, Mars and the asteroid Vesta reveal significant variations in iron isotope ratios, but the sources of these variations remain uncertain. Here we present experiments that demonstrate that under the conditions of planetary core formation expected for the Moon, Mars and Vesta, iron isotopes fractionate between metal and silicate due to the presence of nickel, and enrich the bodies' mantles in isotopically light iron. However, the effect of nickel diminishes at higher temperatures: under conditions expected for Earth's core formation, we infer little fractionation of iron isotopes. From our experimental results and existing conceptual models of magma ocean crystallization and mantle partial melting, we find that nickel-induced fractionation can explain iron isotope variability found in planetary samples without invoking nebular or accretionary processes. We suggest that near-chondritic iron isotope ratios of basalts from Mars and Vesta, as well as the most primitive lunar basalts, were achieved by melting of isotopically light mantles, whereas the heavy iron isotope ratios of terrestrial ocean floor basalts are the result of melting of near-chondritic Earth mantle.

  17. Gadolinium-Encapsulating Iron Oxide Nanoprobe as Activatable NMR/MRI Contrast Agent

    Science.gov (United States)

    Santra, Santimukul; Jativa, Samuel D.; Kaittanis, Charalambos; Normand, Guillaume; Grimm, Jan; Perez, J. Manuel

    2012-01-01

    Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the polyacrylic acid (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA) yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T1). Upon release of the Gd-DTPA complex from the nanoprobe's polymeric coating in acidic media, an increase in the T1 relaxation rate (1/T1) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T1-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T1 signal was observed. This result suggests that upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cell's lysosome acidic (pH = 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T1 activation. No change in T1 was observed when the Gd-DTPA complex was chemically conjugated on the surface of the nanoparticle's polymeric coating or when encapsulated in the polymeric coating of a non-magnetic nanoparticle. These results confirmed that the observed (T1) quenching of the composite magnetic nanoprobe is due to the encapsulation and close proximity of the Gd ion to the nanoparticles superparamagnetic iron oxide (IO) core. In addition, when an anticancer drug (Taxol) was co-encapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T1 activation of the probe coincide with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T1 nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI. PMID:22809405

  18. Iron oxide nanoparticles stabilized inside highly ordered ...

    Indian Academy of Sciences (India)

    CdS nanoparticles prepared in reverse micellar system was incorporated into ... The molar ratio of various constituents of the hydrothermal gel was ... other synthesis techniques for the preparation of iron oxide nanocomposites using.

  19. Polymorphic Nature of Iron and Degree of Lattice Preferred Orientation Beneath the Earth's Inner Core Boundary

    Science.gov (United States)

    Mattesini, Maurizio; Belonoshko, Anatoly B.; Tkalčić, Hrvoje

    2018-01-01

    Deciphering the polymorphic nature and the degree of iron lattice-preferred orientation in the Earth's inner core holds a key to understanding the present status and evolution of the inner core. A multiphase lattice-preferred orientation pattern is obtained for the top 350 km of the inner core by means of the ab initio based Candy Wrapper Velocity Model coupled to a Monte Carlo phase discrimination scheme. The achieved geographic distribution of lattice alignment is characterized by two regions of freezing, namely within South America and the Western Central Pacific, that exhibit an uncommon high degree of lattice orientation. In contrast, widespread regions of melting of relatively weak lattice ordering permeate the rest of the inner core. The obtained multiphase lattice-preferred orientation pattern is in line with mantle-constrained geodynamo simulations and allows to setup an ad hoc mineral physics scenario for the complex Earth's inner core. It is found that the cubic phase of iron is the dominating iron polymorph in the outermost part of the inner core.

  20. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress

    Directory of Open Access Journals (Sweden)

    Saba Naqvi

    2010-11-01

    Full Text Available Saba Naqvi1, Mohammad Samim2, MZ Abdin3, Farhan Jalees Ahmed4, AN Maitra5, CK Prashant6, Amit K Dinda61Faculty of Engineering and Interdisciplinary Sciences, 2Department of Chemistry, 3Department of Biotechnology, Faculty of Science, 4Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, 5Department of Chemistry, University of Delhi, 6Department of Pathology, All India Institute of Medical Sciences, New Delhi, IndiaAbstract: Iron oxide nanoparticles with unique magnetic properties have a high potential for use in several biomedical, bioengineering and in vivo applications, including tissue repair, magnetic resonance imaging, immunoassay, drug delivery, detoxification of biologic fluids, cell sorting, and hyperthermia. Although various surface modifications are being done for making these nonbiodegradable nanoparticles more biocompatible, their toxic potential is still a major concern. The current in vitro study of the interaction of superparamagnetic iron oxide nanoparticles of mean diameter 30 nm coated with Tween 80 and murine macrophage (J774 cells was undertaken to evaluate the dose- and time-dependent toxic potential, as well as investigate the role of oxidative stress in the toxicity. A 15–30 nm size range of spherical nanoparticles were characterized by transmission electron microscopy and zeta sizer. MTT assay showed >95% viability of cells in lower concentrations (25–200 µg/mL and up to three hours of exposure, whereas at higher concentrations (300–500 µg/mL and prolonged (six hours exposure viability reduced to 55%–65%. Necrosis-apoptosis assay by propidium iodide and Hoechst-33342 staining revealed loss of the majority of the cells by apoptosis. H2DCFDDA assay to quantify generation of intracellular reactive oxygen species (ROS indicated that exposure to a higher concentration of nanoparticles resulted in enhanced ROS generation, leading to cell injury and death. The cell membrane injury

  1. Iron oxides dynamics in a subtropical Brazilian Paleudult under long-term no-tillage management

    Directory of Open Access Journals (Sweden)

    Alberto Vasconcellos Inda

    2013-02-01

    Full Text Available Replacing conventional tillage (CT with no-tillage (NT management alters the pedoenvironment and the rate of topsoil processes, with possible effects on dissolution processes associated with iron oxides and therefore soil mineralogy. This study aimed to determine the effect of NT on the content and distribution of types of iron oxides in a Rhodic Paleudult in southern Brazil. Soil samples were collected at eight depths within the 0.00-0.80 m layer under CT and NT in a long-term experiment (21 years. Mineralogical identification was conducted by X-ray diffraction (XRD, and the Fe content related to specific types of iron oxides determined by selective dissolution and diffuse-reflectance spectroscopy. Kaolinite, quartz, goethite, hematite, and maghemite were identified in the clay fraction. In the NT-managed soil, there was a decrease in the content of crystalline iron oxides and an increase in the content of poorly crystalline iron oxides with increasing proximity to the soil surface. These results suggest that iron oxides are rearranged in this soil by reductive dissolution of the crystalline types and neoformation of metastable ferrihydrite in topsoil layers, which should be assessed further in laboratory studies.

  2. Melting of iron at the Earth's core conditions by molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Y. N. Wu

    2011-09-01

    Full Text Available By large scale molecular dynamics simulations of solid-liquid coexistence, we have investigated the melting of iron under pressures from 0 to 364 GPa. The temperatures of liquid and solid regions, and the pressure of the system are calculated to estimate the melting point of iron. We obtain the melting temperature of iron is about 6700±200K under the inner-outer core boundary, which is in good agreement with the result of Alfè et al. By the pair analysis technique, the microstructure of liquid iron under higher pressures is obviously different from that of lower pressures and ambient condition, indicating that the pressure-induced liquid-liquid phase transition may take place in iron melts.

  3. DETERMINATION OF THE RATES AND PRODUCTS OF FERROUS IRON OXIDATION IN ARSENIC-CONTAMINATED POND WATER.

    Science.gov (United States)

    Dissolved ferrous iron and arsenic in the presence of insufficient oxygenated ground water is released into a pond. When the mixing of ferrous iron and oxygenated water within the pond occurs, the ferrous iron is oxidized and precipitated as an iron oxide. Groups of experiments...

  4. Iron induced RNA-oxidation in the general population and in mouse tissue

    DEFF Research Database (Denmark)

    Cejvanovic, Vanja; Kjær, Laura Kofoed; Bergholdt, Helle Kirstine Mørup

    2018-01-01

    Iron promotes formation of hydroxyl radicals by the Fenton reaction, subsequently leading to potential oxidatively generated damage of nucleic acids. Oxidatively generated damage to RNA, measured as 8-oxo-7,8-dihydroguanosine (8-oxoGuo) in urine, is increased in patients with genetic iron overloa...

  5. In situ reduction of as-prepared γ-Iron Oxide Nanoparticles

    DEFF Research Database (Denmark)

    Garbus, Pelle Gorm; Ahlburg, Jakob; Christensen, Mogens

    -ray diffraction measurement. The as-prepared maghemite nanoparticles were synthesized by the continuous decomposition of solutes in supercritical hydrothermal flow synthesis [3, 4]. The reagent used was ferric ammonium citrate (C6H8O7•xFe(III)•yNH3) that under hydrothermal flow synthesis decomposes into the γ......-iron oxide Fe2O3. The reduction of maghemite to body centered cubic (BCC) iron does not go through a detectable intermediate state.1.Jensen, K.M., et al., Mechanisms for iron oxide formation under hydrothermal conditions: an in situ total scattering study. ACS nano, 2014. 8(10): p. 10704-10714.2.Andersen, H...

  6. A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study

    International Nuclear Information System (INIS)

    Balivada, Sivasai; Koper, Olga B; Tamura, Masaaki; Chikan, Viktor; Bossmann, Stefan H; Troyer, Deryl L; Rachakatla, Raja Shekar; Wang, Hongwang; Samarakoon, Thilani N; Dani, Raj Kumar; Pyle, Marla; Kroh, Franklin O; Walker, Brandon; Leaym, Xiaoxuan

    2010-01-01

    There is renewed interest in magnetic hyperthermia as a treatment modality for cancer, especially when it is combined with other more traditional therapeutic approaches, such as the co-delivery of anticancer drugs or photodynamic therapy. The influence of bimagnetic nanoparticles (MNPs) combined with short external alternating magnetic field (AMF) exposure on the growth of subcutaneous mouse melanomas (B16-F10) was evaluated. Bimagnetic Fe/Fe 3 O 4 core/shell nanoparticles were designed for cancer targeting after intratumoral or intravenous administration. Their inorganic center was protected against rapid biocorrosion by organic dopamine-oligoethylene glycol ligands. TCPP (4-tetracarboxyphenyl porphyrin) units were attached to the dopamine-oligoethylene glycol ligands. The magnetic hyperthermia results obtained after intratumoral injection indicated that micromolar concentrations of iron given within the modified core-shell Fe/Fe 3 O 4 nanoparticles caused a significant anti-tumor effect on murine B16-F10 melanoma with three short 10-minute AMF exposures. We also observed a decrease in tumor size after intravenous administration of the MNPs followed by three consecutive days of AMF exposure 24 hrs after the MNPs injection. These results indicate that intratumoral administration of surface modified MNPs can attenuate mouse melanoma after AMF exposure. Moreover, we have found that after intravenous administration of micromolar concentrations, these MNPs are capable of causing an anti-tumor effect in a mouse melanoma model after only a short AMF exposure time. This is a clear improvement to state of the art

  7. Review of the Evidence from Epidemiology, Toxicology, and Lung Bioavailability on the Carcinogenicity of Inhaled Iron Oxide Particulates.

    Science.gov (United States)

    Pease, Camilla; Rücker, Thomas; Birk, Thomas

    2016-03-21

    Since the iron-age and throughout the industrial age, humans have been exposed to iron oxides. Here, we review the evidence from epidemiology, toxicology, and lung bioavailability as to whether iron oxides are likely to act as human lung carcinogens. Current evidence suggests that observed lung tumors in rats result from a generic particle overload effect and local inflammation that is rat-specific under the dosing conditions of intratracheal instillation. This mode of action therefore, is not relevant to human exposure. However, there are emerging differences seen in vitro, in cell uptake and cell bioavailability between "bulk" iron oxides and "nano" iron oxides. "Bulk" particulates, as defined here, are those where greater than 70% are >100 nm in diameter. Similarly, "nano" iron oxides are defined in this context as particulates where the majority, usually >95% for pure engineered forms of primary particulates (not agglomerates), fall in the range 1-100 nm in diameter. From the weight of scientific evidence, "bulk" iron oxides are not genotoxic/mutagenic. Recent evidence for "nano" iron oxide is conflicting regarding genotoxic potential, albeit genotoxicity was not observed in an in vivo acute oral dose study, and "nano" iron oxides are considered safe and are being investigated for biomedical uses; there is no specific in vivo genotoxicity study on "nano" iron oxides via inhalation. Some evidence is available that suggests, hypothetically due to the larger surface area of "nano" iron oxide particulates, that toxicity could be exerted via the generation of reactive oxygen species (ROS) in the cell. However, the potential for ROS generation as a basis for explaining rodent tumorigenicity is only apparent if free iron from intracellular "nano" scale iron oxide becomes bioavailable at significant levels inside the cell. This would not be expected from "bulk" iron oxide particulates. Furthermore, human epidemiological evidence from a number of studies suggests that

  8. SOLUBILITY OF IRON IN METALLIC HYDROGEN AND STABILITY OF DENSE CORES IN GIANT PLANETS

    International Nuclear Information System (INIS)

    Wahl, Sean M.; Wilson, Hugh F.; Militzer, Burkhard

    2013-01-01

    The formation of the giant planets in our solar system, and likely a majority of giant exoplanets, is most commonly explained by the accretion of nebular hydrogen and helium onto a large core of terrestrial-like composition. The fate of this core has important consequences for the evolution of the interior structure of the planet. It has recently been shown that H 2 O, MgO, and SiO 2 dissolve in liquid metallic hydrogen at high temperature and pressure. In this study, we perform ab initio calculations to study the solubility of an innermost metallic core. We find dissolution of iron to be strongly favored above 2000 K over the entire pressure range (0.4-4 TPa) considered. We compare with and summarize the results for solubilities on other probable core constituents. The calculations imply that giant planet cores are in thermodynamic disequilibrium with surrounding layers, promoting erosion and redistribution of heavy elements. Differences in solubility behavior between iron and rock may influence evolution of interiors, particularly for Saturn-mass planets. Understanding the distribution of iron and other heavy elements in gas giants may be relevant in understanding mass-radius relationships, as well as deviations in transport properties from pure hydrogen-helium mixtures

  9. Unprecedented Selective Oxidation of Styrene Derivatives using a Supported Iron Oxide Nanocatalyst in Aqueous Medium

    Science.gov (United States)

    Iron oxide nanoparticles supported on mesoporous silica-type materials have been successfully utilized in the aqueous selective oxidation of alkenes under mild conditions using hydrogen peroxide as a green oxidant. Catalysts could be easily recovered after completion of the reac...

  10. Controlling lipid oxidation via a biomimetic iron chelating active packaging material.

    Science.gov (United States)

    Tian, Fang; Decker, Eric A; Goddard, Julie M

    2013-12-18

    Previously, a siderophore-mimetic metal chelating active packaging film was developed by grafting poly(hydroxamic acid) (PHA) from the surface of polypropylene (PP) films. The objective of the current work was to demonstrate the potential applicability of this PP-g-PHA film to control iron-promoted lipid oxidation in food emulsions. The iron chelating activity of this film was investigated, and the surface chemistry and color intensity of films were also analyzed after iron chelation. In comparison to the iron chelating activity in the free Fe(3+) solution, the PP-g-PHA film retained approximately 50 and 30% of its activity in nitrilotriacetic acid (NTA)/Fe(3+) and citric acid/Fe(3+) solutions, respectively (pH 5.0), indicating a strong chelating strength for iron. The ability of PP-g-PHA films to control lipid oxidation was demonstrated in a model emulsion system (pH 3.0). PP-g-PHA films performed even better than ethylenediaminetetraacetic acid (EDTA) in preventing the formation of volatile oxidation products. The particle size and ζ potential results of emulsions indicated that PP-g-PHA films had no adverse effects on the stability of the emulsion system. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis suggested a non-migratory nature of the PP-g-PHA film surface. These results suggest that such biomimetic, non-migratory metal chelating active packaging films have commercial potential in protecting foods against iron-promoted lipid oxidation.

  11. Electrolytic photodissociation of chemical compounds by iron oxide electrodes

    Science.gov (United States)

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1984-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor diode having visible light as its sole source of energy. The diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  12. Sorption of small amounts of europium(III) on iron(III) hydroxide and oxide

    International Nuclear Information System (INIS)

    Music, S.; Gessner, M.; Wolf, R.H.H.

    1979-01-01

    The sorption of small amounts of europium(III) on iron(III) hydroxide and oxide has been studied as a function of pH. The mechanism of sorption is discussed. Optimum conditions have been found for the preconcentration of small or trace amounts of europium(III) by iron(III) hydroxide and oxide. The influence of complexing agents (EDTA, oxalate, tartrate and 5-sulfosalicylic acid) on the sorption of small amounts of europium(III) on iron(III) oxide has also been studied. (author)

  13. Analysis of the plasma magnetohydrodynamic equilibrium in iron core transformer Tokamak HL-1M

    International Nuclear Information System (INIS)

    Chen Xiaoguang; Yuan Baoshan

    1992-01-01

    The physical and mathematical model are presented on the problem of MHD equilibrium with the self consistent in iron core transformer HL-1M. Calculation and analysis for the plasma equilibrium of the stable boundary and free boundary are shown respectively, in an axisymmetric equilibrium model of two dimensions. First, a variation formulation of the problem is written and the equations of the poloided flux ψ are solved by a finite element method; the Picard and Newton algorithms are tested for the non-linearities. The plasma boundary and the magnetic surfaces are being simulated, with the currents in the coils, the total plasma current, its current density function and the magnetic permeability of the iron being the data for the problem; a certain number of the characteristic parameter of the equilibrium configuration is calculated. Secondly, a simple method of calculation is adopted in the determination of equilibrium fields and currents in iron core HL-1M tokamak device. In the plasma equilibrium, the magnetic effect of the air gaps in the iron core and the iron magnetic shielded plate are considered in HL-1M device. Reliable data are provided for designing and constructing the poloidal field system of HL-1M device. A good computer code is constructed, which may be useful in operating on analysis for the future device

  14. Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles

    DEFF Research Database (Denmark)

    Gilbert, Benjamin; Katz, Jordan E.; Huse, Nils

    2013-01-01

    photo-initiated interfacial electron transfer. This approach enables time-resolved study of the fate and mobility of electrons within the solid phase. However, complete analysis of the ultrafast processes following dye photoexcitation of the sensitized iron(iii) oxide nanoparticles has not been reported....... We addressed this topic by performing femtosecond transient absorption (TA) measurements of aqueous suspensions of uncoated and DCF-sensitized iron oxide and oxyhydroxide nanoparticles, and an aqueous iron(iii)–dye complex. Following light absorption, excited state relaxation times of the dye of 115...... a four-state model of the dye-sensitized system, finding electron and energy transfer to occur on the same ultrafast timescale. The interfacial electron transfer rates for iron oxides are very close to those previously reported for DCF-sensitized titanium dioxide (for which dye–oxide energy transfer...

  15. SIRB, sans iron oxide rhodamine B, a novel cross-linked dextran nanoparticle, labels human neuroprogenitor and SH-SY5Y neuroblastoma cells and serves as a USPIO cell labeling control.

    Science.gov (United States)

    Shen, Wei-Bin; Vaccaro, Dennis E; Fishman, Paul S; Groman, Ernest V; Yarowsky, Paul

    2016-05-01

    This is the first report of the synthesis of a new nanoparticle, sans iron oxide rhodamine B (SIRB), an example of a new class of nanoparticles. SIRB is designed to provide all of the cell labeling properties of the ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle Molday ION Rhodamine B (MIRB) without containing the iron oxide core. MIRB was developed to label cells and allow them to be tracked by MRI or to be manipulated by magnetic gradients. SIRB possesses a similar size, charge and cross-linked dextran coating as MIRB. Of great interest is understanding the biological and physiological changes in cells after they are labeled with a USPIO. Whether these effects are due to the iron oxide buried within the nanoparticle or to the surface coating surrounding the iron oxide core has not been considered previously. MIRB and SIRB represent an ideal pairing of nanoparticles to identify nanoparticle anatomy responsible for post-labeling cytotoxicity. Here we report the effects of SIRB labeling on the SH-SY5Y neuroblastoma cell line and primary human neuroprogenitor cells (hNPCs). These effects are contrasted with the effects of labeling SH-SY5Y cells and hNPCs with MIRB. We find that SIRB labeling, like MIRB labeling, (i) occurs without the use of transfection reagents, (ii) is packaged within lysosomes distributed within cell cytoplasm, (iii) is retained within cells with no loss of label after cell storage, and (iv) does not alter cellular viability or proliferation, and (v) SIRB labeled hNPCs differentiate normally into neurons or astrocytes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Corrosion Behavior of Pipeline Carbon Steel under Different Iron Oxide Deposits in the District Heating System

    Directory of Open Access Journals (Sweden)

    Yong-Sang Kim

    2017-05-01

    Full Text Available The corrosion behavior of pipeline steel covered by iron oxides (α-FeOOH; Fe3O4 and Fe2O3 was investigated in simulated district heating water. In potentiodynamic polarization tests; the corrosion rate of pipeline steel is increased under the iron oxide but the increaseing rate is different due to the differnet chemical reactions of the covered iron oxides. Pitting corrosion was only observed on the α-FeOOH-covered specimen; which is caused by the crevice corrosion under the α-FeOOH. From Mott-Schottky and X-ray diffraction results; the surface reaction and oxide layer were dependent on the kind of iron oxides. The iron oxides deposit increases the failure risk of the pipeline and localized corrosion can be occurred under the α-FeOOH-covered region of the pipeline. Thus, prevention methods for the iron oxide deposit in the district pipeline system such as filtering or periodic chemical cleaning are needed.

  17. Adsorption of Cadmium Ions from Water on Double-walled Carbon Nanotubes/Iron Oxide Composite

    Directory of Open Access Journals (Sweden)

    Karima Seffah

    2017-12-01

    Full Text Available A new material (DWCNT/iron oxide for heavy metals removal was developed by combining the adsorption features of double-walled carbon nanotubes with the magnetic properties of iron oxides. Batch experiments were applied in order to evaluate adsorption capacity of the DWCNT/iron oxide composite for cadmium ions. The influence of operating parameters such as pH value, amount of adsorbent, initial adsorbate concentration and agitation speed was studied. The adsorption capacity of the DWCNT/iron oxide adsorbent for Cd2+ ions was 20.8 mg g-1, which is at the state of the art. The obtained results revealed that DWCNT/iron oxide composite is a very promising adsorbent for removal of Cd2+ ions from water under natural conditions. The advantage of the magnetic composite is that it can be used as adsorbent for contaminants in water and can be subsequently controlled and removed from the medium by a simple magnetic process.

  18. Facile method to synthesize magnetic iron oxides/TiO2 hybrid nanoparticles and their photodegradation application of methylene blue

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2011-01-01

    Full Text Available Abstract Many methods have been reported to improving the photocatalytic efficiency of organic pollutant and their reliable applications. In this work, we propose a facile pathway to prepare three different types of magnetic iron oxides/TiO2 hybrid nanoparticles (NPs by seed-mediated method. The hybrid NPs are composed of spindle, hollow, and ultrafine iron oxide NPs as seeds and 3-aminopropyltriethyloxysilane as linker between the magnetic cores and TiO2 layers, respectively. The composite structure and the presence of the iron oxide and titania phase have been confirmed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectra. The hybrid NPs show good magnetic response, which can get together under an external applied magnetic field and hence they should become promising magnetic recovery catalysts (MRCs. Photocatalytic ability examination of the magnetic hybrid NPs was carried out in methylene blue (MB solutions illuminated under Hg light in a photochemical reactor. About 50% to 60% of MB was decomposed in 90 min in the presence of magnetic hybrid NPs. The synthesized magnetic hybrid NPs display high photocatalytic efficiency and will find recoverable potential applications in cleaning polluted water with the help of magnetic separation.

  19. In situ iron-57 Moessbauer spectroscopic investigations of the effect of titania surface area on the reducibility of titania-supported iron oxide

    International Nuclear Information System (INIS)

    Berry, F.J.; Du Hongzhang

    1990-01-01

    Iron-57 Moessbauer spectroscopy has been used to monitor the reducibility in hydrogen of iron oxides supported on titania of differing surface areas. The results show that although Fe 3+ in the iron oxide supported on low surface area titania (11 m 2 g -1 ) is not amenable to facile reduction at low temperatures, complete reduction to metallic iron is achieved by treatment at 600deg C. The data also show that the extent of reduction at elevated temperatures exceeds that which is obtained on similar silica- and alumina-supported systems. Fe 3+ in iron oxide supported on higher surface area titania (50 m 2 g -1 and 240 m 2 g -1 ) is partially reduced in hydrogen at 235deg C to Fe 2+ but fails to attain complete reduction to the metallic state following treatment at 600deg C. The results are related to the different dispersions of iron oxide which can be attained on titania of differing surface area and the consequent interactions between the support and the supported phases. (orig.)

  20. Secoisolariciresinol diglucoside abrogates oxidative stress-induced damage in cardiac iron overload condition.

    Directory of Open Access Journals (Sweden)

    Stephanie Puukila

    Full Text Available Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG, a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload.

  1. Redox?Reversible Iron Orthovanadate Cathode for Solid Oxide Steam Electrolyzer

    OpenAIRE

    Gan, Lizhen; Ye, Lingting; Ruan, Cong; Chen, Shigang; Xie, Kui

    2015-01-01

    A redox?reversible iron orthovanadate cathode is demonstrated for a solid oxide electrolyser with up to 100% current efficiency for steam electrolysis. The iron catalyst is grown on spinel?type electronic conductor FeV2O4 by in situ tailoring the reversible phase change of FeVO4 to Fe+FeV2O4 in a reducing atmosphere. Promising electrode performances have been obtained for a solid oxide steam electrolyser based on this composite cathode.

  2. Iron Oxide as an Mri Contrast Agent for Cell Tracking: Supplementary Issue

    Directory of Open Access Journals (Sweden)

    Daniel J. Korchinski

    2015-01-01

    Full Text Available Iron oxide contrast agents have been combined with magnetic resonance imaging for cell tracking. In this review, we discuss coating properties and provide an overview of ex vivo and in vivo labeling of different cell types, including stem cells, red blood cells, and monocytes/macrophages. Furthermore, we provide examples of applications of cell tracking with iron contrast agents in stroke, multiple sclerosis, cancer, arteriovenous malformations, and aortic and cerebral aneurysms. Attempts at quantifying iron oxide concentrations and other vascular properties are examined. We advise on designing studies using iron contrast agents including methods for validation.

  3. Biocompatibility of chitosan-coated iron oxide nanoparticles with osteoblast cells

    Directory of Open Access Journals (Sweden)

    Shi S

    2012-10-01

    Full Text Available Si-Feng Shi,1 Jing-Fu Jia,2 Xiao-Kui Guo,3 Ya-Ping Zhao,2 De-Sheng Chen,1 Yong-Yuan Guo,1 Tao Cheng,1 Xian-Long Zhang11Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, School of Medicine, 2School of Chemistry and Chemical Technology, 3Department of Medical Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University Shanghai, ChinaBackground: Bone disorders (including osteoporosis, loosening of a prosthesis, and bone infections are of great concern to the medical community and are difficult to cure. Therapies are available to treat such diseases, but all have drawbacks and are not specifically targeted to the site of disease. Chitosan is widely used in the biomedical community, including for orthopedic applications. The aim of the present study was to coat chitosan onto iron oxide nanoparticles and to determine its effect on the proliferation and differentiation of osteoblasts.Methods: Nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, x-ray diffraction, zeta potential, and vibrating sample magnetometry. Uptake of nanoparticles by osteoblasts was studied by transmission electron microscopy and Prussian blue staining. Viability and proliferation of osteoblasts were measured in the presence of uncoated iron oxide magnetic nanoparticles or those coated with chitosan. Lactate dehydrogenase, alkaline phosphatase, total protein synthesis, and extracellular calcium deposition was studied in the presence of the nanoparticles.Results: Chitosan-coated iron oxide nanoparticles enhanced osteoblast proliferation, decreased cell membrane damage, and promoted cell differentiation, as indicated by an increase in alkaline phosphatase and extracellular calcium deposition. Chitosan-coated iron oxide nanoparticles showed good compatibility with osteoblasts.Conclusion: Further research is necessary to optimize magnetic nanoparticles for the treatment of bone disease

  4. Facile synthesis of polymer-enveloped ultrasmall superparamagnetic iron oxide for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hong Jun; Xu Dongmei; Yu Jiahui; Gong Peijun; Ma Hongjuan; Yao Side

    2007-01-01

    Ultrasmall superparamagnetic iron oxide (USPIO) with synthetic polymer, based on magnetite core, was synthesized via facile photochemical in situ polymerization. A possible mechanism of photochemical in situ polymerization was proposed. The obtained polymer-enveloped UPSIO was characterized by transmission electron microscopy (TEM), photo-correlation spectroscopy (PCS), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric (TG) analysis and vibrating sampling magnetometer (VSM) measurement. Properties such as ultrasmall particle size, hydrophilicity, strong magnetization and surface characteristics, which are desirable for magnetic resonance imaging (MRI) contrast agents, were evaluated in detail. The resultant USPIO-based MRI contrast agent holds considerable promise in molecular MR tracking, MR immune imaging, cell tracking and targeted intracellular hyperthermia, etc

  5. Photocatalytic Iron Oxide Micro-Swimmers for Environmental Remediation

    Science.gov (United States)

    Richard, Cynthia; Simmchen, Juliane; Eychmüller, Alexander

    2018-05-01

    Harvesting energy from photochemical reactions has long been studied as an efficient means of renewable energy, a topic that is increasingly gaining importance also for motion at the microscale. Iron oxide has been a material of interest in recent studies. Thus, in this work different synthesis methods and encapsulation techniques were used to try and optimize the photo-catalytic properties of iron oxide colloids. Photodegradation experiments were carried out following the encapsulation of the nanoparticles and the Fenton effect was also verified. The end goal would be to use the photochemical degradation of peroxide to propel an array of swimmers in a controlled manner while utilizing the Fenton effect for the degradation of dyes or waste in wastewater remediation.

  6. Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility

    Directory of Open Access Journals (Sweden)

    Zaloga J

    2014-10-01

    Full Text Available Jan Zaloga,1 Christina Janko,1 Johannes Nowak,2 Jasmin Matuszak,1 Sabine Knaup,1 Dietmar Eberbeck,3 Rainer Tietze,1 Harald Unterweger,1 Ralf P Friedrich,1 Stephan Duerr,1 Ralph Heimke-Brinck,4 Eva Baum,4 Iwona Cicha,1 Frank Dörje,4 Stefan Odenbach,2 Stefan Lyer,1 Geoffrey Lee,5 Christoph Alexiou1 1Department of Otorhinolaryngology, Head and Neck Surgery, Section for Experimental Oncology and Nanomedicine (SEON, Else Kröner-Fresenius-Stiftung-Professorship, University Hospital Erlangen, Erlangen, Germany; 2Measuring and Automation Technology, Technical University Dresden, Dresden, Germany; 3Physikalisch-Technische-Bundesanstalt, Berlin, Germany; 4Pharmacy Department, University Hospital Erlangen, Erlangen, Germany; 5Division of Pharmaceutics, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany Abstract: The promising potential of superparamagnetic iron oxide nanoparticles (SPIONs in various nanomedical applications has been frequently reported. However, although many different synthesis methods, coatings, and functionalization techniques have been described, not many core-shell SPION drug delivery systems are available for clinicians at the moment. Here, bovine serum albumin was adsorbed onto lauric acid-stabilized SPIONs. The agglomeration behavior, zeta potential, and their dependence on the synthesis conditions were characterized with dynamic light scattering. The existence and composition of the core-shell-matrix structure was investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. We showed that the iron oxide cores form agglomerates in the range of 80 nm. Moreover, despite their remarkably low tendency to aggregate even in a complex media like whole blood, the SPIONs still maintained their magnetic properties and were well attractable with a magnet. The magnetic properties were quantified by vibrating sample magnetometry and a superconducting quantum

  7. Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite

    Science.gov (United States)

    Primc, D.; Makovec, D.

    2015-01-01

    By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the supersaturation of the precipitating species was enabled by the controlled release of the Fe3+ ions from the nitrate complex with urea ([Fe((H2N)2C&z.dbd;O)6](NO3)3) and by using Mg(OH)2 as a solid precipitating agent. The platelet Ba-hexaferrite nanoparticles of different sizes were used as the cores. The controlled coating resulted in an exclusively heterogeneous nucleation and the topotactic growth of the spinel layers on both basal surfaces of the larger hexaferrite nanoplatelets. The direct magnetic coupling between the core and the shell resulted in a strong increase of the energy product |BH|max. Ultrafine core nanoparticles reacted with the precipitating species and homogeneous product nanoparticles were formed, which differ in terms of the structure and composition compared to any other compound in the BaO-Fe2O3 system.By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the

  8. Mössbauer, magnetization and X-ray diffraction characterization methods for iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gabbasov, Raul, E-mail: gabbasov-raul@yandex.ru [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Polikarpov, Michael; Cherepanov, Valery [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Chuev, Michael; Mischenko, Iliya; Lomov, Andrey [Institute of Physics and Technology, Russian Academy of Sciences, Moscow (Russian Federation); Wang, Andrew [Ocean NanoTech. Springdale, AR (United States); Panchenko, Vladislav [National Research Center “Kurchatov Institute”, Moscow (Russian Federation)

    2015-04-15

    Water soluble magnetite iron oxide nanoparticles with oleic polymer coating and average diameters in the range of 5–25 nm, previously determined by TEM, were characterized using Mössbauer, magnetization and X-ray diffraction measurements. Comparative analysis of the results demonstrated a large diversity of magnetic relaxation regimes. Analysis showed the presence of an additional impurity component in the 25 nm nanoparticles, with principally different magnetic nature at the magnetite core. In some cases, X-ray diffraction measurements were unable to estimate the size of the magnetic core and Mössbauer data were necessary for the correct interpretation of the experimental results. - Highlights: • KV parameter, obtained from Mössbauer spectra can be used for nanoparticle size characterization. • Mössbauer spectra of 10–25 nm nanoparticles can be effectively described by ferromagnetic model. • Surface impurities can cause incorrect nanoparticle size determination.

  9. Neutronic design of mixed oxide-silicide cores for the core conversion of rsg-gas reactor

    International Nuclear Information System (INIS)

    Sembiring, Tagor Malem; Tukiran; Pinem surian; Febrianto

    2001-01-01

    The core conversion of rsg-gas reactor from an all-oxide (U 3 O 8 -Al) core, through a series of mixed oxide-silicide core, to an all-silicide (U 3 Si 2 -Al) core for the same meat density of 2.96 g U/cc is in progress. The conversion is first step of the step-wise conversion and will be followed by the second step that is the core conversion from low meat density of silicide core, through a series of mixed lower-higher density of silicide core, to an all-higher meat density of 3.55 g/cc core. Therefore, the objectives of this work is to design the mixed cores on the neutronic performance to achieve safety a first full-silicide core for the reactor with the low uranium meat density of 2.96gU/cc. The neutronic design of the mixed cores was performed by means of Batan-EQUIL-2D and Batan-3DIFF computer codes for 2 and 3 dimension diffusion calculation, respectively. The result shows that all mixed oxide-silicide cores will be feasible to achieve safety a fist full-silicide core. The core performs the same neutronic core parameters as those of the equilibrium silicide core. Therefore, the reactor availability and utilization during the core conversion is not changed

  10. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous?

    Science.gov (United States)

    Hong, Dachao; Mandal, Sukanta; Yamada, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Llobet, Antoni; Fukuzumi, Shunichi

    2013-08-19

    Thermal water oxidation by cerium(IV) ammonium nitrate (CAN) was catalyzed by nonheme iron complexes, such as Fe(BQEN)(OTf)2 (1) and Fe(BQCN)(OTf)2 (2) (BQEN = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, BQCN = N,N'-dimethyl-N,N'-bis(8-quinolyl)cyclohexanediamine, OTf = CF3SO3(-)) in a nonbuffered aqueous solution; turnover numbers of 80 ± 10 and 20 ± 5 were obtained in the O2 evolution reaction by 1 and 2, respectively. The ligand dissociation of the iron complexes was observed under acidic conditions, and the dissociated ligands were oxidized by CAN to yield CO2. We also observed that 1 was converted to an iron(IV)-oxo complex during the water oxidation in competition with the ligand oxidation. In addition, oxygen exchange between the iron(IV)-oxo complex and H2(18)O was found to occur at a much faster rate than the oxygen evolution. These results indicate that the iron complexes act as the true homogeneous catalyst for water oxidation by CAN at low pHs. In contrast, light-driven water oxidation using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer and S2O8(2-) as a sacrificial electron acceptor was catalyzed by iron hydroxide nanoparticles derived from the iron complexes under basic conditions as the result of the ligand dissociation. In a buffer solution (initial pH 9.0) formation of the iron hydroxide nanoparticles with a size of around 100 nm at the end of the reaction was monitored by dynamic light scattering (DLS) in situ and characterized by X-ray photoelectron spectra (XPS) and transmission electron microscope (TEM) measurements. We thus conclude that the water oxidation by CAN was catalyzed by short-lived homogeneous iron complexes under acidic conditions, whereas iron hydroxide nanoparticles derived from iron complexes act as a heterogeneous catalyst in the light-driven water oxidation reaction under basic conditions.

  11. Solid-stabilized emulsion formation using stearoyl lactylate coated iron oxide nanoparticles

    Science.gov (United States)

    Vengsarkar, Pranav S.; Roberts, Christopher B.

    2014-10-01

    Iron oxide nanoparticles can exhibit highly tunable physicochemical properties that are extremely important in applications such as catalysis, biomedicine and environmental remediation. The small size of iron oxide nanoparticles can be used to stabilize oil-in-water Pickering emulsions due to their high energy of adsorption at the interface of oil droplets in water. The objective of this work is to investigate the effect of the primary particle characteristics and stabilizing agent chemistry on the stability of oil-in-water Pickering emulsions. Iron oxide nanoparticles were synthesized by the co-precipitation method using stoichiometric amounts of Fe2+ and Fe3+ salts. Sodium stearoyl lactylate (SSL), a Food and Drug Administration approved food additive, was used to functionalize the iron oxide nanoparticles. SSL is useful in the generation of fat-in-water emulsions due to its high hydrophilic-lipophilic balance and its bilayer-forming capacity. Generation of a monolayer or a bilayer coating on the nanoparticles was controlled through systematic changes in reagent concentrations. The coated particles were then characterized using various analytical techniques to determine their size, their crystal structure and surface functionalization. The capacity of these bilayer coated nanoparticles to stabilize oil-in-water emulsions under various salt concentrations and pH values was also systematically determined using various characterization techniques. This study successfully demonstrated the ability to synthesize iron oxide nanoparticles (20-40 nm) coated with SSL in order to generate stable Pickering emulsions that were pH-responsive and resistant to significant destabilization in a saline environment, thereby lending themselves to applications in advanced oil spill recovery and remediation.

  12. Stability of oxidized iron species and the redox budget of slab-derived fluids

    Science.gov (United States)

    Sanchez-Valle, C.; Hin, R.; Testemale, D.; Borca, C.; Grolimund, D.

    2017-12-01

    The high oxidation state of subduction zone magmas compared to magmas from other locations might result from the influx of oxidized fluid from the subducted oceanic plate into the mantle wedge. However, the nature of the chemical agent(s) and the mechanism responsible for the transfer of the oxidized signature from the slab to the mantle wedge remains poorly understood. In this contribution, we will discuss the oxidizing capacity of slab-derived fluids in the light of experimental results of the solubility and speciation of iron in high-pressure fluids that mimic the slab flux. Iron-bearing mineral assemblages were equilibrated with chlorinated aqueous fluids and hydrous granitic melts at different oxygen fugacities relevant for the present day crust/mantle. The concentration of iron and the distribution of stability of oxidized iron species were monitored up to 2.5 GPa and 800 °C using a combination of diamond trap experiments and XANES measurements in diamond anvil cells. The results illustrate the role of coordination chemistry involving halogen and polymerized species in the stability of oxidized iron in the fluids. The concentration of Fe3+ in the fluids progressively decreases as temperature increases, regardless of fluid composition and pressure. This implies that the fluid capacity to transport Fe3+ at high temperature may be limited, even at the redox conditions relevant for the present day crust and mantle. With the new experimental results, we place constrains on the oxidizing capacity of Fe-bearing metasomatic fluids and discuss the transfer of the oxidizing signature and the conditions for the genesis of oxidized arc magmas.

  13. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Li; Tang, Jia; Wang, Yueqiang; Hu, Min; Zhou, Shungui, E-mail: sgzhou@soil.gd.cn

    2015-08-15

    Highlights: • Paddy soil contaminated with benzoate incubated with hematite and magnetite. • Iron oxides addition enhanced methanogenic benzoate degradation by 25–53%. • The facilitated syntrophy might involve direct interspecies electron transfer. • Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved. - Abstract: Recent studies have suggested that conductive iron oxide minerals can facilitate syntrophic metabolism of the methanogenic degradation of organic matter, such as ethanol, propionate and butyrate, in natural and engineered microbial ecosystems. This enhanced syntrophy involves direct interspecies electron transfer (DIET) powered by microorganisms exchanging metabolic electrons through electrically conductive minerals. Here, we evaluated the possibility that conductive iron oxides (hematite and magnetite) can stimulate the methanogenic degradation of benzoate, which is a common intermediate in the anaerobic metabolism of aromatic compounds. The results showed that 89–94% of the electrons released from benzoate oxidation were recovered in CH{sub 4} production, and acetate was identified as the only carbon-bearing intermediate during benzoate degradation. Compared with the iron-free controls, the rates of methanogenic benzoate degradation were enhanced by 25% and 53% in the presence of hematite and magnetite, respectively. This stimulatory effect probably resulted from DIET-mediated methanogenesis in which electrons transfer between syntrophic partners via conductive iron minerals. Phylogenetic analyses revealed that Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved in the functioning of syntrophic DIET. Considering the ubiquitous presence of iron minerals within soils and sediments, the findings of this study will increase the current understanding of the natural biological attenuation of aromatic hydrocarbons in anaerobic environments.

  14. Laboratory Investigation of Complex Conductivity and Magnetic Susceptibility on Natural Iron Oxide Coated Sand

    Science.gov (United States)

    Wang, C.; Slater, L. D.; Day-Lewis, F. D.; Briggs, M. A.

    2017-12-01

    Redox reactions occurring at the oxic/anoxic interface where groundwater discharges to surface water commonly result in iron oxide deposition that coats sediment grains. With relatively large total surface area, these iron oxide coated sediments serve as a sink for sorption of dissolved contaminants, although this sink may be temporary if redox conditions fluctuate with varied flow conditions. Characterization of the distribution of iron oxides in streambed sediments could provide valuable understanding of biogeochemical reactions and the ability of a natural system to sorb contaminants. Towards developing a field methodology, we conducted laboratory spectral induced polarization (SIP) and magnetic susceptibility (MS) measurements on natural iron oxide coated sand (Fe-sand) with grain sizes ranging from 0.3 to 2.0 mm in order to assess the sensitivity of these measurements to iron oxides in sediments. The Fe-sand was also sorted by sieving into various grain sizes to study the impact of grain size on the polarization mechanisms. The unsorted Fe-sand saturated with 0.01 S/m NaCl solution exhibited a distinct phase response ( > 4 mrad) in the frequency range from 0.001 to 100 Hz whereas regular silica sand was characterized by a phase response less than 1 mrad under the same conditions. The presence of iron oxide substantially increased MS (3.08×10-3 SI) over that of regular sand ( Laboratory results demonstrated that SIP and MS may be well suited to mapping the distribution of iron oxides in streambed sediments associated with anoxic groundwater discharge.

  15. Iron oxidation in different types of groundwater of Western Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Serikov, Leonid V.; Tropina, Elena A.; Shiyan, Liudmila N. [Tomsk Polytechnic Univ., Tomsk (Russian Federation); Frimmel, Fritz H.; Metreveli, George; Delay, Markus [Univ. of Karlsruhe, Engler-Bunte-Inst. (Germany)

    2009-04-15

    Background, aim, and scope The groundwaters of Western Siberia contain high concentrations of iron, manganese, silicon, ammonium, and, in several cases, hydrogen sulfide, carbonic acids, and dissolved organic substances. Generally, the groundwaters of Western Siberia can be divided into two major types: one type with a relatively low concentration of humic substances and high hardness (water of A type) and a second type with a relatively low hardness and high concentration of humic substances (water of B type). For drinking water production, the waters of A type are mostly treated in the classical way by aeration followed by sand bed filtration. The waters of B type often show problems when treated for iron removal. A part of iron practically does not form the floes or particles suitable for filtration or sedimentation. The aim of this work was to determine the oxidizability of Fe(II), to characterize the iron colloids, and to investigate the complexation of the iron ions with humic substances and the coagulation of the iron colloids in the presence of dissolved organic matter. Materials and methods Water samples of the A and B types were taken from bore holes in Western Siberia (A type: in Tomsk and Tomsk region, B type: in Beliy Yar and Kargasok). Depth of sampling was about 200 m below surface. The oxidation of the groundwater samples by air oxygen and ozone was done in a bubble reactor consisting of a glass cylinder with a gas-inlet tube. To produce ozone, a compact ozone generator developed by Tomsk Polytechnic University was used. For the characterization of the colloids in the water of B type, the particle size distribution and the zeta potential were measured. To investigate the formation of complexes between iron and humic substances in the water of B type, size exclusion chromatography was used. The coagulation behavior of iron in the presence of dissolved organic substances was investigated at different pH values. The agglomerates were detected by

  16. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica

    Science.gov (United States)

    Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa

    2017-06-01

    Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.

  17. Electron impact ionisation cross sections of iron oxides

    Science.gov (United States)

    Huber, Stefan E.; Mauracher, Andreas; Sukuba, Ivan; Urban, Jan; Maihom, Thana; Probst, Michael

    2017-12-01

    We report electron impact ionisation cross sections (EICSs) of iron oxide molecules, FexOx and FexOx+1 with x = 1, 2, 3, from the ionisation threshold to 10 keV, obtained with the Deutsch-Märk (DM) and binary-encounter-Bethe (BEB) methods. The maxima of the EICSs range from 3.10 to 9 . 96 × 10-16 cm2 located at 59-72 eV and 5.06 to 14.32 × 10-16 cm2 located at 85-108 eV for the DM and BEB approaches, respectively. The orbital and kinetic energies required for the BEB method are obtained by employing effective core potentials for the inner core electrons in the quantum chemical calculations. The BEB cross sections are 1.4-1.7 times larger than the DM cross sections which can be related to the decreasing population of the Fe 4s orbitals upon addition of oxygen atoms, together with the different methodological foundations of the two methods. Both the DM and BEB cross sections can be fitted excellently to a simple analytical expression used in modelling and simulation codes employed in the framework of nuclear fusion research. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80308-2.

  18. Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia.

    Science.gov (United States)

    Aslan, Mehmet; Horoz, Mehmet; Kocyigit, Abdurrahim; Ozgonül, Saadet; Celik, Hakim; Celik, Metin; Erel, Ozcan

    2006-10-10

    Oxidant stress has been shown to play an important role in the pathogenesis of iron deficiency anemia. The aim of this study was to investigate the association between lymphocyte DNA damage, total antioxidant capacity and the degree of anemia in patients with iron deficiency anemia. Twenty-two female with iron deficiency anemia and 22 healthy females were enrolled in the study. Peripheral DNA damage was assessed using alkaline comet assay and plasma total antioxidant capacity was determined using an automated measurement method. Lymphocyte DNA damage of patients with iron deficiency anemia was significantly higher than controls (ptotal antioxidant capacity was significantly lower (ptotal antioxidant capacity and hemoglobin levels (r=0.706, ptotal antioxidant capacity and hemoglobin levels were negatively correlated with DNA damage (r=-0.330, p<0.05 and r=-0.323, p<0.05, respectively). In conclusion, both oxidative stress and DNA damage are increased in IDA patients. Increased oxidative stress seems as an important factor that inducing DNA damage in those IDA patients. The relationships of oxidative stress and DNA damage with the severity of anemia suggest that both oxidative stress and DNA damage may, in part, have a role in the pathogenesis of IDA.

  19. Microbial Iron Oxidation in the Arctic Tundra and Its Implications for Biogeochemical Cycling

    Science.gov (United States)

    Scott, Jarrod J.; Benes, Joshua; Bowden, William B.

    2015-01-01

    The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long −149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides. PMID:26386054

  20. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles

    NARCIS (Netherlands)

    Moonen, R.P.M.; van der Tol, P.; Hectors, S.J.C.G.; Starmans, L.W.E.; Nicolaij, K.; Strijkers, G.J.

    2015-01-01

    Purpose To evaluate spin-lock MR for detecting superparamagnetic iron oxides and compare the detection sensitivity of quantitative T1ρ with T2 imaging. Methods In vitro experiments were performed to investigate the influence of iron oxide particle size and composition on T1ρ. These comprise T1ρ and

  1. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles

    NARCIS (Netherlands)

    Moonen, Rik P. M.; van der Tol, Pieternel; Hectors, Stefanie J. C. G.; Starmans, Lucas W. E.; Nicolay, Klaas; Strijkers, Gustav J.

    2015-01-01

    To evaluate spin-lock MR for detecting superparamagnetic iron oxides and compare the detection sensitivity of quantitative T1ρ with T2 imaging. In vitro experiments were performed to investigate the influence of iron oxide particle size and composition on T1ρ . These comprise T1ρ and T2 measurements

  2. Nitric oxide-mediated modulation of iron regulatory proteins: implication for cellular iron homeostasis.

    Science.gov (United States)

    Kim, Sangwon; Ponka, Prem

    2002-01-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) that are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO(.), a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels and a decrease in ferritin synthesis. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO(+) (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels and a dramatic increase in ferritin synthesis. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels and an increase in ferritin synthesis in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO(+)-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  3. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue

    2010-03-16

    Nanoparticles that self-assemble on a liquid-liquid interface serve as the building block for making heterodimeric nanostructures. Specifically, hollow iron oxide nanoparticles within hexane form colloidosomes in the aqueous solution of silver nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectrometry, X-ray diffraction, UV-vis spectroscopy, and SQUID were used to characterize the heterodimers. Interestingly, the formation of silver nanoparticles helps the removal of spinglass layer on the hollow iron oxide nanoparticles. This work demonstrates a powerful yet convenient strategy for producing sophisticated, multifunctional nanostructures. © 2010 American Chemical Society.

  4. A/C magnetic hyperthermia of melanoma mediated by iron(0/iron oxide core/shell magnetic nanoparticles: a mouse study

    Directory of Open Access Journals (Sweden)

    Koper Olga B

    2010-03-01

    Full Text Available Abstract Background There is renewed interest in magnetic hyperthermia as a treatment modality for cancer, especially when it is combined with other more traditional therapeutic approaches, such as the co-delivery of anticancer drugs or photodynamic therapy. Methods The influence of bimagnetic nanoparticles (MNPs combined with short external alternating magnetic field (AMF exposure on the growth of subcutaneous mouse melanomas (B16-F10 was evaluated. Bimagnetic Fe/Fe3O4 core/shell nanoparticles were designed for cancer targeting after intratumoral or intravenous administration. Their inorganic center was protected against rapid biocorrosion by organic dopamine-oligoethylene glycol ligands. TCPP (4-tetracarboxyphenyl porphyrin units were attached to the dopamine-oligoethylene glycol ligands. Results The magnetic hyperthermia results obtained after intratumoral injection indicated that micromolar concentrations of iron given within the modified core-shell Fe/Fe3O4 nanoparticles caused a significant anti-tumor effect on murine B16-F10 melanoma with three short 10-minute AMF exposures. We also observed a decrease in tumor size after intravenous administration of the MNPs followed by three consecutive days of AMF exposure 24 hrs after the MNPs injection. Conclusions These results indicate that intratumoral administration of surface modified MNPs can attenuate mouse melanoma after AMF exposure. Moreover, we have found that after intravenous administration of micromolar concentrations, these MNPs are capable of causing an anti-tumor effect in a mouse melanoma model after only a short AMF exposure time. This is a clear improvement to state of the art.

  5. Interactions of silica with iron oxides: Effects on oxide transformations and sorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P

    1995-08-01

    This report is a review of the literature on the adsorption of silica species on iron oxides and oxyhydroxides, and its effects on the adsorption of other species and on oxide interconversion reactions. The information is discussed briefly in the contexts of nuclear waste disposal and boiler-water chemistry. (author). 76 refs.

  6. Interactions of silica with iron oxides: Effects on oxide transformations and sorption properties

    International Nuclear Information System (INIS)

    Taylor, P.

    1995-08-01

    This report is a review of the literature on the adsorption of silica species on iron oxides and oxyhydroxides, and its effects on the adsorption of other species and on oxide interconversion reactions. The information is discussed briefly in the contexts of nuclear waste disposal and boiler-water chemistry. (author). 76 refs

  7. Iron Is the Active Site in Nickel/Iron Water Oxidation Electrocatalysts

    Directory of Open Access Journals (Sweden)

    Bryan M. Hunter

    2018-04-01

    Full Text Available Efficient catalysis of the oxygen-evolution half-reaction (OER is a pivotal requirement for the development of practical solar-driven water splitting devices. Heterogeneous OER electrocatalysts containing first-row transition metal oxides and hydroxides have attracted considerable recent interest, owing in part to the high abundance and low cost of starting materials. Among the best performing OER electrocatalysts are mixed Fe/Ni layered double hydroxides (LDH. A review of the available experimental data leads to the conclusion that iron is the active site for [NiFe]-LDH-catalyzed alkaline water oxidation.

  8. Serum Iron and Nitric Oxide Production in Trypanosoma brucei ...

    African Journals Online (AJOL)

    JTEkanem

    reduction in the serum iron status and a modulation of nitric oxide synthase activity of T. brucei infected rats. ... inflammation and tissue damage15. ... The serum iron level was determined ... concentration or of total nitrate and nitrite ... 15. 16. 17. 18. Days. S e ru m iro n lev e l mg. /ml. Infected treated. Infected untreated. 0.

  9. Fossilization of Iron-Oxidizing Bacteria at Hydrothermal Vents: a Useful Biosignature on Mars?

    Science.gov (United States)

    Leveille, R. J.; Lui, S.

    2009-05-01

    Iron oxidizing bacteria are ubiquitous in marine and terrestrial environments on Earth, where they often display distinctive cell morphologies and are commonly encrusted by minerals, especially bacteriogenic iron oxides and silica. Putative microfossils of iron oxidizing bacteria have been found in jaspers as old as 490Ma and microbial iron oxidation may be an ancient metabolic pathway. In order to investigate the usefulness of mineralized iron oxidizing bacteria as a biosignature, we have examined mineral samples collected from relict hydrothermal systems along Explorer Ridge, NE Pacific Ocean. In addition, microaerophilic, neutrophilic iron oxidizing bacteria, isolated from Pacific hydrothermal vents, were grown in a Fe-enriched seawater medium at constant pH (6.5) and oxygen concentration (5 percent) in a controlled bioreactor system. Both natural samples and experimental products were examined with a combination of variable pressure scanning electron microscopy (SEM), field emission gun SEM, and in some cases by preparing samples with a focused ion beam (FIB) milling system. Natural seafloor samples display abundant filamentous forms often resembling, in both size and shape, the twisted stalks of Gallionella and the elongated filaments of Leptothrix. Generally, these filamentous features are 1-5 microns in diameter and up to several microns in length. Some samples consist entirely of low- density, porous masses of silica encrusted filamentous forms. Presumably, these masses were formed by a rapid precipitation by the influx of silica-rich fluids into a microbial mat dominated by bacteria with filamentous morphologies. The presence of rare, amorphous (unmineralized) filamentous matter rich in C and Fe suggests that these bacteria were iron oxidizers. There is no evidence that sulfur oxidizers were present. Filamentous features sectioned by FIB milling show internal material within semi-hollow tubular-like features. Silica encrustations also show pseudo

  10. Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization

    International Nuclear Information System (INIS)

    Neri, G.; Visco, A.M.; Galvagno, S.; Donato, A.; Panzalorto, M.

    1999-01-01

    Gold on iron oxides catalysts have been characterized by temperature programmed reduction (TPR) and X-ray diffraction spectroscopy (XRD). The influence of preparation method, gold loading and pretreatment conditions on the reducibility of iron oxides have been investigated. On the impregnated Au/iron oxide catalysts as well as on the support alone the partial reduction of Fe(III) oxy(hydroxides) to Fe 3 O 4 starts in the 550 and 700 K temperature range. On the coprecipitated samples, the temperature of formation of Fe 3 O 4 is strongly dependent on the presence of gold. The reduction temperature is lowered as the gold loading is increased. The reduction of Fe 3 O 4 to FeO occurs at about 900 K and is not dependent on the presence of gold and the preparation method. It is suggested that the effect of gold on the reducibility of the iron oxides is related to an increase of the structural defects and/or of the surface hydroxyl groups. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes

    Science.gov (United States)

    Knipping, Jaayke L.; Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Barra, Fernando; Deditius, Artur P.; Wälle, Markus; Heinrich, Christoph A.; Holtz, François; Munizaga, Rodrigo

    2015-12-01

    Iron oxide-apatite (IOA) deposits are an important source of iron and other elements (e.g., REE, P, U, Ag and Co) vital to modern society. However, their formation, including the namesake Kiruna-type IOA deposit (Sweden), remains controversial. Working hypotheses include a purely magmatic origin involving separation of an Fe-, P-rich, volatile-rich oxide melt from a Si-rich silicate melt, and precipitation of magnetite from an aqueous ore fluid, which is either of magmatic-hydrothermal or non-magmatic surface or metamorphic origin. In this study, we focus on the geochemistry of magnetite from the Cretaceous Kiruna-type Los Colorados IOA deposit (∼350 Mt Fe) located in the northern Chilean Iron Belt. Los Colorados has experienced minimal hydrothermal alteration that commonly obscures primary features in IOA deposits. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) transects and electron probe micro-analyzer (EPMA) wavelength-dispersive X-ray (WDX) spectrometry mapping demonstrate distinct chemical zoning in magnetite grains, wherein cores are enriched in Ti, Al, Mn and Mg. The concentrations of these trace elements in magnetite cores are consistent with igneous magnetite crystallized from a silicate melt, whereas magnetite rims show a pronounced depletion in these elements, consistent with magnetite grown from an Fe-rich magmatic-hydrothermal aqueous fluid. Further, magnetite grains contain polycrystalline inclusions that re-homogenize at magmatic temperatures (>850 °C). Smaller inclusions (500 ppm) concentrations.

  12. Role of nitric oxide in cellular iron metabolism.

    Science.gov (United States)

    Kim, Sangwon; Ponka, Prem

    2003-03-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) which are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO*, a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO+ (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO+-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  13. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Henych, Jiří, E-mail: henych@iic.cas.cz [Department of Material Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 25068 Řež (Czech Republic); Štengl, Václav; Slušná, Michaela; Matys Grygar, Tomáš [Department of Material Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 25068 Řež (Czech Republic); Janoš, Pavel; Kuráň, Pavel; Štastný, Martin [Faculty of the Environment, J.E. Purkyně University, Králova Výšina 7, 400 96 Ústí nad Labem (Czech Republic)

    2015-07-30

    Highlights: • Ti–Fe mixed oxides were synthesized via low-temperature one-pot method. • Mixed oxides were used for degradation of parathion methyl. • Pure reference oxide samples showed no degradation ability. • Mixed oxides reached 70% degree of conversion of parathion methyl. - Abstract: Titania-iron mixed oxides with various Ti:Fe ratio were prepared by homogeneous hydrolysis of aqueous solutions of titanium(IV) oxysulphate and iron(III) sulphate with urea as a precipitating agent. The synthesized samples were characterized by X-ray diffraction, Raman and infrared spectroscopy, scanning and transmission electron microscopy, XRF analysis, specific surface area (BET) and porosity determination (BJH). These oxides were used for degradation of organophosporus pesticide parathion methyl. The highest degradation efficiency approaching <70% was found for the samples with Ti:Fe ratio 0.25:1 and 1:0.25. Contrary, parathion methyl was not degraded on the surfaces of pure oxides. In general, the highest degradation rate exhibited samples consisted of the iron or titanium oxide containing a moderate amount of the admixture. However, distinct correlations between the degradation rate and the sorbent composition were not identified.

  14. Application of Iron Oxide Nano materials for the Removal of Heavy Metals

    International Nuclear Information System (INIS)

    Dave, P.N.; Chopda, L.V.

    2014-01-01

    In the 21st century water polluted by heavy metal is one of the environment problems. Various methods for removal of the heavy metal ions from the water have extensively been studied. Application of iron oxide nana particles based nano materials for removal of heavy metals is well-known adsorbents for remediation of water. Due to its important physiochemical property, inexpensive method and easy regeneration in the presence of external magnetic field make them more attractive toward water purification. Surface modification strategy of iron oxide nanoparticles is also used for the remediation of water increases the efficiency of iron oxide for the removal of the heavy metal ions from the aqueous system.

  15. Bacterial Oxidation and Reduction of Iron in the Processes of Creation and Treatment of Acid Mining Waters

    Directory of Open Access Journals (Sweden)

    Daniel Kupka

    2004-12-01

    Full Text Available Acid mine drainages (AMDs arise at the weathering of sulphidic minerals. The occurrence of acidic streams is commonly associated with the human mining activities. Due to the disruption and excavation of sulphide deposits, the oxidation processes have initiated. Acidic products of sulphide oxidation accelerate the degradation of accompanying minerals. AMDs typically contain high concentrations of sulfuric acid and soluble metals and cause serious ecological problems due to the water pollution and the devastation of adjacent country. Microbial life in these extremely acidic environments may be considerably diverse. AMDs are abundant in bacteria capable to oxidize and/or to reduce iron. The rate of bacterial oxidation of ferrous iron released from pyrite surfaces is up to one million times faster than the chemical oxidation rate at low pH. Bacterial regeneration of ferric iron maintains the continuity of pyrite oxidation and the production of AMDs. Another group of microorganisms living in these environments are acidophilic ferric iron reducing bacteria. This group of microorganisms has been discovered only relatively recently. Acidophilic heterotrophic bacteria reduce ferric iron in either soluble or solid forms to ferrous iron. The reductive dissolution of ferric iron minerals brings about a mobilization of iron as well as associated heavy metals. The Bacterial oxidation and reduction of iron play an important role in the transformation of either crystalline or amorphous iron-containing minerals, including sulphides, oxides, hydroxysulfates, carbonates and silicates. This work discusses the role of acidophilic bacteria in the natural iron cycling and the genesis of acidic effluents. The possibilities of application of iron bacteria in the remediation of AMDs are also considered.

  16. Cytotoxic Effect of Iron Oxide Nanoparticles on Mouse Embryonic Stem Cells by MTT Assay

    Directory of Open Access Journals (Sweden)

    Homa Mohseni Kouchesfehani

    2016-07-01

    Full Text Available Background: Despite the wide range of applications, there is a serious lack of information on the impact of the nanoparticles on human health and the environment. The present study was done to determine the range of dangerous concentrations of iron oxide nanoparticle and their effects on mouse embryonic stem cells. Methods: Iron oxide nanoparticles with less than 20 nanometers diameter were encapsulated by a PEG-phospholipid. The suspension of iron oxide nanoparticles was prepared using the culture media and cell viability was determined by MTT assay. Results: MTT assay was used to examine the cytotoxicity of iron oxide nanoparticle s. Royan B1 cells were treated with medium containing different concentrations (10, 20, 30, 40, 50, and 60µg/ml of the iron oxide nanoparticle. Cell viability was determined at 12 and 24 hours after treatment which showed significant decreases when concentration and time period increased. Conclusion: The main mechanism of nanoparticles action is still unknown, but in vivo and in vitro studies in different environments suggest that they are capable of producing reactive oxygen species (ROS. Therefore, they may have an effect on the concentration of intracellular calcium, activation of transcription factors, and changes in cytokine. The results of this study show that the higher concentration and duration of treatment of cells with iron oxide nanoparticles increase the rate of cell death.

  17. Iron oxide nanoparticles stabilized inside highly ordered ...

    Indian Academy of Sciences (India)

    Nanosized iron oxide, a moderately large band-gap semiconductor and an essential component of optoelectrical and magnetic devices, has been prepared successfully inside the restricted internal pores of mesoporous silica material through in-situ reduction during impregnation. The samples were characterized by ...

  18. Thermal and magnetic properties of iron oxide colloids: influence of surfactants

    International Nuclear Information System (INIS)

    I P Soares, Paula; Lochte, Frederik; Echeverria, Coro; M M Ferreira, Isabel; P M R Borges, João; C J Pereira, Laura; T Coutinho, Joana; M M Novo, Carlos

    2015-01-01

    Iron oxide nanoparticles (NPs) have been extensively studied in the last few decades for several biomedical applications such as magnetic resonance imaging, magnetic drug delivery and hyperthermia. Hyperthermia is a technique used for cancer treatment which consists in inducing a temperature of about 41–45 °C in cancerous cells through magnetic NPs and an external magnetic field. Chemical precipitation was used to produce iron oxide NPs 9 nm in size coated with oleic acid and trisodium citrate. The influence of both stabilizers on the heating ability and in vitro cytotoxicity of the produced iron oxide NPs was assessed. Physicochemical characterization of the samples confirmed that the used surfactants do not change the particles’ average size and that the presence of the surfactants has a strong effect on both the magnetic properties and the heating ability. The heating ability of Fe_3O_4 NPs shows a proportional increase with the increase of iron concentration, although when coated with trisodium citrate or oleic acid the heating ability decreases. Cytotoxicity assays demonstrated that both pristine and trisodium citrate Fe_3O_4 samples do not reduce cell viability. However, oleic acid Fe_3O_4 strongly reduces cell viability, more drastically in the SaOs-2 cell line. The produced iron oxide NPs are suitable for cancer hyperthermia treatment and the use of a surfactant brings great advantages concerning the dispersion of NPs, also allowing better control of the hyperthermia temperature. (paper)

  19. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications

    Science.gov (United States)

    Maleki, H.; Simchi, A.; Imani, M.; Costa, B. F. O.

    2012-11-01

    The size mono-dispersity, saturation magnetization, and surface chemistry of magnetic nanoparticles (NPs) are recognized as critical factors for efficient biomedical applications. Here, we performed modified water-in-oil inverse nano-emulsion procedure for preparation of stable colloidal superparamagnetic iron oxide NPs (SPIONs) with high saturation magnetization. To achieve mono-dispersed SPIONs, optimization process was probed on several important factors including molar ratio of iron salts [Fe3+ and Fe2+], the concentration of ammonium hydroxide as reducing agent, and molar ratio of water to surfactant. The biocompatibility of the obtained NPs, at various concentrations, was evaluated via MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and the results showed that the NPs were non-toxic at concentrations gold (˜4 nm) through chemical reduction of attached gold salts at the surface of the SPIONs. The Fe3O4 core/Au shell particles demonstrate strong plasmon resonance absorption and can be separated from solution using an external magnetic field. Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, phase components, core-shell surface composition, and magnetic properties have confirmed the formation of the mono-dispersed core-shell nanostructure.

  20. Mercury removal in wastewater by iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Vélez, E; Campillo, G E; Morales, G; Hincapié, C; Osorio, J; Arnache, O; Uribe, J I; Jaramillo, F

    2016-01-01

    Mercury is one of the persistent pollutants in wastewater; it is becoming a severe environmental and public health problem, this is why nowadays its removal is an obligation. Iron oxide nanoparticles are receiving much attention due to their properties, such as: great biocompatibility, ease of separation, high relation of surface-area to volume, surface modifiability, reusability, excellent magnetic properties and relative low cost. In this experiment, Fe 3 O 4 and γ-Fe 2 O 3 nanoparticles were synthesized using iron salts and NaOH as precipitation agents, and Aloe Vera as stabilizing agent; then these nanoparticles were characterized by three different measurements: first, using a Zetasizer Nano ZS for their size estimation, secondly UV-visible spectroscopy which showed the existence of resonance of plasmon at λ max ∼360 nm, and lastly by Scanning Electron Microscopy (SEM) to determine nanoparticles form. The results of this characterization showed that the obtained Iron oxides nanoparticles have a narrow size distribution (∼100nm). Mercury removal of 70% approximately was confirmed by atomic absorption spectroscopy measurements. (paper)

  1. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Pongrac, I. M.; Pavičić, I.; Milić, M.; Brkić Ahmed, L.; Babič, Michal; Horák, Daniel; Vinković Vrček, I.; Gajović, S.

    2016-01-01

    Roč. 11, 26 April (2016), s. 1701-1715 ISSN 1176-9114 R&D Projects: GA ČR(CZ) GC16-01128J EU Projects: European Commission(XE) 316120 - GLOWBRAIN Institutional support: RVO:61389013 Keywords : superparamagnetic iron oxide nanoparticles * biocompatibility * oxidative stress Subject RIV: CD - Macromolecular Chemistry

  2. Enhancement of aspirin capsulation by porous particles including iron hydrous oxide

    International Nuclear Information System (INIS)

    Saito, Kenji; Koishi, Masumi; Hosoi, Fumio; Makuuchi, Keizo.

    1986-01-01

    Polymer-coated porous particles containing aspirin as a drug were prepared and the release of rate of aspirin was studied. The impregnation of aspirin was carried out by post-graft polymerization, where methyl methacrylate containing aspirin was treated with porous particles including iron oxide, pre-irradiated with γ-ray form Co-60. Release of aspirin from modified particles was examined with 50 % methanol solution. The amount of aspirin absorbed in porous particles increased by grafting of methyl methacrylate. The particles treated with iron hydrous oxide sols before irradiation led to the increment of aspirin absorption. Diffusion of aspirin through the polymer matrix and the gelled layer was the limiting process in the aspirin release from particles. The rate of aspirin released from modified particles including iron hydrous oxide wasn't affected by the grafting of methyl methacrylate. (author)

  3. Rotating collapse of stellar iron cores in general relativity

    International Nuclear Information System (INIS)

    Ott, C D; Dimmelmeier, H; Marek, A; Janka, H-T; Zink, B; Hawke, I; Schnetter, E

    2007-01-01

    We present results from the first 2 + 1 and 3 + 1 simulations of the collapse of rotating stellar iron cores in general relativity employing a finite-temperature equation of state and an approximate treatment of deleptonization during collapse. We compare full 3 + 1 and conformally-flat spacetime evolution methods and find that the conformally-flat treatment is sufficiently accurate for the core-collapse supernova problem. We focus on the gravitational wave (GW) emission from rotating collapse, core bounce and early postbounce phases. Our results indicate that the GW signature of these phases is much more generic than previously estimated. In addition, we track the growth of a nonaxisymmetric instability of dominant m = 1 character in two of our models that leads to prolonged narrow-band GW emission at ∼920-930 Hz over several tens of milliseconds

  4. Precipitation of iron (III) using magnesium oxide in fluidized bed

    International Nuclear Information System (INIS)

    Esteban-Bocardo, P. A.; Ferreira-Rocha, S. D.

    2006-01-01

    A process for iron (III) removal by hydroxide precipitation from and acid synthetic inorganic effluent using magnesium oxide as an alternative precipitant agent in a fluidized bed was developed. An acid synthetic inorganic effluent containing 100 and 200 mg/l of ferric ions (pH=1.0) was continuously fed up to the acrylic column (30 cm high and 2 cm diameter) during 180 minutes. Magnesium oxide pulp (3% v/v) was injected at the beginning of the experiment in order to allow the iron hydroxides precipitation. The concentration and pH profiles agreed in their curves, while the pH profile rose,the concentration profile decreased and a high percentage of iron removal /higher to 99%) was reached. Extremely low iron concentrations have been reached, thus permitting to attend to the environmental standard of 10.0 mg/l for discharge of effluent containing ferric ions established by the law DN 10/86 of COPAM (Conselho de Politica Ambiental do Estado de Minas Gerais-Brazil). (Author)

  5. Factors Affecting Ballability of Mixture Iron Ore Concentrates and Iron Oxide Bearing Wastes in Metallurgical Processing

    Directory of Open Access Journals (Sweden)

    Mfon Udo

    2018-05-01

    Full Text Available Iron oxide bearing wastes (IROBEWAS are produced at every segment of processing stage of sinter, molten iron and steel production. They are hard to handle and in many cases are stockpiled only to be a source of environmental pollution but can be balled into pellets. Pellet of good ballability values are transportable and recyclable as they can withstand stress they will encounter without disintegrating back to dust. But ballability is affected by some factors like the grain sizes of the materials, the moisture and binder contents of the ball mix, wettability of the balled materials and the processing perimeters of the granulator. The objective of this research work is to investigate the factors affecting ballability of mixture of iron ore concentrates and iron oxide bearing wastes (IROBEWAS in metallurgical processing. The parameters under consideration were grain size of materials, the moisture contents, the speed of balling disc, IROBEWAS and Bentonite (Binder contents of the balled mix. This was carried out by balling different volume fractions of mix containing iron oxide concentrate and IROBEWAS using a balling disc and testing the resulting balls for green compressive strength using universal testing machine. It was found that the ballability of the mixture of iron ore concentrate and IROBEWAS increases as grain sizes of the materials reduce but increases as the moisture contents and IROBEWAS content increase up to an optimum value of moisture content in the mix before it starts to reduce. The ballability also increases as the speed of the granulator (Balling disc increases within the limit of this work. It was also observed that there was an increase in ballability with slight increase in bentonite content in the mix.

  6. Biological iron(II) oxidation as pre-treatment to limestone neutralisation of acid water

    CSIR Research Space (South Africa)

    Maree

    1998-01-01

    Full Text Available at investigating the effect of surface area of the medium that supports bacterial growth on the rate of biological iron (II) oxidation. The study showed that the biological iron (II) oxidation rate is directly proportional to the square root of the medium specific...

  7. Changing of the electron structure of dispersed iron oxide during interaction with amines and borofluoride

    International Nuclear Information System (INIS)

    Hobert, H.; Arnold, D.

    1975-01-01

    The mechanism of chemisorption on the surface of iron oxide was studied by Moessbauer spectroscopy performed on samples of iron oxide finely dispersed in SiO 2 . It was found from Moessbauer spectra that the interaction of the oxide with amines resulted in a reversible electron transition from the amine to the adsorbent. The interaction with BF 3 brought about an irreversible electron transition from iron to boron. (A.K.)

  8. Iron oxide nanoparticles for use in contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Oliveira, Elisa M.N. de; Rocha, Maximiliano S. da; Caimi, Priscila de A.; Basso, Nara R. de S.; Zanini, Mara L.; Papaleo, Ricardo M.

    2015-01-01

    In this work were carried out synthesis of iron oxide nanoparticles coated with dextran, comparing the results of using different concentrations of dextran, iron salts, temperature and reaction time. The compounds were analyzed by DLS, XRD, TGA, TEM, FTIR, Zeta Potential and relaxivity. Nanoparticles with dispersion around 10-15 nm and average hydrodynamic diameters of 16-50 nm, with superparamagnetic behavior were obtained. The ratio of the relaxivities (r2/r1) in aqueous solutions was 5.30, close to value of the commercially available iron oxide contrast agents. (author)

  9. Nitric oxide and plant iron homeostasis.

    Science.gov (United States)

    Buet, Agustina; Simontacchi, Marcela

    2015-03-01

    Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes. © 2015 New York Academy of Sciences.

  10. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue; Gao, Jinhao; Zhang, Bei; Zhang, Xixiang; Xu, Bing

    2010-01-01

    nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X

  11. Elucidation of the electrochromic mechanism of nanostructured iron oxides films

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lobato, M.A.; Martinez, Arturo I.; Castro-Roman, M. [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav Campus Saltillo, Carr. Saltillo-Monterrey Km. 13, Ramos Arizpe, Coah. 25900 (Mexico); Perry, Dale L. [Mail Stop 70A1150, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Zarate, R.A. [Departamento de Fisica, Facultad de Ciencias, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Escobar-Alarcon, L. (Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico)

    2011-02-15

    Nanostructured hematite thin films were electrochemically cycled in an aqueous solution of LiOH. Through optical, structural, morphological, and magnetic measurements, the coloration mechanism of electrochromic iron oxide thin films was elucidated. The conditions for double or single electrochromic behavior are given in this work. During the electrochemical cycling, it was found that topotactic transformations of hexagonal crystal structures are favored; i.e. {alpha}-Fe{sub 2}O{sub 3} to Fe(OH){sub 2} and subsequently to {delta}-FeOOH. These topotactic redox reactions are responsible for color changes of iron oxide films. (author)

  12. Scalable fractionation of iron oxide nanoparticles using a CO2 gas-expanded liquid system

    International Nuclear Information System (INIS)

    Vengsarkar, Pranav S.; Xu, Rui; Roberts, Christopher B.

    2015-01-01

    Iron oxide nanoparticles exhibit highly size-dependent physicochemical properties that are important in applications such as catalysis and environmental remediation. In order for these size-dependent properties to be effectively harnessed for industrial applications scalable and cost-effective techniques for size-controlled synthesis or size separation must be developed. The synthesis of monodisperse iron oxide nanoparticles can be a prohibitively expensive process on a large scale. An alternative involves the use of inexpensive synthesis procedures followed by a size-selective processing technique. While there are many techniques available to fractionate nanoparticles, many of the techniques are unable to efficiently fractionate iron oxide nanoparticles in a scalable and inexpensive manner. A scalable apparatus capable of fractionating large quantities of iron oxide nanoparticles into distinct fractions of different sizes and size distributions has been developed. Polydisperse iron oxide nanoparticles (2–20 nm) coated with oleic acid used in this study were synthesized using a simple and inexpensive version of the popular coprecipitation technique. This apparatus uses hexane as a CO 2 gas-expanded liquid to controllably precipitate nanoparticles inside a 1L high-pressure reactor. This paper demonstrates the operation of this new apparatus and for the first time shows the successful fractionation results on a system of metal oxide nanoparticles, with initial nanoparticle concentrations in the gram-scale. The analysis of the obtained fractions was performed using transmission electron microscopy and dynamic light scattering. The use of this simple apparatus provides a pathway to separate large quantities of iron oxide nanoparticles based upon their size for use in various industrial applications.

  13. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans.

    Science.gov (United States)

    Liu, Fenwu; Zhou, Jun; Jin, Tongjun; Zhang, Shasha; Liu, Lanlan

    2016-01-01

    Calcium oxide was added into ferrous ion oxidation system in the presence of Acidithiobacillus ferrooxidans at concentrations of 0-4.00 g/L. The pH, ferrous ion oxidation efficiency, total iron precipitation efficiency, and phase of the solid minerals harvested from different treatments were investigated during the ferrous ion oxidation process. In control check (CK) system, pH of the solution decreased from 2.81 to 2.25 when ferrous ions achieved complete oxidation after 72 h of Acidithiobacillus ferrooxidans incubation without the addition of calcium oxide, and total iron precipitation efficiency reached 20.2%. Efficiency of ferrous ion oxidation and total iron precipitation was significantly improved when the amount of calcium oxide added was ≤1.33 g/L, and the minerals harvested from systems were mainly a mixture of jarosite and schwertmannite. For example, the ferrous ion oxidation efficiency reached 100% at 60 h and total iron precipitation efficiency was increased to 32.1% at 72 h when 1.33 g/L of calcium oxide was added. However, ferrous ion oxidation and total iron precipitation for jarosite and schwertmannite formation were inhibited if the amount of calcium oxide added was above 2.67 g/L, and large amounts of calcium sulfate dihydrate were generated in systems.

  14. Recovery of iron oxides from acid mine drainage and their application as adsorbent or catalyst.

    Science.gov (United States)

    Flores, Rubia Gomes; Andersen, Silvia Layara Floriani; Maia, Leonardo Kenji Komay; José, Humberto Jorge; Moreira, Regina de Fatima Peralta Muniz

    2012-11-30

    Iron oxide particles recovered from acid mine drainage represent a potential low-cost feedstock to replace reagent-grade chemicals in the production of goethite, ferrihydrite or magnetite with relatively high purity. Also, the properties of iron oxides recovered from acid mine drainage mean that they can be exploited as catalysts and/or adsorbents to remove azo dyes from aqueous solutions. The main aim of this study was to recover iron oxides with relatively high purity from acid mine drainage to act as a catalyst in the oxidation of dye through a Fenton-like mechanism or as an adsorbent to remove dyes from an aqueous solution. Iron oxides (goethite) were recovered from acid mine drainage through a sequential precipitation method. Thermal treatment at temperatures higher than 300 °C produces hematite through a decrease in the BET area and an increase in the point of zero charge. In the absence of hydrogen peroxide, the solids adsorbed the textile dye Procion Red H-E7B according to the Langmuir model, and the maximum amount adsorbed decreased as the temperature of the thermal treatment increased. The decomposition kinetics of hydrogen peroxide is dependent on the H(2)O(2) concentration and iron oxides dosage, but the second-order rate constant normalized to the BET surface area is similar to that for different iron oxides tested in this and others studies. These results indicate that acid mine drainage could be used as a source material for the production of iron oxide catalysts/adsorbents, with comparable quality to those produced using analytical-grade reagents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Effect of charged deep states in hydrogenated amorphous silicon on the behavior of iron oxides nanoparticles deposited on its surface

    International Nuclear Information System (INIS)

    Gmucova, Katarina; Weis, Martin; Nadazdy, Vojtech; Capek, Ignac; Satka, Alexander; Chitu, Livia; Cirak, Julius; Majkova, Eva

    2008-01-01

    Langmuir-Blodgett technique has been used for the deposition of ordered two-dimensional arrays of iron oxides (Fe 3 O 4 /Fe 2 O 3 ) nanoparticles onto the photovoltaic hydrogenated amorphous silicon (a-Si:H) thin film. Electric field at the a-Si:H/iron oxides nanoparticles interface was directly in the electrochemical cell modified by light soaking and bias voltage (negative or positive) pretreatment resulting in the change of the dominant type of charged deep states in the a-Si:H layer. Induced reversible changes in the nanoparticle redox behavior have been observed. We suggest two possible explanations of the data obtained, both of them are needed to describe measured electrochemical signals. The first one consists in the electrocatalytical effect caused by the defect states (negatively or positively charged) in the a-Si:H layer. The second one consists in the possibility to manipulate the nanoparticle cores in the prepared structure immersed in aqueous solution via the laser irradiation under specific bias voltage. In this case, the nanoparticle cores are assumed to be covered with surface clusters of heterovalent complexes created onto the surface regions with prevailing ferrous or ferric valency. Immersed in the high viscosity surrounding composed of the wet organic nanoparticle envelope these cores are able to perform a field-assisted pivotal motion. The local electric field induced by the deep states in the a-Si:H layer stabilizes their 'orientation ordering' in an energetically favourable position

  16. Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations.

    Science.gov (United States)

    Shah, Ankit; Dobrovolskaia, Marina A

    2018-04-01

    Nanotechnology offers several advantages for drug delivery. However, there is the need for addressing potential safety concerns regarding the adverse health effects of these unique materials. Some such effects may occur due to undesirable interactions between nanoparticles and the immune system, and they may include hypersensitivity reactions, immunosuppression, and immunostimulation. While strategies, models, and approaches for studying the immunological safety of various engineered nanoparticles, including metal oxides, have been covered in the current literature, little attention has been given to the interactions between iron oxide-based nanomaterials and various components of the immune system. Here we provide a comprehensive review of studies investigating the effects of iron oxides and iron-based nanoparticles on various types of immune cells, highlight current gaps in the understanding of the structure-activity relationships of these materials, and propose a framework for capturing their immunotoxicity to streamline comparative studies between various types of iron-based formulations. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Synthesis, Characterization, and Cytotoxicity of Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    S. Kanagesan

    2013-01-01

    Full Text Available In order to study the response of human breast cancer cells' exposure to nanoparticle, iron oxide (α-Fe2O3 nanoparticles were synthesized by a simple low temperature combustion method using Fe(NO33·9H2O as raw material. X-ray diffraction studies confirmed that the resultant powders are pure α-Fe2O3. Transmission electron microscopy study revealed the spherical shape of the primary particles, and the size of the iron oxide nanoparticles is in the range of 19 nm. The magnetic hysteresis loops demonstrated that the sample exposed ferromagnetic behaviors with a relatively low coercivity. The cytotoxicity of α-Fe2O3 nanoparticle was also evaluated on human breast cancer cells to address the current deficient knowledge of cellular response to nanoparticle exposure.

  18. Novel magnetically separable AgCl/iron oxide composites with enhanced photocatalytic activity driven by visible light

    International Nuclear Information System (INIS)

    Zhang, Ying; Zhang, Yanrong; Tan, Jue

    2013-01-01

    Highlights: •The AgCl/iron oxide composites were prepared by a chemical precipitation method. •The composites exhibited improved performances in the photodegradation of pollutants. •The visible light photocatalysts could be recycled easily by a magnet. -- Abstract: In this work, AgCl/iron oxide composites were synthesized by a simple chemical precipitation method and calcining process. The composition of the material and magnetic and optical properties of the composites were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating specimen magnetometer (VSM) techniques, which confirms the high crystalline and magnetic behavior of the composites. UV-vis diffuse reflectance spectral (DRS) studies showed that the AgCl/iron oxide composites were of much higher absorption in longer wavelength region compared to bare iron oxide. The AgCl/iron oxide composites showed better performance in the photodegradation of organic dyes Rhodamin B (RhB) under the fluorescent lamp irradiation, which is remarkably superior to the N-TiO 2 . The degradation of microcystin-LR (MC-LR) and phenol was also found to be good owing to its effective electron-hole separation at AgCl/iron oxide interface. The separation of AgCl/iron oxide composites from the treated water was achieved by an external magnetic field as γ-Fe 2 O 3 exhibits enough magnetic power to facilitate the separation

  19. Preparation of novel magnetic polyurethane foam nanocomposites by using core-shell nanoparticles

    OpenAIRE

    Nikje,Mir Mohammad Alavi; Moghaddam,Sahebeh Tamaddoni; Noruzian,Maede

    2016-01-01

    Abstract Iron oxide magnetic nanoparticles (NP's) converted to the core- shell structres by reacting with by n-(2-aminoethyl)-3-aminopropyl trimethoxysilane (AEAP) incorporated in polyurethane flexible (PUF) foam formulations. Fourier transform spectra, thermal gravimetric analysis, scanning electron images, thermo-mechanical analysis and magnetic properties of the prepared nanocomposites were studied. Obtained data shown that by the increasing of the amine modified magnetic iron oxide NP's u...

  20. DNA-length-dependent quenching of fluorescently labeled iron oxide nanoparticles with gold, graphene oxide and MoS2 nanostructures.

    Science.gov (United States)

    Balcioglu, Mustafa; Rana, Muhit; Robertson, Neil; Yigit, Mehmet V

    2014-08-13

    We controlled the fluorescence emission of a fluorescently labeled iron oxide nanoparticle using three different nanomaterials with ultraefficient quenching capabilities. The control over the fluorescence emission was investigated via spacing introduced by the surface-functionalized single-stranded DNA molecules. DNA molecules were conjugated on different templates, either on the surface of the fluorescently labeled iron oxide nanoparticles or gold and nanographene oxide. The efficiency of the quenching was determined and compared with various fluorescently labeled iron oxide nanoparticle and nanoquencher combinations using DNA molecules with three different lengths. We have found that the template for DNA conjugation plays significant role on quenching the fluorescence emission of the fluorescently labeled iron oxide nanoparticles. We have observed that the size of the DNA controls the quenching efficiency when conjugated only on the fluorescently labeled iron oxide nanoparticles by setting a spacer between the surfaces and resulting change in the hydrodynamic size. The quenching efficiency with 12mer, 23mer and 36mer oligonucleotides decreased to 56%, 54% and 53% with gold nanoparticles, 58%, 38% and 32% with nanographene oxide, 46%, 38% and 35% with MoS2, respectively. On the other hand, the presence, not the size, of the DNA molecules on the other surfaces quenched the fluorescence significantly with different degrees. To understand the effect of the mobility of the DNA molecules on the nanoparticle surface, DNA molecules were attached to the surface with two different approaches. Covalently immobilized oligonucleotides decreased the quenching efficiency of nanographene oxide and gold nanoparticles to ∼22% and ∼21%, respectively, whereas noncovalently adsorbed oligonucleotides decreased it to ∼25% and ∼55%, respectively. As a result, we have found that each nanoquencher has a powerful quenching capability against a fluorescent nanoparticle, which can be

  1. Environment friendly route of iron oxide nanoparticles from Zingiber officinale (ginger) root extract

    Science.gov (United States)

    Xin Hui, Yau; Yi Peng, Teoh; Wei Wen, Liu; Zhong Xian, Ooi; Peck Loo, Kiew

    2016-11-01

    Iron oxide nanoparticles were prepared from the reaction between the Zingiber officinale (ginger) root extracts and ferric chloride solution at 50°C for 2 h in mild stirring condition. The synthesized powder forms of nanoparticles were further characterized by using UV-Vis spectroscopy and X-ray Diffraction spectrometry. UV-Vis analysis shows the absorption peak of iron oxide nanoparticles is appeared at 370 nm. The calculation of crystallite size from the XRD showed that the average particle size of iron oxide nanoparticles was 68.43 nm. Therefore, this eco-friendly technique is low cost and large scale nanoparticles synthesis to fulfill the demand of various applications.

  2. Modern Cored Wire Injection 2PE-9 Method in the Production of Ductile Iron

    Directory of Open Access Journals (Sweden)

    E. Guzik

    2012-04-01

    Full Text Available The results of studies on the use of modern two cored wires injection method for production of nodular graphite cast iron with use of unique implementation of drum ladle as a treatment/ transport and casting ladle instead vertical treatment ladle was described. The injection of length of Ø 9mm wires, cored: in FeSi + Mg nodulariser mixture and inoculant master alloy is a treatment method which can be used to produce iron melted in coreless induction furnace. This paper describes the results of using this method for possibility production of ductile iron under specific industrial conditions. In this case was taken ductile iron with material designation: EN-GJS-450- 10 Grade according PN-EN 1563:2000. Microstructure of 28 trials was controlled on internally used sample which has been correlated with standard sample before. The paper presents typical metallic matrix and graphite characteristic. Additionally, mechanical properties were checked in one experiment. Because of further possibility treatment temperature reduction only the rough magnesium recovery and cost of this new method are given.

  3. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Science.gov (United States)

    Huang, Guan; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-01

    This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O2. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  4. Synthesizing Iron Oxide Nanostructures: The Polyethylenenemine (PEI) Role

    KAUST Repository

    Mozo, Sergio Lentijo; Zuddas, Efisio; Casu, Alberto; Falqui, Andrea

    2017-01-01

    Controlled synthesis of anisotropic iron oxide nanoparticles is a challenge in the field of nanomaterial research that requires an extreme attention to detail. In particular, following up a previous work showcasing the synthesis of magnetite

  5. Multiferroic iron oxide thin films at room temperature

    Czech Academy of Sciences Publication Activity Database

    Gich, M.; Fina, I.; Morelli, Alessio; Sánchez, F.; Alexe, M.; Gazquez, J.; Fontcuberta, J.; Roig, A.

    2014-01-01

    Roč. 26, č. 27 (2014), s. 4645-4652 ISSN 0935-9648 Institutional support: RVO:68378271 Keywords : multiferroic * iron oxide * thin film Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 17.493, year: 2014

  6. Stability and anisotropy of (FexNi1-x)2O under high pressure and implications in Earth's and super-Earths' core.

    Science.gov (United States)

    Huang, Shengxuan; Wu, Xiang; Qin, Shan

    2018-01-10

    Oxygen is thought to be an important light element in Earth's core but the amount of oxygen in Earth's core remains elusive. In addition, iron-rich iron oxides are of great interest and significance in the field of geoscience and condensed matter physics. Here, static calculations based on density functional theory demonstrate that I4/mmm-Fe 2 O is dynamically and mechanically stable and becomes energetically favorable with respect to the assemblage of hcp-Fe and [Formula: see text]-FeO above 270 GPa, which indicates that I4/mmm-Fe 2 O can be a strong candidate phase for stable iron-rich iron oxides at high pressure, perhaps even at high temperature. The elasticity and anisotropy of I4/mmm-(Fe x Ni 1-x ) 2 O at high pressures are also determined. Based on these results, we have derived the upper limit of oxygen to be 4.3 wt% in Earth's lower outer core. On the other hand, I4/mmm-(Fe x Ni 1-x ) 2 O with high AV S is likely to exist in a super-Earth's or an ocean planet's solid core causing the locally seismic heterogeneity. Our results not only give some clues to explore and synthesize novel iron-rich iron oxides but also shed light on the fundamental information of oxygen in the planetary core.

  7. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Ruzicka, Alex M.; Haack, Henning; Chabot, Nancy L.

    2017-01-01

    By far most of the melted and differentiated planetesimals that have been sampled as meteorites are metal-rich iron meteorites or stony iron meteorites. The parent asteroids of these meteorites accreted early and differentiated shortly after the solar system formed, producing some of the oldest...... and interpretations for iron and stony iron meteorites (Plate 13.1). Such meteorites provide important constraints on the nature of metal-silicate separation and mixing in planetesimals undergoing partial to complete differentiation. They include iron meteorites that formed by the solidification of cores...... (fractionally crystallized irons), irons in which partly molten metal and silicates of diverse types were mixed together (silicate-bearing irons), stony irons in which partly molten metal and olivine from cores and mantles were mixed together (pallasites), and stony irons in which partly molten metal...

  8. Reaction modelling of Iron Oxide Bromination in the UT-3 thermochemical cycle for Hydrogen production from water

    International Nuclear Information System (INIS)

    Amir-Rusli

    1996-01-01

    Analysis modelling of the iron oxide bromination had been carried out using experiment data from the iron oxide bromination in the UT-3 thermochemical cycle. Iron oxide in the form of pellets were made of the calcination of the mixture of iron oxide, silica, graphite and cellulose at 1473 K. Thermobalance reactor was used to study the kinetic reactions of the iron oxide bromination at a temperature of 473 K for 2 - 6 hours. The data collected from the experiments were used as input for the common models. However, none of these models could not explain the result of the experiments. A new model, a combination of two kinetic reactions : exposed particle and coated particle was created and worked successfully

  9. Methods of preparing deposits containing iron oxides for recycling

    Directory of Open Access Journals (Sweden)

    T. Lis

    2013-04-01

    Full Text Available The metallurgical industry is one of the largest sources of wastes. Some of them, however, owing to their content of metals such as zinc or iron, may become valuable secondary raw materials. In order to achieve that purpose, they require appropriate preparation. This article provides a discussion on the methods of preparation of scrap from steelworks, namely deposits containing iron oxides, enabling their recycling.

  10. Iron-Mediated Oxidation of Methoxyhydroquinone under Dark Conditions: Kinetic and Mechanistic Insights.

    Science.gov (United States)

    Yuan, Xiu; Davis, James A; Nico, Peter S

    2016-02-16

    Despite the biogeochemical significance of the interactions between natural organic matter (NOM) and iron species, considerable uncertainty still remains as to the exact processes contributing to the rates and extents of complexation and redox reactions between these important and complex environmental components. Investigations on the reactivity of low-molecular-weight quinones, which are believed to be key redox active compounds within NOM, toward iron species, could provide considerable insight into the kinetics and mechanisms of reactions involving NOM and iron. In this study, the oxidation of 2-methoxyhydroquinone (MH2Q) by ferric iron (Fe(III)) under dark conditions in the absence and presence of oxygen was investigated within a pH range of 4-6. Although Fe(III) was capable of stoichiometrically oxidizing MH2Q under anaerobic conditions, catalytic oxidation of MH2Q was observed in the presence of O2 due to further cycling between oxygen, semiquinone radicals, and iron species. A detailed kinetic model was developed to describe the predominant mechanisms, which indicated that both the undissociated and monodissociated anions of MH2Q were kinetically active species toward Fe(III) reduction, with the monodissociated anion being the key species accounting for the pH dependence of the oxidation. The generated radical intermediates, namely semiquinone and superoxide, are of great importance in reaction-chain propagation. The kinetic model may provide critical insight into the underlying mechanisms of the thermodynamic and kinetic characteristics of metal-organic interactions and assist in understanding and predicting the factors controlling iron and organic matter transformation and bioavailability in aquatic systems.

  11. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments

    DEFF Research Database (Denmark)

    Schippers, A.; Jørgensen, BB

    2002-01-01

    as substrates and NO3- as electron acceptor, in the presence of (FeS2)-Fe-55, to test for co-oxidation of FeS2, but an anaerobic microbial dissolution of (FeS2)-Fe-55, could not been detected. FeS2 and FeS were not oxidized by amorphous Fe(III) oxide in the presence of Fe-complexing organic compounds......Pyrite (FeS2) and iron monosulfide (FeS) play a central role in the sulfur and iron cycles of marine sediments, They may be buried in the sediment or oxidized by O-2 after transport by bioturbation to the sediment surface. FeS2 and FeS may also be oxidized within the anoxic sediment in which NO3...... marine sediments and incubated at different temperatures for > 1 yr. Bacteria could not be enriched with FeS2 as substrate or with FeS and amorphous Fe(III) oxide. With FeS and NO3-, 14 enrichments were obtained. One of these enrichments was further cultivated anaerobically with Fe2+ and S-0...

  12. Discrepancy between different estimates of the hydrodynamic diameter of polymer-coated iron oxide nanoparticles in solution

    International Nuclear Information System (INIS)

    Regmi, R.; Gumber, V.; Subba Rao, V.; Kohli, I.; Black, C.; Sudakar, C.; Vaishnava, P.; Naik, V.; Naik, R.; Mukhopadhyay, A.; Lawes, G.

    2011-01-01

    We have synthesized iron oxide nanoparticles coated with a monolayer of dextran, with molecular weights of the polymer between 5 and 670 kDa. Transmission electron microscopy images confirm that the hard core has a crystalline diameter of approximately 12 nm. The hydrodynamic diameters of these coated nanoparticles in solution measured using dynamical light scattering and estimated from magnetic susceptibility studies vary from near 90 nm for the lightest polymer to 140 nm for the heaviest polymer. Conversely, fluorescence correlation spectroscopy measurements yield a diameter of approximately 55 nm for the 15–20 kDa dextran coated nanoparticles, which is consistent with the expected value estimated from the sum of the hard-core diameter and monolayer dextran coating. We discuss the implications of this discrepancy for applications involving polymer-coated magnetic nanoparticles.

  13. N-butylamine functionalized graphene oxide for detection of iron(III) by photoluminescence quenching.

    Science.gov (United States)

    Gholami, Javad; Manteghian, Mehrdad; Badiei, Alireza; Ueda, Hiroshi; Javanbakht, Mehran

    2016-02-01

    An N-butylamine functionalized graphene oxide nanolayer was synthesized and characterized by ultraviolet (UV)-visible spectrometry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Detection of iron(III) based on photoluminescence spectroscopy was investigated. The N-butylamine functionalized graphene oxide was shown to specifically interact with iron (III), compared with other cationic trace elements including potassium (I), sodium (I), calcium (II), chromium (III), zinc (II), cobalt (II), copper (II), magnesium (II), manganese (II), and molybdenum (VI). The quenching effect of iron (III) on the luminescence emission of N-butylamine functionalized graphene oxide layer was used to detect iron (III). The limit of detection (2.8 × 10(-6)  M) and limit of quantitation (2.9 × 10(-5)  M) were obtained under optimal conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Towards a Mechanistic Understanding of Anaerobic Nitrate Dependent Iron Oxidation: Balancing Electron Uptake and Detoxification

    Directory of Open Access Journals (Sweden)

    Hans Karl Carlson

    2012-02-01

    Full Text Available The anaerobic oxidation of Fe(II by subsurface microorganisms is an important part of biogeochemical cycling in the environment, but the biochemical mechanisms used to couple iron oxidation to nitrate respiration are not well understood. Based on our own work and the evidence available in the literature, we propose a mechanistic model for anaerobic nitrate dependent iron oxidation. We suggest that anaerobic iron oxidizing microorganisms likely exist along a continuum including: 1 bacteria that inadvertently oxidize Fe(II by abiotic or biotic reactions with enzymes or chemical intermediates in their metabolic pathways (e.g. denitrification and suffer from toxicity or energetic penalty, 2 Fe(II tolerant bacteria that gain little or no growth benefit from iron oxidation but can manage the toxic reactions, and 3 bacteria that efficiently accept electrons from Fe(II to gain a growth advantage while preventing or mitigating the toxic reactions. Predictions of the proposed model are highlighted and experimental approaches are discussed.

  15. Promising iron oxide-based magnetic nanoparticles in biomedical engineering.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Vo, Toi Van; Lee, Beom-Jin

    2012-12-01

    For the past few decades biomedical engineering has imprinted its significant impact on the map of science through its wide applications on many other fields. An important example obviously proving this fact is the versatile application of magnetic nanoparticles in theranostics. Due to preferable properties such as biocompatibility, non-toxicity compared to other metal derivations, iron oxide-based magnetic nanoparticles was chosen to be addressed in this review. Aim of this review is to give the readers a whole working window of these magnetic nanoparticles in the current context of science. Thus, preparation of magnetic iron oxide nanoparticles with the so-far techniques, methods of characterizing the nanoparticles as well as their most recent biomedical applications will be stated.

  16. Mechanism of iron catalyzed oxidation of SO/sub 2/ in oxygenated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Freiberg, J

    1975-01-01

    Previous experimental work concerning the iron catalyzed oxidation of SO/sub 2/ in oxygenated acid solutions failed to provide a consistent reaction mechanism and rate expression. As iron is one of the main constituents of urban atmospheric aerosols, the rate studies of heterogeneous sulphate formation in polluted city air were hampered. The present study develops a new theory for the iron catalyzed oxidation of SO/sub 2/. The resulting new rate expression is general enough to account for the results of previous experimental investigations that were performed in different ranges of SO/sub 2/ and catalyst concentrations.

  17. CD/MCD/VTVH-MCD Studies of Escherichia coli Bacterioferritin Support a Binuclear Iron Cofactor Site.

    Science.gov (United States)

    Kwak, Yeonju; Schwartz, Jennifer K; Huang, Victor W; Boice, Emily; Kurtz, Donald M; Solomon, Edward I

    2015-12-01

    Ferritins and bacterioferritins (Bfrs) utilize a binuclear non-heme iron binding site to catalyze oxidation of Fe(II), leading to formation of an iron mineral core within a protein shell. Unlike ferritins, in which the diiron site binds Fe(II) as a substrate, which then autoxidizes and migrates to the mineral core, the diiron site in Bfr has a 2-His/4-carboxylate ligand set that is commonly found in diiron cofactor enzymes. Bfrs could, therefore, utilize the diiron site as a cofactor rather than for substrate iron binding. In this study, we applied circular dichroism (CD), magnetic CD (MCD), and variable-temperature, variable-field MCD (VTVH-MCD) spectroscopies to define the geometric and electronic structures of the biferrous active site in Escherichia coli Bfr. For these studies, we used an engineered M52L variant, which is known to eliminate binding of a heme cofactor but to have very minor effects on either iron oxidation or mineral core formation. We also examined an H46A/D50A/M52L Bfr variant, which additionally disrupts a previously observed mononuclear non-heme iron binding site inside the protein shell. The spectral analyses define a binuclear and an additional mononuclear ferrous site. The biferrous site shows two different five-coordinate centers. After O2 oxidation and re-reduction, only the mononuclear ferrous signal is eliminated. The retention of the biferrous but not the mononuclear ferrous site upon O2 cycling supports a mechanism in which the binuclear site acts as a cofactor for the O2 reaction, while the mononuclear site binds the substrate Fe(II) that, after its oxidation to Fe(III), migrates to the mineral core.

  18. The Earth's core: its composition, formation and bearing upon the origin of the Earth

    International Nuclear Information System (INIS)

    Ringwood, A.E.

    1984-01-01

    The density of the outer core is about 3% smaller than pure iron, which implies that the core contains a substantial amount of one or more low atomic mass elements. New experimental data on the solubility of FeO in molten iron are compatible with oxygen being the other element. At atmospheric pressure FeO is extensively soluble in iron at 2500 0 C, completely miscible above 2800 0 C. Also the solubility of FeO in molten iron is considerably increased at higher pressures. The density measurements can be explained if the core contains about 35% FeO; the new data show this to be possible. A model for the formation of the core based on a high FeO content in the Bulk Earth can be explained if the Earth accreted from a mixture of two components: A, a highly reduced, metal-rich devolatilized assemblage and B, a highly oxidized, volatile-rich assemblage similar to Cl chondrites. The formation of these components in the solar nebula is discussed. The large amount of FeO now inferred to be present in the Earth was mainly produced during accretion by oxidation of metallic iron from component A by water from component B. (U.K.)

  19. Tuning the oxidative power of free iron-sulfur clusters.

    Science.gov (United States)

    Lang, Sandra M; Zhou, Shaodong; Schwarz, Helmut

    2017-03-15

    The gas-phase reactions between a series of di-iron sulfur clusters Fe 2 S x + (x = 1-3) and the small alkenes C 2 H 4 , C 3 H 6 , and C 4 H 8 have been investigated by means of Fourier-transform ion-cyclotron resonance mass spectrometry. For all studied alkenes, the reaction efficiency is found to increase in the order Fe 2 S + desulfurization of the cluster and formation of H 2 S. This indicates an increased propensity to induce oxidation reactions, i.e. oxidative power, of Fe 2 S 3 + that is attributed to an increased formal oxidation state of the iron atoms. Furthermore, the ability of Fe 2 S 3 + to activate and dissociate the C-H bonds of the alkenes is observed to increase with increasing size of the alkene and thus correlates with the alkene ionization energy.

  20. Electron small polarons and their mobility in iron (oxyhydr)oxide nanoparticles

    DEFF Research Database (Denmark)

    Katz, Jordan E; Zhang, Xiaoyi; Attenkofer, Klaus

    2012-01-01

    Electron mobility within iron (oxyhydr)oxides enables charge transfer between widely separated surface sites. There is increasing evidence that this internal conduction influences the rates of interfacial reactions and the outcomes of redox-driven phase transformations of environmental interest....... To determine the links between crystal structure and charge-transport efficiency, we used pump-probe spectroscopy to study the dynamics of electrons introduced into iron(III) (oxyhydr)oxide nanoparticles via ultrafast interfacial electron transfer. Using time-resolved x-ray spectroscopy and ab initio...

  1. Effect of surfactant for magnetic properties of iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Haracz, S. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Hilgendorff, M. [Freie Universität Berlin, Fachbereich Physik, Arnimalle 14, 14195 Berlin (Germany); Rybka, J.D. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Giersig, M. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Freie Universität Berlin, Fachbereich Physik, Arnimalle 14, 14195 Berlin (Germany)

    2015-12-01

    Highlights: • Dynamic behavior of magnetic nanoparticles. • Synthesis of iron oxide nanoparticles. • Effect of surfactant for magnetic properties. - Abstract: For different medical applications nanoparticles (NPs) with well-defined magnetic properties have to be used. Coating ligand can change the magnetic moment on the surface of nanostructures and therefore the magnetic behavior of the system. Here we investigated magnetic NPs in a size of 13 nm conjugated with four different kinds of surfactants. The surface anisotropy and the magnetic moment of the system were changed due to the presence of the surfactant on the surface of iron oxide NPs.

  2. Beta-Thalassemia Major and Female Fertility: The Role of Iron and Iron-Induced Oxidative Stress

    Science.gov (United States)

    Roussou, Paraskevi; Tsagarakis, Nikolaos J.; Diamanti-Kandarakis, Evanthia

    2013-01-01

    Endocrine complications due to haemosiderosis are present in a significant number of patients with beta-thalassemia major (BTM) worldwide and often become barriers in their desire for parenthood. Thus, although spontaneous fertility can occur, the majority of females with BTM is infertile due to hypogonadotropic hypogonadism (HH) and need assisted reproductive techniques. Infertility in these women seems to be attributed to iron deposition and iron-induced oxidative stress (OS) in various endocrine organs, such as hypothalamus, pituitary, and female reproductive system, but also through the iron effect on other organs, such as liver and pancreas, contributing to the impaired metabolism of hormones and serum antioxidants. Nevertheless, the gonadal function of these patients is usually intact and fertility is usually retrievable. Meanwhile, a significant prooxidants/antioxidants imbalance with subsequent increased (OS) exists in patients with BTM, which is mainly caused by tissue injury due to overproduction of free radicals by secondary iron overload, but also due to alteration in serum trace elements and antioxidant enzymes. Not only using the appropriate antioxidants, essential trace elements, and minerals, but also regulating the advanced glycation end products, could probably reduce the extent of oxidative damage and related complications and retrieve BTM women's infertility. PMID:24396593

  3. Moessbauer Study of Electrodeposited Fe/Fe-Oxide Multilayers

    International Nuclear Information System (INIS)

    Kuzmann, E.; Homonnay, Z.; Klencsar, Z.; Vertes, A.; Lakatos-Varsanyi, M.; Miko, A.; Varga, L.K.; Kalman, E.; Nagy, F.

    2005-01-01

    Iron has been deposited electrochemically by short current pulses in Na-saccharin containing FeII-chloride and sulphate solution electrolytes. Combined electrochemical techniques with initial pulse plating of iron nanolayer and its subsequent anodic oxidation under potential control have been used for production of Fe/Fe-oxide multilayers. 57Fe CEM spectra of pulse plated iron revealed the presence of a minor doublet attributed mainly to γ-FeOOH in addition to the dominant sextet of α-iron. In the case of anodically oxidized pulse plated iron and of samples after repeated deposition of anodically oxidized pulse plated iron an additional minor doublet, assigned to ferrous chloride, also appears in the Moessbauer spectra. A significant change in the magnetic anisotropy of α-iron was observed with the anodic oxidation. The thickness of the layers were estimated from the CEM spectrum data by a modified computer program of the Liljequist method. The coercive field and the power loss versus frequency data showed that the pulse plated iron cores are good inductive elements up to several kHz frequencies

  4. Effect of oxidative stress induced by intracranial iron overload on central pain after spinal cord injury.

    Science.gov (United States)

    Meng, Fan Xing; Hou, Jing Ming; Sun, Tian Sheng

    2017-02-08

    Central pain (CP) is a common clinical problem in patients with spinal cord injury (SCI). Recent studies found the pathogenesis of CP was related to the remodeling of the brain. We investigate the roles of iron overload and subsequent oxidative stress in the remodeling of the brain after SCI. We established a rat model of central pain after SCI. Rats were divided randomly into four groups: SCI, sham operation, SCI plus deferoxamine (DFX) intervention, and SCI plus nitric oxide synthase (NOS) inhibitor treatment. Pain behavior was observed and thermal pain threshold was measured regularly, and brain levels of iron, transferrin receptor 1 (TfR1), ferritin (Fn), and lactoferrin (Lf), were detected in the different groups 12 weeks after establishment of the model. Rats demonstrated self-biting behavior after SCI. Furthermore, the latent period of thermal pain was reduced and iron levels in the hind limb sensory area, hippocampus, and thalamus increased after SCI. Iron-regulatory protein (IRP) 1 levels increased in the hind limb sensory area, while Fn levels decreased. TfR1 mRNA levels were also increased and oxidative stress was activated. Oxidative stress could be inhibited by ferric iron chelators and NOS inhibitors. SCI may cause intracranial iron overload through the NOS-iron-responsive element/IRP pathway, resulting in central pain mediated by the oxidative stress response. Iron chelators and oxidative stress inhibitors can effectively relieve SCI-associated central pain.

  5. Interactions of benzoic acid and phosphates with iron oxide colloids using chemical force titration.

    Science.gov (United States)

    Liang, Jana; Horton, J Hugh

    2005-11-08

    Colloidal iron oxides are an important component in soil systems and in water treatment processes. Humic-based organic compounds, containing both phenol and benzoate functional groups, are often present in these systems and compete strongly with phosphate species for binding sites on the iron oxide surfaces. Here, we examine the interaction of benzoate and phenolic groups with various iron oxide colloids using atomic force microscopy (AFM) chemical force titration measurements. Self-assembled monolayers (SAMs) of 4-(12-mercaptododecyloxy)benzoic acid and 4-(12-mercaptododecyloxy)phenol were used to prepare chemically modified Au-coated AFM tips, and these were used to probe the surface chemistry of a series of iron oxide colloids. The SAMs formed were also characterized using scanning tunneling microscopy, reflection-absorption infrared spectroscopy, and X-ray photoelectron spectroscopy. The surface pK(a) of 4-(12- mercaptododecyloxy)benzoic acid has been determined to be 4.0 +/- 0.5, and the interaction between the tip and the sample coated with a SAM of this species is dominated by hydrogen bonding. The chemical force titraton profile for an AFM probe coated with 4-(12- mercaptododecyloxy)benzoic acid and a bare iron oxide colloid demonstrates that the benzoic acid function group interacts with all three types of iron oxide sites present on the colloid surface over a wide pH range. Similar experiments were carried out on colloids precipitated in the presence of phosphoric, gallic, and tannic acids. The results are discussed in the context of the competitive binding interactions of solution species present in soils or in water treatment processes.

  6. Preparation and biodistribution of {sup 59}Fe-radiolabelled iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pospisilova, Martina, E-mail: martinapospisilova@gmail.com; Zapotocky, Vojtech; Nesporova, Kristina [Contipro a.s (Czech Republic); Laznicek, Milan; Laznickova, Alice [Charles University, Faculty of Pharmacy in Hradec Králové (Czech Republic); Zidek, Ondrej; Cepa, Martin; Vagnerova, Hana; Velebny, Vladimir [Contipro a.s (Czech Republic)

    2017-02-15

    We report on the {sup 59}Fe radiolabelling of iron oxide nanoparticle cores through post-synthetic isotope exchange ({sup 59}Fe-IONP{sub ex}) and precursor labelling ({sup 59}Fe-IONP{sub pre}). Scanning electron microscopy and dynamic light scattering measurements showed no impact of radiolabelling on nanoparticle size or morphology. While incorporation efficiencies of these methods are comparable—83 and 90% for precursor labelling and post-synthetic isotope exchange, respectively—{sup 59}Fe-IONP{sub pre} exhibited much higher radiochemical stability in citrated human plasma. Quantitative ex vivo biodistribution study of {sup 59}Fe-IONP{sub pre} coated with triethylene glycol was performed in Wistar rats. Following the intravenous administration, high {sup 59}Fe concentration was observed in the lung and the organs of the reticuloendothelial system such as the liver, the spleen and the femur.

  7. Kinetics and mechanism of oxidation of glycine by iron(III)

    Indian Academy of Sciences (India)

    Kinetics and mechanism of oxidation of glycine by iron(III)-1,10-phenanthroline complex has been studied in perchloric acid medium. The reaction is first order with respect to iron(III) and glycine. An increase in (phenanthroline) increases the rate, while increase in [H+] decreases the rate. Hence it can be inferred that the ...

  8. Functionality of the iron oxides

    International Nuclear Information System (INIS)

    Castano, J.G.; Arroyave, C.

    1998-01-01

    Some iron oxides have a great scientific and technological possibilities, not only for their importance in the present, but also for their great potential in the development of the future technologies. They have adequate properties to carry out several functions. They are plentiful in the nature and their synthetic obtention is not complex. This paper shows five of them (hematite, magnetite, maghemite, goethite and akaganeite) and their utilization in fields like chemical industry, biotechnology medicine, new materials and electromagnetism. (Author) 77 refs

  9. Pentachlorophenol dechlorination with zero valent iron: a Raman and GCMS study of the complex role of surficial iron oxides.

    Science.gov (United States)

    Gunawardana, Buddhika; Swedlund, Peter J; Singhal, Naresh; Nieuwoudt, Michel K

    2018-04-20

    The dechlorination of chlorinated organic pollutants by zero valent iron (ZVI) is an important water treatment process with a complex dependence on many variables. This complexity means that there are reported inconsistencies in terms of dechlorination with ZVI and the effect of ZVI acid treatment, which are significant and are as yet unexplained. This study aims to decipher some of this complexity by combining Raman spectroscopy with gas chromatography-mass spectrometry (GC-MS) to investigate the influence of the mineralogy of the iron oxide phases on the surface of ZVI on the reductive dechlorination of pentachlorophenol (PCP). Two electrolytic iron samples (ZVI-T and ZVI-H) were found to have quite different PCP dechlorination reactivity in batch reactors under anoxic conditions. Raman analysis of the "as-received" ZVI-T indicated the iron was mainly covered with the ferrous oxide (FeO) wustite, which is non-conducting and led to a low rate of PCP dechlorination. In contrast, the dominant oxide on the "as-received" ZVI-H was magnetite which is conducting and, compared to ZVI-T, the ZVI-H rate of PCP dechlorination was four times faster. Treating the ZVI-H sample with 1 N H 2 SO 4 made small change to the composition of the oxide layers and also minute change to the rate of PCP dechlorination. However, treating the ZVI-T sample with H 2 SO 4 led to the loss of wustite so that magnetite became the dominant oxide and the rate of PCP dechlorination increased to that of the ZVI-H material. In conclusion, this study clearly shows that iron oxide mineralogy can be a contributing factor to apparent inconsistencies in the literature related to ZVI performance towards dechlorination and the effect of acid treatment on ZVI reactivity.

  10. Oxidative degradation stability and hydrogen sulfide removal performance of dual-ligand iron chelate of Fe-EDTA/CA.

    Science.gov (United States)

    Miao, Xinmei; Ma, Yiwen; Chen, Zezhi; Gong, Huijuan

    2017-09-05

    Catalytic oxidation desulfurization using chelated iron catalyst is an effective method to remove H 2 S from various gas streams including biogas. However, the ligand of ethylenediaminetetraacetic acid (EDTA), which is usually adopted to prepare chelated iron catalyst, is liable to be oxidative degraded, and leads to the loss of desulfurization performance. In order to improve the degradation stability of the iron chelate, a series of iron chelates composed of two ligands including citric acid (CA) and EDTA were prepared and the oxidative degradation stability as well as desulfurization performance of these chelated iron catalysts were studied. Results show that the iron chelate of Fe-CA is more stable than Fe-EDTA, while for the desulfurization performance, the situation is converse. For the dual-ligand iron chelates of Fe-EDTA/CA, with the increase of mol ratio of CA to EDTA in the iron chelate solution, the oxidative degradation stability increased while the desulfurization performance decreased. The results of this work showed that Fe-EDTA/CA with a mol ratio of CA:EDTA = 1:1 presents a relative high oxidative degradation stability and an acceptable desulfurization performance with over 90% of H 2 S removal efficiency.

  11. Solid oxide fuel cell having a monolithic core

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Young, J.E.

    1984-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick

  12. Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties.

    Science.gov (United States)

    Lartigue, Lenaic; Innocenti, Claudia; Kalaivani, Thangavel; Awwad, Azzam; Sanchez Duque, Maria del Mar; Guari, Yannick; Larionova, Joulia; Guérin, Christian; Montero, Jean-Louis Georges; Barragan-Montero, Véronique; Arosio, Paolo; Lascialfari, Alessandro; Gatteschi, Dante; Sangregorio, Claudio

    2011-07-13

    Synthesis of functionalized magnetic nanoparticles (NPs) for biomedical applications represents a current challenge. In this paper we present the synthesis and characterization of water-dispersible sugar-coated iron oxide NPs specifically designed as magnetic fluid hyperthermia heat mediators and negative contrast agents for magnetic resonance imaging. In particular, the influence of the inorganic core size was investigated. To this end, iron oxide NPs with average size in the range of 4-35 nm were prepared by thermal decomposition of molecular precursors and then coated with organic ligands bearing a phosphonate group on one side and rhamnose, mannose, or ribose moieties on the other side. In this way a strong anchorage of the organic ligand on the inorganic surface was simply realized by ligand exchange, due to covalent bonding between the Fe(3+) atom and the phosphonate group. These synthesized nanoobjects can be fully dispersed in water forming colloids that are stable over very long periods. Mannose, ribose, and rhamnose were chosen to test the versatility of the method and also because these carbohydrates, in particular rhamnose, which is a substrate of skin lectin, confer targeting properties to the nanosystems. The magnetic, hyperthermal, and relaxometric properties of all the synthesized samples were investigated. Iron oxide NPs of ca. 16-18 nm were found to represent an efficient bifunctional targeting system for theranostic applications, as they have very good transverse relaxivity (three times larger than the best currently available commercial products) and large heat release upon application of radio frequency (RF) electromagnetic radiation with amplitude and frequency close to the human tolerance limit. The results have been rationalized on the basis of the magnetic properties of the investigated samples.

  13. Films of double oxides of zirconium and iron

    International Nuclear Information System (INIS)

    Kozik, V.V.; Borilo, L.P.; Shul'pekov, A.M.

    2000-01-01

    Films of double oxides of zirconium and iron were prepared by the method of precipitation from film-forming alcohol solutions of zirconium oxychloride and iron chloride with subsequent thermal treatment. Using the methods of X-ray phase and differential thermal analyses, conductometry and optical spectroscopy, basic chemical processes occurring in the film-forming solutions and during thermal treatment are studied alongside with phase composition and optical characteristics of the films prepared. The composition-property diagrams of the given system in a thin-film state are plotted [ru

  14. Role of iron oxide impurities in electrocatalysis by multiwall carbon

    Indian Academy of Sciences (India)

    The role of iron oxide impurities in the electrocatalytic properties of multiwall carbon nanotubes (MWCNTs) prepared by catalytic chemical vapour decomposition method (CCVD) is studied in detail. A novel magnetically modified electrodes have been developed by which MWCNTs were immobilized on indium-tin oxide ...

  15. NO Oxidation Kinetics on Iron Zeolites: Influence of Framework Type and Iron Speciation

    Czech Academy of Sciences Publication Activity Database

    Brosius, R.; Habermacher, D.; Martens, J. A.; Vradman, L.; Herskowitz, M.; Čapek, Libor; Sobalík, Zdeněk; Dědeček, Jiří; Wichterlová, Blanka; Tokarová, V.; Gonsiorová, O.

    30-31, 1/4 (2004), s. 333-339 ISSN 1022-5528 Grant - others:AMMONORE G5RD-CT(XE) 2001-00595 Institutional research plan: CEZ:AV0Z4040901 Keywords : NO oxidation * zeolites * iron Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.493, year: 2004

  16. Large-Scale Synthesis of Single-Crystalline Iron Oxide Magnetic Nanorings

    DEFF Research Database (Denmark)

    Jia, Chun-Jiang; Sun, Ling-Dong; Luo, Feng

    2008-01-01

    We present an innovative approach to the production of single-crystal iron oxide nanorings employing a solution-based route. Single-crystal hematite (alpha-Fe2O3) nanorings were synthesized using a double anion-assisted hydrothermal method (involving phosphate and sulfate ions), which can...... an intriguing three-dimensional magnetic configuration. This work provides an easily scaled-up method for preparing tailor-made iron oxide nanorings that could meet the demands of a variety of applications ranging from medicine to magnetoelectronics....... able to control the size, morphology, and surface architecture to produce a variety of three-dimensional hollow nanostructures. These can then be converted to magnetite (Fe3O4) and maghemite (gamma-Fe2O3) by a reduction or reduction-oxidation process while preserving the same morphology. The structures...

  17. Selectivity and Activity of Iron Molybdate Catalysts in Oxidation of Methanol

    OpenAIRE

    Khalid Khazzal Hummadi; Karim H. Hassan; Phillip C.H. Mitchell

    2009-01-01

    The selectivity and activity of iron molybdate catalysts prepared by different methods are compared with those of a commercial catalyst in the oxidation of methanol to formaldehyde in a continuous tubular bed reactor at 200-350 oC (473-623 oK), 10 atm (1013 kPa), with a methanol-oxygen mixture fixed at 5.5% by volume methanol: air ratio. The iron(III) molybdate catalyst prepared by co-precipitation and filtration had a selectivity towards formaldehyde in methanol oxidation comparable with a c...

  18. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  19. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    International Nuclear Information System (INIS)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  20. Magnetic characteristics of ultrafine Fe particles reduced from uniform iron oxide particles

    Science.gov (United States)

    Bridger, K.; Watts, J.; Tadros, M.; Xiao, Gang; Liou, S. H.; Chien, C. L.

    1987-04-01

    Uniform, cubic 0.05-μm iron oxide particles were formed by forced hydrolysis of ferric perchlorate. These particles were reduced to α-Fe by heating in hydrogen at temperatures between 300 and 500 °C. The effect of reduction temperature and various prereduction treatments on the microstructure of the iron particles will be discussed. Complete reduction to α-Fe was established by 57Fe Mössbauer spectroscopy and x-ray diffraction. Magnetic measurements on epoxy and polyurethane films containing these particles with various mass fractions gave coercivities as high as 1000 Oe. The relationship between the magnetic measurements and the microstructure will be discussed. Na2SiO3 is found to be the best coating material for the process of reducing iron oxide particles to iron.

  1. Nanocomposites of cellulose/iron oxide: influence of synthesis conditions on their morphological behavior and thermal stability

    International Nuclear Information System (INIS)

    Ma Mingguo; Zhu Jiefang; Li Shuming; Jia Ning; Sun Runcang

    2012-01-01

    Nanocomposites of cellulose/iron oxide have been successfully prepared by hydrothermal method using cellulose solution and Fe(NO 3 ) 3 ·9H 2 O at 180 °C. The cellulose solution was obtained by the dissolution of microcrystalline cellulose in NaOH/urea aqueous solution, which is a good system to dissolve cellulose and favors the synthesis of iron oxide without needing any template or other reagents. The phases, microstructure, and morphologies of nanocomposites were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectra (EDS). The effects of the heating time, heating temperature, cellulose concentration, and ferric nitrate concentration on the morphological behavior of products were investigated. The experimental results indicated that the cellulose concentration played an important role in both the phase and shape of iron oxide in nanocomposites. Moreover, the nanocomposites synthesized by using different cellulose concentrations displayed different thermal stabilities. - Highlights: ► Nanocomposites of cellulose/iron oxide have been prepared by hydrothermal method. ► The cellulose concentration played an important role in the phase of iron oxide. ► The cellulose concentration played an important role in the shape of iron oxide. ► The samples displayed different thermal stabilities.

  2. Biodistribution and Clearance of Stable Superparamagnetic Maghemite Iron Oxide Nanoparticles in Mice Following Intraperitoneal Administration

    Directory of Open Access Journals (Sweden)

    Binh T. T. Pham

    2018-01-01

    Full Text Available Nanomedicine is an emerging field with great potential in disease theranostics. We generated sterically stabilized superparamagnetic iron oxide nanoparticles (s-SPIONs with average core diameters of 10 and 25 nm and determined the in vivo biodistribution and clearance profiles. Healthy nude mice underwent an intraperitoneal injection of these s-SPIONs at a dose of 90 mg Fe/kg body weight. Tissue iron biodistribution was monitored by atomic absorption spectroscopy and Prussian blue staining. Histopathological examination was performed to assess tissue toxicity. The 10 nm s-SPIONs resulted in higher tissue-iron levels, whereas the 25 nm s-SPIONs peaked earlier and cleared faster. Increased iron levels were detected in all organs and body fluids tested except for the brain, with notable increases in the liver, spleen, and the omentum. The tissue-iron returned to control or near control levels within 7 days post-injection, except in the omentum, which had the largest and most variable accumulation of s-SPIONs. No obvious tissue changes were noted although an influx of macrophages was observed in several tissues suggesting their involvement in s-SPION sequestration and clearance. These results demonstrate that the s-SPIONs do not degrade or aggregate in vivo and intraperitoneal administration is well tolerated, with a broad and transient biodistribution. In an ovarian tumor model, s-SPIONs were shown to accumulate in the tumors, highlighting their potential use as a chemotherapy delivery agent.

  3. Iron overload by Superparamagnetic Iron Oxide Nanoparticles is a High Risk Factor in Cirrhosis by a Systems Toxicology Assessment

    Science.gov (United States)

    Wei, Yushuang; Zhao, Mengzhu; Yang, Fang; Mao, Yang; Xie, Hang; Zhou, Qibing

    2016-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent have been widely used in magnetic resonance imaging for tumor diagnosis and theranostics. However, there has been safety concern of SPIONs with cirrhosis related to excess iron-induced oxidative stress. In this study, the impact of iron overload by SPIONs was assessed on a mouse cirrhosis model. A single dose of SPION injection at 0.5 or 5 mg Fe/kg in the cirrhosis group induced a septic shock response at 24 h with elevated serum levels of liver and kidney function markers and extended impacts over 14 days including high levels of serum cholesterols and persistent low serum iron level. In contrast, full restoration of liver functions was found in the normal group with the same dosages over time. Analysis with PCR array of the toxicity pathways revealed the high dose of SPIONs induced significant expression changes of a distinct subset of genes in the cirrhosis liver. All these results suggested that excess iron of the high dose of SPIONs might be a risk factor for cirrhosis because of the marked impacts of elevated lipid metabolism, disruption of iron homeostasis and possibly, aggravated loss of liver functions.

  4. Scalable fractionation of iron oxide nanoparticles using a CO{sub 2} gas-expanded liquid system

    Energy Technology Data Exchange (ETDEWEB)

    Vengsarkar, Pranav S.; Xu, Rui; Roberts, Christopher B., E-mail: croberts@eng.auburn.edu [Auburn University, Department of Chemical Engineering (United States)

    2015-10-15

    Iron oxide nanoparticles exhibit highly size-dependent physicochemical properties that are important in applications such as catalysis and environmental remediation. In order for these size-dependent properties to be effectively harnessed for industrial applications scalable and cost-effective techniques for size-controlled synthesis or size separation must be developed. The synthesis of monodisperse iron oxide nanoparticles can be a prohibitively expensive process on a large scale. An alternative involves the use of inexpensive synthesis procedures followed by a size-selective processing technique. While there are many techniques available to fractionate nanoparticles, many of the techniques are unable to efficiently fractionate iron oxide nanoparticles in a scalable and inexpensive manner. A scalable apparatus capable of fractionating large quantities of iron oxide nanoparticles into distinct fractions of different sizes and size distributions has been developed. Polydisperse iron oxide nanoparticles (2–20 nm) coated with oleic acid used in this study were synthesized using a simple and inexpensive version of the popular coprecipitation technique. This apparatus uses hexane as a CO{sub 2} gas-expanded liquid to controllably precipitate nanoparticles inside a 1L high-pressure reactor. This paper demonstrates the operation of this new apparatus and for the first time shows the successful fractionation results on a system of metal oxide nanoparticles, with initial nanoparticle concentrations in the gram-scale. The analysis of the obtained fractions was performed using transmission electron microscopy and dynamic light scattering. The use of this simple apparatus provides a pathway to separate large quantities of iron oxide nanoparticles based upon their size for use in various industrial applications.

  5. Surface oxidation phenomena of boride coatings grown on iron

    International Nuclear Information System (INIS)

    Carbucicchio, M.; Palombarini, G.; Sambogna, G.

    1992-01-01

    Very hard boride coatings are grown on various metals using thermochemical as well as chemical vapour deposition techniques. In this way many surface properties, and in particular the wear resistance, can be considerably improved. Usually, also the corrosion behaviour of the treated components is important. In particular, oxidizing atmospheres are involved in many applications where, therefore, coating-environment interactions can play a relevant role. In a previous work, the early stages of the oxidation of iron borides were studied by treating single phase compacted powders in flowing oxygen at low temperatures (300-450deg C). In the present paper, the attention is addressed to the oxidation of both single phase and polyphase boride coatings thermochemically grown on iron. The single phase boride coatings were constituted by Fe 2 B, while the polyphase coatings were constituted by an inner Fe 2 B layer and an outer FeB-base layer. All the boride layers displayed strong (002) preferred crystallographic orientations. (orig.)

  6. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism

    Science.gov (United States)

    Price, Alex; Pearson, Victoria K.; Schwenzer, Susanne P.; Miot, Jennyfer; Olsson-Francis, Karen

    2018-01-01

    This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1–3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate

  7. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism

    Directory of Open Access Journals (Sweden)

    Alex Price

    2018-03-01

    Full Text Available This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1–3.7 Ga match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with

  8. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism.

    Science.gov (United States)

    Price, Alex; Pearson, Victoria K; Schwenzer, Susanne P; Miot, Jennyfer; Olsson-Francis, Karen

    2018-01-01

    This work considers the hypothetical viability of microbial nitrate-dependent Fe 2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe 2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe 2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1-3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe 2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate

  9. Iron oxide deposits associated with the ectosymbiotic bacteria in the hydrothermal vent shrimp Rimicaris exoculata

    Directory of Open Access Journals (Sweden)

    P. Compère

    2008-09-01

    Full Text Available The Rimicaris exoculata shrimp is considered as a primary consumer that dominates the fauna of most Mid-Atlantic Ridge (MAR hydrothermal ecosystems. These shrimps harbour in their gill chambers an important ectosymbiotic community of chemoautotrophic bacteria associated with iron oxide deposits. The structure and elemental composition of the mineral concretions associated with these bacteria have been investigated by using LM, ESEM, TEM STEM and EDX microanalyses. The nature of the iron oxides in shrimps obtained from the Rainbow vent field has also been determined by Mössbauer spectroscopy. This multidisciplinary approach has revealed that the three layers of mineral crust in the Rimicaris exoculata shrimps consist of large concretions formed by aggregated nanoparticles of two-line ferrihydrite and include other minor elements as Si, Ca, Mg, S and P, probably present as silicates cations, sulphates or phosphates respectively that may contribute to stabilise the ferrihydrite form of iron oxides. TEM-observations on the bacteria have revealed their close interactions with these minerals. Abiotic and biotic precipitation could occur within the gill chamber of Rimicaris exoculata, suggesting the biologically-mediated formation of the iron oxide deposits. The difference of the bacterial density in the three-mineral crust layers could be correlated to the importance of the iron oxide concretions and suggest that the first mineral particles precipitates on the lower layer which could be considered as the most likely location of iron-oxidizing bacteria.

  10. Sulfidation of carbon-supported iron oxide catalysts

    NARCIS (Netherlands)

    Ramselaar, W.L.T.M.; Hadders, R.H.; Gerkema, E.; Beer, de V.H.J.; Oers, van E.M.; Kraan, van der A.M.

    1989-01-01

    The sulfidation of carbon-supported iron oxide catalysts was studied by means of in-situ Mössbauer spectroscopy at temperatures down to 4.2 K. The catalysts were dried in two different ways and then sulfided in a flow of 10% H2S in H2 at temperatures between 293 and 773 K. Thiophene

  11. Effect of soybean lecithin on iron-catalyzed or chlorophyll-photosensitized oxidation of canola oil emulsion.

    Science.gov (United States)

    Choe, Jeesu; Oh, Boyoung; Choe, Eunok

    2014-11-01

    The effect of soybean lecithin addition on the iron-catalyzed or chlorophyll-photosensitized oxidation of emulsions consisting of purified canola oil and water (1:1, w/w) was studied based on headspace oxygen consumption using gas chromatography and hydroperoxide production using the ferric thiocyanate method. Addition levels of iron sulfate, chlorophyll, and soybean lecithin were 5, 4, and 350 mg/kg, respectively. Phospholipids (PLs) during oxidation of the emulsions were monitored by high performance liquid chromatography. Addition of soybean lecithin to the emulsions significantly reduced and decelerated iron-catalyzed oil oxidation by lowering headspace oxygen consumption and hydroperoxide production. However, soybean lecithin had no significant antioxidant effect on chlorophyll-photosensitized oxidation of the emulsions. PLs in soybean lecithin added to the emulsions were degraded during both oxidation processes, although there was little change in PL composition. Among PLs in soybean lecithin, phosphatidylethanolamine and phosphatidylinositol were degraded the fastest in the iron-catalyzed and the chlorophyll-photosensitized oxidation, respectively. The results suggest that addition of soybean lecithin as an emulsifier can also improve the oxidative stability of oil in an emulsion. © 2014 Institute of Food Technologists®

  12. Cellular uptake of folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Woo, Kyoungja; Moon, Jihyung; Choi, Kyu-Sil; Seong, Tae-Yeon; Yoon, Kwon-Ha

    2009-01-01

    We prepared five folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles (F 5 -Liposuperparamagnetic iron oxide nanoparticles(SPIONs), 5.5 and 11 nm) and investigated their cellular uptake with KB cells, which is one of the representative folate-receptor over-expressing human epidermoid carcinoma cells, using MRI. The cellular uptake tests with the respective 5.5 and 11 nm F 5 -LipoSPIONs at a fixed particle concentration showed appreciable amount of receptor-mediated uptakes and the specificity was higher in 5.5 nm SPIONs, due to its higher folic acid (FA) density, without inhibition. However, the numbers of the particles taken up under FA inhibition were similar, irrespective of their sizes.

  13. Role of iron oxide impurities in electrocatalysis by multiwall carbon ...

    Indian Academy of Sciences (India)

    The electro-catalytic oxidation of dopamine, and reduction of hydro- gen peroxide have ... herent ferromagnetic properties at room temperature, which have been used to ... tion of ferrocene in ethanol gave iron oxide nanoparticles. (Io-NPs) with an .... anism shows strong dependence on the nature of the elec- trode surface.

  14. Thermo-electric oxidization of iron in lithium niobate crystals

    International Nuclear Information System (INIS)

    Falk, Matthias

    2007-01-01

    Lithium niobate crystals (LiNbO 3 ) are a promising material for nonlinear-optical applications like frequency conversion to generate visible light, e.g., in laser displays, but their achievable output power is greatly limited by the ''optical damage'', i.e., light-induced refractive-index changes caused by excitation of electrons from iron impurities and the subsequent retrapping in unilluminated areas of the crystal. The resulting space-charge fields modify the refractive indices due to the electro-optic effect. By this ''photorefractive effect'' the phase-matching condition, i.e., the avoidance of destructive interference between light generated at different crystal positions due to the dispersion of the fundamental wave and the converted wave, is disturbed critically above a certain light intensity threshold. The influence of annealing treatments conducted in the presence of an externally applied electric field (''thermo-electric oxidization'') on the valence state of iron impurities and thereby on the optical damage is investigated. It is observed that for highly iron-doped LiNbO 3 crystals this treatment leads to a nearly complete oxidization from Fe 2+ to Fe 3+ indicated by the disappearance of the absorption caused by Fe 2+ . During the treatment an absorption front forms that moves through the crystal. The absorption in the visible as well as the electrical conductivity are decreased by up to five orders of magnitude due to this novel treatment. The ratio of the Fe 2+ concentration to the total iron concentration - a measure for the strength of the oxidization - is in the order of 10 -6 for oxidized crystals whereas it is about 10 -1 for untreated samples. Birefringence changes are observed at the absorption front that are explained by the removal of hydrogen and lithium ions from the crystal that compensate for the charges of the also removed electrons from Fe 2+ . A microscopic shock-wave model is developed that explains the observed absorption front by

  15. Chemical fingerprint of iron oxides related to iron enrichment of banded iron formation from the Cauê Formation - Esperança Deposit, Quadrilátero Ferrífero, Brazil: a laser ablation ICP-MS study

    Directory of Open Access Journals (Sweden)

    Lucilia Aparecida Ramos de Oliveira

    Full Text Available Chemical signatures of iron oxides from dolomitic itabirite and high-grade iron ore from the Esperança deposit, located in the Quadrilátero Ferrífero, indicate that polycyclic processes involving changing of chemical and redox conditions are responsible for the iron enrichment on Cauê Formation from Minas Supergroup. Variations of Mn, Mg and Sr content in different generations of iron oxides from dolomitic itabirite, high-grade iron ore and syn-mineralization quartz-carbonate-hematite veins denote the close relationship between high-grade iron ore formation and carbonate alteration. This indicates that dolomitic itabirite is the main precursor of the iron ore in that deposit. Long-lasting percolation of hydrothermal fluids and shifts in the redox conditions have contributed to changes in the Y/Ho ratio, light/heavy rare earth elements ratio and Ce anomaly with successive iron oxide generations (martite-granular hematite, as well as lower abundance of trace elements including rare earth elements in the younger specularite generations.

  16. A general strategy toward graphitized carbon coating on iron oxides as advanced anodes for lithium-ion batteries.

    Science.gov (United States)

    Ding, Chunyan; Zhou, Weiwei; Wang, Bin; Li, Xin; Wang, Dong; Zhang, Yong; Wen, Guangwu

    2017-08-25

    Integration of carbon materials with benign iron oxides is blazing a trail in constructing high-performance anodes for lithium-ion batteries (LIBs). In this paper, a unique general, simple, and controllable strategy is developed toward in situ uniform coating of iron oxide nanostructures with graphitized carbon (GrC) layers. The basic synthetic procedure only involves a simple dip-coating process for the loading of Ni-containing seeds and a subsequent Ni-catalyzed chemical vapor deposition (CVD) process for the growth of GrC layers. More importantly, the CVD treatment is conducted at a quite low temperature (450 °C) and with extremely facile liquid carbon sources consisting of ethylene glycol (EG) and ethanol (EA). The GrC content of the resulting hybrids can be controllably regulated by altering the amount of carbon sources. The electrochemical results reveal remarkable performance enhancements of iron oxide@GrC hybrids compared with pristine iron oxides in terms of high specific capacity, excellent rate and cycling performance. This can be attributed to the network-like GrC coating, which can improve not only the electronic conductivity but also the structural integrity of iron oxides. Moreover, the lithium storage performance of samples with different GrC contents is measured, manifesting that optimized electrochemical property can be achieved with appropriate carbon content. Additionally, the superiority of GrC coating is demonstrated by the advanced performance of iron oxide@GrC compared with its corresponding counterpart, i.e., iron oxides with amorphous carbon (AmC) coating. All these results indicate the as-proposed protocol of GrC coating may pave the way for iron oxides to be promising anodes for LIBs.

  17. One-step synthesis for FeBTC-MOF/iron oxide composite

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, R.F.F. do; Gentil, G.; Junior, S.A.; Azevedo, W.M. de; Rodrigues, A.R.; Campello, S.L. [Universidade Federal de Pernambuco (UFPE), PE (Brazil)

    2016-07-01

    Full text: In this work we present the assisted ultrasonic radiation synthesis for f Fe(BTC) (BTC = 1,3,5-benzenetricarboxilic acid) metal organic framework preparation. By definition Metal-organic frameworks (MOFs) belongs to a class of material prepared by the combination of metal ions and organic linkers to form a tridimensional framework which presents defined characteristics like crystallinity, high porosity and the presence of strong metal-ligand interaction. In the last decades the MOFs materials have received considerable attention not only due to scientific interest, but also because of their high potential for applications in several technological areas such as in gas storage, catalysis and drug delivery [1]. Among several Metal-organic frameworks (MOFs) the Fe-BTC structure seems to be one of promising materials, mainly due to their chemical and thermal stability, presents biocompatibility, can be used as drug delivery and as a contrast agent for magnetic resonance. Its functionalization has been reported in the literature by several works where the methods consist to mix the iron oxide Fe3O4 nanoparticles, in the solution contained the MOF'S precursor and the synthesis is prepared by solvothermal method. Typically, it has core-shell Fe3O4@MOF structures and exhibit magnetic properties. Our experimental technique proposed for the synthesis of the composite consists to use iron powder (?-Fe) as a target material dispersed in a solution of DMF/H2O (1:1) containing benzene 1,3,5 tricarboxilic acid and NaNO3. The synthesis was performed using a Ultrasound equipment model GEX500 500 W operating at 80 kHz, pulse 1s intervals for 60 min. The x-ray diffraction patterns and SEM measurements shown that the obtained materials are similar to those found in the literature and presents a rods likes morphology. The BET analysis indicate that the surface area is 1257 m²g-1 and pore volume 1.4 cm³g-1. Also the magnetic measurements indicates a paramagnetic

  18. Oxidation of adsorbed ferrous iron: kinetics and influence of process conditions.

    Science.gov (United States)

    Buamah, R; Petrusevski, B; Schippers, J C

    2009-01-01

    For the removal of iron from groundwater, aeration followed with rapid (sand) filtration is frequently applied. Iron removal in this process is achieved through oxidation of Fe(2 + ) in aqueous solution followed by floc formation as well as adsorption of Fe(2 + ) onto the filter media. The rate of oxidation of the adsorbed Fe(2 + ) on the filter media plays an important role in this removal process. This study focuses on investigating the effect of pH on the rate of oxidation of adsorbed Fe(2 + ). Fe(2 + ) has been adsorbed, under anoxic conditions, on iron oxide coated sand (IOCS) in a short filter column and subsequently oxidized by feeding the column with aerated water. Ferrous ions adsorbed at pH 5, 6, 7 and 8 demonstrated consumption of oxygen, when aerated water was fed into the column. The oxygen uptake at pH 7 and 8 was faster than at pH 5 and 6. However the difference was less pronounced than expected. The difference is attributed to the pH buffering effect of the IOCS. At feedwater pH 5, 6 and 7 the pH in the effluent was higher than in the influent, while a pH drop should occur because of oxidation of adsorbed Fe(2 + ). At pH 8, the pH dropped. These phenomena are attributed to the presence of calcium and /or ferrous carbonate in IOCS.

  19. Gentamicin coated iron oxide nanoparticles as novel antibacterial agents

    Science.gov (United States)

    Bhattacharya, Proma; Neogi, Sudarsan

    2017-09-01

    Applications of different types of magnetic nanoparticles for biomedical purposes started a long time back. The concept of surface functionalization of the iron oxide nanoparticles with antibiotics is a novel technique which paves the path for further application of these nanoparticles by virtue of their property of superparamagnetism. In this paper, we have synthesized novel iron oxide nanoparticles surface functionalized with Gentamicin. The average size of the particles, concluded from the HR-TEM images, came to be around 14 nm and 10 nm for unmodified and modified nanoparticles, respectively. The magnetization curve M(H) obtained for these nanoparticles are typical of superparamagnetic nature and having almost zero values of coercivity and remanance. The release properties of the drug coated nanoparticles were studied; obtaining an S shaped profile, indicating the initial burst effect followed by gradual sustained release. In vitro investigations against various gram positive and gram negative strains viz Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis indicated significant antibacterial efficiency of the drug-nanoparticle conjugate. The MIC values indicated that a small amount like 0.2 mg ml-1 of drug capped particles induce about 98% bacterial death. The novelty of the work lies in the drug capping of the nanoparticles, which retains the superparamagnetic nature of the iron oxide nanoparticles and the medical properties of the drug simultaneously, which is found to extremely blood compatible.

  20. Iron oxide-mediated semiconductor photocatalysis vs. heterogeneous photo-Fenton treatment of viruses in wastewater. Impact of the oxide particle size.

    Science.gov (United States)

    Giannakis, Stefanos; Liu, Siting; Carratalà, Anna; Rtimi, Sami; Talebi Amiri, Masoud; Bensimon, Michaël; Pulgarin, César

    2017-10-05

    The photo-Fenton process is recognized as a promising technique towards microorganism disinfection in wastewater, but its efficiency is hampered at near-neutral pH operating values. In this work, we overcome these obstacles by using the heterogeneous photo-Fenton process as the default disinfecting technique, targeting MS2 coliphage in wastewater. The use of low concentrations of iron oxides in wastewater without H 2 O 2 (wüstite, maghemite, magnetite) has demonstrated limited semiconductor-mediated MS2 inactivation. Changing the operational pH and the size of the oxide particles indicated that the isoelectric point of the iron oxides and the active surface area are crucial in the success of the process, and the possible underlying mechanisms are investigated. Furthermore, the addition of low amounts of Fe-oxides (1mgL -1 ) and H 2 O 2 in the system (1, 5 and 10mgL -1 ) greatly enhanced the inactivation process, leading to heterogeneous photo-Fenton processes on the surface of the magnetically separable oxides used. Additionally, photo-dissolution of iron in the bulk, lead to homogeneous photo-Fenton, further aided by the complexation by the dissolved organic matter in the solution. Finally, we assess the impact of the presence of the bacterial host and the difference caused by the different iron sources (salts, oxides) and the Fe-oxide size (normal, nano-sized). Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ceruloplasmin Oxidation, a Feature of Parkinson's Disease CSF, Inhibits Ferroxidase Activity and Promotes Cellular Iron Retention

    KAUST Repository

    Olivieri, S.; Conti, A.; Iannaccone, S.; Cannistraci, C. V.; Campanella, A.; Barbariga, M.; Codazzi, F.; Pelizzoni, I.; Magnani, G.; Pesca, M.; Franciotta, D.; Cappa, S. F.; Alessio, M.

    2011-01-01

    Parkinson's disease is a neurodegenerative disorder characterized by oxidative stress and CNS iron deposition. Ceruloplasmin is an extracellular ferroxidase that regulates cellular iron loading and export, and hence protects tissues from oxidative

  2. Highly efficient Cu-decorated iron oxide nanocatalyst for low pressure CO 2 conversion

    Energy Technology Data Exchange (ETDEWEB)

    Halder, Avik; Kilianová, Martina; Yang, Bing; Tyo, Eric C.; Seifert, Soenke; Prucek, Robert; Panáček, Aleš; Suchomel, Petr; Tomanec, Ondřej; Gosztola, David J.; Milde, David; Wang, Hsien-Hau; Kvítek, Libor; Zbořil, Radek; Vajda, Stefan

    2018-06-01

    We report a nanoparticulate iron oxide based catalyst for CO2 conversion with high efficiency at low pressures and on the effect of the presence of copper on the catalyst's restructuring and its catalytic performance. In situ X-ray scattering reveals the restructuring of the catalyst at the nanometer scale. In situ X-ray absorption near edge structure (XANES) shows the evolution of the composition and oxidation state of the iron and copper components under reaction conditions along with the promotional effect of copper on the chemical transformation of the iron component. X-ray diffraction (XRD), XANES and Raman spectroscopy proved that the starting nano catalyst is composed of iron oxides differing in chemical nature (alpha-Fe2O3, Fe3O4, FeO(OH)) and dimensionality, while the catalyst after CO2 conversion was identified as a mixture of alpha-Fe, Fe3C, and traces of Fe5C2. The significant increase of the rate CO2 is turned over in the presence of copper nanoparticles indicates that Cu nanoparticles activate hydrogen, which after spilling over to the neighbouring iron sites, facilitate a more efficient conversion of carbon dioxide.

  3. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles

    Science.gov (United States)

    Lu, B.; Dong, X. L.; Huang, H.; Zhang, X. F.; Zhu, X. G.; Lei, J. P.; Sun, J. P.

    Iron (Fe) and nickel (Ni) nanoparticles were prepared by the DC arc-discharge method in a mixture of hydrogen and argon gases, using bulk metals as the raw materials. The microstructure of core/shell (metal/metal oxide) in nanoparticle formed after in situ passivation process. The complex electromagnetic parameters (permittivity ɛ=ɛr'+iɛr″ and permeability μ=μr'+iμr″) of the paraffin-mixed nanocomposite samples (paraffin:nanoparticles=1:1 in mass ratio) were measured in the frequency range of 2-18 GHz. The polarization mechanisms of the space charge and dipole coexist in both the Fe and Ni nanoparticles. The orientational polarization is a particular polarization for Fe nanoparticles and brings a relatively higher dielectric loss. Natural resonance is the main reason for magnetic loss and the corresponding frequencies are 11.6 and 5.2 GHz for the Fe and Ni nanoparticles, respectively. The paraffin composite with Fe nanoparticles provided excellent microwave absorption properties (reflection loss <-20 dB) in the range 6.8-16.6 GHz over the absorber thickness of 1.1-2.3 mm.

  4. Iron Oxide and Gold Based Magneto-Plasmonic Nanostructures for Medical Applications: A Review

    Directory of Open Access Journals (Sweden)

    Thi Thuy Nguyen

    2018-03-01

    Full Text Available Iron oxide and gold-based magneto-plasmonic nanostructures exhibit remarkable optical and superparamagnetic properties originating from their two different components. As a consequence, they have improved and broadened the application potential of nanomaterials in medicine. They can be used as multifunctional nanoprobes for magneto-plasmonic heating as well as for magnetic and optical imaging. They can also be used for magnetically assisted optical biosensing, to detect extreme traces of targeted bioanalytes. This review introduces the previous work on magneto-plasmonic hetero-nanostructures including: (i their synthesis from simple “one-step” to complex “multi-step” routes, including seed-mediated and non-seed-mediated methods; and (ii the characterization of their multifunctional features, with a special emphasis on the relationships between their synthesis conditions, their structures and their properties. It also focuses on the most important progress made with regard to their use in nanomedicine, keeping in mind the same aim, the correlation between their morphology—namely spherical and non-spherical, core-satellite and core-shell, and the desired applications.

  5. MRI-Monitored Intra-Tumoral Injection of Iron-Oxide Labeled Clostridium novyi-NT Anaerobes in Pancreatic Carcinoma Mouse Model

    Science.gov (United States)

    Zheng, Linfeng; Zhang, Zhuoli; Khazaie, Khashayarsha; Saha, Saurabh; Lewandowski, Robert J.; Zhang, Guixiang; Larson, Andrew C.

    2014-01-01

    Objectives To validate the feasibility of labeling Clostridium novyi-NT (C.novyi-NT) anaerobes with iron-oxide nanoparticles for magnetic resonance imaging (MRI) and demonstrate the potential to use MRI to visualize intra-tumoral delivery of these iron-oxide labeled C.novyi-NT during percutaneous injection procedures. Materials and Methods All studies were approved by IACUC. C.novyi-NT were labeled with hybrid iron-oxide Texas red nanoparticles. Growth of labeled and control samples were evaluated with optical density. Labeling was confirmed with confocal fluorescence and transmission electron microscopy (TEM). MRI were performed using a 7 Tesla scanner with T2*-weighted (T2*W) sequence. Contrast-to-noise ratio (CNR) measurements were performed for phantoms and signal-to-noise ratio (SNR) measurements performed in C57BL/6 mice (n = 12) with Panc02 xenografts before and after percutaneous injection of iron-oxide labeled C.novyi-NT. MRI was repeated 3 and 7 days post-injection. Hematoxylin-eosin (HE), Prussian blue and Gram staining of tumor specimens were performed for confirmation of intra-tumoral delivery. Results Iron-oxide labeling had no influence upon C.novyi-NT growth. The signal intensity (SI) within T2*W images was significantly decreased for iron-oxide labeled C.novyi-NT phantoms compared to unlabeled controls. Under confocal fluorescence microscopy, the iron-oxide labeled C.novyi-NT exhibited a uniform red fluorescence consistent with observed regions of DAPI staining and overall labeling efficiency was 100% (all DAPI stained C.novyi-NT exhibited red fluorescence). Within TEM images, a large number iron granules were observed within the iron-oxide labeled C.novyi-NT; these were not observed within unlabeled controls. Intra-procedural MRI measurements permitted in vivo visualization of the intra-tumoral distribution of iron-oxide labeled C.novyi-NT following percutaneous injection (depicted as punctate regions of SI reductions within T2*-weighted

  6. Evaluation of residual iron in carbon nanotubes purified by acid treatments

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, E.R., E-mail: eliltonedwards@hotmail.com [Sao Paulo State University - UNESP, Av. Dr. Ariberto Pereira da Cunha, 333, CEP: 12.516-410 CP:20, Guaratingueta, SP (Brazil); Antunes, E.F. [National Institute for Space Research - INPE, Av. dos Astronautas, 1758, CEP: 12.254-97, Sao Jose dos Campos-SP (Brazil); Aeronautical Institute of Technology - ITA, Praca Marechal Eduardo Gomes, 50, CEP: 12.228-900, Sao Jose dos Campos-SP (Brazil); Botelho, E.C. [Sao Paulo State University - UNESP, Av. Dr. Ariberto Pereira da Cunha, 333, CEP: 12.516-410 CP:20, Guaratingueta, SP (Brazil); Baldan, M.R.; Corat, E.J. [National Institute for Space Research - INPE, Av. dos Astronautas, 1758, CEP: 12.254-97, Sao Jose dos Campos-SP (Brazil)

    2011-11-01

    A detailed analysis by X-ray photoelectron spectroscopy was carried out on multi-walled carbon nanotube (MWCNT) surfaces after non-oxidative and oxidative purification treatments in liquid-phase. The MWCNT were produced by pyrolysis of camphor and ferrocene, that provides a high yield but with high iron contamination ({approx}15% wt). The elimination and/or oxidation of iron nanoparticles were monitored by Fe2p and O1s core level. Oxygen-based functional groups attachment was also investigated by C1s fitting. The effectiveness of each treatment in iron removal was evaluated by thermogravimetric analysis (TGA) and atomic absorption spectroscopy (AAS). The integrity of the MWCNT structure was verified by Raman spectroscopy (RS) and transmission electron microscopy (TEM). A purity degree higher than 98% was achieved only with non-oxidative treatments using sonification process.

  7. Watermelon-like iron nanoparticles: Cr doping effect on magnetism and magnetization interaction reversal

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark E.; Engelhard, Mark H.; Wu, Yaqiao; Tang, Jinke; Qiang, You

    2013-06-26

    Chromium (Cr) forms a solid solution with iron (Fe) lattice when doped in core-shell iron -iron oxide nanocluster (NC) and shows a mixed phase of sigma (σ) FeCr and bcc Fe. The Cr dopant affects heavily the magnetization and magnetic reversal process, and causes the hysteresis loop to shrink near the zero field axis. Dramatic transformation happens from dipolar interaction (0 at. % Cr) to strong exchange interaction (8 at. % of Cr) is confirmed from the Henkel plot and delta M plot, and is explained by a water-melon model of core-shell NC system.

  8. Synthesis and characterization of iron based nanoparticles for novel applications

    Science.gov (United States)

    Khurshid, Hafsa

    The work in this thesis has been focused on the fabrication and characterization of iron based nanoparticles with controlled size and morphology with the aim: (i) to investigate their properties for potential applications in MICR toners and biomedical field and (ii) to study finite size effects on the magnetic properties of the nanoparticles. For the biomedical applications, core/shell structured iron/iron-oxide and hollow shell nanoparticles were synthesized by thermal decomposition of iron organometallic compounds [Fe(CO)5] at high temperature. Core/shell structured iron/iron-oxide nanoparticles have been prepared in the presence of oleic acid and oleylamine. Particle size and composition was controlled by varying the reaction parameters during synthesis. The as-made particles are hydrophobic and not dispersible in water. Water dispersibility was achieved by ligand exchange a with double hydrophilic diblock copolymer. Relaxometery measurements of the transverse relaxation time T2 of the nanoparticles solution at 3 Tesla confirm that the core/shell nanoparticles are an excellent MRI contrast agent using T2 weighted imaging sequences. In comparison to conventionally used iron oxide nanoparticles, iron/iron-oxide core/shell nanoparticles offer four times stronger T2 shortening effect at comparable core size due to their higher magnetization. The magnetic properties were studied as a function of particle size, composition and morphology. Hollow nanostructures are composed of randomly oriented grains arranged together to make a shell layer and make an interesting class of materials. The hollow morphology can be used as an extra degree of freedom to control the magnetic properties. Owing to their hollow morphology, they can be used for the targeted drug delivery applications by filling the drug inside their cavity. For the magnetic toners applications, particles were synthesized by chemically reducing iron salt using sodium borohydride and then coated with polyethylene

  9. Iron(II) porphyrins induced conversion of nitrite into nitric oxide: A computational study.

    Science.gov (United States)

    Zhang, Ting Ting; Liu, Yong Dong; Zhong, Ru Gang

    2015-09-01

    Nitrite reduction to nitric oxide by heme proteins was reported as a protective mechanism to hypoxic injury in mammalian physiology. In this study, the pathways of nitrite reduction to nitric oxide mediated by iron(II) porphyrin (P) complexes, which were generally recognized as models for heme proteins, were investigated by using density functional theory (DFT). In view of two type isomers of combination of nitrite and Fe(II)(P), N-nitro- and O-nitrito-Fe(II)-porphyrin complexes, and two binding sites of proton to the different O atoms of nitrite moiety, four main pathways for the conversion of nitrite into nitric oxide mediated by iron(II) porphyrins were proposed. The results indicate that the pathway of N-bound Fe(II)(P)(NO2) isomer into Fe(III)(P)(NO) and water is similar to that of O-bound isomer into nitric oxide and Fe(III)(P)(OH) in both thermodynamical and dynamical aspects. Based on the initial computational studies of five-coordinate nitrite complexes, the conversion of nitrite into NO mediated by Fe(II)(P)(L) complexes with 14 kinds of proximal ligands was also investigated. Generally, the same conclusion that the pathways of N-bound isomers are similar to those of O-bound isomer was obtained for iron(II) porphyrin with ligands. Different effects of ligands on the reduction reactions were also found. It is notable that the negative proximal ligands can improve reactive abilities of N-nitro-iron(II) porphyrins in the conversion of nitrite into nitric oxide compared to neutral ligands. The findings will be helpful to expand our understanding of the mechanism of nitrite reduction to nitric oxide by iron(II) porphyrins. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.

    2014-01-01

    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...... to that continuing on Earth – although on much smaller length- and timescales – with melting of the metal and silicates; differentiation into core, mantle, and crust; and probably extensive volcanism. Iron and stony-iron meteorites are our only available analogues to materials found in the deep interiors of Earth...

  11. Central roles of iron in the regulation of oxidative stress in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Matsuo, Ryo; Mizobuchi, Shogo; Nakashima, Maya; Miki, Kensuke; Ayusawa, Dai; Fujii, Michihiko

    2017-10-01

    Oxygen is essential for aerobic organisms but causes cytotoxicity probably through the generation of reactive oxygen species (ROS). In this study, we screened for the genes that regulate oxidative stress in the yeast Saccharomyces cerevisiae, and found that expression of CTH2/TIS11 caused an increased resistance to ROS. CTH2 is up-regulated upon iron starvation and functions to remodel metabolism to adapt to iron starvation. We showed here that increased resistance to ROS by CTH2 would likely be caused by the decreased ROS production due to the decreased activity of mitochondrial respiration, which observation is consistent with the fact that CTH2 down-regulates the mitochondrial respiratory proteins. We also found that expression of CTH1, a paralog of CTH2, also caused an increased resistance to ROS. This finding supported the above view, because mitochondrial respiratory proteins are the common targets of CTH1 and CTH2. We further showed that supplementation of iron in medium augmented the growth of S. cerevisiae under oxidative stress, and expression of CTH2 and supplementation of iron collectively enhanced its growth under oxidative stress. Since CTH2 is regulated by iron, these findings suggested that iron played crucial roles in the regulation of oxidative stress in S. cerevisiae.

  12. Failure mechanisms for compacted uranium oxide fuel cores

    International Nuclear Information System (INIS)

    Berghaus, D.G.; Peacock, H.B.

    1980-01-01

    Tension, compression, and shear tests were performed on test specimens of aluminum-clad, compacted powder fuel cores to determine failure mechanisms of the core material. The core, which consists of 70% uranium oxide in an aluminum matrix, frequently fails during post-extrusion drawing. Tests were conducted to various strain levels up to failure of the core. Sections were made of tested specimens to microscopically study initiation of failure. Two failure modes wee observed. Tensile failure mode is initiated by prior tensile failure of uranium oxide particles with the separation path strongly influenced by the arrangement of particles. Delamination mode consists of the separation of laminae formed during extrusion of tubes. Separation proceeds from fine cracks formed parallel to the laminae. Tensile failure mode was experienced in tension and shear tests. Delamination mode was produced in compression tests

  13. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION

    Directory of Open Access Journals (Sweden)

    Neenu Singh

    2010-09-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPION are being widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs or genes, and in hyperthermia. Although, the potential benefits of SPION are considerable, there is a distinct need to identify any potential cellular damage associated with these nanoparticles. Besides focussing on cytotoxicity, the most commonly used determinant of toxicity as a result of exposure to SPION, this review also mentions the importance of studying the subtle cellular alterations in the form of DNA damage and oxidative stress. We review current studies and discuss how SPION, with or without different surface coating, may cause cellular perturbations including modulation of actin cytoskeleton, alteration in gene expression profiles, disturbance in iron homeostasis and altered cellular responses such as activation of signalling pathways and impairment of cell cycle regulation. The importance of protein–SPION interaction and various safety considerations relating to SPION exposure are also addressed.

  14. Photoactive thin film semiconducting iron pyrite prepared by sulfurization of iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Smestad, G.; Ennaoui, A.; Fiechter, S.; Tributsch, H.; Hofmann, W.K.; Birkholz, M. (Hahn-Meitner-Institut Berlin GmbH (Germany, F.R.). Abt. Solare Energetik Hahn-Meitner-Institut Berlin GmbH (Germany, F.R.). Abt. Materialforschung); Kautek, W. (Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany, F.R.))

    1990-03-01

    Photoactive iron pyrite (FeS{sub 2}) thin film layers have been synthesized by a simple method involving the reaction of Fe{sub 3}O{sub 4} or Fe{sub 2}O{sub 3} with elemental sulfur. The films were formed on a variety of different substrate materials by converting or sulfurizing iron oxide layers. The subsequent sulfur treatment of the oxide layers consisted of exposure of the films to gaseous sulfur in open or closed ampules at 350degC for 0.5-2 h. The morphology, composition and photoactivity of the films produced were checked using X-ray diffraction, X-ray photoelectron spectroscopy (ESCA), optical absorption, steady state and transient photoconductivity. The best films showed good crystallinity and purity with concurrent photoconductivity and photoelectrochemical response. The ability of this technique to produce photoactive material can be explained by interpretation of the Gibbs ternary phase diagram for the Fe-O-S system, and may be related to the production of photoactive pyrite in nature. A discussion is made as to the future improvement of the solar cell response by proper optimization of geometric and configurational properties. (orig.).

  15. Cellular uptake of folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Kyoungja [Nano-Materials Research Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of)], E-mail: kjwoo@kist.re.kr; Moon, Jihyung [Nano-Materials Research Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul 130-650 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, 5-1, Anam-Dong, Sungbook-Ku, Seoul, 136-713 (Korea, Republic of); Choi, Kyu-Sil [Division of Molecular Imaging, Samsung Biomedical Research Institute, Samsung Medical Center, 50 Ilwon-Dong, Kangnam-Ku, Seoul 135-710 (Korea, Republic of); Seong, Tae-Yeon [Department of Materials Science and Engineering, Korea University, 5-1, Anam-Dong, Sungbook-Ku, Seoul, 136-713 (Korea, Republic of); Yoon, Kwon-Ha [Institute for Radiological Imaging Science, Wonkwang University School of Medicine, 344-2, Shinyong, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2009-05-15

    We prepared five folate-conjugated lipophilic superparamagnetic iron oxide nanoparticles (F{sub 5}-Liposuperparamagnetic iron oxide nanoparticles(SPIONs), 5.5 and 11 nm) and investigated their cellular uptake with KB cells, which is one of the representative folate-receptor over-expressing human epidermoid carcinoma cells, using MRI. The cellular uptake tests with the respective 5.5 and 11 nm F{sub 5}-LipoSPIONs at a fixed particle concentration showed appreciable amount of receptor-mediated uptakes and the specificity was higher in 5.5 nm SPIONs, due to its higher folic acid (FA) density, without inhibition. However, the numbers of the particles taken up under FA inhibition were similar, irrespective of their sizes.

  16. Building Composite Fe-Mn Oxide Flower-Like Nanostructures: A Detailed Magnetic Study

    KAUST Repository

    Zuddas, Efisio; Lentijo Mozo, Sergio; Casu, Alberto; Deiana, Davide; Falqui, Andrea

    2017-01-01

    Here we show that it’s possible to produce different magnetic core-multiple shells heterostructures from monodispersed iron oxide spherical magnetic seeds by finely controlling the amount of a manganese precursor and using in a smart and simple way a cation exchange synthetic approach. In particular, by increasing the amount of precursor we were able to produce nanostructures ranging from Fe3O4/Mn-ferrite core/single shell nanospheres to larger, flower-like Fe3O4/Mn-ferrite/Mn3O4 core-double shell nanoparticles. We first demonstrate how the formation of the initial thin manganese-ferrite shell determines a dramatic reduction of the superficial disorder in the starting iron oxide, bringing to nanomagnets with lower hardness. Then, the growth of the second and most external manganese oxide shell causes the magnetical hardening of the heterostructures, while its magnetic exchange coupling with the rest of the heterostructure can be antiferromagentic or ferromagnetic, depending on the strength of the applied external magnetic field. This response is similar to that of an iron oxide-manganese oxide core-shell system but differs from what observed in multiple-shell heterostructures. Finally, we report as the most external shell becomes magnetically irrelevant above the ferrimagnetic-paramagnetic transition of the manganese oxide and the resulting magnetic behavior of the flower-like structures is then studied in-depth.

  17. Building Composite Fe-Mn Oxide Flower-Like Nanostructures: A Detailed Magnetic Study

    KAUST Repository

    Zuddas, Efisio

    2017-07-21

    Here we show that it’s possible to produce different magnetic core-multiple shells heterostructures from monodispersed iron oxide spherical magnetic seeds by finely controlling the amount of a manganese precursor and using in a smart and simple way a cation exchange synthetic approach. In particular, by increasing the amount of precursor we were able to produce nanostructures ranging from Fe3O4/Mn-ferrite core/single shell nanospheres to larger, flower-like Fe3O4/Mn-ferrite/Mn3O4 core-double shell nanoparticles. We first demonstrate how the formation of the initial thin manganese-ferrite shell determines a dramatic reduction of the superficial disorder in the starting iron oxide, bringing to nanomagnets with lower hardness. Then, the growth of the second and most external manganese oxide shell causes the magnetical hardening of the heterostructures, while its magnetic exchange coupling with the rest of the heterostructure can be antiferromagentic or ferromagnetic, depending on the strength of the applied external magnetic field. This response is similar to that of an iron oxide-manganese oxide core-shell system but differs from what observed in multiple-shell heterostructures. Finally, we report as the most external shell becomes magnetically irrelevant above the ferrimagnetic-paramagnetic transition of the manganese oxide and the resulting magnetic behavior of the flower-like structures is then studied in-depth.

  18. Altering the structure and properties of iron oxide nanoparticles and graphene oxide/iron oxide composites by urea

    Energy Technology Data Exchange (ETDEWEB)

    Naghdi, Samira [Physics department, Bu-Ali Sina University, 65174 Hamedan (Iran, Islamic Republic of); Department of Mechanical Engineering, College of Engineering, Kyung Hee University, 446-701 Yongin (Korea, Republic of); Rhee, Kyong Yop, E-mail: rheeky@khu.ac.kr [Department of Mechanical Engineering, College of Engineering, Kyung Hee University, 446-701 Yongin (Korea, Republic of); Jaleh, Babak [Physics department, Bu-Ali Sina University, 65174 Hamedan (Iran, Islamic Republic of); Park, Soo Jin [Chemistry, Colloge of Natural Science, Inha University, 402-751 Incheon (Korea, Republic of)

    2016-02-28

    Graphical abstract: - Highlights: • Iron oxide (Fe{sub 2}O{sub 3}) nanoparticles were directly grown on graphene oxide (GO) using a facile microwave assistant method. • The effect of urea concentration on Fe{sub 2}O{sub 3} nanoparticles and GO/Fe{sub 2}O{sub 3} composite was examined. • Increasing urea concentration altered the morphology and decreased the particle size. • The increased concentration of urea induced a larger surface area with more active sites in the Fe{sub 2}O{sub 3} nanoparticles. • The increase in urea concentration led to decreased thermal stability of the Fe{sub 2}O{sub 3} nanoparticles. - Abstract: Iron oxide (Fe{sub 2}O{sub 3}) nanoparticles were grown on graphene oxide (GO) using a simple microwave-assisted method. The effects of urea concentration on Fe{sub 2}O{sub 3} nanoparticles and GO/Fe{sub 2}O{sub 3} composite were examined. The as-prepared samples were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The Fe{sub 2}O{sub 3} nanoparticles were uniformly developed on GO sheets. The results showed that urea affects both Fe{sub 2}O{sub 3} morphology and particle size. In the absence of urea, the Fe{sub 2}O{sub 3} nanostructures exhibited a rod-like morphology. However, increasing urea concentration altered the morphology and decreased the particle size. The Raman results of GO/Fe{sub 2}O{sub 3} showed that the intensity ratio of D band to G band (I{sub D}/I{sub G}) was decreased by addition of urea, indicating that urea can preserve the GO sheets during synthesis of the composite from exposing more defects. The surface area and thermal stability of GO/Fe{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} were compared using the Brunauer–Emmett–Teller method and thermal gravimetric analysis, respectively. The results showed that the increased concentration of urea induced a larger surface area with more active sites in the Fe{sub 2}O{sub 3} nanoparticles. However, the increase in urea

  19. Purification of Lysosomes Using Supraparamagnetic Iron Oxide Nanoparticles (SPIONs).

    Science.gov (United States)

    Rofe, Adam P; Pryor, Paul R

    2016-04-01

    Lysosomes can be rapidly isolated from tissue culture cells using supraparamagnetic iron oxide particles (SPIONs). In this protocol, colloidal iron dextran (FeDex) particles, a type of SPION, are taken up by cultured mouse macrophage cells via the endocytic pathway. The SPIONs accumulate in lysosomes, the end point of the endocytic pathway, permitting the lysosomes to be isolated magnetically. The purified lysosomes are suitable for in vitro fusion assays or for proteomic analysis. © 2016 Cold Spring Harbor Laboratory Press.

  20. Single Additive Enables 3D Printing of Highly Loaded Iron Oxide Suspensions.

    Science.gov (United States)

    Hodaei, Amin; Akhlaghi, Omid; Khani, Navid; Aytas, Tunahan; Sezer, Dilek; Tatli, Buse; Menceloglu, Yusuf Z; Koc, Bahattin; Akbulut, Ozge

    2018-03-21

    A single additive, a grafted copolymer, is designed to ensure the stability of suspensions of highly loaded iron oxide nanoparticles (IOPs) and to facilitate three-dimensional (3D) printing of these suspensions in the filament form. This poly (ethylene glycol)-grafted copolymer of N-[3(dimethylamino)propyl]methacrylamide and acrylic acid harnesses both electrostatic and steric repulsion to realize an optimum formulation for 3D printing. When used at 1.15 wt % (by the weight of IOPs), the suspension attains ∼81 wt % solid loading-96% of the theoretical limit as calculated by the Krieger-Dougherty equation. Rectangular, thick-walled toroidal, and thin-walled toroidal magnetic cores and a porous lattice structure are fabricated to demonstrate the utilization of this suspension as an ink for 3D printing. The electrical and magnetic properties of the magnetic cores are characterized through impedance spectroscopy (IS) and vibrating sample magnetometry (VSM), respectively. The IS indicates the possibility of utilizing wire-wound 3D printed cores as the inductive coils. The VSM verifies that the magnetic properties of IOPs before and after the ink formulation are kept almost unchanged because of the low dosage of the additive. This particle-targeted approach for the formulation of 3D printing inks allows embodiment of a fully aqueous system with utmost target material content.

  1. Method of reducing the hazard which may occur as a consequence of a reactor core meltdown

    International Nuclear Information System (INIS)

    Donne, M.D.; Dorner, S.; Schumacher, G.

    1978-01-01

    The core melt resulting from a meltdown accident of a GFB, LWR or LMFRR is collected by a core catcher from graphite placed below the core. The core melt is penetrating step by step into a borate store in the collecting vessel and is dissolving in it. Therefore the borate at the same time will absorb the decay heat. In order to remove the solidified and cooled down melted mass water is applied eliminating the borate. The remaining oxide state of the powdery core is sucked off again from the core catcher together with the water. The borate store (e.g. alkali borate) itself consists of separate layers with shaped parts, the coverings of which are made of steel, iron, cast iron, nickel, iron or nickel alloys, ceramic material or glass. (DG) [de

  2. Method of reducing the hazard which may occur as a consequence of a reactor core meltdown

    International Nuclear Information System (INIS)

    Donne, M.D.; Dorner, S.; Schumacher, G.

    1985-01-01

    The core melt resulting from a meltdown accident of a GFB, LWR or LMFRR is collected by a core catcher from graphite placed below the core. The core melt is penetrating step by step into a borate store in the collecting vessel and is dissolving in it. Therefore the borate at the same time will absorb the decay heat. In order to remove the solidified and cooled down melted mass water is applied eliminating the borate. The remaining oxide states of the powdery core is sucked off again from the core catcher together with the water. The borate store (e.g. alkali borate) itself consists of separate layers with shaped parts, the coverings of which are made of steel, iron, cast iron, nickel, iron or nickel alloys, ceramic material or glass. (orig./PW)

  3. Torque decomposition and control in an iron core linear permanent magnet motor.

    NARCIS (Netherlands)

    Overboom, T.T.; Smeets, J.P.C.; Stassen, J.M.; Jansen, J.W.; Lomonova, E.

    2012-01-01

    Abstract—This paper concerns the decomposition and control of the torque produced by an iron core linear permanent magnet motor. The proposed method is based on the dq0-decomposition of the three-phase currents using Park’s transformation. The torque is decomposed into a reluctance component and two

  4. Long-term aerobic exercise increases redox-active iron through nitric oxide in rat hippocampus.

    Science.gov (United States)

    Chen, Qian; Xiao, De-Sheng

    2014-01-30

    Adult hippocampus is highly vulnerable to iron-induced oxidative stress. Aerobic exercise has been proposed to reduce oxidative stress but the findings in the hippocampus are conflicting. This study aimed to observe the changes of redox-active iron and concomitant regulation of cellular iron homeostasis in the hippocampus by aerobic exercise, and possible regulatory effect of nitric oxide (NO). A randomized controlled study was designed in the rats with swimming exercise treatment (for 3 months) and/or an unselective inhibitor of NO synthase (NOS) (L-NAME) treatment. The results from the bleomycin-detectable iron assay showed additional redox-active iron in the hippocampus by exercise treatment. The results from nonheme iron content assay, combined with the redox-active iron content, showed increased storage iron content by exercise treatment. NOx (nitrate plus nitrite) assay showed increased NOx content by exercise treatment. The results from the Western blot assay showed decreased ferroportin expression, no changes of TfR1 and DMT1 expressions, increased IRP1 and IRP2 expression, increased expressions of eNOS and nNOS rather than iNOS. In these effects of exercise treatment, the increased redox-active iron content, storage iron content, IRP1 and IRP2 expressions were completely reversed by L-NAME treatment, and decreased ferroportin expression was in part reversed by L-NAME. L-NAME treatment completely inhibited increased NOx and both eNOS and nNOS expression in the hippocampus. Our findings suggest that aerobic exercise could increase the redox-active iron in the hippocampus, indicating an increase in the capacity to generate hydroxyl radicals through the Fenton reactions, and aerobic exercise-induced iron accumulation in the hippocampus might mainly result from the role of the endogenous NO. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Mechanism of oxidation of L-methionine by iron(III)-1,10 ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Kinetics and mechanism of oxidation of L-methionine by iron(III)–1,10- phenanthroline complex have been studied in perchloric acid medium. The reaction is first order each in iron(III) and methionine. Increase in [phenanthroline] increases the rate while increase in [HClO4] decreases it. While the reactive species ...

  6. Deep-Earth Equilibration between Molten Iron and Solid Silicates

    Science.gov (United States)

    Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.

    2017-12-01

    Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.

  7. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    International Nuclear Information System (INIS)

    Ngoi, Kuan Hoon; Chia, Chin-Hua; Zakaria, Sarani; Chiu, Wee Siong

    2015-01-01

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature

  8. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    Energy Technology Data Exchange (ETDEWEB)

    Ngoi, Kuan Hoon; Chia, Chin-Hua, E-mail: chia@ukm.edu.my; Zakaria, Sarani [School of Applied Physics, Faculty Science and Technology, University Kebangsaan Malaysia 43600 UKM Bangi, Selangor (Malaysia); Chiu, Wee Siong [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur (Malaysia)

    2015-09-25

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature.

  9. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid

    International Nuclear Information System (INIS)

    Ismail, Raid A.; Sulaiman, Ghassan M.; Abdulrahman, Safa A.; Marzoog, Thorria R.

    2015-01-01

    In this study, (50–110 nm) magnetic iron oxide (α-Fe 2 O 3 ) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results showed a noteworthy inhibition on both bacterial strains. The preparation conditions were found to affect significantly the antibacterial activity of these nanoparticles. The synthesized magnetic nanoparticles were used to capture rapidly S. aureus bacteria under the magnetic field effect. - Highlights: • Synthesis magnetic iron oxide nanoparticles by pulsed laser ablation • Antibacterial activity against Gram-positive and Gram-negative bacteria • Captured magnetic nanoparticles by S. aureus bacteria under effect of magnetic field

  10. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Raid A., E-mail: raidismail@yahoo.com [Laser Physics Division, Applied Science Department, University of Technology, Baghdad (Iraq); Sulaiman, Ghassan M. [Biotechnology Division, Applied Science Department, University of Technology, Baghdad (Iraq); Abdulrahman, Safa A. [Laser Physics Division, Applied Science Department, University of Technology, Baghdad (Iraq); Marzoog, Thorria R. [Biotechnology Division, Applied Science Department, University of Technology, Baghdad (Iraq)

    2015-08-01

    In this study, (50–110 nm) magnetic iron oxide (α-Fe{sub 2}O{sub 3}) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results showed a noteworthy inhibition on both bacterial strains. The preparation conditions were found to affect significantly the antibacterial activity of these nanoparticles. The synthesized magnetic nanoparticles were used to capture rapidly S. aureus bacteria under the magnetic field effect. - Highlights: • Synthesis magnetic iron oxide nanoparticles by pulsed laser ablation • Antibacterial activity against Gram-positive and Gram-negative bacteria • Captured magnetic nanoparticles by S. aureus bacteria under effect of magnetic field.

  11. Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun-Won; Park, Jae-Woo, E-mail: jaewoopark@hanyang.ac.kr

    2014-05-01

    Highlights: • Iron oxide nanotube was newly fabricated with potentiostatic anodization of Fe{sup 0} foil. • Cyanide was oxidized more effectively with the iron oxide nanotube and H{sub 2}O{sub 2}, resulting in fast oxidation of cyanide and cyanate. • This nanotube of Fe{sub 2}O{sub 3} on Fe{sup 0} metal can replace conventional particulate iron catalysts in Fenton-like processes. - Abstract: Iron oxide nanotubes (INT) were fabricated with potentiostatic anodization of zero valent iron foil in 1 M Na{sub 2}SO{sub 4} containing 0.5 wt% NH{sub 4}F electrolyte, holding the potential at 20, 40, and 60 V for 20 min, respectively. Field emission scanning electron microscopy and X-ray diffractometry were used to evaluate the morphology and crystalline structure of the INT film. The potential of 40 V for 20 min was observed to be optimal to produce an optimal catalytic film. Cyanide dissolved in water was degraded through the Fenton-like reaction using the INT film with hydrogen peroxide (H{sub 2}O{sub 2}). In case of INT-40 V in the presence of H{sub 2}O{sub 2} 3%, the first-order rate constant was found to be 1.7 × 10{sup −2} min{sup −1}, and 1.2 × 10{sup −2} min{sup −1} with commercial hematite powder. Degradation of cyanide was much less with only H{sub 2}O{sub 2}. Therefore, this process proposed in this work can be an excellent alternative to traditional catalysts for Fenton-like reaction.

  12. HREM investigation of the constitution and the crystallography of thin thermal oxide layers on iron

    DEFF Research Database (Denmark)

    Graat, P.C.J.; Brongers, M.P.H.; Zandbergen, H.W.

    1997-01-01

    Oxide layers formed at 573 K in O2 at atmospheric pressure, both on a clean iron surface and on an iron surface covered with an etching induced (hydro)oxide film, were investigated with high-resolution transmission electron microscopy (HREM). Cross-sections of oxidised samples were prepared by a ...

  13. Combined in situ zymography, immunofluorescence, and staining of iron oxide particles in paraffin-embedded, zinc-fixed tissue sections.

    Science.gov (United States)

    Haeckel, Akvile; Schoenzart, Lena; Appler, Franziska; Schnorr, Joerg; Taupitz, Matthias; Hamm, Bernd; Schellenberger, Eyk

    2012-01-01

    Superparamagnetic iron oxide particles are used as potent contrast agents in magnetic resonance imaging. In histology, these particles are frequently visualized by Prussian blue iron staining of aldehyde-fixed, paraffin-embedded tissues. Recently, zinc salt-based fixative was shown to preserve enzyme activity in paraffin-embedded tissues. In this study, we demonstrate that zinc fixation allows combining in situ zymography with fluorescence immunohistochemistry (IHC) and iron staining for advanced biologic investigation of iron oxide particle accumulation. Very small iron oxide particles, developed for magnetic resonance angiography, were applied intravenously to BALB/c nude mice. After 3 hours, spleens were explanted and subjected to zinc fixation and paraffin embedding. Cut tissue sections were further processed to in situ zymography, IHC, and Prussian blue staining procedures. The combination of in situ zymography as well as IHC with subsequent Prussian blue iron staining on zinc-fixed paraffin-embedded tissues resulted in excellent histologic images of enzyme activity, protease distribution, and iron oxide particle accumulation. The combination of all three stains on a single section allowed direct comparison with only moderate degradation of fluorescein isothiocyanate-labeled substrate. This protocol is useful for investigating the biologic environment of accumulating iron oxide particles, with excellent preservation of morphology.

  14. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    OpenAIRE

    Lili Zhang; Xinxin Yu; Hongrui Hu; Yang Li; Mingzai Wu; Zhongzhu Wang; Guang Li; Zhaoqi Sun; Changle Chen

    2015-01-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4?7H2O. By adjusting reaction temperature, ?-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from ?-Fe2O3 to Fe3O4 via ?-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide ...

  15. Iron-oxide colloidal nanoclusters: from fundamental physical properties to diagnosis and therapy

    Science.gov (United States)

    Kostopoulou, Athanasia; Brintakis, Konstantinos; Lascialfari, Alessandro; Angelakeris, Mavroeidis; Vasilakaki, Marianna; Trohidou, Kalliopi; Douvalis, Alexios P.; Psycharakis, Stylianos; Ranella, Anthi; Manna, Liberato; Lappas, Alexandros

    2014-03-01

    Research on magnetic nanocrystals attracts wide-spread interest because of their challenging fundamental properties, but it is also driven by problems of practical importance to the society, ranging from electronics (e.g. magnetic recording) to biomedicine. In that respect, iron oxides are model functional materials as they adopt a variety of oxidation states and coordinations that facilitate their use. We show that a promising way to engineer further their technological potential in diagnosis and therapy is the assembly of primary nanocrystals into larger colloidal entities, possibly with increased structural complexity. In this context, elevated-temperature nanochemistry (c.f. based on a polyol approach) permitted us to develop size-tunable, low-cytotoxicity iron-oxide nanoclusters, entailing iso-oriented nanocrystals, with enhanced magnetization. Experimental (magnetometry, electron microscopy, Mössbauer and NMR spectroscopies) results supported by Monte Carlo simulations are reviewed to show that such assemblies of surface-functionalized iron oxide nanocrystals have a strong potential for innovation. The clusters' optimized magnetic anisotropy (including microscopic surface spin disorder) and weak ferrimagnetism at room temperature, while they do not undermine colloidal stability, endow them a profound advantage as efficient MRI contrast agents and hyperthermic mediators with important biomedical potential.

  16. Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy.

    Science.gov (United States)

    Sneha, Murugesan; Sundaram, Nachiappan Meenakshi

    2015-01-01

    Recently, multifunctional magnetic nanostructures have been found to have potential applications in biomedical and tissue engineering. Iron oxide nanoparticles are biocompatible and have distinctive magnetic properties that allow their use in vivo for drug delivery and hyperthermia, and as T2 contrast agents for magnetic resonance imaging. Hydroxyapatite is used frequently due to its well-known biocompatibility, bioactivity, and lack of toxicity, so a combination of iron oxide and hydroxyapatite materials could be useful because hydroxyapatite has better bone-bonding ability. In this study, we prepared nanocomposites of iron oxide and hydroxyapatite and analyzed their physicochemical properties. The results suggest that these composites have superparamagnetic as well as biocompatible properties. This type of material architecture would be well suited for bone cancer therapy and other biomedical applications.

  17. In situ functionalization and PEO coating of iron oxide nanocrystals using seeded emulsion polymerization.

    Science.gov (United States)

    Kloust, Hauke; Schmidtke, Christian; Feld, Artur; Schotten, Theo; Eggers, Robin; Fittschen, Ursula E A; Schulz, Florian; Pöselt, Elmar; Ostermann, Johannes; Bastús, Neus G; Weller, Horst

    2013-04-16

    Herein we demonstrate that seeded emulsion polymerization is a powerful tool to produce multiply functionalized PEO coated iron oxide nanocrystals. Advantageously, by simple addition of functional surfactants, functional monomers, or functional polymerizable linkers-solely or in combinations thereof-during the seeded emulsion polymerization process, a broad range of in situ functionalized polymer-coated iron oxide nanocrystals were obtained. This was demonstrated by purposeful modulation of the zeta potential of encapsulated iron oxide nanocrystals and conjugation of a dyestuff. Successful functionalization was unequivocally proven by TXRF. Furthermore, the spatial position of the functional groups can be controlled by choosing the appropriate spacers. In conclusion, this methodology is highly amenable for combinatorial strategies and will spur rapid expedited synthesis and purposeful optimization of a broad scope of nanocrystals.

  18. Bench-scale study of the effect of phosphate on an aerobic iron oxidation plant for mine water treatment.

    Science.gov (United States)

    Tischler, Judith S; Wiacek, Claudia; Janneck, Eberhard; Schlömann, Michael

    2014-01-01

    At the opencast pit Nochten acidic iron- and sulfate-rich mine waters are treated biotechnologically in a mine-water treatment plant by microbial iron oxidation. Due to the low phosphate concentration in such waters the treatment plant was simulated in bench-scale to investigate the influence of addition of potassium dihydrogen phosphate on chemical and biological parameters of the mine-water treatment. As a result of the phosphate addition the number of cells increased, which resulted in an increase of the iron oxidation rate in the reactor with phosphate addition by a factor of 1.7 compared to a reference approach without phosphate addition. Terminal restriction fragment length polymorphism (T-RFLP) analysis during the cultivation revealed a shift of the microbial community depending on the phosphate addition. While almost exclusively iron-oxidizing bacteria related to "Ferrovum" sp. were detected with phosphate addition, the microbial community was more diverse without phosphate addition. In the latter case, iron-oxidizing bacteria ("Ferrovum" sp., Acidithiobacillus spp.) as well as non-iron-oxidizing bacteria (Acidiphilium sp.) were identified. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Experimental and theoretical investigation of the iron core transformer for the EXTRAP T1 device

    International Nuclear Information System (INIS)

    Bures, M.

    1983-11-01

    The possibility of driving the discharge current of the toroidal EXTRAP T1 device, using the iron core transformer, is investigated. It is shown that the breakdown voltage 20 kV can be supplied, along the zero line of the vacuum magnetic field, at a time shorter than 1 μs. this is made possible by the transient build-up of the magnetic field in the iron core laminations. The plasma current rise time is determined by the evolution of the inductance and resistance of the discharge. This enables the plasma current to be built up to an amplitude I(sub)p=50 kA within 10-15 μs and sustained at this value during a steady-state period of 100 μs. The premagnetized iron core of the cross-sectional area 0.16 m 2 is sufficient to provide the necessary flux swing, if the saturation induction is not lower than 1 T. It is further concluded that the SiFe lamination is adequate for the present application. However, to reduce the stray field interfering with the zero line of the octupole field, a lamination of thickness d < 0.1 mm with high resistivity should be employed. The interlamination voltage should be reduced by segmenting the core. The steady-state is supplied by an 0.4Ω, 20 kV artificial line consisting of 20 μF capacitive elements. (author)

  20. The iron and cerium oxide influence on the electric conductivity and the corrosion resistance of anodized aluminium

    International Nuclear Information System (INIS)

    Souza, Kellie Provazi de

    2006-01-01

    The influence of different treatments on the aluminum system covered with aluminum oxide is investigated. The aluminum anodization in sulphuric media and in mixed sulphuric and phosphoric media was used to alter the corrosion resistance, thickness, coverage degree and microhardness of the anodic oxide. Iron electrodeposition inside the anodic oxide was used to change its electric conductivity and corrosion resistance. Direct and pulsed current were used for iron electrodeposition and the Fe(SO 4 ) 2 (NH 4 ) 2 .6H 2 O electrolyte composition was changed with the addition of boric and ascorbic acids. To the sealing treatment the CeCl 3 composition was varied. The energy dispersive x-ray (EDS), the x-ray fluorescence spectroscopy (FRX) and the morphologic analysis by scanning electronic microscopy (SEM) allowed to verify that, the pulsed current increase the iron content inside the anodic layer and that the use of the additives inhibits the iron oxidation. The chronopotentiometric curves obtained during iron electrodeposition indicated that the boric and ascorbic acids mixture increased the electrodeposition process efficiency. The electrochemical impedance spectroscopy (EIE), the Vickers (Hv) microhardness measurements and morphologic analysis evidenced that the sealing treatment improves the corrosion resistance of the anodic film modified with iron. The electrical impedance (EI) technique allowed to prove the electric conductivity increase of the anodized aluminum with iron electrodeposited even after the cerium low concentration treatment. Iron nanowires were prepared by using the anodic oxide pores as template. (author)

  1. Microwave-assisted combustion synthesis of nano iron oxide/iron-coated activated carbon, anthracite, cellulose fiber, and silica, with arsenic adsorption studies

    Science.gov (United States)

    Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was com...

  2. Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy

    Science.gov (United States)

    Meng, Qian-Fang; Rao, Lang; Zan, Minghui; Chen, Ming; Yu, Guang-Tao; Wei, Xiaoyun; Wu, Zhuhao; Sun, Yue; Guo, Shi-Shang; Zhao, Xing-Zhong; Wang, Fu-Bing; Liu, Wei

    2018-04-01

    Nanotechnology possesses the potential to revolutionize the diagnosis and treatment of tumors. The ideal nanoparticles used for in vivo cancer therapy should have long blood circulation times and active cancer targeting. Additionally, they should be harmless and invisible to the immune system. Here, we developed a biomimetic nanoplatform with the above properties for cancer therapy. Macrophage membranes were reconstructed into vesicles and then coated onto magnetic iron oxide nanoparticles (Fe3O4 NPs). Inherited from the Fe3O4 core and the macrophage membrane shell, the resulting Fe3O4@MM NPs exhibited good biocompatibility, immune evasion, cancer targeting and light-to-heat conversion capabilities. Due to the favorable in vitro and in vivo properties, biomimetic Fe3O4@MM NPs were further used for highly effective photothermal therapy of breast cancer in nude mice. Surface modification of synthetic nanomaterials with biomimetic cell membranes exemplifies a novel strategy for designing an ideal nanoplatform for translational medicine.

  3. Iron oxide-based nanomagnets in nanomedicine: fabrication and applications

    Directory of Open Access Journals (Sweden)

    Meng Meng Lin

    2010-02-01

    Full Text Available Iron oxide-based nanomagnets have attracted a great deal of attention in nanomedicine over the past decade. Down to the nanoscale, superparamagnetic iron oxide nanoparticles can only be magnetized in the presence of an external magnetic field, which makes them capable of forming stable colloids in a physio-biological medium. Their superparamagnetic property, together with other intrinsic properties, such as low cytotoxicity, colloidal stability, and bioactive molecule conjugation capability, makes such nanomagnets ideal in both in-vitro and in-vivo biomedical applications. In this review, a chemical, physical, and biological synthetic approach to prepare iron oxide-based nanomagnets with different physicochemical properties was illustrated and compared. The growing interest in iron oxide-based nanomagnets with multifunctionalities was explored in cancer diagnostics and treatment, focusing on their combined roles in a magnetic resonance contrast agent, hyperthermia, and magnetic force assisted drug delivery. Iron oxides as magnetic carriers in gene therapy were reviewed with a focus on the sophisticated design and construction of magnetic vectors. Finally, the iron oxide-based nanomagnet also represents a very promising tool in particle/cell interfacing in controlling cellular functionalities, such as adhesion, proliferation, differentiation, and cell patterning, in stem cell therapy and tissue engineering applications. Meng Meng Lin received a BSc in biotechnology at the University of Hong Kong, China in 2004 and an MSc in biomedical nanotechnology at Newcastle University, UK, in 2005. She is currently working toward her PhD at the Institute of Science and Technology in Medicine, Keele University, UK. She was a visiting student at the Royal Institute of Technology, Sweden, in 2006. Her research interests include nanoparticles preparation, cell/nanomaterials interface, and cancer-oriented drug delivery. Hyung-Hwan Kim received an MSc degree in

  4. One-pot synthesis of water soluble iron nanoparticles using rationally-designed peptides and ligand release.

    Science.gov (United States)

    Papst, Stefanie; Cheong, Soshan; Banholzer, Moritz J; Brimble, Margaret A; Williams, David E; Tilley, Richard D

    2013-05-18

    Herein we report the rational design of new phosphopeptides for control of nucleation, growth and aggregation of water-soluble, superparamagnetic iron-iron oxide core-shell nanoparticles. The use of the designed peptides enables a one-pot synthesis that avoids utilizing unstable or toxic iron precursors, organic solvents, and the need for exchange of capping agent after synthesis of the NPs.

  5. The electrochemical transfer reactions and the structure of the iron|oxide layer|electrolyte interface

    International Nuclear Information System (INIS)

    Petrović, Željka; Metikoš-Huković, Mirjana; Babić, Ranko

    2012-01-01

    The thickness, barrier (protecting) and semiconducting properties of the potentiostatically formed oxide films on the pure iron electrode in an aqueous borate buffer solution were investigated by electrochemical quartz crystal nanobalance (EQCN), electrochemical impedance spectroscopy (EIS), and Mott–Schottky (MS) analysis. The thicknesses of the prepassive Fe(II)hydroxide layer (up to monolayer) nucleated on the bare iron surface and the passive Fe(II)/Fe(III) layer (up to 2 nm), deposited on the top of the first one, were determined using in situ gravimetry. Electronic properties of iron prepassive and passive films as well as ionic and electronic transfer reactions at the film|solution interface were discussed on the basis of a band structure model of the surface oxide film and the potential distribution at the interface. The anodic oxide film formation and cathodic decomposition are coupled processes and their reversible inter-conversion is mediated by the availability of free charge carriers on the electrode|solution interface. The structure of the reversible double layer at the iron oxide|solution interface was discussed based on the concept of the specific adsorption of the imidazolium cation on the negatively charged electrode surface at pH > pH pzc .

  6. Preparation and characterization of hydroxyapatite-coated iron oxide particles by spray-drying technique

    Directory of Open Access Journals (Sweden)

    karina Donadel

    2009-06-01

    Full Text Available Magnetic particles of iron oxide have been increasingly used in medical diagnosis by magnetic resonance imaging and in cancer therapies involving targeted drug delivery and magnetic hyperthermia. In this study we report the preparation and characterization of iron oxide particles coated with bioceramic hydroxyapatite by spray-drying. The iron oxide magnetic particles (IOMP were coated with hydroxyapatite (HAp by spray-drying using two IOMP/HAp ratios (0.7 and 3.2. The magnetic particles were characterized by way of scanning electronic microscopy, energy dispersive X-ray, X-ray diffraction, Fourier transformed infrared spectroscopy, flame atomic absorption spectrometry,vibrating sample magnetometry and particle size distribution (laser diffraction. The surface morphology of the coated samples is different from that of the iron oxide due to formation of hydroxyapatite coating. From an EDX analysis, it was verified that the surface of the coated magnetic particles is composed only of HAp, while the interior containsiron oxide and a few layers of HAp as expected. The results showed that spray-drying technique is an efficient and relatively inexpensive method for forming spherical particles with a core/shell structure.As partículas de óxido de ferro têm sido extensivamente usadas em diagnósticos médicos como agente de contraste para imagem por ressonância magnética e na terapia do câncer, dentre estas, liberação de fármacos em sitos alvos e hipertermia magnética. Neste estudo nós reportamos a preparação e caracterização de partículas magnéticas de óxido de ferro revestidas com a biocerâmica hidroxiapatita. As partículas magnéticasde óxido de ferro (PMOF foram revestidas com hidroxiapatita por spray-drying usando duas razões PMOF/HAp (0,7 e 3,2. As partículas magnéticas foram caracterizadas por microscopia eletrônica de varredura, energia dispersiva de raios X, difração de raios X, espectroscopia de absorção no infra

  7. Effect of magnetic field on the zero valent iron induced oxidation reaction

    International Nuclear Information System (INIS)

    Kim, Dong-hyo; Kim, Jungwon; Choi, Wonyong

    2011-01-01

    Highlights: → We investigate the zero valent iron induced oxidation in the presence of magnetic field. → The oxidative degradation of 4-chlorophenol is enhanced by the magnetic field. → ESR measurement confirms that more OH radicals are generated in the presence of magnetic field. → The magnetic field affects the mass transfer of O 2 and the recombination of radicals. - Abstract: The magnetic field (MF) effect on the zero valent iron (ZVI) induced oxidative reaction was investigated for the first time. The degradation of 4-chlorophenol (4-CP) in the ZVI system was employed as the test oxidative reaction. MF markedly enhanced the degradation of 4-CP with the concurrent production of chlorides. The consumption of dissolved O 2 by ZVI reaction was also enhanced in the presence of MF whereas the competing reaction of H 2 production from proton reduction was retarded. Since the ZVI-induced oxidation is mainly driven by the in situ generated hydroxyl radicals, the production of OH radicals was monitored by the spin trap method using electron spin resonance (ESR) spectroscopy. It was confirmed that the concentration of trapped OH radicals was enhanced in the presence of MF. Since both O 2 and Fe 0 are paramagnetic, the diffusion of O 2 onto the iron surface might be accelerated under MF. The magnetized iron can attract oxygen on itself, which makes the mass transfer process faster. As a result, the surface electrochemical reaction between Fe 0 and O 2 can be accelerated with the enhanced production of OH radicals. MF might retard the recombination of OH radicals as well.

  8. Design of near-infrared fluorescent bioactive conjugated functional iron oxide nanoparticles for optical detection of colon cancer

    Directory of Open Access Journals (Sweden)

    Corem-Salkmon E

    2012-10-01

    Full Text Available Enav Corem-Salkmon, Benny Perlstein, Shlomo MargelThe Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan, IsraelBackground: Colon cancer is one of the major causes of death in the Western world. Early detection significantly improves long-term survival for patients with the disease. Near-infrared (NIR fluorescent nanoparticles hold great promise as contrast agents for tumor detection. NIR offers several advantages for bioimaging compared with fluorescence in the visible spectrum, ie, lower autofluorescence of biological tissues, lower absorbance, and consequently deeper penetration into biomatrices.Methods and results: NIR fluorescent iron oxide nanoparticles with a narrow size distribution were prepared by nucleation, followed by controlled growth of thin iron oxide films onto cyanine NIR dye conjugated gelatin-iron oxide nuclei. For functionalization, and in order to increase the NIR fluorescence intensity, the NIR fluorescent iron oxide nanoparticles obtained were coated with human serum albumin containing cyanine NIR dye. Leakage of the NIR dye from these nanoparticles into phosphate-buffered saline solution containing 4% albumin was not detected. The work presented here is a feasibility study to test the suitability of iron oxide-human serum albumin NIR fluorescent nanoparticles for optical detection of colon cancer. It demonstrates that encapsulation of NIR fluorescent dye within these nanoparticles significantly reduces photobleaching of the dye. Tumor-targeting ligands, peanut agglutinin and anticarcinoembryonic antigen antibodies (αCEA, were covalently conjugated with the NIR fluorescent iron oxide-human serum albumin nanoparticles via a poly(ethylene glycol spacer. Specific colon tumor detection was demonstrated in chicken embryo and mouse models for both nonconjugated and the peanut agglutinin-conjugated or αCEA-conjugated NIR fluorescent iron oxide-human serum albumin

  9. Effect of selective removal of organic matter and iron oxides on the ...

    African Journals Online (AJOL)

    The effect of selective removal of organic matter and amorphous and crystalline iron oxides on N2-BET specific surface areas of some soil clays was evaluated. Clay fractions from 10 kaolinitic tropical soils were successively treated to remove organic matter by oxidation with Na hypochlorite, amorphous Fe oxide with acid ...

  10. Watermelon-like iron nanoparticles: Cr doping effect on magnetism and magnetization interaction reversal

    Science.gov (United States)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark; Engelhard, Mark H.; Wu, Yaqiao; Tang, Jinke; Qiang, You

    2013-08-01

    Cr-doped core-shell iron/iron-oxide nanoparticles (NPs) containing 0, 2, 5, and 8 at.% of Cr dopant were synthesized via a nanocluster deposition system and their structural and magnetic properties were investigated. We observed the formation of a σ-FeCr phase in 2 at.% of Cr doping in core-shell NPs. This is unique since it was reported in the past that the σ-phase forms above 20 at.% of Cr. The large coercive field and exchange bias are ascribed to the antiferromagnetic Cr2O3 layer formed with the Fe-oxide shell, which also acts as a passivation layer to decrease the Fe-oxide shell thickness. The additional σ-phase in the core and/or Cr2O3 in the shell cause the hysteresis loop to appear tight waisted near the zero-field axis. The exchange interaction competes with the dipolar interaction with the increase of σ-FeCr grains in the Fe-core. The interaction reversal has been observed in 8 at.% of Cr. The observed reversal mechanism is confirmed from the Henkel plot and delta M value, and is supported by a theoretical watermelon model based on the core-shell nanostructure system.

  11. Evaluation of umbilical cord mesenchymal stem cells labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-Lysine

    International Nuclear Information System (INIS)

    Sibov, Tatiana Tais; Mamani, Javier Bustamante; Pavon, Lorena Favaro; Cardenas, Walter Humberto; Gamarra, Lionel Fernel; Miyaki, Liza Aya Mabuchi; Marti, Luciana Cavalheiro; Sardinha, Luiz Roberto; Oliveira, Daniela Mara de

    2012-01-01

    Objective: The objective of this study was to evaluate the effect of the labeling of umbilical cord vein derived mesenchymal stem cells with superparamagnetic iron oxide nanoparticles coated with dextran and complexed to a non-viral transfector agent transfector poly-L-lysine. Methods: The labeling of mesenchymal stem cells was performed using the superparamagnetic iron oxide nanoparticles/dextran complexed and not complexed to poly-L-lysine. Superparamagnetic iron oxide nanoparticles/dextran was incubated with poly-L-lysine in an ultrasonic sonicator at 37 deg C for 10 minutes for complex formation superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine by electrostatic interaction. Then, the mesenchymal stem cells were incubated overnight with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran. After the incubation period the mesenchymal stem cells were evaluated by internalization of the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine and superparamagnetic iron oxide nanoparticles/dextran by Prussian Blue stain. Cellular viability of labeled mesenchymal stem cells was evaluated by cellular proliferation assay using 5,6-carboxyfluorescein-succinimidyl ester method and apoptosis detection by Annexin V- Propidium Iodide assay. Results: mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles/ dextran without poly-L-lysine not internalized efficiently the superparamagnetic iron oxide nanoparticles due to its low presence detected within cells. Mesenchymal stem cells labeled with the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine efficiently internalized the superparamagnetic iron oxide nanoparticles due to greater presence in the cells interior. The viability and apoptosis assays demonstrated that the mesenchymal stem cells labeled and not labeled respectively with the superparamagnetic iron oxide

  12. Effect of the hybrid composition on the physicochemical properties and morphology of iron oxide–gold nanoparticles

    International Nuclear Information System (INIS)

    Barnett, C. M.; Gueorguieva, M.; Lees, M. R.; McGarvey, D. J.; Darton, R. J.; Hoskins, C.

    2012-01-01

    Hybrid nanoparticles (HNPs) formed from iron oxide cores and gold nano-shells are becoming increasingly applicable in biomedicine. However, little investigation has been carried out on the effects of the constituent components on their physical characteristics. Here we determine the effect of polymer intermediate, gold nano-shell thickness and magnetic iron oxide core diameter on the morphological and physical properties of these nano-hybrids. Our findings suggest that the use of polymer intermediate directly impacts the morphology of the nanostructure formed. Here, we observed the formation of nano-sphere and nano-star structures by varying the cationic polymer intermediate. The nano-stars formed have a larger magnetic coercivity, T 2 relaxivity and exhibited a unique characteristic nano-heating pattern upon laser irradiation. Increasing the iron oxide core diameter resulted in a greater T 2 relaxivity enhanced and nano-heating capabilities due to increased surface area. Increasing the gold nano-shell thickness resulted in a decreased efficiency as a nano-heater along with a decrease in T 2 relaxivity. These results highlight the importance of identifying the key traits required when fabricating HNPs in order to tailor them to specific applications.

  13. Application of cylinder symmetry to iron and titanium oxidation by oxygen or hydrogen-water vapour mixes

    International Nuclear Information System (INIS)

    Raynaud, Pierre

    1980-01-01

    This research thesis addresses the study of the oxidation reaction in the case of corrosion of iron by oxygen, hydrogen sulphide or hydrogen-water vapour mixes, and in the case of oxidation of titanium and of titanium nitride by hydrogen-water vapour mixes. It first addresses the corrosion of iron by oxygen with an experiment performed in cylinder symmetry: description of operational conditions, discussion of kinetic curves, development of a law of generation of multiple layers in cylinder symmetry, analytical exploitation of experimental results. The second part addresses the oxidation of iron by hydrogen-water vapour mixes: experimental conditions, influence of temperature on kinetics, micrographic study (oxide morphology, coating morphology, interpretation of differences with the case of plane symmetry), discussion of the influence of cylinder symmetry on oxidation kinetics. The third part addresses the oxidation of titanium by hydrogen-water vapour mixes: global kinetic evolution, reaction products and micrographic examination, morphology and texture studies, discussion of the oxidation mechanism and of cylinder symmetry [fr

  14. Clearance of iron oxide particles in rat liver: effect of hydrated particle size and coating material on liver metabolism.

    Science.gov (United States)

    Briley-Saebo, Karen C; Johansson, Lars O; Hustvedt, Svein Olaf; Haldorsen, Anita G; Bjørnerud, Atle; Fayad, Zahi A; Ahlstrom, Haakan K

    2006-07-01

    We sought to evaluate the effect of the particle size and coating material of various iron oxide preparations on the rate of rat liver clearance. The following iron oxide formulations were used in this study: dextran-coated ferumoxide (size = 97 nm) and ferumoxtran-10 (size = 21 nm), carboxydextran-coated SHU555A (size = 69 nm) and fractionated SHU555A (size = 12 nm), and oxidized-starch coated materials either unformulated NC100150 (size = 15 nm) or formulated NC100150 injection (size = 12 nm). All formulations were administered to 165 rats at 2 dose levels. Quantitative liver R2* values were obtained during a 63-day time period. The concentration of iron oxide particles in the liver was determined by relaxometry, and these values were used to calculate the particle half-lives in the liver. After the administration of a high dose of iron oxide, the half-life of iron oxide particles in rat liver was 8 days for dextran-coated materials, 10 days for carboxydextran materials, 14 days for unformulated oxidized-starch, and 29 days for formulated oxidized-starch. The results of the study indicate that materials with similar coating but different sizes exhibited similar rates of liver clearance. It was, therefore, concluded that the coating material significantly influences the rate of iron oxide clearance in rat liver.

  15. One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal

    International Nuclear Information System (INIS)

    Thakur, Suman; Karak, Niranjan

    2014-01-01

    An environmentally friendly effective technique was demonstrated to prepare iron oxide/reduced graphene oxide nanohybrid (IO/RGO) at room temperature by using banana peel ash aqueous extract as the base source and Colocasia esculenta leaves aqueous extract as the reducing agent. The nanohybrid was characterized by Fourier transform infrared spectroscopy, X-ray diffractometry, transmission electron microscopy, vibrating sample magnetometry, Raman spectroscopy and thermal studies. The results indicated the decoration of superparamagnetic IO nanoparticles on the surface of the RGO. Both organic and inorganic pollutants were effectively removed from the contaminated water (for Pb 2+ and Cd 2+ within 10 min, whereas for tetrabromobisphenol A within 30 min) by IO/RGO. The study revealed that adsorption followed pseudo-second order kinetics and isotherms were well described by the Langmuir model in all the cases. The thermodynamics parameters (ΔG°, ΔS° and ΔH°) were calculated from the temperature dependent isotherms and indicated that the adsorptions were endothermic and spontaneous. - Highlights: • Eco-friendly one step preparation of iron oxide/reduced graphene oxide nanohybrid. • The nanohybrid has excellent pollutants removal capacity from contaminated water. • Superparamagnetic iron oxide nanoparticles help in easy recycle. • The adsorption processes of pollutants are endothermic and spontaneous

  16. One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Suman; Karak, Niranjan, E-mail: karakniranjan@yahoo.com

    2014-04-01

    An environmentally friendly effective technique was demonstrated to prepare iron oxide/reduced graphene oxide nanohybrid (IO/RGO) at room temperature by using banana peel ash aqueous extract as the base source and Colocasia esculenta leaves aqueous extract as the reducing agent. The nanohybrid was characterized by Fourier transform infrared spectroscopy, X-ray diffractometry, transmission electron microscopy, vibrating sample magnetometry, Raman spectroscopy and thermal studies. The results indicated the decoration of superparamagnetic IO nanoparticles on the surface of the RGO. Both organic and inorganic pollutants were effectively removed from the contaminated water (for Pb{sup 2+} and Cd{sup 2+} within 10 min, whereas for tetrabromobisphenol A within 30 min) by IO/RGO. The study revealed that adsorption followed pseudo-second order kinetics and isotherms were well described by the Langmuir model in all the cases. The thermodynamics parameters (ΔG°, ΔS° and ΔH°) were calculated from the temperature dependent isotherms and indicated that the adsorptions were endothermic and spontaneous. - Highlights: • Eco-friendly one step preparation of iron oxide/reduced graphene oxide nanohybrid. • The nanohybrid has excellent pollutants removal capacity from contaminated water. • Superparamagnetic iron oxide nanoparticles help in easy recycle. • The adsorption processes of pollutants are endothermic and spontaneous.

  17. Imaging pathobiology of carotid atherosclerosis with ultrasmall superparamagnetic particles of iron oxide: an update.

    Science.gov (United States)

    Sadat, Umar; Usman, Ammara; Gillard, Jonathan H

    2017-07-01

    To provide brief overview of the developments regarding use of ultrasmall superparamagnetic particles of iron oxide in imaging pathobiology of carotid atherosclerosis. MRI is a promising technique capable of providing morphological and functional information about atheromatous plaques. MRI using iron oxide particles, called ultrasmall superparamagnetic iron oxide (USPIO) particles, allows detection of macrophages in atherosclerotic tissue. Ferumoxytol has emerged as a new USPIO agent, which has an excellent safety profile. Based on the macrophage-selective properties of ferumoxytol, there is increasing number of recent reports suggesting its effectiveness to detect pathological inflammation. USPIO particles allow magnetic resonance detection of macrophages in atherosclerotic tissue. Ferumoxytol has emerged as a new USPIO agent, with an excellent safety profile. This has the potential to be used for MRI of the pathobiology of atherosclerosis.

  18. Iron carbide on titania surface modified with group VA oxides as Fischer-Tropsch catalysts

    International Nuclear Information System (INIS)

    Wachs, I.E.; Fiato, R.A.; Chersich, C.C.

    1986-01-01

    A catalyst is described comprising iron carbide supported on a surface modified titania wherein the support comprises an oxide of a metal selected form the group consisting of niobium, vanadium, tantalum or mixture thereof supported on the titania wherein at least a portion of the supported oxide of niobium, vanandium, tantalum or mixture is in a non-crystalline form. The amount of the supported oxide ranges from about 0.5 to 25 weight percent metal oxide on the titania support based on the total support composition and the catalyst contains at least about 2 milligrams of iron, calculated as Fe/sub 2/O/sub 3/, per square meter of support surface

  19. Nonequilibrium iron oxide formation in some low-mass post-asymptotic giant branch stars

    Science.gov (United States)

    Rietmeijer, Frans J. M.

    1992-01-01

    Using experimental evidence that under highly oxidizing conditions gamma-Fe2O3 (maghemite) and Fe3O4 display refractory behavior, it is proposed that very low C/O ratios, that could be unique to evolving AGB stars, induce nonequilibrium formation of ferromagnetic iron oxide grains along with chondritic dust. The oxides are preferentially fractionated from chondritic dust in the stellar magnetic field which could account for the observed extreme iron underabundance in their photosphere. A search for the 1-2.5-micron IR absorption feature, or for diagnostic magnetite and maghemite IR absorption features, could show the validity of the model proposed.

  20. Effects of oxygen gas pressure on properties of iron oxide films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Guo, Qixin; Shi, Wangzhou; Liu, Feng; Arita, Makoto; Ikoma, Yoshifumi; Saito, Katsuhiko; Tanaka, Tooru; Nishio, Mitsuhiro

    2013-01-01

    Highlights: ► Pulsed laser deposition is a promising technique for growing iron oxide films. ► Crystal structure of the iron oxide films strongly depends on oxygen gas pressure. ► Optimum of the oxygen gas pressure leads single phase magnetite films with high crystal quality. -- Abstract: Iron oxide films were grown on sapphire substrates by pulsed laser deposition at oxygen gas pressures between 1 × 10 −5 and 1 × 10 −1 Pa with a substrate temperature of 600 °C. Atomic force microscope, X-ray diffraction, Raman spectroscopy, X-ray absorption fine structure, and vibrational sample magnetometer analysis revealed that surface morphology and crystal structure of the iron oxide films strongly depend on the oxygen gas pressure during the growth and the optimum oxygen gas pressure range is very narrow around 1 × 10 −3 Pa for obtaining single phase magnetite films with high crystal quality

  1. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

    Science.gov (United States)

    Woodman, Andrew G; Mah, Richard; Keddie, Danae; Noble, Ronan M N; Panahi, Sareh; Gragasin, Ferrante S; Lemieux, Hélène; Bourque, Stephane L

    2018-06-01

    Prenatal iron deficiency alters fetal developmental trajectories, which results in persistent changes in organ function. Here, we studied the effects of prenatal iron deficiency on fetal kidney and liver mitochondrial function. Pregnant Sprague-Dawley rats were fed partially or fully iron-restricted diets to induce a state of moderate or severe iron deficiency alongside iron-replete control rats. We assessed mitochondrial function via high-resolution respirometry and reactive oxygen species generation via fluorescence microscopy on gestational d 21. Hemoglobin levels were reduced in dams in the moderate (-31%) and severe groups (-54%) compared with controls, which was accompanied by 55% reductions in fetal hemoglobin levels in both moderate and severe groups versus controls. Male iron-deficient kidneys exhibited globally reduced mitochondrial content and respiration, as well as increased cytosolic superoxide and decreased NO. Female iron-deficient kidneys exhibited complex II down-regulation and increased mitochondrial oxidative stress. Male iron-deficient livers exhibited reduced complex IV respiration and increased cytosolic superoxide, whereas female liver tissues exhibited no alteration in oxidant levels or mitochondrial function. These findings indicate that prenatal iron deficiency causes changes in mitochondrial content and function as well as oxidant status in a sex- and organ-dependent manner, which may be an important mechanism that underlies the programming of cardiovascular disease.-Woodman, A. G., Mah, R., Keddie, D., Noble, R. M. N., Panahi, S., Gragasin, F. S., Lemieux, H., Bourque, S. L. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

  2. Size-resolved mass concentrations of iron oxide aerosols and size-resolved number concentrations of iron oxide aerosols collected from King Air aircraft in Yellow Sea and East China Sea from 2013-02-14 to 2013-03-10 (NCEI Accession 0162201)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains size-resolved mass concentrations of iron oxide aerosols and size-resolved number concentrations of iron oxide aerosols, measured using the...

  3. The influence of oxidation process on exchange bias in egg-shaped FeO/Fe{sub 3}O{sub 4} core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Leszczyński, Błażej, E-mail: b.leszczynski@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Hadjipanayis, George C.; El-Gendy, Ahmed A. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States); Załęski, Karol [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Śniadecki, Zbigniew [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Musiał, Andrzej [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Jarek, Marcin [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Jurga, Stefan [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Skumiel, Andrzej [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2016-10-15

    Egg-shaped nanoparticles with a core–shell morphology were synthesized by thermal decomposition of an iron oleate complex. XRD and M(T) magnetic measurements confirmed the presence of FeO (wustite) and Fe{sub 3}O{sub 4} (magnetite) phases in the nanoparticles. Oxidation of FeO to Fe{sub 3}O{sub 4} was found to be the mechanism for the shell formation. As-made nanoparticles exhibited high values of exchange bias at 2 K. Oxidation led to decrease of exchange field from 2880 Oe (in as-made sample) to 330 Oe (in oxidized sample). At temperatures higher than the Néel temperature of FeO (200 K) there was no exchange bias. An interesting observation was made showing the exchange field to be higher than the coercive field at temperatures close to magnetite's Verwey transition. - Highlights: • Synthesis of monodispersed FeO nanoparticles is shown. • As-made FeO nanoparticle is antiferromagnetically ordered, when it is oxidized to Fe{sub 3}O{sub 4}, the FeO core becomes small and disordered. • Exchange bias in well-ordered and disordered core is different.

  4. Effect of Iron Enriched Bread Intake on the Oxidative Stress Indices in Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Sharareh Heidari

    2016-08-01

    Full Text Available Background Contrary to the proven benefits of iron, few concerns in producing the oxidative stress is remained problematic. Objectives The aim of the study was to evaluate the oxidative stress in the male Wistar rats fed bread supplemented with iron in different doses i.e., 35 (basic, 70 (two fold, 140 (four fold, and 210 mg/kg (six fold with or without NaHCO3 (250 mg/kg. Methods In this experimental study Iron, ceruloplasmin, ferritin, total iron binding capacity (TIBC, albumin, total protein, uric acid and plasma superoxide dismutase (SOD, glutathione peroxidase (GPX, catalase (CAT, malondialdehyde (MDA, and total antioxidant capacity (TAC, were evaluated in 30 rats at the first and last day of the experiment (day 30. In addition, phytic acid levels were detected in all baked breads. The data were analyzed by ANOVA and t test procedure though SPSS statistical software version 20. Results Serum iron level in rats that received basic level of iron plus NaHCO3 decreased significantly in the last day of the trial. Higher level of serum iron was seen in rats that received iron twofold, fourfold and sixfold and rats that received iron fourfold plus NaHCO3. Serum ceruloplasmin and ferritin in groups of rats that received fourfold level of iron plus NaHCO3 and rats that received iron sixfold showed a significant increase (P ≤ 0.05. Serum total protein and uric acid in rats that received basic level of iron plus NaHCO3 and rats that received twofold level of iron showed a significant decrease. Serum total protein levels in rats that received fourfold level of iron showed a significant decrease. Bread with NaHCO3 showed higher phytic acid levels than other groups. Conclusions These results indicate that oxidative stress was not induced, whereas some antioxidant activities were significantly changed in rats that received iron-enriched bread.

  5. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles

    International Nuclear Information System (INIS)

    Lu, B.; Dong, X.L.; Huang, H.; Zhang, X.F.; Zhu, X.G.; Lei, J.P.; Sun, J.P.

    2008-01-01

    Iron (Fe) and nickel (Ni) nanoparticles were prepared by the DC arc-discharge method in a mixture of hydrogen and argon gases, using bulk metals as the raw materials. The microstructure of core/shell (metal/metal oxide) in nanoparticle formed after in situ passivation process. The complex electromagnetic parameters (permittivity ε r =ε r ' +iε r '' and permeability μ r =μ r ' +iμ r '' ) of the paraffin-mixed nanocomposite samples (paraffin:nanoparticles=1:1 in mass ratio) were measured in the frequency range of 2-18 GHz. The polarization mechanisms of the space charge and dipole coexist in both the Fe and Ni nanoparticles. The orientational polarization is a particular polarization for Fe nanoparticles and brings a relatively higher dielectric loss. Natural resonance is the main reason for magnetic loss and the corresponding frequencies are 11.6 and 5.2 GHz for the Fe and Ni nanoparticles, respectively. The paraffin composite with Fe nanoparticles provided excellent microwave absorption properties (reflection loss <-20 dB) in the range 6.8-16.6 GHz over the absorber thickness of 1.1-2.3 mm

  6. Quasi-isentropic Compression of Iron and Magnesium Oxide to 3 Mbar at the Omega Laser Facility

    Science.gov (United States)

    Wang, J.; Smith, R. F.; Coppari, F.; Eggert, J. H.; Boehly, T.; Collins, G.; Duffy, T. S.

    2011-12-01

    Developing a high-pressure, modest temperature ramp compression drive permits exploration of new regions of thermodynamic space, inaccessible through traditional methods of shock or static compression, and of particular relevance to material conditions found in planetary interiors both within and outside our solar system. Ramp compression is a developing technique that allows materials to be compressed along a quasi-isentropic path and provides the ability to study materials in the solid state to higher pressures than can be achieved with diamond anvil cell or shock wave methods. Iron and magnesium oxide are geologically important materials each representative of one of the two major interior regions (core and mantle) of terrestrial planets. An experimental platform for ramp loading of iron (Fe) and magnesium oxide (MgO), has been established and tested in experiments at the Omega Laser Facility, University of Rochester. Omega is a 60-beam ultraviolet (352 nm) neodymium glass laser which is capable of delivery kilojoules of energy in ~10 ns pulses onto targets of a few mm in dimension. In the current experiments, we used a composite ramped laser pulse involving typically 15 beams with total energy of 2.6-3.3 kJ. The laser beams were used to launch spatially planar ramp compression waves into Fe and MgO targets. Each target had four steps that were approximately 5-7 μm thick. Detection of the ramp wave arrival and its velocity at the free surface of each step was made using a VISAR velocity interferometer. Through the use of Lagrangian analysis on the measured wave profiles, stress-density states in iron and magnesium oxide have been determined to pressures of 291 GPa and 260 GPa respectively. For Fe, the α-ɛ transition of iron is overdriven by an initial shock pulse of ~90.1 GPa followed by ramp compression to the peak pressure. The results will be compared with shock compression and diamond anvil cell data for both materials. We acknowledge the Omega staff at

  7. Growth and properties of epitaxial iron oxide layers

    NARCIS (Netherlands)

    Voogt, F.C; Fujii, T; Hibma, T; Zhang, G.L.; Smulders, P.J M

    1996-01-01

    Epitaxial layers of iron oxides have been grown on a MgO(001) substrate by evaporating natural Fe or Fe-57 from Knudsen cells in the presence of a NO2 flow directed to the substrate. The resulting layers have been investigated in situ with LEED, RHEED, AES and XPS and ex situ with GEMS and ion beam

  8. Effects of manganese oxide and sulphate on the olefin selectivity of iron catalysts in the Fischer Tropsch reaction

    NARCIS (Netherlands)

    Dijk, van W.L.; Niemantsverdriet, J.W.; Kraan, van der A.M.; van der Baan, Hessel

    1982-01-01

    Although it has been claimed by various authors that the addition of manganese oxide, MnO, to an iron catalyst gives a marked increase in the olefin selectivity of iron catalysts, we have been unable to confirm these claims in Fischer Tropsch experiments at 513 K for an iron manganese oxide catalyst

  9. Surface and Core Electronic Structure of Oxidized Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    Noor A. Nama

    2010-01-01

    Full Text Available Ab initio restricted Hartree-Fock method within the framework of large unit cell formalism is used to simulate silicon nanocrystals between 216 and 1000 atoms (1.6–2.65 nm in diameter that include Bravais and primitive cell multiples. The investigated properties include core and oxidized surface properties. Results revealed that electronic properties converge to some limit as the size of the nanocrystal increases. Increasing the size of the core of a nanocrystal resulted in an increase of the energy gap, valence band width, and cohesive energy. The lattice constant of the core and oxidized surface parts shows a decreasing trend as the nanocrystal increases in a size that converges to 5.28 Ǻ in a good agreement with the experiment. Surface and core convergence to the same lattice constant reflects good adherence of oxide layer at the surface. The core density of states shows highly degenerate states that split at the oxygenated (001-(1×1 surface due to symmetry breaking. The nanocrystal surface shows smaller gap and higher valence and conduction bands when compared to the core part, due to oxygen surface atoms and reduced structural symmetry. The smaller surface energy gap shows that energy gap of the nanocrystal is controlled by the surface part. Unlike the core part, the surface part shows a descending energy gap that proves its obedience to quantum confinement effects. Nanocrystal geometry proved to have some influence on all electronic properties including the energy gap.

  10. Synthesis, Characterization, and Evaluation of Boron-Doped Iron Oxides for the Photocatalytic Degradation of Atrazine under Visible Light

    Directory of Open Access Journals (Sweden)

    Shan Hu

    2012-01-01

    Full Text Available Photocatalytic degradation of atrazine by boron-doped iron oxides under visible light irradiation was investigated. In this work, boron-doped goethite and hematite were successfully prepared by sol-gel method with trimethylborate as boron precursor. The powders were characterized by XRD, UV-vis diffuse reflectance spectra, and porosimetry analysis. The results showed that boron doping could influence the crystal structure, enlarge the BET surface area, improve light absorption ability, and narrow their band-gap energy. The photocatalytic activity of B-doped iron oxides was evaluated in the degradation of atrazine under the visible light irradiation, and B-doped iron oxides showed higher atrazine degradation rate than that of pristine iron oxides. Particularly, B-doped goethite exhibited better photocatalytic activity than B-doped hematite.

  11. Oxidized Carbo-Iron causes reduced reproduction and lower tolerance of juveniles in the amphipod Hyalella azteca

    Energy Technology Data Exchange (ETDEWEB)

    Weil, Mirco, E-mail: m.weil@ect.de [ECT Oekotoxikologie GmbH, Böttgerstrasse 2-14, 65439 Flörsheim (Germany); Meißner, Tobias, E-mail: tmeiss@gmx.net [Fraunhofer Institute for Ceramic Technologies and Systems, Winterbergstrasse 28, 01277 Dresden (Germany); Springer, Armin, E-mail: armin.springer@nano.tu-dresden.de [Dresden University of Technology, Budapesterstrasse 27, 01069 Dresden (Germany); Bundschuh, Mirco, E-mail: mirco.bundschuh@slu.se [Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala (Sweden); Institute for Environmental Sciences, University of Koblenz-Landau, Forststrasse 7, 76829 Landau (Germany); Hübler, Lydia, E-mail: lydia.huebler@gmail.com [ECT Oekotoxikologie GmbH, Böttgerstrasse 2-14, 65439 Flörsheim (Germany); Schulz, Ralf, E-mail: schulz@uni-landau.de [Institute for Environmental Sciences, University of Koblenz-Landau, Forststrasse 7, 76829 Landau (Germany); Duis, Karen, E-mail: k-duis@ect.de [ECT Oekotoxikologie GmbH, Böttgerstrasse 2-14, 65439 Flörsheim (Germany)

    2016-12-15

    Highlights: • Effects on growth, reproduction and survival at ≥12.5 mg of oxidized Carbo-Iron/L were studied. • Carbo-Iron significantly increases sensitivity of offspring from exposed amphipods. • Toxicity is most likely mediated by an impaired uptake of nutrients and energy. - Abstract: For in situ remediation of groundwater contaminated by halogenated hydrocarbons Carbo-Iron{sup ®}, a composite of microscale activated carbon and nano Fe{sup 0}, was developed. Against the background of intended release of Carbo-Iron into the environment in concentrations in the g/L-range, potential ecotoxicological consequences were evaluated in the present study. The nano Fei{sup 0} in Carbo-Iron acts as reducing agent and is oxidized in aqueous systems by chlorinated solvents, groundwater constituents (e.g. dissolved oxygen) and anaerobic corrosion. As Carbo-Iron is generally oxidized rapidly after application into the environment, the oxidized state is environmentally most relevant, and Carbo-Iron was used in its oxidized form in the ecotoxicological tests. The amphipod Hyalella azteca was selected as a surrogate test species for functionally important groundwater crustaceans. Effects of Carbo-Iron on H. azteca were determined in a 10-d acute test, a 7-d feeding activity test and a 42-d chronic test. Additionally, a 56-d life cycle test was performed with a modified design to further evaluate effects of Carbo-Iron on adult H. azteca and their offspring. The size of Carbo-Iron particles in stock and test suspensions was determined via dynamic light scattering. Potential uptake of particles into test organisms was investigated using transmission and scanning electron microscopy. At the termination of the feeding and acute toxicity test (i.e. after 7 and 10 d of exposure, respectively), Carbo-Iron had a significant effect on the weight, length and feeding rate of H. azteca at the highest test concentration of 100 mg/L. While an uptake of Carbo-Iron into the gut was

  12. Sulfate Adsorption on Iron Nanocomposites on Graphene Oxide and Activated Carbon Beds

    Directory of Open Access Journals (Sweden)

    Rezvan Birooni

    2017-01-01

    Full Text Available This study is an experimental investigation of sulfate removal efficiency using iron nanocomposites on graphene oxide and activated carbon beds. The graphene oxide used was synthesized according to the Hummer method during which process graphene oxide and activated carbon were added. The effects of various parameters including adsorbent content, pH, and contact time on adsorption were investigated. Furthermore, the data were subjected to kinetic studies. Results revealed that the highest absorption rates of 84% and 62% were achieved for iron on the graphene oxide and activated carbon beds, respectively, when 0.06 g of the adsorbent was used at pH =11 over a contact time of 9 hours. It was also found that the kinetic pseudo-second-order model best fit the data. Finally, the results indicated that the two environmentally-friendly adsorbents have a good potential for removing sulfate from aqueous solutions.

  13. Iron Oxide Nanoparticle-Based Magnetic Ink Development for Fully Printed Tunable Radio-Frequency Devices

    KAUST Repository

    Vaseem, Mohammad

    2018-01-30

    The field of printed electronics is still in its infancy and most of the reported work is based on commercially available nanoparticle-based metallic inks. Although fully printed devices that employ dielectric/semiconductor inks have recently been reported, there is a dearth of functional inks that can demonstrate controllable devices. The lack of availability of functional inks is a barrier to the widespread use of fully printed devices. For radio-frequency electronics, magnetic materials have many uses in reconfigurable components but rely on expensive and rigid ferrite materials. A suitable magnetic ink can facilitate the realization of fully printed, magnetically controlled, tunable devices. This report presents the development of an iron oxide nanoparticle-based magnetic ink. First, a tunable inductor is fully printed using iron oxide nanoparticle-based magnetic ink. Furthermore, iron oxide nanoparticles are functionalized with oleic acid to make them compatible with a UV-curable SU8 solution. Functionalized iron oxide nanoparticles are successfully embedded in the SU8 matrix to make a magnetic substrate. The as-fabricated substrate is characterized for its magnetostatic and microwave properties. A frequency tunable printed patch antenna is demonstrated using the magnetic and in-house silver-organo-complex inks. This is a step toward low-cost, fully printed, controllable electronic components.

  14. Safety implications of high-field MRI: actuation of endogenous magnetic iron oxides in the human body.

    Directory of Open Access Journals (Sweden)

    Jon Dobson

    Full Text Available Magnetic Resonance Imaging scanners have become ubiquitous in hospitals and high-field systems (greater than 3 Tesla are becoming increasingly common. In light of recent European Union moves to limit high-field exposure for those working with MRI scanners, we have evaluated the potential for detrimental cellular effects via nanomagnetic actuation of endogenous iron oxides in the body.Theoretical models and experimental data on the composition and magnetic properties of endogenous iron oxides in human tissue were used to analyze the forces on iron oxide particles.Results show that, even at 9.4 Tesla, forces on these particles are unlikely to disrupt normal cellular function via nanomagnetic actuation.

  15. Minerals of oxidation zone of the Chokadambulaq iron deposit

    International Nuclear Information System (INIS)

    Safaraliev, N.S.

    2008-01-01

    The zone of oxidation of Chokadambulaq iron deposit has original mineral composition, which characterized specificity of their formation. Here is formed a secondary zone of enrichment marit ores, having practical meaning. In last is concentrated from 0.5 up to 1.0% from total quantities of reserves

  16. Iron oxides and quality of organic matter in sugarcane harvesting systems

    Directory of Open Access Journals (Sweden)

    Diogo Mazza Barbieri

    2014-08-01

    Full Text Available Improvements in working conditions, sustainable production, and competitiveness have led to substantial changes in sugarcane harvesting systems. Such changes have altered a number of soil properties, including iron oxides and organic matter, as well as some chemical properties, such as the maximum P adsorption capacity of the soil. The aim of this study was to characterize the relationship between iron oxides and the quality of organic matter in sugarcane harvesting systems. For that purpose, two 1 ha plots in mechanically and manually harvested fields were used to obtain soil samples from the 0.00-0.25 m soil layer at 126 different points. The mineralogical, chemical, and physical results were subjected to descriptive statistical analyses, such as the mean comparison test, as well as to multivariate statistical and principal component analyses. Multivariate tests allowed soil properties to be classified in two different groups according to the harvesting method: manual harvest with the burning of residual cane, and mechanical harvest without burning. The mechanical harvesting system was found to enhance pedoenvironmental conditions, leading to changes in the crystallinity of iron oxides, an increase in the humification of organic matter, and a relative decrease in phosphorus adsorption in this area compared to the manual harvesting system.

  17. Iron oxide contrast media improve MR-imaging of the portal venous system -an experimental study

    International Nuclear Information System (INIS)

    Boeck, J.C.; Knollmann, F.D.; Teltenkoetter, S.; Wlodarcyk, W.; Muehler, A.; Felix, R.

    1997-01-01

    Purpose: The aim was to demonstrate that intravenous superparamagnetic iron oxide contrast agents improve the delineation of the portal venous system. Material and methods: The portal venous system of 8 minipigs was demonstrated by a FLASH 2-D MRA-sequence. Scans were acquired before and after intravenous administration of 10 and 20 μmol/kg of a superparamagnetic iron oxide contrast agent (SHU 555 A). Signal intensities were measured in the portal vein and hepatic parenchym and contrast-to-noise ratios were calculated. Results: Following a cumulative dose of 10 μmol iron oxide, hepatic parenchymal signal intensity decreased to 67±6%, following 20 μmol to 29±4%, and following 40 μmol to 13±2% of control (p [de

  18. Cyclic Oxidation and Hot Corrosion Behavior of Nickel-Iron-Based Superalloy

    Science.gov (United States)

    Chellaganesh, D.; Adam Khan, M.; Winowlin Jappes, J. T.; Sathiyanarayanan, S.

    2018-01-01

    The high temperature oxidation and hot corrosion behavior of nickel-iron-based superalloy are studied at 900 ° and 1000 °C. The significant role of alloying elements with respect to the exposed medium is studied in detail. The mass change per unit area was catastrophic for the samples exposed at 1000 °C and gradual increase in mass change was observed at 900 °C for both the environments. The exposed samples were further investigated with SEM, EDS and XRD analysis to study the metallurgical characteristics. The surface morphology has expressed the in situ nature of the alloy and its affinity toward the environment. The EDS and XRD analysis has evidently proved the presence of protective oxides formation on prolonged exposure at elevated temperature. The predominant oxide formed during the exposure at high temperature has a major contribution toward the protection of the samples. The nickel-iron-based superalloy is less prone to oxidation and hot corrosion when compared to the existing alloy in gas turbine engine simulating marine environment.

  19. Ameliorating role of rutin on oxidative stress induced by iron overload in hepatic tissue of rats.

    Science.gov (United States)

    Aziza, Samy Ali Hussein; Azab, Mohammed El-Said; El-Shall, Soheir Kamal

    2014-08-01

    Iron is an essential element that participates in several metabolic activities of cells; however, excess iron is a major cause of iron-induced oxidative stress and several human diseases. Natural flavonoids, as rutin, are well-known antioxidants and could be efficient protective agents. Therefore, the present study was undertaken to evaluate the protective influence of rutin supplementation to improve rat antioxidant systems against IOL-induced hepatic oxidative stress. Sixty male albino rats were randomly divided to three equal groups. The first group, the control, the second group, iron overload group, the third group was used as iron overload+rutin group. Rats received six doses of ferric hydroxide polymaltose (100 mg kg(-1) b.wt.) as one dose every two days, by intraperitoneal injections (IP) and administrated rutin (50 mg kg(-1) b.wt.) as one daily oral dose until the sacrificed day. Blood samples for serum separation and liver tissue specimens were collected three times, after three, four and five weeks from the onset of the experiment. Serum iron profiles total iron, Total Iron Binding Capacity (TIBC), Unsaturated Iron Binding Capacity (UIBC), transferrin (Tf) and Transferrin Saturation% (TS%)}, ferritin, albumin, total Protein, total cholesterol, triacylglycerols levels and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were determined. Moreover, total iron in the liver, L-malondialdehyde (L-MDA), glutathione (GSH), Nitric Oxide (NO) and Total Nucleic Acid (TNA) levels and glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) activities were also determined. The obtained results revealed that, iron overload (IOL) resulted in significant increase in serum iron, TIBC, Tf, TS% and ferritin levels and AST and ALT activities and also increased liver iron, L-MDA and NO levels. Meanwhile, it decreased serum UIBC, total cholesterol, triacylglycerols, albumin, total protein and liver GSH, TNA levels and Gpx, CAT

  20. Graphene oxide significantly inhibits cell growth at sublethal concentrations by causing extracellular iron deficiency.

    Science.gov (United States)

    Yu, Qilin; Zhang, Bing; Li, Jianrong; Du, Tingting; Yi, Xiao; Li, Mingchun; Chen, Wei; Alvarez, Pedro J J

    Graphene oxide (GO)-based materials are increasingly being used in medical materials and consumer products. However, their sublethal effects on biological systems are poorly understood. Here, we report that GO (at 10 to 160 mg/L) induced significant inhibitory effects on the growth of different unicellular organisms, including eukaryotes (i.e. Saccharomyces cerevisiae, Candida albicans, and Komagataella pastoris) and prokaryotes (Pseudomonas fluorescens). Growth inhibition could not be explained by commonly reported cytotoxicity mechanisms such as plasma membrane damage or oxidative stress. Based on transcriptomic analysis and measurement of extra- and intracellular iron concentrations, we show that the inhibitory effect of GO was mainly attributable to iron deficiency caused by binding to the O-functional groups of GO, which sequestered iron and disrupted iron-related physiological and metabolic processes. This inhibitory mechanism was corroborated with supplementary experiments, where adding bathophenanthroline disulfonate-an iron chelating agent-to the culture medium exerted similar inhibition, whereas removing surface O-functional groups of GO decreased iron sequestration and significantly alleviated the inhibitory effect. These findings highlight a potential indirect detrimental effect of nanomaterials (i.e. scavenging of critical nutrients), and encourage research on potential biomedical applications of GO-based materials to sequester iron and enhance treatment of iron-dependent diseases such as cancer and some pathogenic infections.

  1. Iron modified titanium–hafnium binary oxides as catalysts in total oxidation of ethyl acetate

    Czech Academy of Sciences Publication Activity Database

    Tsoncheva, T.; Ivanova, R.; Henych, Jiří; Velinov, N.; Kormunda, M.; Dimitrov, M.; Paneva, D.; Slušná, Michaela; Mitov, I.; Štengl, Václav

    2016-01-01

    Roč. 81, JUN (2016), s. 14-19 ISSN 1566-7367 R&D Projects: GA MŠk LM2015073 Institutional support: RVO:61388980 Keywords : Titania–hafnia binary oxide s * Iron modifications * Support effect * Ethyl acetate oxydation Subject RIV: CA - Inorganic Chemistry Impact factor: 3.330, year: 2016

  2. Iron oxide nanoparticles for plant nutrition? A preliminary Mössbauer study

    Energy Technology Data Exchange (ETDEWEB)

    Homonnay, Z., E-mail: homonnay@caesar.elte.hu [EötvösLoránd University, Institute of Chemistry (Hungary); Tolnai, Gy. [Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry (Hungary); Fodor, F.; Solti, Á. [EötvösLoránd University, Institute of Biology (Hungary); Kovács, K.; Kuzmann, E.; Ábrahám, A. [EötvösLoránd University, Institute of Chemistry (Hungary); Szabó, E. Gy.; Németh, P.; Szabó, L.; Klencsár, Z. [Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry (Hungary)

    2016-12-15

    One of the most important micronutrients for plants is iron. We have prepared iron(III) oxyhydroxide and magnetite nanoparticles with the aim to use them as possible nutrition source for plants. The iron(III)-oxide/oxyhydroxide nanoparticles prepared under our experimental conditions as colloidal suspensions proved to be 6-line ferrihydrite nanoparticles as verified by XRD, TEM/SAED and Mössbauer spectroscopy measurements. {sup 57}Fe Mössbauer spectra of magnetite nanoparticles prepared under different preparation conditions could be analyzed on the basis of a common model based on the superposition of four sextet components displaying Gaussian-shaped hyperfine magnetic field distributions.

  3. Fabrication of polyaniline coated iron oxide hybrid particles and their dual stimuli-response under electric and magnetic fields

    Directory of Open Access Journals (Sweden)

    B. Sim

    2015-08-01

    Full Text Available Polyaniline (PANI-coated iron oxide (Fe3O4 sphere particles were fabricated and applied to a dual stimuliresponsive material under electric and magnetic fields, respectively. Sphere Fe3O4 particles were synthesized by a solvothermal process and protonated after acidification. The aniline monomer tended to surround the surface of the Fe3O4 core due to the electrostatic and hydrogen bond interactions. A core-shell structured product was finally formed by the oxidation polymerization of PANI on the surface of Fe3O4. The formation of Fe3O4@PANI particles was examined by scanning electron microscope and transmission electron microscope. The bond between Fe3O4 and PANI was confirmed by Fourier transform-infrared spectroscope and magnetic properties were analyzed by vibration sample magnetometer. A hybrid of a conducting and magnetic particle-based suspension displayed dual stimuli-response under electric and magnetic fields. The suspension exhibited typical electrorheological and magnetorheological behaviors of the shear stress, shear viscosity and dynamic yield stress, as determined using a rotational rheometer. Sedimentation stability was also compared between Fe3O4 and Fe3O4@PANI suspension.

  4. In vitro cytotoxicity of iron oxide nanoparticles: effects of chitosan and polyvinyl alcohol as stabilizing agents

    Science.gov (United States)

    Tran, Phong A.; Nguyen, Hiep T.; Fox, Kate; Tran, Nhiem

    2018-03-01

    Iron oxide magnetic nanoparticles have significant potential in biomedical applications such as in diagnosis, imaging and therapeutic agent delivery. The choice of stabilizers and surface functionalization is important as it is known to strongly influence the cytotoxicity of the nanoparticles. The present study aimed at investigating the effects of surface charges on the cytotoxicity of iron oxide nanoparticles. We used a co-precipitation method to synthesize iron oxide nanoparticles which were then stabilized with either chitosan (CS) or polyvinyl alcohol (PVA) which have net positive charge and zero charge at physiological pH, respectively. The nanoparticles were characterized in terms of size, charges and chemical oxidation state. Cytotoxicity of the nanoparticles was assessed using mouse fibroblast cells and was correlated with surface charges of the nanoparticles and their aggregation.

  5. Oncoidal granular iron formation in the Mesoarchaean Pongola Supergroup, southern Africa: Textural and geochemical evidence for biological activity during iron deposition.

    Science.gov (United States)

    Smith, A J B; Beukes, N J; Gutzmer, J; Czaja, A D; Johnson, C M; Nhleko, N

    2017-11-01

    We document the discovery of the first granular iron formation (GIF) of Archaean age and present textural and geochemical results that suggest these formed through microbial iron oxidation. The GIF occurs in the Nconga Formation of the ca. 3.0-2.8 Ga Pongola Supergroup in South Africa and Swaziland. It is interbedded with oxide and silicate facies micritic iron formation (MIF). There is a strong textural control on iron mineralization in the GIF not observed in the associated MIF. The GIF is marked by oncoids with chert cores surrounded by magnetite and calcite rims. These rims show laminated domal textures, similar in appearance to microstromatolites. The GIF is enriched in silica and depleted in Fe relative to the interbedded MIF. Very low Al and trace element contents in the GIF indicate that chemically precipitated chert was reworked above wave base into granules in an environment devoid of siliciclastic input. Microbially mediated iron precipitation resulted in the formation of irregular, domal rims around the chert granules. During storm surges, oncoids were transported and deposited in deeper water environments. Textural features, along with positive δ 56 Fe values in magnetite, suggest that iron precipitation occurred through incomplete oxidation of hydrothermal Fe 2+ by iron-oxidizing bacteria. The initial Fe 3+ -oxyhydroxide precipitates were then post-depositionally transformed to magnetite. Comparison of the Fe isotope compositions of the oncoidal GIF with those reported for the interbedded deeper water iron formation (IF) illustrates that the Fe 2+ pathways and sources for these units were distinct. It is suggested that the deeper water IF was deposited from the evolved margin of a buoyant Fe 2+ aq -rich hydrothermal plume distal to its source. In contrast, oncolitic magnetite rims of chert granules were sourced from ambient Fe 2+ aq -depleted shallow ocean water beyond the plume. © 2017 John Wiley & Sons Ltd.

  6. Review of iron oxides for water treatment

    International Nuclear Information System (INIS)

    Navratil, J. D.

    2001-01-01

    Many processes have utilized iron oxides for the treatment of liquid wastes containing radioactive and hazardous metals. These processes have included adsorption, precipitation and other chemical and physical techniques. For example, a radioactive wastewater precipitation process includes addition of a ferric hydroxide floc to scavenge radioactive contaminants, such as americium, plutonium and uranium. Some adsorption processes for wastewater treatment have utilized ferrites and a variety of iron containing minerals. Various ferrites and natural magnetite were used in batch modes for actinide and heavy metal removal from wastewater. Supported magnetite was also used in a column mode, and in the presence of an external magnetic field, enhanced capacity was found for removal of plutonium and americium from wastewater. These observations were explained by a nano-level high gradient magnetic separation effect, as americium, plutonium and other hydrolytic metals are known to form colloidal particles at elevated pHs. Recent modeling work supports this assumption and shows that the smaller the magnetite particle the larger the induced magnetic field around the particle from the external field. Other recent studies have demonstrated the magnetic enhanced removal of arsenic, cobalt and iron from simulated groundwater. (author)

  7. Iron(III Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions

    Directory of Open Access Journals (Sweden)

    Susana L. H. Rebelo

    2016-04-01

    Full Text Available Iron(III fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H2TPFPP and the corresponding iron complex [Fe(TPFPPCl], and the use of [Fe(TPFPPCl] as an oxidation catalyst in green conditions. The preparations of H2TPFPP and [Fe(TPFPPCl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(IIIporphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide and green solvent (ethanol. Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed.

  8. Iron(III) Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions.

    Science.gov (United States)

    Rebelo, Susana L H; Silva, André M N; Medforth, Craig J; Freire, Cristina

    2016-04-12

    Iron(III) fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H₂TPFPP) and the corresponding iron complex [Fe(TPFPP)Cl], and the use of [Fe(TPFPP)Cl] as an oxidation catalyst in green conditions. The preparations of H₂TPFPP and [Fe(TPFPP)Cl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(III)porphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide) and green solvent (ethanol). Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed.

  9. Regional framework and geology of iron oxide-apatite-rare earth element and iron oxide-copper-gold deposits of the Mesoproterozoic St. Francois Mountains Terrane, southeast Missouri

    Science.gov (United States)

    Day, Warren C.; Slack, John F.; Ayuso, Robert A.; Seeger, Cheryl M.

    2016-01-01

    This paper provides an overview on the genesis of Mesoproterozoic igneous rocks and associated iron oxide ± apatite (IOA) ± rare earth element, iron oxide-copper-gold (IOCG), and iron-rich sedimentary deposits in the St. Francois Mountains terrane of southeast Missouri, USA. The St. Francois Mountains terrane lies along the southeastern margin of Laurentia as part of the eastern granite-rhyolite province. The province formed during two major pulses of igneous activity: (1) an older early Mesoproterozoic (ca. 1.50–1.44 Ga) episode of volcanism and granite plutonism, and (2) a younger middle Mesoproterozoic (ca. 1.33–1.30 Ga) episode of bimodal gabbro and granite plutonism. The volcanic rocks are predominantly high-silica rhyolite pyroclastic flows, volcanogenic breccias, and associated volcanogenic sediments with lesser amounts of basaltic to andesitic volcanic and associated subvolcanic intrusive rocks. The iron oxide deposits are all hosted in the early Mesoproterozoic volcanic and volcaniclastic sequences. Previous studies have characterized the St. Francois Mountains terrane as a classic, A-type within-plate granitic terrane. However, our new whole-rock geochemical data indicate that the felsic volcanic rocks are effusive derivatives from multicomponent source types, having compositional similarities to A-type within-plate granites as well as to S- and I-type granites generated in an arc setting. In addition, the volcanic-hosted IOA and IOCG deposits occur within bimodal volcanic sequences, some of which have volcanic arc geochemical affinities, suggesting an extensional tectonic setting during volcanism prior to emplacement of the ore-forming systems.The Missouri iron orebodies are magmatic-related hydrothermal deposits that, when considered in aggregate, display a vertical zonation from high-temperature, magmatic ± hydrothermal IOA deposits emplaced at moderate depths (~1–2 km), to magnetite-dominant IOA veins and IOCG deposits emplaced at shallow

  10. Designing porous metallic glass compact enclosed with surface iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Young; Park, Hae Jin; Hong, Sung Hwan; Kim, Jeong Tae; Kim, Young Seok; Park, Jun-Young; Lee, Naesung [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Seo, Yongho [Graphene Research Institute (GRI) & HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Park, Jin Man, E-mail: jinman_park@hotmail.com [Global Technology Center, Samsung Electronics Co., Ltd, 129 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742 (Korea, Republic of); Kim, Ki Buem, E-mail: kbkim@sejong.ac.kr [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2015-06-25

    Highlights: • Porous metallic glass compact was developed using electro-discharge sintering process. • Uniform PMGC can only be achieved when low electrical input energy was applied. • Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. - Abstract: Porous metallic glass compact (PMGC) using electro-discharge sintering (EDS) process of gas atomized Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} metallic glass powder was developed. The formation of uniform PMGC can only be achieved when low electrical input energy was applied. Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. This finding suggests that PMGC can be applied in the new area such as catalyst via hydrothermal technique and offer a promising guideline for using the metallic glasses as a potential functional application.

  11. Neutrino energy loss rates due to key iron isotopes for core-collapse physics

    International Nuclear Information System (INIS)

    Nabi, J.-U.

    2008-07-01

    Accurate estimates of neutrino energy loss rates are needed for the study of the late stages of the stellar evolution, in particular for the cooling of neutron stars and white dwarfs. The energy spectra of neutrinos and antineutrinos arriving at the Earth can also provide useful information on the primary neutrino fluxes as well as neutrino mixing scenario. Proton-neutron quasi-particle random phase approximation (pn-QRPA) theory has recently being used for a microscopic calculation of stellar weak interaction rates of fp-shell nuclide, particularly iron isotopes, with success. Here I present the calculation of neutrino and antineutrino energy loss rates due to key iron isotopes in stellar matter using the pn-QRPA theory. The rates are calculated on a fine grid of temperature-density scale suitable for core-collapse simulators. The calculated rates are compared against earlier calculations. The neutrino cooling rates due to even-even isotopes of iron, 54,56 Fe, are in good agreement with the rates calculated using the large-scale shell model. The pn-QRPA calculated neutrino energy loss rates due to 55 Fe are enhanced roughly around an order of magnitude compared to the large-scale shell model calculation during the oxygen and silicon shell burning stages of massive stars and favor a lower entropy for the cores of massive stars. (author)

  12. Phosphate dynamics in an acidic mountain stream: Interactions involving algal uptake, sorption by iron oxide, and photoreduction

    Science.gov (United States)

    Tate, Cathy M.; Broshears, Robert E.; McKnight, Diane M.

    1995-01-01

    Acid mine drainage streams in the Rocky Mountains typically have few algal species and abundant iron oxide deposits which can sorb phosphate. An instream injection of radiolabeled phosphate (32P0,) into St. Kevin Gulch, an acid mine drainage stream, was used to test the ability of a dominant algal species, Ulothrix sp., to rapidly assimilate phosphate. Approximately 90% of the injected phosphate was removed from the water column in the 175-m stream reach. When shaded stream reaches were exposed to full sunlight after the injection ended, photoreductive dissolution of iron oxide released sorbed 32P, which was then also removed downstream. The removal from the stream was modeled as a first-order process by using a reactive solute transport transient storage model. Concentrations of 32P mass-’ of algae were typically lo-fold greater than concentrations in hydrous iron oxides. During the injection, concentrations of 32P increased in the cellular P pool containing soluble, low-molecular-weight compounds and confirmed direct algal uptake of 32P0, from water. Mass balance calculations indicated that algal uptake and sorption on iron oxides were significant in removing phosphate. We conclude that in stream ecosystems, PO, sorbed by iron oxides can act as a dynamic nutrient reservoir regulated by photoreduction.

  13. MR imaging of abscess by use of lipid-coated iron oxide particles

    International Nuclear Information System (INIS)

    Chan, T.W.; Eley, C.G.S.; Kressel, H.Y.

    1990-01-01

    The authors of this paper investigate the potential application of lipid-coated iron oxide particles as an MR contrast agent for imaging inflammatory process by using a rat subcutaneous abscess model induced by turpentine. Ten male Sprague-Dawley rats received subcutaneous injections of 0.1 mL of turpentine in the flank. At 24-36 hours later, the rats developed a subcutaneous abscess of 1-1.8 cm. An intravenous injection of lipid-coated iron oxide particles, Ferrosome (Vestar) at doses of 25, 40, 100, 200 μg/kg was administered. The animals were imaged at 12-24 hours later on a 1.5-T magnet using a 3-inch (7.62-cm) surface coil. Two animals were also imaged 5 days later. T1-weighted, T2-weighted, and multiplanar gradient-recalled (MPGR) sequences were obtained. The abscess was then excised and examined with routine H-E and iron staining

  14. All Metal Iron Core For A Low Aspect Ratio Tokamak

    International Nuclear Information System (INIS)

    Gates, D.A.; Jun, C.; Zatz, I.; Zolfaghari, A.

    2010-01-01

    A novel concept for incorporating a iron core transformer within a axisymmetric toroidal plasma containment device with a high neutron flux is described. This design enables conceptual design of low aspect ratio devices which employ standard transformer-driven plasma startup by using all-metal high resistance separators between the toroidal field windings. This design avoids the inherent problems of a multiturn air core transformer which will inevitably suffer from strong neutron bombardment and hence lose the integrity of its insulation, both through long term material degradation and short term neutron-induced conductivity. A full 3-dimensional model of the concept has been developed within the MAXWELL program and the resultant loop voltage calculated. The utility of the result is found to be dependent on the resistivity of the high resistance separators. Useful loop voltage time histories have been obtained using achievable resistivities.

  15. Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II)

    International Nuclear Information System (INIS)

    Chen Changlun; Hu Jun; Shao Dadong; Li Jiaxing; Wang Xiangke

    2009-01-01

    Multiwall carbon nanotube (MWCNT)/iron oxide magnetic composites were prepared, and were characterized by scan electron microscopy using a field emission scanning electron microscope, X-ray diffraction and vibrating sample magnetometer. The adsorptions of Ni(II) and Sr(II) onto MWCNT/iron oxide magnetic composites were studied as a function of pH and ionic strength. The results show that the adsorptions of Ni(II) and Sr(II) on the magnetic composites is strongly dependent on pH and ionic strength. The adsorption capacity of the magnetic composites is much higher than that of MWCNTs and iron oxides. The solid magnetic composites can be separated from the solution by a magnetic process. The Langmuir model fits the adsorption isotherm data of Ni(II) better than the Freundlich model. Results of desorption study shows that Ni(II) adsorbed onto the magnetic composites can be easily desorbed at pH < 2.0. MWCNT/iron oxide magnetic composites may be a promising candidate for pre-concentration and solidification of heavy metal ions and radionuclides from large volumes of aqueous solution, as required for remediation purposes.

  16. Structural investigations of biogenic iron oxide samples. Preliminary results

    International Nuclear Information System (INIS)

    Balasoiu, M.; Kuklin, A.I.; Orelovich, O.L.; Kovalev, Yu.S.; Arzumanyan, G.M.; Kurkin, T.S.; Stolyar, S.V.; Iskhakov, R.S.; Rajkher, Yu.L.

    2008-01-01

    Some preliminary results on morphology and structure of iron oxide particles formed inside Klebsiella oxytoca bacteria are presented. In particular, by means of optical microscopy, scanning electron microscopy and small-angle X-ray scattering the effect of the bacteria age (the duration of growth) on the nanoparticles properties is studied

  17. Self-orderding of iron oxide nanoparticles covered by graphene

    Czech Academy of Sciences Publication Activity Database

    Valeš, Václav; Vejpravová, Jana; Pacáková, Barbara; Holý, V.; Bernstorff, S.; Kalbáč, Martin

    2014-01-01

    Roč. 251, č. 12 (2014), s. 2499-2504 ISSN 0370-1972 R&D Projects: GA MŠk LL1301; GA ČR GAP204/10/1677 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : GISAXS * graphene * iron oxide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.489, year: 2014

  18. Contribution of macrophages in the contrast loss in iron oxide-based MRI cancer cell tracking studies

    Science.gov (United States)

    Danhier, Pierre; Deumer, Gladys; Joudiou, Nicolas; Bouzin, Caroline; Levêque, Philippe; Haufroid, Vincent; Jordan, Bénédicte F.; Feron, Olivier; Sonveaux, Pierre; Gallez, Bernard

    2017-01-01

    Magnetic resonance imaging (MRI) cell tracking of cancer cells labeled with superparamagnetic iron oxides (SPIO) allows visualizing metastatic cells in preclinical models. However, previous works showed that the signal void induced by SPIO on T2(*)-weighted images decreased over time. Here, we aim at characterizing the fate of iron oxide nanoparticles used in cell tracking studies and the role of macrophages in SPIO metabolism. In vivo MRI cell tracking of SPIO positive 4T1 breast cancer cells revealed a quick loss of T2* contrast after injection. We next took advantage of electron paramagnetic resonance (EPR) spectroscopy and inductively coupled plasma mass spectroscopy (ICP-MS) for characterizing the evolution of superparamagnetic and non-superparamagnetic iron pools in 4T1 breast cancer cells and J774 macrophages after SPIO labeling. These in vitro experiments and histology studies performed on 4T1 tumors highlighted the quick degradation of iron oxides by macrophages in SPIO-based cell tracking experiments. In conclusion, the release of SPIO by dying cancer cells and the subsequent uptake of iron oxides by tumor macrophages are limiting factors in MRI cell tracking experiments that plead for the use of (MR) reporter-gene based imaging methods for the long-term tracking of metastatic cells. PMID:28467814

  19. Population dynamics of iron-oxidizing communities in pilot plants for the treatment of acid mine waters.

    Science.gov (United States)

    Heinzel, Elke; Janneck, Eberhard; Glombitza, Franz; Schlömann, Michael; Seifert, Jana

    2009-08-15

    The iron-oxidizing microbial community in two pilot plants for the treatment of acid mine water was monitored to investigate the influence of different process parameters such as pH, iron concentration, and retention time on the stability of the system to evaluate the applicability of this treatment technology on an industrial scale. The dynamics of the microbial populations were followed using T-RFLP (terminal restriction fragment length polymorphism) over a period of several months. For a more precise quantification, two TaqMan assays specific for the two prominent groups were developed and the relative abundance of these taxa in the iron-oxidizing community was verified by real-time PCR. The investigations revealed that the iron-oxidizing community was clearly dominated by two groups of Betaproteobacteria affiliated with the poorly known and not yet recognized species "Ferrovum myxofaciens" and with strains related to Gallionella ferruginea, respectively. These taxa dominated the microbial community during the whole investigation period and accelerated the oxidation of ferrous iron despite the changing characteristics of mine waters flowing into the plants. Thus, it is assumed that the treatment technology can also be applied to other mine sites and that these organisms play a crucial role in such treatment systems.

  20. Soluble Iron in Alveolar Macrophages Modulates Iron Oxide Particle-Induced Inflammatory Response via Prostaglandin E2 Synthesis

    Science.gov (United States)

    Ambient particulate matter (PM)-associated metals have been shown to play an important role in cardiopulmonary health outcomes. To study the modulation of inflammation by PM-associated soluble metal, we investigated intracellular solubility of radiolabelled iron oxide (59