WorldWideScience

Sample records for iron ore transportation-feasibility

  1. High-rate behaviour of iron ore pellet

    Science.gov (United States)

    Gustafsson, Gustaf; Häggblad, Hans-Åke; Jonsén, Pär; Nishida, Masahiro

    2015-09-01

    Iron ore pellets are sintered, centimetre-sized spheres of ore with high iron content. Together with carbonized coal, iron ore pellets are used in the production of steel. In the transportation from the pelletizing plants to the customers, the iron ore pellets are exposed to different loading situations, resulting in degradation of strength and in some cases fragmentation. For future reliable numerical simulations of the handling and transportation of iron ore pellets, knowledge about their mechanical properties is needed. This paper describes the experimental work to investigate the dynamic mechanical properties of blast furnace iron ore pellets. To study the dynamic fracture of iron ore pellets a number of split Hopkinson pressure bar tests are carried out and analysed.

  2. Natural resources sustainability: iron ore mining

    International Nuclear Information System (INIS)

    De La Torre de Palacios, Luis

    2011-01-01

    In the present article, a new tool to determine environmental sustainability, the energy impact index (EII) was developed to classify different iron mine projects according to two main parameters including energy consumption and CO 2 emissions. The EII considers the characteristics of the mineral (such as the quality, size, hardness, iron ore grade, reducibility, mineral/waste rate, and type of deposit), mining processes (type of exploitation, ore processing, available technology), and transportation (distance to cover).

  3. Challenges facing the North American iron ore industry

    Science.gov (United States)

    Jorgenson, J.D.

    2005-01-01

    During the 20th century, the iron ore mining industries of Canada and the United States passed through several periods of transformation. The beginning of the 21st century has seen yet another period of transformation, with the economic failure of a number of steel companies, the acquisition of their facilities by more viable steelmakers, and the consolidation of control within the North American iron ore industry. Changes in Canadian and United States iron ore production and the market control structure involved are analysed. The consolidation of ownership, formation of foreign joint ventures within Nordi America, planned divestitures of upstream activities by steelmakers, and industry changes made to ensure availability of feedstocks will be reviewed. The ttaditional isolation of the Canadian and United States iron ore operations and their strong linkage to downstream steel production will be discussed in the context of a changing global economy. Management-labour conflicts that have taken place and agreements made during 2000 through 2004 will be discussed in the context of the economic environment leading up to these agreements. Cooperative agreements between competing Canadian and United States companies to resolve client needs in processing and blending will be examined. A joint industry-government project designed to use new technology to produce direct reduced iron nuggets of 96 - 98 per cent iron content using non-coking coals will also be assessed. Changes in iron ore transportation methods, ownership and infrastructure will be reviewed for both rail and inland waterway transport between Canadian and United States companies. A brief analysis of social and environmental issues relating to sustainable development of the Canadian-United States iron ore industry will be included.

  4. Hydrogen Plasma Processing of Iron Ore

    Science.gov (United States)

    Sabat, Kali Charan; Murphy, Anthony B.

    2017-06-01

    Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

  5. Iron from Zealandic bog iron ore -

    DEFF Research Database (Denmark)

    Lyngstrøm, Henriette Syrach

    2011-01-01

    og geologiske materiale, metallurgiske analyser og eksperimentel arkæologiske forsøg - konturerne af en jernproduktion med udgangspunkt i den sjællandske myremalm. The frequent application by archaeologists of Werner Christensen’s distribution map for the occurrence of bog iron ore in Denmark (1966...... are sketched of iron production based on bog iron ore from Zealand....

  6. Microbial reduction of iron ore

    Science.gov (United States)

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  7. EXPLANATORY MODEL OF SPOT PRICE OF IRON ORE

    Directory of Open Access Journals (Sweden)

    Juan Enrique Villalva A.

    2015-11-01

    Full Text Available The objective of this study was to construct an explanatory model of the spot price of iron ore in the international market. For this, the method of multiple linear regressions was used. As a dependent variable, the spot price of iron ore (62% Fe China Tianjin port was taken, between 2010 and 2013. As independents variables were taken seven variables of international iron ore market. The resulting model includes variables: Iron ore inventory in Chinese ports, Baltic Dry Index (BDI, Iron ore exports from Brazil & Australia and Chinese Rebar Steel Price, as explanatory variables of the behavior of the spot price of iron ore in the international market. The model has an adjusted coefficient of determination R2 of 0.90, and was validated by comparing its predictions vs. known values of 2014.

  8. The production and use of citric acid for the removal of potassium from the iron ore concentrate of the Sishen Iron Ore Mine, South Africa

    Directory of Open Access Journals (Sweden)

    Peter J. Williams

    2010-04-01

    Full Text Available The depletion of the richer iron ore worldwide has made it necessary to process lower quality iron ore. Certain substances, such as potassium, contained within the lower quality iron ore, have a detrimental effect on the smelting process during steel manufacturing. Therefore, international steel-making companies charge penalties when purchasing iron ore concentrates containing high concentrations of potassium. To date, lower quality iron ore has been blended with high quality iron ore in an attempt to alleviate the potassium concentrations in the export iron ore; however, the ratio of low quality iron ore to high quality iron ore is increasing, thereby becoming an escalating problem within the economic functioning of the Sishen Iron Ore Mine. It has, therefore, become necessary to develop an economically viable and environmentally friendly process to reduce the high potassium concentrations contained in the iron ore concentrate of the Sishen Iron Ore Mine. In this study, we compared solid substrate and submerged fermentation using Aspergillus niger for the production of citric acid, which is used for the chemical leaching of potassium from the iron ore concentrate. It was found that submerged fermentation proved to be more economical and efficient, producing a maximum citric acid concentration of 102.3 g/L in 96 h of fermentation. ‘Heap leaching’ simulation experiments were found to be uneconomical, due to the required addition of fungal growth medium every 5 days as a result of growth factor depletion within this time; however, this process removed 17.65% of the potassium from the iron ore concentrate. By contrast, chemical leaching of potassium from the iron ore concentrate proved to be most efficient when using a 1 mol citric acid leaching solution at 60 ºC, removing 23.53% of the potassium contained within the iron ore concentrate. Therefore, the most economical and efficient process for the removal of potassium from the iron

  9. China's emergence as the world's leading iron-ore-consuming country

    Science.gov (United States)

    Kirk, W.S.

    2004-01-01

    China has become the leading iron ore consuming nation, and, based on recent steel production capacity increases and plans for more, its consumption will almost certainly to continue to grow. China's iron ore industry, however, faces a number of problems. China's iron ore is low-grade, expensive to process, and its mines are being depleted. For many Chinese steelmakers, particularly in the coastal regions, the delivered cost of domestic iron ore, is more than the delivered cost of foreign ore. Thus China's iron ore imports are expected to increase. As China's growth continues, it will almost certainly surpass Japan to become the leading iron ore importing country as well. Without China's increasing appetite for iron ore, the world iron ore market would be flat or declining. China's recent imports largely offset the slump in demand in North America and Europe. China is regarded by the iron ore industry as the growth sector for the next decade. Although Chinese imports are expected to continue their rapid increase and imports in other Asian countries are expected to continue growing, there appears to be enough greenfield and expansion projects to meet future demand for iron ore worldwide. Present suppliers of iron ore, Australia, Brazil, India, and South Africa, will probably be the chief beneficiaries of China's increasing consumption of iron ore. How long China can continue its extraordinary growth is the primary issue for the future of the iron ore industry. Based on the number and size of planned blast furnaces it appears that China's growth could continue for several more years. ?? 2004 Taylor and Francis.

  10. Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry

    African Journals Online (AJOL)

    Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry was studied as a function of the microstructure developed by austempering at 380 and 300°C for different exposure time in the slurry. The corrosion rates of the ADI balls immersed in the iron ore slurry was determined using weight loss method.

  11. Modeling drying of iron ore pellets

    OpenAIRE

    Ljung, Anna-Lena

    2010-01-01

    Iron ore pellets are a highly refined product supplied to the steel making industry for use in blast furnaces or direct reduction processes. The use of pellets offers many advantages such as customer adopted products, transportability and mechanical strength yet the production is time and energy consuming. Being such, there is a natural driving force to enhance the pelletization in order to optimize production and improve quality. The aim with this thesis is to develop numerical models with w...

  12. Extracting phosphoric iron under laboratorial conditions smelting bog iron ores

    International Nuclear Information System (INIS)

    Török, B; Thiele, A

    2013-01-01

    In recent years it has been indicated by archaeometric investigations that phosphoric-iron (P-iron, low carbon steel with 0,5-1,5wt% P), which is an unknown and unused kind of steel in the modern industry, was widely used in different parts of the world in medieval times. In this study we try to explore the role of phosphorus in the arhaeometallurgy of iron and answer some questions regarding the smelting bog iron ores with high P-content. XRF analyses were performed on bog iron ores collected in Somogy county. Smelting experiments were carried out on bog iron ores using a laboratory model built on the basis of previously conducted reconstructed smelting experiments in copies of excavated furnaces. The effect of technological parameters on P-content of the resulted iron bloom was studied. OM and SEM-EDS analyses were carried out on the extracted iron and slag samples. On the basis of the material analyses it can be stated that P-iron is usually extracted but the P-content is highly affected by technological parameters. Typical microstructures of P-iron and of slag could also be identified. It could also be established that arsenic usually solved in high content in iron as well

  13. Iron-ore resources of the United States including Alaska and Puerto Rico, 1955

    Science.gov (United States)

    Carr, Martha S.; Dutton, Carl E.

    1959-01-01

    The importance of iron ore, the basic raw material of steel, as a fundamental mineral, resource is shown by the fact that about 100 million long tons of steel is used annually in the economy of the United States, as compared with a combined total of about 5 million long tons of copper, lead, zinc, and aluminum. Satisfying this annual demand for steel requires about 110 million tons of iron ore and 70 million tons of scrap iron and steel. The average annual consumption of iron ore in the United States from 1951 to 1955, inclusive, was about 110 million long tons, which is about twice the annual average from 1900 to 1930. Production of iron ore in the United States in this 5-year period averaged approximately 100 million long tons annually, divided by regions as follows (in percent): Lake Superior, 84.1; southeastern, 6.7; western, 6.7; northeastern, 1.4; and central and gulf, 1.1. Mining of iron ore began in the American Colonies about 1619, and for 225 years it was limited to eastern United States where fuel and markets were readily available. Production of iron ore from the Lake Superior region began in 1846; the region became the leading domestic source by 1890, and the Mesabi range in Minnesota has been the world's most productive area since 1896. Proximity of raw materials, water transportation, and markets has resulted in centralization of the country's iron and steel industry in the lower Great Lakes area. Increased imports of iron ore being delivered to eastern United States as well as demands for steel in nearby markets have given impetus to expansion in the steel-making capacity in this area. The four chief iron-ore minerals - hematite, liminite, magnetite, and siderite - are widely distributed but only locally form deposits of sufficient tonnage and grade to be commercially valuable at the present time. The iron content of these minerals, of which hematite is the most important, ranges from 48 percent in siderite to 72 percent in magnetite, but as these

  14. Iron isotope fractionation during hydrothermal ore deposition and alteration

    Science.gov (United States)

    Markl, Gregor; von Blanckenburg, Friedhelm; Wagner, Thomas

    2006-06-01

    Iron isotopes fractionate during hydrothermal processes. Therefore, the Fe isotope composition of ore-forming minerals characterizes either iron sources or fluid histories. The former potentially serves to distinguish between sedimentary, magmatic or metamorphic iron sources, and the latter allows the reconstruction of precipitation and redox processes. These processes take place during ore formation or alteration. The aim of this contribution is to investigate the suitability of this new isotope method as a probe of ore-related processes. For this purpose 51 samples of iron ores and iron mineral separates from the Schwarzwald region, southwest Germany, were analyzed for their iron isotope composition using multicollector ICP-MS. Further, the ore-forming and ore-altering processes were quantitatively modeled using reaction path calculations. The Schwarzwald mining district hosts mineralizations that formed discontinuously over almost 300 Ma of hydrothermal activity. Primary hematite, siderite and sulfides formed from mixing of meteoric fluids with deeper crustal brines. Later, these minerals were partly dissolved and oxidized, and secondary hematite, goethite and iron arsenates were precipitated. Two types of alteration products formed: (1) primary and high-temperature secondary Fe minerals formed between 120 and 300 °C, and (2) low-temperature secondary Fe minerals formed under supergene conditions (illustrates the potential of the new technique in deciphering ore formation and alteration processes. Isotope ratios are strongly dependent on and highly characteristic of fluid and precipitation histories. Therefore, they are less suitable to provide information on Fe sources. However, it will be possible to unravel the physico-chemical processes leading to the formation, dissolution and redeposition of ores in great detail.

  15. Feasibility Studies for Production of Pellet Grade Concentrate from Sub Grade Iron Ore Using Multi Gravity Separator

    Science.gov (United States)

    Rao, Gottumukkala Venkateswara; Markandeya, R.; Kumar, Rajan

    2018-04-01

    An attempt has been made to utilise Sub Grade Iron Ore by producing pellet grade concentrate from Deposit 5, Bacheli Complex, Bailadila, Chhattisgarh, India. The `as received' Run of Mine (ROM) sample assayed 40.80% Fe, 40.90% SiO2. Mineralogical studies indicated that the main ore mineral is Hematite and lone gangue mineral is Quartz. Mineral liberation studies indicated that, the ore mineral Hematite and gangue mineral Quartz are getting liberated below 100 microns. The stage crushed and ground sample was subjected to concentration by using a Multi Gravity Separator (MGS). Rougher Multi Gravity Separation (MGS) experimental results were optimised to recover highest possible iron values. A concentrate of 55.80% Fe with a yield of 61.73% by weight with a recovery of 84.42% Iron values was obtained in rougher MGS concentrate. Further experiments were carried out with rougher MGS concentrate to produce a concentrate suitable for commercial grade pellet concentrate. It was proved that a concentrate assaying 66.67% Fe, 3.12% SiO2 with an yield of 45.08% by weight and with a recovery of 73.67% iron values in the concentrate.

  16. Isolation and identification of iron ore-solubilising fungus

    Directory of Open Access Journals (Sweden)

    Damase Khasa

    2010-09-01

    Full Text Available Potential mineral-solubilising fungi were successfully isolated from the surfaces of iron ore minerals. Four isolates were obtained and identified by molecular and phylogenetic methods as close relatives of three different genera, namely Penicillium (for isolate FO, Alternaria (for isolates SFC2 and KFC1 and Epicoccum (for isolate SFC2B. The use of tricalcium phosphate (Ca3(PO42in phosphate-solubilising experiments confirmed isolate FO as the only phosphate solubiliser among the isolated fungi. The bioleaching capabilities of both the fungus and its spent liquid medium were tested and compared using two types of iron ore materials, conglomerate and shale, from the Sishen Iron Ore Mine as sources of potassium (K and phosphorus (P. The spent liquid medium removed more K (a maximum of 32.94% removal, from conglomerate, than the fungus (a maximum of 21.36% removal, from shale. However, the fungus removed more P (a maximum of 58.33% removal, from conglomerate than the spent liquid medium (a maximum of 29.25% removal, from conglomerate. The results also indicated a potential relationship between the removal of K or P and the production of organic acids by the fungus. A high production of gluconic acid could be related to the ability of the fungus to reduce K and P. Acetic, citric and maleic acids were also produced by the fungus, but in lower quantities. In addition, particle size and iron ore type were also shown to have significant effects on the removal of potassium and phosphorus from the iron ore minerals. We therefore conclude that the spent liquid medium from the fungal isolate FO can potentially be used for biobeneficiation of iron ore minerals.

  17. Microbial Beneficiation of Salem Iron Ore Using Penicillium purpurogenum

    Science.gov (United States)

    Mishra, M.; Pradhan, M.; Sukla, L. B.; Mishra, B. K.

    2011-02-01

    High alumina and silica content in the iron ore affects coke rate, reducibility, and productivity in a blast furnace. Iron ore is being beneficiated all around the world to meet the quality requirement of iron and steel industries. Choosing a beneficiation treatment depends on the nature of the gangue present and its association with the ore structure. The advanced physicochemical methods used for the beneficiation of iron ore are generally unfriendly to the environment. Biobeneficiation is considered to be ecofriendly, promising, and revolutionary solutions to these problems. A characterization study of Salem iron ore indicates that the major iron-bearing minerals are hematite, magnetite, and goethite. Samples on average contains (pct) Fe2O3-84.40, Fe (total)-59.02, Al2O3-7.18, and SiO2-7.53. Penicillium purpurogenum (MTCC 7356) was used for the experiment . It removed 35.22 pct alumina and 39.41 pct silica in 30 days in a shake flask at 10 pct pulp density, 308 K (35 °C), and 150 rpm. In a bioreactor experiment at 2 kg scale using the same organism, it removed 23.33 pct alumina and 30.54 pct silica in 30 days at 300 rpm agitation and 2 to 3 l/min aeration. Alumina and silica dissolution follow the shrinking core model for both shake flask and bioreactor experiments.

  18. Effective Processing of the Iron Ores

    Science.gov (United States)

    Kuskov, Vadim; Kuskova, Yana; Udovitsky, Vladimir

    2017-11-01

    Effective technology for a complex wasteless processing of the iron ores has been designed and includes three main components (plats): comminution plant, briquette plant, pigment plant. The comminution is done per energy effective technology. Using of briquetting for ores clotting enables the costs cut and brings to a higher level of environmental safety of the process. Briquette formation can be done as a regular pressing, as an extrusion. Developed technology allows to produce high quality competitively products for metallurgy industry and red iron oxide pigments. The whole production line impacts the environment in a minimal manner.

  19. Effective Processing of the Iron Ores

    Directory of Open Access Journals (Sweden)

    Kuskov Vadim

    2017-01-01

    Full Text Available Effective technology for a complex wasteless processing of the iron ores has been designed and includes three main components (plats: comminution plant, briquette plant, pigment plant. The comminution is done per energy effective technology. Using of briquetting for ores clotting enables the costs cut and brings to a higher level of environmental safety of the process. Briquette formation can be done as a regular pressing, as an extrusion. Developed technology allows to produce high quality competitively products for metallurgy industry and red iron oxide pigments. The whole production line impacts the environment in a minimal manner.

  20. Utilisation of iron ore tailings as aggregates in concrete

    Directory of Open Access Journals (Sweden)

    Francis Atta Kuranchie

    2015-12-01

    Full Text Available Sustainable handling of iron ore tailings is of prime concern to all stakeholders who are into iron ore mining. This study seeks to add value to the tailings by utilising them as a replacement for aggregates in concrete. A concrete mix of grade 40 MPa was prepared in the laboratory with water–cement ratio of 0.5. The concrete were cured for 1, 2, 3, 7, 14 and 28 days. The properties of the concrete such as workability, durability, density, compressive strength and indirect tensile strength were tested. A controlled mix of concrete was also prepared in similar way using conventional materials and the results were compared with the tailings concrete. It was found that the iron ore tailings may be utilised for complete replacement for conventional aggregates in concrete. The iron ore tailings aggregates concrete exhibited a good mechanical strength and even in the case of compressive strength, there was an improvement of 11.56% over conventional aggregates concrete. The indirect tensile strength did not improve against the control mix due high content of fines in the tailings aggregates but showed 4.8% improvement compared with the previous study where the conventional fine aggregates was partially replaced by 20% with iron ore tailings.

  1. The North American iron ore industry: a decade into the 21st century

    Science.gov (United States)

    Jorgenson, John D.; Perez, A. A

    2011-01-01

    During the 20th century, the iron ore mining industries of Canada and the United States passed through periods of transformation. The beginning of the 21st century has seen another period of transformation, with the failure of a number of steel companies and with consolidation of control within the North American iron ore industry. Canadian and United States iron ore production and the market control structure involved are changing rapidly. Consolidation of ownership, formation of foreign joint ventures, divestitures of upstream activities by steelmakers, and industry changes to ensure availability of feedstocks all played a role in recent developments in the North American iron ore industry. Canadian and U.S. iron ore operations and their strong linkage to downstream production, although isolated, must also be considered within the context of the changing global economy. Projects using new technology to produce direct reduced iron nuggets of 96-98% iron content and other projects designed to produce steel at minesites may once again change the face of the iron ore industry. Social and environmental issues related to sustainable development have had a significant effect on the North American iron ore industry.

  2. Mineralogical and geochemical characteristics of the Noamundi-Koira basin iron ore deposits (India)

    Science.gov (United States)

    Mirza, Azimuddin; Alvi, Shabbar Habib; Ilbeyli, Nurdane

    2015-04-01

    India is one of the richest sources of iron ore deposits in the world; and one of them is located in the Noamundi-Koira basin, Singhbhum-Orissa craton. The geological comparative studies of banded iron formation (BIF) and associated iron ores of Noamundi-Koira iron ore deposits, belonging to the iron ore group in eastern India, focus on the study of mineralogy and major elemental compositions along with the geological evaluation of different iron ores. The basement of the Singhbhum-Orissa craton is metasedimentary rocks which can be traced in a broadly elliptical pattern of granitoids, surrounded by metasediments and metavolcanics of Greenstone Belt association. The Singhbhum granitoid is intrusive into these old rocks and to younger, mid Archaean metasediments, including iron formations, schists and metaquartzites and siliciclastics of the Precambrian Iron Ore Group (Saha et al., 1994; Sharma, 1994). The iron ore of Noamundi-Koira can be divided into seven categories (Van Schalkwyk and Beukes 1986). They are massive, hard laminated, soft laminated, martite-goethite, powdery blue dust and lateritic ore. Although it is more or less accepted that the parent rock of iron ore is banded hematite jasper (BHJ), the presence of disseminated martite in BHJ suggests that the magnetite of protore was converted to martite. In the study area, possible genesis of high-grade hematite ore could have occurred in two steps. In the first stage, shallow, meteoric fluids affect primary, unaltered BIF by simultaneously oxidizing magnetite to martite and replacing quartz with hydrous iron oxides. In the second stage of supergene processes, deep burial upgrades the hydrous iron oxides to microplaty hematite. Removal of silica from BIF and successive precipitation of iron resulted in the formation of martite- goethite ore. Soft laminated ores were formed where precipitation of iron was partial or absent. The leached out space remains with time and the interstitial space is generally filled

  3. Influence of the Moisture Content on the Flowability of Fine-Grained Iron Ore Concentrate

    OpenAIRE

    C. Lanzerstorfer; M. Hinterberger

    2017-01-01

    The iron content of the ore used is crucial for the productivity and coke consumption rate in blast furnace pig iron production. Therefore, most iron ore deposits are processed in beneficiation plants to increase the iron content and remove impurities. In several comminution stages, the particle size of the ore is reduced to ensure that the iron oxides are physically liberated from the gangue. Subsequently, physical separation processes are applied to concentrate the iron ore. The fine-graine...

  4. Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry

    African Journals Online (AJOL)

    ADI austempered at higher temperature showed better corrosion resistance than the ..... temperature and time on corrosion behaviour of ductile iron in chloride and acidic ... iron ore in ball mills, Transactions of the Indian Institute of Metals, Vol.

  5. Mineralogical study of zard koh and kulli koh iron ore deposits of pakistan

    International Nuclear Information System (INIS)

    Khoso, S.A.; Abro, M.I.

    2017-01-01

    Zard Koh and Kulli Koh are two recently discovered iron ore deposits, existing in the Chagai district, Balochistan, Pakistan. PSM (Pakistan Steel Mill Limited) is interested to utilize these ore deposits at priority. Purpose of the present study was to assess the mineralogy of the Zard Koh and Kulli Koh iron ore deposits, as it plays a vital role in the selection of an appropriate processing method. The mineralogical study of ore deposits was carried out by XRD (X-Ray Diffraction), XRF (X-Ray Fluorescence), SEM (Scanning Electron Microscope) attached with EDS (Energy Dispersive Spectroscope) and SM (Stereomicroscope) techniques. Results indicated that the Zard Koh ore is mainly composed of 60.15% maghemite, 23.57% pyrite, 4.07% chlorite, 10.30% grossular and 1.65% admontite minerals. The chemical analysis revealed that Zard Koh iron ore contains an average of 54.27% Fe, 12.73% S, 8.70% Si, 3.07% Al, 4.07% Ca, and 2.16% Mg. Similarly, the mineralogical study of the Kulli Koh iron ore indicated that, ore is containing 51.16% hematite, 29.24% quartz, 8.89% dravite, and 8.76% kaolinite minerals. Elemental analysis of different samples indicated that Kulli Koh iron ore contains an average composition of 40.23% Fe, 20.67% Si, 3.44% Ca, 3.81% Al and 3.25% Mg. Mineralogical study of the Zard Koh and Kulli Koh iron ore deposits suggested that these ore deposits can be beneficiated costeffectively by using magnetic separation techniques. (author)

  6. Fundamentals of fast reduction of ultrafine iron ore at low temperature

    Institute of Scientific and Technical Information of China (English)

    Pei Zhao; Peimin Guo

    2008-01-01

    Fundamentals on the fast reduction of ultrafine iron ore at low temperature, including characterization of ultrafine ore, de- oxidation thermodynamics of stored-energy ultrafine ore, kinetics of iron ore deoxidation, and deoxidation mechanism, etc., and a new ironmaking process are presented in this article. Ultrafine ore concentrate with a high amount of stored energy can be produced by mechanical milling, and can be dcoxidated fast below 700℃ by either the coal-based or gas-based process. This novel process has some advantages over others: high productivity, low energy consumption, and environmental friendliness.

  7. Ferrite grade iron oxides from ore rejects

    Indian Academy of Sciences (India)

    Iron oxyhydroxides and hydroxides were synthesized from chemically beneficiated high SiO2/Al2O3 low-grade iron ore (57.49% Fe2O3) rejects and heated to get iron oxides of 96–99.73% purity. The infrared band positions, isothermal weight loss and thermogravimetric and chemical analysis established the chemical ...

  8. 94423-6883 Evaluation of Iron Ore Deposits in Elayiram Pannai

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: 2D Electrical Resistivity Imaging (ERI) investigation is suitable method to determine the geotechnical problems and it is used to identify the iron ore deposits. 2D. Electrical Resistivity Imaging with Wenner array was conducted within the iron ore deposits area in Elayiram Pannai, Virudhunagar District, ...

  9. Pelletized vs. natural iron ore technology: energy, labor, and capital changes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kakela, P.

    1978-09-01

    Total energy requirements per ton of iron-in-ore for natural and pelletized ore were calculated by a hybrid energy analysis. Energy requirements for ore preparation were subsequently considered as one energy input (embodied) to blast furnaces. Total energy requirements per ton molten iron were calculated for each year from 1955 through 1975 to identify changes attributable to the shift in iron ore preparation. Four results were found. (1) In practice, the lean ores are energetically superior. Pelletized ore requires more energy at the mine than natural ore, but pellets produce offsetting energy savings in the blast furnace. (2) Labor changes followed a similar pattern: man-hours per ton of molten iron increased at the mine with pelletization, but decreased at the blast furnance. Net labor required per ton of molten iron has decreased with pelletization. (3) Capital investments per ton of molten iron have increased greatly at iron ore mines with pelletization and decreased moderately at blast furnaces. New capital investment per ton of molten iron has increased with pelletization. (4) In the iron and steel industry, relatively low-priced energy held a substantial advantage over high-priced labor between 1950 and 1969. The industry, however, discovered that capital investments in pellet plants could save both labor and energy up to 1963; after 1963 capital and energy weresubstituted for labor. A sharp reversal of substitutional advantage occurred in 1970; energy jumped to the most costly factor. Thus capital presently shows a strong substitutional advantage over high-priced energy and intermediately-priced labor.

  10. Mineralogical Study of Zard Koh and Kulli Koh Iron Ore Deposits of Pakistan

    Directory of Open Access Journals (Sweden)

    SULTAN AHMED KHOSO

    2017-10-01

    Full Text Available Zard Koh and Kulli Koh are two recently discovered iron ore deposits, existing in the Chagai district, Balochistan, Pakistan. PSM (Pakistan Steel Mill Limited is interested to utilize these ore deposits at priority. Purpose of the present study was to assess the mineralogy of the Zard Koh and Kulli Koh iron ore deposits, as it plays a vital role in the selection of an appropriate processing method. The mineralogical study of ore deposits was carried out by XRD (X-Ray Diffraction, XRF (X-Ray Fluorescence, SEM (Scanning Electron Microscope attached with EDS (Energy Dispersive Spectroscope and SM (Stereomicroscope techniques. Results indicated that the Zard Koh ore is mainly composed of 60.15% maghemite, 23.57% pyrite, 4.07% chlorite, 10.30% grossular and 1.65% admontite minerals. The chemical analysis revealed that Zard Koh iron ore contains an average of 54.27% Fe, 12.73% S, 8.70% Si, 3.07% Al, 4.07% Ca, and 2.16% Mg. Similarly, the mineralogical study of the Kulli Koh iron ore indicated that, ore is containing 51.16% hematite, 29.24% quartz, 8.89% dravite, and 8.76% kaolinite minerals. Elemental analysis of different samples indicated that Kulli Koh iron ore contains an average composition of 40.23% Fe, 20.67% Si, 3.44% Ca, 3.81% Al and 3.25% Mg. Mineralogical study of the Zard Koh and Kulli Koh iron ore deposits suggested that these ore deposits can be beneficiated costeffectively by using magnetic separation techniques.

  11. Dolochar as a reductant in the reduction roasting of iron ore slimes

    Science.gov (United States)

    Rath, Swagat S.; Rao, Danda Srinivas

    2017-12-01

    The present investigation examines the viability of dolochar, a sponge iron industry waste material, as a reductant in the reduction roasting of iron ore slimes, which are another waste generated by iron ore beneficiation plants. Under statistically determined optimum conditions, which include a temperature of 900°C, a reductant-to-feed mass ratio of 0.35, and a reduction time of 30-45 min, the roasted mass, after being subjected to low-intensity magnetic separation, yielded an iron ore concentrate of approximately 64wt% Fe at a mass recovery of approximately 71% from the feed iron ore slime assaying 56.2wt% Fe. X-ray diffraction analyses indicated that the magnetic products contain magnetite and hematite as the major phases, whereas the nonmagnetic fractions contain quartz and hematite.

  12. Overview of the long distance iron ore slurry pipeline from Anglo Ferrous Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Adarlan M.; Passos, Aline C.; Santos, Daniel; Orban, Eduardo M.; Lisboa, Helder D.; Goncalves, Nilton; Guimaraes, Robson C. [Anglo Ferrous Brazil, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The objective of this paper is to present an overview of the long distance iron ore slurry pipeline from Anglo Ferrous Brazil. Anglo Ferrous Brazil is a company of Anglo American plc that is one of the world's largest mining and natural resource company. Minas-Rio is a world class iron ore project which has been developed in Brazil aiming to produce 26.6 million tons per year of concentrate. The mine, concentrator and pump station 1 will be located in Conceicao do Mato Dentro, Minas Gerais state, and the terminal station will be located at Acu Port in Sao Joao da Barra, Rio de Janeiro state. The long distance iron ore slurry pipeline will be one of major differentials of Minas-Rio Project and its useful life was initially estimated in 20 years. The slurry pipeline has a total length of 525 kilometers and will be constructed from predominately 26 inches external diameter API 5L X70 pipes. From kilometer 314 to kilometer 480, 24 inches pipe will be installed to prevent slack flow downstream pump station 2. The pump station 1 is designed to provide the hydraulic head necessary to transport the concentrate iron ore slurry with 8 positive displacement pumps to pump station 2. The pump station 2, located 240 kilometers downstream pump station 1, is designed to operate with 10 positive displacement pumps. The valve station will be located at kilometer 347 and will be used to break the static head between pump station 2 and the terminal station during a slurry pipeline shutdown. (author)

  13. Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran ...

    Indian Academy of Sciences (India)

    Central Iran; iron-apatite ore; Kiruna-type; Posht-e-Badam Block; REE geochemistry. J. Earth Syst ... ferent ore genesis models have been proposed for ...... volatile-rich magma systems stress the important .... Laco magnetite flow deposits, northern Chile: An up-to- ... economic report on iron ore prevision of the Esfahan steel.

  14. Production of Schwarzmoeller briquets from weakly caking black coal and iron ore

    Energy Technology Data Exchange (ETDEWEB)

    Naundorf, W.

    1986-01-01

    Laboratory production is explained of coal and iron ore briquets suitable for metallurgy, using type 33 weakly caking black coal, iron ore concentrates from 3 Soviet mines and sulfite lye as binder. Coal and ore were finely ground to 0.3/0.0 mm grain size, briquetted at high pressure of 150 MPa and at 80 C temperature. The sulfite lye binder content ranged from 4 to 10% in the briquet mixture. Briquets were thermally treated up to 1000 C; the resulting coke lumps (Schwarzmoeller briquets) were analyzed for compression and abrasion strength. Detailed graphs of briquet and coke lump quality parameters are provided. The study shows that high quality metallurgical coke lumps are obtained by briquetting mixtures of black coal and iron ore in a mixture of about 70:30 with 4 to 9% addition of sulfite binder. Compression strength of coke lumps exceeded 35 MPa. The minimum black coal-iron ore mass relation for producing metallurgical coke lumps was 30:70 using 2 types of iron ore concentrates. The influence of adding limestone to the briquetting mixture and of coking conditions resembling the horizontal chamber oven process is also investigated. 5 references.

  15. The Application of Artificial Neural Networks to Ore Reserve Estimation at Choghart Iron Ore Deposit

    Directory of Open Access Journals (Sweden)

    Seyyed Ali Nezamolhosseini

    2017-01-01

    Full Text Available Geo-statistical methods for reserve estimation are difficult to use when stationary conditions are not satisfied. Artificial Neural Networks (ANNs provide an alternative to geo-statistical techniques while considerably reducing the processing time required for development and application. In this paper the ANNs was applied to the Choghart iron ore deposit in Yazd province of Iran. Initially, an optimum Multi Layer Perceptron (MLP was constructed to estimate the Fe grade within orebody using the whole ore data of the deposit. Sensitivity analysis was applied for a number of hidden layers and neurons, different types of activation functions and learning rules. Optimal architectures for iron grade estimation were 3-20-10-1. In order to improve the network performance, the deposit was divided into four homogenous zones. Subsequently, all sensitivity analyses were carried out on each zone.  Finally, a different optimum network was trained and Fe was estimated separately for each zone. Comparison of correlation coefficient (R and least mean squared error (MSE showed that the ANNs performed on four homogenous zones were far better than the nets applied to the overall ore body. Therefore, these optimized neural networks were used to estimate the distribution of iron grades and the iron resource in Choghart deposit. As a result of applying ANNs, the tonnage of ore for Choghart deposit is approximately estimated at 135.8 million tones with average grade of Fe at 56.14 percent. Results of reserve estimation using ANNs showed a good agreement with the geo-statistical methods applied to this ore body in another work.

  16. Effects of iron-ore mining and processing on metal bioavailability in a tropical coastal lagoon

    NARCIS (Netherlands)

    Pereira, A.A.; van Hattum, A.G.M.; Brouwer, A.; van Bodegom, P.M.; Rezende, C.E.; Salomons, W.

    2008-01-01

    In water systems, water quality and geochemical properties of sediments determine the speciation of trace metals, metal transport, and sediment-water exchange, influencing metal availability and its potential effects on biota. Studies from temperate climates have shown that iron-ore mining and

  17. Direct Biohydrometallurgical Extraction of Iron from Ore

    Energy Technology Data Exchange (ETDEWEB)

    T.C. Eisele

    2005-10-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe{sup +2}) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron.

  18. Influence of attrition variables on iron ore flotation

    Directory of Open Access Journals (Sweden)

    Fabiana Fonseca Fortes

    Full Text Available Abstract The presence of slimes is harmful to the flotation process: the performance and consumption of reagents are negatively affected. Traditionally, the desliming stage has been responsible for removing slimes. However, depending on the porosity of the mineral particles, desliming may not be sufficient to maximize the concentration results. An attrition process before the desliming operation can improve the removal of slime, especially when slimes cover the surface and/or are confined to the cavities/pores of the mineral particles. Attrition is present in the flowcharts of the beneficiation process of phosphate and industrial sand (silica sand. Research has been undertaken for its application to produce pre-concentrates of zircon and iron ore. However, there is still little knowledge of the influence of the attrition variables on the beneficiation process of iron ore. This study presents a factorial design and analysis of the effects of these variables on the reverse flotation of iron ore. The standard of the experimental procedures for all tests included the attrition of pulp, under the conditions of dispersion, desliming and flotation. The parameter analysed (variable response was the metallurgical recovery in reverse flotation tests. The planning and analysis of the full factorial experiment indicated that with 95% reliability, the rotation speed of the attrition cell impeller was the main variable in the attrition process of the iron ore. The percentage of solid variables in the pulp and the time of the attrition, as well as their interactions, were not indicated to be significant.

  19. Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry

    Science.gov (United States)

    Mokhtari, Mir Ali Asghar; Zadeh, Ghader Hossein; Emami, Mohamad Hashem

    2013-06-01

    Rare earth elements in apatites of different ore types show characteristic patterns which are related to different modes of formation of the ores. Most of the apatite-bearing iron ores are associated with alkaline magmas with LREE/HREE fractionation varying from moderate to steep. Iron-apatite deposits in Posht-e-Badam Block (Central Iran) have a high concentration of REE (more than 1000 ppm up to 2.5%), and show a strong LREE/HREE ratio with a pronounced negative Eu anomaly. This REE pattern is typical of magmatic apatite and quiet distinct from sedimentary apatites (phosphorites) which have a low REE contents and Ce negative anomalies. On the other hand, they are comparable to the REE patterns of apatites in Kiruna-type iron ores in different parts of the world. The REE patterns of apatites, iron-apatite ores and iron ores are similar and only have different REE contents. This similarity indicates a genetic relation for these rocks. Most of the iron-apatite deposits in Central Iran have similar REE patterns too, which in turn show a genetic relation for all of these deposits. This similarity indicates a similar origin and processes in their genesis. There are some small intrusions around some of the iron-apatite deposits that are petrographically identified as syenite and gabbro. These intrusions also have REE patterns similar to that of iron-apatite ores. This demonstrates a genetic relation between these intrusions and iron-apatite ores. The REE patterns of apatites in different deposits of Posht-e-Badam Block iron-apatite ores show an affinity to alkaline to sub-alkaline magmas and rifting environment. The alkaline host rocks of Central Iran iron-apatite ores are clearly related to an extensional setting where rifting was important (SSE-NNW fault lines). A probable source for this large scale ore forming processes is relatively low partial melting of mantle rocks. The ores have originated by magmatic differentiation as a late phase in the volcanic cycle

  20. Development of the Facility for Transformation of Magnetic Characteristics of Weakly Magnetic Oxidized Iron Ores Related to Improvement of Technologies for Iron Ore Concentrate Production

    Directory of Open Access Journals (Sweden)

    Ponomarenko, O.M.

    2016-01-01

    Full Text Available New facility for continuous registration of iron ore magnetization depending on temperature by heating of iron ores upon reducing conditions was created. Facility allows to register the processes of transformation of weakly magnetic minerals into strongly magnetic ones under the influence of reducing agents and temperature, as well as to determine the Curie temperature of the minerals. Using created facility it was shown, that heating of goethite and hematite in the presence of 4 % of starch in the temperature range of 300—650 °С leads to significant increase of magnetization of the samples. X-Ray diffraction confirmed that under indicated conditions the structure of hematite and goethite is transformed into magnetite structure. Obtained results open up new possibilities for the development of effective technologies for oxidized iron ore beneficiation.

  1. Utilisation of iron ore tailings as aggregates in concrete

    OpenAIRE

    Francis Atta Kuranchie; Sanjay Kumar Shukla; Daryoush Habibi; Alireza Mohyeddin

    2015-01-01

    Sustainable handling of iron ore tailings is of prime concern to all stakeholders who are into iron ore mining. This study seeks to add value to the tailings by utilising them as a replacement for aggregates in concrete. A concrete mix of grade 40 MPa was prepared in the laboratory with water–cement ratio of 0.5. The concrete were cured for 1, 2, 3, 7, 14 and 28 days. The properties of the concrete such as workability, durability, density, compressive strength and indirect tensile strength we...

  2. Applicability of attrition of iron ore in floating

    International Nuclear Information System (INIS)

    Fortes, Fabiana Fonseca

    2010-01-01

    The aim of this study is to investigate the possibility to increase metal recovery in the flotation of iron ore with the implementation of a stage of scrubbing followed by dispersion. The minerals in question stems from two mines located in the western portion of the Iron Quadrangle and differ mainly with respect to the percentage of hematite and porous and the presence of aggregated masses. These characteristics were compared to those of other minerals that have succeeded with the adoption of this technique. Tests were conducted at bench scale scrubbing, desliming and concentration by flotation with the blend of ore from both mines. Were varied stirring time and pH. The chemical results of desliming and flotation products in the different conditions were compared. The presence of porous hematite is relevant in a mine, mainly due to the occurrence of earthy goethite, alumina carrier of the contaminant. The step desliming is insufficient for the removal of harmful sludge flotation. Laboratory experiments showed that the scrubbing of the pulp of iron ore of Minas de Capitao do Mato and Tamandua, agitated for 10 minutes followed by desliming amid scattered, promotes increased metal recovery by about 17% and increases the selectivity of 40 % compared to the results of the scrubbing and without dispersion. The scrubbing of hematite ore followed by desliming amid scattered can bring gains in improving the quality of pellet feed fine if deployed industrially. (author)

  3. Multistage dilute acid leaching of a medium grade iron ore to super-concentrate

    Directory of Open Access Journals (Sweden)

    Adeleke A.A.

    2014-01-01

    Full Text Available The phosphorous laden Koton Karfe iron ore is a medium grade iron ore deposit in Nigeria that can be upgraded as a super-concentrate for use at the Aladja Steel Midrex plant. The 75 μm size sample fraction of the ore was preconcentrated with shaking table and leached in the oven at atmospheric pressure with dilute hydrochloric acid in single and multistage leaching sequences of H2O-HCl-H2O and HCl-H2O-H2O. The as-received, as-tabled and asleached samples were then subjected to X-ray fluorescence and microscopic analyses. The results obtained showed that the H2O-HCl-H2O route produced a higher grade concentrate that assayed 68.54% Fe indicating about 58% upgrade in iron content; while the phosphorus and sulphur contents were reduced by about 77 and 99.6% respectively. In addition, the silicon, manganese, and titanium contents were drastically reduced, while potassium was completely eliminated. The upgrade of iron content in the ore to 68.54% and the drastic reduction in phosphorous and sulphur contents has thus rendered the Koton Karfe iron ore suitable for use as a super concentrate for the Aladja steel plant direct reduction iron making process.

  4. A finite difference model of the iron ore sinter process

    OpenAIRE

    Muller, J.; de Vries, T.L.; Dippenaar, B.A.; Vreugdenburg, J.C.

    2015-01-01

    Iron ore fines are agglomerated to produce sinter, which is an important feed material for blast furnaces worldwide. A model of the iron ore sintering process has been developed with the objective of being representative of the sinter pot test, the standard laboratory process in which the behaviour of specific sinter feed mixtures is evaluated. The model aims to predict sinter quality, including chemical quality and physical strength, as well as key sinter process performance parameters such ...

  5. Petrological and geochemical features of the early Paleozoic granitic gneisses and iron ores in the Tianhu iron deposit, Eastern Tianshan, NW China: Implications for ore genesis

    Science.gov (United States)

    Zheng, Jiahao; Mao, Jingwen; Yang, Fuquan; Chai, Fengmei; Shen, Ping

    2017-08-01

    This paper reports whole-rock geochemical, zircon U-Pb and Hf isotopic data for ore-hosted granitic gneisses, mineral compositions of oxides, and sulfur isotopic data for sulfides in iron ores from the Tianhu deposit, central part of the Eastern Tianshan. Our results can provide crucial constraints on the genesis of granitic gneisses and early Paleozoic tectonic setting of the Eastern Tianshan. LA-ICP-MS U-Pb dating on magmatic zircons yielded weighted mean 206Pb/238U ages of 463 to 438 Ma, interpreted as the crystallization ages of the granitic protoliths and the formation ages of the Tianhu Group. Zircon U-Pb age of ore-hosted granitic gneiss (ca. 459 Ma) can provide reliable constrains on upper limit for iron mineralization age in the Tianhu deposit. Geochemical characteristics suggest that the protoliths of the Tianhu granitic gneisses are metaluminous to weakly peraluminous high-K calc-alkaline granitic rocks, exhibiting typical subduction-related features such as strong enrichment in LREE and LILE and depletion in HFSE. Zircon Hf isotopic compositions show a positive trend from 463 to 438 Ma, indicating that 460 Ma magmas came from both ancient and juvenile sources, whereas 438 Ma magmas involved more juvenile material. Some early Paleozoic granitoids were recently identified in the Eastern Tianshan with the ages between ca. 475 and ca. 425 Ma. The formation of these early Paleozoic granitoids was in response to subduction processes, suggesting that subduction of Junggar Ocean probably began in the Early Ordovician and lasted until Late Silurian. Pyrite and pyrrhotite in iron ores have δ34SCDT values from + 4.6 to + 15.7‰, which are consistent with the marine source, but inconsistent with the magmatic source or those involved evaporites in skarn iron deposit. Geological, geochemical, and isotopic data suggest that the Tianhu iron ores were formed by volcano-sedimentary processes in a subduction environment during the early Paleozoic time, and Tianhu is a

  6. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    International Nuclear Information System (INIS)

    Omran, Mamdouh; Fabritius, Timo; Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A.; El-Aref, Mortada; Elmanawi, Abd El-Hamid

    2015-01-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe 2 O 3 and P 2 O 5 contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe 3+ ) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases

  7. Assessing the impact of iron ore mining to the groundwater in Goa, using stable isotopes

    International Nuclear Information System (INIS)

    Arzoo Ansari, Md.; Sinha, U.K.; Mohokar, H.V.; Deodhar, Archana; Mendhekar, G.N.; Jaryal, Ajay

    2017-01-01

    Goa contributes about 50% of the total iron ore exported from the country. Iron ore share is 95% of total mining and quarrying sector in Goa. It represents the second most important industry next to tourism. The iron ore is predominantly mined by opencast mining throughout Goa. The reduction of the forest cover, huge dumps, dust mineral particles, water contamination and health problems are some of the principal harmful effects of extensive mining which is of great concern to the environment. The objective of this study is to assess the impact of iron ore mining to groundwater in downstream side of the mine pits using isotope hydrological techniques

  8. Factors Affecting Ballability of Mixture Iron Ore Concentrates and Iron Oxide Bearing Wastes in Metallurgical Processing

    Directory of Open Access Journals (Sweden)

    Mfon Udo

    2018-05-01

    Full Text Available Iron oxide bearing wastes (IROBEWAS are produced at every segment of processing stage of sinter, molten iron and steel production. They are hard to handle and in many cases are stockpiled only to be a source of environmental pollution but can be balled into pellets. Pellet of good ballability values are transportable and recyclable as they can withstand stress they will encounter without disintegrating back to dust. But ballability is affected by some factors like the grain sizes of the materials, the moisture and binder contents of the ball mix, wettability of the balled materials and the processing perimeters of the granulator. The objective of this research work is to investigate the factors affecting ballability of mixture of iron ore concentrates and iron oxide bearing wastes (IROBEWAS in metallurgical processing. The parameters under consideration were grain size of materials, the moisture contents, the speed of balling disc, IROBEWAS and Bentonite (Binder contents of the balled mix. This was carried out by balling different volume fractions of mix containing iron oxide concentrate and IROBEWAS using a balling disc and testing the resulting balls for green compressive strength using universal testing machine. It was found that the ballability of the mixture of iron ore concentrate and IROBEWAS increases as grain sizes of the materials reduce but increases as the moisture contents and IROBEWAS content increase up to an optimum value of moisture content in the mix before it starts to reduce. The ballability also increases as the speed of the granulator (Balling disc increases within the limit of this work. It was also observed that there was an increase in ballability with slight increase in bentonite content in the mix.

  9. Direct Reduction of Iron Ore

    Science.gov (United States)

    Small, M.

    1981-04-01

    In the search for a pure, available iron source, steelmakers are focusing their attention on Directly Reduced Iron (DRI). This material is produced by the reaction of a low gangue iron ore with a hydrocarbonaceous substance. Commercially, DRI is generated in four different reactors: shaft (moving-bed), rotary kiln, fluidized bed, and retort (fixed-bed). Annual worldwide production capacity approaches 33 million metric tons. Detailed assessments have been made of the uses of DRI, especially as a substitute for scrap in electric furnace (EF) steelmaking. DRI is generally of a quality superior to current grades of scrap, with steels produced more efficiently in the EF and containing lower levels of impurities. However, present economics favor EF steel production with scrap. But this situation could change within this decade because of a developing scarcity of good quality scrap.

  10. Analytical applications of condensed phosphoric acid-I Determination of ferrous and total iron in iron ores after decomposition with condensed phosphoric acid.

    Science.gov (United States)

    Mizoguchi, T; Ishii, H

    1978-06-01

    A simple method is described for the determination of ferrous and total iron in iron ores. Iron ores are dissolved by condensed phosphoric acid (CPA) very rapidly without any tedious and time-consuming manipulations such as elimination of silica and filtration. Under the proposed conditions (amount of sample 100 mg, amount of CPA added 10 g, heating temperature 290 degrees , heating time 30 min), magnetite, limonite and hematite are completely dissolved. The iron content can be determined in the presence of condensed phosphoric acid by titration with dichromate solution, if a slight modification is made. The total iron in iron ores, determined by the present method, is in agreement with that found by the JIS method. The ferrous iron in iron ores can be determined by dissolving the samples with CPA in a nitrogen atmosphere and titrating with dichromate solution. Chelatometric titration of iron after solvent extraction with MIBK from solutions prepared by use of CPA is found to be accurate for samples such as pyrite cinder. The ability of CPA to dissolve various materials has been investigated.

  11. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    Energy Technology Data Exchange (ETDEWEB)

    Omran, Mamdouh, E-mail: mamdouh.omran@oulu.fi [Process Metallurgy Research Group, Faculty of Technology, University of Oulu (Finland); Mineral Processing and Agglomeration Lab, Central Metallurgical Research and Development Institute, Cairo (Egypt); Fabritius, Timo [Process Metallurgy Research Group, Faculty of Technology, University of Oulu (Finland); Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A. [Mineral Processing and Agglomeration Lab, Central Metallurgical Research and Development Institute, Cairo (Egypt); El-Aref, Mortada; Elmanawi, Abd El-Hamid [Geology Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2015-08-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe{sub 2}O{sub 3} and P{sub 2}O{sub 5} contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe{sup 3+}) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases.

  12. chemical and mineralogical characterization of lateritic iron ore

    African Journals Online (AJOL)

    DJFLEX

    2010-04-22

    Apr 22, 2010 ... The laterite iron ore deposit at Auchi, Edo State, Nigeria was studied chemically and mineralogically. The results of the chemical ... SAMPLE PREPARATION. The samples .... 2µm) and were subjected to X-ray diffraction using.

  13. Final feasibility study of possibilities and potentials of the disused iron ore mine Konrad (FRG) for low-level waste and decommissioning waste disposal

    International Nuclear Information System (INIS)

    Brewitz, W.; Stippler, R.

    1982-01-01

    The ''Institut fur Tieflagerung'' of the Gesellschaft fur Strahlen- and Umweltforschung, in collaboration with the Kernforschungszentrum Karlsruhe, carries out geoscientific and technical investigations in the disused iron ore mine Konrad. The aim is to prove the mine's feasibility for the disposal of low-level radioactive waste and decommissioning waste as well as the use of the existing mining installations. The investigations were initiated in 1975 and are being financed by the Minister for Research and Technology of the Federal Republic of Germany. Since 1978 the work is being supported as well by the Commission of the European Community in the scope of two years each. So far an amount of 60 mio DM has been spent, 86% for maintenance and further operation of the mine and 14% for research work

  14. Analysis of Characteristics of Ore about Iron Deposit of Da Hong Mountain in Yun Nan Province

    Directory of Open Access Journals (Sweden)

    Zhang Yuefeng

    2016-01-01

    Full Text Available This thesis aims to analyse the deposit characteristics about Da Hong Mountains Iron ore in Yunnan province. The texture and structure, especially the chemical composition, is different in every section of deposit after comparing. Moreover, the content of SiO2 is much higher than general iron ore. However, the content of other noble metals cannot reach the lowest industrial grade. Da Hong Mountains Iron ore has unique features because of metallogenic periods.

  15. Geophysical prospecting for iron ore deposit around Tajimi village, Lokoja, North–Central Nigeria

    Directory of Open Access Journals (Sweden)

    Bayowa Oyelowo

    2016-09-01

    Full Text Available Ground magnetic and electrical resistivity survey were undertaken to investigate the occurrence and geometry of iron ore deposit around Tajimi village, Lokoja, North-Central Nigeria. The generated residual map of the ground-magnetic data acquired at 250 stations along 15 traverses revealed numerous prominent anomalies, mostly trending in the N-S direction. The radial power spectrum revealed the depth to magnetic sources between 6 m to 20 m. The interpreted VES data characterized the area into three subsurface layers: top soil, presumably iron ore layer and weathered/fresh basement. The result of vertical electrical sounding curves showed a sudden drop in resistivity (42-241 Ωm over high magnetic response. The geo-electric section revealed that the study area is generally characterized with thin overburden (0.5-1.7 m and the thickness of the second layer (presumed to be the iron ore layer ranged between 6.2-25.1 m. The study concluded that areas of high magnetic intensity showed a sudden drop in resistivity value for the VES points, which give an indication of the presence of an electrically conductive structure presumed to be iron ore deposits.

  16. Catalytic decomposition of tar derived from wood waste pyrolysis using Indonesian low grade iron ore as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Wicakso, Doni Rahmat [Chemical Engineering Department, Faculty of Engineering, Lambung Mangkurat University, Jalan A. Yani KM. 36 Banjarbaru, 70714, South Kalimantan (Indonesia); Chemical Engineering Department, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur, Yogyakarta, 55281 (Indonesia); Sutijan; Rochmadi [Chemical Engineering Department, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur, Yogyakarta, 55281 (Indonesia); Budiman, Arief, E-mail: abudiman@ugm.ac.id [Chemical Engineering Department, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur, Yogyakarta, 55281 (Indonesia); Center for Energy Studies, Gadjah Mada University, Sekip K1A, Yogyakarta, 55281 (Indonesia)

    2016-06-03

    Low grade iron ore can be used as an alternative catalyst for bio-tar decomposition. Compared to other catalysts, such as Ni, Rd, Ru, Pd and Pt, iron ore is cheaper. The objective of this research was to investigate the effect of using low grade iron ore as catalyst for tar catalytic decomposition in fixed bed reactor. Tar used in this experiment was pyrolysis product of wood waste while the catalyst was Indonesian low grade iron ore. The variables studied were temperatures between 500 – 600 °C and catalyst weight between 0 – 40 gram. The first step, tar was evaporated at 450 °C to produce tar vapor. Then, tar vapor was flowed to fixed bed reactor filled low grade iron ore. Gas and tar vapor from reactor was cooled, then the liquid and uncondensable gas were analyzed by GC/MS. The catalyst, after experiment, was weighed to calculate total carbon deposited into catalyst pores. The results showed that the tar components that were heavy and light hydrocarbon were decomposed and cracked within the iron ore pores to from gases, light hydrocarbon (bio-oil) and carbon, thus decreasing content tar in bio-oil and increasing the total gas product. In conclusion, the more low grade iron ore used as catalyst, the tar content in the liquid decrease, the H{sup 2} productivity increased and calorimetric value of bio-oil increased.

  17. Iron ore pollution in Mandovi and Zuari estuarine sediments and its fate after mining ban.

    Science.gov (United States)

    Kessarkar, Pratima M; Suja, S; Sudheesh, V; Srivastava, Shubh; Rao, V Purnachandra

    2015-09-01

    Iron ore was mined from the banded iron formations of Goa, India, and transported through the Mandovi and Zuari estuaries for six decades until the ban on mining from September 2012. Here we focus on the environmental magnetic properties of sediments from the catchment area, upstream and downstream of these estuaries, and adjacent shelf during peak mining time. Magnetic susceptibility (χ lf) and saturation isothermal remanent magnetization (SIRM) values of sediments were highest in upstream (catchment area and estuaries), decreased gradually towards downstream (catchment area and estuaries), and were lowest on the adjacent shelf. The χ lf values of the Mandovi estuary were two to fourfold higher than those in the Zuari. The sediments of these two estuaries after the mining ban showed enrichment of older magnetite and sharp decrease in the SIRM values. Although the input of ore material has been reduced after mining ban, more flushing of estuarine sediments is required for healthier environment.

  18. Effect of rare earth Ce on the far infrared radiation property of iron ore tailings ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie [Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130 (China); Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130 (China); Meng, Junping, E-mail: srlj158@sina.com [Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130 (China); Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130 (China); Liang, Jinsheng; Duan, Xinhui [Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130 (China); Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130 (China); Huo, Xiaoli [Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130 (China); Tang, Qingguo [Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130 (China); Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130 (China)

    2015-06-15

    Highlights: • Detailed process proposed for preparation of iron ore tailings ceramics. • Replace natural minerals with iron ore tailings as raw materials for preparing functional ceramics. • Impact mechanism of Ce on far infrared ceramics, as well as its optimum addition amounts can be obtained. • Propose a new perspective on considering the mechanism of far infrared radiation. - Abstract: A kind of far infrared radiation ceramics was prepared by using iron ore tailings, CaCO{sub 3} and SiO{sub 2} as main raw materials, and Ce as additive. The result of Fourier transform infrared spectroscopy showed that the sample exhibits excellent radiation value of 0.914 when doping 7 wt.% Ce. Ce{sup 4+} dissolved into iron diopside and formed interstitial solid solution with it sintered at 1150 °C. The oxidation of Fe{sup 2+} to Fe{sup 3+} caused by Ce{sup 4+} led to a decrease of crystallite sizes and enhancement of Mg–O and Fe–O vibration in iron diopside, which consequently improved the far infrared radiation properties of iron ore tailings ceramics.

  19. Direct Biohydrometallurgical Extraction of Iron from Ore. Final Technical Report

    International Nuclear Information System (INIS)

    T.C. Eisele

    2005-01-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe +2 ) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron

  20. Direct Biohydrometallurgical Extraction of Iron from Ore. Final technical report

    International Nuclear Information System (INIS)

    T.C. Eisele

    2005-01-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe +2 ) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron

  1. Automation of the second iron ore slurry pipeline from Samarco

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, Juliana M.; Fonseca, Mario L.; Drumond, Pablo P.; Barbosa, Sylvio [IHM Engenharia, Belo Horizonte, MG (Brazil)

    2009-07-01

    The second iron ore slurry pipeline from Samarco was build to attend the Third Pellet Plant Project, which includes a new Concentration Plant at Germano-MG and a third Pellet Plant at Ubu-ES. It has 396km of extension and links the two plants by pulping the iron ore slurry prepared at Germano Unit. This works aims to present the iron ore slurry pipeline with emphasis on the automation architecture for the supervision and control system, interconnect throughout the pipe extension by fiber optics. The control system is composed of ControlLogix CLP's at the pulping and valve station and Micrologix CLP's at the pressure and cathodic protection monitoring points, totalizing 19 PLC's. The supervisory system was developed using the Wonderware IAS 3.0 suite, including the supervisory software InTouch 9.5 and the integrated ArchestrA IDE, and is composed of two data servers in redundancy and nine operation stations. The control and supervision system is interconnect through and Ethernet network using fiber optics and multiplexer modules (GE JungleMux) for voice, data and video. Among the expected results, it can be highlighted the sequence automation, greater process data availability (real and historical) and greater facility for the operation and detection of failures. (author)

  2. Geochemistry and the origin of the Mamouniyeh iron ore-terra rossa deposit, Markazi Province - Iran

    Directory of Open Access Journals (Sweden)

    Marziyeh Mahboubiyan Fard

    2017-11-01

    Full Text Available Introduction Iron is among the metals whose ore deposits are not confined to a specific geologic period of crustal formation and they have formed in various geologic environments during previous periods (Ghorbani, 2007. About 95% of iron ore deposits have sedimentary origin and have formed due to chemical deposition from ancient sea water. The remaining percent is the result of alteration and magmatic activities (Gutzmer and Beukes, 2009. In sedimentary environments, a large amount of sedimentary iron minerals have formed resulting in different iron facies. Iron oxide facies are of the most important facies (James, 1954. The most important Iranian iron deposits are located in Central Iran, Sanandaj- Sirjan and East Iran zones, and the Kordestan area (Ghorbani, 2007. In the Orumiyeh-Dokhtar Zone, many iron ore deposits have been formed in conjunction with granitic and granodioritic plutons related to Oligocene-Miocene plutonic and volcanic activities (Hoshmandzadeh, 1995. The Mamouniyeh iron ore-terra rossa deposit is located in the Orumiyeh-Dokhtar volcanic zone. Iron mineralization have occurred in trachytic-trachyandesitic lavas and pyroclastic rocks of Pliocene age. Materials and methods A total of 28 rock samples were picked up from ore and host rocks during field observations. Petrographical and mineralogical studies were performed on 15 thin sections of ore and host rocks. XRD studies were performed on 3 ore samples. In order to investigate the geochemistry of the ore, 10 samples were analyzed for major, trace and rare earth elements (REEs using the ICP-MS method. Result Field and mineralogical studies reveal that the ore is composed of hematite along with crypto-crystalline silica as alternating layers of various thickness and color. The existence of alternating layers of hematite and quartz implies that the ore is similar to banded iron formations, but on a smaller scale, related to submarine hydrothermal activities. Silica is found as

  3. Getting rid of the unwanted: highlights of developments and challenges of biobeneficiation of iron ore minerals-a review.

    Science.gov (United States)

    Adeleke, Rasheed A

    2014-12-01

    The quest for quality mineral resources has led to the development of many technologies that can be used to refine minerals. Biohydrometallurgy is becoming an increasingly acceptable technology worldwide because it is cheap and environmentally friendly. This technology has been successfully developed for some sulphidic minerals such as gold and copper. In spite of wide acceptability of this technology, there are limitations to its applications especially in the treatment of non-sulphidic minerals such as iron ore minerals. High levels of elements such as potassium (K) and phosphorus (P) in iron ore minerals are known to reduce the quality and price of these minerals. Hydrometallurgical methods that are non-biological involving the use of chemicals are usually used to deal with this problem. However, recent advances in mining technologies favour green technologies, known as biohydrometallurgy, with minimal impact on the environment. This technology can be divided into two, namely bioleaching and biobeneficiation. This review focuses on Biobeneficiation of iron ore minerals. Biobeneficiation of iron ore is very challenging due to the low price and chemical constitution of the ore. There are substantial interests in the exploration of this technology for improving the quality of iron ore minerals. In this review, current developments in the biobeneficiation of iron ore minerals are considered, and potential solutions to challenges faced in the wider adoption of this technology are proposed.

  4. Work Index and Grinding Energy Assessment of Dilband Iron Ore, Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaque Abro

    2011-01-01

    Full Text Available Importance of comminution in mineral processing sector is highly acknowledged from energy perspective. In present study an attempt was made to understand the comminuting behavior of Dilband iron ore and to compute the grinding energy requirement for production of ultrafine particles up to mesh of liberation. In this regard standard grindability tests developed by the Chair of Mineral Processing Leoben Austria was used for calculating work index of Dilband iron ore. The grinding tests were conducted in rod and ball mills. The work index value of two feed size fractions with 80% passing at 3800?m and 5200?m was noted to be 11.85 kwh/t and 9.3 kwh/ton respectively. Ball mill grinding test indicates that dry grinding in open circuit is not efficient and consumes more energy of 88.48kwh/t of ore for grinding 1000/40?m to 80% <40?m size.

  5. A laboratory study to evaluate the possibility of sulphur and phosphorous removal from iron ore concentrate by leaching

    Directory of Open Access Journals (Sweden)

    Pour Hassan Rezvani

    2016-01-01

    Full Text Available Iron ore concentrates with high grade sulfur cause several problems in the steel making process, and hence affect the concentrate price. Environmental issues such as sulfur dioxide emission during the concentrate pelletizing process and effect on the steel quality are other issues. The current study was focused on removal of sulfur from the iron ore concentrate by using the chemical leaching technique. The magnetite iron ore concentrate was chosen for this purpose. The results obtained showed that more than 90% of the total sulfur content was removed from the iron ore concentrate by chemical leaching. Effects of several parameters such as temperature, particle size and use of organic solvent on sulfur removal were investigated by a series of experiments. After optimizing the experimental conditions, it was demonstrated that with addition of sulfur, phosphorus, another important impurity was also removed from the iron ore concentrate. In addition, one of the major advantages of our proposed method was transformation of mineral pyrites to useful by-products such as elemental sulfur.

  6. The separation and determination of trace elements in iron ore

    International Nuclear Information System (INIS)

    Jones, E.A.

    1977-01-01

    The separation, concentration, and determination of trace elements in iron ores are described. After the sample has been dissolved, the iron is separated by liquid-liquid extraction with a liquid cation-exchanger, di-(2-ethylhexyl) phosphoric acid. The trace elements aluminium, cadmium, calcium, chromium, cobalt, copper, lead, magnesium, manganese, mercury, potassium, sodium, vanadium, and zinc are determined in the aqueous phase by atomic-absorption spectrophotometry

  7. On-line and bulk analysis of iron ore and bauxite

    International Nuclear Information System (INIS)

    Holmes, R.J.; Roczniok, A.F.

    1983-01-01

    A number of analysis techniques based on neutron and gamma radiation have been developed for the mining industry. Current projects include the measurement of annihilation radiation arising from pair production for the on-line determination of the iron content of iron ores, and the construction of a demonstration bauxite analyser based on fast-neutron activation analysis for the simultaneous determination of aluminium and silicon content

  8. Vanadium-bearing titaniferous iron ores from the Rooiwater, Usushwana, Mambula, Kaffirskraal, and the Trompsburg igneous complexes

    International Nuclear Information System (INIS)

    Reynolds, A.M.

    1979-01-01

    The mineralogy and chemistry of some vanadium-bearing titaniferous iron ores from a number of smaller South African basic intrusions are reported, and an assessment is given of the potential of these ores for use as raw materials in the production of iron, high-titania slag, and vanadium pentoxide. The ores from each complex can be distinguised readily on the basis of their chemical composition and textural relations. The Rooiwater Complex represents the most promising area. It contains two layers of titaniferous magnetite, each approximately 8 m thick, in the eastern part, the lowest seam being chemically similar to the economically important main layer of titaniferous magnetite in the Bushveld Complex. The ores are silicate-poor and consist largely of multi-phase titaniferous-magnetite grains containing modified ilmenite and pleonaste micro-intergrowths. The coarse grain size of these ores favours beneficiation, and they can be partially treated to yield ilmenite concentrates and low-titania magnetite fractions in which the content of vanadium pentoxide is higher than that in the original ores. The Mambula ores are silicate-rich and would require extensive beneficiation. The Kaffirskraal ores consist of multi-phase grains of titaniferous magnetite containing crystallographically oriented ilmenite, ulvospinel, and pleonaste micro-intergrowths. Minor coarser-grained ilmenite is also present. The Usushwana ores are texturaly similar but contain abundant lamellar ilmenite in place of the ulvospinel. The ores from these two complexes cannot be beneficiated by conventional ore-dressing techniques, and would require direct metallurgical treatment for the recovery of iron, titania, and vanadium pentoxide [af

  9. Experimental study and modelling of iron ore reduction by hydrogen

    International Nuclear Information System (INIS)

    Wagner, D.

    2008-01-01

    In an effort to find new ways to drastically reduce the CO 2 emissions from the steel industry (ULCOS project), the reduction of iron ore by pure hydrogen in a shaft furnace was investigated. The work consisted of literature, experimental, and modelling studies. The chemical reaction and its kinetics were analysed on the basis of thermogravimetric experiments and physicochemical characterizations of partially reduced samples. A specific kinetic model was designed, which simulates the successive reactions, the different steps of mass transport, and possible iron sintering, at the particle scale. Finally, a 2-dimensional numerical model of a shaft furnace was developed. It depicts the variation of the solid and gas temperatures and compositions throughout the reactor. One original feature of the model is using the law of additive characteristic times for calculating the reaction rates. This allowed us to handle both the particle and the reactor scale, while keeping reasonable calculation time. From the simulation results, the influence of the process parameters was assessed. Optimal operating conditions were concluded, which reveal the efficiency of the hydrogen process. (author)

  10. Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: Potential use in environmental risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rust Neves, Natalia; Oliva, Marco Antonio; Cruz Centeno, Danilo da; Costa, Alan Carlos; Ferreira Ribas, Rogerio [Departamento de Biologia Vegetal, Universidade Federal de Vicosa, Av. PH Rolfs, Campus, Vicosa, Minas Gerais, 36570-000 (Brazil); Gusmao Pereira, Eduardo, E-mail: egpereira@gmail.com [Departamento de Biologia Vegetal, Universidade Federal de Vicosa, Av. PH Rolfs, Campus, Vicosa, Minas Gerais, 36570-000 (Brazil)

    2009-06-01

    The Brazilian sandy coastal plain named restinga is frequently subjected to particulate and gaseous emissions from iron ore factories. These gases may come into contact with atmospheric moisture and produce acid rain. The effects of the acid rain on vegetation, combined with iron excess in the soil, can lead to the disappearance of sensitive species and decrease restinga biodiversity. The effects of iron ore dust deposition and simulated acid rain on photosynthesis and on antioxidant enzymes were investigated in Eugenia uniflora, a representative shrub species of the restinga. This study aimed to determine the possible utility of this species in environmental risk assessment. After the application of iron ore dust as iron solid particulate matter (SPM{sub Fe}) and simulated acid rain (pH 3.1), the 18-month old plants displayed brown spots and necrosis, typical symptoms of iron toxicity and injuries caused by acid rain, respectively. The acidity of the rain intensified leaf iron accumulation, which reached phytotoxic levels, mainly in plants exposed to iron ore dust. These plants showed the lowest values for net photosynthesis, stomatal conductance, transpiration, chlorophyll a content and electron transport rate through photosystem II (PSII). Catalase and superoxide dismutase activities were decreased by simulated acid rain. Peroxidase activity and membrane injury increased following exposure to acid rain and simultaneous SPM{sub Fe} application. Eugenia uniflora exhibited impaired photosynthetic and antioxidative metabolism in response to combined iron and acid rain stresses. This species could become a valuable tool in environmental risk assessment in restinga areas near iron ore pelletizing factories. Non-invasive evaluations of visual injuries, photosynthesis and chlorophyll a fluorescence, as well as invasive biochemical analysis could be used as markers.

  11. Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: Potential use in environmental risk assessment

    International Nuclear Information System (INIS)

    Rust Neves, Natalia; Oliva, Marco Antonio; Cruz Centeno, Danilo da; Costa, Alan Carlos; Ferreira Ribas, Rogerio; Gusmao Pereira, Eduardo

    2009-01-01

    The Brazilian sandy coastal plain named restinga is frequently subjected to particulate and gaseous emissions from iron ore factories. These gases may come into contact with atmospheric moisture and produce acid rain. The effects of the acid rain on vegetation, combined with iron excess in the soil, can lead to the disappearance of sensitive species and decrease restinga biodiversity. The effects of iron ore dust deposition and simulated acid rain on photosynthesis and on antioxidant enzymes were investigated in Eugenia uniflora, a representative shrub species of the restinga. This study aimed to determine the possible utility of this species in environmental risk assessment. After the application of iron ore dust as iron solid particulate matter (SPM Fe ) and simulated acid rain (pH 3.1), the 18-month old plants displayed brown spots and necrosis, typical symptoms of iron toxicity and injuries caused by acid rain, respectively. The acidity of the rain intensified leaf iron accumulation, which reached phytotoxic levels, mainly in plants exposed to iron ore dust. These plants showed the lowest values for net photosynthesis, stomatal conductance, transpiration, chlorophyll a content and electron transport rate through photosystem II (PSII). Catalase and superoxide dismutase activities were decreased by simulated acid rain. Peroxidase activity and membrane injury increased following exposure to acid rain and simultaneous SPM Fe application. Eugenia uniflora exhibited impaired photosynthetic and antioxidative metabolism in response to combined iron and acid rain stresses. This species could become a valuable tool in environmental risk assessment in restinga areas near iron ore pelletizing factories. Non-invasive evaluations of visual injuries, photosynthesis and chlorophyll a fluorescence, as well as invasive biochemical analysis could be used as markers.

  12. Growth characteristics of a strain of iron-oxidizing bacterium and its application in bioleaching of uranium ores

    International Nuclear Information System (INIS)

    Zhang Rui; Liu Yajie; Gao Feng; Xu Lingling

    2008-01-01

    05B is a strain of iron-oxidizing bacterium which separated from a uranium ore. The effect of temperature, initial pH, inoculation amount and initial total iron concentration on the strain's growth and activities in bioleaching of uranium ores are studied. The results show that the optimum growth temperature is 40-45 degree C, the optimum inoculation pH value being 1.5-1.7, the optimum initial inoculation amount being 10%-20%, and the initial total iron concentration being not more than 5 g/L. 05B is fit for leaching of low grade uranium ores. (authors)

  13. Application of natural gas to the direct reduction of iron ore

    Energy Technology Data Exchange (ETDEWEB)

    1975-05-01

    The Gas Committee of the U.N. Economic Commission for Europe evaluated the potentials of natural gas for direct reduction of iron ore. The report, based essentially on that by the Italian representative E. Pasero with comments and observations from experts of the other member countries, indicated the general tendency of the iron and steel industry to use natural gas to reduce production costs by reducing coke consumption. By the end of 1972, gas consumption by these industries was reported at 38.8 billion Btu/ton (10.79 Gcal/m ton) by the Steel Committee of the U.N. Economic Commission at the symposium on the economic and technical aspects of the direct reduction of iron ore, held in September 1972 in Bucharest. In comparison, coke consumption was 9.5 billion Btu/ton (2.64 Gcal/m ton) steel, liquid hydrocarbons 3.1 billion Btu (0.85 Gcal), and electricity 16.1 billion Btu (4.46 Gcal). Natural gas was used mainly for ore reduction and generation of the reducing gas in-shaft furnaces with backdraft heating circulation, fixed-bed furances (Hyl type), and fluidized-bed reactors. Processes include the Midrex (shaft furnace), H.I.B. (fluidized bed), and Novalfer (fluidized bed). These processes are used to obtain 4.5 million tons/yr of iron sponge for the production of steel in electric furnaces. The natural gas outlook for direct reduction of iron will depend on local conditions and fuel availability. Its industrial application has been most successful in mini-steel installations, especially in the U.S., Japan, and Western Europe, and it is recommended for developing countries with no steel-industry basis.

  14. Report on Evaluation of Tender for the Valentine Iron Ore Project in Uruguay

    International Nuclear Information System (INIS)

    1981-01-01

    This report prepared by Dastur Engineering International GmbH (DEI)Consulting Engineers, Dusseldorf at the instance of United Nations Industrial Development Organization (UNIDO) seeks to present an evaluation of the feasibility study presented by Republica Oriental del Uruguay, Ministerio de Industria y- Energia (Project Authority) by the Brazilian Consortium (comprising Tenenga, Coferraz, Cimetal and Interbras) along with a project BID including financing possibilities. In accordance with the contract requirements, this Draft Final Report is being submitted. Based on the comments to be received on the findings incorporated in this Draft Final Report from UNIDO and Project Authorities in Uruguay, the Final Report will be prepared and submitted to UNIDO in accordance with the time schedule stipulated in the contract between UNIDO and DEI. The aims of the Project are:a) The development objective is the utilisation of the country's natural resources by exploiting the iron ore deposits of Valentines, for iron and steel production. b)The immediate objective is to evaluate the tenders for the execution of a project to undertake the industrial exploitation of the iron or deposits in close co-operation and co-ordination with the Uruguayan authorities.

  15. X-ray fluorescence diffractionless analyzer for determining light element content in iron ore mixtures

    International Nuclear Information System (INIS)

    Yuksa, L.K.; Kochmola, N.M.; Bondarenko, V.P.; Bogdanov, V.K.

    1986-01-01

    Diffractionless X-ray fluorescence analyzer for detecting calcium oxide and silicon dioxide contents in dry iron ore materials has been developed. The analyzer includes a charging unit, sample-conveying device, spectrometric units for detecting calcium and silicon, computing racks and sample-removing device. Results of calcium oxide and silicon dioxide analyses in iron ore mixtures are presented. Errors are evaluated. It is shown that the analyzer provides high accuracy of one-time determinations, as well as reading constancy for a long time

  16. Dynamic trial of an on-stream analyser for iron ore fines

    International Nuclear Information System (INIS)

    Holmes, R.J.; Miles, J.G.

    1980-01-01

    A thermal neutron irradiation technique using a 252 Cf neutron source has been developed and applied to the simultaneous determination of iron and aluminium (expressed as Al 2 O 3 ) in iron ore fines (-6 mm particle size) on a moving rubber conveyor belt. While the determination of iron with this technique is based on the use of a NaI(Tl) detector to monitor the characeristic prompt gamma rays (7.64 MeV) emitted by thermal neutron capture reactions in the iron, the determination of Al 2 O 3 is based on the use of a second NaI(Tl) detector to monitor the characteristic gamma rays (1.78 MeV) emitted after thermal neutron activation of the aluminium. The second detector is located downstream from the first. Although the speed of the conveyor belt has no direct effect on the iron measurements, it must not exceed about 3 m/min if good accuracy is required for the Al 2 O 3 measurements. Consequently an auxiliary conveyor belt is required in order to avoid interference with normal ore processing. Dynamic trials of the technique have demonstrated that the method can achieve accuracies of 0.7% Fe and 0.1% Al 2 O 3

  17. Iron ore catalysts for methane decomposition to make CO x free hydrogen and carbon nano material

    KAUST Repository

    Zhou, Lu; Enakonda, Linga Reddy; Li, Sheng; Gary, Daniel; Del-Gallo, Pascal; Mennemann, Christina; Basset, Jean-Marie

    2018-01-01

    In this work, for the first time, iron ores with 91.7%–96.2% FeO, 1.3%–2.3% AlO, 1.2%–4.5% SiO, 1.3%–3.9% NaO, were studied directly as bulk catalysts for methane decomposition. By hydrogen pre-reduction at 850 °C, FeO species on iron ores were

  18. On-line iron ore slurry monitoring using laser induced plasma spectroscopy

    International Nuclear Information System (INIS)

    Barrette, L.; Turmel, S.; Boivin, J.-A.; Sabsabi, M.; Martinovic, T.I.; Ouellet, G.

    1999-01-01

    In response to the need for a better control [Lb1] of the various additives used in the iron ore pellet making process, Laser-Induced Plasma Spectroscopy (LIPS) has been tested for the on-line monitoring of Si, AI, Ca, Mg, and C. This work shows that factors such as laser beam focusing, particle size, slurry density and mineralogical composition have to be taken into account to meet precision and accuracy requirements. An internal standardization (peak ratio) and an original multivariate calibration technique based on fuzzy logic concepts [Lb2] are [Lb3] used to minimize the effect of these factors. This paper describes the experimental set-up, the effect of influence factors and the results obtained both in the laboratory and in an iron ore plant. (author)

  19. Investigating the Utility of Iron Ore Waste in Preparing Non-fired Bricks

    Science.gov (United States)

    Lamani, Shreekant R.; Mangalpady, Aruna; Vardhan, Harsha

    2017-10-01

    Iron ore waste is a major problem for mine owners due to the difficulty involved in its storage, handling and other environmental related issues. An alternative solution to this is utilisation of iron ore waste (IOW) as some value added product in construction industry. An attempt has been made in this paper in examining the possibility of making non-fired bricks from iron ore waste with some additives like cement and fly-ash. Each of the additives were mixed with IOW in different ratios and different sets of bricks were prepared. The prepared IOW bricks were cured for 7, 14, 21 and 28 days and their respective compressive strength and percentage of water absorption were determined. The results show that IOW bricks prepared with 9% and above cement and with 28 days of curing are suitable for brick making and meet the IS specifications. It was also observed that the weight of the prepared bricks with 9% cement with 28 days of curing varies between 2.35 and 2.45 kg whereas the weight of compressed fire clay bricks varies from 2.80 to 2.89 kg. Results also show that the cost of bricks prepared with cement ranging from 9 to 20% is comparable to that of commercially available compressed bricks.

  20. Phytostabilisation potential of lemon grass (Cymbopogon flexuosus (Nees ex Stend) Wats) on iron ore tailings.

    Science.gov (United States)

    Mohanty, M; Dhal, N K; Patra, P; Das, B; Reddy, P S R

    2012-01-01

    The present pot culture study was carried out for the potential phytostabilisation of iron ore tailings using lemon grass (Cymbopogon flexuosus) a drought tolerant, perennial, aromatic grass. Experiments have been conducted by varying the composition of garden soil (control) with iron ore tailings. The various parameters, viz. growth of plants, number of tillers, biomass and oil content of lemon grass are evaluated. The studies have indicated that growth parameters of lemon grass in 1:1 composition of garden soil and iron ore tailings are significantly more (-5% increase) compared to plants grown in control soil. However, the oil content of lemon grass in both the cases more or less remained same. The results also infer that at higher proportion of tailings the yield of biomass decreases. The studies indicate that lemongrass with its fibrous root system is proved to be an efficient soil binder by preventing soil erosion.

  1. Clean recycle and utilization of hazardous iron-bearing waste in iron ore sintering process.

    Science.gov (United States)

    Gan, Min; Ji, Zhiyun; Fan, Xiaohui; Chen, Xuling; Zhou, Yang; Wang, Guojing; Tian, Ye; Jiang, Tao

    2018-04-18

    Applying recycled iron-bearing waste materials (RIM) into iron ore sintering process is the general disposal approach worldwide, while its use is still a thorny problem. Results showed that adding RIM increased contents of hazardous elements (K, Na, Pb, Zn, and Cl) in sinter product, and also enhanced emission concentration of PM 2.5 in flue gas; increasing reaction temperature, and contents of CaO & coke breeze in raw mixtures improved hazardous elements removal. Based on these features, a novel method through granulating natural iron ores and RIM separately and distributing granulated RIM in bottom sintering layers was proposed for clean RIM cycle. When recycling 5% RIM, granulating RIM separately with higher contents of CaO and coke breeze removed hazardous elements effectively, the contents of which in sinter were reduced to comparable level of the case without RIM. Moreover, distributing RIM in bottom sintering layer reached intensive release of hazardous elements and PM 2.5 during sintering, which reduced the flue gas volume needing purification by about 2/3. Through activated carbon purification, about 60% of PM 2.5 comprised high contents of hazardous elements was removed. Novel technique eliminated the negative impact of RIM and has the prospect to reach clean recycle in sinter-making plants. Copyright © 2018. Published by Elsevier B.V.

  2. Influence of particle size and mineral phase in the analysis of iron ore slurries by Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Michaud, Daniel; Leclerc, Remi; Proulx, Eric

    2007-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) was applied to the analysis of iron ore concentrates. The objective was to determine the influence of particle size and mineral phase on the LIBS signal. The LIBS spectra of hematite and magnetite ore concentrates were qualitatively indistinguishable from each other but magnetite yielded systematically less than hematite. This behavior could be set into an empirical equation to correct the iron peak intensities according to the level of magnetite in the analyzed sample. Similarly, an increase of the LIBS signal was observed as the particle size of the ore samples decreased. Again, an equation could be written down to correct the intensity of either iron or silicon in response to a variation of the average particle size of the ore concentrate. Using these corrections, proper response of the silicon signal against the concentration of silica in the samples was restored. The observed dependence of the strength of the iron signal upon the mineral phase is attributed to oxidation of magnetite into hematite

  3. Fuzzy control of the iron ore pellets thermal treatment on a conveying car

    Directory of Open Access Journals (Sweden)

    В’ячеслав Йосипович Лобов

    2017-07-01

    Full Text Available The purpose of this article is to solve the problem of fuzzy control of iron ore pellets thermal treatment on a conveyor roasting machine, to build an automated control system of conveyor roasting machine and perform simulation and to present the results of research. According to the structural scheme of the fuzzy control an automated control system is proposed for being modelled. This is done by using the software MATLAB. The use of atomic emission spectroscopy determines the percentage of the major elements in iron ore pellets considering the main process parameters. This article uses an automated system of fuzzy control of iron ore pellets firing on a conveyor roasting machine with the introduction of atomic emission spectroscopy of the pellets. Development and practical implementation of fuzzy control will improve their quality by taking into account the basic parameters of thermal treatment of pellets such as speed of movement of the grate trucks, gas flow rate, the height of the layer of pellets and the venting speed of the pellets layer with gas-air flow, humidity, average diameter, the basicity and the iron composition in the pellets. The expediency of the developed method of using automated fuzzy control system of iron ore pellets firing on a conveyor roasting car has been proved. The system with fuzzy controller provides a reduction on average 2 m3/h, which is 0,3% of natural gas consumption as compared to the existing systems. This provides more uniform gas permeability of the layer of pellets, which leads to filtration rate increase of the gas flow and to heat exchange intensification in the layer of pellets. It makes it possible to introduce the atomic emission spectroscopy of non-burned pellets and to increase the productivity of conveyor roasting machine by 2,5%. At the same time the resistance of technological equipment (pallets increases, due to more uniform distribution of the thermal field

  4. Arsenic enrichment in estuarine sediments-impact of iron and manganese mining

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, M.; Joseph, T.; Balachandran, K.K.; Nair, K.K.C.; Paimpillii, J.S.

    River Mandovi and Zuari, Goa (west coast of India) are flowing through iron and manganese mining areas and are heavily used for iron and manganese ore transport. This region generates 25-30 million tons of mining rejects per year. The iron ore...

  5. On-stream analysis of iron ore and its potential for improving export quality control

    International Nuclear Information System (INIS)

    Holmes, R.J.

    1988-01-01

    An on-stream iron ore analyser has been developed in collaboration with Hamersley Iron Pty. Limited for determining the iron content of both lump (-30+6 mm particle size) and fines (-6 mm particle size) on conveyor belts. The analyser, which is called IRONSCAN, is based on pair production, and is now commercially available from Mineral Control Instrumentation Limited (MCI) in Adelaide. It can be mounted under existing conveyor belts with minimal modifications to the conveyor structure, and the presence of steel cables in the belt does not interfere once the analyser has been correctly calibrated. The analyser has been extensively tested on both lump and fines on the shiploading conveyor at Dampier, and typically the root mean square (r.m.s.) deviation between single IRONSCAN measurements and conventional chemical analyses is better than 0.5% Fe. It is currently being evaluated on - 150 mm ore from the primary crusher at Mount Tom Price, and initial results are encouraging. The principal advantage of IRONSCAN is that it provides rapid information on ore grades. But perhaps its greatest potential is at the primary crusher where conventional sampling and analysis is very expensive to implement. 11 figs., 1 tab

  6. Did the Kiruna iron ores form as a result of a metasomatic or igneous process? New U-Pb and Nd data for the iron oxide apatite ores and their host rocks in the Norrbotten region of northern Sweden

    Science.gov (United States)

    Westhues, A.; Hanchar, J. M.; Whitehouse, M. J.; Fisher, C. M.

    2012-12-01

    A number of iron deposits near Kiruna in the Norrbotten region of northern Sweden are of the iron oxide apatite (IOA) type of deposits; also referred to as Kiruna-type deposits. They are commonly considered a subgroup or end-member of iron oxide copper gold (IOCG) deposits, containing no economic grades of copper or gold. Both IOCG and IOA deposits are characterized by abundant low-Ti Fe oxides, an enrichment in REE, and intense sodium and potassium wall-rock alteration adjacent to the ores. Deposits of these types are of a great economic importance, not only for iron, but also for other elements such as rare earth elements (REE) or uranium. Kiruna, the type locality of the IOA type of mineral deposits, is the focus of this study. Despite a century-long mining history and 2500 Mt of iron ore produced in the region to date (with grades of 30 to 70 wt.% Fe), the genesis of these deposits is poorly understood: theories of a magmatic vs. a hydrothermal or metasomatic origin have been debated, and the timing of mineralization of the ores in the Norbotten region has never been directly dated. The results anticipated from this study will provide a better understanding of the nature of the IOA type of mineral deposits and their relation to IOCG deposits such as Olympic Dam in Australia. An array of geochemical methods is used in order to gain insights on the emplacement history of the host rocks, their subsequent alteration, and the ore genesis of these deposits. This includes in situ U/Pb geochronology of zircon, monazite, and titanite to constrain the timing between host rock emplacement, alteration and mineralization. Isotopic data from whole rocks and in situ at mineral scale will provide constraints on the involvement of hydrothermal fluids and their possible sources, as well as on the sources of Fe, U, and the REE. Newly obtained Sm-Nd isotopic data points to distinct source differences between host rocks, ore and alteration related samples. Preliminary in situ U

  7. Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L.

    Science.gov (United States)

    Kuki, Kacilda Naomi; Oliva, Marco Antônio; Pereira, Eduardo Gusmão; Costa, Alan Carlos; Cambraia, José

    2008-09-15

    Particulate matter is a natural occurrence in the environment, but some industries, such as the iron ore sector, can raise the total amount of particles in the atmosphere. This industry is primarily a source of iron and sulfur dioxide particulates. The effects of the pollutants from the iron ore industries on representatives of restinga vegetation in a Brazilian coastal ecosystem were investigated using physiological and biochemical measures. Two species, Schinus terebinthifolius and Sophora tomentosa, were exposed to simulated deposition of acid mist and iron ore particulate matter in acrylic chambers in a greenhouse. Parameters such as gas exchange, fluorescence emission, chlorophyll content, total iron content, antioxidant enzyme activity and malondialdehyde content were assessed in order to evaluate the responses of the two species. Neither treatment was capable of inducing oxidative stress in S. terebinthifolius. Nevertheless, the deposition of iron ore particulates on this species increased chlorophyll content, the maximum quantum efficiency of photosystem II and the electron transport rate, while iron content was unaltered. On the other hand, S. tomentosa showed a greater sensitivity to the treatments. Plants of S. tomentosa that were exposed to acid mist had a decrease in photosynthesis, while the deposition of iron particulate matter led to an increase in iron content and membrane permeability of the leaves. The activities of antioxidant enzymes, such as catalases and superoxide dismutase, were enhanced by both treatments. The results suggested that the two restinga species use different strategies to overcome the stressful conditions created by the deposition of particulate matter, either solid or wet. It seems that while S. terebinthifolius avoided stress, S. tomentosa used antioxidant enzyme systems to partially neutralize oxidative stress. The findings also point to the potential use of S. tomentosa as a biomarker species under field conditions.

  8. Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L

    Energy Technology Data Exchange (ETDEWEB)

    Kuki, Kacilda Naomi [Departamento de Biologia Vegetal, Universidade Federal de Vicosa (Brazil)], E-mail: naomikuki@hotmail.com; Oliva, Marco Antonio; Pereira, Eduardo Gusmao; Costa, Alan Carlos [Departamento de Biologia Vegetal, Universidade Federal de Vicosa (Brazil); Cambraia, Jose [Departamento de Biologia Geral, Universidade Federal de Vicosa (Brazil)

    2008-09-15

    Particulate matter is a natural occurrence in the environment, but some industries, such as the iron ore sector, can raise the total amount of particles in the atmosphere. This industry is primarily a source of iron and sulfur dioxide particulates. The effects of the pollutants from the iron ore industries on representatives of restinga vegetation in a Brazilian coastal ecosystem were investigated using physiological and biochemical measures. Two species, Schinus terebinthifolius and Sophora tomentosa, were exposed to simulated deposition of acid mist and iron ore particulate matter in acrylic chambers in a greenhouse. Parameters such as gas exchange, fluorescence emission, chlorophyll content, total iron content, antioxidant enzyme activity and malondialdehyde content were assessed in order to evaluate the responses of the two species. Neither treatment was capable of inducing oxidative stress in S. terebinthifolius. Nevertheless, the deposition of iron ore particulates on this species increased chlorophyll content, the maximum quantum efficiency of photosystem II and the electron transport rate, while iron content was unaltered. On the other hand, S. tomentosa showed a greater sensitivity to the treatments. Plants of S. tomentosa that were exposed to acid mist had a decrease in photosynthesis, while the deposition of iron particulate matter led to an increase in iron content and membrane permeability of the leaves. The activities of antioxidant enzymes, such as catalases and superoxide dismutase, were enhanced by both treatments. The results suggested that the two restinga species use different strategies to overcome the stressful conditions created by the deposition of particulate matter, either solid or wet. It seems that while S. terebinthifolius avoided stress, S. tomentosa used antioxidant enzyme systems to partially neutralize oxidative stress. The findings also point to the potential use of S. tomentosa as a biomarker species under field conditions.

  9. Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L

    International Nuclear Information System (INIS)

    Kuki, Kacilda Naomi; Oliva, Marco Antonio; Pereira, Eduardo Gusmao; Costa, Alan Carlos; Cambraia, Jose

    2008-01-01

    Particulate matter is a natural occurrence in the environment, but some industries, such as the iron ore sector, can raise the total amount of particles in the atmosphere. This industry is primarily a source of iron and sulfur dioxide particulates. The effects of the pollutants from the iron ore industries on representatives of restinga vegetation in a Brazilian coastal ecosystem were investigated using physiological and biochemical measures. Two species, Schinus terebinthifolius and Sophora tomentosa, were exposed to simulated deposition of acid mist and iron ore particulate matter in acrylic chambers in a greenhouse. Parameters such as gas exchange, fluorescence emission, chlorophyll content, total iron content, antioxidant enzyme activity and malondialdehyde content were assessed in order to evaluate the responses of the two species. Neither treatment was capable of inducing oxidative stress in S. terebinthifolius. Nevertheless, the deposition of iron ore particulates on this species increased chlorophyll content, the maximum quantum efficiency of photosystem II and the electron transport rate, while iron content was unaltered. On the other hand, S. tomentosa showed a greater sensitivity to the treatments. Plants of S. tomentosa that were exposed to acid mist had a decrease in photosynthesis, while the deposition of iron particulate matter led to an increase in iron content and membrane permeability of the leaves. The activities of antioxidant enzymes, such as catalases and superoxide dismutase, were enhanced by both treatments. The results suggested that the two restinga species use different strategies to overcome the stressful conditions created by the deposition of particulate matter, either solid or wet. It seems that while S. terebinthifolius avoided stress, S. tomentosa used antioxidant enzyme systems to partially neutralize oxidative stress. The findings also point to the potential use of S. tomentosa as a biomarker species under field conditions

  10. Work stressors, job insecurity, union support, job satisfaction and safety outcomes within the iron ore mining environment

    OpenAIRE

    Nicolaas W.H. Smit; Leon T. de Beer; Jaco Pienaar

    2016-01-01

    Orientation: The study of work stressors, job insecurity and union support creates opportunity for iron ore mining organisations to manage job satisfaction and safety motivation and behaviour more effectively. Research purpose: The objective of this study was to investigate the relationship between work stressors, job insecurity, union support, job satisfaction and safety motivation and behaviour of a sample of iron ore mine workers in South Africa. Motivation for the study: The minin...

  11. Experimental Research on the Determination of the Coefficient of Sliding Wear under Iron Ore Handling Conditions

    Directory of Open Access Journals (Sweden)

    G. Chen

    2017-09-01

    Full Text Available The handling of iron ore bulk solids maintains an increasing trend due to economic development. Because iron ore particles have hard composites and irregular shapes, the bulk solids handling equipment surface can suffer from severe sliding wear. Prediction of equipment surface wear volume is beneficial to the efficient maintenance of worn areas. Archard’s equation provides a theoretical solution to predict wear volume. To use Archard’s equation, the coefficient of sliding wear must be determined. To our best knowledge, the coefficient of sliding wear for iron ore handling conditions has not yet been determined. In this research, using a pin-on-disk tribometer, the coefficients of sliding wear for both Sishen particles and mild steel are determined with regard to iron ore handling conditions. Both naturally irregular and spherical shapes of particles are used to estimate average values of wear rate. Moreover, the hardness and inner structures of Sishen particles are examined, which adds the evidence of the interpretation of wear results. It is concluded that the coefficients of sliding wear can vary largely for both Sishen particle and mild steel. The wear rate decreases from transient- to steady-state. The average coefficient of sliding wear is capable of predicting wear with respect to long distances at the steady-state. Two types of sliding friction are distinguished. In addition, it is found that the temperature rise of the friction pairs has negligible influence on wear rate.

  12. Ore potential of basic rocks in Finland

    International Nuclear Information System (INIS)

    Reino, J.; Ekberg, M.; Heinonen, P.; Karppanen, T.; Hakapaeae, A.; Sandberg, E.

    1993-02-01

    The report is associated with a study programme on basic rocks, which has the aim to complement the preliminary site investigations on repository for TVO's (Teollisuuden Voima Oy) spent nuclear fuel. The report comprises a mining enterprise's view of the ore potential of basic plutonic rocks in Finland. The ores associated with basic plutonic rocks are globally known and constitute a significant share of the global mining industry. The ores comprise chromium, vanadium-titanium-iron, nickel-copper and platinum group element ores. The resources of the metals in question and their mining industry are examined globally. A review of the use of these metals in the industry is presented as well. General factors affecting the mining industry, such as metal prices, political conjunctures, transport facilities, environmental requirements and raw material sources for the Finnish smelters have been observed from the point of view of their future effect on exploration activity and industrial development in Finland. Information on ores and mineralizations associated with Finnish basic rocks have been compiled in the report. The file comprises 4 chromium occurrences, 8 vanadium-titanium-iron occurrences, 13 PGE occurrences and 38 nickel-copper occurrences

  13. The effect of iron-ore particles on the metal content of the brown alga Padina gymnospora (Espirito Santo Bay, Brazil)

    International Nuclear Information System (INIS)

    Nassar, C.A.G.; Salgado, L.T.; Yoneshigue-Valentin, Y.; Amado Filho, G.M.

    2003-01-01

    Iron ore deposits mat be the source of metals found in the brown alga Padina gymnospora. - The iron-ore particles discharged by a pellet processing plant (Espirito Santo Bay, Brazil) cover the seabed of Camburi Beach and consequently, the epibenthic community. In order to determine the importance of the contribution of the iron-ore deposits to the metal concentration in macroalgae of Espirito Santo Bay, four methods of cleaning particulate material adhered to the surface of thalli were tested prior to metal tissue analysis (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) of Padina gymnospora. In addition, heavy metal concentrations were determined in individuals of P. gymnospora from a site (Frade Island) not affected by the iron-ore particles. The most efficient cleaning treatment, a combination of scraping and washing with an ethanol-seawater solution (NA+SC+ET) removed a number of particles on the surface of thalli 10 times higher than that observed in the control (C). Using this treatment, the total-metal concentrations were reduced by 78% for Fe and 50% for Al respect to the control. However, Fe, Al and Cu concentrations after treatment NA+SC+ET were significantly higher than those found at Frade Island. It is suggested that the iron-ore deposit might be a source for metal availability to macroalgae exposed to the dumped material at Espirito Santo Bay

  14. Valorization of mining waste from Ouenza iron ore mine (eastern Algeria

    Directory of Open Access Journals (Sweden)

    Abdelaziz Idres

    Full Text Available Abstract The present article is devoted to the development of a hematite-poor ore mine in Ouenza, which does not meet the steelmaker's requirements. Significant volumes are stored at the pithead of the mine, and the reserves are estimated at over 100 million tones. This enormous quantity of mining waste occupies an important space and poses a real threat to the environment as well as for the mining city of Ouenza. In order to solve these socio-economic and environmental problems, a sustainable development and a better quality of life for inhabitants of this region is needed. For this, representative samples were taken at the level of the dumps. Taking into account the natural characteristics of the stock namely; mineralogical composition, iron content, particle size of the rock mass, as well as the release mesh of iron minerals from the gangue. Firstly, tests are conducted on the recovery by radiometric separation of iron-rich pieces and graded. Then the rest of the ore was subjected to mechanical preparation followed by enrichment, which will be the subject of another study. The research is conducted on samples to determine the optimal parameters of the g-rays absorption tested by radiometry; these parameters were the velocity of the conveyor belt and the time of exposure to g-rays. The obtained results by this valorization process are very significant: iron content 53.5% and 8.3% recovery.

  15. Iron ore catalysts for methane decomposition to make CO x free hydrogen and carbon nano material

    KAUST Repository

    Zhou, Lu

    2018-03-27

    In this work, for the first time, iron ores with 91.7%–96.2% FeO, 1.3%–2.3% AlO, 1.2%–4.5% SiO, 1.3%–3.9% NaO, were studied directly as bulk catalysts for methane decomposition. By hydrogen pre-reduction at 850 °C, FeO species on iron ores were gradually reduced into FeO, FeO and then finally into Fe species. After reduction of 1.6 g of iron ore catalysts of 50 µm particle size with 100 mL/min pure H for 3.5 h at 850 °C, CMD life testing was conducted at 850 °C and GHSV of 3.75 L/g h and the catalyst showed a stable methane conversion for 5 h. When methane decomposition proceeded on Fe sites, FeC species would be formed to deposit graphite around themselves to finally form carbon nano onions. This carbon nano onions material showed excellent application for wastewater purification. All samples were fully characterized with XRF, XRD, H-TPR, TEM and Raman.

  16. Elemental analysis of two Egyptian iron ores and produced industrial iron samples by neutron activation analysis

    International Nuclear Information System (INIS)

    Sroor, A.; Abdel-Basset, N.; Abdel-Haleem, A.S.; Hassan, A.M.

    2001-01-01

    Elemental analysis of two iron ores and initial industrial iron production prepared by the Egyptian Iron and Steel Company of Helwan near Cairo were performed by the instrumental neutron activation analysis technique. Five samples of each type were irradiated for 48 h in a thermal neutron flux of 4x10 12 n/cm 2 s in the first Egyptian research reactor ET-RR-1. Also, the Pneumatic Irradiation Rabbit System (PIRS), attached to the reactor ET-RR-1 in Inshass, was used to measure short-life elements. The γ-ray spectra were obtained with a hyper pure germanium detection system. The concentration percentage values of major, minor and trace elements are presented. Implications of the elemental concentration values obtained are presented

  17. Production of High-purity Magnetite Nanoparticles from a Low-grade Iron Ore via Solvent Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Yong Jae; Kil, Dae Sup; Jang, Hee Dong [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Do, Thi May [Korea University of Science and Technology, Daejeon (Korea, Republic of); Cho, Kuk [Pusan National University, Busan (Korea, Republic of)

    2015-02-15

    We produced magnetite nanoparticles (MNPs) and a Mg-rich solution as a nano-adsorbent and a coagulant for water treatment, respectively, using a low-grade iron ore. The ore was leached with aqueous hydrochloric acid and its impurities were removed by solvent extraction of the leachate using tri-n-butyl phosphate as an extractant. The content of Si and Mg, which inhibit the formation of MNPs, was reduced from 10.3 wt% and 15.5 wt% to 28.1 mg/L and < 1.4 mg/L, respectively. Consequently, the Fe content increased from 68.6 wt% to 99.8 wt%. The high-purity Fe{sup 3+} solution recovered was used to prepare 5-15-nm MNPs by coprecipitation. The wastewater produced contained a large amount of Mg{sup 2+} and can be used to precipitate struvite in sewage treatment. This process helps reduce the cost of both sewage and iron-ore-wastewater treatments, as well as in the economic production of the nano-adsorbent.

  18. Determination of total iron in iron ore by x-ray fluorescence analysis using the Compton effect: comparison with others analytical techniques

    International Nuclear Information System (INIS)

    Castilho, M.V. de; Oliveira, R.C.

    1991-01-01

    Total iron in iron ores is determines by X-ray fluorescence analysis method using the compton effect. The Bragg angle is determined for compton no-coherent scattering related to K alpha of Rhodium. This measurement procedure can be used for best fitting of analytical results in X-ray fluorescence, when compared with others methods used for results corrections. (M.V.M.)

  19. Is outdoor work associated with elevated rates of cerebrovascular disease mortality? : a cohort study based on iron-ore mining

    OpenAIRE

    Björ, Ove; Jonsson, Håkan; Damber, Lena; Burström, Lage; Nilsson, Tohr

    2016-01-01

    BACKGROUND: A cohort study that examined iron ore mining found negative associations between cumulative working time employed underground and several outcomes, including mortality of cerebrovascular diseases. In this cohort study, and using the same group of miners, we examined whether work in an outdoor environment could explain elevated cerebrovascular disease rates. METHODS: This study was based on a Swedish iron ore mining cohort consisting of 13,000 workers. Poisson regression models wer...

  20. Occurrence of uranium in the itabiritic iron ore of Morro Agudo on the NE border of the iron Quadrangle/Minas Gerais, Brasilien

    International Nuclear Information System (INIS)

    Guba, I.

    1982-01-01

    The precambrian itabirites and hematite ores of the Morro Agudo iron ore mine on the NE border of the Quadrilatero Ferrifero in Minas Gerais/Brazil contain uranium-bearing minerals and rare-earth elements. In association with phosphates they occupy planes of joints, fractures and cleavage in the area of amphibolitic schist which is intercalated in the s 1 -planes of the itabirites and hematite ores. Preliminary analyses of the uranium-bearing minerals were made by energy dispersive X-ray spectrometry and electron microscopy. The results are presented in connection with the lithologic and tectonic features of the Morro Agudo mine. (orig.) [de

  1. High-grade iron ore at Windarling, Yilgarn Craton: a product of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy

    Science.gov (United States)

    Angerer, Thomas; Hagemann, Steffen G.; Danyushevsky, Leonid

    2013-08-01

    Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda-Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite-martite-goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in `least-altered' hematite-magnetite-metachert-BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe-Ca-Mg-Ni-Co-P-REE metasomatism that produced local Ni-REE-rich Fe-dolomite-magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle-ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni-Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite-hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)-Fe-dolomite-quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides

  2. The Influences of Iron Ore Tailings as Fine Aggregate on the Strength of Ultra-High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Zhigang Zhu

    2015-01-01

    Full Text Available The present study looks for the feasibility of preparing UHPC with iron ore tailings (IOT for short as fine aggregate. To enhance outstanding high performances, some influences on UHPC mortars were investigated such as different kinds of sands, different mix ratio of sands, and different largest particle size of fine aggregate. The results show that IOT have negligible poorer aggregate performance than silica sands but better than river sands. The strength of UHPC reaches the highest point when silica sands were instead 60% by IOT. As the largest particle size of fine aggregate is decreasing, the strength and frost resistance of UHPC were improved, but the liquidity was decreased. Micropowder of IOT affects the strength and the optimal content was 4%.

  3. Treatment and Recycling of the Process Water in Iron Ore Flotation of Yuanjiacun Iron Mine

    Directory of Open Access Journals (Sweden)

    Wen-li Jiang

    2017-01-01

    Full Text Available Coagulating sedimentation and oxidation treatment of process water in iron ore flotation of Yuanjiacun iron mine had been studied. The process water of this mine carried residual polyacrylamide (PAM, poly(diallyldimethylammonium chloride (PDADMAC, and Ca2+ from the flotation and caused decrease of the iron flotation recovery or grade of the concentrate. The studies on high-intensity magnetic separation (HIMS tailings for coagulating sedimentation showed that the settling performance of coagulant (named CYH was better than that of PDADMAC. The analyses of FTIR spectra and zeta potential demonstrated that CYH is adsorbed mainly through electrostatic attraction onto HIMS tailings. Sodium hypochlorite was adopted to oxidize the residual organics in tailings wastewater. When sodium hypochlorite is at the dosage of 1.0 g/L, reaction temperature is of 20°C, and reaction time is of 30 minutes, the removal rates of PAM, COD, and Ca2+ were 90.48%, 83.97%, and 85.00%, respectively. Bench-scale flotation studies on the treated tailings wastewater indicated that the iron recovery and grade of concentrate were close to those of freshwater.

  4. Pelletisation Behavior of Fluxed Iron Ore Pellets of Varying Basicities Made with Waste Fines

    Directory of Open Access Journals (Sweden)

    Alok Sarkar

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE The present study deals with the utilization of fines generated from comminution process (crushing, grinding and screening of the Run of Mines into value added products i.e. fluxed iron ore pellets. The study comprises to understand the physical and mechanical behavior of five distinguished chemical compositions of green and dried iron ore pellets with respect to a typical Mini Blast furnace (MBF burden data and furnace operating parameter. The maximum basicity of pellets was calculated 2.37 to make slag neutral when blast furnace runs at 100% high ash coke (avg. ash content= 29%. The crushing strength and drop number of various green pellets were measured. Green Crushing Strength was decreased with increasing lime fines. The addition of lime fines as a burnt lime, which has acicular structure creates less plasticity and brittle like fracture occurred. Due to formation of hard CaCO3 layer on the surface, after increasing lime contain crushing strength was increased in the air and oven dry pellets with respect to acid pellet (0% lime fines addition. [How to cite this article: Sarkar, A., Mandal, A.K., and Sinha, O.P. (2013 Pelletisation Behavior of Fluxed Iron Ore Pellets of Varying Basicities Made with Waste Fines. International Journal of Science and Engineering, 5(2,9-14. Doi: 10.12777/ijse.5.2.9-14] 

  5. CHARACTERIZATION OF METAL GRADES IN A STOCKPILE OF AN IRON MINE (CASE STUDY- CHOGHART IRON MINE, IRAN

    Directory of Open Access Journals (Sweden)

    Francesco Tinti

    2018-01-01

    Full Text Available In any mining operation due to the cut-off grade (economic criteria, materials classify into the ore and waste. The material with grade equal to or higher than the cut-off grade is considered as ore and the material with grade less than the cut-off grade is transported as wastes to the waste dumps. However, because of increasing metal demand, depleting of in situ ore reserves and so the reduction of cut-off grades for many metals, the mentioned waste dumps were considered as valuable ore reserves named stockpiles. In this paper, multivariate geostatistics was used to estimate the iron grades of two stockpiles following the sequential of piling procedures from the main source - the ore deposit - to the piling field. One stockpile is characterized by phosphorous concentration ((P % > 0.6 %, while the other by iron concentration ((Fe %< 50%. Since economic and physical constraints made sampling physically and economically problematic, the grade distribution and variability were estimated on the basis of primary blast-hole data from the main ore body and the mine’s long-term planning policy. A geostatistical model was applied to the excavated part of the iron deposit and the stockpile, by reconstructing ore selection, haulage and piling method. Results were validated through spatial variability of iron and phosphorous concentrations by comparing grade variability (Fe and P with mining and pilling units. This methodology allows characterizing the iron grades within stockpiles without any extra sampling.

  6. Remediation of Canada's historic haul route for radium and uranium ores - the northern transportation route - 59303

    International Nuclear Information System (INIS)

    Geddes, Brian; Wenzel, Chris; Owen, Michael; Gardiner, Mark; Brown, Julie

    2012-01-01

    Established in the 1930's, the Northern Transportation Route (NTR) served to transport pitchblende ore 2,200 km from the Port Radium Mine in Canada's Northwest Territories to Fort McMurray in Alberta. From there, the ore was shipped 3,000 km by rail to the Town of Port Hope, Ontario, where it was refined for its radium content and used for medical purposes. Later, transport and refinement focussed on uranium. The corridor of lakes, rivers, portages and roads that made up the NTR included a number of transfer points, where ore was unloaded and transferred to other barges or trucks. Ore was occasionally spilled during these transfer operations and, in some cases, subsequently distributed over larger areas as properties were re-developed or modified. In addition, relatively small volumes of ore were sometimes transported by air to the south. Since 1991, the Low-Level Radioactive Waste Management Office (LLRWMO), working with communities and its consulting contractors, has conducted surveys to identify and characterize spill sites along the NTR where soils exhibit elevated concentrations of uranium, radium and/or arsenic. In addition to significant areas of impact in Fort McMurray, contamination along the NTR was centered in the Sahtu region near Great Bear Lake and along the southern part of the Slave River. Early radiological investigations found contaminated buildings and soil and occasionally discrete pieces of pitchblende ore at many transfer points and storage areas along the NTR. Where possible, survey work was undertaken in conjunction with property redevelopment activity requiring the relocation of impacted soils (e.g., at Tulita, Fort Smith, Hay River, and Fort McMurray). When feasible to consolidate contaminated material locally, it was placed into Long Term Management Facilities developed to manage and monitor the materials over extended timelines. Radiological activity generated by these engineered facilities are generally below thresholds established by

  7. Ore-forming fluid system of bauxite in WZD area of northern Guizhou province, China

    Science.gov (United States)

    Cui, Tao

    2017-12-01

    The ore-forming fluid system of bauxite in Wuchuan-Zheng,an-Daozhen (short for WZD) Area of northern Guizhou Province was studied from the perspective of deposit formation mechanism. It was discovered that ore-forming fluids were mainly effective for transporting and leaching during the formation of bauxite. The means of transport mainly included colloidal transport, suspended transport and gravity flow transport. In the course of their leaching, fluids had a range of chemical reactions, as a result of which elements such as silicon and iron migrated downwards. In this process, properties of fluids changed as well.

  8. Suitability of iron ore tailings and quarry dust as fine aggregates for ...

    African Journals Online (AJOL)

    Eight concrete mixes were produced with different levels of sand replacement by either iron ore tailings or quarry dust, while the ninth mix of 100 % river sand served as the control. The highest 28-day compressive strength of 29.2 N/mm2 was obtained by blending 75 % sand and 25 % quarry dust with cement, which was 7 ...

  9. The nature of hematite depression with corn starch in the reverse flotation of iron ore.

    Science.gov (United States)

    Shrimali, Kaustubh; Atluri, Venkata; Wang, Yan; Bacchuwar, Sanket; Wang, Xuming; Miller, Jan D

    2018-08-15

    The function of corn starch and the significance of the order of addition of corn starch and mono ether amine in the reverse flotation of iron ore has been investigated. Understanding hematite depression with starch and the corresponding hydrophilic state involves consideration of adsorption with amine as well as flocculation of fine hematite. Captive bubble contact angle and micro-flotation experiments indicated that amine has an affinity towards both hematite and quartz, and that the role of starch is to hinder the adsorption of amine at the hematite surface so that flotation is inhibited. Micro-flotation results confirmed that quartz does not have affinity towards starch at pH 10.5. In addition to competitive adsorption, flocculation of fine hematite occurs and images from high resolution X-ray computed tomography (HRXCT) and cryo-SEM reveal further detail regarding floc structure. These results provide substantial evidence that the fine hematite particles are flocculated in the presence of corn starch, and flocculation is dependent on the particle size of hematite, with greater flocculation for finer particles. Thus, starch is playing a dual role in the reverse flotation of iron ore, acting as a depressant by hindering amine adsorption at the hematite surface in order to maintain the hydrophilic surface state of hematite, and acting as a flocculant to aggregate fine hematite particles, which if not flocculated, could diminish the flotation separation efficiency by being transported to the froth phase during reverse flotation. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Four magnetite generations in the Precambrian Varena Iron Ore deposit, SE Lithuania, as a result of rock-fluid interactions

    Science.gov (United States)

    Skridlaite, Grazina; Prusinskiene, Sabina; Siliauskas, Laurynas

    2017-04-01

    Iron ores in Precambrian crystalline basement of the Varena area, SE Lithuania, were discovered during the detail geological-geophysical exploration in 1982-1992. They are covered with 210-500 m thick sediments. The Varena Iron Ore deposit (VIOD) may yield from 71 to 219.6 million tons of iron ore according to different economic evaluations (Marfin, 1996). They were assumed to be of metasomatic and hydrothermal origin, however several other hypotheses explaining the VIOZ origin, e.g. as a layered mafic or carbonatite intrusions were also suggested. Magnetites of the VIOD were thoroughly investigated by the Cameca SX100 microprobe at the Warsaw University and by the Quanta 250 Energy Dispersive Spectroscopy (EDS) at the Nature Research Centre in Vilnius, Lithuania. Four generations of magnetite were distinguished in the studied serpentine-magnetite ores (D8 drilling) and were compared with the earlier studied and reference magnetites. The earliest, spinel inclusion-rich magnetite cores (Mag-1) have the highest trace element contents (in wt%): Si (0.032), Al (0.167-0.248), Mg (0.340-0.405), Ti (0.215-0.254), V (0.090-0.138) etc. They might have formed during an early metamorphism and/or related skarn formation. Voluminous second magnetite (Mag-2) replacing olivine, pyroxenes, spinel and other skarn minerals at c. 540o C (Magnetite-Ilmenite geothermometer) has much lower trace element abundances, probably washed out by hydrothermal fluids. The latest magnetites (Mag-3 and Mag-4) overgrow the earlier ones and occur near or within the sulfide veins (Mag-4). As was observed from microtextures, the Mag-3 and Mag-4 have originated from the late thermal reworking by dissolution-reprecipitation processes. To imply an origin of the studied magnetites, they were compared to the earlier studied magmatic-metamorphic (1058 drilling), presumably skarn (982 drilling) magnetites from the studied area and plotted in the major magnetite ore type fields according to Dupuis and Beaudoin

  11. Phase change of iron ore reduction process using EFB as reducing agent at 900-1200°C

    Science.gov (United States)

    Purwanto, H.; Salleh, H. M.; Rozhan, A. N.; Mohamad, A. S.; Zakiyuddin, A.

    2018-04-01

    Treatment of low grade iron ore involved reduction of oxygen in iron oxide by using reductant such as carbon monoxide or hydrogen gas. Presently, carboneous materials such as coke/coal are widely used as a source to provide reducing gas, but some problem arises from this material as the gas can harm the environments. Therefore, empty fruit bunch biomass from oil palm becomes an alternative to replace the usage of coke/coal as their major composition is carbon and hydrogen. The idea of replacing coke with biomass will reduce the amount of carbon dioxide release as biomass is a carbon neutral and renewable source, and at the same time abundance of waste from oil palm industries can be overcome. Therefore, the aim of this research is to upgrade the low grade iron with reducibility more than 50% being used in iron and steel making. In this research, low grade iron ore are mixed together with EFB then is making into composite pellet before being reduced at certain parameter chosen. The variables involved in this research is composition EFB (10%, 30% and 50%), temperature (1000°C, 1100°C and 1200°C) and reduction time is fixed with 30 minutes. From the experiment conducted, the highest reducibility achieved is 76.37% at temperature 1200°C. While XRD analysis shows the existence of metallic iron phase started to form at 1000°C with composition of 30% of EFB. Meanwhile, from magnetization test show that at 1200°C the highest magnetic susceptibility is achieved as the dominance phase at 1200°C is metallic phase. Therefore it is an interesting alternative to replace coke with biomass for reducing agent in upgrading low grade iron into workable ores.

  12. 26 CFR 1.631-3 - Gain or loss upon the disposal of coal or domestic iron ore with a retained economic interest.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 7 2010-04-01 2010-04-01 true Gain or loss upon the disposal of coal or...) Sales and Exchanges § 1.631-3 Gain or loss upon the disposal of coal or domestic iron ore with a... under section 272, shall be gain or loss upon the sale of the coal or iron ore. See paragraph (b)(4) of...

  13. Recovery and separation of iron from iron ore using innovative fluidized magnetization roasting and magnetic separation

    Directory of Open Access Journals (Sweden)

    Yu J.

    2018-01-01

    Full Text Available In this investigation, a pilot-scale fluidized magnetization roasting reactor was introduced and used to enhance magnetic properties of iron ore. Consequently, the effects of roasting temperature, reducing gas CO flow rate, and fluidizing gas N2 flow rate on the magnetization roasting performance were studied. The results indicated that the hematite was almost completely converted into magnetite by a gas mixture of 4 Nm3/h CO and 1 Nm3/h N2 at roasting temperature of 540°C for about 30 s. Under optimized conditions, a high grade concentrate containing 66.84% iron with iron recovery of 91.16% was achieved. The XRD, VSM, and optical microscopy (OM analyses revealed that most of the hematite, except some coarse grains, was selectively converted to magnetite, and that the magnetic properties were greatly enhanced. Thus, their separation from non-magnetic gangue minerals was facilitated.

  14. Applicability of attrition of iron ore in floating; Aplicabilidade da atricao do minerio de ferro na flotacao

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, Fabiana Fonseca

    2010-07-01

    The aim of this study is to investigate the possibility to increase metal recovery in the flotation of iron ore with the implementation of a stage of scrubbing followed by dispersion. The minerals in question stems from two mines located in the western portion of the Iron Quadrangle and differ mainly with respect to the percentage of hematite and porous and the presence of aggregated masses. These characteristics were compared to those of other minerals that have succeeded with the adoption of this technique. Tests were conducted at bench scale scrubbing, desliming and concentration by flotation with the blend of ore from both mines. Were varied stirring time and pH. The chemical results of desliming and flotation products in the different conditions were compared. The presence of porous hematite is relevant in a mine, mainly due to the occurrence of earthy goethite, alumina carrier of the contaminant. The step desliming is insufficient for the removal of harmful sludge flotation. Laboratory experiments showed that the scrubbing of the pulp of iron ore of Minas de Capitao do Mato and Tamandua, agitated for 10 minutes followed by desliming amid scattered, promotes increased metal recovery by about 17% and increases the selectivity of 40 % compared to the results of the scrubbing and without dispersion. The scrubbing of hematite ore followed by desliming amid scattered can bring gains in improving the quality of pellet feed fine if deployed industrially. (author)

  15. Dissolution of copper and iron from malachite ore and precipitation of copper sulfate pentahydrate by chemical process

    OpenAIRE

    H. Kokes; M.H. Morcali; E. Acma

    2014-01-01

    The present work describes an investigation of a chemical process for the recovery of copper and iron from malachite ore. For the dissolution of copper and iron, H2SO4 was employed as well as H2O2 as an oxidizing agent. The effects of reaction temperature and time, acid concentration, liquid-to-solid ratio and agitation rate on the copper and iron percentage were investigated. Following the steps of dissolving the copper and iron sulfate and filtering, iron (III) hydroxide was precipitated by...

  16. Use of neutron capture gamma radiation for determining grade of iron ore in blast holes and exploration holes

    International Nuclear Information System (INIS)

    Eisler, P.L.; Huppert, P.; Mathew, P.J.; Wylie, A.W.; Youl, S.F.

    1977-01-01

    Neutron radiative capture and neutron-neutron logging have been applied to determining the grade of ore in dry blast holes and a dry exploration hole drilled into a layered iron deposit. Both thermal and epithermal neutron responses were measured as well as the gamma-ray responses due to neutron capture by iron and by hydrogen present in hydrated minerals. The results were fitted by a stepwise multiple linear regression technique to give expressions for mean grade of ore in the drill hole and 95% confidence intervals for estimation of this mean. For an overall range of ore grades of 20-68% Fe and a mean grade of 63% Fe, the confidence interval for prediction of mean grade for the neutron-gamma technique was 0.3% Fe for pooled data from all five blast holes and 0.8% Fe for a single hole. It was also shown that for this type of layered deposit a simpler neutron-neutron log incorporating simultaneous measurement of both thermal and epithermal neutron responses gave almost as good a grade prediction result for pooled results from five drill holes, namely 63+-0.4% Fe, as that obtained by the neutron-gamma technique. The results of both types of log are compared with those obtained by the spectral gamma-ray backscattering [Psub(z)] technique, or by logging of natural gamma radiations from the shale component of the ore. From this comparison conclusions are drawn regarding the most suitable technique to employ for determining grade of iron ore in various practical logging situations. (author)

  17. Moisture measurement in the iron and steel industry: experience with nuclear moisture measurements in coke, and studies of infrared moisture measurement of iron ore mixtures

    International Nuclear Information System (INIS)

    Beumer, J.A.; Wouters, M.

    1976-01-01

    In the heavy iron-making industry there are several processes for which it is necessary to measure on-line the moisture content of certain process materials, especially in the field of iron ore preparation and blast furnace practice. Two examples are given. (1) Experience with nuclear moisture-measurements in coke covers a period of ten years in which eight measuring systems have been installed in the weighing hoppers of blast furnaces. The standard deviation is about 0.7% moisture in the range 0 to 15% moisture. The way the method is used, the safety measures and the difficulties encountered, especially the effect on recalibration of neutron-absorbing materials in photomultipliers are described. (2) The application of infrared absorption to the study of moisture measurment or iron ore mixtures is described. With an ore mixture for pellets manufacture, a rather dark ore mixture, problems have arisen concerning the sensitivity. The reference and measuring wavelengths now in use are 2.51 and 2.95 μm. In this case the absorption of the energy is rather high. The results may be improved by using quartz optics instead of the normal Pyrex ones, as the cut-off wavelength of Pyrex is about 3 μm. Variations due to colour and specific surface have been studied. As the accuracy required is +- 0.1% moisture in the range 8 to 12% moisture, these variations need to be eliminated. (author)

  18. Automated recognition of stratigraphic marker shales from geophysical logs in iron ore deposits

    Science.gov (United States)

    Silversides, Katherine; Melkumyan, Arman; Wyman, Derek; Hatherly, Peter

    2015-04-01

    The mining of stratiform ore deposits requires a means of determining the location of stratigraphic boundaries. A variety of geophysical logs may provide the required data but, in the case of banded iron formation hosted iron ore deposits in the Hamersley Ranges of Western Australia, only one geophysical log type (natural gamma) is collected for this purpose. The information from these logs is currently processed by slow manual interpretation. In this paper we present an alternative method of automatically identifying recurring stratigraphic markers in natural gamma logs from multiple drill holes. Our approach is demonstrated using natural gamma geophysical logs that contain features corresponding to the presence of stratigraphically important marker shales. The host stratigraphic sequence is highly consistent throughout the Hamersley and the marker shales can therefore be used to identify the stratigraphic location of the banded iron formation (BIF) or BIF hosted ore. The marker shales are identified using Gaussian Processes (GP) trained by either manual or active learning methods and the results are compared to the existing geological interpretation. The manual method involves the user selecting the signatures for improving the library, whereas the active learning method uses the measure of uncertainty provided by the GP to select specific examples for the user to consider for addition. The results demonstrate that both GP methods can identify a feature, but the active learning approach has several benefits over the manual method. These benefits include greater accuracy in the identified signatures, faster library building, and an objective approach for selecting signatures that includes the full range of signatures across a deposit in the library. When using the active learning method, it was found that the current manual interpretation could be replaced in 78.4% of the holes with an accuracy of 95.7%.

  19. Moisture measurements in iron ores, in freight cars, through nuclear techniques

    International Nuclear Information System (INIS)

    Castagnet, A.C.; Said, M.; Duarte, U.

    1975-01-01

    The possibility and the advantages of using a nuclear technique for measuring on the spot (in the freight cars) and the moisture content of iron ores are described. The measurements included the determination of the volumetric moisture content and the density. From this values, the moisture content in percentage by weight was calculated. Nuclear Chicago d/M Combination Density-Moisture Probe with a 5 mCi Ra/Be source, and a digital portable scaler, were used. The investigated techniques give good results when the measurements are made directly on the ore surface, and has economical advantages over the gravimetric method by sampling. The probable reasons for both, the aleatory scattering of points and the lack of linear correlation between the values of both methods, when the nuclear measurement is made across the car walls are analized

  20. Utilization of waste polyethylene terephthalate as a reducing agent in the reduction of iron ore composite pellets

    Science.gov (United States)

    Polat, Gökhan; Birol, Burak; Sarıdede, Muhlis Nezihi

    2014-08-01

    The increasing consumption of plastics inevitably results in increasing amounts of waste plastics. Because of their long degradation periods, these wastes negatively affect the natural environment. Numerous studies have been conducted to recycle and eliminate waste plastics. The potential for recycling waste plastics in the iron and steel industry has been underestimated; the high C and H contents of plastics may make them suitable as alternative reductants in the reduction process of iron ore. This study aims to substitute plastic wastes for coal in reduction melting process and to investigate their performance during reduction at high temperature. We used a common type of waste plastic, polyethylene terephthalate (PET), because of its high carbon and hydrogen contents. Composite pellets containing PET wastes, coke, and magnetite iron ore were reduced at selected temperatures of 1400 and 1450°C for reduction time from 2 to 10 min to investigate the reduction melting behavior of these pellets. The results showed that an increased temperature and reduction time increased the reduction ratio of the pellets. The optimum experimental conditions for obtaining metallic iron (iron nuggets) were reduction at 1450°C for 10 min using composite pellets containing 60% PET and 40% coke.

  1. Determination of aluminium in iron ores and ferroalloys by complexometry

    International Nuclear Information System (INIS)

    Tikhonov, V.N.; Grigorovich, L.F.

    1977-01-01

    The present method is based on fusing iron ore samples and ferroalloys with NaOH, leaching of the alloy in water, and complexometric estimation of aluminium in the filtrate by back titration of excess EDTA with a CuSO 4 solution in the presence of a glycine-thymol blue tracer, using NaF to increase selectivity. The final titration point is fixed by means of a photoelectrical titrator. Fifty-fold amounts of Cu(2), Mg, Zn, In, Pb, Fe(3) and Ni, twenty-five-fold amounts of Ca, Sr and Cd, ten-fold amounts of Co, five-fold amounts of Hg(2), Bi and Mo(6), two-fold amounts of Mn, and equal amounts of Ga, Tl(3), Zr, V(5) and W(6) do not impede determination. Determination is impeded by metals that form strong fluoride complexes with Sc, Y, rare-earth elements, Ti(4), Sn(2) and V(4), even when those metals are contained in equal amounts; it is also impeded by equal amounts of Cr(3). The selectivity of the given method has been compared with that of methods involving titration with a solution constituting zinc chloride with xylenol orange and with a solution comprising copper chloride and sulphur chrome-azurol in the presence of cytil trimethyl ammonium. The method is more selective. A hexamethylenetetramine buffer solution has been used to obtain an optimum (pH 6) medium. The above procedure is employed to assay standard ferroboron samles of iron ore

  2. Microbial Reducibility of Fe(III Phases Associated with the Genesis of Iron Ore Caves in the Iron Quadrangle, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Ceth W. Parker

    2013-11-01

    Full Text Available The iron mining regions of Brazil contain thousands of “iron ore caves” (IOCs that form within Fe(III-rich deposits. The mechanisms by which these IOCs form remain unclear, but the reductive dissolution of Fe(III (hydroxides by Fe(III reducing bacteria (FeRB could provide a microbiological mechanism for their formation. We evaluated the susceptibility of Fe(III deposits associated with these caves to reduction by the FeRB Shewanella oneidensis MR-1 to test this hypothesis. Canga, an Fe(III-rich duricrust, contained poorly crystalline Fe(III phases that were more susceptible to reduction than the Fe(III (predominantly hematite associated with banded iron formation (BIF, iron ore, and mine spoil. In all cases, the addition of a humic acid analogue enhanced Fe(III reduction, presumably by shuttling electrons from S. oneidensis to Fe(III phases. The particle size and quartz-Si content of the solids appeared to exert control on the rate and extent of Fe(III reduction by S. oneidensis, with more bioreduction of Fe(III associated with solid phases containing more quartz. Our results provide evidence that IOCs may be formed by the activities of Fe(III reducing bacteria (FeRB, and the rate of this formation is dependent on the physicochemical and mineralogical characteristics of the Fe(III phases of the surrounding rock.

  3. Iron ore particles on four seaweed species from Camburi Beach (Espírito Santo state, Brazil

    Directory of Open Access Journals (Sweden)

    Cristina Aparecida Gomes Nassar

    2006-09-01

    Full Text Available The present study estimated the iron-ore concentration found on four species of seaweed. The species tested grow on a site heavily contaminated by this ore, in the city of Vitória, state of Espírito Santo, Brazil. Under natural conditions, the iron ore reached a temperature 5.0ºC higher than the sand on a sunny day. All the species had iron ore adhered to their fronds. Udotea cyathiformis was the species with the highest iron-ore concentration varing from 0.07 to 0.90 g wet weight, followed by Lobophora variegata (from 0.07 to 0.62 g wet weight, Padina gymnospora (from 0.08 to 0.55 g wet weight and Ulva fasciata (from 0.05 to 0.25 g wet weight. Even after four changes of water over a 12-hour period, the fronds still had particles adhered to their outside cell wall. All the species showed similar tendencies to release the iron, with the highest percentage of particles (40 to 60% released in the first change of water.Minério de ferro particulado sobre quatro macroalgas da Praia de Camburi (Estado do Espírito Santo-Brasil. O presente trabalho determinou a concentração de minério de ferro presente em quatro macroalgas. As espécies testadas ocorrem em um local extremamente contaminado por este particulado, na cidade de Vitória, Estado do Espírito Santo, Brasil. Sob condições naturais, o minério de ferro alcançou um temperatura de até 5,0ºC acima da temperatura da areia em um dia ensolarado.Todas as espécies estudadas apresentavam minério em suas paredes externas. A espécie Udotea cyathiformis apresentou a maior concentração de minério em sua fronde variando de 0,07 a 0,90 g massa úmida, seguida por Lobophora variegata (de 0,07 a 0,62 g massa úmida, Padina gymnospora (de 0,08 a 0,55 g massa úmida e Ulva fasciata (de 0,05 a 0,25 g massa úmida. Mesmo após sucessivas trocas de água, as frondes ainda apresentavam partículas aderidas às suas paredes celulares externas. As espécies apresentaram a mesma tendência de libera

  4. An Effective Belt Conveyor for Underground Ore Transportation Systems

    Science.gov (United States)

    Krol, Robert; Kawalec, Witold; Gladysiewicz, Lech

    2017-12-01

    Raw material transportation generates a substantial share of costs in the mining industry. Mining companies are therefore determined to improve the effectiveness of their transportation system, focusing on solutions that increase both its energy efficiency and reliability while keeping maintenance costs low. In the underground copper ore operations in Poland’s KGHM mines vast and complex belt conveyor systems have been used for horizontal haulage of the run-of-mine ore from mining departments to shafts. Basing upon a long-time experience in the field of analysing, testing, designing and computing of belt conveyor equipment with regard to specific operational conditions, the improvements to the standard design of an underground belt conveyor for ore transportation have been proposed. As the key elements of a belt conveyor, the energy-efficient conveyor belt and optimised carrying idlers have been developed for the new generation of underground conveyors. The proposed solutions were tested individually on the specially constructed test stands in the laboratory and in the experimental belt conveyor that was built up with the use of prototype parts and commissioned for the regular ore haulage in a mining department in the KGHM underground mine “Lubin”. Its work was monitored and the recorded operational parameters (loadings, stresses and strains, energy dissipation, belt tracking) were compared with those previously collected on a reference (standard) conveyor. These in-situ measurements have proved that the proposed solutions will return with significant energy savings and lower maintenance costs. Calculations made on the basis of measurement results in the specialized belt conveyor designing software allow to estimate the possible savings if the modernized conveyors supersede the standard ones in a large belt conveying system.

  5. Cellular iron transport.

    Science.gov (United States)

    Garrick, Michael D; Garrick, Laura M

    2009-05-01

    Iron has a split personality as an essential nutrient that also has the potential to generate reactive oxygen species. We discuss how different cell types within specific tissues manage this schizophrenia. The emphasis in enterocytes is on regulating the body's supply of iron by regulating transport into the blood stream. In developing red blood cells, adaptations in transport manage the body's highest flux of iron. Hepatocytes buffer the body's stock of iron. Macrophage recycle the iron from effete red cells among other iron management tasks. Pneumocytes provide a barrier to prevent illicit entry that, when at risk of breaching, leads to a need to handle the dangers in a fashion essentially shared with macrophage. We also discuss or introduce cell types including renal cells, neurons, other brain cells, and more where our ignorance, currently still vast, needs to be removed by future research.

  6. Trace-element and multi-isotope geochemistry of Late-Archean black shales in the Carajas iron-ore district, Brazil

    DEFF Research Database (Denmark)

    Cabral, A. R.; Creaser, R. A.; Naegler, T.

    2013-01-01

    The 250-300-m-thick Carajas Formation in the Carajas mineral province, northern Brazil, consists of banded iron formation (including giant high-grade iron-ore deposits) and minor black shale, overlying a thick pile (2-3 km) of about 2.75-Ga-old metabasalt. Carbonaceous shale with pyrite-and local...

  7. CHAIN EXTENDER AND EMULSIFIER APPLICATION IN IRON ORE FLOTATION

    Directory of Open Access Journals (Sweden)

    José Pedro da Silva

    2013-06-01

    Full Text Available The present study aims to evaluate the reverse flotation performance of iron ore, using collector (amine, in the presence and absence of chain extender (diesel oil and emulsifier (sodium lauryl sulfate.Six tests were realized with duplicate. Tests using amine, diesel oil and sodium lauryl sulphate show the better results, with metallurgical recovery of 91.82% and the concentrate silica equal 1.68%. Thus, it is found that the use of emulsifier and chain extender together with the amine, shows better results in the flotation, in terms of metal recovery and selectivity, when compared to using only amine or amine and diesel oil.

  8. Nuclear techniques for bulk ore analysis and their application to quality control

    International Nuclear Information System (INIS)

    Holmes, R.J.

    1981-01-01

    Bulk analysis techniques developed for the mining industry in which analyses are obtained directly from 3-30kg ore samples or from ore on conveyor belts are outlined. They include the determination of iron in iron ores from backscattered gamma radiation, shale in sedimentary iron ores from natural gamma activity, iron from a thermal-neutron capture reaction, and aluminium from the thermal neutron activation reaction

  9. RECOVERY OF IRON FROM LOW-GRADE HEMATITE ORE USING COAL-BASED DIRECT REDUCTION FOLLOWED BY MAGNETIC SEPARATION

    Directory of Open Access Journals (Sweden)

    N. Alavifard

    2016-09-01

    Full Text Available In the present work, iron recovery from a low-grade hematite ore (containing less than 40% iron, which is not applicable in common methods of ironmaking, was studied. Non-coking coal was used as reducing agent. Reduction experiments were performed under various coal to hematite ratios and temperatures. Reduction degree was calculated using the gravimetric method. Reduced samples were subjected to magnetic separation followed by X-ray diffraction analysis. Total iron content, degree of metallization and recovery efficiency in magnetic part were determined by quantitative chemical analysis, which were obtained about 82%, 95% and 64% respectively under optimal conditions. CaO as an additive improved ore reducibility and separation efficiency. The microstructure of reduced samples and final products were analyzed by scanning electron microscopy. Final product with a high degree of metallization can be used in steel making furnaces and charging of blast furnaces which can improve production efficiency and decrease coke usage.

  10. Study of effective utilization of iron ore sinter through arc plasma

    Science.gov (United States)

    Swain, Biswajit; Samal, S. K.; Mohanty, M. K.; Behera, A.; Mishra, S. C.

    2018-03-01

    Generation of fines is common in mining, sizing, and beneficiation and also in high-temperature metallurgical processes as the disintegration of agglomerate/compact occurs. Extraction of metallic iron from ore fines is one of the challenging aspects of iron making industries as the liberation of fines blocks, the charge burden porosity and hence hinders the reduction rate. Along with size factor, mineral composition plays a vital role in the extraction process; particularly silica. As silica has the very high tendency towards iron oxide, at comparatively low temperature, the activity of silica should be suppressed to prevent silicate phases. Adjustment of such conditions is controlled by addition of lime, but sometimes excessive slag generation increases the cost of production. In the present work, carbothermic reduction of partially reduced iron bearing pellets has been melted through 20 KW DC arc plasma furnace, and a comparative study has been made for considering different slag chemistry approaches. Pellets as aforementioned are made available from Patnaik Steel and Alloys Ltd, Odisha, having high silica content ore fines (of about 8.6%) as obtained from the chemical analysis. X-Ray analysis and optical image analyzer result of sinter thus obtained reveal that fayalite phase has major fractional value. Smelting works were done for sinter with/without adjustment of slag chemistry, where argon and nitrogen were used as plasma forming gases. A range of recovery rates (between 87-94%) is achieved by charge composition, ionizing gases, and smelting duration. It is observed that use of nitrogen as plasma forming gas increases the recovery rate than that of using only argon plasma; due to high energy flux of nitrogen which increases the enthalpy due to its diatomicity. A maximum recovery rate of about 94% is achieved for process duration of 13minutes utilizing nitrogen plasma. Smelting of charge with the addition of hydrated lime targeting melilite as final slag

  11. The GENIALL process for generation of nickel-iron alloys from nickel ores or mattes

    International Nuclear Information System (INIS)

    Diaz, G.; Frias, C.; Palma, J.

    2001-01-01

    A new process, called GENIALL (acronym of Generation of Nickel Alloys), for nickel recovery as ferronickel alloys from ores or mattes without previous smelting is presented in this paper. Its core technology is a new electrolytic concept, the ROSEL cell, for electrowinning of nickel-iron alloys from concentrated chloride solutions. In the GENIALL Process the substitution of iron-based solid wastes as jarosite, goethite or hematite, by saleable ferronickel plates provides both economic and environmental attractiveness. Another advantage is that no associated sulfuric acid plant is required. The process starts with leaching of the raw material (ores or mattes) with a solution of ferric chloride. The leachate liquor is purified by conventional methods like cementation or solvent extraction, to remove impurities or separate by-products like copper and cobalt. The purified solution, that contains a mixture of ferrous and nickel chlorides is fed to the cathodic compartment of the electrowinning cell, where nickel and ferrous ions are reduced together to form an alloy. Simultaneously, ferrous chloride is oxidized to ferric chloride in the anodic compartment, from where it is recycled to the leaching stage. The new electrolytic equipment has been developed and scaled up from laboratory to pilot prototypes with commercial size electrodes of 1 m 2 . Process operating conditions have been established in continuous runs at bench and pilot plant scale. The technology has shown a remarkable capacity to produce nickel-iron alloys of a wide range of compositions, from 10% to 80% nickel, just by adjusting the operating parameters. This emerging technology could be implemented in many processes in which iron and other non-ferrous metals are harmful impurities to be removed, or valuable metals to be recovered as a marketable iron alloy. Other potential applications of this technology are regeneration of spent etching liquors, and iron removal from aqueous effluents. (author)

  12. Territorial pattern and classification of soils of Kryvyi Rih Iron-Ore Basin

    OpenAIRE

    О. О. Dolina; О. М. Smetana

    2014-01-01

    The authors developed the classification of soils and adapted it to the conditions of Krivyi Rih industrial region. It became the basis for determining the degree of soil cover transformation in the iron-ore basin under technogenesis. The classification represents the system of hierarchical objects of different taxonomic levels. It allows determination of relationships between objects and their properties. Researched patterns of soil cover structures’ distribution were the basis for the relev...

  13. Iron Ore Industry Emissions as a Potential Ecological Risk Factor for Tropical Coastal Vegetation

    Science.gov (United States)

    Kuki, Kacilda N.; Oliva, Marco A.; Pereira, Eduardo G.

    2008-07-01

    In the coastal zone of the Espírito Santo state, Brazil, fragments of restinga, which form a natural ecosystem, share their space with an increasing number of iron ore industries. The iron ore dust and SO2 originating from the industry processing activities can interfere with the vegetation of the adjacent ecosystems at various levels. This study was undertaken in order to evaluate the effects of industry emissions on representative members of the restinga flora, by measuring physiological and phenological parameters. Foliar samples of Ipomoea pes caprae, Canavalia rosea, Sophora tomentosa, and Schinus terebinthifolius were collected at three increasing distances from an ore industry (1.0, 5.0, and 15.0 km), and were assessed for their dust deposition, chlorophyll, and Fe content. Phenological monitoring was focused on the formation of shoots, flowers, and fruits and was also performed throughout the course of a year. The results showed that the edaphic characteristics and the mineral constitutions of the plants were affected by industry emissions. In addition, the chlorophyll content of the four species increased with proximity to the industry. Phenological data revealed that the reproductive effort, as measured by fruit production, was affected by emissions and S. tomentosa was the most affected species. The use of an integrative approach that combines biochemical and ecological data indicates that the restinga flora is under stress due to industry emissions, which on a long-term basis may put the ecosystem at risk.

  14. [Iron ore, economic geology and networks of experts between Wisconsin and the state of Minas Gerais, 1881-1914].

    Science.gov (United States)

    Fischer, Georg

    2014-01-01

    This article deals with the "discovery" of Brazilian iron ore from two perspectives. The first examines the increasing emphasis of the geosciences and their practical application and global reach since the second half of the nineteenth century. While in Brazil economic geology was integrated step by step into state institutions, at the global level it experienced its moment of triumph with the 11th International Geological Congress in 1910. The second deals with a specific social network with a decisive role in the race for Brazilian iron ore: with transnational experts juggling between the logic of the market and that of the academy. The article reveals the importance of local negotiations in the incorporation of the subsoil of Minas Gerais into the global space of mining.

  15. The control of H2S in biogas using iron ores as in situ desulfurizers during anaerobic digestion process.

    Science.gov (United States)

    Zhou, Qiying; Jiang, Xia; Li, Xi; Jiang, Wenju

    2016-09-01

    In this study, five kinds of iron ores, limonite, hematite, manganese ore, magnetite and lava rock, were used as the in situ desulfurizers in the anaerobic digestion reactors to investigate their effects on controlling H2S in biogas. The results show that the addition of the five iron ores could significantly control the content of H2S in biogas, with the best performance for limonite. As limonite dosages increase (10-60 g/L), the contents of H2S in biogas were evidently decreased in the digesters with different initial sulfate concentrations (0-1000 mg/L). After the anaerobic digestion, the removed sulfur was mostly deposited on the surface of limonite. A possible mechanism of H2S control in biogas by limonite was proposed preliminarily, including adsorption, FeS precipitation, and Fe (III) oxidation. The results demonstrated that limonite was a promising in situ desulfurizer for controlling H2S in biogas with low cost and high efficiency.

  16. Mineralogy and geochemistry of banded iron formation and iron ...

    Indian Academy of Sciences (India)

    The geological complexities of banded iron formation (BIF) and associated iron ores of Jilling–. Langalata iron ore ...... sure to sea water. Uranium in these samples varies ..... Ce oxidation and removal (Elderfield and Greaves. 1982; De Baar et ...

  17. APPLICATION OF MAGNETIC SURVEY TO EXPLORE THE IRON ORE DEPOSITS IN THE NUSAWUNGU COASTAL REGENCY OF CILACAP CENTRAL JAVA

    Directory of Open Access Journals (Sweden)

    S Sehah

    2017-12-01

    Full Text Available The research aiming to explore the iron ore deposits in the Nusawungu coastal Regency of Cilacap has been conducted using the magnetic survey. The acquisition of magnetic data was conducted in April – Mei 2017, covering the area in the ranges of 109.314° – 109.345°E and 7.691° – 7.709°S. The obtained magnetic field strength data were corrected, reduced, and mapped to obtain the contour map of local magnetic anomaly. The modeling process was carried out along the path extending over the map from the positions of 109.314°E and 7.695°S to 109.335°E and 7.699°S, so that some subsurface anomalous objects are obtained. The lithological interpretation was performed to identify the types of subsurface rocks and their formations based on the magnetic susceptibility value of each anomalous objects and supported by the geological information of the research area. Based on the interpretation results, three rocks deposits of alluvium formations were obtained, which are estimated to contain iron ore. The first deposit has a length of 164.85 m, a depth of 0.57 – 8.43 m, and a magnetic susceptibility value of 0.0097 cgs. The second deposit has a length of 376.28 m, a depth of 2.56 – 19.66 m, and a magnetic susceptibility value of 0.0108 cgs. The third deposit has a length of 1,306.26 m, a depth of 3.70 – 58.69 m, and a magnetic susceptibility value of 0.0235 cgs. Out of the whole rocks deposits, the third rock deposit is interpreted to have the most prospective iron ore. This interpretation based on its high magnetic susceptibility value, which indicates the presence of many magnetic minerals (i.e. iron ores in the rock.

  18. Dissolution of copper and iron from malachite ore and precipitation of copper sulfate pentahydrate by chemical process

    Directory of Open Access Journals (Sweden)

    H. Kokes

    2014-03-01

    Full Text Available The present work describes an investigation of a chemical process for the recovery of copper and iron from malachite ore. For the dissolution of copper and iron, H2SO4 was employed as well as H2O2 as an oxidizing agent. The effects of reaction temperature and time, acid concentration, liquid-to-solid ratio and agitation rate on the copper and iron percentage were investigated. Following the steps of dissolving the copper and iron sulfate and filtering, iron (III hydroxide was precipitated by adjusting the pH level of the solution. Subsequently, copper sulfate pentahydrate was obtained by using various precipitants (i.e. ethanol, methanol and sulfuric acid.

  19. Territorial pattern and classification of soils of Kryvyi Rih Iron-Ore Basin

    Directory of Open Access Journals (Sweden)

    О. О. Dolina

    2014-10-01

    Full Text Available The authors developed the classification of soils and adapted it to the conditions of Krivyi Rih industrial region. It became the basis for determining the degree of soil cover transformation in the iron-ore basin under technogenesis. The classification represents the system of hierarchical objects of different taxonomic levels. It allows determination of relationships between objects and their properties. Researched patterns of soil cover structures’ distribution were the basis for the relevant mapping and classification of soils. The classification is adapted to highly-influential industrial conditions of soils formation in the region. The adaptation measures were specific classification levels and units, which provided more detailed differentiation of soils. The authors proposed to separate the soils by the degree of soil formation potential realization for super-divisions. The potential determination allowed predicting the outcome of soil formation and identification of transformation degree of soil cover structures in the region. The results indicated that the main type of soil structures in the industrial region was represented by primitive soils (indicated as a separate type. These soils were determined as dynamic elements in the structure of industrial region soil cover. The article indicated that presence of soil cover structures with the domination of technogenic soils, particularly post-technogenic soils, was the marker of the soil cover in Krivyi Rih Iron-Ore Basin

  20. Route planning of raw materials transportation in the industrial hub of Mariupol city

    Directory of Open Access Journals (Sweden)

    Юлія Вікторівна Булгакова

    2017-07-01

    Full Text Available The multi-modal freight transportation routes planning problem is viewed in this paper. The case study of iron ore deliveries to the metallurgical enterprises of Mariupol from Kryvyi Rih is presented. Based on the analysis of Ukrainian railroads and sea ports infrastructures six possible routes of multi-modal iron ore transportation are built. The paper presents a short review of route planning problem in multi-modal freight transportations, which are use sea and land parts together, regarding decision support methods of routes evaluation and selection. The lack of studies dedicated to fuzzy logic theory application for solving the stated problems is identified. The relevance of fuzzy set application to the route planning problem is proved. Taking into account the peculiarities of iron ore transportations technology, the following criterions of routes evaluation are chosen: «transportation costs», «delivery times», «transportation risks». The model of multicriterion decision-making of routes evaluation and the optimal route selection, based on fuzzy logic theory, is developed. Criteria of routes evaluation are set by three terms Gaussian and sigmoidal membership functions. The approach to each function construction is practice-based and executed together with iron ore supply chain manager. The model is created in MATLAB Fuzzy Logic Tool Box environment using Mamdani’s fuzzy inference

  1. Calibration equations for energy-dispersive XRF determination of copper, iron and lead in copper ore slurries

    International Nuclear Information System (INIS)

    Lakosz, M.

    1976-01-01

    Calibration equations for the X-ray fluorescence analysis determination of copper, iron and lead in copper ore slurries have been derived and tested. The measurement of Ksub(α) lines of copper and iron and Lsub(α) line of lead excited by rays from 238 Pu source have been used. Si/Li detector coupled to multichannel analyzer and minicomputer have been applied in measurements. The matrix and density effect have been eliminated by additional measurement of back-scattered primary radiation. (author)

  2. Magnetic concentration of iron-titanium ore with vanadium concentrate from campo Alegre de Lourdes - Bahia, Brazil

    International Nuclear Information System (INIS)

    Delgado, O.; Silva, F.T. da; Ogasawara, T.; Soares, G.F.

    1988-01-01

    The feasibility studies of magnetic concentration of the Campo Alegre de Lourdes ore were carried out, trying to obtain a maximum recovery of vanadium. As a consequence of the complex nature of the ore, mainly due to the presence of ilmenite as a exolutions in the interior of hematite/martite particles, it was not possible to separate the hematite-ilmenite eficiently, wich would be necessary for obtaining a high grade vanadium concentrate with low titanium content. (author) [pt

  3. Automatic control system for uniformly paving iron ore pellets

    Science.gov (United States)

    Wang, Bowen; Qian, Xiaolong

    2014-05-01

    In iron and steelmaking industry, iron ore pellet qualities are crucial to end-product properties, manufacturing costs and waste emissions. Uniform pellet pavements on the grate machine are a fundamental prerequisite to ensure even heat-transfer and pellet induration successively influences performance of the following metallurgical processes. This article presents an automatic control system for uniformly paving green pellets on the grate, via a mechanism mainly constituted of a mechanical linkage, a swinging belt, a conveyance belt and a grate. Mechanism analysis illustrates that uniform pellet pavements demand the frontend of the swinging belt oscillate at a constant angular velocity. Subsequently, kinetic models are formulated to relate oscillatory movements of the swinging belt's frontend to rotations of a crank link driven by a motor. On basis of kinetic analysis of the pellet feeding mechanism, a cubic B-spline model is built for numerically computing discrete frequencies to be modulated during a motor rotation. Subsequently, the pellet feeding control system is presented in terms of compositional hardware and software components, and their functional relationships. Finally, pellet feeding experiments are carried out to demonstrate that the control system is effective, reliable and superior to conventional methods.

  4. Evaluation of physical health and its relation with history of work accidents in workers of the Central Iron Ore Company of Iran

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Halvani

    2013-01-01

    Full Text Available Aims: This study was conducted to determine the state of physical symptoms of the Iranian Central Iron Ore Company workers and its relation with history of work accidents. Materials and Methods: This cross-sectional descriptive study was performed at the Iranian Central Iron Ore Company and included 388 workers sampled randomly out of 2100 workers. Research tool was a two-part questionnaire that its reliability was determined by some of researchers. Data was analyzed by SPSS (Statistical Package for Social Science software and statistical tests included variance analysis and Pearson′ correlation tests. Results: According to the findings, 80.9% had favorable physical health conditions and there was a significant relationship between physical health condition, history of work accidents, cigarette smoking and type of work. Conclusion: Considering the strong relationship between physical health and history of work accidents, it is proposed that high-level managers of the Central Iron Ore Company of Iran should pay special attention to the improvement of physical health, psychological, social, and welfare levels.

  5. Real-time microradiology of disintegration of iron ore sinteres

    International Nuclear Information System (INIS)

    Kim, Jong Ryun; Kang, H.S.; Lee, Ho Jun; Je, Jung Ho; Jeong, S.K.; Tsai, W.-L.; Hsu, P.C.; Hwu, Y.

    2003-01-01

    We first present real-time microradiology of disintegration of self-fluxing iron ore sinters in low temperature reduction using highly collimated synchrotron source. The experiments were performed on the 5C1 beamline at PLS (Pohang Light Source, Pohang, Korea), operating at 2.5 GeV. We used unmonochromatized ('white') light with no optical elements except beryllium windows. The images of the crack superimpose, on the two-dimensional projection of a three-dimensional phenomenon, suggest that cracks are always initiated from pores in the sinters and propagate along neighboring pores. Interestingly, cracking occurs mostly on macropores (>800 μm), preferentially initiated from stress concentrated sites on pore surfaces. This dynamic study of the disintegration of sinters clearly shows that the crack initiation temperature is as low as 450 deg. C

  6. Recent Advances and Research Status in Energy Conservation of Iron Ore Sintering in China

    Science.gov (United States)

    Wang, Yao-Zu; Zhang, Jian-Liang; Liu, Zheng-Jian; Du, Cheng-Bo

    2017-11-01

    For the ferrous burden of blast furnaces in China, sinter generally accounts for more than 70% and the sintering process accounts for approximately 6-10% of the total energy consumption of the iron and steel enterprise. Therefore, saving energy during the sintering process is important to reduce the energy consumption in the iron and steel industry. This paper aims to illustrate recent advances and the research status of energy conservation of iron ore sintering in China. It focuses on the development and application of energy-saving technologies such as the composite agglomeration process, sintering with high-proportion flue gas recirculation sintering, recovery of sensible heat from the sinter cooling process, homogeneous deep-bed sintering technology, and comprehensive treatment technology of leakage of sintering. Moreover, some suggestions for the future development of energy-saving technologies are put forward.

  7. Bioprocessing of ores: Application to space resources

    Science.gov (United States)

    Johansson, Karl R.

    1992-01-01

    The role of microorganisms in the oxidation and leaching of various ores (especially those of copper, iron, and uranium) is well known. This role is increasingly being applied by the mining, metallurgy, and sewage industries in the bioconcentration of metal ions from natural receiving waters and from waste waters. It is concluded that bioprocessing using bacteria in closed reactors may be a variable option for the recovery of metals from the lunar regolith. Obviously, considerable research must be done to define the process, specify the appropriate bacteria, determine the necessary conditions and limitations, and evaluate the overall feasibility.

  8. Recovery of metals from low-grade ores by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Kamali, M.; Mulligan, C.N. [Concordia Univ., Dept. of Building, Civil and Environmental Engineering, Montreal, Quebec (Canada)]. E-mail: mulligan@civil.concordia.ca

    2002-06-15

    The main concern of this study is to develop a feasible and economical technique to microbially recover metals from oxide low-grade ores. Owing to the significant quantities of metals that are embodied in low - grade ores and mining residues, these are considered new sources of metals. On the other hand, they potentially endanger the environment, as the metals they contain may be released to the environment in a hazardous form. Hence, mining industries are seeking an efficient technique to handle these ores. Pyrometallurgical and hydrometallurgical techniques are either very expensive, energy intensive or have a negative impact on the environment. For these reasons, biohydrometallurgical techniques are coming into perspective. In this study, by employing Aspergillus niger, the feasibility of recovery of metals from a mining residue is shown. A. niger exhibits good potential in generating a variety of organic acids effective for metal solubilization. Organic acid effectiveness was enhanced when sulphuric acid was added to the medium. Different agricultural wastes such as potato peels were tested. In addition to this, different auxiliary processes were tried in order to either elevate the efficiency or reduce costs. Finally, maximum solubilization of 68%, 46% and 34% were achieved for copper, zinc and nickel, respectively. Also iron codissolution was minimized as only 7% removal occurred. (author)

  9. Recovery of metals from low-grade ores by Aspergillus niger

    International Nuclear Information System (INIS)

    Kamali, M.; Mulligan, C.N.

    2002-01-01

    The main concern of this study is to develop a feasible and economical technique to microbially recover metals from oxide low-grade ores. Owing to the significant quantities of metals that are embodied in low - grade ores and mining residues, these are considered new sources of metals. On the other hand, they potentially endanger the environment, as the metals they contain may be released to the environment in a hazardous form. Hence, mining industries are seeking an efficient technique to handle these ores. Pyrometallurgical and hydrometallurgical techniques are either very expensive, energy intensive or have a negative impact on the environment. For these reasons, biohydrometallurgical techniques are coming into perspective. In this study, by employing Aspergillus niger, the feasibility of recovery of metals from a mining residue is shown. A. niger exhibits good potential in generating a variety of organic acids effective for metal solubilization. Organic acid effectiveness was enhanced when sulphuric acid was added to the medium. Different agricultural wastes such as potato peels were tested. In addition to this, different auxiliary processes were tried in order to either elevate the efficiency or reduce costs. Finally, maximum solubilization of 68%, 46% and 34% were achieved for copper, zinc and nickel, respectively. Also iron codissolution was minimized as only 7% removal occurred. (author)

  10. Hydrogen Reduction of Hematite Ore Fines to Magnetite Ore Fines at Low Temperatures

    Directory of Open Access Journals (Sweden)

    Wenguang Du

    2017-01-01

    Full Text Available Surplus coke oven gases (COGs and low grade hematite ores are abundant in Shanxi, China. Our group proposes a new process that could simultaneously enrich CH4 from COG and produce separated magnetite from low grade hematite. In this work, low-temperature hydrogen reduction of hematite ore fines was performed in a fixed-bed reactor with a stirring apparatus, and a laboratory Davis magnetic tube was used for the magnetic separation of the resulting magnetite ore fines. The properties of the raw hematite ore, reduced products, and magnetic concentrate were analyzed and characterized by a chemical analysis method, X-ray diffraction, optical microscopy, and scanning electron microscopy. The experimental results indicated that, at temperatures lower than 400°C, the rate of reduction of the hematite ore fines was controlled by the interfacial reaction on the core surface. However, at temperatures higher than 450°C, the reaction was controlled by product layer diffusion. With increasing reduction temperature, the average utilization of hydrogen initially increased and tended to a constant value thereafter. The conversion of Fe2O3 in the hematite ore played an important role in the total iron recovery and grade of the concentrate. The grade of the concentrate decreased, whereas the total iron recovery increased with the increasing Fe2O3 conversion.

  11. Fundamental study on carbon composite iron ore hot briquette used as blast furnace burden

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Man-sheng; Liu, Zheng-gen; Wang, Zhao-cai [Institute of Ferrous Metallurgy, Northeastern University, Shenyang (China); Yagi, Jun-ichiro [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University (Japan)

    2011-05-15

    Carbon composite iron ore hot briquette (CCB) is the product of fine iron ore and fine coal by hot briquetting process, which attracts more and more attention as a new type of ironmaking raw materials aiming to improve the operation efficiency and reduce the coke consumption of blast furnace. This paper is devoted to experimental study on metallurgical properties of CCB and numerical simulation of the BF operation with CCB charging. At first, the metallurgical properties of CCB, including cold crushing strength, RDI, RSI, reducibility, high temperature strength, and softening and dripping are experimentally tested and compared with the common burdens, which revealed that the CCB possesses the required metallurgical properties and is suitable to use as the blast furnace burden. Then, the effects of charging CCB on the dripping properties of comprehensive burdens are elucidated based on the experiments under simulated blast furnace conditions. The results showed that the maximum charging ratio of CCB in the iron burdens is 40%-50% for achieving appropriate dripping properties of the mixed burdens. Finally, a multi-fluid blast furnace model is used to simulate BF operation with CCB charging. According to model simulations, charging CCB will cause the temperature level to decreases in the furnace and the location of the cohesive zone shifts downward. On the other hand, the productivity tends to increase while coke rate and total reducing agent rate decrease, the heat efficiency improves remarkably and the operation performance of BF is effectively enhanced. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Photodegradation of UHMWPE filled with iron ore fine

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Frederick Louis Dias de; Sousa, Alexandre Rangel de, E-mail: rangel@deii.cefetmg.br [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET), Belo Horizonte, MG (Brazil). Departamento de Engenharia de Materiais; Medeiros, Felipe da Silva; Silva, Glaura Goulart [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Quimica; Rabello, Marcelo Silveira [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2017-03-15

    Ultra high molecular weight polyethylene (UHMWPE) is one of the most important engineering materials owing to outstanding properties like impact strength and abrasion resistance. However, the relatively low Young's modulus restricts some application and the use of fillers may be a suitable way to overcome this. The fillers can influence the photo stabilization of the compound, as it occurs to other polymers. Neat UHMWPE and its composites with 1 and 10% of iron ore fine were exposed to ultraviolet radiation for up to 33 days and then tested for mechanical properties. The stress-strain behaviour changed with degradation, with an evident necking and strain hardening region that was not observed before exposure, due to a reduction in entanglements density. From the tensile results, the filler may have a protection action against UV, particularly when a loading of 10% was present. Complementary analyses were performed, including X-ray diffraction, DSC and SEM. (author)

  13. Experimental research on the characteristics of softening and melting of iron ores as significant factor of influence on gas permeability of blast furnace charge

    International Nuclear Information System (INIS)

    Branescu, E; Blajan, A O; Constantin, N

    2015-01-01

    It is widely accepted as a cohesive zone is directly influenced by softening and melting properties of iron ores, preparations (crowded, pellets, which represents about 90%, of the loads with metal furnace intake), or uncooked (raw ores ranked). Important results can be obtained through the study of behavior of ferrous materials at temperatures above 1000 ° C. Starting from research methods presented in the literature, this paper presents itself in carrying out their own laboratory experiments, conducted with the aim of analysing the softening and melting properties of sinter iron cores. (paper)

  14. Ores and Climate Change - Primary Shareholders

    Science.gov (United States)

    Stein, Holly J.; Hannah, Judith L.

    2015-04-01

    Many in the economic geology community concern themselves with details of ore formation at the deposit scale, whether tallying fluid inclusion data to get at changes in ore-forming fluids or defining structures that aid and abet mineralization. These compilations are generally aimed at interpretation of events at the site of ore formation, with the goal being assignment of the deposit to a sanctioned ore deposit model. While providing useful data, this approach is incomplete and does not, by itself, serve present-day requirements for true interdisciplinary science. The ore-forming environment is one of chaos and disequilibrium at nearly all scales (Stein, 2014). Chaos and complexity are documented by variably altered rocks, veins or disseminated mineralization with multi-generational fluid histories, erratic and unusual textures in host rocks, and the bitumen or other hydrocarbon products entwined within many ore deposits. This should give pause to our drive for more data as a means to find "the answer". The answer lies in the kind of data collected and more importantly, in the way we interpret those data. Rather than constructing an ever-increasing catalog of descriptive mutations on sanctioned ore deposit models (e.g., IOGC or Iron-Oxide Copper Gold deposits), the way forward is to link source and transport of metals, sulfur, and organic material with regional and ultimately whole Earth chemical evolution. Important experimental work provides chemical constraints in controlled and behaved environments. To these data, we add imagination and interpretation, always tying back to field observations. In this paper, several key points are made by way of ore deposit examples: (1) many IOCG deposits are outcomes of profound changes in the chemistry of the Earth's surface, in the interplay of the atmosphere, hydrosphere, biosphere, and lithosphere; (2) the redox history of Fe in deep earth may be ultimately expressed in the ore-forming sequence; and (3) the formation of

  15. Studies on feasibility of recovering uranium from Dongkeng second class submarginal ore by heap leaching

    International Nuclear Information System (INIS)

    Yang Qingyi

    1994-01-01

    It was proved that it is feasible in economy and in technology to recover uranium from Dongkeng second class submarginal ore by heap leaching, on the basis of analysing the conditions of Mine No. 743 and the tests conducted. Moreover, the social and environmental effects are good. Two valuable suggestions are presented

  16. Up-gradation of MoO{sub 3} and separation of copper, iron, zinc from roasted molybdenum ore by a leaching process

    Energy Technology Data Exchange (ETDEWEB)

    Jin-Young, Lee; Jyothi Rajesh, Kumar; Ho-Seok, Jeon; Joon-Soo, Kim, E-mail: rajeshkumarphd@rediffmail.com, E-mail: rkumarphd@kigam.re.kr [Extractive Metallurgy Department, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM) (Korea, Republic of)

    2013-04-15

    The present research paper deals with the oxidation process of molybdenum ore. The main target of the present study is the up-gradation of MoO{sub 3} from roasted molybdenum ore by a leaching process without waste generation. The most important application of hydrometallurgical processing is the leaching process of the ore and it is the primary process to make pure metal from ore. The present investigations optimize the following experimental parameters to improve the concentration of MoO{sub 3} as well as the separation of copper, iron and zinc in roasted molybdenum ore: effect of acid concentration, temperature, pulp density and leaching time were studied systematically. The temperature study was carried out at 550-595 Degree-Sign C for the oxidation process. The XRD result shows that oxidation process of molybdenum ore and SEM pictures were taken for particles before and after the oxidation process at 585 Degree-Sign C for 360 min. (author)

  17. Interdependence between iron ore production and maritime transport

    Directory of Open Access Journals (Sweden)

    A. V. Todorut

    2016-10-01

    Full Text Available The maritime industry plays an important role in international trade, transporting a total of 10,1 billion tons of merchandise in 2015, representing over 80% of all global trade, with dry cargo estimated to account for over two thirds of the total seaborne trade. Bulk carriers supply the raw materials needed by the steel industry and container ships transport the steel products. Demand and supply for seaborne transport is influenced by trends in global economy and worldwide demand for commodities. The paper analyzes the most important economic determinants in the supply of metallurgical raw materials, highlighting the importance of the shipping sector.

  18. Intensification of the Reverse Cationic Flotation of Hematite Ores with Optimization of Process and Hydrodynamic Parameters of Flotation Cell

    Science.gov (United States)

    Poperechnikova, O. Yu; Filippov, L. O.; Shumskaya, E. N.; Filippova, I. V.

    2017-07-01

    The demand of high grade iron ore concentrates is a major issue due to the depletion of rich iron-bearing ores and high competitiveness in the iron ore market. Iron ore production is forced out to upgrade flowsheets to decrease the silica content in the pelettes. Different types of ore have different mineral composition and texture-structural features which require different mineral processing methods and technologies. The paper presents a comparative study of the cationic and anionic flotation routes to process a fine-grain oxidized iron ore. The modified carboxymethyl cellulose was found as the most efficient depressant in reverse cationic flotation. The results of flotation optimization of hematite ores using matrix of second-order center rotatable uniform design allowed to define the collector concentration, impeller rotation speed and air flowrate as the main flotation parameters impacting on the iron ore concentrate quality and iron recovery in a laboratory flotation machine. These parameters have been selected as independent during the experiments.

  19. Final report to United Nations Industrial development organization on evaluation of tender for the Valentine iron ore project in Uruguay

    International Nuclear Information System (INIS)

    1981-01-01

    The Government of Uruguay (Project Authorities)is desirous of improving their national economy through exploitation of resources with which the nation is endowed. Studies so far conducted in Uruguay reveal that the Valentine iron ore deposits amount to about 30 million tons with an average Fe-content of 331; an additional probable reserve of about 17 million tons is also expected. The Project Authorities have been examining the possibility of exploiting these iron reserves for the establishment of a viable iron and steel complex within the country.

  20. Work stressors, job insecurity, union support, job satisfaction and safety outcomes within the iron ore mining environment

    Directory of Open Access Journals (Sweden)

    Nicolaas W.H. Smit

    2016-08-01

    Full Text Available Orientation: The study of work stressors, job insecurity and union support creates opportunity for iron ore mining organisations to manage job satisfaction and safety motivation and behaviour more effectively. Research purpose: The objective of this study was to investigate the relationship between work stressors, job insecurity, union support, job satisfaction and safety motivation and behaviour of a sample of iron ore mine workers in South Africa. Motivation for the study: The mining industry in general is often faced with hazardous and physically demanding working environments, where employees work under constant pressure. Work stressors, job insecurity, union support and job satisfaction are considered key variables when investigating effective means of managing safety. Research design, approach and method: A cross-sectional survey design was utilised to collect the data. A convenience sample of employees in the iron ore mining industry of South Africa (N = 260 were included. Structural equation modelling and bootstrapping resampling analysis were used to analyse the data. Main findings: Work stressors and job insecurity were found to be negatively associated with job satisfaction. Conversely, perceived union support was positively associated with job satisfaction and safety motivation and behaviour. Furthermore, job satisfaction mediated the relationship between union support and safety motivation and behaviour. Practical/managerial implications: Mining organisations can, by placing the focus on reducing work stressors, and promoting job security and union support, achieve higher levels of safety motivation and behaviour through job satisfaction. Contribution/value-add: A great deal of independent research on work stressors, job insecurity, union support, job satisfaction as well as safety motivation and behaviour has already been done. To date, very little empirical research exists that simultaneously considers all these constructs. This

  1. Strength and Microstructure of Concrete with Iron Ore Tailings as Replacement for River Sand

    Directory of Open Access Journals (Sweden)

    Umara Shettima Ali

    2018-01-01

    Full Text Available River Sand is one of the basic ingredients used in the production of concrete. Consequently, continuous consumption of sand in construction industry contributes significantly to depletion of natural resources. To achieve more sustainable construction materials, this paper reports the use of iron ore tailings (IOT as replacement for river sand in concrete production. IOT is a waste product generated from the production of iron ore and disposed to land fill without any economic value. Concrete mixtures containing different amount of IOT were designed for grade C30 with water to cement ratio of 0.60. The percentage ratios of the river sand replacements by IOT were 25%, 50%, 75% and 100%. Concrete microstructure test namely, XRD and Field Emission Scanned Electron Microscopic/Energy dispersive X-ray Spectroscopy (FESEM/EDX were conducted for control and IOT concretes in order to determine the interaction and performance of the concrete containing IOT. Test results indicated that the slump values of 130 mm and 80 to 110 mm were recorded for the control and IOT concretes respectively. The concrete sample of 50% IOT recorded the highest compressive strength of 37.7 MPa at 28 days, and the highest flexural strength of 5.5 MPa compared to 4.7 MPa for reference concrete. The texture of the IOT is rough and angular which was able to improve the strength of the concrete.

  2. Strength and Microstructure of Concrete with Iron Ore Tailings as Replacement for River Sand

    Science.gov (United States)

    Umara Shettima, Ali; Ahmad, Yusof; Warid Hussin, Mohd; Zakari Muhammad, Nasiru; Eziekel Babatude, Ogunbode

    2018-03-01

    River Sand is one of the basic ingredients used in the production of concrete. Consequently, continuous consumption of sand in construction industry contributes significantly to depletion of natural resources. To achieve more sustainable construction materials, this paper reports the use of iron ore tailings (IOT) as replacement for river sand in concrete production. IOT is a waste product generated from the production of iron ore and disposed to land fill without any economic value. Concrete mixtures containing different amount of IOT were designed for grade C30 with water to cement ratio of 0.60. The percentage ratios of the river sand replacements by IOT were 25%, 50%, 75% and 100%. Concrete microstructure test namely, XRD and Field Emission Scanned Electron Microscopic/Energy dispersive X-ray Spectroscopy (FESEM/EDX) were conducted for control and IOT concretes in order to determine the interaction and performance of the concrete containing IOT. Test results indicated that the slump values of 130 mm and 80 to 110 mm were recorded for the control and IOT concretes respectively. The concrete sample of 50% IOT recorded the highest compressive strength of 37.7 MPa at 28 days, and the highest flexural strength of 5.5 MPa compared to 4.7 MPa for reference concrete. The texture of the IOT is rough and angular which was able to improve the strength of the concrete.

  3. A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: Implications for an iron ore mine site remediation.

    Science.gov (United States)

    Cele, Emmanuel Nkosinathi; Maboeta, Mark

    2016-01-01

    An iron ore mine site in Swaziland is currently (2015) in a derelict state as a consequence of past (1964-1988) and present (2011 - current) iron ore mining operations. In order to control problems associated with mine wastes, the Swaziland Water Services Corporation (SWSC) recently (2013) proposed the application of biosolids in sites degraded by mining operations. It is thought that this practice could generally improve soil conditions and enhance plant reestablishment. More importantly, the SWSC foresees this as a potential solution to the biosolids disposal problems. In order to investigate the effects of biosolids and plants in soil physicochemical conditions of iron mine soils, we conducted two plant growth trials. Trial 1 consisted of tailings that received biosolids and topsoil (TUSB mix) while in trial 2, tailings received biosolids only (TB mix). In the two trials, the application rates of 0 (control), 10, 25, 50, 75 and 100 t ha(-1) were used. After 30 days of equilibration, 25 seeds of Cynodon dactylon were sown in each pot and thinned to 10 plants after 4 weeks. Plants were watered twice weekly and remained under greenhouse conditions for 12 weeks, subsequent to which soils were subjected to chemical analysis. According to the results obtained, there were significant improvements in soil parameters related to fertility such as organic matter (OM), water holding capacity (WHC), cation exchange capacity (CEC), ammonium [Formula: see text] , magnesium (Mg(2+)), calcium (Ca(2+)) and phosphorus ( [Formula: see text] ). With regard to heavy metals, biosolids led to significant increases in soil total concentrations of Cu, Zn, Cd, Hg and Pb. The higher concentrations of Zn and Cu in treated tailings compared to undisturbed adjacent soils are a cause for concern because in the field, this might work against the broader objectives of mine soil remediation, which include the recolonization of reclaimed sites by soil-dwelling organisms. Therefore, while

  4. Feasibility of introducing continuous systems in surface mines of India

    Energy Technology Data Exchange (ETDEWEB)

    Bordia, S K

    1987-06-01

    The paper presents a brief outline of the mineral types, production trends and techno-economic feasiblity associated with the possible introduction of continuous mining systems to India. Production trends are outlined for coal, limestone, bauxite, phosphate, and iron ore. Continuous mining systems described are heavy-duty bucket wheel excavators, road milling type machines and shearing type machines. 8 refs.

  5. Iron uptake and transport at the blood-brain barrier

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Thomsen, Louiza Bohn; Moos, Torben

    The mechanism by which iron is transported across the blood-brain barrier (BBB) remains controversial, and in this study we aimed to further clarify mechanisms by which iron is transported into the brain. We analyzed and compared the mRNA and protein expression of a variety of proteins involved...... in the transport of iron (transferrin receptor, divalent metal transporter I (DMT1), steap 2, steap 3, ceruloplasmin, hephaestin and ferroportin) in both primary rat brain capillary endothelial cells (BCEC) and immortalized rat brain capillary endothelial cell line (RBE4) grown in co-culture with defined polarity....... The mRNA expression of the iron-related molecules was also investigated in isolated brain capillaries from iron deficiency, iron reversible and normal rats. We also performed iron transport studies to analyze the routes by which iron is transported through the brain capillary endothelial cells: i) We...

  6. Chloride pyrometallurgy of uranium ore. 1. Chlorination of phosphate ore using solid or gas chlorinating agent and carbon

    International Nuclear Information System (INIS)

    Taki, Tomihiro; Komoto, Shigetoshi; Otomura, Keiichiro; Takenaka, Toshihide; Sato, Nobuaki; Fujino, Takeo.

    1995-01-01

    A thermodynamical and pyrometallurgical study to recover uranium from the phosphate ores was undertaken using the chloride volatilization method. Iron was chlorinated with solid chlorinating agents such as NaCl and CaCl 2 in combination with activated carbon, which will be used for removing this element from the ore, but uranium was not. On the other hand, the chlorination using Cl 2 gas and activated carbon gave a good result at 1,223 K. Not only uranium but also iron, phosphorus, aluminum and silicon were found to form volatile chlorides which vaporized out of the ore, while calcium remained in the ore as non-volatile CaCl 2 . The chlorination condition was studied as functions of temperature, reaction time and carbon content. The volatilization ratio of uranium around 95% was obtained by heating the mixture of the ore and activated carbon (35 wt%) in a mixed gas flow of Cl 2 (200 ml/min) and N 2 (200 ml/min) at 1,223 K for 120 min. (author)

  7. Carbothermic Reduction of Nickeliferous Laterite Ores for Nickel Pig Iron Production in China: A Review

    Science.gov (United States)

    Rao, Mingjun; Li, Guanghui; Jiang, Tao; Luo, Jun; Zhang, Yuanbo; Fan, Xiaohui

    2013-11-01

    Both the consumption and production of crude stainless steel in China rank first in the world. In 2011, the nickel production in China amounted to 446 kilotons, with the proportion of electrolytic nickel and nickel pig iron (NPI) registering 41.5% and 56.5%, respectively. NPI is a low-cost feedstock for stainless steel production when used as a substitute for electrolytic nickel. The existing commercial NPI production processes such as blast furnace smelting, rotary kiln-electric furnace smelting, and Krupp-Renn (Nipon Yakin Oheyama) processes are discussed. As low-temperature (below 1300°C) reduction of nickeliferous laterite ores followed by magnetic separation could provide an alternative avenue without smelting at high temperature (~1500°C) for producing ferronickel with low cost, the fundamentals and recent developments of the low-temperature reduction of nickeliferous laterite ores are reviewed.

  8. The Effect Of Local Coal And Smelting Sponge Iron On Iron Content Of Pig Iron

    Science.gov (United States)

    Oediyani, Soesaptri; Juwita Sari, Pramita; Hadi P, Djoko

    2018-03-01

    The new regulation on mineral resources was announced by Ministry of Energy and Mineral resources (ESDM) of Indonesia at 2014 which it called Permen ESDM No 1/2014. Therefore, this research was conducted to add the value of local iron ores by using smelting technology. The objective of the research is to produce pig iron that meet the requirement of the new regulation of mineral resources such as 90% Fe. First, iron ores and coal mixed together with lime as a flux, then smelted in a Electric Arc Furnace at 1800°C. The process variables are (1; 1.25; 1.5; 1.75; 2.0) and the composition of coal (0.8%, 1.6%, 3.0%). The type of coal that used in this research was bituminous coal from Kalimantan and also the iron ores from Kalimantan. The products of the smelting technology are Pig iron and slag. Both pig iron and slag then analyzed by SEM-EDS to measure the iron content. The result shows that the maximum iron content on pig iron is about 95.04% meanwhile the minimum iron content on slag is about 3.66%. This result achieved at 1.6% coal and 2.0.

  9. Beneficiation and agglomeration of manganese ore fines (an area so important and yet so ignored)

    Science.gov (United States)

    Sane, R.

    2018-01-01

    Unpredictable changes in demand and prices varying from very attractive to depressing levels have thrown all Manganese ore mines out of normal operating gear. The supply has to be in time-bound fashion, of dependable quality and continuous. With setting-up of numerous small units and with existing ferro-alloy units, ore supply has become extremely sensitive issue. Due to unpredictable swing in price of Mn ore lumps, furnace operators found it economic and convenient to use fines, even at great risks to furnace equipment and operating persons and therefore risks & damages were conveniently & comfortably ignored. Beneficiation Cost(Operating) approx. - (ferruginous ore) - Roast reduction followed by magnetic separation route-particulars - Water 20/-, Power 490/-, Coal fines-675/-, OH-250/-totaling to Rs.1435/T. (Figures are based on actual data from investigations on Orissa & Karnataka sector ores). Feed Grade Mn- 28 to 32 %, Fe - 14 to 25 %, Concentrate (Beneficiated ore fines)- - Mn- 45 to 48 %, Fe - 6 to 8 %., Recovery - 35 %, Price of 28-30 % Mn ore fines = Rs. 2400/T, Cost of Concentrated fines (45/48% Mn grade) = Rs. 8300/T, Price of 47-48 % Mn Lumpy ore = Rs.11,000/T. Sintering Cost (Operating) - Approx-Rs.1195=00/T Sinter. Therefore cost of Sinter produced from beneficiated concentrate is 9130+1195 = Rs. 10325. The difference in cost of 48%Mn ore Lumps & 48%Mn sintered concentrate = 11000-10325 = Rs.675/T. The main purpose of this paper is to show that establishment of beneficiation unit & Sintering unit is economically feasible. There are many misconcepts, still prevailing, about use of Mn ore sinters. Few of the main misconcepts are- 1)Sinters bring no benefit - technical or economical.2) Sinters are very friable and disintegrate easily into high fines during handling/transportation. 3) Fines below 100 mesh cannot be sintered. 4) Silica increases to high level during sintering, resulting in to high slag volume thereby higher power consumption. All are false

  10. Radionuclide migration around uranium ore bodies in the Alligator Rivers region of the Northern Territory, Australia - analogue of radioactive waste repositories

    International Nuclear Information System (INIS)

    Airey, P.L.; Roman, D.; Golian, C.; Short, S.; Nightingale, T.; Lowson, R.T.; Davey, B.G.; Gray, D.

    1984-01-01

    Appropriate geochemical analogues may be used to reduce the uncertainties in predicting the long-term transport of actinides, radium and fission products from laboratory adsorption and hydrological data. In this study the migration of uranium series nuclides within, and down-gradient of ore bodies in the Alligator Rivers uranium province of the Northern Territory of Australia is described. A mathematical framework was developed to permit calculation of the rate of leaching or deposition of uranium and radium between defined zones of the ore bodies, and the rate of loss of the nuclides due to groundwater transport and surface erosion. A detailed study was made of the distribution of uranium, thorium and radium isotopes within various minerals comprising the weathered ore assemblage. Uranium and thorium concentrate principally in the iron minerals and radium in the clay-quartz phases. Substantial disequilibria are observed, which are attributed to a combination of α-recoil and chemical effects. Evidence of the relative lability of iron phases is presented. The transport of uranium series nuclides in groundwater intersecting the deposits was investigated. Down-gradient of the Ranger One deposit, the maximum retardation factor of uranium is 250. The role of colloids in groundwater transport is being studied. Uranium is transported principally in solution. There appears to be an equilibrium between solute and articulate uranium

  11. Economic outlook for radiometric selection of ores

    International Nuclear Information System (INIS)

    Formery, P.; Ziegler, V.

    1958-01-01

    The value of an ore can be increased by cutting off it's poor fractions. This selection may be realized at two stages: - part of the ore in situ is unable to cover it's extraction and treatment costs, this defines the 'underground cut-off grade'; - another portion of already extracted ore is unable to cover it's transport and treatment costs; this defines the 'surface cut off grade'. These selections are easily feasible owing to the property of uranium ores of emitting gamma radiations. A diagram makes possible a fast forecast on the effect of this selection upon the weight and metal yields. An attempt is made as well in order to provide the expected effect of the composition of underground cut off and surface cut off. This cut off however, being realized through an appreciation of the radiations, involves an alteration of the weight and metal yields which calls for a correction. A survey of the economic interest of the cut-off is done and an example of valorisation in a given deposit of a section at the limit of operability is proposed. (author) [fr

  12. Development of a process with reduced energy consumption and environmental pollution in the production of solid, thermostable iron ore agglomerates. Final report; Entwicklung eines Verfahrens zur Senkung des Energiebedarfs und der Umweltbelastung bei der Herstellung von festen und thermostabilen Eisenerzagglomeraten. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Naundorf, W.; Trommer, D. [TU Bergakademie Freiberg (Germany); Guenter, H. [Koeppern Aufbereitungstechnik GmbH und Co. KG, Markkleeburg (Germany)

    2002-06-01

    In iron ore reduction with carbon, as a rule the ores are processed into stable and thermally stable agglomerates via emission-intensive processes, e.g. pelleting and combustion. This project aimed at the development of a process that avoids these problems, e.g. by agglomerating fine ores with binders and without emissions. [German] Bei der Reduktion von Eisenerz mit Kohlenstoff werden die Erze in der Regel vor dem Einsatz in den Reduktionsofen mit hohem Aufwand an Technik und Energie durch emissionsintensive Prozesse in transport- und thermofeste Agglomerate ueberfuehrt (Pelletier- und Brennprozess). Es ist das Ziel des Projektes, eine Verfahrensloesung ohne diese Nachteile zu entwickeln. Erfolgversprechend wird eine Verfahrenstechnik angesehen, bei der die Feinerze unter Zusatz von Bindestoffen ohne Emissionen agglomeriert werden. (orig.)

  13. Flocculation of chromite ore fines suspension using polysaccharide ...

    Indian Academy of Sciences (India)

    Unknown

    liquid separation. Keywords. Flocculation; graft copolymer; mineral industry effluent; chromite ore fines; ... work well as flocculating agent on coal washery effluent, copper and iron ore fines etc (Karmakar et al 1998, 1999;. Tripathy et al 2001).

  14. Study on uranium loss during 'Iron-Gypsum Cake' precipitation from acid leach liquor of Jaduguda ore using factorially designed experiments

    International Nuclear Information System (INIS)

    Das, Amrita; Yadav, Manoj; Chatterjee, Ankur; Singh, A.K.; Hubli, R.C.

    2012-01-01

    Acid leaching process for uranium recovery from ore often generates considerable amounts of impurities into the solution. It is a challenge to separate the non-valuable impurities as manageable and stable waste products for final disposal, without losing the valuable constituents. The main impurities that come with the leach liquor are iron and sulfate. Their removal is essential for meeting the iron requirement in leaching circuit and also for making the effluent suitable for recycle. Factorial design analysis was applied to study of process variables for precipitation of iron and sulphate from leach liquor with composition using CaO as precipitation reagent

  15. Mitochondrial Iron Transport and Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Anshika eJain

    2013-09-01

    Full Text Available Iron (Fe is an essential nutrient for plants and although the mechanisms controlling iron uptake from the soil are relatively well understood, comparatively little is known about subcellular trafficking of iron in plant cells. Mitochondria represent a significant iron sink within cells, as iron is required for the proper functioning of respiratory chain protein complexes. Mitochondria are a site of Fe-S cluster synthesis, and possibly heme synthesis as well. Here we review recent insights into the molecular mechanisms controlling mitochondrial iron transport and homeostasis. We focus on the recent identification of a mitochondrial iron uptake transporter in rice and a possible role for metalloreductases in iron uptake by mitochondria. In addition, we highlight recent advances in mitochondrial iron homeostasis with an emphasis on the roles of frataxin and ferritin in iron trafficking and storage within mitochondria.

  16. Rapid photometric determination of phosphorus in iron ores and related materials as phosphomolybdenum-blue.

    Science.gov (United States)

    Bhargava, O P; Gmitro, M

    1984-04-01

    A rapid, simple and accurate method for determining phosphorus photometrically in iron ores and related materials, obviating the use of perchloric acid, is described. The sample is fused with sodium peroxide in a zirconium crucible and the melt dissolved in hydrochloric acid. The molybdenum-blue complex is developed by the addition of ammonium molybdate and hydrazine sulphate and the absorbance is measured at 725 nm. The range of the method is from 0.005 to 1.0% P. A batch of 6 samples can be analysed in about 2 hr.

  17. A New Direction for Biomining: Extraction of Metals by Reductive Dissolution of Oxidized Ores

    Directory of Open Access Journals (Sweden)

    Kevin B. Hallberg

    2013-01-01

    Full Text Available Biomining, the biotechnology that uses microorganisms to extract metals from ores and concentrates, is currently used exclusively for processing reduced ores and mine wastes. Metals of economic value also occur extensively in oxidized ores, such as nickel laterites. While these are not amenable to oxidative dissolution, the ferric iron minerals they contain can, in theory, be disrupted by iron reduction, causing associated metals to be released. We have harnessed the ability of the facultatively anaerobic, acidophilic bacterium Acidithiobacillus ferroooxidans to couple the oxidation of elemental sulphur to the reduction of ferric iron in the goethite fraction of a limonitic nickel ore at 30 °C. Nickel and other metals (Co, Cr and Mn were effectively solubilised and maintained in solution due to the low pH (1.8 of the leach liquor. The results highlight the potential for the bioprocessing of oxidized, iron-rich ores using an approach that is energy-saving and environmentally-benign compared with metallurgical processes currently applied to the extraction of Ni from lateritic ores.

  18. Feasibility of infrared analysis of iron in zircon

    International Nuclear Information System (INIS)

    Heard, I. Jr.

    1980-05-01

    A feasibility study has concluded that quantitative infrared analysis can be employed to determine the concentration of iron in zircon. The spectral transmission curves have shown that the iron absorption band is located at 1.15 microns. These curves also revealed a second absorption band at 1.49 microns. The source of this second peak is not known; but it exhibits some features which suggest its dependance on natural α-recoil damage. 23 references, 14 figures, 2 tables

  19. Using Local Event Tomography to Image Changes in the Rock Mass in the Kiirunavaara Iron Ore Mine, Northern Sweden

    Science.gov (United States)

    Lund, B.; Berglund, K.; Tryggvason, A.; Dineva, S.; Jonsson, L.

    2017-12-01

    Although induced seismic events in a mining environment are a potential hazard, they can be used to gain information about the rock mass in the mine which otherwise would be very difficult to obtain. In this study we use approximately 1.2 million mining induced seismic events in the Kiirunavaara iron ore mine in northernmost Sweden to image the rock mass using local event travel-time tomography. The Kiirunavaara mine is the largest underground iron ore mine in the world. The ore body is a magnetite sheet of 4 km length, with an average thickness of 80 m, which dips approximately 55° to the east. The events are of various origins such as shear slip on fractures, non-shear events and blasts, with magnitudes of up to 2.5. We use manually picked P- and S-wave arrival times from the routine processing in the tomography and we require that both phases are present at at least five geophones. For the tomography we use the 3D local earthquake tomography code PStomo_eq (Tryggvason et al., 2002), which we adjusted to the mining scale. The tomographic images show clearly defined regions of high and low velocities. Prominent low S-velocity zones are associated with mapped clay zones. Regions of ore where mining is ongoing and the near-ore tunnel infrastructure in the foot-wall also show generally low P- and S-velocities. The ore at depths below the current mining levels is imaged both as a low S-velocity zone but even more pronounced as a high Vp/Vs ratio zone. The tomography shows higher P- and S-velocities in the foot-wall away from the areas of mine infrastructure. We relocate all 1.2 million events in the new 3D velocity model. The relocation significantly enhances the clarity of the event distribution in space and we can much more easily identify seismically active structures, such as e.g. the deformation of the ore passes. The large number of events makes it possible to do detailed studies of the temporal evolution of stability in the mine. We present preliminary results

  20. The potentialities of nuclear geophysical methods in ore testing of ferrous metals

    International Nuclear Information System (INIS)

    Ochkur, A.P.; Voznesenskij, L.I.; Fedorov, S.V.

    1976-01-01

    To study iron ores of simple composition, the gamma-gamma method is used successfully, determining iron contents in boreholes, in the walls of mine workings and in sampling hacked off rocks. The X-ray diffraction method is used effectively in analysing iron ores of complex composition ensuring that the contents of Fe, Mn and Ca are determined in them. Neutron-capture spectrometric gamma-logging is a promising method for determining the total iron content in the mined ore. Manganese ores are singled out in the boreholes by data from thermal neutron and neutron-activation logging. The X-ray diffraction method is used to analyse powder samples in mine workings. To single out and estimate chromites in boreholes, a combination of neutron-capture spectrometric gamma-logging, gamma-gamma logging and epithermal neutron-neutron logging is used. The X-ray diffraction method determines the contents of Cr, Ca and Fe in powder and coarse-ground samples of chromites

  1. Regulatory mechanisms for iron transport across the blood-brain barrier.

    Science.gov (United States)

    Duck, Kari A; Simpson, Ian A; Connor, James R

    2017-12-09

    Many critical metabolic functions in the brain require adequate and timely delivery of iron. However, most studies when considering brain iron uptake have ignored the iron requirements of the endothelial cells that form the blood-brain barrier (BBB). Moreover, current models of BBB iron transport do not address regional regulation of brain iron uptake or how neurons, when adapting to metabolic demands, can acquire more iron. In this study, we demonstrate that both iron-poor transferrin (apo-Tf) and the iron chelator, deferoxamine, stimulate release of iron from iron-loaded endothelial cells in an in vitro BBB model. The role of the endosomal divalent metal transporter 1 (DMT1) in BBB iron acquisition and transport has been questioned. Here, we show that inhibition of DMT1 alters the transport of iron and Tf across the endothelial cells. These data support an endosome-mediated model of Tf-bound iron uptake into the brain and identifies mechanisms for local regional regulation of brain iron uptake. Moreover, our data provide an explanation for the disparity in the ratio of Tf to iron transport into the brain that has confounded the field. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Is outdoor work associated with elevated rates of cerebrovascular disease mortality? A cohort study based on iron-ore mining.

    Science.gov (United States)

    Björ, Ove; Jonsson, Håkan; Damber, Lena; Burström, Lage; Nilsson, Tohr

    2016-01-01

    A cohort study that examined iron ore mining found negative associations between cumulative working time employed underground and several outcomes, including mortality of cerebrovascular diseases. In this cohort study, and using the same group of miners, we examined whether work in an outdoor environment could explain elevated cerebrovascular disease rates. This study was based on a Swedish iron ore mining cohort consisting of 13,000 workers. Poisson regression models were used to generate smoothed estimates of standardized mortality ratios and adjusted rate ratios, both models by cumulative exposure time in outdoor work. The adjusted rate ratio between employment classified as outdoor work ≥25 years and outdoor work 0-4 years was 1.62 (95 % CI 1.07-2.42). The subgroup underground work ≥15 years deviated most in occurrence of cerebrovascular disease mortality compared with the external reference population: SMR (0.70 (95 % CI 0.56-0.85)). Employment in outdoor environments was associated with elevated rates of cerebrovascular disease mortality. In contrast, work in tempered underground employment was associated with a protecting effect.

  3. Evaluation of exploitation alternatives of iron - titanium - vanadium ore from Campo Alegre de Lourdes (Bahia-Brazil)

    International Nuclear Information System (INIS)

    Cassa, J.C.S.; Ogasawara, T.; Silva, F.T. da; Cuellar, O.D.

    1987-01-01

    An evaluation of experiences carried out in order to develop an economic process for vanadium, is presented. The attempts which are being developed in the Metallurgical Engineering Program at COPPE/UFRJ, are described, and the other technical and economical possibilities of existing technologies, are analysed. The advantages and disadvantages of integrated steel making process to recover iron, titanium and vanadium contained in the ore from Campo Alegre de Lourdes deposit, in Bahia-Brazil are considered. (Author) [pt

  4. Radioisotope devices at Novo-Krivorozhskij-ore-enrichment plant

    International Nuclear Information System (INIS)

    Levitskij, V.Ya.; Kucher, V.G.; Ministerstvo Chernoj Metallurgii Ukrainskoj SSR, Dnepropetrovsk, Bazovaya Opytno-Konstruktorskaya Izotopnaya lab.)

    1975-01-01

    Use of the ''Ferrite'' analyzers, AZhR and PAZh-1 and the GR-7 gamma relay in different engineering areas of the Novo-Krivorozh ore-enrichment plant is evaluated. The ''Ferrite'' radioisotopic analyzer was designed for rapid roentgeno-radiometric determination of the total iron and iron group element contents in powdered samples of ores and products of their treatment. From the density of the flux of the characteristic radiation it is possible to determine quantitatively the content of the element of interest in the analyzed material. The radioisotpic analyzer AZhR-1 is distinguished by its high efficiency in the analysis for total iron on products of processing of iron ore raw materials. The use of this apparatus allows complete replacement of the chemical method for rapid analysis of concentrates by the roentgeno-radiometric method, which decreases the total analytical work on determination of total iron and speeds up output of information on concentrate quality. The radioisotopic gamma analyzer PAZh-1 is designed for automatic and either continuous or discrete measurement of the total iron content in iron ore materials ground to 50 mm, carried on a conveyor, without selection or preparation of the samples for analysis. The analyzer operates on the principle of measuring the average frequency of impingement on a detector of gamma quanta back-scattered by the analyzed material. This frequency is determined by the percentage content of total iron in the material. The apparatus operates continuously. The mean square deviation of the apparatus values from chemical data is 0.93% Fesub(total). Use of the apparatus greatly increases the operativeness of the control and decreases the laboriousness of raw material sampling in an engineering stream. The radioisotopic data units GR-7 are designed for control of the level of materials in hoppers for recovery and burning of agglomerates. Use of this apparatus showed its great advantage over data units of other types

  5. A procedure for oxidation during the acid leaching of non-ferrous ores, particularly uranium ores

    International Nuclear Information System (INIS)

    Zubcek, L.; Baloun, S.; Martinek, K.; Vebr, Z.; Krepelka, J.; Lasica, S.

    1989-01-01

    It is suggested that dust from the production of ferroalloys of manganese, particularly ferrosilicomanganese and ferromanganese, can be conveniently used for oxidation during the acid leaching of non-ferrous ores, particularly uranium ores. This dust contains 30 to 40% oxides of manganese, about one-half of this is MnO 2 . Iron in the dust is present in the trivalent form, and the dust is pefectly dry. The conventional grinding of oxidants for the ore processing is eliminated, the dust being available in particle size below 0.2 mm. The dust is added in amounts of 5 to 100 kg per ton of the ore, and the suspension is typically heated at 115 degC for 3.5 hr. (P.A.)

  6. Summary of the mineralogy of the Colorado Plateau uranium ores

    Science.gov (United States)

    Weeks, Alice D.; Coleman, Robert Griffin; Thompson, Mary E.

    1956-01-01

    In the Colorado Plateau uranium has been produced chiefly from very shallow mines in carnotite ores (oxidized vanadiferous uranium ores) until recent deeper mining penetrated black unoxidized ores in water-saturated rocks and extensive exploration has discovered many deposits of low to nonvanadiferous ores. The uranium ores include a wide range from highly vanadiferous and from as much as one percent to a trace of copper, and contain a small amount of iron and traces of lead, zinc, molybdenum, cobalt, nickel, silver, manganese, and other metals. Recent investigation indicates that the carnotite ores have been derived by progressive oxidation of primary (unoxidized) black ores that contain low-valent uranium and vanadium oxides and silicates. The uranium minerals, uraninite and coffinite, are associated with coalified wood or other carbonaceous material. The vanadium minerals, chiefly montroseite, roscoelite, and other vanadium silicates, occur in the interstices of the sandstone and in siltstone and clay pellets as well as associated with fossil wood. Calcite, dolomite, barite and minor amounts of sulfides, arsenides, and selenides occur in the unoxidized ore. Partially oxidized vanadiferous ore is blue black, purplish brown, or greenish black in contrast to the black or dark gray unoxidized ore. Vanadium combines with uranium to form rauvite. The excess vanadium is present in corvusite, fernandinite, melanovanadite and many other quadrivalent and quinquevalent vanadium minerals as well as in vanadium silicates. Pyrite and part or all of the calcite are replaced by iron oxides and gypsum. In oxidized vanadiferous uranium ores the uranium is fixed in the relatively insoluble minerals carnotite and tyuyamunite, and the excess vanadium commonly combines with one or more of the following: calcium, sodium, potassium, magnesium, aluminum, iron, copper, manganese, or barium, or rarely it forms the hydrated pentoxide. The relatively stable vanadium silicates are little

  7. In situ recovery of copper from sulfide ore bodies following nuclear fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, Joe B; McKinney, W A [Salt Lake City Metallurgy Research Center, Bureau of Mines, US Department of the Interior, Salt Lake City, UT (United States)

    1970-05-15

    Leaching now yields about 12 percent of the Nation's annual new copper production. About 200,000 tons of copper a year is being won by heap and vat leaching of ore, dump leaching of waste, and in-place leaching of caved underground workings. Although in-place leaching was practiced as long ago as the 15th century, it is little used and contributes only a few percent of the total leach copper production. Current technology in this area is exemplified by practice at the Miami, Ariz., mine of the Miami Copper Co. Despite its limited use, the concept of extracting copper by in-place leaching without physically mining and transporting the ore continues to present intriguing cost saving possibilities. Project SLOOP has been proposed as an experiment to test the feasibility of nuclear fracturing and acid leaching the oxidized portion of a deep ore body near Safford, Ariz. However, the bulk of the copper in deep ore deposits occurs as sulfide minerals that are not easily soluble in acid solutions. This paper explores the concept of in-place leaching of nuclear fractured, deeply buried copper sulfide deposits. On the assumption that fracturing of rock and solution injection and collection would be feasible, an assessment is made of solution systems that might be employed for the different copper sulfide minerals in porphyry ore bodies. These include the conventional ferric sulfate-sulfuric acid systems and combinations of sulfide mineral oxidants and different acids. (author)

  8. In situ recovery of copper from sulfide ore bodies following nuclear fracturing

    International Nuclear Information System (INIS)

    Rosenbaum, Joe B.; McKinney, W.A.

    1970-01-01

    Leaching now yields about 12 percent of the Nation's annual new copper production. About 200,000 tons of copper a year is being won by heap and vat leaching of ore, dump leaching of waste, and in-place leaching of caved underground workings. Although in-place leaching was practiced as long ago as the 15th century, it is little used and contributes only a few percent of the total leach copper production. Current technology in this area is exemplified by practice at the Miami, Ariz., mine of the Miami Copper Co. Despite its limited use, the concept of extracting copper by in-place leaching without physically mining and transporting the ore continues to present intriguing cost saving possibilities. Project SLOOP has been proposed as an experiment to test the feasibility of nuclear fracturing and acid leaching the oxidized portion of a deep ore body near Safford, Ariz. However, the bulk of the copper in deep ore deposits occurs as sulfide minerals that are not easily soluble in acid solutions. This paper explores the concept of in-place leaching of nuclear fractured, deeply buried copper sulfide deposits. On the assumption that fracturing of rock and solution injection and collection would be feasible, an assessment is made of solution systems that might be employed for the different copper sulfide minerals in porphyry ore bodies. These include the conventional ferric sulfate-sulfuric acid systems and combinations of sulfide mineral oxidants and different acids. (author)

  9. Radioactive Ores and Concentrates (Packaging and Transport) Act 1980. No 26 of 1980

    International Nuclear Information System (INIS)

    1980-01-01

    This Act, which regulates the packaging, storage and transport of radioactive ores and concentrates lays down a detailed licensing system for such materials and prescribes the duties of the Chief Inspector responsible for implementation of the Act. (NEA) [fr

  10. Complexing and hydrothermal ore deposition

    CERN Document Server

    Helgeson, Harold C

    1964-01-01

    Complexing and Hydrothermal Ore Deposition provides a synthesis of fact, theory, and interpretative speculation on hydrothermal ore-forming solutions. This book summarizes information and theory of the internal chemistry of aqueous electrolyte solutions accumulated in previous years. The scope of the discussion is limited to those aspects of particular interest to the geologist working on the problem of hydrothermal ore genesis. Wherever feasible, fundamental principles are reviewed. Portions of this text are devoted to calculations of specific hydrothermal equilibriums in multicompone

  11. Sustainability in pelletizing iron ore through the Industrial Ecology and Cleaner Production Program

    Directory of Open Access Journals (Sweden)

    Cristiano Farias Coelho

    2013-06-01

    Full Text Available This study aims to analyze the practices of a pelletizing iron ore industry with respect to adoption of pollution prevention measures, suggested by applying the concepts of Cleaner Production and Material Flow Analysis. The technical procedure adopted was the case study, the data collection was done through direct observation, with field research and literature review. The main results were obtained from analysis of company reports available to the public, but require a more detailed quantification of data. The study concludes that the identification of environmental opportunities is possible through the proposed implementation of Cleaner Production program, which provides better results when combined with the precepts of the industrial ecology tool, the Material Flow Analysis.

  12. Spatial evolution of Zn-Fe-Pb isotopes of sphalerite within a single ore body: A case study from the Dongshengmiao ore deposit, Inner Mongolia, China

    Science.gov (United States)

    Gao, Zhaofu; Zhu, Xiangkun; Sun, Jian; Luo, Zhaohua; Bao, Chuang; Tang, Chao; Ma, Jianxiong

    2018-01-01

    Analyses of sphalerite minerals from the characteristic brecciated Zn-Pb ores of the main ore body in the giant Dongshengmiao deposit have revealed variations in δ66Zn from 0.17 to 0.40‰ and in δ56Fe from -1.78 to -0.35‰. Further, the investigated pyrrhotite samples have iron that is isotopically similar to that of associated sphalerite minerals. The most distinctive pattern revealed by the zinc and iron isotope data is the lateral trend of increasing δ66Zn and δ56Fe values from southwest to northeast within the main ore body. The lead isotopic homogeneity of ore sulfides from the main ore body suggests that there is only one significant source for metal, thus precluding the mixing of multiple metal sources as the key factor controlling spatial variations of zinc and iron isotopes. The most likely control on spatial variations is Rayleigh fractionation during hydrothermal fluid flow, with lighter Zn and Fe isotopes preferentially incorporated into the earliest sulfides to precipitate from fluids. Precipitations of sphalerite and pyrrhotite have played vital roles in the Zn and Fe isotopic variations, respectively, of the ore-forming system. Accordingly, the larger isotopic variability for Fe than Zn within the same hydrothermal system perhaps resulted from a larger proportion of precipitation for pyrrhotite than for sphalerite. The lateral trend pattern revealed by the zinc and iron isotope data is consistent with the occurrence of a cystic-shaped breccia zone, which is characterized by marked elevation in Cu. The results further confirm that Zn and Fe isotopes can be used as a vectoring tool for mineral prospecting.

  13. The potential for ore and industrial minerals in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, Hardy [MIRAB Mineral Resurser AB, Uppsala (Sweden); Isaksson, Hans; Thunehed, Hans [GeoVista AB, Luleaa (Sweden)

    2004-03-01

    A survey has been made of existing information concerning the potential for ore and industrial minerals in and near the candidate area for a deep repository in Forsmark. A deep repository for spent nuclear fuel should not be located in a rock type or an area where mineral extraction might be considered in the future, since this would make it impossible to exploit this natural resource. Avoiding such areas reduces the risk that people in the future will come into contact with the deep repository through mineral prospecting or mining activities. The survey has made use of all the geoscientific information that was compiled in the more regional investigations in Oesthammar Municipality in 1996-97. In cooperation with the Geological Survey of Sweden (SGU), a new, more detailed mineral resources map has been prepared. The map shows areas with an ore potential that may be unsuitable or unfavourable for siting of a deep repository. The results of the recently completed geophysical helicopter surveys of the Forsmark area are presented in a special chapter. The judgement of the area's ore potential is in part based on the geophysical evaluation of these measurements. Furthermore, the survey obtained information from ongoing deep drillings from the site investigation in Forsmark. In order to better be able to judge the ore potential, the survey has initiated a geochemical investigation of activated soil samples, plus an ore geology sampling of a section in the deep borehole KFM02A, where a hydrothermally altered zone was detected in 2003.The first results from these samplings are presented in the report, which also discusses prospecting efforts in the area as well as relevant Swedish mining legislation. Some suggestions are made for further ore geology investigations. The mineral resources map shows that there is an elongate northwest-southeast zone south and southwest of the candidate area which has a potential for skarn iron ore, and possibly for copper and zinc

  14. The potential for ore and industrial minerals in the Forsmark area

    International Nuclear Information System (INIS)

    Lindroos, Hardy; Isaksson, Hans; Thunehed, Hans

    2004-03-01

    A survey has been made of existing information concerning the potential for ore and industrial minerals in and near the candidate area for a deep repository in Forsmark. A deep repository for spent nuclear fuel should not be located in a rock type or an area where mineral extraction might be considered in the future, since this would make it impossible to exploit this natural resource. Avoiding such areas reduces the risk that people in the future will come into contact with the deep repository through mineral prospecting or mining activities. The survey has made use of all the geoscientific information that was compiled in the more regional investigations in Oesthammar Municipality in 1996-97. In cooperation with the Geological Survey of Sweden (SGU), a new, more detailed mineral resources map has been prepared. The map shows areas with an ore potential that may be unsuitable or unfavourable for siting of a deep repository. The results of the recently completed geophysical helicopter surveys of the Forsmark area are presented in a special chapter. The judgement of the area's ore potential is in part based on the geophysical evaluation of these measurements. Furthermore, the survey obtained information from ongoing deep drillings from the site investigation in Forsmark. In order to better be able to judge the ore potential, the survey has initiated a geochemical investigation of activated soil samples, plus an ore geology sampling of a section in the deep borehole KFM02A, where a hydrothermally altered zone was detected in 2003.The first results from these samplings are presented in the report, which also discusses prospecting efforts in the area as well as relevant Swedish mining legislation. Some suggestions are made for further ore geology investigations. The mineral resources map shows that there is an elongate northwest-southeast zone south and southwest of the candidate area which has a potential for skarn iron ore, and possibly for copper and zinc, although

  15. Chemical effects of Iron-ore mining and processing at Itakpe, Kogi State

    International Nuclear Information System (INIS)

    Audu, D. A.; Ibeanu, I. G. E.; Yusuf, J. Z.

    2011-01-01

    X-ray fluorescence (XRF) technique was employed to generate data from soil samples collected from mine, industrial plant, and mill tailing deposit sites of National Iron-Ore Mining Project, Itakpe, Kogi State. The vertical profile analysis showed that As, Pb, Th, and U which are all toxic have their highest mean values of 91±8(81-100), 138±28(110-183), 49±12(39-68), and 37±2(34-40) ppm, respectively at the tailing deposit site. The result also showed a common occurrence of high concentrations of Pb and As at some depths in the vertical profiles after initial decline from the earth surface at the three sites thereby suggesting that absolute reclamation of old mines may not be possible immediately and that any new use or practice of such reclaimed mines should be carefully chosen. Correlation coefficients between arsenic and Pb, Cu, Mn, Zn, and Fe, at the industrial plant site (which is very close to an unmodified environment) were 0.997, 0.942, 0.896, 0.972, and 0.932, respectively. These values therefore suggest strong associations of As with ores of these minerals. The soil samples mean pH value of 6.5±0.1(5.7-7.2) was measured indicating non existence of Acid Mine Drainage at the company.

  16. Effect of H{sub 2}S on the catalytic decomposition of tar and ammonia with dolomite and sintered iron ore in synthetic gasification gas

    Energy Technology Data Exchange (ETDEWEB)

    Hepola, J [VTT Energy, Espoo (Finland)

    1997-12-31

    The toluene-decomposing activity of calcined dolomite was not affected by the H{sub 2}S content of synthetic gasification gas. Iron was active with respect to toluene and ammonia at metallic state. The increase of the H{sub 2}S content of synthetic gasification gas (0 - 500 ppmv) decreased the tar-decomposing activity but not the ammonia- decomposing activity of sintered iron ore. (author) (12 refs.)

  17. Effect of H{sub 2}S on the catalytic decomposition of tar and ammonia with dolomite and sintered iron ore in synthetic gasification gas

    Energy Technology Data Exchange (ETDEWEB)

    Hepola, J. [VTT Energy, Espoo (Finland)

    1996-12-31

    The toluene-decomposing activity of calcined dolomite was not affected by the H{sub 2}S content of synthetic gasification gas. Iron was active with respect to toluene and ammonia at metallic state. The increase of the H{sub 2}S content of synthetic gasification gas (0 - 500 ppmv) decreased the tar-decomposing activity but not the ammonia- decomposing activity of sintered iron ore. (author) (12 refs.)

  18. Chemical fingerprint of iron oxides related to iron enrichment of banded iron formation from the Cauê Formation - Esperança Deposit, Quadrilátero Ferrífero, Brazil: a laser ablation ICP-MS study

    Directory of Open Access Journals (Sweden)

    Lucilia Aparecida Ramos de Oliveira

    Full Text Available Chemical signatures of iron oxides from dolomitic itabirite and high-grade iron ore from the Esperança deposit, located in the Quadrilátero Ferrífero, indicate that polycyclic processes involving changing of chemical and redox conditions are responsible for the iron enrichment on Cauê Formation from Minas Supergroup. Variations of Mn, Mg and Sr content in different generations of iron oxides from dolomitic itabirite, high-grade iron ore and syn-mineralization quartz-carbonate-hematite veins denote the close relationship between high-grade iron ore formation and carbonate alteration. This indicates that dolomitic itabirite is the main precursor of the iron ore in that deposit. Long-lasting percolation of hydrothermal fluids and shifts in the redox conditions have contributed to changes in the Y/Ho ratio, light/heavy rare earth elements ratio and Ce anomaly with successive iron oxide generations (martite-granular hematite, as well as lower abundance of trace elements including rare earth elements in the younger specularite generations.

  19. The fatigue in workers of Iran Central Iron Ore Company in Yazd.

    Science.gov (United States)

    Halvani, Golam Hossein; Zare, Mohsen; Hobobati, Hamid

    2009-01-01

    To evaluate fatigue, sub-dimensions, and job satisfaction among workers of Iran Central Iron Ore Co., and obtain the relationship between them. In a cross-sectional study, fatigue and the dimensionality were measured using Iranian version of Piper Fatigue Scale questionnaire (PFS). Job satisfaction was estimated with the job satisfaction scale (JSS) as well. The score of severe fatigue in four sub-scale/dimensions and total fatigue scores were: 11.9, 15.2, 11.3, 10.8 and 10.6%, respectively. Furthermore, there was significant difference between total fatigue and all its sub-dimensions in relation to job satisfaction of workers. Fatigue has caused job dissatisfaction of participants in our study, therefore we should note that the nature of fatigue may affect the psychological aspects of industrial workforce and can be harmful for business activities.

  20. Optimizing Transport in Surface Mines, Taking into Account the Quality of Extracted Raw Ore

    Directory of Open Access Journals (Sweden)

    Marian Šofranko

    2012-12-01

    Full Text Available This articles concerns problemacy of appropriate separation of transporting mechanisms for mining minerals from individulalteritories. In the following sections of the article a model solution is presented with the use of newly created program for optimizationof transport, taking into account the required quality of extracted raw ore. This process is being done through computing analysisand programming language Borland C++ Builder

  1. Preparation and characterization of novel glass–ceramic tile with microwave absorption properties from iron ore tailings

    International Nuclear Information System (INIS)

    Yao, Rui; Liao, SongYi; Dai, ChangLu; Liu, YuChen; Chen, XiaoYu; Zheng, Feng

    2015-01-01

    A novel glass–ceramic tile consisting of one glass–ceramic layer (GC) attaining microwave absorption properties atop ceramic substrate was prepared through quench-heat treatment route derived from iron ore tailings (IOTs) and commercial raw materials (purity range 73–99%). X-ray diffraction (XRD), SEM, Energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Physical property measurement system (PPMS) and Vector network analyzer (VNA) measurements were carried out to investigate phase, microstructure, magnetic and microwave absorption aspects of the glass–ceramic layer. Roughly 80.6±1.7 wt% borosilicate glass and 19.4±1.7 wt% spinel ferrite with chemical formula of (Zn 2+ 0.17 Fe 3+ 0.83 )[Fe 3+ 1.17 Fe 2+ 0.06 Ni 2+ 0.77 ]O 4 were found among the tested samples. Absorption of Electromagnetic wave by 3 mm thick glass–ceramic layer at frequency of 2–18 GHz reached peak reflection loss (RL) of −17.61 dB (98.27% microwave absorption) at 10.31 GHz. Altering the thickness of the glass–ceramic layer can meet the requirements of different level of microwave absorption. - Highlights: • Iron ore tailings (IOTs) have been used as one of the main raw materials. • Glass–ceramic tile contains spinel ferrite has been prepared. • The cation distribution of the spinel ferrite has been calculated. • The intrinsic complex permeability and permittivity have been evaluated

  2. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments

    Science.gov (United States)

    Mey, Alexandra R.; Wyckoff, Elizabeth E.

    2015-01-01

    SUMMARY Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats. PMID:26658001

  3. Extraction of metals from ores by bacterial leaching: present status and future prospects

    International Nuclear Information System (INIS)

    Kelly, D.P.

    1977-01-01

    The principal organism effecting bacterial leaching of ferrous and sulfide ores is Thiobacillus ferrooxidans, though other thiobacilli and other bacteria may be involved. The process depends on (a) direct solubilization of metal sulfides by bacterial oxidation; (b) dissolution of metal sulfides or oxides by ferric iron produced by bacterial pyrite oxidation. Mining spoil dumps and low grade ores can be leached for copper or uranium by cheap low-level technology. Dump leaching enables maximum recovery of valuable metal from any ore, but makes possible exploitation of very low grade Cu and U ores. Continuous extraction processes are possible where a continuously growing bacterial culture is fed with pyritic ores (or FeSO 4 or other sulfide) and continuous metal solubilization proceeds. Intimate contact between the bacteria and the ore to be leached (especially with uranium oxide ores) is not always necessary: leaching of UO 2 ores probably depends only on ferric iron reaction with the ore. Degradation of pyrite-containing rocks may also be developed as part of future recovery processes for petroleum from oil shales. Two-stage leaching systems present the best prospect for developing a higher-level technology for metal extraction. State 1: bacterial generation of Fe 3+ from pyrite or a Fe 2+ source; Stage 2: chemical leaching of ore by Fe 3+ in acid solution. Two-stage processes can be surface processes using crushed or milled ores or can be applied to underground solution mining, when an ore (e.g. uranium) can be leached by pumping Fe 3+ solutions through shattered underground deposits, metal recovered (e.g. solvent extraction) and Fe 3+ regenerated by bacterial oxidation at the surface. The use of controlled continuous microbial cultures to generate either bacteria or ferric iron is outlined

  4. Iron removal on feldspar by using Averrhoa bilimbii as bioleaching agent

    Science.gov (United States)

    Amin, Muhammad; Aji, Bramantyo B.; Supriyatna, Yayat Iman; Bahfie, Fathan

    2017-01-01

    Investigation of Averrhoa bilimbii as bioleaching agent was carried out. Parameters of leaching duration, acid concentration, and temperature were performed in iron removal process. Feldspar with sized 149 µm was diluted in 30 ml acid solution in order to reduce its iron content. The experimental results showed a good technical feasibility of the process which iron oxide content of feldspar was decreased from 2.24% to 0.29%. The lowest iron concentration remained was obtained after 5 hours of leaching treatment at 60 °C, and concentrated (100 vol%) Averrhoa bilimbii extract as bioleaching agent. SEM characterizations were carried out on the feldspar before and after the leaching treatment. The result shows that there were no significant effect of leaching process on the ore morphology.

  5. Adsorption and removal of arsenic from water by iron ore mining waste.

    Science.gov (United States)

    Nguyen, Tien Vinh; Nguyen, Thi Van Trang; Pham, Tuan Linh; Vigneswaran, Saravanamuth; Ngo, Huu Hao; Kandasamy, J; Nguyen, Hong Khanh; Nguyen, Duc Tho

    2009-01-01

    There is a global need to develop low-cost technologies to remove arsenic from water for individual household water supply. In this study, a purified and enriched waste material (treated magnetite waste, TMW) from the Trai Cau's iron ore mine in the Thai Nguyen Province in Vietnam was examined for its capacity to remove arsenic. The treatment system was packed with TMW that consisted of 75% of ferrous-ferric oxide (Fe(3)O(4)) and had a large surface area of 89.7 m(2)/g. The experiments were conducted at a filtration rate of 0.05 m/h to treat groundwater with an arsenic concentration of 380 microg/L and iron, manganese and phosphate concentrations of 2.07 mg/L, 0.093 mg/L and 1.6 mg/L respectively. The batch experimental results show that this new material was able to absorb up to 0.74 mg arsenic/g. The results also indicated that the treatment system removed more than 90% arsenic giving an effluent with an arsenic concentration of less than 30 microg/L while achieving a removal efficiency of about 80% for Mn(2 + ) and PO(4) (3-). This could be a promising and cost-effective new material for capturing arsenic as well as other metals from groundwater.

  6. Experimental study and modelling of iron ore reduction by hydrogen; Etude experimentale et modelisation de la reduction du minerai de fer par l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, D

    2008-01-15

    In an effort to find new ways to drastically reduce the CO{sub 2} emissions from the steel industry (ULCOS project), the reduction of iron ore by pure hydrogen in a shaft furnace was investigated. The work consisted of literature, experimental, and modelling studies. The chemical reaction and its kinetics were analysed on the basis of thermogravimetric experiments and physicochemical characterizations of partially reduced samples. A specific kinetic model was designed, which simulates the successive reactions, the different steps of mass transport, and possible iron sintering, at the particle scale. Finally, a 2-dimensional numerical model of a shaft furnace was developed. It depicts the variation of the solid and gas temperatures and compositions throughout the reactor. One original feature of the model is using the law of additive characteristic times for calculating the reaction rates. This allowed us to handle both the particle and the reactor scale, while keeping reasonable calculation time. From the simulation results, the influence of the process parameters was assessed. Optimal operating conditions were concluded, which reveal the efficiency of the hydrogen process. (author)

  7. Hydrometallurgical Processing Technology of Titanomagnetite Ores

    Directory of Open Access Journals (Sweden)

    Victor Ivanovich Sachkov

    2017-12-01

    Full Text Available In this paper, we study the possibility of obtaining iron and titanium-vanadium concentrates with highest contents of iron and titanium, respectively, through hydrometallurgical processing of the titanomagnetite ores of the Chineisk deposit. We varied two key parameters to determine the efficiency of the process: (a concentration of leaching solution (ammonium fluoride; and (b acidity of solution. Ammonium fluoride concentration was varied from 0.08 mol/L to 4.2 mol/L with the other fixed parameters. It was shown that optimum ammonium fluoride concentration for leaching the ore is 0.42 mol/L; at these concentrations iron and titanium contents are about 62.8 wt % and 3.5 wt % in solid phase, respectively. The acidity of solution was changed by adding of hydrofluoric acid with varied concentration (from 0.86 mol/L to 4.07 mol/L to ammonium fluoride solution with fixed concentration of 0.42 mol/L. The best results (degree of titanium extraction = 63.7% were obtained when using a solution of hydrofluoric acid with concentration 4.07 mol/L. In this case, the addition of acid makes it possible to increase the Fe/Ti ratio by 3.4 times in comparison with the original ore. Thus, we conclude that acidity and the concentration of ammonium fluoride solution significantly influences the selectivity of the hydrometallurgical process.

  8. Effects of Ore dust pollution on the physical and chemical features ...

    African Journals Online (AJOL)

    Effects of wind-blown iron and manganese ore dust on the upper part of a sandy beach have been investigated. The fine ore dust was found to reduce the porosity and permeability of the sand by clogging the interstices. The presence of ore dust also greatly increased the rate of heating and cooling of beach sand. Further ...

  9. Mineralogy and electron microprobe studies of magnetite in the Sarab-3 iron Ore deposit, southwest of the Shahrak mining region (east Takab

    Directory of Open Access Journals (Sweden)

    Mohammad Maanijou

    2018-04-01

    Full Text Available Introduction There is an iron mining complex called Shahrak 60 km east of the Takab town, NW Iran. The exploration in the Shahrak deposit (general name for all iron deposits of the area started in 1992 by the Foolad Saba Noor Co. and continued in several periods until 2008. The Shahrak deposit is comprised of 10 ore deposits including Sarab-1, Sarab-2, Sarab-3, Korkora-1, Korkora-2, Shahrak-1, Shahrak-2, Shahrak-3, Cheshmeh and Golezar deposits (Sheikhi, 1995 with a total 60 million tons of proven ore reserves. The Fe grade ranges from 45 to 65% (average 50%. The ore reserves of these deposits are different. Sarab-3 ore deposit with 9 million tons of 54% Fe and 8.95% S is located at the northeast of Kurdistan and in the Sanandaj-Sirjan structural zone at the latitude of 36°20´ and longitude of 47°32´. Materials and methods Sixty thin-polished, polished and thin sections are made for the study of mineralogy and petrology, and among them six thin-polished sections were selected for EPMA (Electron Probe Micro Analysis on magnetite and hematite. EPMA was performed using the Cameca Sx100 electron microprobe at the Iran Mineral Processing Research Center (IMPRC with wavelength-dispersive spectrometers. Results and discussion Based on field observations and petrographic studies, lithologic composition of intrusion (Miocene age ranges within the diorite-leucodiorite, monzodiorite-quartz monzodiorite, granodiorite-granite. With the intrusion of those igneous bodies into carbonate rocks of the Qom Formation, contact metamorphism was formed. The formation of Sarab-3 iron deposit occurred at the three stages of metamorphism, skarnification and supergene. Based on field geology of the deposit, it is composed of endoskarn, exoskarn including Fe ore±sulfides. At the metamorphic stage, after intrusion of intrusive bodies in carbonate rocks, recrystallization took place and marble was formed. With more crystallization of magma, evolved hydrothermal fluids

  10. Moessbauer and XRD Comparative Study of Host Rock and Iron Rich Mineral Samples from Paz del Rio Iron Ore Mineral Mine in Colombia

    International Nuclear Information System (INIS)

    Fajardo, M.; Perez Alcazar, G. A.; Moreira, A. M.; Speziali, N. L.

    2004-01-01

    A comparative study between the host rock and the iron rich mineral samples from the Paz del Rio iron ore mineral mine in Colombia was performed using X-ray diffraction and Moessbauer spectroscopy. Diffraction results of the iron rich mineral sample show that goethite, hematite, quartz, kaolinite and siderite are the main phases, and that a small amount of illite is also present. By Moessbauer spectroscopy at room temperature (RT) the presence of all the above mentioned phases was detected except quartz as well as an additional presence of small amount of biotite. The goethite, which appears as four sextets with hyperfine fields of 33.5, 30.5, 27.5 and 18.5 T, respectively, is the majority phase. This result shows the different grades of formation of this oxyhydroxide. The Moessbauer spectrum of this sample at 80 K presents the same phases obtained at RT without any superparamagnetic effect. In this case the goethite appears as two sextets. Diffraction results of the host rock sample show a large amount of quartz and kaolinite and small amounts of illite and biotite, whereas by Moessbauer spectroscopy illite, kaolinite and biotite were detected.

  11. Preparation and characterization of novel glass–ceramic tile with microwave absorption properties from iron ore tailings

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Rui; Liao, SongYi [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Dai, ChangLu [Guangdong Bode Fine Building Material Co. Ltd., Foshan 528000 (China); Liu, YuChen; Chen, XiaoYu [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Zheng, Feng, E-mail: fzheng@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Phase diagrams and materials design center, Central South University, Changsha 410083 (China)

    2015-03-15

    A novel glass–ceramic tile consisting of one glass–ceramic layer (GC) attaining microwave absorption properties atop ceramic substrate was prepared through quench-heat treatment route derived from iron ore tailings (IOTs) and commercial raw materials (purity range 73–99%). X-ray diffraction (XRD), SEM, Energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Physical property measurement system (PPMS) and Vector network analyzer (VNA) measurements were carried out to investigate phase, microstructure, magnetic and microwave absorption aspects of the glass–ceramic layer. Roughly 80.6±1.7 wt% borosilicate glass and 19.4±1.7 wt% spinel ferrite with chemical formula of (Zn{sup 2+}{sub 0.17}Fe{sup 3+}{sub 0.83})[Fe{sup 3+}{sub 1.17}Fe{sup 2+}{sub 0.06}Ni{sup 2+}{sub 0.77}]O{sub 4} were found among the tested samples. Absorption of Electromagnetic wave by 3 mm thick glass–ceramic layer at frequency of 2–18 GHz reached peak reflection loss (RL) of −17.61 dB (98.27% microwave absorption) at 10.31 GHz. Altering the thickness of the glass–ceramic layer can meet the requirements of different level of microwave absorption. - Highlights: • Iron ore tailings (IOTs) have been used as one of the main raw materials. • Glass–ceramic tile contains spinel ferrite has been prepared. • The cation distribution of the spinel ferrite has been calculated. • The intrinsic complex permeability and permittivity have been evaluated.

  12. Nano-Structured Magnesium Oxide Coated Iron Ore: Its Application to the Remediation of Wastewater Containing Lead.

    Science.gov (United States)

    Nagarajah, Ranjini; Jang, Min; Pichiah, Saravanan; Cho, Jongman; Snyder, Shane A

    2015-12-01

    Magnetically separable nano-structured magnesium oxide coated iron ore (IO(MgO)) was prepared using environmentally benign chemicals, such as iron ore (IO), magnesium(II) nitrate hexahydrate [Mg(NO3)2 x 6H2O] and urea; via an easy and fast preparation method. The lO(MgO) was characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and alternating gradient magnetometer (AGM) analyses. The isotherm and kinetic studies indicated that lO(MgO) has a comparably higher Langmuir constant (K(L), 1.69 L mg(-1)) and maximum sorption capacity (33.9 mg g(-1)) for lead (Pb) than other inorganic media. Based on MgO amount, the removal capacity of Pb by IO(MgO) was 2,724 mg Pb (g MgO)(-1), which was higher than that (1,980 mg g(-1)) for flowerlike magnesium oxide nanostructures reported by Cao et al. The kinetics, FE-SEM, elemental mapping and XRD results revealed that the substitution followed by precipitation was identified as the mechanism of Pb removal and plumbophyllite (Pb2Si4O10 x H2O) was the precipitated phase of Pb. A leaching test revealed that IOMgO) had negligible concentrations of leached Fe at pH 4-9. Since the base material, IO, is cheap and easily available, lO(MgO) could be produced in massive amounts and used for remediation of wastewater containing heavy metals, applying simple and fast magnetic separation.

  13. Transgenic petunia with the iron(III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    Science.gov (United States)

    Murata, Yoshiko; Itoh, Yoshiyuki; Iwashita, Takashi; Namba, Kosuke

    2015-01-01

    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to diverse

  14. Transgenic petunia with the iron(III-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    Directory of Open Access Journals (Sweden)

    Yoshiko Murata

    Full Text Available Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III to iron(II and the uptake of iron(II by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III. Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems

  15. Radioactive Ores and Concentrates (Packaging and Transport) Regulations 1980 (Northern Territory) No. 30 of 21 July 1980

    International Nuclear Information System (INIS)

    1980-01-01

    These Regulations were issued pursuant to the provisions of the 1980 Radioactive Ores and Concentrates (Packaging and Transport) Act. The primary purpose of the Regulations is to lay down specific record-keeping practices for persons licensed to transport and store radioactive material. (NEA) [fr

  16. Detection and mapping of the iron ore occurrence in the sea floor sediments in the coastal zone of the Sepetiba Bay. Rio de Janeiro. Brasil

    International Nuclear Information System (INIS)

    Vieira, P.

    2010-01-01

    This work is about the detection and mapping of the iron occurrence in the sea floor sediments in the coastal zone of the Sepetiba Bay. Rio de Janeiro. Brasil. The results of geochemical analysis revealed that the area around the mangrove forest located near the Itacuruca channel, the perpendicular direction to the Muriqui Yacht Club channel and the immediate vicinity of the the Guaiba Island Terminal were respectively the areas of highest iron ore concentration

  17. Enterobactin-mediated iron transport in Pseudomonas aeruginosa.

    Science.gov (United States)

    Poole, K; Young, L; Neshat, S

    1990-01-01

    A pyoverdine-deficient strain of Pseudomonas aeruginosa was unable to grow in an iron-deficient minimal medium in the presence of the nonmetabolizable iron chelator ethylene diamine-di(omega-hydroxyphenol acetic acid) (EDDHA), although addition of enterobactin to EDDHA-containing minimal media did restore growth of the pyoverdine-deficient P. aeruginosa. Consistent with the apparent ability of enterobactin to provide iron to P. aeruginosa, enterobactin-dependent 55Fe3+ uptake was observed in cells of P. aeruginosa previously grown in an iron-deficient medium containing enterobactin (or enterobactin-containing Escherichia coli culture supernatant). This uptake was energy dependent, was observable at low concentrations (60 nM) of FeCl3, and was absent in cells cultured without enterobactin. A novel protein with a molecular weight of approximately 80,000 was identified in the outer membranes of cells grown in iron-deficient minimal medium containing enterobactin, concomitant with the induction of enterobactin-dependent iron uptake. A Tn501 insertion mutant lacking this protein was isolated and shown to be deficient in enterobactin-mediated iron transport at 60 nM FeCl3, although it still exhibited enterobactin-dependent growth in iron-deficient medium containing EDDHA. It was subsequently observed that the mutant was, however, capable of enterobactin-mediated iron transport at much higher concentrations (600 nM) of FeCl3. Indeed, enterobactin-dependent iron uptake at this concentration of iron was observed in both the mutant and parent strains irrespective of whether they had been cultured in the presence of enterobactin.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:2174865

  18. Chemical and mineralogical characterization of silicon manganese iron slag as railway ballast

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ralph Werner Heringer; Barreto, Rairane Aparecida, E-mail: ralph@em.ufop.br, E-mail: rairanebarreto@hotmail.com [Universidade Federal de Ouro Preto (UFOP), MG (Brazil); Fernandes, Gilberto, E-mail: gilberto@unicerp.edu.br [Centro Universitário do Cerrado Patrocínio (UNICERP), Patrocínio, MG (Brazil); Sousa, Fabiano Carvalho, E-mail: fabiano.carvalho.sousa@vale.com [Vale, Belo Horizonte, MG (Brazil)

    2017-10-15

    In nature, metal ores such as iron, lead, aluminum and others are found in an impure state, sometimes oxidized and mixed with silicates of other metals. During casting, when the ore is exposed to high temperatures, these impurities are separated from the molten metal and can be removed. The mass formed by these compounds is slag. Slag is the co-product of the smelting of ore to purify metals. It may be considered a mixture of metal oxides, but may also contain metal sulphites and metal atoms in their elemental form. After it is reprocessed to separate the metals contained, the co-products of this process can be used in cement, rail ballast, road paving and various other purposes. The objective of this research work is the presentation of the chemical and mineralogical characterization tests of the silicon-manganese iron slag with the purpose of reusing the coproduct as rail ballast. X-ray diffraction tests, quantitative chemical analyzes, scanning electron microscopy and free lime content were prepared for these characterizations. The results of these tests showed the technical feasibility of using slag as rail ballast. (author)

  19. Chemical and mineralogical characterization of silicon manganese iron slag as railway ballast

    International Nuclear Information System (INIS)

    Oliveira, Ralph Werner Heringer; Barreto, Rairane Aparecida; Fernandes, Gilberto; Sousa, Fabiano Carvalho

    2017-01-01

    In nature, metal ores such as iron, lead, aluminum and others are found in an impure state, sometimes oxidized and mixed with silicates of other metals. During casting, when the ore is exposed to high temperatures, these impurities are separated from the molten metal and can be removed. The mass formed by these compounds is slag. Slag is the co-product of the smelting of ore to purify metals. It may be considered a mixture of metal oxides, but may also contain metal sulphites and metal atoms in their elemental form. After it is reprocessed to separate the metals contained, the co-products of this process can be used in cement, rail ballast, road paving and various other purposes. The objective of this research work is the presentation of the chemical and mineralogical characterization tests of the silicon-manganese iron slag with the purpose of reusing the coproduct as rail ballast. X-ray diffraction tests, quantitative chemical analyzes, scanning electron microscopy and free lime content were prepared for these characterizations. The results of these tests showed the technical feasibility of using slag as rail ballast. (author)

  20. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains.

    Science.gov (United States)

    Senoura, Takeshi; Sakashita, Emi; Kobayashi, Takanori; Takahashi, Michiko; Aung, May Sann; Masuda, Hiroshi; Nakanishi, Hiromi; Nishizawa, Naoko K

    2017-11-01

    Rice OsYSL9 is a novel transporter for Fe(II)-nicotianamine and Fe(III)-deoxymugineic acid that is responsible for internal iron transport, especially from endosperm to embryo in developing seeds. Metal chelators are essential for safe and efficient metal translocation in plants. Graminaceous plants utilize specific ferric iron chelators, mugineic acid family phytosiderophores, to take up sparingly soluble iron from the soil. Yellow Stripe 1-Like (YSL) family transporters are responsible for transport of metal-phytosiderophores and structurally similar metal-nicotianamine complexes. Among the rice YSL family members (OsYSL) whose functions have not yet been clarified, OsYSL9 belongs to an uncharacterized subgroup containing highly conserved homologs in graminaceous species. In the present report, we showed that OsYSL9 localizes mainly to the plasma membrane and transports both iron(II)-nicotianamine and iron(III)-deoxymugineic acid into the cell. Expression of OsYSL9 was induced in the roots but repressed in the nonjuvenile leaves in response to iron deficiency. In iron-deficient roots, OsYSL9 was induced in the vascular cylinder but not in epidermal cells. Although OsYSL9-knockdown plants did not show a growth defect under iron-sufficient conditions, these plants were more sensitive to iron deficiency in the nonjuvenile stage compared with non-transgenic plants. At the grain-filling stage, OsYSL9 expression was strongly and transiently induced in the scutellum of the embryo and in endosperm cells surrounding the embryo. The iron concentration was decreased in embryos of OsYSL9-knockdown plants but was increased in residual parts of brown seeds. These results suggested that OsYSL9 is involved in iron translocation within plant parts and particularly iron translocation from endosperm to embryo in developing seeds.

  1. Automatic checking of heavy element content in polymetallic ores directly in transportation containers

    International Nuclear Information System (INIS)

    Varvaritsa, V.P.; Mamikon'yan, S.V.; Nagornyj, V.Ya.

    1981-01-01

    An automatic measuring instrument has been developed and used to check rapidly the content of lead in ores transported by trolley cars, dump trucks, dump cars or other open containers. The measuring technique is based on gamma backscattering and X-ray fluorescence. Influences of container movements, volumetric density changes and matrix effects on the achievable accuracy are briefly discussed

  2. Distribution and Multivariate Pollution Risks Assessment of Heavy Metals and Natural Radionuclides Around Abandoned Iron-Ore Mines in North Central Nigeria

    Science.gov (United States)

    Isinkaye, Omoniyi Matthew

    2018-02-01

    The Itakpe abandoned iron-ore mines constitute the largest iron-ore deposits in Nigeria with an estimated reserve of about three million metric tons of ore. The present effort is a part of a comprehensive study to estimate the environmental and radiological health hazards associated with previous mining operations in the study area. In this regard, heavy metals (Fe, Zn, Cu, Cd, Cr, Mn, Pb, Ni, Co and As) and natural radionuclides (U, Th and K) were measured in rock, soil and water samples collected at different locations within the mining sites. Atomic absorption and gamma-ray spectrometry were utilized for the measurements. Fe, Mn, Zn, Cu, Ni, Cd, Cr, Co Pb and As were detected at varying concentrations in rock and soil samples. Cd, Cr, Pb and As were not detected in water samples. The concentrations of heavy metals vary according to the following pattern; rock ˃ soil ˃ water. The mean elemental concentrations of K, U and Th are 2.9%, 0.8 and 1.2 ppm and 1.3%, 0.7 and 1.7 ppm, respectively, for rock and soil samples. Pearson correlation analyses of the results indicate that the heavy metals are mostly negatively correlated with natural radionuclides in the study area. Cancer and non-cancer risks due to heavy metals and radiological hazards due to natural radionuclides to the population living within the vicinity of the abandoned mines are lower than acceptable limits. It can, therefore, be concluded that no significant environmental or radiological health hazard is envisaged.

  3. Silicophosphate Sorbents, Based on Ore-Processing Plants' Waste in Kazakhstan

    Science.gov (United States)

    Kubekova, Sholpan N.; Kapralova, Viktoria I.; Telkov, Shamil A.

    2016-01-01

    The problem of ore-processing plants' waste and man-made mineral formations (MMF) disposal is very important for the Republic of Kazakhstan. The research of various ore types (gold, polymetallic, iron-bearing) MMF from a number of Kazakhstan's deposits using a complex physical and chemical methods showed, that the waste's main components are…

  4. Determination of the oxidizing capacity of manganese ores.

    Science.gov (United States)

    Prasad, R

    1974-09-01

    An accurate method is described for determining the amount of active oxygen in manganese ores, based on the oxidation-reduction reaction between the ore and arsenic(III) in presence of ammonium molybdate, followed by the back-titration of excess of arsenic(III) with cerium(IV), using osmium tetroxide as catalyst and Disulphine Blue V as indicator. A survey has been made of the applicability of this method to various pyrolusite ores containing less than 0.2% phosphorus. Aluminium(III), copper(II), iron(III), manganese(II), and molybdenum(VI) do not interfere. Up to 30% phosphorus(V) causes no interference.

  5. Control of the flame front advance in a sintering bed of iron ores

    International Nuclear Information System (INIS)

    Cores, A.; Mochon, J.; Ruiz-Bustinza, I.; Parra, R.

    2010-01-01

    A sintering pan of 40 cm cubed is loaded with a mixture of iron ores, limestone and coke weighing 110 kg in a sintering pilot plant. In this sintering pan, a series of thermocouples have been introduced at different depths. Tests have been carried out to study the width of the combustion zone and the maximum temperature of the flame front across the sintering bed. For the analysis of the results, a data acquisition system was used. This consisted of two modules connected in serie, for performing the analogue-digital conversion. The analogue entry point is the exit point of the thermocouples and the digital exit point was the temperature average. A computer was used for conserving and storing the data and for carrying out interpolations, simulating the state and evolution of the flame front across the bed. (Author) 21 refs.

  6. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Department of Pathology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050200, Hebei (China); Zhao, Xin [Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei (China); Chang, Yanzhong [Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei (China); Zhang, Yuanyuan [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Chu, Xi [Department of Pharmacy, The Forth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei (China); Zhang, Xuan [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Liu, Zhenyi; Guo, Hui [Department of Medicinal Chemistry, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Wang, Na [Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Gao, Yonggang [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Zhang, Jianping, E-mail: zhangjianping14@126.com [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Chu, Li, E-mail: chuli0614@126.com [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei (China)

    2016-06-15

    Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n = 8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined by molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. - Highlights: • Calcium channel blockers (CCBs) reduced hepatic iron content. • CCBs decreased hepatic fibrotic areas and collagen expression levels. • CCBs resolve fibrosis by regulating iron transport and

  7. Evaluation of iron transport from ferrous glycinate liposomes using ...

    African Journals Online (AJOL)

    Background: Iron fortification of foods is currently a strategy employed to fight iron deficiency in countries. Liposomes were assumed to be a potential carrier of iron supplements. Objective: The objective of this study was to investigate the iron transport from ferrous glycinate liposomes, and to estimate the effects of liposomal ...

  8. Vacuolar iron transporter BnMEB2 is involved in enhancing iron tolerance of Brassica napus

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    2016-09-01

    Full Text Available Iron toxicity is a major nutrient disorder that severely affects crop development and yield. Vacuolar detoxification of metal stress is an important strategy for plants to survive and adapt to this adverse environment. Vacuolar iron transporter (VIT members are involved in this process and play essential roles in iron storage and transport. In this study, a rapeseed VIT gene BnMEB2 (BnaC07g30170D was identified. BnMEB2 is a homolog to Arabidopsis MEB2 (At5g24290 and acts as a detoxifier in vacuolar sequestration of divalent metal. Transient expression analysis revealed that BnMEB2 was localized to the vacuolar membrane. Q-PCR detection showed a high expression of BnMEB2 in mature (60-day-old leaves and could be obviously induced by exogenous iron stress in both roots and leaves. Over-expressed BnMEB2 in both Arabidopsis wild type and meb2 mutant seedlings resulted in greatly improved iron tolerability with no significant changes in the expression level of other vacuolar iron transporter genes. The mutant meb2 grew slowly and its root hair elongation was inhibited under high iron concentration condition while BnMEB2 over-expressed transgenic plants of the mutant restored the phenotypes with apparently higher iron storage in roots and dramatically increased iron content in the whole plant. Taken together, these results suggested that BnMEB2 was a VIT gene in rapeseed which was necessary for safe storage and vacuole detoxification function of excess iron to enhance the tolerance of iron toxicity. This research sheds light on a potentially new strategy for attenuating hazardous metal stress from environment and improving iron biofortification in Brassicaceae crops.

  9. Optimization of flotation variables for the recovery of hematite particles from BHQ ore

    Science.gov (United States)

    Rath, Swagat S.; Sahoo, Hrushikesh; Das, B.

    2013-07-01

    The technology for beneficiation of banded iron ores containing low iron value is a challenging task due to increasing demand of quality iron ore in India. A flotation process has been developed to treat one such ore, namely banded hematite quartzite (BHQ) containing 41.8wt% Fe and 41.5wt% SiO2, by using oleic acid, methyl isobutyl carbinol (MIBC), and sodium silicate as the collector, frother, and dispersant, respectively. The relative effects of these variables have been evaluated in half-normal plots and Pareto charts using central composite rotatable design. A quadratic response model has been developed for both Fe grade and recovery and optimized within the experimental range. The optimum reagent dosages are found to be as follows: collector concentration of 243.58 g/t, dispersant concentration of 195.67 g/t, pH 8.69, and conditioning time of 4.8 min to achieve the maximum Fe grade of 64.25% with 67.33% recovery. The predictions of the model with regard to iron grade and recovery are in good agreement with the experimental results.

  10. Solid-state Water-mediated Transport Reduction of Nanostructured Iron Oxides

    International Nuclear Information System (INIS)

    Smirnov, Vladimir M.; Povarov, Vladimir G.; Voronkov, Gennadii P.; Semenov, Valentin G.; Murin, Igor' V.; Gittsovich, Viktor N.; Sinel'nikov, Boris M.

    2001-01-01

    The Fe 2+ /Fe 3+ ratio in two-dimensional iron oxide nanosructures (nanolayers with a thickness of 0.3-1.5 nm on silica surface) may be precisely controlled using the transport reduction (TR) technique. The species ≡-O-Fe(OH) 2 and (≡Si-O-) 2 -FeOH forming the surface monolayer are not reduced at 400-600 deg. C because of their covalent bonding to the silica surface, as demonstrated by Moessbauer spectroscopy. Iron oxide microparticles (microstructures) obtained by the impregnation technique, being chemically unbound to silica, are subjected to reduction at T ≥ 500 deg. C with formation of metallic iron in the form of α-Fe. Transport reduction of supported nanostructures (consisting of 1 or 4 monolayers) at T ≥ 600 deg. C produces bulk iron(II) silicate and metallic iron phases. The structural-chemical transformations occurring in transport reduction of supported iron oxide nanolayers are proved to be governed by specific phase processes in the nanostructures themselves

  11. Heme and non-heme iron transporters in non-polarized and polarized cells

    Directory of Open Access Journals (Sweden)

    Yasui Yumiko

    2010-06-01

    Full Text Available Abstract Background Heme and non-heme iron from diet, and recycled iron from hemoglobin are important products of the synthesis of iron-containing molecules. In excess, iron is potentially toxic because it can produce reactive oxygen species through the Fenton reaction. Humans can absorb, transport, store, and recycle iron without an excretory system to remove excess iron. Two candidate heme transporters and two iron transporters have been reported thus far. Heme incorporated into cells is degraded by heme oxygenases (HOs, and the iron product is reutilized by the body. To specify the processes of heme uptake and degradation, and the reutilization of iron, we determined the subcellular localizations of these transporters and HOs. Results In this study, we analyzed the subcellular localizations of 2 isoenzymes of HOs, 4 isoforms of divalent metal transporter 1 (DMT1, and 2 candidate heme transporters--heme carrier protein 1 (HCP1 and heme responsive gene-1 (HRG-1--in non-polarized and polarized cells. In non-polarized cells, HCP1, HRG-1, and DMT1A-I are located in the plasma membrane. In polarized cells, they show distinct localizations: HCP1 and DMT1A-I are located in the apical membrane, whereas HRG-1 is located in the basolateral membrane and lysosome. 16Leu at DMT1A-I N-terminal cytosolic domain was found to be crucial for plasma membrane localization. HOs are located in smooth endoplasmic reticulum and colocalize with NADPH-cytochrome P450 reductase. Conclusions HCP1 and DMT1A-I are localized to the apical membrane, and HRG-1 to the basolateral membrane and lysosome. These findings suggest that HCP1 and DMT1A-I have functions in the uptake of dietary heme and non-heme iron. HRG-1 can transport endocytosed heme from the lysosome into the cytosol. These localization studies support a model in which cytosolic heme can be degraded by HOs, and the resulting iron is exported into tissue fluids via the iron transporter ferroportin 1, which is

  12. Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters, and iron storage proteins.

    Science.gov (United States)

    Niles, Brad J; Clegg, Michael S; Hanna, Lynn A; Chou, Susan S; Momma, Tony Y; Hong, Heeok; Keen, Carl L

    2008-02-22

    One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.

  13. Composition suitable as collection agent in ore flotation process and preparation of said composition

    International Nuclear Information System (INIS)

    Bresson, C.R.; Parlman, R.M.

    1984-01-01

    A composition and process are provided for the recovery of the values of zinc, molybdenum, copper, lead, ion (pyrite), and iron-containing small amounts of gold or uranium, or both, from ores comprising these mineral sulfides. The aqueous composition is the impure form of an alkali metal alkyl trithiocarbonate compound. The process comprises employing said aqueous composition as a collection agent for the above minerals in an ore recovery process. A process for the separation of zinc values from lead values from an ore comprising both is provided by employing an alkali metal alkyl trithiocarbonate compound as a collection agent for zinc. In addition, both a composition and process are provided for the recovery of the values of iron, copper, and lead from ores comprising these values. The composition consists essentially of a dispersant and an impure form of an alkali metal alkyl trithiocarbonate compound. The process comprises employing this composition as a collection agent for the above minerals in an ore recovery process

  14. ALTERNATIVE BINDERS TO BENTONITE FOR IRON ORE PELLETIZING : PART II : EFFECTS ON METALLURGICAL AND CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Osman Sivrikaya

    2014-07-01

    Full Text Available This study was started to find alternative binders to bentonite and to recover the low preheated and fired pellet mechanical strengths of organic binders-bonded pellets. Bentonite is considered as a chemical impurity for pellet chemistry due to acid constituents (SiO2 and Al2O3. Especially addition of silica-alumina bearing binders is detrimental for iron ore concentrate with high acidic content. Organic binders are the most studied binders since they are free in silica. Although they yield pellets with good wet strength; they have found limited application in industry since they fail to give sufficient physical and mechanical strength to preheated and fired pellets. It is investigated that how insufficient preheated and fired pellet strengths can be improved when organic binders are used as binder. The addition of a slag bonding/strength increasing constituent (free in acidic contents into pellet feed to provide pellet strength with the use of organic binders was proposed. Addition of boron compounds such as colemanite, tincal, borax pentahydrate, boric acid together with organic binders such as CMC, starch, dextrin and some organic based binders, into magnetite and hematite pellet mixture was tested. After determining the addition of boron compounds is beneficial to recover the low pellet physical and mechanical qualities in the first part of this study, in this second part, metallurgical and chemical properties (reducibility - swelling index – microstructure – mineralogy - chemical content of pellets produced with combined binders (an organic binder plus a boron compound were presented. The metallurgical and chemical tests results showed that good quality product pellets can be produced with combined binders when compared with the bentonite-bonded pellets. Hence, the suggested combined binders can be used as binder in place of bentonite in iron ore pelletizing without compromising the pellet chemistry.

  15. Studies on uranium ore processing

    International Nuclear Information System (INIS)

    Suh, I.S.; Chun, J.K.; Park, S.W.; Choi, S.J.; Lee, C.H.; Chung, M.K.; Lim, J.K.

    1983-01-01

    For the exploitation of domestic uranium ore deposit, comprehensive studies on uranium ore processing of the Geum-San pit ore are carried out. Physical and chemical characteristics of the Geum-San ore are similar to those of Goe-San ore and the physical beneficiation could not be applicable. Optimum operating conditions such as uranium leaching, solid-liquid separation, solvent extraction and precipitation of yellow cake are found out and the results are confirmed by the continous operation of the micro-plant with the capacity of 50Kg, ore/day. In order to improve the process of ore milling pilot plant installed recently, the feasibility of raffinate-recycle and the precipitation methods of yellow cake are intensively examined. It was suggested that the raffinate-recycle in the leaching of filtering stage could be reduced the environmental contamination and the peroxide precipitation technique was applicable to improve the purity of yellow cake. The mechanism and conditions the third phase formation are thoroughly studied and confirmed by chemical analysis of the third phase actually formed during the operation of pilot plant. The major constituents of the third phase are polyanions such as PMosub(12)Osub(40)sup(3-) or SiMosub(12)Osub(40)sup(4-). And the formation of these polyanions could be reduced by the control of redox potential and the addition of modifier. (Author)

  16. Stb 342 - Decree of 4 June 1987 amending the Decree on the transport of fissionable materials, ores and radioactive substances

    International Nuclear Information System (INIS)

    1987-01-01

    The 1969 transport Decree governs all modes of transport of fissile and radioactive materials as well as ores in and to and from the Netherlands. The 1987 Decree amends it, in particular, for modernization purposes. (NEA) [fr

  17. Study on the pre-treatment of oxidized zinc ore prior to flotation

    Science.gov (United States)

    He, Dong-sheng; Chen, Yun; Xiang, Ping; Yu, Zheng-jun; Potgieter, J. H.

    2018-02-01

    The pre-treatment of zinc oxide bearing ores with high slime content is important to ensure that resources are utilized optimally. This paper reports an improved process using hydrocyclone de-sliming, dispersion reagents, and magnetic removal of iron minerals for the pre-treatment of zinc oxide ore with a high slime and iron content, and the benefits compared to traditional technologies are shown. In addition, this paper investigates the damage related to fine slime and iron during zinc oxide flotation, the necessity of using hydrocyclone de-sliming together with dispersion reagents to alleviate the influence of slime, and interactions among hydrocyclone de-sliming, reagent dispersion, and magnetic iron removal. Results show that under optimized operating conditions the entire beneficiation technology results in a flotation concentrate with a Zn grade of 34.66% and a recovery of 73.41%.

  18. Molybdenum extraction from copper-molybdenum ores

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1982-01-01

    Molybdenum extraction from copper-molybdenum ores as practised in different countries is reviewed. In world practice the production process including depression of copper and iron sulfides and flotation of molybdenite is widely spread. At two USA factories the process of a selective flotation with molybdenite depression by dextrin is used

  19. Compositional variation of glauconites in Upper Cretaceous-Paleogene sedimentary iron-ore deposits in South-eastern Western Siberia

    Science.gov (United States)

    Rudmin, Maxim; Banerjee, Santanu; Mazurov, Aleksey

    2017-06-01

    Glauconite occurs either as unaltered greenish or as altered brownish variety in Upper Cretaceous-Palaeocene sediments in the southeastern corner of Western Siberia. Studied section within the Bakchar iron-ore deposit includes Ipatovo, Slavgorod, Gan'kino and Lyulinvor formations, which are represented by sandstones, siltstones, claystones and oolitic ironstones of coastal-marine facies. The origin of unaltered glauconite is explained by the ;verdissement theory;. Transgressions during Lower Coniacian, Santonian and Campanian favored the formation of unaltered glauconites in dysoxic to anoxic conditions. Subaerial exposure of glauconite resulted in leaching of potassium, oxidation of iron and formation of iron hydroxides in Upper Coniacian, Maastrichtian and Palaeocene. Glauconite ultimately converts to leptochlorite and hydrogoethite by this alteration. Abundant microscopic gold inclusions, besides sulphides, sulphates, oxides and silicates characterize this glauconite. Mineral inclusions include precious, rare metals and non-ferrous metals. The concentration of gold in glauconite may be as high as 42.9 ppb. Abundant inclusions of various compositions in glauconites indicate enrichment of marine sediments in precious and non-precious metals. While major element composition of glauconites is affected by subaerial exposure, the broadly similar micro-inclusions in both altered and unaltered varieties are possibly related to the comparatively immobile nature of REE and trace elements.

  20. Method of continuous pressure leaching of ores

    International Nuclear Information System (INIS)

    Fiala, P.; Baloun, S.; Polansky, M.

    1987-01-01

    Ore leaching, especially suspensions of ground ore or fine ore fractions from physical treatment was divided into two operations. The former, i.e., ore mixing with technical grade concentrated sulfuric acid proceeded in a separate mixer. The mixture was then transported into an autoclave where the actual leaching proceeded for 2 to 4 hours. The extracted mixture was discharged through the autoclave bottom. The leaching autoclave used can be without any inner structures. The separation of mixing from the actual leaching allows processing ores with high levels of clay components, increasing operating reliability of the facility, reducing consumption of special structural materials and energy, and increasing process efficiency. (E.S.)

  1. Regulation of transepithelial transport of iron by hepcidin

    Directory of Open Access Journals (Sweden)

    NATALIA P MENA

    2006-01-01

    Full Text Available Hepcidin (Hepc is a 25 amino acid cationic peptide with broad antibacterial and antifungal actions. A likely role for Hepc in iron metabolism was suggested by the observation that mice having disruption of the gene encoding the transcription factor USF2 failed to produce Hepc mRNA and developed spontaneous visceral iron overload. Lately, Hepc has been considered the "stores regulator," a putative factor that signals the iron content of the body to intestinal cells. In this work, we characterized the effect of Hepc produced by hepatoma cells on iron absorption by intestinal cells. To that end, human Hepc cDNA was cloned and overexpressed in HepG2 cells and conditioned media from Hepc-overexpressing cells was used to study the effects of Hepc on intestinal Caco-2 cells grown in bicameral inserts. The results indicate that Hepc released by HepG2 inhibited apical iron uptake by Caco-2 cells, probably by inhibiting the expression of the apical transporter DMT1. These results support a model in which Hepc released by the liver negatively regulates the expression of transporter DMT1 in the enterocyte

  2. Critical evaluation of safety and radiological protection requirements adopted for the transport of uranium and thorium ores and concentrates

    International Nuclear Information System (INIS)

    Mezrahi, Arnaldo; Crispim, Verginia R.

    2009-01-01

    This work evaluates in a critical way the safety and radiological protection recommendations established by the International Atomic Energy Agency - IAEA and adopted national and internationally, for the transport of uranium and thorium ores and concentrates, known according the transport regulations, as being of the Low Specific Activity Material Type-I, LSA-I, basing on more realistic scenarios than the presently existent, aiming at the determination of maximum exposure levels of radiation as well as the maximal contents of those materials in packages and conveyance. A general overview taking into account the scenarios foreseen by the regulations of the IAEA pointed out for a need of a better justification of the requirements edited by the Agency or should be used to support a request of revision of those regulations, national and internationally adopted, in the pertinent aspects to the transport of uranium and thorium ores and concentrates. (author)

  3. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation

    International Nuclear Information System (INIS)

    Wang, Jie; Fang, Zhanqiang; Cheng, Wen; Yan, Xiaomin; Tsang, Pokeung Eric; Zhao, Dongye

    2016-01-01

    In this study, the effects of concentrations 0, 100, 250, 500, 750 and 1000 mg kg"−"1 of nanoscale zero-valent iron (nZVI) on germination, seedlings growth, physiology and toxicity mechanisms were investigated. The results showed that nZVI had no effect on germination, but inhibited the rice seedlings growth in higher concentrations (>500 mg kg"−"1 nZVI). The highest suppression rate of the length of roots and shoots reached 46.9% and 57.5%, respectively. The 1000mg kg"−"1 nZVI caused the highest suppression rates for chlorophyll and carotenoids, at 91.6% and 85.2%, respectively. In addition, the activity of antioxidant enzymes was altered by the translocation of nanoparticles and changes in active iron content. Visible symptoms of iron deficiency were observed at higher concentrations, at which the active iron content decreased 61.02% in the shoots, but the active iron content not decreased in roots. Interestingly, the total and available amounts of iron in the soil were not less than those in the control. Therefore, the plants iron deficiency was not caused by (i) deficiency of available iron in the soil and (ii) restraint of the absorption that plant takes in the available iron, while induced by (ⅲ) the transport of active iron from the root to the shoot was blocked. The cortex tissues were seriously damaged by nZVI which was transported from soil to the root, these were proved by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). This current study shows that the mechanism of iron deficiency in rice seedling was due to transport of active iron from the root to the shoot blocked, which was caused by the uptake of nZVI. - Highlights: • Higher concentrations of nZVI induced iron deficiency in rice seedlings visibly. • nZVI was taken in rice seedlings and transported form root to shoot. • The pathway of active iron transport from root to shoot was inhibited. • The cortex tissues

  4. The genesis of ores

    International Nuclear Information System (INIS)

    Brimhall, G.

    1991-01-01

    Human history and technology have been shaped by metals. How did they become concentrated in minable deposits located so conveniently near the earth's surface? The author explains the mechanisms of fluid transport-by magma, water and even air and wind-responsible for the chemical and physical interactions that created bodies of metallic ores throughout geologic history. From their formation to their modification at the surface of the earth, ore deposits are geologically transitory and reflect dynamic processes within the earth as well as atmospheric and climatic influences on hydrologic systems. As highly reactive supracrustal systems, they then serve as geochemical sensors providing a powerful record and set of tracer elements for deducing the history, transport paths and forces operative in the crust

  5. Chlorination of uranium ore for extraction of uranium, thorium and radium and for pyrite removal

    International Nuclear Information System (INIS)

    Skeaf, J.M.

    1979-01-01

    The high-temperature chlorination of uranium ore was investigated. The objective was to develop a process which is both economically viable and environmentally acceptable. Test work was directed toward obtaining high extractions of uranium, thorium and radium-226, as well as iron, sulphur and the rare earths, and consists of chlorinating samples of an Elliot Lake uranium ore at elevated temperatures and repulping the resulting calcine in dilute hydrochloric acid. The effect of temperature and chlorine throughput on the extraction of the various metals was investigated. The best conditions yielded extractions of uranium, iron and sulphur (all as chlorides) greater than 95 percent. Chlorine consumption varied between 6 and 16 percent by weight of the ore charge. (author)

  6. Sedimentary exhalative nickel-molybdenum ores in south China

    Science.gov (United States)

    Lott, D.A.; Coveney, R.M.; Murowchick, J.B.; Grauch, R.I.

    1999-01-01

    Unique bedded Ni-Mo ores hosted by black shales were discovered in localized paleobasins along the Yangzte platform of southern China in 1971. Textural evidence and radiometric dates imply ore formation during sedimentation of black shales that grade into readily combustible beds, termed stone coals, which contain 10 to 15 percent organic carbon. Studies of 427 fluid inclusions indicate extreme variation in hydrothermal brine salinities that were contained by Proterozoic dolostones underlying the ore zone in Hunan and Guizhou. Variations of fluid inclusion salinities, which range from 0.1 to 21.6 wt percent NaCl equiv, are attributed to differences in the compositions of brines in strata underlying the ore bed, complicated by the presence of seawater and dilute fluids that represent condensates of vapors generated by boiling of mineralizing fluids or Cambrian meteoric water. The complex processes of ore deposition led to scattered homogenization temperatures ranging from 100??to 187??C within the Hunan ore zone and from 65??to 183??C within the Guizhou ore zone. While living organisms probably did not directly accumulate metals in situ in sufficient amounts to explain the unusually high grades of the deposits, sulfur isotope ratios indicate that bacteria, now preserved as abundant microfossils, provided sufficient sulfide for the ores by reduction of seawater sulfate. Such microbiota may have depended on vent fluids and transported organic matter for key nutrients and are consistent with a sedex origin for the ores. Vent fluids interacted with organic remains, including rounded fragments of microbial mats that were likely transported to the site of ore deposition by the action of waves and bottom currents prior to replacement by ore minerals.

  7. Utilizing a Value of Information Framework to Improve Ore Collection and Classification Procedures

    National Research Council Canada - National Science Library

    Phillips, Julia A

    2006-01-01

    .... We use a value of information framework (VOI) to consider the economic feasibility of a mine purchasing additional information on extracted ore type to reduce the uncertainty of extracted ore grade quality...

  8. MacMillan Pier Transportation Center Feasibility Study.

    Science.gov (United States)

    2006-06-01

    The MacMillan Pier Transportation Center Feasibility Study examines two potential sites (landside and waterside) for a transportation center that provides a range of tourist and traveler information. It would serve as a gateway for Provincetown and t...

  9. Improved leaching process for metal ores

    International Nuclear Information System (INIS)

    Kar-Kwan Yung, K.; Barlow, C.B.; Glass, J.R.

    1980-01-01

    The general overall sequence of process steps in the technique of the invention in set forth. In sequence, the ore is crushed, and solubilizing reagents and moisture are added to the crushed ore in preselected controlled portions. The mixture of ore, reagent, and moisture is then cured followed in the preferred process by conditioning for filtration. The slurry that is produced from conditioning is then subjected to multiple stage washing on a belt filter. The filtrate is further processed for metal value recovery and the solids are transported to tailings disposal

  10. Iron transport and storage in the coccolithophore: Emiliania huxleyi.

    Science.gov (United States)

    Hartnett, Andrej; Böttger, Lars H; Matzanke, Berthold F; Carrano, Carl J

    2012-11-01

    Iron is an essential element for all living organisms due to its ubiquitous role in redox and other enzymes, especially in the context of respiration and photosynthesis. The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood with two basic strategies for iron uptake being distinguished: strategy I plants use a mechanism involving soil acidification and induction of Fe(III)-chelate reductase (ferrireductase) and Fe(II) transporter proteins while strategy II plants have evolved sophisticated systems based on high-affinity, iron specific, binding compounds called phytosiderophores. In contrast, there is little knowledge about the corresponding systems in marine plant-like lineages. Herein we report a study of the iron uptake and storage mechanisms in the coccolithophore Emiliania huxleyi. Short term radio-iron uptake studies indicate that iron is taken up by Emiliania in a time and concentration dependent manner consistent with an active transport process. Based on inhibitor studies it appears that iron is taken up directly as Fe(iii). However if a reductive step is involved the Fe(II) must not be accessible to the external environment. Upon long term exposure to (57)Fe we have been able, using a combination of Mössbauer and XAS spectroscopies, to identify a single metabolite which displays spectral features similar to the phosphorus-rich mineral core of bacterial and plant ferritins.

  11. International convention on clean, green and sustainable technologies in iron and steel making

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The presentations (overheads/viewgraphs) discussed energy efficiency and conservation in iron and steel making, air pollution control, carbon trading, reclamation of iron ore mines, utilisation of low grade coal and iron ore, Corex and Finex processes, HIsmelt, sinter technology, energy recovery, reduction gas from coal, coal gasification and syngas based DRI, and resettlement of people.

  12. Introduction - Acid decomposition of borosilicate ores

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Kurbonov, A.S.; Mamatov, E.D.

    2015-01-01

    The complex processing of mineral raw materials is an effective way for the extraction of valuable components. One of these raw materials are borosilicate ores from which the boric acid, aluminium and iron salts and building materials can be obtained. In the Institute of Chemistry of the Academy of Sciences of the Republic of Tajikistan the flowsheets of the processing of borosilicate raw materials by acid and chloric methods were elaborated. The acid methods of decomposition of borosilicate ores of Ak-Arkhar Deposit were considered in present monograph. The carried out researches on elaboration of physicochemical aspects and technological acid methods allowed to define the optimal ways of extraction of valuable products from borosilicate raw materials of Tajikistan.

  13. Application of nonisothermal kinetic techniques on the reduction of three commercial iron ore agglomerates

    International Nuclear Information System (INIS)

    Bedolla, E.; Leon, C.A.; Aguilar, E.A.

    1997-01-01

    The mechanism of reduction of iron ore agglomerates by both isothermal and nonisothermal TG studies was investigated, and the work was complemented with the structural characterization of the total and partially reacted samples. Three different commercial hematite pellets were studied. The mechanisms of reduction were obtained under isothermal conditions, resulting in a fitting to chemical reaction models. Nonisothermal reduction was carried out using a TGA system (CAHN TG-171) from 600 to 1,000 degree centigree maintaining a lineal heating rate of 4,7 and 10 degree centigree/min, and the reducing atmospheres used were H 2 (100%) and H 2 -CO(95:5). The kinetic parameters were evaluated by Coats and Redfern, Dixit and Ray and Prakash and Ray techniques. It was found that the lower the heating rate, the higher the reduction degree and the higher activation energy. The activation energy for reduction with the mixture H 2 -CO was always higher than that obtained with pure H 2 . (Author)

  14. Hydrogeochemical assessment of mine-impacted water and sediment of iron ore mining

    Science.gov (United States)

    Nur Atirah Affandi, Fatin; Kusin, Faradiella Mohd; Aqilah Sulong, Nur; Madzin, Zafira

    2018-04-01

    This study was carried out to evaluate the hydrogeochemical behaviour of mine-impacted water and sediment of a former iron ore mining area. Sampling of mine water and sediment were carried out at selected locations within the mine including the former mining ponds, mine tailings and the nearby stream. The water samples were analysed for their hydrochemical facies, major and trace elements including heavy metals. The water in the mining ponds and the mine tailings was characterised as highly acidic (pH 2.54-3.07), but has near-neutral pH in the nearby stream. Results indicated that Fe and Mn in water have exceeded the recommended guidelines values and was also supported by the results of geochemical modelling. The results also indicated that sediments in the mining area were contaminated with Cd and As as shown by the potential ecological risk index values. The total risk index of heavy metals in the sediment were ranked in the order of Cd>As>Pb>Cu>Zn>Cr. Overall, the extent of potential ecological risks of the mining area were categorised as having low to moderate ecological risk.

  15. Cave Entrance dependent Spore Dispersion of Filamentous Fungi Isolated from Various Sediments of Iron Ore Cave in Brazil: a colloquy on human threats while caving

    Directory of Open Access Journals (Sweden)

    Erika Linzi Silva Taylor

    2014-04-01

    Full Text Available Caves are stable environments with characteristics favoring the development of fungi. The fungal community present in a cave also includes pathogenic and opportunistic species out of which some are also served as energy sources in such energy stared ecosystems. Studies on microbial diversity and their role on such energy starved ecosystem are scarce. The present study was aimed to identify the cultivable filamentous fungi present in the various sediment of an iron ore cave and to recognize them as pathogenic and/or opportunistic species. Further the impact of cave entrance on the spore depositions on various distances dependent sediments were analyzed. The results suggest a diverse microbial community inhabiting the cave and an influence of cave entrance over spore deposition on various sediments. We counted a total of 4,549 filamentous fungi that included 34 species of 12 genera: Acremonium, Aspergillus, Cladosporium, Fusarium, Geotrichum, Paecilomyces, Purpureocillium, Penicillium, Torula, Trichoderma, Mucor and Rhizopus. A positive significant relation was observed between spore deposition and distance from cave entrance (p= 0.001. Areas of potential mycoses risks were recognized. This is the first study on microbiological community of an iron ore cave in the country.

  16. Study on leakage rates of high temperature water from wet-type transport casks for spent fuel. Pt. 2. Leakage rates from a scratch on O-ring surface and narrow wires adhering to O-ring surface

    International Nuclear Information System (INIS)

    Asano, R.; Aritomi, M.; Sudi, A.; Kohketsu, Y.

    1997-01-01

    A programme for enhancement of fuel burnup has been promoted in Japan as part of the sophisticated programme for light water reactors to reduce the fuel cost and the amount of spent fuel. As part of this fuel programme, a new wet-type transport cask has been developed to transport the high burnup fuels efficiently. The purpose of this work is to clarify the margin of safety in the evaluation of the release rate of radioactive materials from the wet-type transport cask into the environment and to establish a practical evaluation method for leakage rates on leak behaviour of high temperature water from the casks. In this paper, leakage rates of water under high pressures and at high temperatures are investigated from two kinds of leak path model. One is a disc with a scratch on the surface which simulates a defect on the seal surface of the O-ring flange and the other is narrow stainless steel wires installed on the O-ring surface which simulates hair adhering to the O-ring surface. From the results, an evaluation method for the leakage rate of water under high pressure and at high temperature from a non-circular leak path and multiple leak paths is proposed. (author)

  17. Modelling a uranium ore bioleaching process

    International Nuclear Information System (INIS)

    Chien, D.C.H.; Douglas, P.L.; Herman, D.H.; Marchbank, A.

    1990-01-01

    A dynamic simulation model for the bioleaching of uranium ore in a stope leaching process has been developed. The model incorporates design and operating conditions, reaction kinetics enhanced by Thiobacillus ferroxidans present in the leaching solution and transport properties. Model predictions agree well with experimental data with an average deviation of about ± 3%. The model is sensitive to small errors in the estimates of fragment size and ore grade. Because accurate estimates are difficult to obtain a parameter estimation approach was developed to update the value of fragment size and ore grade using on-line plant information

  18. Neutron shielding properties of boron-containing ore and epoxy composites

    International Nuclear Information System (INIS)

    Li Zhifu; Xue Xiangxin

    2011-01-01

    Using the boron-containing iron ore concentrate and boron-rich slag as studying object, the starting materials were got after the specific green ore containing boron dressing in China and blast furnace separation respectively. Monte-Carlo method was used to study the effect of the boron-containing iron ore concentrate and boron-rich slag and their composites with epoxy on the neutron shielding abilities. The reasons that affecting the shielding materials properties was discussed and the suitable proportioning of boron-containing ore to epoxy composites was confirmed; the 14.1 MeV fast neutron removal cross section and the total thermal neutron attenuation coefficient were obtained and compared with that of the common used concrete. The results show that the shielding property of 14.1 MeV fast neutron is mainly concerned with the low-Z elements in the shielding materials, the thermal neutron shielding ability is mainly concerned with boron concentrate in the composite, the attenuation of the accompany γ-ray photon is mainly concerned with the high atom number elements content in the ore and the density of the shielding material. The optimum Janume fractions of composites are in the range of 0.4-0.6 and the fast neutron shielding properties are similar to concrete while the thermal neutron shielding properties are higher than concrete. The composites are expected to be used as biological concrete shields crack injection and filling of the anomalous holes through the concrete shields around the radiation fields or directly to be prepared as shielding materials.(authors)

  19. Kinetics of Transferrin and Transferrin-Receptor during Iron Transport through Blood Brain Barrier

    Science.gov (United States)

    Khan, Aminul; Liu, Jin; Dutta, Prashanta

    2017-11-01

    Transferrin and its receptors play an important role during the uptake and transcytosis of iron by blood brain barrier (BBB) endothelial cells to maintain iron homeostasis in BBB endothelium and brain. In the blood side of BBB, ferric iron binds with the apo-transferrin to form holo-transferrin which enters the endothelial cell via transferrin receptor mediated endocytosis. Depending on the initial concentration of iron inside the cell endocytosed holo-transferrin can either be acidified in the endosome or exocytosed through the basolateral membrane. Acidification of holo-transferrin in the endosome releases ferrous irons which may either be stored and used by the cell or transported into brain side. Exocytosis of the holo-transferrin through basolateral membrane leads to transport of iron bound to transferrin into brain side. In this work, kinetics of internalization, recycling and exocytosis of transferrin and its receptors are modeled by laws of mass action during iron transport in BBB endothelial cell. Kinetic parameters for the model are determined by least square analysis. Our results suggest that the cell's initial iron content determines the extent of the two possible iron transport pathways, which will be presented in this talk Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM122081.

  20. Change of iron species and iron solubility in Asian dust during the long-range transport from western China to Japan

    Directory of Open Access Journals (Sweden)

    Y. Takahashi

    2011-11-01

    Full Text Available In the North Pacific, transport and deposition of mineral dust from Asia appear to be one of major sources of iron which can regulate growth of phytoplankton in the ocean. In this process, it is essential to identify chemical species of iron contained in Asian dust, because bioavailability of iron in the ocean is strongly influenced by the solubility of iron, which in turn is dependent on iron species in the dust. Here, we report that clay minerals (illite and chlorite in the dusts near the source collected at Aksu (western China can be transformed into ferrihydrite by atmospheric chemical processes during their long-range transport to eastern China (Qingdao and Japan (Tsukuba based on the speciation by X-ray absorption fine structure (XAFS and other methods such as X-ray diffraction and chemical extraction. As a result, Fe molar ratio in Aksu (illite : chlorite : ferrihydrite = 70 : 25 : 5 was changed to that in Tsukuba (illite : chlorite : ferrihydrite = 65 : 10 : 25. Moreover, leaching experiments were conducted to study the change of iron solubility. It was found that the iron solubility for the dust in Tsukuba (soluble iron fraction: 11.8 % and 1.10 % for synthetic rain water and seawater, respectively was larger than that in Aksu (4.1 % and 0.28 %, respectively, showing that iron in the dust after the transport becomes more soluble possibly due to the formation of ferrihydrite in the atmosphere. Our findings suggested that secondary formation of ferrihydrite during the transport should be considered as one of important processes in evaluating the supply of soluble iron to seawater.

  1. Mutualism between autotrophic and heterophic bacteria in leaching of low grade ores

    International Nuclear Information System (INIS)

    Khalid, Z.M.; Naeveke, R.

    1991-01-01

    During solubilization processes of low grade sulphidic ores, the auto trophic bacteria oxidize reduced sulphur compounds and ferrous iron to sulphates and ferric iron respectively. The ore leaching bio topes are not only colonized by auto trophic bacteria (Thiobacillus spp., Leptospirillum ferro oxidans and sulfolobus sp.) but the heterotrophic microorganisms, including bacteria and fungi of various species are also found in these habitats. The autotrophs, in addition to energy metabolism, also produce organic compounds which in excess amount inhibit their growth. Through the utilization of such compounds and also through the production of carbon dioxide and ammonia, these heterotorphs can help bio leaching processes. Effect of one of the heterotrophs; methylobacterium sp., a nitrogen scavenger, found in as association with the thio bacilli in one of the leaching bio tope in Germany was studied in leaching of a carbonate bearing complex (containing copper, iron, zinc and lead) sulphidic ore, in shake flask studies. T. ferro oxidans (Strain F-40) reported to be non nitrogen fixer and strain F-41, a nitrogen fixing thiobacillus were studied for leachability behaviour alone and in combination with T. thio oxidans (lacking nitrogen fixing ability) using media with and without added ammonium nitrogen. In addition the effect of methylobacterium sp. (alt-25) was also tested with the afore mentioned combinations. Nitrogen fixation by T. ferro oxidans did not suffice the nitrogen requirement and the leaching system in laboratory needed addition of nitrogen. The heterotrophic nitrogen scavenger also did not have a positive influence in nitrogen limited system. In case where ammonium nitrogen was also provided in the media, this heterotroph had a negative in own growth and leaving lesser amount available for thio bacilli. This high amount of acid is a limiting factor in bio leaching of high carbonate uranium ores. Uranium ore ecosystems have also been found to contain

  2. Decline in the lung cancer hazard: a prospective study of the mortality of iron ore miners in Cumbria

    International Nuclear Information System (INIS)

    Kinlen, L.J.

    1988-01-01

    The mortality of 1947 Cumbrian iron ore miners has been studied over the period 1939-82 in relation to that among other groups of men in England and Wales: (a) all men, (b) men of similar social class, and (c) men living in similar types of (mainly rural) area. Significant excesses were found for deaths from tuberculosis and respiratory diseases compared with each of the reference populations. Lung cancer showed an excess over that in comparable (mainly rural) areas of England and Wales, as reported in a previous study using a proportionate method of analysis and which covered the period 1948-67 but no appreciable excess after 1967. Reasons for this decline are discussed. (author)

  3. Natural radioactivity in iron and steel materials by low-level gamma spectrometry

    International Nuclear Information System (INIS)

    Tanase, G.; Tanase, Maria

    2003-01-01

    High resolution low-level gamma spectrometry was applied to perform a radioactivity measurement in iron and steel raw materials (coal, coke, iron ore, pellets, manganese ore, limestone, dolomite), auxiliary materials (scorialite, oxide of Ti, bentonite), and some related final products (cast iron, slag, blast-furnace, flue dust) involved in iron making processing. We control the activity of materials in various kinds of samples and we investigate for transfer of radioactivity during the blast-furnace process. Artificial radioisotopes are rarely encountered. (authors)

  4. Effects of atmospheric gas composition and temperature on the gasification of coal in hot briquetting carbon composite iron ore

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Y.; Kanayama, M.; Maeda, T.; Nishika, K.; Shimizu, M. [Kyushu University, Fukuoka (Japan). Dept. of Materials Science & Engineering

    2007-01-15

    The gasification behavior of carbon composite iron ore produced by hot briquetting process was examined under various gas atmospheres such as CO-N{sub 2}, CO{sub 2}-N, and CO-CO{sub 2} at various temperatures. The gasification of coal was affected strongly by atmospheric gas concentration and reaction temperature. Kinetic analysis in various gas atmospheres was carried out by using the first order reaction model, which yields the straight line relation between reaction rate constants for the gasification of coal and the gas concentration. Therefore, reaction rate constants for the gasification of coal in CO-CO{sub 2}-N{sub 2} gas atmosphere were derived.

  5. Thickness Optimisation of Textiles Subjected to Heat and Mass Transport during Ironing

    Directory of Open Access Journals (Sweden)

    Korycki Ryszard

    2016-09-01

    Full Text Available Let us next analyse the coupled problem during ironing of textiles, that is, the heat is transported with mass whereas the mass transport with heat is negligible. It is necessary to define both physical and mathematical models. Introducing two-phase system of mass sorption by fibres, the transport equations are introduced and accompanied by the set of boundary and initial conditions. Optimisation of material thickness during ironing is gradient oriented. The first-order sensitivity of an arbitrary objective functional is analysed and included in optimisation procedure. Numerical example is the thickness optimisation of different textile materials in ironing device.

  6. Water requirements of the iron and steel industry

    Science.gov (United States)

    Walling, Faulkner B.; Otts, Louis Ethelbert

    1967-01-01

    Twenty-nine steel plants surveyed during 1957 and 1958 withdrew from various sources about 1,400 billion gallons of water annually and produced 40.8 million tons of ingot steel. This is equivalent to about 34,000 gallons of water per ton of steel. Fifteen iron ore mines and fifteen ore concentration plants together withdrew annually about 89,000 million gallons to produce 15 million tons of iron ore concentrate, or 5,900 gallons per ton of concentrate. About 97 percent of the water used in the steel plants came from surface sources, 2.2 percent was reclaimed sewage, and 1.2 percent was ground water. Steel plants supplied about 96 percent of their own water requirements, although only three plants used self-supplied water exclusively. Water used by the iron ore mines and concentration plants was also predominantly self supplied from surface source. Water use in the iron and steel industry varied widely and depended on the availability of water, age and condition of plants and equipment, kinds of processes, and plant operating procedures. Gross water use in integrated steel plants ranged from 11,200 to 110,000 gallons per ton of steel ingots, and in steel processing plants it ranged from 4,180 to 26,700 gallons per ton. Water reuse also varied widely from 0 to 18 times in integrated steel plants and from 0 to 44 times in steel processing plants. Availability of water seemed to be the principal factor in determining the rate of reuse. Of the units within steel plants, a typical (median) blast furnace required 20,500 gallons of water per ton of pig iron. At the 1956-60 average rate of pig iron consumption, this amounts to about 13,000 gallons per ton of steel ingots or about 40 percent of that required by a typical integrated steel plant 33,200 gallons per ton. Different processes of iron ore concentration are devised specifically for the various kinds of ore. These processes result in a wide range of water use from 124 to 11,300 gallons of water per ton of iron ore

  7. Expression of Duodenal Iron Transporter Proteins in Diabetic Patients with and without Iron Deficiency Anemia

    Directory of Open Access Journals (Sweden)

    Efrat Broide

    2018-01-01

    Full Text Available The role of iron transport proteins in the pathogenesis of anemia in patients with diabetes mellitus (T2DM is still unclear. We investigated the expression of duodenal transporter proteins in diabetic patients with and without iron deficiency anemia (IDA. Methods. Overall, 39 patients were included: 16 with T2DM and IDA (group A, 11 with T2DM without IDA (group B, and 12 controls (group C. Duodenal mucosal expression of divalent metal transporter 1 (DMT1, ferroportin 1 (FPN, hephaestin (HEPH, and transferrin receptor 1 (TfR was evaluated by Western blotting. Chronic disease activity markers were measured as well. Results. FPN expression was increased in group A compared to group B and controls: 1.17 (0.72–1.46, 0.76 (0.53–1.04, and 0.71 (0.64–0.86, respectively (p=0.011. TfR levels were over expressed in groups A and B compared to controls: 0.39 (0.26–0.61, 0.36 (0.24–0.43, and 0.18 (0.16–0.24, respectively, (p=0.004. The three groups did not differ significantly with regard to cellular HEPH and DMT1 expression. The normal CRP and serum ferritin levels, accompanied with normal FPN among diabetic patients without IDA, do not support the association of IDA with chronic inflammatory state. Conclusion. In patients with T2DM and IDA, duodenal iron transport protein expression might be dependent on body iron stores rather than by chronic inflammation or diabetes per se.

  8. Bacterial leaching of pyritic gold ores

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Cashion, J.D.; Brown, J.; Jay, W.H.

    1998-01-01

    Full text: Pyritic ores (pyrite and arsenopyrite) containing gold concentrations in excess of 50g Au/t can be processed to recover the gold by the removal of the sulphur from the ore. This may be achieved by roasting (producing sulphur dioxide emissions), pressure oxidation (expensive and suitable for large high grade deposits), pressure leaching (still currently being developed) or bacterial oxidation. The bacterial oxidation process is a well known process in nature but has only recently come under investigation as a economically viable and relatively clean method of gold recovery from deep low grade sulphidic ores. Samples were obtained from the Wiluna Gold Mine in Western Australia consisting of the original ore, six successive bacterial reactors and the final products. Moessbauer experiments have been performed at room temperature, liquid nitrogen and liquid helium temperatures, and in applied magnetic fields. The main components of the iron phases which were present during the bacterial treatment were pyrite and arsenopyrite which were readily oxidised by the bacteria. Ferric sulfates and ferric arsenates were identified as by-products of the process with a small amount of the oxyhydroxide goethite. These results are in contrast to the similar study of the Fairview Mine in South Africa where principally Fe(II) species were observed

  9. Utilization potentiality of coal as a reductant for the production of sponge iron. [5 refs

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, H P

    1976-10-01

    With the ambitious plan of the Government of India to produce about 70 million tonnes of steel per annum towards the end of the century, the requirement of coal would be enormous. This calls for judicious planning and conservation of coal. Modern trend in steel plant practice is to use blast furnaces of capacity 10,000 to 12,000 t/day requiring superior quality coke of low ash content which will become scarce. Concerted efforts should be made to by-pass blast furnace technique by adopting direct reduction for the production of metallized iron ore, that is sponge iron, and using this as feed stock in electric furnaces. Experience has shown that the use of sponge iron as feed stock for electric arc furnaces instead of the scrap available from various fabrication and steel works results in better production of alloy steels. The use of non-coking coal as reductant for production of sponge iron will help conserve coking coal for bigger steel plants. In the solid state reduction process the technological design of the sponge iron plant has to be tailored to the type of feed stock to be used, particularly iron ore and coal. In India, non-coking coal is available at close proximity to the iron ore mines containing high grade iron ore. Planning for sponge iron, utilizing large reserves of non-coking coal as feed stock therefore has considerable potentiality. India has vast reserves of high grade iron ore and comparatively meager amount of coking coal. This calls for planning for sponge iron using non-coking coal as feed stock.

  10. Evaluation method of gas leakage rate from transportation casks of radioactive materials (gas leakage rates from scratches on O-ring surface)

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Li Ninghua; Asano, Ryoji; Kawa, Tsunemichi

    2004-01-01

    A sealing function is essential for transportation and/or storage casks of radioactive materials under both normal and accidental operating conditions in order to prevent radioactive materials from being released into the environment. In the safety analysis report, the release rate of radioactive materials into the environment is evaluated using the correlations specified in the ANSI N14.5, 1987. The purposes of the work are to reveal the underlying problems on the correlations specified in the ANSI N14.5 related to gas leakage rates from a scratch on O-ring surface and from multi-leak paths, to offer a data base to study the evaluation method of the leakage rate and to propose the evaluation method. In this paper, the following insights were obtained and clarified: 1. If a characteristic value of a leak path is defined as D 4 /a ('D' is the diameter and 'a' is the length), a scratch on the O-ring surface can be evaluated as a circular tube. 2. It is proper to use the width of O-ring groove on the flange as the leak path length for elastomer O-rings. 3. Gas leakage rates from multi leak paths of the transportation cask can be evaluated in the same manner as a single leak path if an effective D4/a is introduced. (author)

  11. FEASIBILITY OF MEASURING IRON IN VIVO USING FAST 14 MEV NEUTRONS.

    Energy Technology Data Exchange (ETDEWEB)

    WIELOPOLSKI, L.

    2005-05-01

    In this short report, I reassess the feasibility of measuring iron in vivo in the liver and heart of thalassemia patients undergoing chelation therapy. Despite the multiplicity of analytical methods for analyzing iron, only two, magnetic resonance imaging, and magnetic susceptibility, are suitable for in vivo applications, and these are limited to the liver because of the heart's beat. Previously, a nuclear method, gamma-resonance scattering, offered a quantitative measure of iron in these organs; however, it was abandoned because it necessitated a nuclear reactor to produce the radioactive source. I reviewed and reassessed the status of two alternative nuclear methods, based on iron spectroscopy of gamma rays induced by fast neutron inelastic scattering and delayed activation in iron. Both are quantitative methods with high specificity for iron and adequate penetrating power to measure it in organs sited deep within the human body. My experiments demonstrated that both modalities met the stated qualitative objectives to measure iron. However, neutron dosimetry revealed that the intensity of the neutron radiation field was too weak to reliably assess the minimum detection limits, and to allow quantitative extrapolations to measurements in people. A review of the literature, included in this report, showed that these findings agree qualitatively with the published results, although the doses reported were about three orders-of-magnitude higher than those I used. Reviewing the limitations of the present work, steps were outlined for overcoming some of the shortcomings. Due to a dearth of valid quantitative alternatives for determining iron in vivo, I conclude that nuclear methods remain the only viable option. However, from the lessons learned, further systematic work is required before embarking on clinical studies.

  12. On-line sampling of apatite-nepheline ore using apron feeders by gamma-gamma method

    Energy Technology Data Exchange (ETDEWEB)

    Bliznyuk, G.I.

    1981-01-01

    The yield flow of an underground mine equipped with a crushing complex was investigated. /sup 241/Am source and 20x20 mm NaI(Tl) crystal were used; the lump size of apatite-nepheline ore was 200 mm, P/sub 2/O/sub 5/ content varied from 10 to 22%. The mean-square error was 1% P/sub 2/O/sub 5/ in 100-ton portions of mined ore. The method can be also applied for sampling iron, copper-nickel, and polymetallic ores.

  13. Hepatic retinoid levels in seven fish species (teleosts) from a tropical coastal lagoon receiving effluents from iron-ore mining and processing.

    Science.gov (United States)

    Pereira, Adriana A; van Hattum, Bert; Brouwer, Abraham

    2012-02-01

    The present study was undertaken to investigate the possible effects of Fe and trace element exposure on hepatic levels of retinoids in seven fish species. Concentrations of retinoids were measured in fish collected from a coastal lagoon in Brazil that receives effluents from an iron-ore mining and processing plant. Fish from nearby coastal lagoons were also included to assess possible differences related to chemical exposure. Results indicated considerable differences in hepatic retinoid composition among the various species investigated. The most striking differences were in retinol and derivative-specific profiles and in didehydro retinol and derivative-specific profiles. The Perciformes species Geophagus brasiliensis, Tilapia rendalli, Mugil liza, and Cichla ocellaris and the Characiforme Hoplias malabaricus were characterized as retinol and derivative-specific, while the Siluriformes species Hoplosternum littorale and Rhamdia quelen were didehydro retinol and derivative-specific fish species. A negative association was observed between Al, Pb, As, and Cd and hepatic didehydro retinoid levels. Fish with higher levels of hepatic Fe, Cu, and Zn showed unexpectedly significant positive correlations with increased hepatic retinol levels. This finding, associated with the positive relationships between retinol and retinyl palmitate with lipid peroxidation, may suggest that vitamin A is mobilized from other tissues to increase hepatic antioxidant levels for protection against oxidative damage. These data show significant but dissimilar associations between trace element exposure and hepatic retinoid levels in fish species exposed to iron-ore mining and processing effluents, without apparent major impacts on fish health and condition. Copyright © 2011 SETAC.

  14. Determination of rare earth elements in products of Chadormalu iron ore concentrator plant (Iran) from beneficiation point of view

    International Nuclear Information System (INIS)

    Jorjani, E.; Bagherieh, A. H.; Rezai, B.

    2007-01-01

    :Different samples have been prepared from different products in Chadormalu iron ore concentrator plant: Low intensity magnetite separators concentrate (magnetite concentrate), reverse flotation tail (final hematite concentrate), flotation concentrate (apatite concentrate), final tail (L.I. M.S. tail + reverse flotation concentrate + apatite flotation tail). The samples were used for rare earth elements (REEs) distribution and origin studies. The assay of REEs was determined by ICP-MS spectrometry. The amount of total (light and heavy) REEs were 9631, 291, 199, 2236 ppm and the distributions were 19.3, 3.6, 10.1, 67% in flotation concentrate (apatite concentrate), reverse flotation tail (hematite concentrate), magnetite concentrate and total tail respectively. About 19.3% of total REEs were distributed in apatite concentrate with an assay of 9631 ppm. Therefore, further studies have been conducted on this product. According to the Xray studies the minerals of fluoroapatite, ankerite and calcite are the main mineral phases in apatite concentrate which the apatite is dominant among them. The scanning electron microscopy studies were shown that the high amount of REEs distributed on fluoroapatite mineral. The results have clearly shown that the apatite concentrate that is a by product of iron dressing in Chadormalu plant, with a low economical value and left without any further treatment, can be used as a significant source of REEs. According to this characterization studies, the recovery of a mixed rare earth oxide from fluoroapatite is possible either with the treatment of liquors from the total dissolution of the ore in nitric acid or with the proposed treatment of the phosphogypsum by-product from the conventional sulphuric acid route and the recovery of rare earth oxides from phosphoric acid sludges that the detailed flowsheet needs further extraction work

  15. Quantitative Investigation of Roasting-magnetic Separation for Hematite Oolitic-ores: Mechanisms and Industrial Application

    Directory of Open Access Journals (Sweden)

    Peng Tiefeng

    2017-12-01

    Full Text Available Natural high-quality iron can be directly applied to pyro-metallurgy process, however, the availability of these ores has become less and less due to exploitation. This research reports a systematic approach using reduction roasting and magnetic separation for oolitic iron ores from west Hubei Province. Firstly, a mineralogical study was performed and it was shown that the oolitic particles were mainly composed of hematite, with some silicon-quartz inside the oolitic particle. Then, the roasting temperature was examined and shown to have significant influence on both Fe recovery and the Fe content of the concentrate. Also the Fe content gradually increased as the temperature increased from 700 to 850 °C. The most important aspects are the quantitative investigation of change of mineral phases, and reduction area (with ratio during the reduction roasting process. The results showed that Fe2O3 decreased with temperature, and Fe3O4 (magnetite increased considerably from 600 to 800 °C. The reductive reaction was found to occur from the outside in, the original oolitic structure and embedding relationship among the minerals did not change after roasting. Finally, 5% surrounding rock was added to mimic real industrial iron beneficiation. This study could provides useful insight and practical support for the utilization of such iron ores.

  16. Multiple Stage Ore Formation in the Chadormalu Iron Deposit, Bafq Metallogenic Province, Central Iran: Evidence from BSE Imaging and Apatite EPMA and LA-ICP-MS U-Pb Geochronology

    Directory of Open Access Journals (Sweden)

    Hassan Heidarian

    2018-02-01

    Full Text Available The Chadormalu magnetite-apatite deposit in Bafq metallogenic province, Central Iran, is hosted in the late Precambrian-lower Cambrian volcano-sedimentary rocks with sodic, calcic, and potassic alterations characteristic of iron oxide copper-gold (IOCG and iron oxide-apatite (IOA ore systems. Apatite occurs as scattered irregular veinlets and disseminated grains, respectively, within and in the marginal parts of the main ore-body, as well as apatite-magnetite veins in altered wall rocks. Textural evidence (SEM-BSE images of these apatites shows primary bright, and secondary dark areas with inclusions of monazite/xenotime. The primary, monazite-free fluorapatite contains higher concentrations of Na, Si, S, and light rare earth elements (LREE. The apatite was altered by hydrothermal events that led to leaching of Na, Si, and REE + Y, and development of the dark apatite. The bright apatite yielded two U-Pb age populations, an older dominant age of 490 ± 21 Ma, similar to other iron deposits in the Bafq district and associated intrusions, and a younger age of 246 ± 17 Ma. The dark apatite yielded a U-Pb age of 437 ± 12 Ma. Our data suggest that hydrothermal magmatic fluids contributed to formation of the primary fluorapatite, and sodic and calcic alterations. The primary apatite reequilibrated with basinal brines in at least two regional extensions and basin developments in Silurian and Triassic in Central Iran.

  17. Characterization and mass balance of trace elements in an iron ore sinter plant

    Directory of Open Access Journals (Sweden)

    Lucas Ladeira Lau

    2016-04-01

    Full Text Available Environmental legislation is becoming more restrictive in several industrial sectors, especially in the steel industry, which is well known for its large pollution potential. With the recent growth of interest in effects of trace elements on the environment and health, the inclusion of emission limits on these elements in this legislation has become increasingly popular. This article aims to describe the partitioning of trace elements between the products (sinter and plant emissions in an iron ore sinter plant, aiming to better understand the behavior of these elements in the sintering process to eventually support interventions to modify these partitions. Chemical characterization of several sintering inputs was initially performed, revealing that the steel-making residues contained large concentrations of trace elements, whereas low concentrations were observed in the flux. Based on the trace element concentrations, we analyzed the injection of trace elements in a sintering pilot using a sintering mixture. Mass balance was then used to determine the theoretical partitioning of trace elements in the sinter and emissions; cadmium, nickel, lead, mercury, and copper exhibited greater tendencies to concentrate in atmospheric emissions.

  18. Idea of Identification of Copper Ore with the Use of Process Analyser Technology Sensors

    Science.gov (United States)

    Jurdziak, Leszek; Kaszuba, Damian; Kawalec, Witold; Król, Robert

    2016-10-01

    The Polish resources of the copper ore exploited by the KGHM S.A. underground mines are considered as one of the most complex in the world and - consequently - the most difficult to be processed. The ore consists of three lithology forms: dolomites, shales and sandstones but in different proportions which has a significant impact on the effectiveness of the grinding and flotation processes. The lithological composition of the ore is generally recognised in-situ but after being mined it is blended on its long way from various mining fields to the processing plant by the complex transportation system consisting of belt conveyors with numerous switching points, ore bunkers and shafts. Identification of the lithological composition of the ore being supplied to the processing plant should improve the adjustments of the ore processing machinery equipment aiming to decrease the specific processing (mainly grinding) energy consumption as well as increase the metal recovery. The novel idea of Process Analyser Technology (PAT) sensors - information carrying pellets, dropped into the transported or processed bulk material which can be read directly when needed - is investigated for various applications within the DISIRE project (a part of the SPIRE initiative, acting under the Horizon2020 framework program) and here is adopted for implementing the annotation the transported copper ore for the needs of ore processing plants control. The identification of the lithological composition of ore blended on its way to the processing plant can be achieved by an information system consisting of pellets that keep the information about the original location of the portions of conveyed ore, the digital, geological database keeping the data of in-situ lithology and the simulation models of the transportation system, necessary to evaluate the composition of the blended ore. The assumptions of the proposed solution and the plan of necessary in-situ tests (with the special respect to harsh

  19. Bacterial bioleaching of low grade nickel limonite and saprolite ores by mixotrophic bacteria

    Directory of Open Access Journals (Sweden)

    Chaerun Siti Khodijah

    2016-01-01

    Full Text Available Utilization of indigenous bacteria should be considered to establish a successful biohydrometallurgical process. In this study, mixrotrophic iron-oxidizing bacterial consortia consisting of Comamonas testosteroni, Alicyclobacillus ferrooxydans and Pantoea septic which were isolated from Indonesian mineral ores were examined to determine their abilities to recover nickel from limonite and saprolite ores in the bioleaching experiments using stirred tank reactors. The nickel bioleaching experiments inoculated with the bacterial consortia were carried out using coarse limonite ores and weathered saprolite ores with pulp density of 10% w/v. Abiotic controls were also carried out replacing the inocula by the sterile medium. The bioleaching processes were monitored by measuring Ni and Fe contents and pH of the leaching solution as well as the total bacterial enzymatic activity measured as FDA hydrolytic activity. The effect of leaching on the mineralogy of laterite ores was investigated by the scanning electron microscope equipped with energy-dispersive spectroscopy (SEM-EDS and X-ray powder diffraction (XRD. After 28 days of incubation, the FDA hydrolytic activity was observed in both bioleaching experiments containing limonite (17.2 μg fluorescein/mL and saprolite ores (16.9 μg fluorescein/mL. The leached Ni and Fe in the bioleaching experiments containing limonite ores (30% Ni and 5.6% Fe was greater than that in abiotic controls (1% Ni and 0.1% Fe with the pH range of 2.5 to 3.5. However, the bacterial consortia were less capable of bioleaching of Ni (2.5% with the similar leached Fe (6% from the saprolite ores. In abiotic controls, the medium pH remained relatively constant (pH 6. It was concluded that these bacterial isolated as the consortium were capable of nickel bioleaching (precious metal more effectively than iron (gangue metal, thus being applicable to the commercial processing of the difficult-to-process low-grade nickel laterite ores

  20. Features structure of iron-bearing strata’s of the Bakchar deposit, Western Siberia

    Science.gov (United States)

    Asochakova, E. M.

    2017-12-01

    The ore-bearing strata’s of Bakchar deposit have complicated structural-textural heterogeneity and variable mineral composition. This deposit is one of the most promising areas of localization of sedimentary iron ore. The ore-bearing strata’s are composed mainly of sandstones (sometimes with ferruginous pebbles, less often conglomerates), siltstones and clays. The ironstones are classified according to their lithology and geochemistry into three types: goethite-hydrogoethitic oolitic, glauconite-chloritic and transitional (intermediate) type iron ores. The mineral composition includes many different minerals: terrigenous, authigenic and clayey. Ironstones are characterized by elevated concentrations of many rare and valuable metals present in them as trace elements, additionally alloying (Mn, V, Cr, Ti, Zr, Mo, etc.) and harmful impurities (S, As, Cu, Pb, Zn, P). There are prerequisites for the influence of numerous factors, such as prolonged transgression of the sea, swamping of paleo-river deltas, the appearance of a tectonic fracture zone associated with active bottom tectonics and unloading of catagenetic waters, regression and natural ore enrichment due to the re-washing of slightly-iron rocks. These factors are reflected in the structure of the ore-bearing strata in which rhythmic cycles of ore sedimentation with successive changes in them are distinguished by an association of different mineral composition.

  1. Predicting the Concentration Characteristics of Itakpe Iron Ore for cut ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    ABSTRACT: Concentration characteristics of an ore are very critical to the estimation of cut-off grade of a ... enormous financial cost of laboratory analysis and time required for such .... Arua A.I. (1997) Fundamentals of statistics, Publisher,.

  2. Production of low-silicon molten iron from high-silica hematite using biochar

    Institute of Scientific and Technical Information of China (English)

    Hui-qing Tang∗; Xiu-feng Fu; Yan-qi Qin; Shi-yu Zhao; Qing-guo Xue

    2017-01-01

    A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed.In this method, FASTMELT, which comprised direct reduction and melt separation processes, was applied, with highly reactive biochar as the reductant in the direct reduction stage.The proposed method was ex-perimentally investigated and the results show that the method is feasible.In the direct reduction stage, ore-char briquette could achieve a metallization rate of 84%-88% and residual carbon of 0.27-0.89 mass% at temperature of 1 373 K, biochar mixing ratio of 0.8-0.9, and reduction time of 15 min.Some silica particles remained embedded in the iron phase after the reduction.In the melting separation stage, molten iron with a carbon content of 0.02-0.03 mass% and silicon content of 0.02-0.18 mass% could be obtained from the metallic briquettes under the above-mentioned conditions; the iron recovery rate was 83%-91% and impurities in the obtained metal were negligible.

  3. Rock-magnetism and ore microscopy of the magnetite-apatite ore deposit from Cerro de Mercado, Mexico

    Science.gov (United States)

    Alva-Valdivia, L. M.; Goguitchaichvili, A.; Urrutia-Fucugauchi, J.; Caballero-Miranda, C.; Vivallo, W.

    2001-03-01

    Rock-magnetic and microscopic studies of the iron ores and associated igneous rocks in the Cerro de Mercado, Mexico, were carried out to determine the magnetic mineralogy and origin of natural remanent magnetization (NRM), related to the thermo-chemical processes due to hydrothermalism. Chemical remanent magnetization (CRM) seems to be present in most of investigated ore and wall rock samples, replacing completely or partially an original thermoremanent magnetization (TRM). Magnetite (or Ti-poor titanomagnetite) and hematite are commonly found in the ores. Although hematite may carry a stable CRM, no secondary components are detected above 580°, which probably attests that oxidation occurred soon enough after the extrusion and cooling of the ore-bearing magma. NRM polarities for most of the studied units are reverse. There is some scatter in the cleaned remanence directions of the ores, which may result from physical movement of the ores during faulting or mining, or from perturbation of the ambient field during remanence acquisition by inhomogeneous internal fields within these strongly magnetic ore deposits. The microscopy study under reflected light shows that the magnetic carriers are mainly titanomagnetite, with significant amounts of ilmenite-hematite minerals, and goethite-limonite resulting from alteration processes. Magmatic titanomagnetites, which are found in igneous rocks, show trellis, sandwich, and composite textures, which are compatible with high temperature (deuteric) oxy-exsolution processes. Hydrothermal alteration in ore deposits is mainly indicated by martitization in oxide minerals. Grain sizes range from a few microns to >100 mm, and possible magnetic state from single to multidomain, in agreement with hysteresis measurements. Thermal spectra, continuous susceptibility measurements, and IRM (isothermal remanent magnetization) acquisition suggest a predominance of spinels as magnetic carriers, most probably titanomagnetites with low

  4. A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation.

    Science.gov (United States)

    Momonoi, Kazumi; Yoshida, Kumi; Mano, Shoji; Takahashi, Hideyuki; Nakamori, Chihiro; Shoji, Kazuaki; Nitta, Akira; Nishimura, Mikio

    2009-08-01

    Blue color in flowers is due mainly to anthocyanins, and a considerable part of blue coloration can be attributed to metal-complexed anthocyanins. However, the mechanism of metal ion transport into vacuoles and subsequent flower color development has yet to be fully explored. Previously, we studied the mechanism of blue color development specifically at the bottom of the inner perianth in purple tulip petals of Tulipa gesneriana cv. Murasakizuisho. We found that differences in iron content were associated with the development of blue- and purple-colored cells. Here, we identify a vacuolar iron transporter in T. gesneriana (TgVit1), and characterize the localization and function of this transporter protein in tulip petals. The amino acid sequence of TgVit1 is 85% similar that of the Arabidopsis thaliana vacuolar iron transporter AtVIT1, and also showed similarity to the AtVIT1 homolog in yeast, Ca(2+)-sensitive cross-complementer 1 (CCC1). The gene TgVit1 was expressed exclusively in blue-colored epidermal cells, and protein levels increased with increasing mRNA expression and blue coloration. Transient expression experiments revealed that TgVit1 localizes to the vacuolar membrane, and is responsible for the development of the blue color in purple cells. Expression of TgVit1 in yeast rescued the growth defect of ccc1 mutant cells in the presence of high concentrations of FeSO(4). Our results indicate that TgVit1 plays an essential role in blue coloration as a vacuolar iron transporter in tulip petals. These results suggest a new role for involvement of a vacuolar iron transporter in blue flower color development.

  5. The ferrous iron transporter FtrABCD is required for the virulence of Brucella abortus 2308 in mice.

    Science.gov (United States)

    Elhassanny, Ahmed E M; Anderson, Eric S; Menscher, Evan A; Roop, R Martin

    2013-06-01

    Iron transport has been linked to the virulence of Brucella strains in both natural and experimental hosts. The genes designated BAB2_0837-0840 in the Brucella abortus 2308 genome sequence are predicted to encode a CupII-type ferrous iron transporter homologous to the FtrABCD transporter recently described in Bordetella. To study the role of the Brucella FtrABCD in iron transport, an isogenic ftrA mutant was constructed from B. abortus 2308. Compared with the parental strain, the B. abortus ftrA mutant displays a decreased capacity to use non-haem iron sources in vitro, a growth defect in a low iron medium that is enhanced at pH 6, and studies employing radiolabelled FeCl3 confirmed that FtrABCD transports ferrous iron. Transcription of the ftrA gene is induced in B. abortus 2308 in response to iron deprivation and exposure to acid pH, and similar to other Brucella iron acquisition genes that have been examined the iron-responsiveness of ftrA is dependent upon the iron response regulator Irr. The B. abortus ftrA mutant exhibits significant attenuation in both cultured murine macrophages and experimentally infected mice, supporting the proposition that ferrous iron is a critical iron source for these bacteria in the mammalian host. © 2013 John Wiley & Sons Ltd.

  6. Use of Electrophoresis for Transporting Nano-Iron in Porous Media

    Science.gov (United States)

    Research was conducted to evaluate if electrophoresis could transport surface stabilized nanoscale zero-valent iron (nZVI) through fine grained sand with the intent of remediating a contaminant in situ. The experimental procedure involved determining the transport rates of poly...

  7. The influence on the environment of uranium ore transport from mining sites to processing site in Romania

    International Nuclear Information System (INIS)

    Peic, T.; Banciu, O.; Bardan, N.; Radulescu, C.

    1997-01-01

    In Romania, the transport of uranium ores from mining sites to the processing plant is carried out by road and rail. The length of the road transport routes is between 5 and 45 km and rail routes between 300 and 500 km. This laboratory began to monitor these transport routes in 1984. Gamma dose rate measurements were made on and around the special wagons and trucks along the road and rail transport routes and in railway stations. Soil and vegetation samples have also been collected along the road and rail transport routes and in railway stations. From the collected samples the specific activity of natural uranium and 226 Ra were measured. The level of natural radioactivity in the train assembling stations in the period 1984-1996, increased 1-4 times in comparison with the natural background. (Author)

  8. Electric arc furnace dust utilization in iron ore sintering: influence of particle size; Utilizacao da poeira de aciaria eletrica na sinterizacao de minerio de ferro: influencia da granulometria

    Energy Technology Data Exchange (ETDEWEB)

    Telles, V.B.; Junca, E.; Rodrigues, G.F.; Espinosa, D.C.R.; Tenorio, J.A.S., E-mail: victor_bridit@hotmail.co [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Metalurgica e de Materiais

    2010-07-01

    The aim of this work was to study the utilization of electric arc furnace dust (EAFD) generated in steelmaking by electric arc furnace (EAF) as raw material in iron ore sintering. The waste was characterized by size, chemical composition and X-ray diffraction. The physical characterization showed that 90% of the particles have a size less then 1,78 {mu}m and the material have the tendency to agglomerate. The waste were submitted to a pre-agglomeration prior to its incorporation in the sinter. The influence on the addition of the waste with different granulometry in the iron or sinter production were analyzed by sinter characterization and sintering parameters. (author)

  9. Chemical mining of primary copper ores by use of nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, A E [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    Chemical mining of primary copper ores, with nuclear explosives to break the ore and in-situ hydrostatic pressure to accelerate dissolution of primary ore minerals, may be feasible. A contained nuclear explosion well below the water table would be used to provide a mass of broken ore in a flooded 'chimney'. The hydrostatic pressure in the chimney should increase the solubility of oxygen in a water-sulfuric acid system enough to allow primary copper minerals such as chalcopyrite and bornite to be dissolved in an acceptably short time. Circulation and collection would be accomplished through drill holes. This method should be especially applicable to the deep portions of porphyry copper deposits that are not economical to mine by present techniques. (author)

  10. Thallium-rich pyrite ores from the Apuan Alps, Tuscany, Italy:constraints for their origin and environmental concerns

    Science.gov (United States)

    D'Orazio, Massimo; Biagioni, Cristian; Dini, Andrea; Vezzoni, Simone

    2017-06-01

    The southern sector of the Apuan Alps (AA) massif, Tuscany, Italy, is characterized by the occurrence of a series of baryte-pyrite-iron oxide orebodies whose Tl-rich nature was recognized only recently. The geochemistry of the pyrite ore was investigated through inductively coupled plasma mass spectrometry. In addition, lead isotope data for selected pyrite ores from AA were collected. Pyrite ores are characterized by a complex geochemistry, with high concentrations of Tl (up to 1100 μg/g) coupled with high As and Sb contents; the Co/Ni ratio is always <1. Geochemical data of pyrite and marcasite ore samples from other mining districts of Tuscany have been collected in order to compare them with those from the AA. These samples usually have very low Tl content (less than 2 μg/g) and high to very high Co/Ni and As/Sb ratios. Only some samples from the Sb-Hg ore deposits showed very high Tl concentrations (up to 3900 μg/g). Another difference is related to the lead isotope composition, with pyrite ores from AA markedly less radiogenic than those from the other deposits from Tuscany. Geochemical data of pyrite ores from AA give new insights on the genesis of the baryte-pyrite-iron oxide orebodies, relating their formation to low-temperature hydrothermal systems active during early Paleozoic; in addition, these data play a fundamental role in assessing the environmental impact of these deposits.

  11. Evaluation the effect of uranium ore concentrations on the cyc2 gene expression in the mutated Acidithiobacillus sp. FJ2

    Directory of Open Access Journals (Sweden)

    Faezeh Fatemi

    2018-06-01

    Full Text Available Introduction: The uranium bioleaching process is performed using Acidithiobacillus ferrooxidans. This bacterium is capable of iron oxidation by an electron transport chain. One of the most important components of this chain is the cyc2 gene product that involved in the oxidation process of iron. Materials and methods: Evaluation of UV mutated (60, 120 and 180s Acidithiobacillus sp. FJ2 cyc2gene in the presence of uranium ore concentrations, has been implemented in this project. For this purpose, the original and mutated bacteria were cultivated in the presence of uranium ore concentrations (5, 10, 15, 25 and 50%. Uranium extraction, variation of pH and Eh values were measured at 24 h intervals. Then, when the uranium extraction yield reached to 100%, gene expressions of cyc2 original and mutatedAcidithiobacillus sp. FJ2 were analyzed using Real-time PCR method. Results: The results of the experiments showed that, with increasing pulp density, the uranium extraction rate and oxidation activity of bacteria were reduced. In addition, the result of cyc2 gene expression showed that the target gene expression increases in the presence of uranium ore compared to sample with absence of uranium ore, andwith further increase of pulp density, due to the toxicity of uranium, shows a decreasing trend. Discussion and conclusion: The results of this study indicated that the mutation in the bacterium has a positive effect on the uranium bioleaching process, which can play an important role in the process of uranium bioleaching at high concentrations. In addition, with increasing pulp density due to uranium toxicity, there is a decreasing trend in the process of uranium extraction, which indicates the important role of this factor in the uranium bioleaching process.

  12. Utilization of Iron Ore Tailings as Raw Material for Portland Cement Clinker Production

    Directory of Open Access Journals (Sweden)

    Li Luo

    2016-01-01

    Full Text Available The cement industry has for some time been seeking alternative raw material for the Portland cement clinker production. The aim of this research was to investigate the possibility of utilizing iron ore tailings (IOT to replace clay as alumina-silicate raw material for the production of Portland cement clinker. For this purpose, two kinds of clinkers were prepared: one was prepared by IOT; the other was prepared by clay as a reference. The reactivity and burnability of raw meal, mineralogical composition and physical properties of clinker, and hydration characteristic of cement were studied by burnability analysis, differential thermal analysis, X-ray diffraction, and hydration analysis. The results showed that the raw meal containing IOT had higher reactivity and burnability than the raw meal containing clay, and the use of IOT did not affect the formation of characteristic mineralogical phases of Portland cement clinker. Furthermore, the physical and mechanical performance of two cement clinkers were similar. In addition, the use of IOT was found to improve the grindability of clinker and lower the hydration heat of Portland cement. These findings suggest that IOT can replace the clay as alumina-silicate raw material for the preparation of Portland cement clinker.

  13. A solute-binding protein for iron transport in Streptococcus iniae

    Directory of Open Access Journals (Sweden)

    Li Anxing

    2010-12-01

    Full Text Available Abstract Background Streptococcus iniae (S. iniae is a major pathogen that causes considerable morbidity and mortality in cultured fish worldwide. The pathogen's ability to adapt to the host affects the extent of infection, hence understanding the mechanisms by which S. iniae overcomes physiological stresses during infection will help to identify potential virulence determinants of streptococcal infection. Grow S. iniae under iron-restricted conditions is one approach for identifying host-specific protein expression. Iron plays an important role in many biological processes but it has low solubility under physiological condition. Many microorganisms have been shown to be able to circumvent this nutritional limitation by forming direct contacts with iron-containing proteins through ATP-binding cassette (ABC transporters. The ABC transporter superfamilies constitute many different systems that are widespread among living organisms with different functions, such as ligands translocation, mRNA translation, and DNA repair. Results An ABC transporter system, named as mtsABC (metal transport system was cloned from S. iniae HD-1, and was found to be involved in heme utilization. mtsABC is cotranscribed by three downstream genes, i.e., mtsA, mtsB, and mtsC. In this study, we cloned the first gene of the mtsABC transporter system (mtsA, and purified the corresponding recombinant protein MtsA. The analysis indicated that MtsA is a putative lipoprotein which binds to heme that can serve as an iron source for the microorganism, and is expressed in vivo during Kunming mice infection by S. iniae HD-1. Conclusions This is believed to be the first report on the cloning the ABC transporter lipoprotein from S. iniae genomic DNA. Together, our data suggested that MtsA is associated with heme, and is expressed in vivo during Kunming mice infection by S. iniae HD-1 which indicated that it can be a potential candidate for S. iniae subunit vaccine.

  14. RELATIONSHIP BETWEEN METAMORPHISM DEGREE AND LIBERATION SIZE OF COMPACT ITABIRITES FROM THE IRON QUADRANGLE

    Directory of Open Access Journals (Sweden)

    Rodrigo Fina Ferreira

    2015-06-01

    Full Text Available Iron ore exploited in Brazil can be classified into several lithological types which have distinct features. The progress of mining over time leads to scarcity of high grade iron ores, leading to the exploitation of poor, contaminated and compact ores. There is a growing trend of application of process flowsheets involving grinding to promote mineral liberation, essential condition for concentration processes. Several authors have correlated metamorphism processes of banded iron formations to mineralogical features observed on itabirites from the Iron Quadrangle, mainly the crystals size. This paper presents the implications of such variation in defining the mesh of grinding. Mineralogical characterization and grinding, desliming and flotation tests have been carried out with samples from two regions of the Iron Quadrangle subjected to different degrees of metamorphism. It was found a trend of reaching satisfactory liberation degree in coarser size for the itabirite of higher metamorphic degree, which has larger crystals. The flotation tests have confirmed the mineralogical findings.

  15. Radionuclide migration around uranium ore bodies: analogue of radioactive waste repositories. Annual report, July 1982-June 1983

    International Nuclear Information System (INIS)

    Airey, P.L.

    1984-10-01

    A number of uranium ore bodies in the Northern Territory of Australia have been evaluated as geochemical analogues of high-level radioactive waste repositories. The aim of the study is to contribute to the understanding of the scientific basis for the long-term prediction of the transport of radionuclides. Particular attention is being paid to investigations of (i) mechanisms of mobilization and subsequent retardation of uranium series nuclides following the weathering of metamorphic host rocks, (ii) the role of iron minerals in the retardation of uranium and thorium, (iii) the role of groundwater colloids in the transport of radionuclides, (iv) experimental methods for studying the time dependence of adsorption coefficients, and (v) conceptual methods for studying the effect of transport of uranium series nuclides through crystalline host rocks over geological time. The possibility of incorporating certain transuranic and fission product elements into the analogue is discussed. 29 figures, 36 tables

  16. Evaluation of chromite ore and the optimum methods for industrial extraction of chromium

    International Nuclear Information System (INIS)

    Salih, Bakheit Mustafa Mohamed

    1999-10-01

    Samples of chromite ore, collected from Gam and Cheikay mining area (Ingaessana Hills) in east Sudan, were analysed to assess the chromium content. Analysis were carried out using atomic absorption spectroscopy (AAS) to estimate the contents of chromium, iron, calcium and magnesium. X-ray florescence (XRF) was used to evaluate the levels of chromium, iron and calcium in the ore. Volumetric analysis was performed to assess chromium and iron, whilest gravimetric analysis was employed to measure the amounts of calcium, magnesium, aluminum and silicon present in the ore. The results are in a good agreement except iron oxide, which displayed a significantly different value when measured by x-ray fluorescence. The data obtained exhibited similarity in almost all cases, when compared with local and global researches, reports and literature. The study has revealed the average contents of Cr 2 O 3 , FeO, CaO, MgO, Al 2 O 3 , and SiO 2 as 40.66, 11.96, 11.94, 0.36, 16.94, 11.45% respectively. MnO and NiO were detected in trace amounts, the corresponding levels in the ore being 72 and 27 ppm. The average chromium content in extracted potassium dichromate measured by using AAS, XRF, and volumetric methods was found to be 31.7%. The highest grade reached by individual technique being 33.10%. The extraction with sodium peroxide is the optimum method for preparation of potassium dichromate. X-ray diffraction analysis, has showed that the d spaces and intensities of prepared potassium dichromate are isostructural with the corresponding ones of standard potassium dichromate. This suggests that the composition of the two samples is identical. Chromite samples were analysed using gamma ray spectroscopy in order to estimate the levels of radioactive elements present. It was found that the concentrations of 232 Th and 40 K range from 7.62 to 10.98 Bq/kg and 47.38 to 56.28 Bq/kg respectively

  17. Magnetite-apatite mineralization in Khanlogh iron deposit, northwest of Neyshaboor, NE Iran

    Science.gov (United States)

    Najafzadeh Tehrani, Parvin; Asghar Calagari, Ali; Velasco Roldan, Francisco; Simmonds, Vartan; Siahcheshm, Kamal

    2016-04-01

    fluids. The high fluorine content of the apatite at Khanlogh may testify to the presence of Ti-fluoride complex in the fluids. Formation of apatite crystals was concurrent with development of titanium lamellae in magnetite. The apatite possesses high REE content which is possibly associated with monazite inclusions. The SEM studies better show these inclusions are occasionally present at the margin of apatite crystals and veins. Based upon field relations, microscopic examinations, and the results of XRD analyses, sodic (albite), propylitic (epidote, chlorite, calcite), and argillic (montmorillonite) alterations are developed in the study area. The principal minerals in these alteration zones are albite, epidote, sericite, chlorite, quartz, calcite, and montmorllonite. Mineralogy, alteration, geochemistry, structure, and texture of the ores at Khanlogh indicate that the magnetite and apatite were chiefly formed by hydrothermal solutions which were enriched in iron mainly transported by F- and Cl- rich fluids. Reference Hou,,T., Zhaochong, Z., Timothy, K., (2011). Gushan magnetite-apatite deposit in the Ningwu basin, Lower Yangtze River Valley, SE China: Hydrothermal or Kiruna-type? Ore geology review, 43, 333-346. Purtov, V.K., Kotelnikova, A.L. (1993). Solubility of titanium in chloride and fluoride hydrothermal solution. International Geology Review 35, 274 -287.

  18. Wastewater engineering applications of BioIronTech process based on the biogeochemical cycle of iron bioreduction and (biooxidation

    Directory of Open Access Journals (Sweden)

    Volodymyr Ivanov

    2014-12-01

    Full Text Available Bioreduction of Fe(III and biooxidation of Fe(II can be used in wastewater engineering as an innovative biotechnology BioIronTech, which is protected for commercial applications by US patent 7393452 and Singapore patent 106658 “Compositions and methods for the treatment of wastewater and other waste”. The BioIronTech process comprises the following steps: 1 anoxic bacterial reduction of Fe(III, for example in iron ore powder; 2 surface renovation of iron ore particles due to the formation of dissolved Fe2+ ions; 3 precipitation of insoluble ferrous salts of inorganic anions (phosphate or organic anions (phenols and organic acids; 4 (biooxidation of ferrous compunds with the formation of negatively, positively, or neutrally charged ferric hydroxides, which are good adsorbents of many pollutants; 5 disposal or thermal regeration of ferric (hydroxide. Different organic substances can be used as electron donors in bioreduction of Fe(III. Ferrous ions and fresh ferrous or ferric hydroxides that are produced after iron bioreduction and (biooxidation adsorb and precipitate diferent negatively charged molecules, for example chlorinated compounds of sucralose production wastewater or other halogenated organics, as well as phenols, organic acids, phosphate, and sulphide. Reject water (return liquor from the stage of sewage sludge dewatering on municipal wastewater treatment plants represents from 10 to 50% of phosphorus load when being recycled to the aeration tank. BioIronTech process can remove/recover more than 90% of phosphorous from this reject water thus replacing the conventional process of phosphate precipitation by ferric/ferrous salts, which are 20–100 times more expensive than iron ore, which is used in BioIronTech process. BioIronTech process can remarkably improve the aerobic and anaerobic treatments of municipal and industrial wastewaters, especially anaerobic digestion of lipid- and sulphate-containing food-processing wastewater. It

  19. Environmental association of iron minerals and iron concentrations ...

    African Journals Online (AJOL)

    Environmental association of iron (Fe) minerals and Fe concentrations in soils close to the Kgwakgwe Mn oxide ore abandoned mine, Botswana are investigated in this study. Four hundred soil samples were obtained from a 4 km2 area close to the abandoned mine. The Fe minerals in the soil samples were identified by ...

  20. New age radiometric ore sorting - the elegant solution

    International Nuclear Information System (INIS)

    Gordon, H.P.; Heuer, T.

    2000-01-01

    Radiometric ore sorting technology and application are described in two parts. Part I reviews the history of radiometric sorting in the minerals industry and describes the latest developments in radiometric sorting technology. Part II describes the history, feasibility study and approach used in the application of the new technology at Rossing Uranium Limited. There has been little progress in the field of radiometric sorting since the late 1970s. This has changed with the development of a high capacity radiometric sorter designed to operate on low-grade ore in the +75mm / -300mm size fraction. This has been designed specifically for an application at Rossing. Rossing has a long history in radiometric sorting dating back to 1968 when initial tests were conducted on the Rossing prospect. Past feasibility studies concluded that radiometric sorting would not conclusively reduce the unit cost of production unless sorting was used to increase production levels. The current feasibility study shows that the application of new radiometric sorter technology makes sorting viable without increasing production, and significantly more attractive with increased production. A pilot approach to confirm sorter performance is described. (author)

  1. 36Cl production in situ, and groundwater transport in a uranium ore deposit

    International Nuclear Information System (INIS)

    Cornett, R.J.; Andrews, H.R.; Brown, R.M.; Chant, L.A.; Cramer, J.; Davies, W.G.; Greiner, B.F.; Imahori, Y.; Koslowsky, V.T.; McKay, J.W.; Milton, G.M.; Milton, J.D.C.

    1992-01-01

    The authors have used AMS to measure 36 Cl concentrations produced in situ in ore and in groundwater within the 1.3 billion year old Cigar Lake uranium ore deposit. 36 Cl concentrations are up to 300 times higher in the ore zone than in the surrounding aquifer. Based on 36 Cl ingrowth, the authors calculate the residence time of water within the ore zone to be 100,000 to 300,000 years. Since the geologic setting of this deposit is a very close natural analogue to a proposed nuclear fuel waste repository, this analysis demonstrates that natural geological barriers can effectively isolate mobile radionuclides from an open, regional groundwater flow system over millennia

  2. Draft ASME code case on ductile cast iron for transport packaging

    International Nuclear Information System (INIS)

    Saegusa, T.; Arai, T.; Hirose, M.; Kobayashi, T.; Tezuka, Y.; Urabe, N.; Hueggenberg, R.

    2004-01-01

    The current Rules for Construction of ''Containment Systems for Storage and Transport Packagings of Spent Nuclear Fuel and High Level Radioactive Material and Waste'' of Division 3 in Section III of ASME Code (2001 Edition) does not include ductile cast iron in its list of materials permitted for use. The Rules specify required fracture toughness values of ferritic steel material for nominal wall thickness 5/8 to 12 inches (16 to 305 mm). New rule for ductile cast iron for transport packaging of which wall thickness is greater than 12 inches (305mm) is required

  3. Method for Transformation of Weakly Magnetic Minerals (Hematite, Goethite into Strongly Magnetic Mineral (Magnetite to Improve the Efficiency of Technologies for Oxidized Iron Ores Benefication

    Directory of Open Access Journals (Sweden)

    Ponomarenko, O.

    2015-03-01

    Full Text Available A new method for relatively simple transformation of weakly magnetic minerals (goethite (α-FeOOH and hematite (α-Fe2O3 into strongly magnetic mineral (magnetite (Fe3O4 was developed. It was shown, that transformation of structure and magnetic characteristics of go ethite and hematite are realized in the presence of starch at relatively low temperatures (in the range of 300—600 °С. Obtained results open up new possibilities for development of effective technologies for oxidized iron ore beneficiation.

  4. Effect of properties of iron compounds on the catalytic activity in direct coal liquefaction; Tetsu kagobutsu no keitai to sekitan ekika kassei

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, T.; Tazawa, K. [Mitsubishi Chemical Corp., Tokyo (Japan); Shimasaki, K. [Kobe Steel Ltd. (Japan)

    1998-08-20

    When considering merchandising scale of the coal liquefaction process, it is a preliminary condition that metal used for its catalyst is rich in resource volume, cheap in production cost, without pollution, and so forth, and application of cheap iron ore and ferrous compounds to disposable catalyst is desired. As liquefaction activity of the iron ore was hitherto improved by its micro crushing, its mechanical crush had a limit of about 2 {mu}m in mean particle diameter. However, together with recent crushing technique, crushers with high performance were developed, and then micro crushing by sub-micron became possible industri8ally even for iron ore. In this study, three kinds of Australian iron ores such as limonite of ferric hydroxide type iron ore, pyrite of ferrous sulfide type, and hematite of ferric oxide type were micro crushed to examine coal liquefaction activity and hydrogenation reaction activity of 1-methyl naphthalene (1-MN) and also relationship between properties and activity of catalyst for the latter before and after reaction. 11 refs., 8 figs., 5 tabs.

  5. Prospecting For Magnetite Ore Deposits With A Innovative Sensor's of Unique Fundamentally New Magnetometer.

    Science.gov (United States)

    Emelianenko, T. I.; Tachaytdinov, R. S.; Sarichev, V. F.; Kotov, B. V.; Susoeva, G. N.

    measurement point. The result is often misleading as an intense magnetic anomaly may be registered in a place where is no ore, and vice versa. Such false anomalies and maps may serve as the only guide in iron ore prospecting. The reserves' forecast based on such magnetic maps are also false as they may yield figures exceeding the actual reserves by tens or even hundreds of times. The existing magnetometres are often insufficiently sensitive and incapable of detecting small commercial processable ore bodies with a weak magnetic anomaly (less than 0.1% of the Earth's field). As regards new large iron ore deposits with strong anomalies, the probabilities of encountering them nowadays are becoming increasingly smaller. Confidence in the good performance and the advantages of the new magnetometres patented by the Magnitogorsk Iron and Steel Works is based on the following considerations: The anomalies' magnetic field is several times stronger than the magnetic field of the Earth; To cite two historical instances, the Sokolovskoye ore deposit in Kazakhstan was discovered in 1949 not by prospectors but by a civil aviation pilot, M.Surgutanov, using an ordinary airplane compass. The Kursk Magnetic Anomaly was discovered in 1778 by Professor I.Inozemtsev using a piece of ore hung on a string. The magnetometres patented by the MMK team, are based on the electromagnetism laws of Ampere, Ohm, Weber, Maxwell and Tesla. The history of magnetic prospecting can be divided into three periods, each of them preceded by a revolution of sorts. The first one occurred in 1910 when the German scientist Schmidt developed an optic mechanical magnetometre which came to be known in Russia as M-2 or "Fanzelau". The second revolution came about in 1936 with the invention by the Russian scientist A.Logachov of an AM-9L aeromagnetometre. The third revolution happened in 1953 when Pickard in the Unuted States (and Tsyrell in 1957 in the Soviet Union) invented a proton and quantum magnetometre. But, having

  6. Mechanical properties of ductile cast iron and cast steel for intermediate level waste transport containers

    International Nuclear Information System (INIS)

    Gray, I.L.S.; Sievwright, R.W.T.; Egid, B.; Ajayi, F.; Donelan, P.

    1994-01-01

    UK Nirex Ltd is developing Type B re-usable shielded transport containers (RSTCs) in a range of shielding thicknesses to transport intermediate level radioactive waste (ILW) to a deep repository. The designs are of an essentially monolithic construction and rely principally on the plastic flow of their material to absorb the energies involved in impact events. Nirex has investigated the feasibility of manufacturing the RSTCs from ductile cast iron (DCI) or cast steel instead of from forgings, since this would bring advantages of reduced manufacturing time and costs. However, cast materials are perceived to lack toughness and ductility and it is necessary to show that sufficient fracture toughness can be obtained to preclude brittle failure modes, particularly at low temperatures. The mechanical testing carried out as part of that programme is described. It shows how the measured properties have been used to demonstrate avoidance of brittle fracture and provide input to computer modelling of the drop tests. (author)

  7. Chloroplast Iron Transport Proteins - Function and Impact on Plant Physiology.

    Science.gov (United States)

    López-Millán, Ana F; Duy, Daniela; Philippar, Katrin

    2016-01-01

    Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field.

  8. The need for iron ore and the environmental Kuznets curve. Spain; 0176 La necesidad del mineral de hierro y la curva de Kuznets ambiental. El caso espanol

    Energy Technology Data Exchange (ETDEWEB)

    Torre de Palacios, L. de la

    2011-07-01

    Firstly, the environmental position of Spain with regard to steel consumption is defined according to the Kuznets curve (EKC) hypothesis. It is essential to undertake a complete environmental assessment of Spanish iron-ore consumption, to study the different steelmaking processes at this moment, emphasising the contribution of the high electric arc furnace. The use of recycled scrap, together with lower CO{sub 2} emissions, have succeeded in establishing Spain in a good environmental situation. (Author) 30 refs.

  9. The search for asbestos within the Peter Mitchell Taconite iron ore mine, near Babbitt, Minnesota.

    Science.gov (United States)

    Ross, Malcolm; Nolan, Robert P; Nord, Gordon L

    2008-10-01

    Asbestos crystallizes within rock formations undergoing intense deformation characterized by folding, faulting, shearing, and dilation. Some of these conditions have prevailed during formation of the taconite iron ore deposits in the eastern Mesabi Iron Range of Minnesota. This range includes the Peter Mitchell Taconite Mine at Babbitt, Minnesota. The mine pit is over 8 miles long, up to 1 mile wide. Fifty three samples were collected from 30 sites within areas of the pit where faulting, shearing and folding occur and where fibrous minerals might occur. Eight samples from seven collecting sites contain significant amounts of ferroactinolite amphibole that is partially to completely altered to fibrous ferroactinolite. Two samples from two other sites contain ferroactinolite degraded to ropy masses of fibers consisting mostly of ferrian sepiolite as defined by X-ray diffraction and TEM and SEM X-ray spectral analysis. Samples from five other sites contain unaltered amphiboles, however some of these samples also contain a very small number of fiber bundles composed of mixtures of grunerite, ferroactinolite, and ferrian sepiolite. It is proposed that the alteration of the amphiboles was caused by reaction with water-rich acidic fluids that moved through the mine faults and shear zones. The fibrous amphiboles and ferrian sepiolite collected at the Peter Mitchell Mine composes a tiny fraction of one percent of the total rock mass of this taconite deposit; an even a smaller amount of these mineral fragments enter the ambient air during mining and milling. These fibrous minerals thus do not present a significant health hazard to the miners nor to those non-occupationally exposed. No asbestos of any type was found in the mine pit.

  10. Report of year 2000 version on basic study for promotion of joint implementation. Feasibility study on energy saving at Anshan Iron and Steel Group Complex

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In order to promote the COP3 joint implementation, a survey was conducted in fiscal 1999 at Anshan Iron and Steel Group Complex in China. The complex is the leading iron and steel maker in China. The unit requirement for energy consumption per ton of crude ore is 7.00 Gcal, which is close to 1.4 times that in Japan. The feasibility study has discussed and planned modification of ignition furnace facilities and waste heat recovery in the sintering process, top-pressure gas recovery at uniform pressure, and top-pressure recovery turbine (TRT) in the blast furnace, based on the locally available data and surveys. The modification of the ignition furnace in the sintering process resulted in reduction of fuel consumption of 578.0 TJ/year in the facility No. 2, and 718.9 TJ/year in the facility No. 3. The amount of electric power generated by the TRT is 121.13 GWh/year assuming the annual blast furnace operation factor of 90%. This can be converted to the heat quantity of 1,370 TJ/year. The top-pressure gas recovery amount is 163 TJ/year when converted to the heat quantity. Annual CO2 reduction amounted to 15,373 tons. The profitability was discussed by using the present worth method. Because of coal price being low and the energy unit price being low in China, it was revealed that the profitability at the private sector level could not be achieved. (NEDO)

  11. Development document for the effluent limitations and guidelines for the ore mining and dressing point source category. Volume I. Final report

    International Nuclear Information System (INIS)

    Jarrett, B.M.; Kirby, R.G.

    1978-07-01

    To establish effluent limitation guidelines and standards of performance, the ore mining and dressing industry was divided into 41 separate categories and subcategories for which separate limitations were recommended. This report deals with the entire metal-ore mining and dressing industry and examines the industry by ten major categories: iron ore; copper ore; lead and zinc ores; gold ore; silver ore; bauxite ore; ferroalloy-metal ores; mercury ores; uranium, radium and vanadium ores; and metal ores, not elsewhere classified ((ores of antimony, beryllium, pltinum, rare earths, tin, titanium, and zirconium). The subcategorization of the ore categories is based primarily upon ore mineralogy and processing or extraction methods employed; however, other factors (such as size, climate or location, and method of mining) are used in some instances. With the best available technology economically achievable, facilities in 21 of the 41 subcategories can be operated with no discharge of process wastewater to navigable waters. No discharge of process wastewater is also achievable as a new source performance standard for facilities in 21 of the 41 subcategories

  12. Determination of metallic iron in sponge-iron

    International Nuclear Information System (INIS)

    Mueller, C.S.

    1974-01-01

    The amount of metallic iron in sponge-iron is a parameter of major interest in the evaluation of the performance of the ore-reduction process and in the determination of the composition of the load of the electric furnace used to produce the steel. Moessbauer effect offers the promise of a simple and elegant analysis method, capable of competing directly with the usually time-consuming chemical procedures. The applicability of the method is considered and the possible sources of error are analyzed, resulting in the design of an instrument that is reasonably accurate and simple to use. Detailed electronic circuity required to produce a direct-reading digital instrument is shown [pt

  13. Manufacturing of concrete with residues from iron ore exploitation using the technology of radioactive waste cementation

    Energy Technology Data Exchange (ETDEWEB)

    Versieux, Juniara L.; Lameiras, Fernando S.; Tello, Cledola Cassia Oliveira de, E-mail: juniarani@gmail.com, E-mail: fsl@cdtn.br, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nucelar (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Radioactive wastes from various segments of economy are immobilized by cementation, because of availability and widespread use in civil construction of cement. New cementitious materials are developed in CDTN using mining residues based on cementing techniques of radioactive wastes. Special procedures were developed to obtain concrete with the use of super plasticizers in which natural sand was totally replaced by mining residues. The motivation for this research is the exploration of banded iron formations (BIF) as iron ore in 'Quadrilatero Ferrifero' of Minas Gerais, where huge amounts of residues are generated with great concern about the environmental sustainability and safety of dams for residue storage. The exploitation of river sand causes many negative impacts, which leads to interest in its replacement by another raw material in mortar and concrete manufacturing. The use of BIF mining residues were studied for manufacturing of concrete pavers to contribute to reducing the impact caused by extraction of natural sand and use of mining residues. Previously developed procedures with total replacement of natural sand for mining residues were modified, including use of gravel to obtain pavers with improved properties. Four different mixtures were tested, in which the proportion of gravel and super plasticizer was varied. Monitored properties of pavers, among others, were compression resistance, water absorption, and void volume. With addition of gravel, the pavers had higher void index than those made only with mortar, and higher resistance to compression after 28 days of curing (an average of 18MPa of those made with mortar to 24MPa of those made with concrete). (author)

  14. Manufacturing of concrete with residues from iron ore exploitation using the technology of radioactive waste cementation

    International Nuclear Information System (INIS)

    Versieux, Juniara L.; Lameiras, Fernando S.; Tello, Cledola Cassia Oliveira de

    2015-01-01

    Radioactive wastes from various segments of economy are immobilized by cementation, because of availability and widespread use in civil construction of cement. New cementitious materials are developed in CDTN using mining residues based on cementing techniques of radioactive wastes. Special procedures were developed to obtain concrete with the use of super plasticizers in which natural sand was totally replaced by mining residues. The motivation for this research is the exploration of banded iron formations (BIF) as iron ore in 'Quadrilatero Ferrifero' of Minas Gerais, where huge amounts of residues are generated with great concern about the environmental sustainability and safety of dams for residue storage. The exploitation of river sand causes many negative impacts, which leads to interest in its replacement by another raw material in mortar and concrete manufacturing. The use of BIF mining residues were studied for manufacturing of concrete pavers to contribute to reducing the impact caused by extraction of natural sand and use of mining residues. Previously developed procedures with total replacement of natural sand for mining residues were modified, including use of gravel to obtain pavers with improved properties. Four different mixtures were tested, in which the proportion of gravel and super plasticizer was varied. Monitored properties of pavers, among others, were compression resistance, water absorption, and void volume. With addition of gravel, the pavers had higher void index than those made only with mortar, and higher resistance to compression after 28 days of curing (an average of 18MPa of those made with mortar to 24MPa of those made with concrete). (author)

  15. Mineralogical test as a preliminary step for metallurgical proses of Kalan ores

    International Nuclear Information System (INIS)

    Affandi, K.

    1998-01-01

    Mineralogical tests as a preliminary step for hydrometallurgy of Kalan ores, including Eko Remaja and Rirang have been carried out to identify the elements and minerals content which affect the metallurgical process, especially the leaching and purification of uranium. Mineralogical tests have been done by means of radioactive and radioluxugraph tests to identify radioactive minerals; thin specimen analysis, Scanning Electron Microscopy (SEM) to identify elements and morphology, EPMA to analyse qualitatively the elements, X-ray Diffractometer (XRD) to identify of minerals content; and X-ray Fluorescence (XRF) and chemical analyses to determine total elements qualitatively and quantitatively. The experimental results show that the Eko Remaja ores contain uraninite and brannerite, iron and titan oxides, sulfides, phosphates and silicates minerals, while the Rirang ores contain uraninite, monazite and molybdenite

  16. Ore controlling oxidized zonation epigenetic uranium-coal deposits and regularities in lignite transformations

    International Nuclear Information System (INIS)

    Uspenskij, V.A.; Kulakova, Ya.M.

    1982-01-01

    Complex of analytical methods was used to study epigenetic transformations in uranium-coal ore manifestation. To clarify the principle scheme of oxidized zonation in coals the materials, related to three similar objects were used. When comparing obtained epigenetic column with columns of similar ore objects the principle scheme of oxidized epigenetic zonation for ancient infiltration uranium-coal deposits was specified; general regularities of eignite transformations and characteristics of profile distribution of uranium and accessory metal zonations were revealed. Infiltration processes, proceeded in coal measureses, formed the steady epigenetic oxidized zonation: O - zone of barren unoxidized coals, 1 - zone of ore-bearing unoxidized coals, 2 - zone of weakly ore-bearing oxidized coals, 3 - zone of oxidized terrigenous rocks with zonules of development of yellow and red iron hydroxides. Capacities of some zones and zonules reflect the intensity and duration of ore-forming processes. Distribution of U and accessory elements obeys completely epigenetic zonation. It is assumed, that ancient infiltration uranium-coal deposits formed due to weakly uranium-bearing oxygen-containing waters

  17. Mechanism and developmental changes in iron transport across the blood-brain barrier.

    Science.gov (United States)

    Morgan, Evan H; Moos, Torben

    2002-01-01

    Transferrin and iron uptake by the brain were measured using [(59)Fe-(125)I]transferrin injected intravenously in rats aged from 15 days to 22 weeks. The values for both decreased with age. In rats aged 18 and 70 days the uptake was measured at short time intervals after the injection. When expressed as the volume of distribution (Vd), which represents the volume of plasma from which the transferrin and iron were derived, the results for iron were greater than those of transferrin as early as 7 min after injection and the difference increased rapidly with time, especially in the younger animals. A very similar time course was found for uptake by bone marrow (femurs) where iron uptake involves receptor-mediated endocytosis of Fe-transferrin, release of iron in the cell and recycling of apo-transferrin to the blood. It is concluded that, during transport of transferrin-bound plasma iron into the brain, a similar process occurs in brain capillary endothelial cells (BCECs) and that transcytosis of transferrin into the brain interstitium is only a minor pathway. Also, the high rate of iron transport into the brain in young animals, when iron requirements are high due to rapid growth of the brain, is a consequence of the level of expression and rate of recycling of transferrin receptors on BCECs. As the animal and brain mature both decrease. Copyright 2002 S. Karger AG, Basel

  18. Evaluation of Social Performance and Related Factors in Iranian Central Iron Ore company workers

    Directory of Open Access Journals (Sweden)

    Gholamhossein Halvani

    2013-01-01

    Full Text Available Introduction: Psychological and social health is the main problems of workers population, which can increase productivity at work and physical and mental health and provide or decline in these aspects. Materials and Methods: this study was descriptive and crosses - sectional and has been performed on 388 Iranian central iron ore company workers. The tool of study was standard GHQ-28 question are that has been measured under social performance scale. Results: 49.3 and 49 percent of the people have favorable and average score from the state of the social function condition and 1.8 percent of people have severe social dysfunction and besides the employees have less work experienced that have more social dysfunction and there is a relationship between the P = 0.026. With satisfaction with the status of social dysfunction (P = 0 and with the consent of the income (P = 0 there is significant relationship. Conclusion: In this study, a significant percentage of mineworkers were not in good condition from health, social functioning. It reveals the importance of addressing health issues and vulnerable working class, Intervention studies conducted by employers to improve job satisfaction and increased income and received social support from him, can increase the health indicators related to the body and mind.

  19. Geochemical investigation of iron transport into bentonite as steel corrodes

    International Nuclear Information System (INIS)

    Hunter, Fiona; Bate, Fiona; Heath, Tim; Hoch, Andrew

    2007-09-01

    some experiments. Using the experimental data as a guide, a modelling investigation has been carried out. The objectives of the modelling investigation were: To develop a geochemical model of the transport of iron into bentonite based on the clear experimental evidence of the penetration of iron into bentonite. To improve our understanding of the desaturation of the bentonite as water is consumed during the corrosion process and the resultant gas(es) escapes. The production of iron from the corroding source was modelled using a rate of gas evolution that had been fitted. It was shown that ion exchange and surface complexation processes do not provide sufficient sorption to predict the high amount of iron observed in the solid phase. Therefore alternative processes, such as iron-containing mineral formation or mineral transformations, were also suggested to account for the amount of iron observed within the bentonite phase. Magnetite was identified as the most thermodynamically stable solubility limiting phase under the experimental conditions. A one-dimensional transport model was constructed to include all relevant processes. The simulations considered the diffusive transport of Fe 2+ ions away from a corroding source, using the rate of gas evolution resulting from the corrosion process. Ion exchange and surface complexation processes were allowed within the bentonite which would provide sorption of iron onto and within the bentonite solid. The pH was buffered by allowing protonation and deprotonation of the surface sites of the bentonite solid. In addition, saturation of iron-containing minerals was permitted. The base case model suggests that about 4.4 wt % of iron could form in the bentonite if the formation of magnetite was allowed. However, the maximum theoretical amount of iron available from the source term is limited to 4.5 wt % of iron by the cumulative gas evolution rate, which is lower than the observed amount of iron in the bulk bentonite (6.6 wt %). A

  20. Geochemical investigation of iron transport into bentonite as steel corrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Fiona; Bate, Fiona; Heath, Tim; Hoch, Andrew [Serco Assurance, Harwe ll (United Kingdom)

    2007-09-15

    some experiments. Using the experimental data as a guide, a modelling investigation has been carried out. The objectives of the modelling investigation were: To develop a geochemical model of the transport of iron into bentonite based on the clear experimental evidence of the penetration of iron into bentonite. To improve our understanding of the desaturation of the bentonite as water is consumed during the corrosion process and the resultant gas(es) escapes. The production of iron from the corroding source was modelled using a rate of gas evolution that had been fitted. It was shown that ion exchange and surface complexation processes do not provide sufficient sorption to predict the high amount of iron observed in the solid phase. Therefore alternative processes, such as iron-containing mineral formation or mineral transformations, were also suggested to account for the amount of iron observed within the bentonite phase. Magnetite was identified as the most thermodynamically stable solubility limiting phase under the experimental conditions. A one-dimensional transport model was constructed to include all relevant processes. The simulations considered the diffusive transport of Fe{sup 2+} ions away from a corroding source, using the rate of gas evolution resulting from the corrosion process. Ion exchange and surface complexation processes were allowed within the bentonite which would provide sorption of iron onto and within the bentonite solid. The pH was buffered by allowing protonation and deprotonation of the surface sites of the bentonite solid. In addition, saturation of iron-containing minerals was permitted. The base case model suggests that about 4.4 wt % of iron could form in the bentonite if the formation of magnetite was allowed. However, the maximum theoretical amount of iron available from the source term is limited to 4.5 wt % of iron by the cumulative gas evolution rate, which is lower than the observed amount of iron in the bulk bentonite (6.6 wt

  1. Geoscientific investigations in the abandoned iron ore mine Konrad for safe disposal of certain radioactive waste categories

    International Nuclear Information System (INIS)

    Brewitz, W.

    1980-01-01

    Besides the disposal of high-active waste in a salt formation the national policy of the Federal Republic of Germany provides for a second underground storage facility for non-α-emitting and low-active waste. Due to the short decay times of such wastes the demands made on the geological barrier are in some respect different, in particular as regards long-term stability and impermeability to liquids. Within the 1000-year-phase all wastes will have reached a concentration with a content of radionuclides far below that of a uranium deposit. The abandoned iron ore mine Konrad (Lower Saxony) has some exceptional geological features which make it a very good choice for a radioactive waste repository. The mine is 1200 m deep. Stopes and galleries are extremely dry. The hanging rock formations are mainly claystones. The mining installations are of modern design. The geological, hydrogeological and geophysical investigations have to examine in detail the covering claystone formations for their extension and mineralization, the origin and the age of the mine's seepage water as well as the mechanical stability of the underground cavities during and after the operational period. Via radiological investigations a catalogue of various low-active waste types, the waste volumina and the total activities accumulating over a period of 30 years is being established. For a safety assessment the hazard indices of a uranium ore deposit containing 0.2 wt% U 3 O 8 and a waste repository corresponding to the above figures were compared. The research programme has not been terminated yet since it is being financed by the Bundesminister fuer Forschung und Technologie (BMFT) of the Federal Republic of Germany until the end of 1981

  2. Digestion of Alumina from Non-Magnetic Material Obtained from Magnetic Separation of Reduced Iron-Rich Diasporic Bauxite with Sodium Salts

    Directory of Open Access Journals (Sweden)

    Guanghui Li

    2016-11-01

    Full Text Available Recovery of iron from iron-rich diasporic bauxite ore via reductive roasting followed by magnetic separation has been explored recently. However, the efficiency of alumina extraction in the non-magnetic materials is absent. In this paper, a further study on the digestion of alumina by the Bayer process from non-magnetic material obtained after magnetic separation of reduced iron-rich diasporic bauxite with sodium salts was investigated. The results indicate that the addition of sodium salts can destroy the original occurrences of iron-, aluminum- and silicon-containing minerals of bauxite ore during reductive roasting. Meanwhile, the reactions of sodium salts with complex aluminum- and silicon-bearing phases generate diaoyudaoite and sodium aluminosilicate. The separation of iron via reductive roasting of bauxite ore with sodium salts followed by magnetic separation improves alumina digestion in the Bayer process. When the alumina-bearing material in bauxite ore is converted into non-magnetic material, the digestion temperature decreases significantly from 280 °C to 240 °C with a nearly 99% relative digestion ratio of alumina.

  3. mRNA Levels of Placental Iron and Zinc Transporter Genes Are Upregulated in Gambian Women with Low Iron and Zinc Status.

    Science.gov (United States)

    Jobarteh, Modou Lamin; McArdle, Harry J; Holtrop, Grietje; Sise, Ebrima A; Prentice, Andrew M; Moore, Sophie E

    2017-07-01

    Background: The role of the placenta in regulating micronutrient transport in response to maternal status is poorly understood. Objective: We investigated the effect of prenatal nutritional supplementation on the regulation of placental iron and zinc transport. Methods: In a randomized trial in rural Gambia [ENID (Early Nutrition and Immune Development)], pregnant women were allocated to 1 of 4 nutritional intervention arms: 1 ) iron and folic acid (FeFol) tablets (FeFol group); 2 ) multiple micronutrient (MMN) tablets (MMN group); 3 ) protein energy (PE) as a lipid-based nutrient supplement (LNS; PE group); and 4 ) PE and MMN (PE+MMN group) as LNS. All arms included iron (60 mg/d) and folic acid (400 μg/d). The MMN and PE+MMN arms included 30 mg supplemental Zn/d. In a subgroup of ∼300 mother-infant pairs, we measured maternal iron status, mRNA levels of genes encoding for placental iron and zinc transport proteins, and cord blood iron levels. Results: Maternal plasma iron concentration in late pregnancy was 45% and 78% lower in the PE and PE+MMN groups compared to the FeFol and MMN groups, respectively ( P Zinc supplementation in the MMN arm was associated with higher maternal plasma zinc concentrations (10% increase; P zinc-uptake proteins, in this case zrt, irt-like protein (ZIP) 4 and ZIP8, were 96-205% lower in the PE+MMN arm than in the intervention arms without added zinc ( P zinc, the placenta upregulates the gene expression of iron and zinc uptake proteins, presumably in order to meet fetal demands in the face of low maternal supply. The ENID trial was registered at www.controlled-trials.com as ISRCTN49285450.

  4. Control of Rock Mechanics in Underground Ore Mining

    Science.gov (United States)

    Golik, V. I.; Efremenkov, A. B.

    2017-07-01

    Performance indicators in underground mining of thick iron fields can be insufficient since geo-mechanic specifics of ore-hosting fields might be considered inadequately, as a consequence, critical deformations and even earth’s surface destruction are possible, lowering the indicators of full subsurface use, this way. The reason for it is the available approach to estimating the performance of mining according to ore excavation costs, without assessing losses of valuable components and damage to the environment. The experimental approach to the problem is based on a combination of methods to justify technical capability and performance of mining technology improvement with regard to geomechanical factors. The main idea of decisions to be taken is turning geo-materials into the condition of triaxial compression via developing the support constructions of blocked up structural rock block. The study was carried out according to an integrated approach based on the analysis of concepts, field observations, and simulation with the photo-elastic materials in conditions of North Caucasus deposits. A database containing information on the deposit can be developed with the help of industrial experiments and performance indicators of the field can be also improved using the ability of ore-hosting fields to develop support constructions, keeping the geo-mechanical stability of the system at lower cost, avoiding ore contamination at the processing stage. The proposed model is a specific one because an adjustment coefficient of natural and anthropogenic stresses is used and can be adopted for local conditions. The relation of natural to anthropogenic factors can make more precise the standards of developed, prepared and ready to excavation ore reserves relying on computational methods. It is possible to minimize critical stresses and corresponding deformations due to dividing the ore field into sectors safe from the standpoint of geo-mechanics, and using less cost

  5. Acid curing and baking of bastnasite ore and concentrate

    International Nuclear Information System (INIS)

    Topkaya, Y.; Akkurt, S.

    1998-01-01

    Full text: In this study, the hydrometallurgical evaluation of a rare earth ore as well as a concentrate obtained from this was done at laboratory. For the mentioned study, a bastnasite type rare earth ore located in Beylikahir in Turkey was used. The total rare earth oxide (REO) content of the deposit was estimated to be 1 million tons with an average concentration of 3.42%REO. The rare earths were contained in bastnasite mineral. The other constituents of the ore were calcium fluoride (52.5%), barite (25.4%), calcite (2.8%) and minor amounts of thorium, iron, manganese, etc. The bastnasite mineral occurred either as cement material between fluoride and barite particles or as intimately associated with these minerals. The rare earth elements were enriched considerably in sub-sieve sizes. After extensive research about the physical concentration of this ore, two different metallurgical routes were followed for the extraction of REE from the ore itself or the preconcentrate obtained by attrition scrubbing and desliming by cyclones. In order to increase the grade of the concentrate, upgrading of the preconcentrate by multigravity was also tried. The two metallurgical routes tested were: Sulphuric acid curing and water leaching; Sulphuric acid baking and subsequent water leaching. The results of the leaching experiments were found to be quite promising. Leach recoveries up to 90% were easily obtainable. In the case of acid baking, hydrofluoric acid recover as a by-product was also possible

  6. Overview of slurry pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, R L

    1982-01-01

    Slurry pipelines have proven to be a technically feasible, environmentally attractive and economic method of transporting finely divided particles over long distances. A pipeline system normally consists of preparation, pipeline and utilization facilities and requires optimization of all three components taken together. A considerable amount of research work has been done to develop hydraulic design of a slurry pipeline. Equipment selection and estimation of corrosion-erosion are considered to be as important as the hydraulic design. Future applications are expected to be for the large-scale transport of coal and for the exploitation of remotely located mineral deposits such as iron ore and copper. Application of slurry pipelines for the exploitation of remotely located mineral deposits is illustrated by the Kudremukh iron concentrate slurry pipeline in India.

  7. Geochemistry of the furnace magnetite bed, Franklin, New Jersey, and the relationship between stratiform iron oxide ores and stratiform zinc oxide-silicate ores in the New Jersey highlands

    Science.gov (United States)

    Johnson, C.A.; Skinner, B.J.

    2003-01-01

    The New Jersey Highlands terrace, which is an exposure of the Middle Proterozoic Grenville orogenic belt located in northeastern United States, contains stratiform zinc oxide-silicate deposits at Franklin and Sterling Hill and numerous massive magnetite deposits. The origins of the zinc and magnetite deposits have rarely been considered together, but a genetic link is suggested by the occurrence of the Furnace magnetite bed and small magnetite lenses immediately beneath the Franklin zinc deposit. The Furnace bed was metamorphosed and deformed along with its enclosing rocks during the Grenvillian orogeny, obscuring the original mineralogy and obliterating the original rock fabrics. The present mineralogy is manganiferous magnetite plus calcite. Trace hydrous silicates, some coexisting with fluorite, have fluorine contents that are among the highest ever observed in natural assemblages. Furnace bed calcite has ??13C values of -5 ?? 1 per mil relative to Peedee belemnite (PDB) and ??18O values of 11 to 20 per mil relative to Vienna-standard mean ocean water (VSMOW). The isotopic compositions do not vary as expected for an original siderite layer that decarbonated during metamorphism, but they are consistent with nearly isochemical metamorphism of an iron oxide + calcite protolith that is chemically and minerlogically similar to iron-rich sediments found near the Red Sea brine pools and isotopically similar to Superior-type banded iron formations. Other magniferous magnite + calcite bodies occur at approximately the same stratigraphic position as far 50 km from the zinc deposits. A model is presented in which the iron and zinc deposits formed along the western edge of a Middle Proterozoic marine basin. Zinc was transported by sulfate-stable brines and was precipitated under sulfate-stable conditions as zincian carbonates and Fe-Mn-Zn oxides and silicates. Whether the zincian assemblages settled from the water column or formed by replacement reactions in shallowly

  8. Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology.

    Science.gov (United States)

    Skjørringe, Tina; Burkhart, Annette; Johnsen, Kasper Bendix; Moos, Torben

    2015-01-01

    Iron is required in a variety of essential processes in the body. In this review, we focus on iron transport in the brain and the role of the divalent metal transporter 1 (DMT1) vital for iron uptake in most cells. DMT1 locates to cellular membranes and endosomal membranes, where it is a key player in non-transferrin bound iron uptake and transferrin-bound iron uptake, respectively. Four isoforms of DMT1 exist, and their respective characteristics involve a complex cell-specific regulatory machinery all controlling iron transport across these membranes. This complexity reflects the fine balance required in iron homeostasis, as this metal is indispensable in many cell functions but highly toxic when appearing in excess. DMT1 expression in the brain is prominent in neurons. Of serious dispute is the expression of DMT1 in non-neuronal cells. Recent studies imply that DMT1 does exist in endosomes of brain capillary endothelial cells denoting the blood-brain barrier. This supports existing evidence that iron uptake at the BBB occurs by means of transferrin-receptor mediated endocytosis followed by detachment of iron from transferrin inside the acidic compartment of the endosome and DMT1-mediated pumping iron into the cytosol. The subsequent iron transport across the abluminal membrane into the brain likely occurs by ferroportin. The virtual absent expression of transferrin receptors and DMT1 in glial cells, i.e., astrocytes, microglia and oligodendrocytes, suggest that the steady state uptake of iron in glia is much lower than in neurons and/or other mechanisms for iron uptake in these cell types prevail.

  9. Beneficiation strategy for some low grade ores of strategic metals in India

    International Nuclear Information System (INIS)

    Krishna Rao, N.

    1997-01-01

    In developing indigenous resources of strategic metals, beneficiation strategy has a major role to play, particularly where the ores are of low tenor. Presently India imports most of its requirements of metals like tin, tungsten, molybdenum, nickel and cobalt. In all these cases important low grade resources occur in the country. Beneficiation strategy necessary for exploitation of these deposits are discussed based mainly on vast batch and semi plant scale data generated in the Ore Dressing Section of Bhabha Atomic Research Centre. Also discussed is the case of strategic metal uranium where, in certain cases pre-concentration by beneficiation has the potential to make it feasible the exploitation of otherwise difficult to process ore resources. (author)

  10. The recovery of gold from refractory ores by the use of carbon-in-chlorine leaching

    Science.gov (United States)

    Greaves, John N.; Palmer, Glenn R.; White, William W.

    1990-09-01

    Recently, the U.S. Bureau of Mines examined the recovery of gold by chlorination of refractory carbonaceous and sulfidic ores, comparing various treatment methods in which a ground ore pulp is contacted with chlorine gas and activated carbon is added to the pulp for a carbon-in-chlorine leach (CICL). The objective of this research was to demonstrate the basic feasibility of CICL technology. Results showed that the organic carbon deactivating environment of CICL lowers, but does not eliminate, the adsorption of gold on activated carbon. In this environment, the refractory ore is altered, and gold is extracted and then recovered on activated carbon. With highly carbonaceous ores, CICL achieved a higher recovery than with primarily sulfidic refractory ores. Basic cyanide amenability testing of two carbonaceous ores achieved recoveries of only 5.5% and 46%. With CICL treatment, recoveries on carbon were 90% and 92%.

  11. Sintering-alkaline processing of borosilicate ores of Tajikistan

    International Nuclear Information System (INIS)

    Nazarov, F.A.

    2018-01-01

    The aim of the work is to study the processes of decomposition of boron-containing ore by sintering with NaOH, finding the optimal parameters of the decomposition process, studying the kinetics of processes and developing the technological foundations for ore processing. The processes of borosilicate ore processing were studied by sintering with NaOH. Possible mechanisms of chemical reactions of the process of sintering-alkaline decomposition of boron-containing ore are established, the results of which are substantiated by physicochemical methods of analysis. A principal technological scheme for processing of borosilicate ores by a sintering-alkaline method has been developed. In the first chapter, data on alkaline and caking processes for processing boron-containing and aluminium comprising raw materials are available in the literature. Based on this, the directions of our own research are outlined. The second chapter is devoted to the study of the chemical and mineralogical compositions of borosilicate ores and their concentrates with the help of X-ray phase and chemical analysis methods, the stoichiometric calculation of the formation of aluminum, iron, and boron salts has been carried out, and a thermodynamic analysis of the processes of sintering borosilicate ores with alkali has been considered. The third chapter presents the results of a study of sintering-alkaline method of processing of initial borosilicate ore of the Ak-Arkhar Deposit and its concentrate without calcination and after calcination. The kinetics of sintering of borosilicate ores with sodium hydroxide was studied. The optimal conditions of borosilicate ore sintering before and after the preliminary calcination with alkali were determined. Optimal parameters of the sintering process have been found: sintering temperature 800-8500 deg C, duration of the process - 60 minutes, mass ratio of NaOH to raw materials 2: 1. The conditions for sintering of borosilicate concentrate with alkali have been

  12. The physical hydrogeology of ore deposits

    Science.gov (United States)

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  13. Next Generation Metallic Iron Nodule Technology in Electric Arc Steelmaking - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Donald R. Fosnacht; Iwao Iwasaki; Richard F. Kiesel; David J. Englund; David W. Hendrickson; Rodney L. Bleifuss

    2010-12-22

    The current trend in the steel industry is a gradual decline in conventional steelmaking from taconite pellets in blast furnaces, and an increasing number of alternative processes using metallic scrap iron, pig iron and metallized iron ore products. Currently, iron ores from Minnesota and Michigan are pelletized and shipped to the lower Great Lakes ports as blast furnace feed. The existing transportation system and infrastructure is geared to handling these bulk materials. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the needs of the emerging steel industry while utilizing the existing infrastructure and materials handling. A recent commercial installation employing Kobe Steel’s ITmk3 process, was installed in Northeastern Minnesota. The basic process uses a moving hearth furnace to directly reduce iron oxides to metallic iron from a mixture of iron ore, coals and additives. The resulting products can be shipped using the existing infrastructure for use in various steelmaking processes. The technology reportedly saves energy by 30% over the current integrated steelmaking process and reduces emissions by more than 40%. A similar large-scale pilot plant campaign is also currently in progress using JFE Steel’s Hi-QIP process in Japan. The objective of this proposal is to build upon and improve the technology demonstrated by Kobe Steel and JFE, by further reducing cost, improving quality and creating added incentive for commercial development. This project expands previous research conducted at the University of Minnesota Duluth’s Natural Resources Research Institute and that reported by Kobe and JFE Steel. Three major issues have been identified and are addressed in this project for producing high-quality nodular reduced iron (NRI) at low cost: (1) reduce the processing temperature, (2) control the furnace gas atmosphere over the NRI, and (3) effectively use sub

  14. Geology, Geochemistry and Ground Magnetic Survey on Kalateh Naser Iron Ore Deposit, Khorasan Jonoubi Province

    Directory of Open Access Journals (Sweden)

    Saeed Saadat

    2017-02-01

    Full Text Available Introduction Ground magnetometer surveys is one of the oldest geophysical exploration methods used in identifying iron reserves. The correct interpretation of ground magnetic surveys, along with geological and geochemical data will not only reduce costs but also to indicate the location, depth and dimensions of the hidden reserves of iron (Robinson and Coruh, 2005; Calagari, 1992. Kalateh Naser prospecting area is located at 33° 19َ to 33° 19ََ 42" latitude and 60° 0' to 60° 9َ 35" longitude in the western side of the central Ahangaran mountain range, eastern Iran (Fig.1. Based on primary field evidences, limited outcrops of magnetite mineralization were observed and upon conducting ground magnetic survey, evidence for large Iron ore deposits were detected (Saadat, 2014. This paper presents the geological and geochemical studies and the results of magnetic measurements in the area of interest and its applicability in exploration of other potential Iron deposits in the neighboring areas. Materials and methods To better understand the geological units of the area, samples were taken and thin sections were studied. Geochemical studies were conducted through XRF and ICP-Ms and wet chemistry analysis. The ground magnetic survey was designed to take measurements from grids of 20 meter apart lines and 10 meter apart points along the north-south trend. 2000 points were measured during a 6-day field work by expert geophysicists. Records were made by Canadian manufactured product Magnetometer Proton GSM19T (Fig. 2. Properties of Proton Magnetometer using in magnetic survey in Kalateh Naser prospecting area is shown in Table 1. Total magnetic intensity map, reduced to pole magnetic map, analytic single map, first vertical derivative map and upward continuation map have been prepared for this area. Results The most significant rock units in the area are cretaceous carbonate rocks (Fig. 3. The unit turns to shale and thin bedded limestone in the

  15. Chemical Degradation and Processes of Erosion of Post-Mine Territories After Mining Exploration of Iron Ore

    Directory of Open Access Journals (Sweden)

    Agnieszka Pusz

    2017-11-01

    Full Text Available The subjects of this study were uncultivated mining waste heaps which are remnants of the territories abandoned after the exploration of iron ore. The aim of this analysis was the assessment of the influence of these objects on the soil located in the nearest surroundings, as well as estimation of the level of their degradation. It was ascertained that direct geomechanical degradation exists in the examined object, which is connected with soil profile destruction in consequence of transformation of hitherto existing geomorphological conditions, deformation of natural shape of territory, density of soil levels and deformation of the spatial layout. As a result of the examination, it was pointed out that chemical degradation as well as degradation of ecological structure occur on the analyzed territory. Progressing processes of water erosion on the side of waste heap are the consequence of improperly profiled, steep slopes causing the uncontrolled flow of rainwater, lack of flora and dense, micrograiny structure of soils which prevents the effective infiltration of water. Penetration of water into the ground causes the creation of channels which, in dry periods, can become additional pathways for the possible landslides.

  16. The effect of human resource practices on psychological contracts at an iron ore mining company in South Africa

    Directory of Open Access Journals (Sweden)

    Caren B. Scheepers

    2011-08-01

    Full Text Available Orientation: Human resource practices influence the psychological contract between employee and employer and, ultimately, organisational performance. Research purpose: The objective of this study was to examine the effect of human resource practices on the types of psychological contracts in an iron ore mining company in South Africa empirically. Motivation for the study: Although there have been a number of conceptual studies on the effect of human resource practices on psychological contracts, there has been no effort to synthesise the links between these contracts and various human resource practices systematically. This study endeavoured to provide quantitative evidence to verify or refute conceptual studies on this relationship. Its findings could inform human resource strategies and, ultimately, the prioritisation of human resource practices to improve the cost-effective allocation of resources. Research design, approach and method: The researchers administered two questionnaires. These were Rousseau’s Psychological Contract Inventory (2000 and the Human Resource Practices Scale of Geringer, Colette and Milliman (2002. The researchers conducted the study with 936 knowledge workers at an iron ore mining company in South Africa. They achieved a 32% response rate. Main findings: The findings showed that most participants have relational contracts with the organisation. Another 22% have balanced contracts, 8% have transitional contracts whilst only 1% have transactional contracts. The study suggests that there are relationships between these psychological contracts and specific human resource practices. The study found that training and development was the most important human resource practice for developing relational and balanced contracts. Employees thought that they contributed more than their employer did to the relationship. The researchers developed a model to illustrate the influence of the various human resource practices on

  17. Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum

    International Nuclear Information System (INIS)

    Tiraferri, Alberto; Sethi, Rajandrea

    2009-01-01

    In order to ensure adequate mobility of zerovalent iron nanoparticles in natural aquifers, the use of a stabilizing agent is necessary. Polymers adsorbed on the nanoparticle surface will give rise to electrosteric stabilization and will decrease attachment to the surface soil grains. Water saturated sand-packed columns were used in this study to investigate the transport of iron nanoparticle suspensions, bare or modified with the green polymer guar gum. The suspensions were prepared at 154 mg/L particle concentration and 0.5 g/L polymer concentration. Transport experiments were conducted by varying the ionic strength, ionic composition, and approach velocity of the fluid. Nanoparticle deposition rates, attachment efficiencies, and travel distances were subsequently calculated based on the classical particle filtration theory. It was found that bare iron nanoparticles are basically immobile in sandy porous media. In contrast, guar gum is able to ensure significant nanoparticle transport at the tested conditions, regardless of the chemistry of the solution. Attachment efficiency values for guar gum-coated nanoparticles under the various conditions tested were smaller than 0.066. Although the calculated travel distances may not prove satisfactory for field application, the investigation attested the promising role of guar gum to ensure mobility of iron nanoparticles in the subsurface environment.

  18. Iron is a substrate of the Plasmodium falciparum chloroquine resistance transporter PfCRT in Xenopus oocytes.

    Science.gov (United States)

    Bakouh, Naziha; Bellanca, Sebastiano; Nyboer, Britta; Moliner Cubel, Sonia; Karim, Zoubida; Sanchez, Cecilia P; Stein, Wilfred D; Planelles, Gabrielle; Lanzer, Michael

    2017-09-29

    The chloroquine resistance transporter of the human malaria parasite Plasmodium falciparum , PfCRT, is an important determinant of resistance to several quinoline and quinoline-like antimalarial drugs. PfCRT also plays an essential role in the physiology of the parasite during development inside erythrocytes. However, the function of this transporter besides its role in drug resistance is still unclear. Using electrophysiological and flux experiments conducted on PfCRT-expressing Xenopus laevis oocytes, we show here that both wild-type PfCRT and a PfCRT variant associated with chloroquine resistance transport both ferrous and ferric iron, albeit with different kinetics. In particular, we found that the ability to transport ferrous iron is reduced by the specific polymorphisms acquired by the PfCRT variant as a result of chloroquine selection. We further show that iron and chloroquine transport via PfCRT is electrogenic. If these findings in the Xenopus model extend to P. falciparum in vivo , our data suggest that PfCRT might play a role in iron homeostasis, which is essential for the parasite's development in erythrocytes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Heap-leaching of low-grade uranium ore at SOMAIR: from laboratory tests to production of 700 tonnes U per year

    Energy Technology Data Exchange (ETDEWEB)

    Durupt, N.; Blanvillain, J.J., E-mail: nicolas.durupt@areva.com [AREVA NC, Service d' Etudes de Procedes et d' Analyses (SEPA), Bessines sur Gartempe (France)

    2010-07-01

    In 2006, SOMAIR decided to increase the uranium production by 50% using heap leaching for the treatment of low grade ores. These ores, which come from different ores with various properties, have been studied in four steps: Lab tests: to compare the ores (characterization, acid consumptions, recovery); Column tests on an average sample: to define significant parameters for a feasibility study; Column tests on specific samples: to optimize recovery for each ore and identify problems of percolation due to the clays; and, Pilot tests in large boxes (stalls): to validate process parameters. Uranium production by heap leaching started commercially in July 2009. (author)

  20. Possible evidence for transport of an iron cyanide complex by plants

    International Nuclear Information System (INIS)

    Samiotakis, M.; Ebbs, S.D.

    2004-01-01

    Barley (Hordeum vulgare L.), oat (Avena sativa L.), and wild cane (Sorghum bicolor L.), were exposed to 15 N-labeled ferrocyanide to determine whether these plant species can transport this iron cyanide complex. Plants were treated with ferrocyanide in a nutrient solution that simulated iron cyanide contaminated groundwater and soil solutions. This nutrient solution has been shown to maintain ferrocyanide speciation with minimal dissociation to free cyanide. Following treatment, all three plants showed dramatic enrichments in roots (δ 15 N%o=1000-1500) and shoots (δ 15 N%o=500). Barley and oat showed enrichment primarily in roots while wild cane showed a near equal enrichment in root and shoot tissues. Nitrogen-deficient barley plants treated with ferrocyanide showed a significantly greater 15 N enrichment as compared to nitrogen-sufficient plants. While the results are suggestive of ferrocyanide transport by these plant species, additional study will be required to verify these results. - Results suggest ferrocyanide transport by barley, oat and wild cane

  1. Possible evidence for transport of an iron cyanide complex by plants

    Energy Technology Data Exchange (ETDEWEB)

    Samiotakis, M.; Ebbs, S.D

    2004-01-01

    Barley (Hordeum vulgare L.), oat (Avena sativa L.), and wild cane (Sorghum bicolor L.), were exposed to {sup 15}N-labeled ferrocyanide to determine whether these plant species can transport this iron cyanide complex. Plants were treated with ferrocyanide in a nutrient solution that simulated iron cyanide contaminated groundwater and soil solutions. This nutrient solution has been shown to maintain ferrocyanide speciation with minimal dissociation to free cyanide. Following treatment, all three plants showed dramatic enrichments in roots ({delta} {sup 15}N%o=1000-1500) and shoots ({delta} {sup 15}N%o=500). Barley and oat showed enrichment primarily in roots while wild cane showed a near equal enrichment in root and shoot tissues. Nitrogen-deficient barley plants treated with ferrocyanide showed a significantly greater {sup 15}N enrichment as compared to nitrogen-sufficient plants. While the results are suggestive of ferrocyanide transport by these plant species, additional study will be required to verify these results. - Results suggest ferrocyanide transport by barley, oat and wild cane.

  2. Geometric feasibility of flexible cask transportation system for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Lima, P; Ribeiro, M I; Aparicio, P [Instituto Superior Tecnico-Instituto de Sistemas e Robotica, Lisboa (Portugal)

    1998-07-01

    One of the remote operations that has to be carried out in the International Thermonuclear Experimental Reactor (ITER) is the transportation of sealed casks between the various ports of the Tokamak Building (TB) and the Hot Cell Building (HCB). The casks may contain different in-vessel components (e.g. blanket modules, divertors) and are designed for a maximum load of about 80 ton. To improve the safety and flexibility of ITER Remote Handling (RH) transport vehicles, the cask is not motorized by itself, but instead, a motorized platform carrying the cask was proposed. This paper addresses the geometric feasibility of the flexible cask transportation system, taking into account the vehicle kinematics. The feasibility issues studied include planning smooth paths to increase safety, the discussion of building constraints by the evaluation of the vehicle spanned areas when following a planned path, and the analysis of the clearance required to remove the platform from underneath the cask at different possible failure locations. Simulation results are presented for the recommended trajectory, the spanned area and the rescue manoeuvres at critical locations along the path. (authors)

  3. Geometric feasibility of flexible cask transportation system for ITER

    International Nuclear Information System (INIS)

    Lima, P.; Ribeiro, M.I.; Aparicio, P.

    1998-01-01

    One of the remote operations that has to be carried out in the International Thermonuclear Experimental Reactor (ITER) is the transportation of sealed casks between the various ports of the Tokamak Building (TB) and the Hot Cell Building (HCB). The casks may contain different in-vessel components (e.g. blanket modules, divertors) and are designed for a maximum load of about 80 ton. To improve the safety and flexibility of ITER Remote Handling (RH) transport vehicles, the cask is not motorized by itself, but instead, a motorized platform carrying the cask was proposed. This paper addresses the geometric feasibility of the flexible cask transportation system, taking into account the vehicle kinematics. The feasibility issues studied include planning smooth paths to increase safety, the discussion of building constraints by the evaluation of the vehicle spanned areas when following a planned path, and the analysis of the clearance required to remove the platform from underneath the cask at different possible failure locations. Simulation results are presented for the recommended trajectory, the spanned area and the rescue manoeuvres at critical locations along the path. (authors)

  4. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-12-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore

  5. Radon risk in ore miners

    International Nuclear Information System (INIS)

    Beno, M.

    1997-01-01

    Underground workers are exposed to various clastogenic agents. One of these agents, radon, attracts attention of recent research as it causes lung cancer in the population occupationally exposed to its various concentrations especially in mine air of uranium mines or ore mines. This paper is a pilot study in which the numbers of chromosomal aberrations (CA) in lymphocytes of ore mines (Nizna Slana-iron ore, Hnusta-talc ore) located in east central Slovakia were followed and related to the lifetime underground radon exposure and to lifetime smoking. Seventy miners volunteering after an informed consent served as donors of venous blood. Twenty healthy pro-bands, age matched with the miners, which never worked underground (mostly clerks) served as donors of control blood samples. The exposure to radon and smoking has been estimated according to working-records and personal anamnesis. The findings unequivocally showed a small but statistically significant clastogenic effect of the exposure to underground environment of the mines concerned. This study has shown also a small but significant influence of smoking, which in the subgroup of miners working underground less than 1500 shifts may have acted synergically with the underground exposure. It was concluded tat: (1) Significantly higher counts of chromosomal aberrations in lymphocytes of 70 miners than in an age matched control group of 20 white-collar workers were found; (2) The higher counts of chromosomal aberrations could be ascribed to underground exposure of miners and to smoking; (3) The positive dependence of the number of chromosomal aberrations from the exposure to smoking was loose and it was expressed by significantly higher chromosomal aberrations counts in the group of miners working less than 1500 shifts underground; (4) A dependence of chromosomal aberrations counts from the exposure to radon could not be assessed. At relatively low numbers of pro-bands in subgroups it was not ruled out the confounding

  6. Enumeration and characterization of microorganisms associated with the uranium ore deposit at Cigar Lake, Canada. Informal report

    International Nuclear Information System (INIS)

    Francis, A.J.; Joshi-Tope, G.; Gillow, J.B.; Dodge, C.J.

    1994-03-01

    The high-grade uranium deposit at Cigar Lake, Canada, is being investigated as a natural analog for the disposal of nuclear fuel waste. Geochemical aspects of the site have been studied in detail, but the microbial ecology has not been fully investigated. Microbial populations in an ore sample and in groundwater samples from the vicinity of the ore zone were examined to determine their effect on uranium mobility. Counts of the total number of bacteria and of respiring bacteria were obtained by direct microscopy, and the viable aerobic and anaerobic bacteria were assessed as colony forming units (CFUs) by the dilution plating technique. In addition, the population distribution of denitrifiers, fermenters, iron- and sulfur-oxidizers, iron- and sulfate-reducers, and methanogens was determined by the most probable number (MPN) technique

  7. Advantage of uranium contained in low grade dolomite ore

    International Nuclear Information System (INIS)

    Carneiro, A.L.M.

    1988-01-01

    The purpose of this work is to investigate a technological route to recover uranium from a lean mineral ore. The experimental work includes studies concerning calcination, carbonate leaching, settling, filtration and resin-ion-exchange. Experimental data confirm the technological feasibility of the proposed process and two different preliminary flowsheets of a pilot plant were suggested. (author) [pt

  8. Development and application of an instrument for analysis of iron in laterite ore with the characteristics needed for use in nickel production. Part of a coordinated programme on on-line X-ray and neutron techniques for industrial process control

    International Nuclear Information System (INIS)

    Vizoso, J.R.

    1980-06-01

    This document describes the performance testing of an instrument for the analysis of iron laterite ore used in the production of nickel. It proved to give satisfactory results with an error less or equal to 1% under working conditions (20 0 C - 40 0 C, 80% - 85% relative humidity)

  9. Pilot plant studies on the extraction of antimony metal from lower grade krinj stibnite ore

    International Nuclear Information System (INIS)

    Rehman, W.; Riaz, M.; Ishaq, M.

    2013-01-01

    Antimony is a silvery white, brittle and crystalline solid which is extensively consumed in lead acid batteries, antimonial lead alloys, flame retardants and a variety of metallic products. The antimony content of commercial ores range from 5-60% and determines the method of extraction, either pyrometallurgical or hydrometallurgical. The present study focuses on pilot plant scale extraction of antimony metal from lower grade stibnite ore of Krinj (Chitral) without the use of iron scrap, thus eliminating the second step of iron removal in conventional direct reduction method. A tilting gas fired furnace with digital temperature control system and a heat recuperator was designed to optimize the operating parameters for extraction of antimony metal. Weight ratios of flux and reductant, operating time and operating temperature were optimized. Highest percentage recovery and purity were achieved using soda ash as a flux, at a temperature of 900 degree C for 2 hours. (author)

  10. Role of the Fur regulon in iron transport in Bacillus subtilis.

    Science.gov (United States)

    Ollinger, Juliane; Song, Kyung-Bok; Antelmann, Haike; Hecker, Michael; Helmann, John D

    2006-05-01

    The Bacillus subtilis ferric uptake regulator (Fur) protein mediates the iron-dependent repression of at least 20 operons encoding approximately 40 genes. We investigated the physiological roles of Fur-regulated genes by the construction of null mutations in 14 transcription units known or predicted to function in siderophore biosynthesis or iron uptake. We demonstrate that ywbLMN, encoding an elemental iron uptake system orthologous to the copper oxidase-dependent Fe(III) uptake system of Saccharomyces cerevisiae, is essential for growth in low iron minimal medium lacking citric acid. 2,3-Dihydroxybenzoyl-glycine (Itoic acid), the siderophore precursor produced by laboratory strains of B. subtilis, is of secondary importance. In the presence of citrate, the YfmCDEF ABC transporter is required for optimal growth. B. subtilis is unable to grow in minimal medium containing the iron chelator EDDHA unless the ability to synthesize the intact bacillibactin siderophore is restored (by the introduction of a functional sfp gene) or exogenous siderophores are provided. Utilization of the catecholate siderophores bacillibactin and enterobactin requires the FeuABC importer and the YusV ATPase. Utilization of hydroxamate siderophores requires the FhuBGC ABC transporter together with the FhuD (ferrichrome) or YxeB (ferrioxamine) substrate-binding proteins. Growth with schizokinen or arthrobactin is at least partially dependent on the YfhA YfiYZ importer and the YusV ATPase. We have also investigated the effects of a fur mutation on the proteome and documented the derepression of 11 Fur-regulated proteins, including a newly identified thioredoxin reductase homolog, YcgT.

  11. Status report from USSR [Processing of Low-Grade Uranium Ores]; Doklad o sostoyanii voprosa v SSSR

    Energy Technology Data Exchange (ETDEWEB)

    Zefirov, A P [Gosudarstvennyj Komitet Po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moskva, Union of Soviet Socialist Republics (Russian Federation)

    1967-06-15

    The uranium industry for processing poor uranium ores in the USSR was established in recent years. As a result of research work institutions and enterprises in the development of this industry was provided by rapid technological advances that allowed dramatically increased productivity, reduced consumption of reagents, simplified process flow diagrams, and reduced production costs. At present, the basis for uranium industry, including and poor uranium ore deposits in the USSR are with different content valuable components (uranium, phosphorus, molybdenum, rare earth elements, thorium, iron, .. .)

  12. Geochemistry of some banded iron-formations of the archean ...

    Indian Academy of Sciences (India)

    Diagenetic fluids from the sea floor sediments and river water might have played .... (in wt%) of the banded iron-formations of Archaean supracrustal belts (Iron Ore Group) of Jharkhand–Orissa region. Gandhamardan. Deo river section. H/1/1 H/1/2 H/1/3 H/1/4 H/1/5 .... indicate that contamination by pyroclastic debris.

  13. Recovery of manganese from manganese oxide ores in the EDTA solution

    Science.gov (United States)

    Zhang, Chao; Wang, Shuai; Cao, Zhan-fang; Zhong, Hong

    2018-04-01

    A new process has been experimentally and theoretically established for the recovery of manganese from manganese oxide ores, mainly including the reductive leaching of manganese by ethylenediaminetetraacetic acid (EDTA), EDTA recovery, and manganese electrolysis. The experimental conditions for this process were investigated. Moderate leaching environment by EDTA with the pH in the range of 5-6 is of benefit to leach manganese from some manganese oxide ores with high-content impurities, such as iron and aluminum. Most of EDTA can be recovered by acidification. A small amount of the residual EDTA in the electrolyte can prevent the generation of anode mud. In addition, trimanganese tetroxide (Mn3O4) can be obtained by the roasting of the EDTA-Mn crystallized product.

  14. Integrity of the iron transport process in mice with X-linked anaemia

    International Nuclear Information System (INIS)

    Thomson, A.B.R.; Valberg, L.S.

    1975-01-01

    The defect in iron (Fe) absorption in X-linked anaemia (sla) remains an enigma; absorption of a tracer dose of Fe is impaired in mice raised on an iron-containing cube diet but not in those raised on an iron-deficient diet. Because cobalt (Co) shares a similar intestinal transport pathway with Fe, a study was made of the effect of iron deficient diet on Co absorption. The duodenum of sla and genetically normal mice was perfused for 30 min with labelled solutions containing Co or Fe. Co uptake and transfer were similar in sla and normals fed cubes whereas Fe uptake and transfer were less in sla than in normals. The iron deficient diet caused an increase in the uptake and transfer of Co and Fe in sla and normals. When Co and Fe were perfused together in sla fed deficient diet, the uptake and transfer of each metal was less than when perfused alone. The distribution of Fe and Co in subcellular mucosal fractions was determined by a differential centrifugation technique. Deficient diet resulted in a directionally similar change in the subcellular distribution of Co and Fe in sla and normals. The increase in Co as well as Fe absorption in the sla on an iron deficient diet to the same high level found in genetically normal animals, and the inhibitory effect of each metal on the absorption of the other suggests that the absorption defect in sla is unlikely to be due to a primary defect in the function of the transport carrier. (author)

  15. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California

    Science.gov (United States)

    Sobron, Pablo; Alpers, Charles N.

    2013-01-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  16. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California.

    Science.gov (United States)

    Sobron, Pablo; Alpers, Charles N

    2013-03-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  17. Discovery of a Novel Cationic Surfactant: Tributyltetradecyl-Phosphonium Chloride for Iron Ore Flotation: From Prediction to Experimental Verification

    Directory of Open Access Journals (Sweden)

    Pan Chen

    2017-12-01

    Full Text Available In this work, tributyltetradecyl-phosphonium chloride (TTPC, has been first introduced to be a novel and efficient cationic surfactant for cationic reverse flotation separation of quartz from magnetite. The first-principles density functional theory calculations, Zeta potential measurements and adsorption isotherm measurements consistently predict that TTPC may be a promising collector that is better than dodecyl triethyl ammonium chloride (DTAC, based on the facts that TTPC and DTAC both prefer to physically adsorb on the quartz surface owing to electrostatic force, but the active part (P+(C4H93 of TTPC takes much more positive charges than that (N+(CH33 of DTAC. The micro-flotation and Bench-scale flotation results further verify that TTPC presents a stronger collecting power and much better selectivity for iron ore reverse flotation in comparison to the conventional collector DTAC. Furthermore, the corresponding adsorption mechanism of TTPC on the quartz have also been investigated in detail. This work might show a good example to discover a potential candidate collector by analogy with a known excellent collector based on reasonable prediction.

  18. Thorium content of a mineral ore from Morro do Ferro by fission track technique

    International Nuclear Information System (INIS)

    Oliveira, C.A.N. de.

    1980-10-01

    The feasibility to determine thorium concentrations by fission track technique in samples of mineral ore has been demonstrated. The literature registers only the application of the fission track technique to mineral ore in the case where the fissionable element is uranium. The technique was applied to determine the thorium concentration of an ore sample from Morro do Ferro, taking advantage of the high thorium to uranium ratio in that mineral. The sample analysed presented a thorium concentration of 2467 +- 400 mg Th/Kg ore. The so called wet method was adopted by using the Bayer made Makrofol KG 10μm thick, as the detector foil, immersed in the thorium solution. The technique is also useful to determine thorium concentrations in environmental samples because of the following aspects: high sensitivity; fast chemical separation of interfering elements; low cost; and operational simplicity. (Author) [pt

  19. New route for uranium concentrate production from Caetite ore, Bahia State, Brazil; dynamic leaching - direct precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Carlos A. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: cmorais@cdtn.br; Gomiero, Luiz A.; Scassiotti Filho, Walter [Industrias Nucleares do Brasil S.A. (INB), Caetite, BA (Brazil)]. E-mails: gomiero@inb.gov.br; scassiotti@inb.gov.br

    2007-07-01

    The common uranium concentrate production consists of ore leaching, uranium purification/concentration by solvent extraction and uranium precipitation as ammonium diuranate steps. In the present work, a new route of uranium concentrate production from Caetite, BA-Brazil ore was investigated. The following steps were investigated: dynamic leaching of the ground ore with sulfuric acid; sulfuric liquor pre-neutralization until pH 3.7; uranium peroxide precipitation. The study was carried out in bath and continuous circuits. In the dynamic leaching of ground ore in agitated tanks the uranium content in the leached ore may be as low as 100 {mu}g/g U{sub 3}O{sub 8}, depending on grinding size. In the pre-neutralization step, the iron content in the liquor is decreased in 99 wt.%, dropping from 3.62 g/L to 0.030 g/L. The sulfate content in the liquor reduces from 46 g/L to 22 g/L. A calcinated final product assaying 99.7 wt.% U{sub 3}O{sub 8} was obtained. The full process recovery was over 94%. (author)

  20. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  1. Unintentional production of persistent chlorinated and brominated organic pollutants during iron ore sintering processes.

    Science.gov (United States)

    Li, Sumei; Liu, Guorui; Zheng, Minghui; Liu, Wenbin; Li, Jinhui; Wang, Mei; Li, Changliang; Chen, Yuan

    2017-06-05

    Iron ore sintering (SNT) processes are major sources of unintentionally produced chlorinated persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polychlorinated naphthalenes (PCNs). However, few studies of emissions of brominated POPs, such as polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) and polybrominated diphenyl ethers (PBDEs), during SNT have been performed. Stack gas and fly ash samples from six typical SNT plants in China were collected and analyzed to determine the concentrations and profiles of PCDD/Fs, PCBs, PCNs, PBDD/Fs, and PBDEs, as well as any correlations among these compounds. The PCDD/F, PCB, PCN, PBDD/F, and PBDE emission factors were 2.47, 0.61, 552, 0.32, and 107μgt -1 , respectively (109, 4.07, 10.4, 4.41 and 0.02ng toxic equivalents t -1 , respectively). PCBs were the most abundant compounds by mass, while PCNs were the next most abundant, contributing 51% and 42% to the total POP concentration, respectively. However, PCDD/Fs were the dominant contributors to the chlorinated and brominated POP toxic equivalent concentrations, contributing 89% to the total toxic equivalent concentration. The PCDD/F and other chlorinated and brominated POP concentrations were positively correlated, indicating that chlorinated and brominated POP emissions could be synergistically decreased using the best available technologies/best environmental practices already developed for PCDD/Fs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Advances and Opportunities in Ore Mineralogy

    Directory of Open Access Journals (Sweden)

    Nigel J. Cook

    2017-11-01

    Full Text Available The study of ore minerals is rapidly transforming due to an explosion of new micro- and nano-analytical technologies. These advanced microbeam techniques can expose the physical and chemical character of ore minerals at ever-better spatial resolution and analytical precision. The insights that can be obtained from ten of today’s most important, or emerging, techniques and methodologies are reviewed: laser-ablation inductively-coupled plasma mass spectrometry; focussed ion beam-scanning electron microscopy; high-angle annular dark field scanning transmission electron microscopy; electron back-scatter diffraction; synchrotron X-ray fluorescence mapping; automated mineral analysis (Quantitative Evaluation of Mineralogy via Scanning Electron Microscopy and Mineral Liberation Analysis; nanoscale secondary ion mass spectrometry; atom probe tomography; radioisotope geochronology using ore minerals; and, non-traditional stable isotopes. Many of these technical advances cut across conceptual boundaries between mineralogy and geochemistry and require an in-depth knowledge of the material that is being analysed. These technological advances are accompanied by changing approaches to ore mineralogy: the increased focus on trace element distributions; the challenges offered by nanoscale characterisation; and the recognition of the critical petrogenetic information in gangue minerals, and, thus the need to for a holistic approach to the characterization of mineral assemblages. Using original examples, with an emphasis on iron oxide-copper-gold deposits, we show how increased analytical capabilities, particularly imaging and chemical mapping at the nanoscale, offer the potential to resolve outstanding questions in ore mineralogy. Broad regional or deposit-scale genetic models can be validated or refuted by careful analysis at the smallest scales of observation. As the volume of information at different scales of observation expands, the level of complexity

  3. NUMERICAL EVALUATION OF THE EFFECTS OF SOFT-MELTING PROPERTIES ON THE KINETIC OF (CAFE2 O4 -CA2 FE2 O5 FORMATION IN THE IRON ORE SINTERING PROCESS

    Directory of Open Access Journals (Sweden)

    José Adilson de Castro

    2013-03-01

    Full Text Available This paper presents a mathematical model able to predict the influence of soft-melting properties of the blend of raw materials used in the iron ore sintering process in the kinetic formation of calcium ferrite and di-calcium ferrite constituents. The model is based on the simultaneous solution of transport equations of Momentum, energy and chemical species in multiphase multicomponent systems coupled with the chemical reactions kinetics and phase transformations that occur within the sinter bed. The numerical solution is obtained using the finite volume method and the model is validated using monitoring data from an industrial scale sintering plant. After validation, the model was used to predict processing conditions using raw materials with different soft-melting properties. Results indicate that the temperatures of starting soft-melting, shrinkage and melting range are the main parameters to be controlled in order to attain liquid phases formation responsible to confer good mechanical and reducibility properties for the sinter product. In this study was found that raw materials with high soft-melting temperature and wilder temperature of mushy zone could decrease up to 30% the calcium ferrites formation and hence deteriorates the metallurgical properties of the sinter.

  4. Determination of uranium concentration in an ore sample using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Kim, Y.-S.; Han, B.-Y.; Shin, H.S.; Kim, H.D.; Jung, E.C.; Jung, J.H.; Na, S.H.

    2012-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been recognized as a promising technique for analyzing sensitive nuclear materials such as uranium, plutonium, and curium in a high-radiation environment, especially since the implementation of IAEA (International Atomic Energy Agency) safeguards. The uranium spectra of ore samples were quantitatively analyzed prior to analyzing sensitive materials in the nuclear industry. The purpose of this experiment is to extract quantitative information about the uranium in a uranium ore using a standard addition approach. The uranium ore samples containing different concentrations of U were prepared by mixing raw ore powder with natural uranium oxide powders. Calibration sets of 0.2, 0.4, 0.6, 0.8 and 1.0 wt.% uranium concentrations within the uranium ore sample were achieved. A pulsed and Q-switched Nd:YAG laser at a wavelength of 532 nm was used as a light source. An echelle spectrometer that covers a 190–420 nm wavelength range is used to generate a calibration curve and determine the detection limit of uranium in the ore matrix. The neutral atomic-emission peak at a wavelength of 356.659 nm indicated a detection limit of ∼ 158 ppm for uranium, and the uranium concentration was determined in a raw ore sample that has an unknown quantity of uranium. - Highlights: ► The feasibility of LIBS application to monitor uranium element was carried out. ► The detection limit of U in ore was determined by a standard additional approach. ► Quantitative analyses of U concentration in a natural uranium ore were performed.

  5. Nanoscale Study of Clausthalite-Bearing Symplectites in Cu-Au-(U Ores: Implications for Ore Genesis

    Directory of Open Access Journals (Sweden)

    Nicholas D. Owen

    2018-02-01

    Full Text Available Symplectites comprising clausthalite (PbSe and host Cu-(Fe-sulphides (chalcocite, bornite, and chalcopyrite are instructive for constraining the genesis of Cu-Au-(U ores if adequately addressed at the nanoscale. The present study is carried out on samples representative of all three Cu-(Fe-sulphides displaying clausthalite inclusions that vary in size, from a few µm down to the nm-scale (<5 nm, as well as in morphology and inclusion density. A Transmission Electron Microscopy (TEM study was undertaken on foils prepared by Focussed Ion Beam and included atom-scale High-Angle Annular Dark-Field Scanning TEM (HAADF-STEM imaging. Emphasis is placed on phase relationships and their changes in speciation during cooling, as well as on boundaries between inclusions and host sulphide. Three species from the chalcocite group (Cu2–xS are identified as 6a digenite superstructure, monoclinic chalcocite, and djurleite. Bornite is represented by superstructures, of which 2a and 4a are discussed here, placing constraints for ore formation at T > 265 °C. A minimum temperature of 165 °C is considered for clausthalite-bearing symplectites from the relationships with antiphase boundaries in 6a digenite. The results show that alongside rods, blebs, and needle-like grains of clausthalite within the chalcocite that likely formed via exsolution, a second, overprinting set of replacement textures, extending down to the nanoscale, occurs and affects the primary symplectites. In addition, other reactions between pre-existing Se, present in solid solution within the Cu-(Fe-sulphides, and Pb, transported within a fluid phase, account for the formation of composite, commonly pore-attached PbSe and Bi-bearing nanoparticles within the chalcopyrite. The inferred reorganisation of PbSe nanoparticles into larger tetragonal superlattices represents a link between the solid solution and the symplectite formation and represents the first such example in natural materials

  6. Fe extraction from çayeli copper ores by bioleaching with eco freiendly acidithiobacillus ferrooxidans

    International Nuclear Information System (INIS)

    Kocadagistan, M.E.; Bayhan, Y.K.

    2017-01-01

    Recently, biological treatment; an important recovery process, has became important from the environmental and economical respects in recovery of metallic values from low-grade sulfur-bearing ores or concentrates. Bacterial ore leaching can be applied to extract heavy metals from low grade ores, industrial wastes and other materials on an industrial scale by different procedures. The main objective of this work was to investigate the dissolution of Fe from Çayeli copper ores, via a bioleaching process using Acidithiobacillus ferrooxidans. Experiments performed with batch operation in jar test equipment were conducted at different pH values, pulp densities, inoculum volumes, particle sizes, stirring conditions and operation times. The optimal parameters were found as follows; at pH 2, the pulp density; 4% (w/v), inoculum volume; 4% (v/v), stirring rate; 120 rpm and particle size; -0.053 mm for 192nd and 288th hours, at pH 2, the pulp density; 4% (w/v), inoculum volume; 5% (v/v), stirring speed; 200 rpm and particle size; -0.053 mm for 384th and 480th hours. By performing the bioleaching process under these conditions, almost 99% of the iron extent in the ore was transfer from ore into solution, however the experiments in which distilled water was used instead of modified 9K*, only 18.5% Fe efficiency was obtained. (author)

  7. 49 CFR 192.369 - Service lines: Connections to cast iron or ductile iron mains.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Connections to cast iron or ductile iron mains. 192.369 Section 192.369 Transportation Other Regulations Relating to Transportation... ductile iron mains. (a) Each service line connected to a cast iron or ductile iron main must be connected...

  8. Distribution of the ore elements in ore bodies of the Zapolyarnoe field (Kola Peninsula

    Directory of Open Access Journals (Sweden)

    D. V. Taymasov

    2017-12-01

    Full Text Available The author conducted studies of the chemical zonality of ore deposits of all types for the sulfide-copper-nickel deposit Zapolyarnoe. Within the deposit of sulfide-copper-nickel ores Zapolyarnoe are the following industrial types of ores: rich interspersed ores, which are interspersed mineralization in peridotites; brecciated ores formed by detrital material; poor interspersed ores characterized by vein-interspersed mineralization; solid ores in a form of massive sulphide emissions. This work is based on operational and detailed exploration data. The author sorted samples according to the types of ores. Using the results, the author derived regression lines and their formulas to rectilinear dependencies. Analysis of the graphs showed that for all types of ores the dependences of copper and cobalt content on nickel content are direct, but at that, in thick-interspersed and brecciated types they are similar, and in scattered-interspersed they differ significantly. It becomes clear that correlation of copper and nickel in ore body depends on the scattered-interspersed ores, whereas the correlation of cobalt and nickel is determined mainly by thick-interspersed and brecciated ores. Dependencies between nickel, copper and cobalt in ores change when concentration of nickel in the ore changes. The graphs also show that the ratio of Ni/Cu in breccias and scattered-interspersed ores, as well as in near-ore metaperidotites, is almost constant at different nickel concentrations, on average 2:1.5 and 1, respectively. Thick- interspersed ores show the tendency towards an increase in the ratio with an increase in nickel content. The Ni/Co ratio increases with an increase of Ni concentration in all types of ores. In rich ores, growth occurs along a stepped curve, and in breccias – rectilinearly. Thus, the analysis of distribution of ore elements in ore bodies indicates a complex heterogeneous composition of sulphide mineralizations in different types of ores

  9. Uranium ores

    International Nuclear Information System (INIS)

    Poty, B.; Roux, J.

    1998-01-01

    The processing of uranium ores for uranium extraction and concentration is not much different than the processing of other metallic ores. However, thanks to its radioactive property, the prospecting of uranium ores can be performed using geophysical methods. Surface and sub-surface detection methods are a combination of radioactive measurement methods (radium, radon etc..) and classical mining and petroleum prospecting methods. Worldwide uranium prospecting has been more or less active during the last 50 years, but the rise of raw material and energy prices between 1970 and 1980 has incited several countries to develop their nuclear industry in order to diversify their resources and improve their energy independence. The result is a considerable increase of nuclear fuels demand between 1980 and 1990. This paper describes successively: the uranium prospecting methods (direct, indirect and methodology), the uranium deposits (economical definition, uranium ores, and deposits), the exploitation of uranium ores (use of radioactivity, radioprotection, effluents), the worldwide uranium resources (definition of the different categories and present day state of worldwide resources). (J.S.)

  10. Iron transport, deposition and bioavailability in the wheat and barley grain

    DEFF Research Database (Denmark)

    Borg, Søren; Brinch-Pedersen, Henrik; Tauris, Birgitte

    2009-01-01

    will briefly review existing knowledge on the distribution and transport pathways of iron in the two small grained cereals, barley and wheat, and focus on the efforts made to increase the iron content in cereals in general. However, mineral content is not the only factor of relevance for improving......). The nutritional impact of increasing mineral content accordingly has to be seen in the context of mineral bioavailability. Finally, we will briefly report on recent data from barley, where laser capture microdissection of the different grain tissues combined with gene expression profiling has provided some...

  11. Biogeochemical reactive transport of carbon, nitrogen and iron in the hyporheic zone

    Science.gov (United States)

    Dwivedi, D.; Steefel, C. I.; Newcomer, M. E.; Arora, B.; Spycher, N.; Hammond, G. E.; Moulton, J. D.; Fox, P. M.; Nico, P. S.; Williams, K. H.; Dafflon, B.; Carroll, R. W. H.

    2017-12-01

    To understand how biogeochemical processes in the hyporheic zone influence carbon and nitrogen cycling as well as stream biogeochemistry, we developed a biotic and abiotic reaction network and integrated it into a reactive transport simulator - PFLOTRAN. Three-dimensional reactive flow and transport simulations were performed to describe the hyporheic exchange of fluxes from and within an intra-meander region encompassing two meanders of East River in the East Taylor watershed, Colorado. The objectives of this study were to quantify (1) the effect of transience on the export of carbon, nitrogen, and iron; and (2) the biogeochemical transformation of nitrogen and carbon species as a function of the residence time. The model was able to capture reasonably well the observed trends of nitrate and dissolved oxygen values that decreased as well as iron (Fe (II)) values that increased along the meander centerline away from the stream. Hyporheic flow paths create lateral redox zonation within intra-meander regions, which considerably impact nitrogen export into the stream system. Simulation results further demonstrated that low water conditions lead to higher levels of dissolved iron in groundwater, which (Fe (II)> 80%) is exported to the stream on the downstream side during high water conditions. An important conclusion from this study is that reactive transport models representing spatial and temporal heterogeneities are required to identify important factors that contribute to the redox gradients at riverine scales.

  12. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).

    Science.gov (United States)

    Andrés-Bordería, Amparo; Andrés, Fernando; Garcia-Molina, Antoni; Perea-García, Ana; Domingo, Concha; Puig, Sergi; Peñarrubia, Lola

    2017-09-01

    Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 OE ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.

  13. The iron-regulated transporter 1 plays an essential role in uptake, translocation and grain-loading of manganese, but not iron, in barley

    DEFF Research Database (Denmark)

    Long, Lizhi; Persson, Daniel Olaf; Duan, Fengying

    2018-01-01

    Transporters involved in manganese (Mn) uptake and intracellular Mn homeostasis in Arabidopsis and rice are well characterized, while much less is known for barley, which is particularly prone to Mn deficiency. In this study we have investigated the role of the iron-regulated transporter 1 (IRT1...

  14. Uranium ore processing

    International Nuclear Information System (INIS)

    Ritcey, G.M.; Haque, K.E.; Lucas, B.H.; Skeaff, J.M.

    1983-01-01

    The authors have developed a complete method of recovering separately uranium, thorium and radium from impure solids such as ores, concentrates, calcines or tailings containing these metals. The technique involves leaching, in at least one stage. The impure solids in finely divided form with an aqueous leachant containing HCl and/or Cl 2 until acceptable amounts of uranium, thorium and radium are dissolved. Uranium is recovered from the solution by solvent extraction and precipitation. Thorium may also be recovered in the same manner. Radium may be recovered by at least one ion exchange, absorption and precipitation. This amount of iron in the solution must be controlled before the acid solution may be recycled for the leaching process. The calcine leached in the first step is prepared in a two stage roast in the presence of both Cl 2 and a metal sulfide. The first stage is at 350-450 0 and the second at 550-700 0

  15. Environmental natural radioactive and radiation hazard in sedimentary rocks for manganese-iron ore at Um Bogma Area, Sinai, Egypt

    International Nuclear Information System (INIS)

    Abu-Zeid, H.M; Nada, A; Abd-Elmaksoud, T.M; Ragab, F.M.; El-Assy, I

    2011-01-01

    The aim of this study was to measure concentrations and distributions of natural radionuclides occurring in sedimentary rocks. The activity concentrations of the naturally occurring radionuclides 238 U, 232 Th,and 40 K in the manganese-iron ore of Um Bogma area which subdivided into three localities Wadi Nasieb (NS), Abu Thor (AT) and Um Bogma (UB) were measured using a high-purity germanium detector.The average concentration values of 238 U, 232 Th, and 40 K in the surveyed samples in Wadi Nasieb are 261.38, 9.57 and 130.63 Bqkg -1 respectively also in Abu Thor 224.51,6.7,94.99 Bqkg -1 and in Um Bogma 441.47,7.87 and 272.69 Bqkg -1 . The overall outdoor terrestrial gamma dose rates fluctuate from 103.38 to 193.5 nGyh -1 for all localities. The annual effective dose rate for all localities ranged from 0.13 to 0.24 mSvy -1 have been compared with the global averages which are within the safety range for workers in the studied localities.

  16. Feasibility of a Mound-designed transportable calorimeter

    International Nuclear Information System (INIS)

    Duff, M.F.; Fellers, C.L.

    1979-01-01

    The feasibility of operating a Mound twin resistance bridge calorimeter outside a temperature-controlled water bath was demonstrated. An existing calorimeter was retrofit with two additional jackets through which water was transferred from an external reservoir. Comparison of test results collected before and after the retrofit indicated that the calorimeter performance was not degraded by this modification. Similarly designed calorimeters have potential applications in laboratories where equipment space is limited for inspectors who are required to transport their assay instrumentation

  17. Geological structure and prospects of noble metal ore mineralization of the Khayrkhan gabbroid massif (Western Mongolia)

    Science.gov (United States)

    Kurumshieva, K. R.; Gertner, I. F.; Tishin, P. A.

    2017-12-01

    An analysis of the distribution of noble metals in zones of sulfide mineralization makes it possible to justify the isolation of four ore-bearing horizons with a specific geochemical zonation. A rise in the gold content relative to palladium and platinum is observed from the bottom upwards along the section of the stratified series of gabbroids. The study of the mineral phases of sulphides and the noble minerals itself indicates the evolution of hydrothermal solutions, which determines the different activity and mobility of the fluid (mercury, tellurium, sulfur) and ore (copper, nickel, iron, platinum, gold and silver) components.

  18. Study on the determination of ore-formation age of primary gold ore

    International Nuclear Information System (INIS)

    Ying Junlong; Zhao Puyun; Guo Hong

    1997-01-01

    The accurate determination of gold ore-formation age and ore-source isotope composition are of important significance in the research on gold geology and prospecting. According to the summary of three year indoor and field work, the ore-formation ages and isotope compositions of some typical gold deposits were obtained: The age of gold ore of the Wuhuaaobao deposit in geo-syncline region north to the north margin of North-China paleo-land is 130-120 Ma corresponding to the Late-orogenic stage. The ore-formation age of the Saiwusu gold deposit in the southern platform region is 211 +- 15 Ma, recycling reworking of the old-land. The Hougou-Huangtuliang gold deposit located in the middle of the platform region is 243 +- 7 Ma old attributed to the regeneration ore-formation on the old-land. the age of Jiaojia-Rushan gold deposit in Eastern Shandong is 122.7 +- 3.4 Ma and 128 +- 23 Ma belonging to Yanshanian stage. The Babaoshan gold-silver deposit in Cathaysian old-land is 140 +- 5 Ma old originated from volcanic hydrothermal ore-formation

  19. An innovative method for nondestructive analysis of cast iron artifacts at Hopewell Furnace National Historic Site, Pennsylvania

    Science.gov (United States)

    Sloto, R.A.; Helmke, M.F.

    2011-01-01

    Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). For this study, we sampled iron ore, cast iron furnace products, slag, soil, groundwater, streamflow, and streambed sediment to determine the fate of trace metals released into the environment during the iron-smelting process. Standard techniques were used to sample and analyze all media except cast iron. We analyzed the trace-metal content of the cast iron using a portable X-ray fluorescence spectrometer, which provided rapid, on-site, nondestructive analyses for 23 elements. The artifacts analyzed included eight cast iron stoves, a footed pot, and a kettle in the Hopewell Furnace museum. We measured elevated concentrations of arsenic, copper, lead, and zinc in the cast iron. Lead concentrations as great as 3,150 parts per million were measured in the stoves. Cobalt was detectable but not quantifiable because of interference with iron. Our study found that arsenic, cobalt, and lead were not released to soil or slag, which could pose a significant health risk to visitors and employees. Instead, our study demonstrates these heavy metals remained with the cast iron and were removed from the site.

  20. Environmental radiation hazards around some iron mines and steel plants of Karnataka state

    International Nuclear Information System (INIS)

    Sannappa, J.

    2013-01-01

    The primordial radionuclides ( 226 Ra, 232 Th and 40 K) are present in air, food, water, soils, rocks, mineral ores and building materials, are the sources of natural radiation. The sun, stars, rocks, and even our own body emits natural radiation. We live in a sea of natural radioactivity. Work activities involved in naturally occurring radioactive materials (NORM) are potential sources of radiation exposure to workers and members of publics. Iron, Chromite, Uranium, Phosphate and other ores contains higher activity of radionuclides. The iron ore is widely distributed in Bellary, Chitradurga, Tumkur and Chickmagalore districts of Karnataka state. The mining creates a number of environmental problems, that is destructions of important fauna and flora in this affected areas and also this leads various diseases like asthma, leukemia intestine, kidney and liver damage and lung cancer. The environmental γ-radiation levels were measured in this study area using environmental radiation dosimetry. The activity of radionuclides present in the ore samples were estimated by using Hyper Pure Germanium Detector (HPGe). The radon concentration in groundwater and indoor and outdoor concentration were measured by Emanometry and SSNTD techniques. The higher gamma equivalent effective doses were observed at the industrial operation and where the large quantity of iron ore and fines were dumped at the mining sites. The absorbed gamma dose to the workers in study area is slightly higher than the global average. The present work highlights the influence of mining activity, mineral processing and industrial operations are enhanced the fine sized particles, and radon in indoor and outdoor atmosphere is the sources of external radiation dose to the workers and publics. (author)

  1. Transportation, economical development and environmental considerations in the Arctic areas

    International Nuclear Information System (INIS)

    Berg, J.S.

    1993-01-01

    There is a need for increased development in Arctic regions for obtaining resources such as hydrocarbons and ores. Development of these resources in remote areas requires suitable transportation routes and proper attention to the environmental sensitivity of northern lands. Developing a transport route must take into account such matters as resource location, economic feasibility, type of material to be transported, length of time the route will be needed, the interest of the route to tourism, and the effect of transport on the environment. Design, construction, and maintenance of the transport route requires collection of reliable data and conformity to specifications relevant to the region concerned. Construction and maintenance in northern areas is affected by such complicated and costly factors as the short construction season, long distances for transportation of both equipment and workers, presence of permafrost, and low winter temperatures. 6 figs

  2. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    Science.gov (United States)

    Scholz, Florian; Löscher, Carolin R.; Fiskal, Annika; Sommer, Stefan; Hensen, Christian; Lomnitz, Ulrike; Wuttig, Kathrin; Göttlicher, Jörg; Kossel, Elke; Steininger, Ralph; Canfield, Donald E.

    2016-11-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface. Even in the anoxic water of oxygen minimum zones, where iron solubility should be enhanced, most of the iron is rapidly re-precipitated. To constrain the mechanism(s) of iron removal in anoxic ocean regions we explored the sediment and water in the oxygen minimum zone off Peru. During our sampling campaign the water column featured two distinct redox boundaries separating oxic from nitrate-reducing (i.e., nitrogenous) water and nitrogenous from weakly sulfidic water. The sulfidic water mass in contact with the shelf sediment contained elevated iron concentrations >300 nM. At the boundary between sulfidic and nitrogenous conditions, iron concentrations dropped sharply to <20 nM coincident with a maximum in particulate iron concentration. Within the iron gradient, we found an increased expression of the key functional marker gene for nitrate reduction (narG). Part of this upregulation was related to the activity of known iron-oxidizing bacteria. Collectively, our data suggest that iron oxidation and removal is induced by nitrate-reducing microbes, either enzymatically through anaerobic iron oxidation or by providing nitrite for an abiotic reaction. Given the important role that iron plays in nitrogen fixation, photosynthesis and respiration, nitrate-dependent iron oxidation likely represents a key-link between the marine biogeochemical cycles of nitrogen, oxygen and carbon.

  3. Hydrothermal oxidation in the Biwabik Iron Formation, MN, USA

    Science.gov (United States)

    Losh, Steven; Rague, Ryan

    2018-02-01

    Precambrian iron formations throughout the world, notably in Australia, Brazil, and South Africa, show evidence of hypogene (≥ 110 °C, mostly > 250 °C) oxidation, alteration, and silica dissolution as a result of tectonic or magmatic activity. Although hydrothermal oxidation has been proposed for the prototype Lake Superior-type iron formation, the Biwabik Iron Formation in Minnesota (USA), it has not been documented there. By examining oxidized and unoxidized Biwabik Iron Formation in three mines, including material from high-angle faults that are associated with oxidation, we document an early hypogene oxidation event ( 175 °C) involving medium-salinity aqueous fluids (8.4 ± 4.9 wt% NaCl equiv) that infiltrated iron formation along high-angle faults. At the Hibbing Taconite Mine, hydrothermal fluids oxidized iron carbonates and silicates near faults, producing goethite ± quartz. In contrast with much of the oxidized iron ores on the Mesabi Range, silica was not removed but rather recrystallized during this event, perhaps lying in a rock-dominated system at low cumulative fluid flux. During the hydrothermal oxidation event in the Hibbing Taconite deposit, quartz-filled microfractures and irregular inclusions commonly formed in coarse variably oxidized magnetite, currently the ore mineral: these inclusions degrade the ore by introducing excess silica in magnetic concentrate. Hydrothermal oxidation at Hibbing Taconite Mine is overprinted by later, relatively minor supergene oxidation both along faults and near the surface, which locally dissolved quartz. At the Fayal Reserve Mine, widespread silicate and carbonate gangue dissolution and iron oxidation was followed by precipitation of pyrite, Mn-siderite, apatite, and other minerals in void spaces, which prevented post-oxidation compaction and significant volume loss in the sampled rocks. Although definitive temperature data for this assemblage are needed, the weight of evidence indicates that this

  4. Iron behaviour in the process of stratum-infiltration uranium ore formation

    International Nuclear Information System (INIS)

    Shmariovich, E.M.; Golubev, V.S.

    1980-01-01

    Investigated has been the behaviour of iron in the process of stratum infiltration uranium mineralization. Iron is partially avacuated from the forward part of the stratum oxidation zone during the development of infiltration uranium mineralization in pyritiferous rocks. This phenomenon is characterized quantitatively and described on the basis of equations of physical chemistry and dynamics of geochemical processes. Local regions of epigenetic ferruginization caused by opposite diffusion of iron and its precipitation in oxygenous conditions often occur at the sections of sharp moderation of limonitization zone advance. Formation of similar ferruginous margins takes place in a very short geological period (less than thousand years)

  5. Bacterial leaching of pyritic gold ores

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, F.M.; Cashion, J.D.; Brown, L.J. [Monash Univ., Clayton, VIC (Australia). Dept. of Physics; Jay, W.H. [Monash Univ., Clayton, VIC (Australia). Chemical Engineering Department

    1996-12-31

    The bacterial oxidation process is well known in nature but has only recently come under investigation as a viable and relatively clean method of gold recovery from ores. However there is currently little information about the process at an atomic scale. It is known that the bacterial attack progresses preferentially along grain boundaries which is precisely where the gold has been deposited from aqueous infiltration. Samples have been obtained from the Wiluna mine in Western Australia consisting of the original ore, 2 pre-treatments, and from six successive bacterial reactors. {sup 57}Fe Moessbauer spectra taken at room temperature show only two quadrupole split doublets which can be ascribed to pyrite, FeS{sub 2}, and arsenopyrite, FeAsS. However, the presence of any superparamagnetic oxide or oxyhydroxide species would be expected to give a spectrum very similar to that of pyrite and would be undetectable in small quantities. At a temperature of 5K, a broad magnetically split sextet is observable with a mean hyperfine field of approximately 50T. This field is characteristic of magnetically ordered ferric iron surrounded by an octahedron of oxygens. The intensity and characteristics of this subspectrum alters through the series and interpretations will be given on the oxidation products of the bacterial leaching

  6. Bacterial leaching of pyritic gold ores

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Cashion, J.D.; Brown, L.J.; Jay, W.H.

    1996-01-01

    The bacterial oxidation process is well known in nature but has only recently come under investigation as a viable and relatively clean method of gold recovery from ores. However there is currently little information about the process at an atomic scale. It is known that the bacterial attack progresses preferentially along grain boundaries which is precisely where the gold has been deposited from aqueous infiltration. Samples have been obtained from the Wiluna mine in Western Australia consisting of the original ore, 2 pre-treatments, and from six successive bacterial reactors. 57 Fe Moessbauer spectra taken at room temperature show only two quadrupole split doublets which can be ascribed to pyrite, FeS 2 , and arsenopyrite, FeAsS. However, the presence of any superparamagnetic oxide or oxyhydroxide species would be expected to give a spectrum very similar to that of pyrite and would be undetectable in small quantities. At a temperature of 5K, a broad magnetically split sextet is observable with a mean hyperfine field of approximately 50T. This field is characteristic of magnetically ordered ferric iron surrounded by an octahedron of oxygens. The intensity and characteristics of this subspectrum alters through the series and interpretations will be given on the oxidation products of the bacterial leaching

  7. Energy, metals and ores in France in 1983

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Every year the Annales des Mines devote one issue to the activities of the power producing and mineral industries. This issue refers to the year 1983, with a recapitulation of previous years. A first part describes the activity of the following principal sectors. Energy: solid mineral fuel, hydrocarbons, gas, electricity, uranium, geothermal power. Ores and metals: aluminium, antimony, silver, chromium, copper, tin, iron, manganese, nickel, gold, lead, tungsten, zinc. Nonmetallic substances: barite, phosphate, potash, salt, sulphur, fluorspar. The elements concern mainly France but they are presented in a world-wide context. A second part gives statistical items, completed and illustrated by diagrams [fr

  8. Energy, metals and ores in France in 1982

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Every year the Annales des Mines devote one issue to the activities of the power producing and mineral industries. This issue refers to the year 1982, with a recapitulation of previous years. A first part describes the activity of the following principal sectors. Energy: solid mineral fuel, hydrocarbons, gas, electricity, uranium, geothermal power. Ores and metals: aluminium, antimony, silver, chromium, copper, tin, iron, manganese, nickel, gold, lead, tungsten, zinc. Nonmetallic substances: barite, phosphate, potash, salt, sulphur, fluorspar. The elements concern mainly France but they are presented in a world-wide context. A second part gives statistical items, completed and illustrated by diagrams [fr

  9. Liquid-liquid extraction of iron (III) from Ouenza iron ore leach liquor ...

    African Journals Online (AJOL)

    The effect of several parameters, such as contact time, HCl concentration, TBP concentration and chloride inorganic salt (KCl) concentration on the efficiency of extraction of iron was examined at 19±2°C. It was found that, for 2 min 3M TBP in presence of 5M HCl and 2 M KCl solutions led to a high yiel of extraction (98.57 ...

  10. Daily versus weekly iron supplementation and prevention of iron ...

    African Journals Online (AJOL)

    Objective: To demonstrate the effectiveness and social feasibility of weekly versus daily iron supplementation in preventing and treating iron deficiency anaemia among anaemic mothers. Design: A longitudinal in nature. Setting: Seven urban slum communities in Teklehaimanot Wereda, Addis Ababa, Ethiopia. Subjects: ...

  11. Transport project evaluation: feasibility risk assessment and scenario forecasting

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2017-01-01

    This paper presents a new approach to transport project assessment in terms of feasibility risk assessment and reference class forecasting. Conventionally, transport project assessment is based upon a Cost-Benefit Analysis (CBA) where evaluation criteria such as Benefit Cost Ratios (BCR...... on the preliminary construction cost estimates. Hereafter, a quantitative risk analysis is provided making use of Monte Carlo simulation. This approach facilitates random input parameters based upon reference class forecasting, hence, a parameter data fit has been performed in order to obtain validated probability...... Scenario Forecasting (RSF) frame. The RSF is anchored in the cost-benefit analysis; thus, it provides decision-makers with a quantitative mean of assessing the transport infrastructure project. First, the RSF method introduces uncertainties within the CBA by applying Optimism Bias uplifts...

  12. Exploitation study of the ore-body ''Tigre III''. Open-cut design and study of high-recovery underground mining method for the Tigre III ore-body

    International Nuclear Information System (INIS)

    Baluszka, J.C.

    1980-01-01

    The paper first carries out an analysis for the purpose of determining the limiting sterile/ore ratio for open-cut and underground mining in the specific filling case of Tigre III. In this connection it considers a high-recovery method of underground mining (involving the use of cemented hydropneumatic chambers), a general mine plan covering access, transport, ventilation and removal of ore as well as auxiliary services relating to the Tigre III ore body as a whole. The costs of this method of mining are determined for purposes of comparison with the open-cut method. Similarly, the limiting sterile/ore ratio is taken as the basis for an analysis of different types of pit and a design suited to the limiting ratio is adopted. As a final solution the paper favours a method which combines open-cut and underground mining. It proposes the use of the open-cut method up to the limiting ratio (in accordance with the pit design chosen) and of underground method (by the filling chamber method) for the rest of the area. (author)

  13. OCCURRENCE OF LEAD-ZINK ORE AT Mt. IVANŠČICA NEAR IVANEC (CROATIA

    Directory of Open Access Journals (Sweden)

    Boris Šinkovec

    2000-12-01

    Full Text Available Mineral and ore occurences at Mt. Ivanščica are situated in the Middle Triassic carbonate rocks and are of epigenetic origin. These occurences are characterised by simple paragenesis of primary sulphides of leads and zinc and traces of sulphides of iron and copper. This mineralization is similar to Mississippi Valley Pb-Zn deposits (the paper is published in Croatian.

  14. Concentration of rare earths ore from Pocos de Caldas - MG, Brazil

    International Nuclear Information System (INIS)

    Sampaio, J.A.; Lins, F.F.; Porphirio, N.H.

    1990-01-01

    The objective of this research was to concentrate, mainly by flotation, a rare-earth ore body. The valuable mineral is bastnaesite which occurs intimately associated with iron oxides and other gangue minerals, making difficult to get a concentrate of commercial grade. The use of oleic acid at a pulp temperature of -80 sup(0)C gave a concentrate of 23% rare-earth oxides at 72% overall recovery. The magnetic separation could enhance the grade of the flotation feed. (author)

  15. Reduction Behaviors of Carbon Composite Iron Oxide Briquette Under Oxidation Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Woo; Kim, Kang-Min; Kwon, Jae-Hong; Han, Jeong-Whan [Inha University, Incheon (Korea, Republic of); Son, Sang-Han [POSCO, Pohang (Korea, Republic of)

    2017-01-15

    The carbon composite iron oxide briquette (CCB) is considered a potential solution to the upcoming use of low grade iron resources in the ironmaking process. CCB is able to reduce raw material cost by enabling the use of low grade powdered iron ores and coal. Additionally, the fast reduction of iron oxides by direct contact with coal can be utilized. In this study, the reduction behaviors of CCB were investigated in the temperature range of 200-1200 ℃ under oxidizing atmosphere. Briquettes were prepared by mixing iron ore and coal in a weight ratio of 8:2. Then reduction experiments were carried out in a mixed gas atmosphere of N{sub 2}, O{sub 2}, and CO{sub 2}. Compressive strength tests and quantitative analysis were performed by taking samples at each target temperature. In addition, the reduction degree depending on the reaction time was evaluated by off-gas analysis during the reduction test. It was found that the compressive strength and the metallization degree of the reduced briquettes increased with increases in the reaction temperature and holding time. However, it tended to decrease when the re-oxidation phenomenon was caused by injected oxygen. The degree of reduction reached a maximum value in 26 minutes. Therefore, the re-oxidation phenomenon becomes dominant after 26 minutes.

  16. Acid-base properties and surface complexation modeling of phosphate anion adsorption by wasted low grade iron ore with high phosphorus.

    Science.gov (United States)

    Yuan, Xiaoli; Bai, Chenguang; Xia, Wentang; An, Juan

    2014-08-15

    The adsorption phenomena and specific reaction processes of phosphate onto wasted low grade iron ore with high phosphorus (WLGIOWHP) were studied in this work. Zeta potential and Fourier transform infrared spectroscopy (FTIR) analyses were used to elucidate the interaction mechanism between WLGIOWHP and aqueous solution. The results implied that the main adsorption mechanism was the replacement of surface hydroxyl groups by phosphate via the formation of inner-sphere complex. The adsorption process was characterized by chemical adsorption onto WLGIOWHP. The non-electrostatic model (NEM) was used to simulate the surface adsorption of phosphate onto WLGIOWHP. The total surface site density and protonation constants for NEM (N(T)=1.6×10(-4) mol/g, K(a1)=2.2×10(-4), K(a2)=6.82×10(-9)) were obtained by non-linear data fitting of acid-base titrations. In addition, the NEM was used to establish the surface adsorption complexation modeling of phosphate onto WLGIOWHP. The model successfully predicted the adsorption of phosphate onto WLGIOWHP from municipal wastewater. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Decree of 4 September 1969, Stb. 405, concerning the implementation of Sections 16, 19, paragraph 1, 21, 29, 30, paragraph 2 and 32 of the Nuclear Energy Act (Fissionable Materials, Ores and Radioactive Materials (Transport))

    International Nuclear Information System (INIS)

    1969-01-01

    The regulations governing the transport of fissionable materials, ores and radioactive materials are embodied in this Decree, together with the regulations concerning operations involving their movements into and out of the Netherlands and their storage incidental to transport. (NEA) [fr

  18. Mathematical model of the reformer sponge iron cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, S.; Hacker, V.; Evers, B.; Hierzer, J.; Besenhard, J.O. [Graz University of Technology, Graz (Austria). Inst. for Chemical Technology of Inorganic Materials Christian Doppler Pilot-Lab. for Fuel Cell Systems

    2003-07-01

    An innovative hydrogen production process called the Reformer Sponge Iron Cycle (RESC), based on redox reactions of iron ore pellets, was mathematically modeled. The hydrogen is produced by blowing steam over hot iron pellets in the oxidation stage, resulting in the oxidation of the iron. Synthesis gas coming from a reformer mixed with a fraction of recycled off-gas was used to reduce the iron oxide pellets (wuestite and-or magnetite) in the reduction stage, leading once more to iron . Once the mathematical model was developed, it was verified utilizing experimental data. Based on calculations of the equilibrium gas concentrations for reformer and sponge iron reactor (SIR), the model computes mass fluxes, molar fluxes, partial pressures, and variations of them throughout the complete cycle. The recycle rate, which determines the fraction of SIR off-gas recycled and added to the input gas stream, was optimized to maximize the amount of iron oxide reduced for a certain input gas flow. 5 refs., 4 figs.

  19. Regulatory concerns for leakage testing of packagings with three O-ring closure seals

    International Nuclear Information System (INIS)

    Oras, J.J.; Towell, R.H.; Wangler, M.E.

    1997-01-01

    The American National Standard for Radioactive Materials--Leakage Tests on Packages for Shipment (ANSI N14.5) provides guidance for leakage rate testing to show that a particular packaging complies with regulatory requirements and also provides guidance in determining appropriate acceptance criteria. Recent radioactive packagings designs have incorporated three O-ring closure seals, the middle O-ring being the containment seal. These designs have the potential for false positive results of leakage rate tests. The volume between the containment O-ring and the inner O-ring is used for the helium gas required for the leakage rate tests to reduce both the amount of helium used and the time required to conduct the tests. A leak detector samples the evacuated volume between the outer O-ring and the containment O-ring. False positive results can be caused in two ways, a large leakage in the containment seal or leakage in the inner seal. This paper will describe the problem together with possible solutions/areas that need to be addressed in a Safety Analysis Report for Packagings before a particular packaging design can be certified for transport

  20. Placental iron uptake and its regulation

    NARCIS (Netherlands)

    M. Bierings (Marc)

    1989-01-01

    textabstractIron transport in pregnancy is an active one-way process, from mother to fetus. Early in gestation fetal iron needs are low, and so is trans-placental transport, but as erythropoiesis develops, rising fetal iron needs are met by trans-placental iron transport. Apparently, the fetus

  1. The Bradyrhizobium japonicum Ferrous Iron Transporter FeoAB Is Required for Ferric Iron Utilization in Free Living Aerobic Cells and for Symbiosis.

    Science.gov (United States)

    Sankari, Siva; O'Brian, Mark R

    2016-07-22

    The bacterium Bradyrhizobium japonicum USDA110 does not synthesize siderophores for iron utilization in aerobic environments, and the mechanism of iron uptake within symbiotic soybean root nodules is unknown. An mbfA bfr double mutant defective in iron export and storage activities cannot grow aerobically in very high iron medium. Here, we found that this phenotype was suppressed by loss of function mutations in the feoAB operon encoding ferrous (Fe(2+)) iron uptake proteins. Expression of the feoAB operon genes was elevated under iron limitation, but mutants defective in either gene were unable to grow aerobically over a wide external ferric (Fe(3+)) iron (FeCl3) concentration range. Thus, FeoAB accommodates iron acquisition under iron limited and iron replete conditions. Incorporation of radiolabel from either (55)Fe(2+) or (59)Fe(3+) into cells was severely defective in the feoA and feoB strains, suggesting Fe(3+) reduction to Fe(2+) prior to traversal across the cytoplasmic membrane by FeoAB. The feoA or feoB deletion strains elicited small, ineffective nodules on soybean roots, containing few bacteria and lacking nitrogen fixation activity. A feoA(E40K) mutant contained partial iron uptake activity in culture that supported normal growth and established an effective symbiosis. The feoA(E40K) strain had partial iron uptake activity in situ within nodules and in isolated cells, indicating that FeoAB is the iron transporter in symbiosis. We conclude that FeoAB supports iron acquisition under limited conditions of soil and in the iron-rich environment of a symbiotic nodule. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. A 197Au and 57Fe Moessbauer study of the roasting of refractory gold ores

    International Nuclear Information System (INIS)

    Wagner, F.E.; Marion, P.

    1989-01-01

    The transformation of chemically bound gold into metallic gold during industrial scale roasting of an arsenical gold ore concentrate from the Fairview Mine, Eastern Transvaal, has been studied quantitatively by 197 Au Moessbauer spectroscopy. The iron compounds in the concentrate, mainly FeAsS and FeS 2 , and their transformations during roasting have been studied by 57 Fe Moessbauer spectroscopy. The bound gold is found to convert into the metal in parallel to the decomposition of FeAsS and the increase in cyanide leachability. This shows that the refractory character of the ore is caused by the chemical bonding of the gold rather than by the physical inclusion of small, discrete metallic particles in the matrix of FeAsS or FeS 2 . The ratio of the f-factors of gold bound in the FeAsS component of a refractory ore and of metallic gold was determined to be f(Au:FeAsS)/f(Au)=1.48 ± 0.09. (orig.)

  3. New understanding on separation of Mn and Fe from ferruginous manganese ores by the magnetic reduction roasting process

    Science.gov (United States)

    Liu, Bingbing; Zhang, Yuanbo; Wang, Juan; Wang, Jia; Su, Zijian; Li, Guanghui; Jiang, Tao

    2018-06-01

    Magnetic reduction roasting followed by magnetic separation process is reported as a simple route to realize separation of Mn and Fe from ferruginous manganese ores (Fe-Mn ores). However, the separation and recovery of Mn and Fe oxides are not very effective. This work clarified the underlying reason for the poor separation and also proposed some suggestions for the magnetic reduction process. In this work, the effect of temperature on the magnetic reduction roasting - magnetic separation of Fe-Mn ore was investigated firstly. Then the reduction behaviors of MnO2-Fe2O3 system and MnO2-Fe2O3-10 wt.%SiO2 system under 10 vol.% CO-90 vol.% CO2 at 600-1000 °C were investigated by XRD, XPS, SEM-EDS, VSM, DSC and thermodynamics analyses. Reduction and separation tests showed that higher reduction temperature was beneficial to the recovery of iron while it's not in favor of the recovery of manganese when the temperature was over 800 °C. The formation of composite oxide MnxFe3-xO4 with strong magnetism between the interface of the MnO2 and Fe2O3 particles leaded to the poor separation of iron and manganese. In addition, the formation mechanism of MnxFe3-xO4 from MnO2 and Fe2O3 as well as the interface reaction reduced under 10 vol.% CO was discussed in this study. Finally, some suggestions were recommended for the magnetic reduction roasting for utilizing the Fe-Mn ores effectively.

  4. Results of cytogenetic examinations of miners exposed to radon in ore mines

    International Nuclear Information System (INIS)

    Beno, M.; Vladar, M.; Nikodemova, D.; Vicanova, M.

    1998-01-01

    In this study the radon air concentrations and clastogenic effects at three ore mines located in central east Slovakia, the gold mine of Hodrusa-Hamre, talcum mine of Hnusta, and iron ore mine in Nizna Slana are compared with the chromosomal aberrations observed in a control group of healthy men which experienced underground work. A random sample of radon concentration measurements in houses was used for control. Significant differences in counts of aberrations of the chromosomal type in lymphocytes of smoker-miners of Nizna Slana as compared with counts of such aberrations in lymphocytes of a control group of similar age were found. A dependence of chromosomal aberration counts from the underground exposure to radon by multiple regression procedures could not be ascertained. The results indicated that confounding of such dependence by smoking might have taken place

  5. Flotation of zinc and lead oxide minerals from Olkusz region calamine ores

    Directory of Open Access Journals (Sweden)

    Cichy Krystian

    2016-01-01

    Full Text Available The paper presents chemical and mineralogical characteristics of calamine ore from the Pomorzany mine. A flowsheet for recovery of sulphide minerals of zinc and lead in the form of the Zn-Pb bulk concentrate was presented. In the following part, preparation of the feed for flotation of Zn-Pb oxide minerals and optimal conditions for separation from it iron sulphide minerals, represented by marcasite, were determined. In the final section the results of flotation of Zn-Pb oxide minerals with anionic collector AM2 belonging to the hydroxyamide group of collectors and a cationic collector in the form of a coconut amine, being a mixture of primary aliphatic amines, were presented. Basing on the obtained results, a technological flowsheet for the recovery of Zn-Pb sulphide and oxide minerals from the calamine ore of the Pomorzany mine was presented.

  6. Formulation of the relationship between indices of neutron-gamma and gamma-gamma method and the percentrage of iron

    International Nuclear Information System (INIS)

    Majorowicz, J.

    1973-01-01

    In this article, the author presents the possibility of a complex utilization of radiometric logging methods, neutron-gamma profiling and gamma-gamma density logging for determining percentage of iron and establishing geophysical possibilities of identifying zones of economically profitable ores in borehole profiles. Figures present the correlations between indices of neutron-gamma and gamma-gamma logging methods and the percentage of iron, as well as the correlation of neutron-gamma and gamma-gamma indices for zones minerallized with iron ores. The article presents the correlational analyses of the results: the correlational coefficients are given as well as total error in determining iron content on the basis of each of the methods described. Next, a multidimensional statistical analysis is carried out on the results obtained. On the basis of the two-dimensional correlational coefficients calculated and the average standard deviation, an equation of linear regression was formulated, simultaneously involving three parameters - the indices of neutron-gamma and gamma-gamma logging and the percentage of iron. The multiple correlational coefficient obtained markedly exceeds the two-dimentional correlation coefficient (r=0.974>rsub(xz)>rsub(yz)>rsub(xy)). The given method of utilizing multidimensional statistics in borehole geophysics for identifying iron ores is an efficient one. On the basis of several relationships among independent variables which are less obvious (smaller values of correlational coefficient), it is possible to obtain a single distinct relationship involving all variables simultaneously. (author)

  7. A mineralogical investigation of the reduction of Mamatwan manganese ore with carbon

    International Nuclear Information System (INIS)

    Koursaris, A.; Kleyenstueber, A.S.E.; Finn, C.W.P.

    1983-01-01

    The paper describes two research programmes: small-scale experiments in which cubes (with sides of 20 mm) were heated with coke, coal, or graphite to temperatures of between 1 200 and 1 500 degrees Celsius for 1, 2 or 3 hours in an argon atmosphere; and large-scale experiments in which 4 kg charges of ore and coal, or of ore and coke, in stoichiometric proportions, were heated to temperatures between 1 300 and 1 600 degrees Celsius for up to four hours. The reacted charges were examined by microscopy, by X-ray diffraction analysis, and by X-ray microanalysis using an energy-dispersive system on a scanning electron microscope. It was found that the early stages of reduction involve complex mineralogical changes including the breakdown of braunite and gangue minerals, the reduction of the higher manganese oxides to manganous oxide and of hematite to metallic iron, and the formation of slag as a result of reaction between gangue and manganous oxides. Further reduction of the ore involves the carburisation of the metallic phase and the reduction of solid manganous oxide, or of manganous oxide dissolved in the slag, by solid carbon or carbon dissolved in the metal

  8. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand

    Science.gov (United States)

    Wang, Dengjun; Bradford, Scott A.; Harvey, Ronald W.; Gao, Bin; Cang, Long; Zhou, Dongmei

    2012-01-01

    Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The transport and retention kinetics of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated packed columns that encompassed a range of humic acid concentrations (HA, 0–10 mg L–1), fractional surface coverage of iron oxyhydroxide coatings on sand grains (λ, 0–0.75), and pH (6.0–10.5). HA was found to have a marked effect on the electrokinetic properties of ARS-nHAP, and on the transport and retention of ARS-nHAP in granular media. The transport of ARS-nHAP was found to increase with increasing HA concentration because of enhanced colloidal stability and the reduced aggregate size. When HA = 10 mg L–1, greater ARS-nHAP attachment occurred with increasing λ because of increased electrostatic attraction between negatively charged nanoparticles and positively charged iron oxyhydroxides, although alkaline conditions (pH 8.0 and 10.5) reversed the surface charge of the iron oxyhydroxides and therefore decreased deposition. The retention profiles of ARS-nHAP exhibited a hyperexponential shape for all test conditions, suggesting some unfavorable attachment conditions. Retarded breakthrough curves occurred in sands with iron oxyhydroxide coatings because of time-dependent occupation of favorable deposition sites. Consideration of the above effects is necessary to improve remediation efficiency of nHAP for metals and actinides in soils and subsurface environments.

  9. Simulation of a Sponge Iron Production Process

    Directory of Open Access Journals (Sweden)

    Tor Onshus

    1983-07-01

    Full Text Available A model for reduction of FeO with hydrogen in a countercurrent moving bed reactor is summarized. This model is a special case of a mor ecomplete model which also includes reduction of the higher oxides, hematite and magnetite, with a mixture of reducing gases, thus describing the production of direct-reduced iron from iron ores. Equations governing the heat and mass transfer between the gas and solid phase are not given here, but play an important role in the dynamic bahviour of the model.

  10. Magnetic resonance microscopy of iron transport in methanogenic granules

    Science.gov (United States)

    Bartacek, Jan; Vergeldt, Frank J.; Gerkema, Edo; Jenicek, Pavel; Lens, Piet N. L.; Van As, Henk

    2009-10-01

    Interactions between anaerobic biofilms and heavy metals such as iron, cobalt or nickel are largely unknown. Magnetic resonance imaging (MRI) is a non-invasive method that allows in situ studies of metal transport within biofilm matrixes. The present study investigates quantitatively the penetration of iron (1.75 mM) bound to ethylenediaminetetraacetate (EDTA) into the methanogenic granules (spherical biofilm). A spatial resolution of 109 × 109 × 218 μm 3 and a temporal resolution of 11 min are achieved with 3D Turbo Spin Echo (TSE) measurements. The longitudinal relaxivity, i.e. the slope the dependence of the relaxation rate (1/ T1) on the concentration of paramagnetic metal ions, was used to measure temporal changes in iron concentration in the methanogenic granules. It took up to 300 min for the iron-EDTA complex ([FeEDTA] 2-) to penetrate into the methanogenic granules (3-4 mm in diameter). The diffusion was equally fast in all directions with irregularities such as diffusion-facilitating channels and diffusion-resistant zones. Despite these irregularities, the overall process could be modeled using Fick's equations for diffusion in a sphere, because immobilization of [FeEDTA] 2- in the granular matrix (or the presence of a reactive barrier) was not observed. The effective diffusion coefficient ( D ejf) of [FeEDTA] 2- was found to be 2.8 × 10 -11 m 2 s -1, i.e. approximately 4% of D ejf of [FeEDTA] 2- in water. The Fickian model did not correspond to the processes taking place in the core of the granule (3-5% of the total volume of the granule), where up to 25% over-saturation by iron (compare to the concentration in the bulk solution) occurred.

  11. Ore sorting using natural gamma radiation

    International Nuclear Information System (INIS)

    Clark, G.J.; Dickson, B.L.; Gray, F.E.

    1980-01-01

    A method of sorting an ore which emits natural gamma radiation is described, comprising the steps of: (a) mining the ore, (b) placing, substantially at the mining location, the sampled or mined ore on to a moving conveyor belt, (c) measuring the natural gamma emission, water content and mass of the ore while the ore is on the conveyor belt, (d) using the gamma, water content and mass measurements to determine the ore grade, and (e) directing the ore to a location characteristic of its grade when it leaves the conveyor belt

  12. Microstructure and geochemical evidences for genesis of the Gol-Gohar iron deposit

    Directory of Open Access Journals (Sweden)

    Shahryar Mahmoudi

    2017-11-01

    Full Text Available Introduction The Gol-Gohar iron ore deposit located in 55 km South West of the city of Sirjan, in the Sanandaj-Sirjan structural zone. Sanandaj-Sirjan zone (SSZ is part of the Alpian-Hymalian orogenic belt and it is located in the west of the central Iran microplate. SSZ represented the metamorphic belt of the Zagros orogeny, that extends for 1500 km from Sirjan in the southeast to Sanandaj in the northwest of Iran (Mohajjel et al, 2003. The Gol-Gohar iron ore deposit is surrounded by a complex of igneous and metamorphic rocks mainly consisting of pelitic schists, basic schists, gneiss, amphibolite, marble, granodiorit, granite and mylonitic granite. In the early studies on the genesis of Gol-Gohr iron deposits, it was considered that sedimentary and tectonic processes were more effective in iron ore deposition. Later studies mainly confirmed a magmatic genesis for Gol-Gohar iron ore (Mucke and Golestaneh, 1982. Although some researchers argued that skarnisation process was the main cause of mineralisation (Hallaj and Jacobpor, 1991؛ Torabian, 2007, still some discussions on Gol-Gohr genesis are underway. Materials and methods – Gol-Gohar mine is divided into three blocks and several exploratory boreholes have been drilled down to 200 to 1400m depths in the third block. The representative samples were taken from exploration drill holes and outcrops around the mine. Microscopic observation (Zeiss Aksioscope in thin and polish sections show that the main ore mineral in the Gol-Gohar deposit is magnetite formed into two types with distinctive optical properties; the milky-gray magnetite (type1 named also “upper ore” and blue to brown magnetite (type2 named also “lower ore” (Mucke and Golestaneh, 1982. Mineralogy and microtectonic study were carried out on 100 thin and 30 polished sections using Zeiss research microscope. For geochemical analyses 20 samples were selected from 3 major exploration drill holes. After whole rock chemical

  13. Treatment of Iron Tailings at the Forecariah Guinea Mine - Guinea ...

    African Journals Online (AJOL)

    Michael

    2016-06-01

    Jun 1, 2016 ... subsidiary of Bellzone Australia, mines and export iron ore. The company uses the open pit system of mining. ... market. The processing technology involves crushing the run of mine (ROM) to ... operation at the plant. Presently ...

  14. A REAL-TIME COAL CONTENT/ORE GRADE (C2OC) SENSOR

    Energy Technology Data Exchange (ETDEWEB)

    Rand Swanson

    2005-04-01

    This is the final report of a three year DOE funded project titled ''A real-time coal content/ore grade (C{sub 2}OG) sensor''. The sensor, which is based on hyperspectral imaging technology, was designed to give a machine vision assay of ore or coal. Sensors were designed and built at Resonon, Inc., and then deployed at the Stillwater Mining Company core room in southcentral Montana for analyzing platinum/palladium ore and at the Montana Tech Spectroscopy Lab for analyzing coal and other materials. The Stillwater sensor imaged 91' of core and analyzed this data for surface sulfides which are considered to be pathfinder minerals for platinum/palladium at this mine. Our results indicate that the sensor could deliver a relative ore grade provided tool markings and iron oxidation were kept to a minimum. Coal, talc, and titanium sponge samples were also imaged and analyzed for content and grade with promising results. This research has led directly to a DOE SBIR Phase II award for Resonon to develop a down-hole imaging spectrometer based on the same imaging technology used in the Stillwater core room C{sub 2}OG sensor. The Stillwater Mining Company has estimated that this type of imaging system could lead to a 10% reduction in waste rock from their mine and provide a $650,000 benefit per year. The proposed system may also lead to an additional 10% of ore tonnage, which would provide a total economic benefit of more than $3.1 million per year. If this benefit could be realized on other metal ores for which the proposed technology is suitable, the possible economic benefits to U.S. mines is over $70 million per year. In addition to these currently lost economic benefits, there are also major energy losses from mining waste rock and environmental impacts from mining, processing, and disposing of waste rock.

  15. Research of leaching of disseminated copper-nickel ores in their interaction with mine waters

    Directory of Open Access Journals (Sweden)

    Svetlov A. V.

    2017-03-01

    Full Text Available A great amount of mine waste creates serious problems for economy and ecology in mining regions. Keeping of dumps and tailings storages requires huge capital costs and material inputs. Removal of overburden volumes cause ecological disequilibrium, ingress of chemical agents and heavy metals in ground and surface water have an adverse influence on eco-systems and human health. These hazards are particularly high under extreme climatic conditions, when mines create vast desert lands around themselves. Foreign researchers use the terms "acid mine drainage" (AМD and "acid rock drainage" (ARD when speaking on mine water oxidation and contamination of the environment with heavy metals. AMD is induced by underground mine drainage, natural sulfide-bearing rock exposures, etc. The processes occurring in the interaction the mine water with fine dust particles, as well as water filtering through the thick sulfide rocks have been studied. It has been shown that the reduction in potential environmental hazard of mine water of JSC "Kola MMC" is achieved through precipitation of heavy metals by iron hydroxide and magnesium hydrosilicate. Preliminary assessment of the feasibility of hydrometallurgical processing of disseminated copper-nickel ores has been made

  16. CPICOR{trademark}: Clean power from integrated coal-ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wintrell, R.; Miller, R.N.; Harbison, E.J.; LeFevre, M.O.; England, K.S.

    1997-12-31

    The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needs of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.

  17. Responses of microbial tolerance to heavy metals along a century-old metal ore pollution gradient in a subarctic birch forest.

    Science.gov (United States)

    Rousk, Johannes; Rousk, Kathrin

    2018-05-07

    Heavy metals are some of the most persistent and potent anthropogenic environmental contaminants. Although heavy metals may compromise microbial communities and soil fertility, it is challenging to causally link microbial responses to heavy metals due to various confounding factors, including correlated soil physicochemistry or nutrient availability. A solution is to investigate whether tolerance to the pollutant has been induced, called Pollution Induced Community Tolerance (PICT). In this study, we investigated soil microbial responses to a century-old gradient of metal ore pollution in an otherwise pristine subarctic birch forest generated by a railway source of iron ore transportation. To do this, we determined microbial biomass, growth, and respiration rates, and bacterial tolerance to Zn and Cu in replicated distance transects (1 m-4 km) perpendicular to the railway. Microbial biomass, growth and respiration rates were stable across the pollution gradient. The microbial community structure could be distinguished between sampled distances, but most of the variation was explained by soil pH differences, and it did not align with distance from the railroad pollution source. Bacterial tolerance to Zn and Cu started from background levels at 4 km distance from the pollution source, and remained at background levels for Cu throughout the gradient. Yet, bacterial tolerance to Zn increased 10-fold 100 m from the railway source. Our results show that the microbial community structure, size and performance remained unaffected by the metal ore exposure, suggesting no impact on ecosystem functioning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Studies on uranium ore processing

    International Nuclear Information System (INIS)

    Kim, C.H.; Park, S.W.; Lim, J.K.; Chung, M.K.

    1981-01-01

    Chemical and chemical engineering techniques of the uranium ore processing established by France COGEMA (Compagnie Generale des Matieres Nucleaires) have been comprehensively reviewed in preparation for successful test operation of the pilot plant to be completed by the end of 1981. It was found that the amount of sulfuric acid (75 Kg/t, ore) and sodium chlorate (2.5 Kg/t, ore) recommended by COGEMA should be increased up to 100 Kg/t, ore and 10 Kg/t, ore respectively to obtain satisfactory leach of uranium for some ore samples produced at the different pits of Goesan uranium mine. Conditions of the other processes such as solvent extraction, stripping, and precipitation of yellow cake were generally agreed with the results of intensive studies done by this laboratory

  19. Selection of mining method for No.3 uranium ore body in the independent mining area at a uranium mine

    International Nuclear Information System (INIS)

    Ding Fulong; Ding Dexin; Ye Yongjun

    2010-01-01

    Mining operation in the existed mining area at a uranium mine is near completion and it is necessary to mine the No.3 uranium ore body in another mining area at the mine. This paper, based on the geological conditions, used analogical method for analyzing the feasible methods and the low cost and high efficiency mining method was suggested for the No.3 ore body in the independent mining area at the uranium mine. (authors)

  20. New interpretation of the dominant ore-controlling factor of the uranium ore field No. 322

    International Nuclear Information System (INIS)

    Liu Xiang; Yang Chongqiu

    1996-01-01

    The NE-trending fault structures in ore field NO. 322 are characterized by compress-shearing, left-Lateral left-slipping, having an obvious control over the Localisation of the ore field No. 322, and are the dominant ore-controlling factor of the ore field NO.322. Resulting from the sinistral displacement of the NE-trending fault, there is a pull-apart basin in the Feng Zhou area. The formation and evolution of the NE-trending fault zone and the Feng Zhou basin control the formation of uranium deposits of ore field No. 322

  1. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton.

    Science.gov (United States)

    Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T; Tortell, Philippe D

    2015-01-01

    Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETR(RCII), mol e- mol RCII(-1) s(-1)) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal--oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETR(RCII): CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements.

  2. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton.

    Directory of Open Access Journals (Sweden)

    Nina Schuback

    Full Text Available Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETR(RCII, mol e- mol RCII(-1 s(-1 increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal--oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETR(RCII: CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements.

  3. Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton

    Science.gov (United States)

    Schuback, Nina; Schallenberg, Christina; Duckham, Carolyn; Maldonado, Maria T.; Tortell, Philippe D.

    2015-01-01

    Iron availability directly affects photosynthesis and limits phytoplankton growth over vast oceanic regions. For this reason, the availability of iron is a crucial variable to consider in the development of active chlorophyll a fluorescence based estimates of phytoplankton primary productivity. These bio-optical approaches require a conversion factor to derive ecologically-relevant rates of CO2-assimilation from estimates of electron transport in photosystem II. The required conversion factor varies significantly across phytoplankton taxa and environmental conditions, but little information is available on its response to iron limitation. In this study, we examine the role of iron limitation, and the interacting effects of iron and light availability, on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. Our results show that excess irradiance causes increased decoupling of carbon fixation and electron transport, particularly under iron limiting conditions. We observed that reaction center II specific rates of electron transport (ETRRCII, mol e- mol RCII-1 s-1) increased under iron limitation, and we propose a simple conceptual model for this observation. We also observed a strong correlation between the derived conversion factor and the expression of non-photochemical quenching. Utilizing a dataset from in situ phytoplankton assemblages across a coastal – oceanic transect in the Northeast subarctic Pacific, this relationship was used to predict ETRRCII: CO2-assimilation conversion factors and carbon-based primary productivity from FRRF data, without the need for any additional measurements. PMID:26171963

  4. Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers

    Science.gov (United States)

    Wood, Deborah; Crocket, Kirsty; Brand, Tim; Stutter, Marc; Wilson, Clare; Schröder, Christian

    2016-04-01

    Linking carbon and iron cycles by investigating transport, fate and mineralogy of iron-bearing colloids from peat-draining rivers - Scotland as model for high-latitude rivers Wood, D.A¹, Crocket, K², Brand, T², Stutter, M³, Wilson, C¹ & Schröder, C¹ ¹Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA ²Scottish Association for Marine Science, University of the Highlands and Islands, Dunbeg, Oban, PA37 1QA ³James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH The biogeochemical iron cycle exerts significant control on the carbon cycle¹. Iron is a limiting nutrient in large areas of the world's oceans and its bioavailability controls CO2 uptake by marine photosynthesizing microorganisms. While atmospheric iron inputs to the open ocean have been extensively measured, global river inputs have likely been underestimated because most major world rivers exhibit extensive iron removal by flocculation and sedimentation during seawater mixing. Iron minerals and organic matter mutually stabilise each other², which results in a 'rusty carbon sink' in sediments³ on the one hand but may also enhance transport beyond the salinity gradient on the other. Humic-rich, high latitude rivers have a higher iron-carrying capacity⁴-⁶ but are underrepresented in iron flux calculations. The West Coast sea lochs in Scotland are fed by predominantly peatland drainage catchments, and the rivers entering the sea lochs carry a high load of organic matter. The short distance between many of these catchments and the coastal ocean facilitates source-to-sea research investigating transport, fate and mineralogy of iron-bearing colloids providing a good analogue for similar high latitude fjordic systems. We use SeaFAST+ICP-MS and Mössbauer spectroscopy to survey trace metal concentrations, with emphasis on iron concentrations, speciation and mineralogy, across salinity gradients. In combination with ultra-filtration techniques, this allows

  5. Effect of mining on heavy metal concentration in soils from the vicinity of Itakpe iron ore mine in kogi state, nigeria

    International Nuclear Information System (INIS)

    Amune, C.O.M.; Kakulu, S.

    2013-01-01

    The effects of mining oil from 1takpe iron ore mining area in Kogi State, Nigeria were studied through the determination of the heavy metals (Cd, Cu, Mg, Ni. Ph and Zn) using flame atomic absorption spectroscopy. Soil samples were collected during the dry and rainy seasons. Significant levels of heavy metals were found. Median topsoil concentrations (0-15 cm) for Ed, Cu, Mg, Ni, Pb and Zn were 0.16+0.02, 0.151-0.03, 0.041+0.03, 0.110.02, 0.07+0.(0 1, 0.04+0.04, micro/g, respectively. The heavy metal concentrations of control soil were relatively lower than those in the 1takpe mining environment soil and within levels of total metal contamination nation in the normal soil content intervals and maximum allowable limits of heavy metals in soils. Correlations analysis shows that heavy metals were closely correlated with each other except for Pb, indicating the studied metals are from the same pollutant resource. This shows, mining as contributing to the metallic levels in the 1takpe mining site. (author)

  6. Experience Gained from the Former Uranium Ore Processing and the Remediation of the Legacy Site in Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Csövári, M.; Földing, G.; Berta, Zs.; Németh, G., E-mail: csovarimihaly@mecsekoko.hu [MECSEK-ÖKO Zrt, Pécs (Hungary)

    2014-05-15

    Uranium explorations in Hungary started 1953. By 1957 the uranium ore reserves were confirmed and the feasibility of mining in the Mecsek Mountains demonstrated by opening the first shaft. In 1962 the mill was built. The mining and processing of the uranium ore were terminated in 1997 mainly on economical reasons. The remediation of the site has started immediately and had been practically finished in 2008. The paper summarises the remediation work, and some lessons learned from the former mill practice, and from the remediation activity. (author)

  7. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the service...

  8. Method and apparatus for measuring the concentration of water, iron, and aluminum in iron ore by neutron radiation

    International Nuclear Information System (INIS)

    Holmes, R.J.; Wylie, A.W.; McCracken, K.G.

    1975-01-01

    Techniques and apparatus for measuring the concentration of water and specific components in materials are described. The techniques involve irradiating the material with neutrons and monitoring the neutron flux in the vicinity of the irradiated material and the gamma radiation from excited nuclei of the specific component. Examples of the use of the invention include on-stream monitoring of ores carried by conveyor belts and borehole logging using a probe which carries a neutron source, and neutron and gamma radiation detectors. (U.S.)

  9. Minerals of oxidation zone of the Chokadambulaq iron deposit

    International Nuclear Information System (INIS)

    Safaraliev, N.S.

    2008-01-01

    The zone of oxidation of Chokadambulaq iron deposit has original mineral composition, which characterized specificity of their formation. Here is formed a secondary zone of enrichment marit ores, having practical meaning. In last is concentrated from 0.5 up to 1.0% from total quantities of reserves

  10. Granulated Bog Iron Ores as Sorbents in Passive (BioRemediation Systems for Arsenic Removal

    Directory of Open Access Journals (Sweden)

    Klaudia Debiec

    2018-03-01

    Full Text Available The main element of PbRS (passive (bioremediation systems are sorbents, which act as natural filters retaining heavy metals and carriers of microorganisms involved in water treatment. Thus, the effectiveness of PbRS is determined by the quality of the (adsorbents, which should be stable under various environmental conditions, have a wide range of applications and be non-toxic to (microorganisms used in these systems. Our previous studies showed that bog iron ores (BIOs meet these requirements. However, further investigation of the physical and chemical parameters of BIOs under environmental conditions is required before their large-scale application in PbRS. The aim of this study was (i to investigate the ability of granulated BIOs (gBIOs to remove arsenic from various types of contaminated waters, and (ii to estimate the application potential of gBIOs in technologies dedicated to water treatment. These studies were conducted on synthetic solutions of arsenic and environmental samples of arsenic contaminated water using a set of adsorption columns filled with gBIOs. The experiments performed in a static system revealed that gBIOs are appropriate arsenic and zinc adsorbent. Dynamic adsorption studies confirmed these results and showed, that the actual sorption efficiency of gBIOs depends on the adsorbate concentration and is directly proportional to them. Desorption analysis showed that As-loaded gBIOs are characterized by high chemical stability and they may be reused for the (adsorption of other elements, i.e., zinc. It was also shown that gBIOs may be used for remediation of both highly oxygenated waters and groundwater or settling ponds, where the oxygen level is low, as both forms of inorganic arsenic (arsenate and arsenite were effectively removed. Arsenic concentration after treatment was <100 μg/L, which is below the limit for industrial water.

  11. Granulated bog iron ores as sorbents in passive (bio)remediation systems for arsenic removal

    Science.gov (United States)

    Debiec, Klaudia; Rzepa, Grzegorz; Bajda, Tomasz; Uhrynowski, Witold; Sklodowska, Aleksandra; Krzysztoforski, Jan; Drewniak, Lukasz

    2018-03-01

    The main element of PbRS (passive (bio)remediation systems) are sorbents, which act as natural filters retaining heavy metals and carriers of microorganisms involved in water treatment. Thus, the effectiveness of PbRS is determined by the quality of the (ad)sorbents, which should be stable under various environmental conditions, have a wide range of applications and be non-toxic to (micro)organisms used in these systems. Our previous studies showed that bog iron ores (BIOs) meet these requirements. However, further investigation of the physical and chemical parameters of BIOs under environmental conditions is required before their large-scale application in PbRS. The aim of this study was (i) to investigate the ability of granulated BIOs (gBIOs) to remove arsenic from various types of contaminated waters, and (ii) to estimate the application potential of gBIOs in technologies dedicated to water treatment. These studies were conducted on synthetic solutions of arsenic and environmental samples of arsenic contaminated water using a set of adsorption columns filled with gBIOs. The experiments performed in a static system revealed that gBIOs are appropriate arsenic and zinc adsorbent. Dynamic adsorption studies confirmed these results and showed that the actual sorption efficiency of gBIOs depends on the adsorbate concentration and is directly proportional to them. Desorption analysis showed that As-loaded gBIOs are characterized by high chemical stability and they may be reused for the (ad)sorption of other elements, i.e. zinc. It was also shown that gBIOs may be used for remediation of both highly oxygenated waters and groundwater or settling ponds, where the oxygen level is low, as both forms of inorganic arsenic (arsenate and arsenite) were effectively removed. Arsenic concentration after treatment was <100 µg/L, which is below the limit for industrial water.

  12. Practice of the counter-current trickle leaching of uranium ore by refreshed liquor of bacterial oxidation

    International Nuclear Information System (INIS)

    Chen Shian; Huang Xiangfu; Fan Baotuan

    1995-01-01

    The uranium ore of the Mine No. 753 is a high-silicate type primary one, in which the tetravalent uranium accounts for 85%, and the uranium grade is in the range of 0.36% to 0.442%. To reduce the engineering investment and the operating cost a four-stage counter-current trickle leaching pilot-plant test was carried out with the leaching time 50 days and acid consumption 38 kg per ton of ore, and the recovery of more than 95% was obtained. Using the counter-current trickle leaching mode and controlling the limit concentration of the harmful matters in the bacterial leaching liquor, the latter can be effectively oxidized by the synchronical regeneration. A trickle leaching comparative test of 25 ton ore single heap also gave a good result of more than 95% in extraction rate, and 30% acid consumption was saved and the 2.0% pyrolusite (containing MnO 2 40%) was eliminated. This process is feasible in technology and worth-while in economy for treating the uranium ore of Mine No. 753, and provides a new method of uranium ore trickle leaching

  13. 49 CFR 192.277 - Ductile iron pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Ductile iron pipe. 192.277 Section 192.277 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Ductile iron pipe. (a) Ductile iron pipe may not be joined by threaded joints. (b) Ductile iron pipe may...

  14. Mathematical model of the reformer sponge iron cycle

    International Nuclear Information System (INIS)

    Fraser, S.; Hacker, V.; Evers, B.; Hierzer, J.; Besenhard, J.O.

    2003-01-01

    A mathematical model of the Reformer Sponge Iron Cycle (RESC), an innovative hydrogen production process based on redox reactions of iron ore pellets is presented. In the oxidation stage of the RESC, hydrogen is produced by blowing steam over hot iron pellets, hence oxidizing the iron. In the reduction stage, synthesis gas coming from a reformer mixed with a fraction of recycled off-gas is used to reduce the iron oxide pellets (wuestite and/or magnetite) back into iron again. A mathematical model of the complete RESC was developed and verified with experimental data. The model is based on calculations of the equilibrium gas concentrations for reformer and Sponge Iron Reactor (SIR). The current model computes mass fluxes, molar fluxes, partial pressures and variations of the respective throughout the complete cycle. The recycle rate, determining the fraction of SIR off-gas recycled and added to the input gas stream was subsequently optimized in order to maximize the amount of iron oxide reduced for a certain input gas flow. (author)

  15. Borehole plugging by hydrothermal transport. A feasibility report

    International Nuclear Information System (INIS)

    Roy, D.M.; White, W.B.

    1975-01-01

    The possibility of forming borehole plugs by hydrothermal transport was examined with respect to five systems, utilizing available literature data. In general, it would appear possible to create plugs with hydrothermal cements, with hydrothermally transported quartz, and with carbonates precipitated in-situ using carbon dioxide or carbon dioxide and water as reacting fluids. Hydrothermal cements appear to be most feasible from an engineering and economic point of view using a slurry with a lime-alumina-silica composition carried into the hole in a single pipe at temperatures in the range of 200 0 C and requiring only enough pressure to drive the mixture into the hole. Quartz or chalcedony plugs would be the most impervious, have the lowest chemical reactivity with groundwater, the lowest thermal expansion, and be most compatible with the wall rock. Deposition is likely to be slow, and there are severe engineering problems associated with a single pipe system carrying silica-rich solutions at temperatures in excess of 500 0 C at pressure of 2000 bars (30,000 psi). Calcite plugs could be formed as compatible plug materials in contact with a limestone or dolomite wall rock. It is not known whether non-porous plugs can be readily formed and there is also a problem of chemical reaction with percolating groundwater. The clay-water and sulfur-water systems do not appear to be viable plug systems. In-situ reconstitution of the wall rock does not appear to be an economically feasible possibility

  16. Ore petrography of a sedimentary uranium deposit, Live Oak County, Texas

    International Nuclear Information System (INIS)

    Bomber, B.J.; Ledger, E.B.; Tieh, T.T.

    1986-01-01

    Samples from the McLean 5 open-pit uranium mine, a small high-grade deposit located along a normal fault in the Miocene Oakville sandstone of Live Oak County, Texas, have been studied for uranium abundance, distribution, and nature of occurrence on the microscopic level. The host sandstone is composed of quartz, feldspars, and volcanic rock fragments, cemented by sparry calcite. Authigenic minerals include iron disulfide minerals (dominantly pyrite and some marcasite) and small amounts of clays, Ti oxides, and opal. High-grade ore (to 3% U) occurs along the fault, decreasing to less than 1,000 ppm within 10 m from the fault. The ore mineral is amorphous pitchblende and exhibits botryoidal morphology. The microscopic occurrence of uranium, documented by fission-track mapping of petrographic thin sections, is presented in detail. Uranium occurs abundantly as grain coatings and fillings in intergranular spaces in samples with high uranium content, where calcite cement has been partially or totally leached as mineralization proceeded. Lesser amounts are adsorbed onto leucoxene (microcrystalline anatase), mud clasts, and altered igneous rock fragments. Adsorbed uranium is the major code of occurrence in samples, with lower uranium contents farther from the orebody. Textural relations indicate that iron sulfides formed both before and after mineralization. Initial mineralization was by adsorption onto aggregates of fine particles of Ti oxide and clay minerals of various origins. With dissolution of cement and continued uranium influx, uranium precipitated as grain coatings and pore fillings

  17. Prediction of ore fluid metal concentrations from solid solution concentrations in ore-stage calcite: Application to the Illinois-Kentucky and Central Tennessee Mississippi Valley-type districts

    Science.gov (United States)

    Smith-Schmitz, Sarah E.; Appold, Martin S.

    2018-03-01

    , which like Pb also have a divalent ionic radius larger than that of Ca2+ and form carbonate minerals with the aragonite structure, did not consistently agree well with known concentrations of Sr and Ba in fluid inclusions. The ore fluid Zn concentrations predicted in the present study lie within the range of Zn concentrations typical of modern sedimentary brines and are high enough to allow deposition of the observed amounts of Zn in the Illinois-Kentucky and Central Tennessee districts within ranges of geologically reasonable times and ore fluid flow velocities. If the pH of the Illinois-Kentucky and Central pH ore fluids was as low as current evidence suggests to be possible, then these ore fluids could simultaneously have transported enough sulfide with their Zn to account for the observed amounts of sphalerite in the districts.

  18. A sustainability assessment system for Chinese iron and steel firms

    OpenAIRE

    Long, Yunguang; Pan, Jieyi; Farooq, Sami; Boer, Harry

    2016-01-01

    The environmental impact of the Chinese iron and steel industry is huge due to its high consumption of ore, coal and energy, and water and air pollution. It is important not only for China but also for the rest of the world that the Chinese iron and steel industry becomes more sustainable. A sustainable assessment indicator system is an important tool to support that development. Currently, however, a sustainable assessment system, specifically designed to match the characteristics of Chinese...

  19. Remote Sensing Extraction of Stopes and Tailings Ponds in AN Ultra-Low Iron Mining Area

    Science.gov (United States)

    Ma, B.; Chen, Y.; Li, X.; Wu, L.

    2018-04-01

    With the development of economy, global demand for steel has accelerated since 2000, and thus mining activities of iron ore have become intensive accordingly. An ultra-low-grade iron has been extracted by open-pit mining and processed massively since 2001 in Kuancheng County, Hebei Province. There are large-scale stopes and tailings ponds in this area. It is important to extract their spatial distribution information for environmental protection and disaster prevention. A remote sensing method of extracting stopes and tailings ponds is studied based on spectral characteristics by use of Landsat 8 OLI imagery and ground spectral data. The overall accuracy of extraction is 95.06 %. In addition, tailings ponds are distinguished from stopes based on thermal characteristics by use of temperature image. The results could provide decision support for environmental protection, disaster prevention, and ecological restoration in the ultra-low-grade iron ore mining area.

  20. Preparatory studies for the on-line determination of zinc content in zinc ore slurries by radioisotope excited X-ray fluorescence

    International Nuclear Information System (INIS)

    Donhoffer, D.K.

    1977-01-01

    Laboratory tests were carried out to prove the feasibility of determination of Zn-content in zinc ore slurries by isotope excited x-ray fluorescence. Matrix effects were investigated on dry samples. A slurry testloop was built and measurements on slurries were made. The results indicated that the measurement on Zn in ore slurries can be made with a precision of 0,05% Zn. A working equation for interpretation of the measurements is derived. (author)

  1. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    DEFF Research Database (Denmark)

    Scholz, Florian; Löscher, Carolin; Fiskal, Annika

    2016-01-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface...

  2. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron

    International Nuclear Information System (INIS)

    Du, Jingjing; Lu, Jinsuo; Wu, Qiong; Jing, Chuanyong

    2012-01-01

    Highlights: ► COPR remediation mechanism using nZVI was investigated. ► PHREEQC model calculation agreed well with our GANC experimental results. ► Incubation COPR and nZVI with >27% water content could reduce Cr(VI) in solids. ► Water content is the key factor to assist electron transfer between nZVI and COPR. - Abstract: Chromite ore processing residue (COPR) poses a great environmental and health risk with persistent Cr(VI) leaching. To reduce Cr(VI) and subsequently immobilize in the solid matrix, COPR was incubated with nanoscale zero-valent iron (nZVI) and the Cr(VI) speciation and leachability were studied. Multiple complementary analysis methods including leaching tests, X-ray powder diffraction, X-ray absorption near edge structure (XANES) spectroscopy, and X-ray photoelectron spectroscopy (XPS) were employed to investigate the immobilization mechanism. Geochemical PHREEQC model calculation agreed well with our acid neutralizing capacity experimental results and confirmed that when pH was lowered from 11.7 to 7.0, leachate Cr(VI) concentrations were in the range 358–445 mg L −1 which contributed over 90% of dissolved Cr from COPR. Results of alkaline digestion, XANES, and XPS demonstrated that incubation COPR with nZVI under water content higher than 27% could result in a nearly complete Cr(VI) reduction in solids and less than 0.1 mg L −1 Cr(VI) in the TCLP leachate. The results indicated that remediation approaches using nZVI to reduce Cr(VI) in COPR should be successful with sufficient water content to facilitate electron transfer from nZVI to COPR.

  3. Liver ischemia and ischemia-reperfusion induces and trafficks the multi-specific metal transporter Atp7b to bile duct canaliculi: possible preferential transport of iron into bile.

    Science.gov (United States)

    Goss, John A; Barshes, Neal R; Karpen, Saul J; Gao, Feng-Qin; Wyllie, Samuel

    2008-04-01

    Both Atp7b (Wilson disease gene) and Atp7a (Menkes disease gene) have been reported to be trafficked by copper. Atp7b is trafficked to the bile duct canaliculi and Atp7a to the plasma membrane. Whether or not liver ischemia or ischemia-reperfusion modulates Atp7b expression and trafficking has not been reported. In this study, we report for the first time that the multi-specific metal transporter Atp7b is significantly induced and trafficked by both liver ischemia alone and liver ischemia-reperfusion, as judged by immunohistochemistry and Western blot analyses. Although hepatocytes also stained for Atp7b, localized intense staining of Atp7b was found on bile duct canaliculi. Inductive coupled plasma-mass spectrometry analysis of bile copper, iron, zinc, and manganese found a corresponding significant increase in biliary iron. In our attempt to determine if the increased biliary iron transport observed may be a result of altered bile flow, lysosomal trafficking, or glutathione biliary transport, we measured bile flow, bile acid phosphatase activity, and glutathione content. No significant difference was found in bile flow, bile acid phosphatase activity, and glutathione, between control livers and livers subjected to ischemia-reperfusion. Thus, we conclude that liver ischemia and ischemia-reperfusion induction and trafficking Atp7b to the bile duct canaliculi may contribute to preferential iron transport into bile.

  4. Inhalation of uranium ores

    International Nuclear Information System (INIS)

    Stuart, B.O.; Jackson, P.O.

    1975-01-01

    In previous studies the biological dispositions of individual long-lived alpha members of the uranium chain ( 238 U, 234 U and 230 Th) were determined during and following repeated inhalation exposures of rats to pitchblende (26 percent U 3 O 8 ) ore. Although finely dispersed ore in secular equilibrium was inhaled, 230 Th/ 234 U radioactivity ratios in the lungs rose from 1.0 to 2.5 during 8 weeks of exposures and increased to 9.2 by four months after cessation of exposures. Marked non-equilibrium levels were also found in the tracheobronchial lymph nodes, kidneys, liver, and femur. Daily exposures of beagle dogs to high levels of this ore for 8 days resulted in lung 230 Th/ 234 U ratios of >2.0. Daily exposures of dogs to lower levels (0.1 mg/1) for 6 months, with sacrifice 15 months later, resulted in lung and thoracic lymph node 230 Th/ 234 U ratios ranging from 3.6 to 9 and nearly 7, respectively. The lungs of hamsters exposed to carnotite (4 percent U 3 O 8 ) ore in current lifespan studies show 230 Th/ 234 U ratios as high as 2.0 during daily inhalation of this ore in secular equilibrium. Beagle dogs sacrificed after several years of daily inhalations of the same carnotite ore plus radon daughters also showed marked non-equilibrium ratios of 230 Th/ 234 U, ranging from 5.6 to 7.4 in lungs and 6.2 to 9.1 in thoracic lymph nodes. This pattern of higher retention of 230 Th than 234 U in lungs, thoracic lymph nodes, and other tissues is thus consistent for two types of uranium ore among several species and suggests a reevaluation of maximum permissible air concentrations of ore, currently based only on uranium content

  5. Zinc estimates in ore and slag samples and analysis of ash in coal samples

    International Nuclear Information System (INIS)

    Umamaheswara Rao, K.; Narayana, D.G.S.; Subrahmanyam, Y.

    1984-01-01

    Zinc estimates in ore and slag samples were made using the radioisotope X-ray fluorescence method. A 10 mCi 238 Pu was employed as the primary source of radiation and a thin crystal NaI(Ti) spectrometer was used to accomplish the detection of the 8.64 keV Zinc K-characteristic X-ray line. The results are reported. Ash content of coal concerning about 100 samples from Ravindra Khani VI and VII mines in Andhra Pradesh were measured using X-ray backscattering method with compensation for varying concentrations of iron in different coal samples through iron-X-ray fluorescent intensity measurements. The ash percent is found to range from 10 to 40. (author)

  6. Intestinal Iron Homeostasis and Colon Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Yatrik M. Shah

    2013-06-01

    Full Text Available Colorectal cancer (CRC is the third most common cause of cancer-related deaths in industrialized countries. Understanding the mechanisms of growth and progression of CRC is essential to improve treatment. Iron is an essential nutrient for cell growth. Iron overload caused by hereditary mutations or excess dietary iron uptake has been identified as a risk factor for CRC. Intestinal iron is tightly controlled by iron transporters that are responsible for iron uptake, distribution, and export. Dysregulation of intestinal iron transporters are observed in CRC and lead to iron accumulation in tumors. Intratumoral iron results in oxidative stress, lipid peroxidation, protein modification and DNA damage with consequent promotion of oncogene activation. In addition, excess iron in intestinal tumors may lead to increase in tumor-elicited inflammation and tumor growth. Limiting intratumoral iron through specifically chelating excess intestinal iron or modulating activities of iron transporter may be an attractive therapeutic target for CRC.

  7. Aquifer Thermal Energy Storage as an ecosystem service for Brussels, Belgium: investigating iron (hydr)oxide precipitation with reactive transport modeling

    Science.gov (United States)

    Anibas, Christian; Possemiers, Mathias; Huysmans, Marijke

    2016-04-01

    In an evolving energy system it is important that urbanized areas contribute to their own energy demands. To reduce greenhouse gas emissions sustainable energy systems with a high efficiency are required, e.g. using urban aquifers as an ecosystem service. Here the potential of seasonal aquifer thermal energy storage and recovery (ATES) for the Brussels-Capital Region, Belgium is investigated. An important shallow geologic formation in the Brussels Capital Region is the Brussels Sand formation, a 20-60 m thick phreatic aquifer. The Brussels Sand Formation is known for its potential for ATES systems, but also for its varying redox and hydraulic conditions. Important limiting factors for ATES systems in the Brussels Sand Formation therefore are the hydraulic conductivity and the geochemical composition of the groundwater. Near the redox boundary iron hydroxide precipitation can negatively influence ATES well performance due to clogging. The interactions between physical processes (e.g. particle transport and clogging in the wider proximity of the ATES well) and chemical processes (e.g. influence of the operation temperatures on precipitation processes) during ATES operation are complex but not well understood. Therefore we constructed numerical groundwater flow models in MODFLOW to estimate maximum pumping and injection rates of different hydraulic conditions and competing water uses in the Brussels Sand Formation. In further steps the thermal potential for ATES was quantified using MT3DMS and the reactive transport model PHT3D was applied to assess the effects of operating ATES systems near the redox boundary. Results show that initial mixing plays an important role in the development of iron(hydr)oxide precipitation around the ATES wells, with the highest concentrations around the cold wells. This behavior is enhanced by the temperature effect; temperature differences of ΔT≈10°C already influence the iron (hydr)oxide concentration. The initial injection into the

  8. Ore sorting

    International Nuclear Information System (INIS)

    Hawkins, A.P.; Richards, A.W.

    1982-01-01

    In an ore sorting apparatus, ore particles are bombarded with neutrons in a chamber and sorted by detecting radiation emitted by isotopes of elements, such as gold, forming or contained in the particles, using detectors and selectively controlling fluid jets. The isotopes can be selectively recognised by their radiation characteristics. In an alternative embodiment, shorter life isotopes are formed by neutron bombardment and detection of radiation takes place immediately adjacent the region of bombardment

  9. 49 CFR 192.489 - Remedial measures: Cast iron and ductile iron pipelines.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Remedial measures: Cast iron and ductile iron... for Corrosion Control § 192.489 Remedial measures: Cast iron and ductile iron pipelines. (a) General graphitization. Each segment of cast iron or ductile iron pipe on which general graphitization is found to a...

  10. Economic outlook for radiometric selection of ores; Possibilites ouvertes en matiere economique par selection radiometrique des minerais

    Energy Technology Data Exchange (ETDEWEB)

    Formery, P; Ziegler, V [Commissariat a l' Energie Atomique, Usine du Bouchet, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The value of an ore can be increased by cutting off it's poor fractions. This selection may be realized at two stages: - part of the ore in situ is unable to cover it's extraction and treatment costs, this defines the 'underground cut-off grade'; - another portion of already extracted ore is unable to cover it's transport and treatment costs; this defines the 'surface cut off grade'. These selections are easily feasible owing to the property of uranium ores of emitting gamma radiations. A diagram makes possible a fast forecast on the effect of this selection upon the weight and metal yields. An attempt is made as well in order to provide the expected effect of the composition of underground cut off and surface cut off. This cut off however, being realized through an appreciation of the radiations, involves an alteration of the weight and metal yields which calls for a correction. A survey of the economic interest of the cut-off is done and an example of valorisation in a given deposit of a section at the limit of operability is proposed. (author) [French] On peut augmenter la valeur d'un minerai en retranchant des fractions pauvres de minerai. Cette selection peut etre realisee a deux stades: - eviter l'abattage d'un minerai incapable de supporter les frais d'extraction et de traitement. On definit ainsi une teneur de 'coupure fond'; - eviter de traiter chimiquement des fractions de minerai deja extraites mais dont la teneur ne justifie pas le transport et le traitement. On definit ainsi une teneur de coupure jour. La propriete des minerais d'uranium d'emettre des rayonnements gamma dont la densite est liee a la teneur permet de realiser tres aisement cette selection. On propose un diagramme permettant de prevoir rapidement l'incidence de cette selection sur les rendements poids et metal. On a tente de prevoir l'effet d'une composition des coupures fond et jour. Toutefois, la coupure etant realisee par une appreciation des rayonnements, il s'introduit une certaine

  11. Precipitation of uranium peroxide from the leach liquor of uranium ores

    International Nuclear Information System (INIS)

    Gao Xizhen; Lin Sirong; Guo Erhua; Lu Shijie

    1995-06-01

    A chemical precipitation process of recovering uranium from the leach liquor of uranium ores was investigated. The process primarily includes the precipitation of iron with lime, the preprocessing of the slurry of iron hydroxides and the precipitation of uranium with H 2 O 2 . The leach liquor is neutralized by lime milk to pH 3.7 to precipitate the iron hydroxides which after flocculation and settle is separated out and preprocessed at 170 degree C in an autoclave. H 2 O 2 is then used to precipitate uranium in the leach liquor free of iron, and the pH of process for uranium precipitation adjusted by adding MgO slurry to 3.5. The barren solution can be used to wash the filter cakes of leach tailing. The precipitated slurry of iron hydroxides after being preprocessed is recycled to leaching processes for recovering uranium in it. This treatment can not only avoid the filtering of the slurry of iron hydroxides, but also prevent the iron precipitate from redissolving and consequently the increase of iron concentration in the leach liquor. The results of the investigation indicate that lime, H 2 O 2 and MgO are the main chemical reagents used to obtain the uranium peroxide product containing over 65% uranium from the leach liquor, and they also do not cause environmental pollution. In accordance with the uranium content in the liquor, the consumption of chemical reagent for H 2 O 2 (30%) and MgO are 0.95 kg/kgU and 0.169 kg/kgU, respectively. (1 fig., 8 tabs., 7 refs.)

  12. Determination of cadmium in zinc ores by thermal neutron absorption analysis

    International Nuclear Information System (INIS)

    De Norre, L.; Op de Beeck, J.; Hoste, J.

    1983-01-01

    A method has been developed for routine determination of cadmium in zinc ores by thermal neutron absorption analysis, based on the attenuation of a thermal neutron flux passing through a neutron absorbing material. The thermal neutron flux in related to the 52 V activity induced in a vanadium detector, surrounded by pellets pressed from a mixture of powdered material with graphite. Besides cadmium, also the major constituents zinc, iron and sulfur contribute significantly to the total attenuation of the thermal neutron flux. Calibration lines for these elements are worked out. All irradiations are carried out for 200 s in the partially thermalized neutron flux of a 5 Ci 227 Ac-Be isotope neutron source. After a decay of 30 s, the 52 V activity of the vanadium detector is measured for 400 s with a NaI(Tl) scintillation detector. The analysis sequence, including the computation of the results from the counting data, is automated by means of a LSI-11 Microprocessor with 12Kx16 bit memory. Zinc ores, containing 0.02 to 1.45% cadmium, have been analyzed with a precision ranging from 12.6% to 0.54%, resp. As a test for the reliability of the method, two NBS standard reference materials were analyzed in the same way as the zinc ore samples. (author)

  13. Feasibility Study of Cargo Airship Transportation Systems Powered by New Green Energy Technologies

    Science.gov (United States)

    Skuza, Jonathan R.; Park, Yeonjoon; Kim, Hyun Jung; Seaman, Shane T.; King, Glen C.; Choi, Sang H.; Song, Kyo D.; Yoon, Hargsoon; Lee, Kunik

    2014-01-01

    The development of transportation systems that use new and sustainable energy technologies is of utmost importance due to the possible future shortfalls that current transportation modes will encounter because of increased volume and costs. The introduction and further research and development of new transportation and energy systems by materials researchers at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) and the Department of Transportation are discussed in this Technical Memorandum. In this preliminary study, airship concepts were assessed for cargo transportation using various green energy technologies capable of 24-hour operation (i.e., night and day). Two prototype airships were successfully constructed and tested at LaRC to demonstrate their feasibility: one with commercially available solar cells for operation during the daytime and one with microwave rectennas (i.e., rectifying antennas) developed in-house for night-time operation. The test results indicate the feasibility of a cargo transportation airship powered by new green energy sources and wireless power technology. Future applications will exploit new green energy sources that use materials and devices recently developed or are in the process of being developed at LaRC. These include quantum well SiGe solar cells; low, mid-, and high temperature thermoelectric modules; and wireless microwave and optical rectenna devices. This study examines the need and development of new energy sources for transportation, including the current status of research, materials, and potential applications.

  14. Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling

    Energy Technology Data Exchange (ETDEWEB)

    R. Quatrini; C. Appia-Ayme; Y. Denis; J. Ratouchniak; F. Veloso; J. Valdes; C. Lefimil; S. Silver; F. Roberto; O. Orellana; F. Denizot; E. Jedlicki; D. Holmes; V. Bonnefoy

    2006-09-01

    Acidithiobacillus ferrooxidans is a well known acidophilic, chemolithoautotrophic, Gram negative, bacterium involved in bioleaching and acid mine drainage. In aerobic conditions, it gains energy mainly from the oxidation of ferrous iron and/or reduced sulfur compounds present in ores. After initial oxidation of the substrate, electrons from ferrous iron or sulfur enter respiratory chains and are transported through several redox proteins to oxygen. However, the oxidation of ferrous iron and reduced sulfur compounds has also to provide electrons for the reduction of NAD(P) that is subsequently required for many metabolic processes including CO2 fixation. To help to unravel the enzymatic pathways and the electron transfer chains involved in these processes, a genome-wide microarray transcript profiling analysis was carried out. Oligonucleotides corresponding to approximately 3000 genes of the A. ferrooxidans type strain ATCC23270 were spotted onto glass-slides and hybridized with cDNA retrotranscribed from RNA extracted from ferrous iron and sulfur grown cells. The genes which are preferentially transcribed in ferrous iron conditions and those preferentially transcribed in sulfur conditions were analyzed. The expression of a substantial number of these genes has been validated by real-time PCR, Northern blot hybridization and/or immunodetection analysis. Our results support and extend certain models of iron and sulfur oxidation and highlight previous observations regarding the possible presence of alternate electron pathways. Our findings also suggest ways in which iron and sulfur oxidation may be co-ordinately regulated. An accompanying paper (Appia-Ayme et al.) describes results pertaining to other metabolic functions.

  15. Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells

    International Nuclear Information System (INIS)

    Kim, Yongbae; Olivi, Luisa; Cheong, Jae Hoon; Maertens, Alex; Bressler, Joseph P.

    2007-01-01

    Aluminum and other trivalent metals were shown to stimulate uptake of transferrin bound iron and nontransferrin bound iron in erytholeukemia and hepatoma cells. Because of the association between aluminum and Alzheimer's Disease, and findings of higher levels of iron in Alzheimer's disease brains, the effects of aluminum on iron homeostasis were examined in a human glial cell line. Aluminum stimulated dose- and time-dependent uptake of nontransferrin bound iron and iron bound to transferrin. A transporter was likely involved in the uptake of nontransferrin iron because uptake reached saturation, was temperature-dependent, and attenuated by inhibitors of protein synthesis. Interestingly, the effects of aluminum were not blocked by inhibitors of RNA synthesis. Aluminum also decreased the amount of iron bound to ferritin though it did not affect levels of divalent metal transporter 1. These results suggest that aluminum disrupts iron homeostasis in Brain by several mechanisms including the transferrin receptor, a nontransferrin iron transporter, and ferritin

  16. A New Approach to Feasibility Risk Assessment within Transport Infrastructure Appraisal

    DEFF Research Database (Denmark)

    Salling, Kim Bang

    2013-01-01

    This paper introduces a new approach of applying feasibility risk assessment within transport project infrastructure appraisal. The procedure is based upon quantitative risk analysis and Monte Carlo simulation in combination with conventional cost-benefit analysis converting deterministic benefit...... are, hereby, often basing their decisions on wrongful material. The presented approach to transport infrastructure appraisal is to include uncertainties and risks in the evaluation. Correspondingly, the handling of uncertainties and risk within transport project assessment are often made up...... by sensitivity tests producing deterministically based output values. Research has proven that traditional sensitivity analysis seldomnly captures the total variability especially as concerns the costs and demands estimated in the pre-stage of the evaluation. Therefore, this paper introduces an approach...

  17. Developing an undergraduate degree in public transportation administration and management : feasibility study results.

    Science.gov (United States)

    2006-11-01

    Experiences and results of research by the North Carolina Central University Department of Public Administration while a : conducting feasibility study for establishing a new multidisciplinary undergraduate degree in public transportation administrat...

  18. A provenance study of iron archaeological artefacts by Inductively Coupled Plasma-Mass Spectrometry multi-elemental analysis

    International Nuclear Information System (INIS)

    Desaulty, Anne-Marie; Mariet, Clarisse; Dillmann, Philippe; Joron, Jean Louis; Fluzin, Philippe

    2008-01-01

    Raw materials and wastes (i.e. ore, slag and laitier) from ironmaking archaeological sites have been analyzed in order to understand the behavior of the trace elements in the ancient ironmaking processes and to find the significant-most elements to characterize an iron making region. The ICP-MS (Inductively Coupled Plasma Mass Spectrometry) appears to be an excellent technique for this type of studies. The comparison between the ICP-MS results obtained with the Standard Addition method and the INAA (Instrumental Neutron Activation Analyses) results proved that Sc, Co, (Ni), Rb, Cs, Ba, La, Ce, Sm, Eu, Yb, Hf, Th, U contents in the ores, slag and laitiers, and Co and Ni contents in the cast iron can be successfully determined by ICP-MS after wet acid digestion (low detection limits, good sensitivity and precision). By using significant trace element pairs (Yb/Ce, Ce/Th, La/Sc, U/Th, Nb/Y) present in the ores, laitiers and slag, it is possible to discriminate different French ironmaking regions as the Pays de Bray, Lorraine and Pays d'Ouche. These results open the way to further studies on the provenance of iron objects. The comparison between the ICP-MS results obtained with the Standard Calibration Curves method and the INAA results shows that matrices rich in iron, affect the ICP-MS analyses by suppressing the analytes signal. Further studies are necessary to improve understanding matrix effects

  19. Fiscal Feasibility Assessment Applied to Transport Infrastructure Projects

    Energy Technology Data Exchange (ETDEWEB)

    Guilherme de Aragão, J.J.; Santos Fontes Pereira, L. dos; Yamashita, Y.; Brandão, R.

    2016-07-01

    The demand for transport infrastructure investment is a latent issue for several countries, mainly for developing countries. However, investments in major logistics projects should be carefully evaluated, in order that their deployment induces development without endangering fiscal sustainability by excessive public indebtedness. Fiscal accounting practices used currently in the feasibility studies of transport infrastructures in Brazil are very limited, as they do not consider indirect and induced effects of the infrastructure investment in the fiscal evaluation. In addition, the corresponding influence area has not an established delimitation method. The aim of the present paper is to develop a model for calculating economic and fiscal impacts of transport infrastructure investment projects that includes the direct, indirect and induced effects within a reference area do be determined. First, different project assessment guides in Brazil and abroad are examined with a special focus on the assessment of economic and fiscal impacts of the projects. Based on the assessment experience and on the definition of the fiscal balance of an infrastructure project, the next step sets up a framework for the calculation of the impacts, using more simplified data. (Author)

  20. Dissolved iron anomaly in the deep tropical-subtropical Pacific: Evidence for long-range transport of hydrothermal iron

    Science.gov (United States)

    Wu, Jingfeng; Wells, Mark L.; Rember, Robert

    2011-01-01

    Dissolved iron profiles along a north-south transect along 158°W in the tropical Pacific show evidence of two deepwater anomalies. The first extends from Station ALOHA (22.78°N) to the equator at ˜1000-1500 m and lies below the maximum apparent oxygen utilization and nutrient (N, P) concentrations. The feature is not supported by vertical export processes, but instead corresponds with the lateral dilution field of δ 3He derived from the Loihi seamount, Hawaii, though a sediment source associated with the Hawaiian Island Chain cannot be entirely ruled out. The second, deeper (2000-3000 m) anomaly occurs in tropical South Pacific waters (7°S) and also does not correlate with the depths of maximum nutrient concentrations or apparent oxygen utilization, but it does coincide closely with δ 3He emanating from the East Pacific Rise, more than 5000 km to the east. We hypothesize that these anomalies represent the long-range (>2000 km) transport of hydrothermal iron residuals, stabilized against scavenging by complexation with excess organic ligands in the plume source regions. Such trace leakage of hydrothermal iron to distal plume regions would have been difficult to identify in most hydrothermal vent mapping studies because low analytical detection limits were not needed for the proximal plume regions. These findings suggest that hydrothermal activity may represent a major source of dissolved iron throughout the South Pacific deep basin today, as well as other regions having high mid-ocean spreading rates in the geologic past. In particular, we hypothesize that high spreading rates along the South Atlantic and Southern Ocean mid-oceanic ridges, combined with the upwelling ventilation of these distal hydrothermal plumes, may have increased ocean productivity and carbon export in the Southern Ocean. Assessing the magnitude and persistence of dissolved hydrothermal iron in basin scale deep waters will be important for understanding the marine biogeochemistry of iron

  1. Processing of low-grade uranium ores

    International Nuclear Information System (INIS)

    Michel, P.

    1975-01-01

    Four types of low grade ores are studied. Low grade ores which must be extracted because they are enclosed in a normal grade deposit. Heap leaching is the processing method which is largely used. It allows to obtain solutions or preconcentrates which may be delivered at the nearest plant. Normal grade ores contained in a low amplitude deposit which can be processed using leaching as far as the operation does not need any large expensive equipment. Medium grade ores in medium amplitude deposits to which a simplified conventional process can be applied using fast heap leaching. Low grade ores in large deposits. The processing possibilities leading to use in place leaching are explained. The operating conditions of the method are studied (leaching agent, preparation of the ore deposit to obtain a good tightness with regard to the hydrological system and to have a good contact between ore and reagent) [fr

  2. Iron and iron-related proteins in asbestosis.

    Science.gov (United States)

    ABSTRACT: We tested the postulate that iron homeostasis is altered among patients diagnosed to have asbestosis. Lung tissue from six individuals diagnosed to have had asbestosis at autopsy was stained for iron, ferritin, divalent metal transporter 1 (DMT1), and ferroportin 1 (FP...

  3. Sulphate analysis in uranium leach iron(III) chloride solutions by inductively coupled argon plasma spectrometry

    International Nuclear Information System (INIS)

    Nirdosh, I.; Lakhani, S.; Yunus, M.Z.M.

    1993-01-01

    Inductively coupled Argon Plasma Spectrometry is used for the indirect determination of sulphate in iron(III) chloride leach solution of Elliot Lake uranium ores via addition of a known amount of barium ions and analyzing for excess of barium. The ore contains ∼ 7 wt% pyrite, FeS 2 , as the major mineral which oxidizes to generate sulphate during leaching with Fe(III). The effects of pH, the concentrations of Fe(III) and chloride ions and for presence of ethanol in the test samples on the accuracy of analysis are studied. It is found that unlike the Rhodizonate method, removal of iron(III) from or addition of ethanol to the test sample prior to analysis are not required. Linear calibration curves are obtained. (author)

  4. Wind Transport of Radionuclide- Bearing Dust, Peña Blanca, Chihuahua, Mexico

    Science.gov (United States)

    Velarde, R.; Goodell, P. C.; Gill, T. E.; Arimoto, R.

    2007-05-01

    This investigation evaluates radionuclide fractionation during wind erosion of high-grade uranium ore storage piles at Peña Blanca (50km north of Chihuahua City), Chihuahua, Mexico. The aridity of the local environment promotes dust resuspension by high winds. Although active operations ceased in 1983, the Peña Blanca mining district is one of Mexico`s most important uranium ore reserves. The study site contains piles of high grade ore, left loose on the surface, and separated by the specific deposits from which they were derived (Margaritas, Nopal I, and Puerto I). Similar locations do not exist in the United States, since uranium mining sites in the USA have been reclaimed. The Peña Blanca site serves as an analog for the Yucca Mountain project. Dust deposition is collected at Peña Blanca with BSNE sediment catchers (Fryrear, 1986) and marble dust traps (Reheis, 1999). These devices capture windblown sediment; subsequently, the sample data will help quantify potentially radioactive short term field sediment loss from the repository surface and determine sediment flux. Aerosols and surface materials will be analyzed and radioactivity levels established utilizing techniques such as gamma spectroscopy. As a result, we will be able to estimate how much radionuclide contaminated dust is being transported or attached geochemically to fine grain soils or minerals (e.g., clays or iron oxides). The high-grade uranium-bearing material is at secular equilibrium, thus the entire decay series is present. Of resulting interest is not only the aeolian transport of uranium, but also of the other daughter products. These studies will improve our understanding of geochemical cycling of radionuclides with respect to sources, transport, and deposition. The results may also have important implications for the geosciences and homeland security, and potential applications to public health. Funding for this project is provided in part via a NSF grant to Arimoto.

  5. Mineralogy, chemistry of magnetite and genesis of Korkora-1 iron deposit, east of Takab, NW Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Maanijou

    2014-10-01

    Full Text Available Introduction There is an iron mining complex called Shahrak 60 km east of Takab town, NW Iran. The exploration in the Shahrak deposit (general name for all iron deposits of the area started in 1992 by Foolad Saba Noor Co. and continued in several periods until 2008. The Shahrak deposit comprising 10 ore deposits including Korkora-1, Korkora-2, Shahrak-1, Shahrak-2, Shahrak-3, Cheshmeh, Golezar, Sarab-1, Sarab-2, and Sarab-3 deposits Sheikhi, 1995 with total 60 million tons of proved ore reserves. The Fe grade ranges from 45 to 65% (average 50%. The ore reserves of these deposits vary and the largest one is Korkora-1 with 15 million tons of 55% Fe and 0.64% S. The Korkora-1 ore deposit is located in western Azarbaijan and Urumieh-Dokhtar volcanic zone, at the latitude of 36°21.8´, and longitude of 47°32´. Materials and methods Six thin-polished sections were made on magnetite, garnet, and amphibole for EPMA (Electron Probe Micro Analysis. EPMA was performed using a JEOL JXA-733 electron microprobe at the University of New Brunswick, Canada, with wavelength-dispersive spectrometers. Results and discussion Outcropped units of the area are calc-alkaline volcanics of rhyolite, andesite and dacite and carbonate rocks of Qom Formation in which intrusion of diorite to granodiorite and quartzdoirite caused contact metamorphism, alteration plus skarnization and formation of actinolite, talc, chlorite, phlogopite, quartz, calcite, epidote and marblization in the vicinity of the ore deposit. Iron mineralization formed at the contacts of andesite and dacite with carbonates in Oligo-Miocene. The study area consists of skarn, metamorphic rocks, and iron ore zones. The shape of the deposit is lentoid to horizontal with some alteration halos. The ore occurred as replacement, massive, disseminated, open-space filling and breccia. The ore minerals of the deposit include low Ti-magnetite (0.04 to 0.2 wt % Ti, minor apatite, and sulfide minerals such as pyrite

  6. Iron-hydroxamate transport in Escherichia coli K12

    International Nuclear Information System (INIS)

    Prody, C.A.

    1984-01-01

    FhuB mutants, which are deficient in ferrichrome transport, were isolated and characterized. They were found to be deficient in the utilization of all hydroxamate-type siderophores. They were, however, able to transport enterobactin. A number of analogs of hydroxamate-type siderophores were tested for biological activity in E. coli, and about half of these were active. In addition, two rhodotorulic acid analogs were able to supply iron to fhuB mutants. A search for the fhuB gene product, using one and two-dimensional polyacrylamide gels of proteins from fhuB and wild type strains proved fruitless, and it appeared that the fhuB gene product is expressed at a very low level. Therefore, the fhuB gene was subcloned from a plasmid in the Carbon bank onto plasmid vectors containing the E. coli lac UV-5 and tacI promoters as a device to amplify the fhuB gene. One of these recombinant plasmids carried an 8Kb insert which contained both the tonA and fhuB genes. This plasmid synthesized five proteins of molecular weights 78,000, 40,000, 30,000, 24,000, and 13,700 in maxicell strain CSR603. By use of deletions, the approximate order of the genes for these proteins was determined. Although 3 He-ferrichrome is transported into E. coli cells and vesicles, 3 He-ferric rhodotorulate is not, and so the mechanism of transport for these two siderophores must be different. To examine this further, mutants were obtained that could transport ferrichrome but not rhodotorulic acid. These map in the region between tonA and fhuB, and most are able to transport aerobactin, when carrying the ColV plasmid, but not schizokinen

  7. A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile

    Science.gov (United States)

    Rojas, Paula A.; Barra, Fernando; Reich, Martin; Deditius, Artur; Simon, Adam; Uribe, Francisco; Romero, Rurik; Rojo, Mario

    2018-01-01

    El Romeral is one of the largest iron oxide-apatite (IOA) deposits in the Coastal Cordillera of northern Chile. The Cerro Principal magnetite ore body at El Romeral comprises massive magnetite intergrown with actinolite, with minor apatite, scapolite, and sulfides (pyrite ± chalcopyrite). Several generations of magnetite were identified by using a combination of optical and electron microscopy techniques. The main mineralization event is represented by zoned magnetite grains with inclusion-rich cores and inclusion-poor rims, which form the massive magnetite ore body. This main magnetite stage was followed by two late hydrothermal events that are represented by magnetite veinlets that crosscut the massive ore body and by disseminated magnetite in the andesite host rock and in the Romeral diorite. The sulfur stable isotope signature of the late hydrothermal sulfides indicates a magmatic origin for sulfur (δ34S between - 0.8 and 2.9‰), in agreement with previous δ34S data reported for other Chilean IOA and iron oxide-copper-gold deposits. New 40Ar/39Ar dating of actinolite associated with the main magnetite ore stage yielded ages of ca. 128 Ma, concordant within error with a U-Pb zircon age for the Romeral diorite (129.0 ± 0.9 Ma; mean square weighted deviation = 1.9, n = 28). The late hydrothermal magnetite-biotite mineralization is constrained at ca. 118 Ma by 40Ar/39Ar dating of secondary biotite. This potassic alteration is about 10 Ma younger than the main mineralization episode, and it may be related to post-mineralization dikes that crosscut and remobilize Fe from the main magnetite ore body. These data reveal a clear genetic association between magnetite ore formation, sulfide mineralization, and the diorite intrusion at El Romeral (at 129 Ma), followed by a late and more restricted stage of hydrothermal alteration associated with the emplacement of post-ore dikes at ca. 118 Ma. Therefore, this new evidence supports a magmatic-hydrothermal model for the

  8. Filtration aids in uranium ore processing

    International Nuclear Information System (INIS)

    Ford, H.L.; Levine, N.M.; Risdon, A.R.

    1975-01-01

    A process of improving the filtration efficiency and separation of uranium ore pulps obtained by carbonate leaching of uranium ore which comprises treating said ore pulps with an aqueous solution of hydroxyalkyl guar selected from the group consisting of hydroxyethyl and hydroxypropyl guar in the amount of 0.1 and 2.0 pounds of hydroxyalkyl guar per ton of uranium ore

  9. Specific expression of the vacuolar iron transporter, TgVit, causes iron accumulation in blue-colored inner bottom segments of various tulip petals.

    Science.gov (United States)

    Momonoi, Kazumi; Tsuji, Toshiaki; Kazuma, Kohei; Yoshida, Kumi

    2012-01-01

    Several flowers of Tulipa gesneriana exhibit a blue color in the bottom segments of the inner perianth. We have previously reported the inner-bottom tissue-specific iron accumulation and expression of the vacuolar iron transporter, TgVit1, in tulip cv. Murasakizuisho. To clarify whether the TgVit1-dependent iron accumulation and blue-color development in tulip petals are universal, we analyzed anthocyanin, its co-pigment components, iron contents and the expression of TgVit1 mRNA in 13 cultivars which show a blue color in the bottom segments of the inner perianth accompanying yellow- and white-colored inner-bottom petals. All of the blue bottom segments contained the same anthocyanin component, delphinidin 3-rutinoside. The flavonol composition varied with cultivar and tissue part. The major flavonol in the bottom segments of the inner perianth was rutin. The iron content in the upper part was less than that in the bottom segments of the inner perianth. The iron content in the yellow and white petals was higher in the bottom segment of the inner perianth than in the upper tissues. TgVit1 mRNA expression was apparent in all of the bottom tissues of the inner perianth. The result of a reproduction experiment by mixing the constituents suggests that the blue coloration in tulip petals is generally caused by iron complexation to delphinidin 3-rutinoside and that the iron complex is solubilized and stabilized by flavonol glycosides. TgVit1-dependent iron accumulation in the bottom segments of the inner perianth might be controlled by an unknown system that differentiated the upper parts and bottom segments of the inner perianth.

  10. The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Nicolaisen, Kerstin; Hahn, Alexander; Valdebenito, Marianne; Moslavac, Suncana; Samborski, Anastazia; Maldener, Iris; Wilken, Corinna; Valladares, Ana; Flores, Enrique; Hantke, Klaus; Schleiff, Enrico

    2010-11-01

    Iron uptake is essential for Gram-negative bacteria including cyanobacteria. In cyanobacteria, however, the iron demand is higher than in proteobacteria due to the function of iron as a cofactor in photosynthesis and nitrogen fixation, but our understanding of iron uptake by cyanobacteria stands behind the knowledge in proteobacteria. Here, two genes involved in this process in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 were identified. ORF all4025 encodes SchE, a putative cytoplasmic membrane-localized transporter involved in TolC-dependent siderophore secretion. Inactivation of schE resulted in an enhanced sensitivity to high metal concentrations and decreased secretion of hydroxamate-type siderophores. ORF all4026 encodes a predicted outer membrane-localized TonB-dependent iron transporter, IacT. Inactivation of iacT resulted in decreased sensitivity to elevated iron and copper levels. Expression of iacT from the artificial trc promoter (P(trc)) resulted in sensitization against tested metals. Further analysis showed that iron and copper effects are synergistic because a decreased supply of iron induced a significant decrease of copper levels in the iacT insertion mutant but an increase of those levels in the strain carrying P(trc)-iacT. Our results unravel a link between iron and copper homeostasis in Anabaena sp. PCC 7120. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Sampling of ore

    International Nuclear Information System (INIS)

    Boehme, R.C.; Nicholas, B.L.

    1987-01-01

    This invention relates to a method of an apparatus for ore sampling. The method includes the steps of periodically removing a sample of the output material of a sorting machine, weighing each sample so that each is of the same weight, measuring a characteristic such as the radioactivity, magnetivity or the like of each sample, subjecting at least an equal portion of each sample to chemical analysis to determine the mineral content of the sample and comparing the characteristic measurement with desired mineral content of the chemically analysed portion of the sample to determine the characteristic/mineral ratio of the sample. The apparatus includes an ore sample collector, a deflector for deflecting a sample of ore particles from the output of an ore sorter into the collector and means for moving the deflector from a first position in which it is clear of the particle path from the sorter to a second position in which it is in the particle path at predetermined time intervals and for predetermined time periods to deflect the sample particles into the collector. The apparatus conveniently includes an ore crusher for comminuting the sample particle, a sample hopper means for weighing the hopper, a detector in the hopper for measuring a characteristic such as radioactivity, magnetivity or the like of particles in the hopper, a discharge outlet from the hopper and means for feeding the particles from the collector to the crusher and then to the hopper

  12. Uranium,Radium and Iron Absorption from Liquid Waste Uranium Ore Processing by Zeolite

    International Nuclear Information System (INIS)

    Wismawati, T; Sorot sudiro, A; Herjati, T

    1998-01-01

    The aim of this work is to determine zeolites sorption capacity and the distribution coefficient of uranium, radium, and iron in zeolite-liquid waste system. Mineralogical composition of zeolite used in the experiment has been determine by examining the thin sections of zeolite grains under a microscope. Zeolite has ben activated by the dilute sulfuric acid or sodium hydroxide solution. The results show that the use of 0.25 N sodium hydroxide solution could be optimizing the zeolite for uranium and iron ions sorption and that of 0.1 N sulfuric acid solution is for radium sorption. The re-activation process has been carried out in three hours. Under such a condition, the sorption efficiency of zeolite to those ions have been known to be 45.85% for uranium, 96.63 % for iron and 87.80 % for radium. The distribution coefficients of uranium, radium and iron ion in zeolite-liquid waste system have been calculated 0.85, 7.02, and 28.65 ml/g respectively

  13. Paleomagnetic dating of non-sulfide Zn-Pb ores in SW Sardinia (Italy: a first attempt

    Directory of Open Access Journals (Sweden)

    L. Sagnotti

    2005-06-01

    Full Text Available A first paleomagnetic investigation aimed at constraining the age of the non-sulfide Zn-Pb ore deposits in the Iglesiente district (SW Sardinia, Italy was carried out. In these ores, the oxidation of primary sulfides, hosted in Cambrian carbonate rocks, was related to several paleoweathering episodes spanning from the Mesozoic onward. Paleomagnetic analyses were performed on 43 cores from 4 different localities, containing: a non-oxidized primary sulfides and host rock, b oxidized Fe-rich hydrothermal dolomites and (c supergene oxidation ore («Calamine». Reliable data were obtained from 18 samples; the others show uninterpretable results due to low magnetic intensity or to scattered demagnetization trajectories. Three of them show a scattered Characteristic Remanent Magnetization (ChRM, likely carried by the original (i.e. Paleozoic magnetic iron sulfides. The remaining 15 samples show a well defined and coherent ChRM, carried by high-coercivity minerals, acquired after the last phase of counterclockwise rotation of Sardinia (that is after 16 Myr, in a time interval long enough to span at least one reversal of the geomagnetic field. Hematite is the main magnetic carrier in the limestone, whereas weathered hydrothermal dolomite contains goethite or a mixture of both. The results suggest that paleomagnetism can be used to constrain the timing of oxidation in supergene-enriched ores.

  14. Difference of ore-bearing and non-ore-bearing pegmatite in the Guangshigou area and its research significance

    International Nuclear Information System (INIS)

    Zuo Wenqian; Zhang Zhanshi; Sha Yazhou; Rao Chaojun

    2011-01-01

    Guangshigou uranium deposit is one of the typical granite-pegmatite uranium deposits in China, the ore-body are located in the density zone of the outside contact zone of granite pluton. To distinguish the ore-bearing and Non-ore-bearing pegmatite is one of the most practices and have great significance for the effect of mineral exploration. Based on the field investigation and former research results, contrast research on the characteristics of the pegmatite on petrology, geophysical, geochemistry and stable isotopes have been carried out. It is pointed out that the ore-bearing pegmatite differ from the non-ore-bearing one from macro-and-micro-view in Guangshigou Uranium deposits, the main characteristics are summarized; the macro-and-micro signs are established, the genetic difference between the ore-bearing and non-ore-bearing pegmatite are discussed primarily. The achievements would be helpful for prospecting and researching of this type uranium deposits in China. (authors)

  15. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.

    Science.gov (United States)

    Sun, Jing; Pikaar, Ilje; Sharma, Keshab Raj; Keller, Jürg; Yuan, Zhiguo

    2015-03-15

    Dosage of iron salt is the most commonly used method for sulfide control in sewer networks but incurs high chemical costs. In this study, we experimentally investigate the feasibility of using iron rich drinking water treatment sludge for sulfide control in sewers. A lab-scale rising main sewer biofilm reactor was used. The sulfide concentration in the effluent decreased from 15.5 to 19.8 mgS/L (without dosing) to below 0.7-2.3 mgS/L at a sludge dosing rate achieving an iron to total dissolved inorganic sulfur molar ratio (Fe:S) of 1:1, with further removal of sulfide possible by prolonging the reaction time. In fact, batch tests revealed an Fe consumption to sulfide removal ratio of 0.5 ± 0.02 (mole:mole), suggesting the possible occurrence of other reactions involving the removal of sulfide. Modelling revealed that the reaction between iron in sludge and sulfide has reaction orders of 0.65 ± 0.01 and 0.77 ± 0.02 with respect to the Fe and sulfide concentrations, respectively. The addition of sludge slightly increased the total chemical oxidation demand (tCOD) concentration (by approximately 12%) as expected, but decreased the soluble chemical oxidation demand (sCOD) concentration and methane formation by 7% and 20%, respectively. Some phosphate removal (13%) was also observed at the sludge dosing rate of 1:1 (Fe:S), which is beneficial to nutrient removal from the wastewater. Overall, this study suggests that dosing iron-rich drinking water sludge to sewers could be an effective strategy for sulfide removal in sewer systems, which would also reduce the sludge disposal costs for drinking water treatment works. However, its potential side-effects on sewer sedimentation and on the wastewater treatment plant effluent remain to be investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Influence of acid/ore relation in the uranium-silicate ore treatment

    International Nuclear Information System (INIS)

    Antaki, C.; Cipriani, M.; Bruno, J.B.

    1985-01-01

    The estimation of acid addition effect (Kg of H 2 SO 4 /t of ore) in uranium extraction from an uranium-silicate ore, with a view to the control of silica concentration in leach under 0,6 g/l is presented. The analysis was effected based on bench-scale tests, with different quantities of sulfuric acid addition. (Author) [pt

  17. Processing of low grade uranium ores

    International Nuclear Information System (INIS)

    Michel, P.

    1978-10-01

    Four types of low-grade ores are studied: (1) Low-grade ores that must be extracted because they are enclosed in a normal-grade deposit. Heap leaching is the processing method which is largely used. (2) Normal-grade ores contained in low-amplitude deposits. They can be processed using in-place leaching as far as the operation does not need any large and expensive equipment. (3) Medium-grade ores in medium-amplitude deposits. A simplified conventional process can be applied using fast heap leaching. (4) Low-grade ores in large deposits. The report explains processing possibilities leading in most cases to the use of in-place leaching. The operating conditions of this method are laid out, especially the selection of the leaching agents and the preparation of the ore deposit

  18. Alteration mineral mapping for iron prospecting using ETM+ data, Tonkolili iron field, northern Sierra Leone

    Science.gov (United States)

    Mansaray, Lamin R.; Liu, Lei; Zhou, Jun; Ma, Zhimin

    2013-10-01

    The Tonkolili iron field in northern Sierra Leone has the largest known iron ore deposit in Africa. It occurs in a greenstone belt in an Achaean granitic basement. This study focused mainly on mapping areas with iron-oxide and hydroxyl bearing minerals, and identifying potential areas for haematite mineralization and banded iron formations (BIFs) in Tonkolili. The predominant mineral assemblage at the surface (laterite duricrust) of this iron field is haematitegoethite- limonite ±magnetite. The mineralization occurs in quartzitic banded ironstones, layered amphibolites, granites, schists and hornblendites. In this study, Crosta techniques were applied on Enhanced Thematic Mapper (ETM+) data to enhance areas with alteration minerals and target potential areas of haematite and BIF units in the Tonkolili iron field. Synthetic analysis shows that alteration zones mapped herein are consistent with the already discovered magnetite BIFs in Tonkolili. Based on the overlaps of the simplified geological map and the remote sensing-based alteration mineral maps obtained in this study, three new haematite prospects were inferred within, and one new haematite prospect was inferred outside the tenement boundary of the Tonkolili exploration license. As the primary iron mineral in Tonkolili is magnetite, the study concludes that, these haematite prospects could also be underlain by magnetite BIFs. This study also concludes that, the application of Crosta techniques on ETM+ data is effective not only in mapping iron-oxide and hydroxyl alterations but can also provide a basis for inferring areas of potential iron resources in Algoma-type banded iron formations (BIFs), such as those in the Tonkolili field.

  19. Continued Multicolumns Bioleaching for Low Grade Uranium Ore at a Certain Uranium Deposit

    Directory of Open Access Journals (Sweden)

    Gongxin Chen

    2016-01-01

    Full Text Available Bioleaching has lots of advantages compared with traditional heap leaching. In industry, bioleaching of uranium is still facing many problems such as site space, high cost of production, and limited industrial facilities. In this paper, a continued column bioleaching system has been established for leaching a certain uranium ore which contains high fluoride. The analysis of chemical composition of ore shows that the grade of uranium is 0.208%, which is lower than that of other deposits. However, the fluoride content (1.8% of weight is greater than that of other deposits. This can be toxic for bacteria growth in bioleaching progress. In our continued multicolumns bioleaching experiment, the uranium recovery (89.5% of 4th column is greater than those of other columns in 120 days, as well as the acid consumption (33.6 g/kg. These results indicate that continued multicolumns bioleaching technology is suitable for leaching this type of ore. The uranium concentration of PLS can be effectively improved, where uranium recovery can be enhanced by the iron exchange system. Furthermore, this continued multicolumns bioleaching system can effectively utilize the remaining acid of PLS, which can reduce the sulfuric acid consumption. The cost of production of uranium can be reduced and this benefits the environment too.

  20. A sustainability assessment system for Chinese iron and steel firms

    DEFF Research Database (Denmark)

    Long, Yunguang; Pan, Jieyi; Farooq, Sami

    2016-01-01

    from financial and sustainability reports of four leading Chinese iron and steel firms. The proposed sustainable assessment system is envisaged to help Chinese iron and steel firms to objectively investigate their sustainability performance, provide clear and effective information to decision makers......The environmental impact of the Chinese iron and steel industry is huge due to its high consumption of ore, coal and energy, and water and air pollution. It is important not only for China but also for the rest of the world that the Chinese iron and steel industry becomes more sustainable....... A sustainable assessment indicator system is an important tool to support that development. Currently, however, a sustainable assessment system, specifically designed to match the characteristics of Chinese iron and steel firms, is not available. In this paper such a system is proposed and evaluated using data...

  1. PGAA method for control of the technologically important elements at processing of sulfide ores

    International Nuclear Information System (INIS)

    Kurbanov, B.I.; Aripov, G.A.; Allamuratova, G.; Umaraliev, M.

    2006-01-01

    Full text: Many precious elements (Au, Re, Pt, Pd, Ag, Cu, Ni, Co, Mo) in ores mainly exist in the form of sulfide minerals and the flotation method is often used for processing of such kind of ores. To enhance the efficiency of the process it is very important to carry out the operative control of the elements of interest at various stages of ore processing. In this work the results of studies for developing methods for control of technologically important elements at processing and enrichment sulfide ores, which content the gold, copper, nickel, molybdenum in the ore-processing plants of Uzbekistan. The design of transportable experimental PGAA device on the basis of low-power radionuclide neutron source ( 252 Cf) with neutrons of 2x10 7 neutr/sec allowing to determine element content of the above named ores and their processing products is offered. It is shown that the use of the thermal neutron capture gamma-ray spectrometry in real samples and technological products allows prompt determination of such elements as S, Cu, Ti and others, which are important for flotation of sulfide ores. Efficiency control of the flotation processing of sulfide ores is based on quick determination of the content of sulfur and some other important elements at different stages of the process. It was found that to determine elements the following gamma lines are the most suitable - 840.3 keV for sulfur, 609 keV and 7307 keV for copper and 1381.5 keV, 1498.3 keV and 1585.3 keV for titanium. Based on the measurements of original ores, concentrates of various stages of flotation and flotation slime the possibility for prompt determination of S, Cu and Ti content and thus to get necessary information on the efficiency of the flotation process was shown. (author)

  2. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

    2011-12-22

    The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting

  3. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    Energy Technology Data Exchange (ETDEWEB)

    Kayaaltı, Zeliha, E-mail: kayaalti@ankara.edu.tr; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-02-15

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  4. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    International Nuclear Information System (INIS)

    Kayaaltı, Zeliha; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-01-01

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  5. RADIONUCLIDE DISPERSION RATES BY AEOLIAN, FLUVIAL, AND POROUS MEDIA TRANSPORT

    International Nuclear Information System (INIS)

    Walton, J.; Goodell, P.; Brashears, C.; French, D.; Kelts, A.

    2005-01-01

    Radionuclide transport was measured from high grade uranium ore boulders near the Nopal I Site, Chihuahua, Mexico. High grade uranium ore boulders were left behind after removal of a uranium ore stockpile at the Prior High Grade Stockpile (PHGS). During the 25 years when the boulder was present, radionuclides were released and transported by sheetflow during precipitation events, wind blown resuspension, and infiltration into the unsaturated zone. In this study, one of the boulders was removed, followed by grid sampling of the surrounding area. Measured gamma radiation levels in three dimensions were used to derive separate dispersion rates by the three transport mechanisms

  6. RADIONUCLIDE DISPERSION RATES BY AEOLIAN, FLUVIAL, AND POROUS MEDIA TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    J. Walton; P. Goodell; C. Brashears; D. French; A. Kelts

    2005-07-11

    Radionuclide transport was measured from high grade uranium ore boulders near the Nopal I Site, Chihuahua, Mexico. High grade uranium ore boulders were left behind after removal of a uranium ore stockpile at the Prior High Grade Stockpile (PHGS). During the 25 years when the boulder was present, radionuclides were released and transported by sheetflow during precipitation events, wind blown resuspension, and infiltration into the unsaturated zone. In this study, one of the boulders was removed, followed by grid sampling of the surrounding area. Measured gamma radiation levels in three dimensions were used to derive separate dispersion rates by the three transport mechanisms.

  7. Geochemical features of the ore-bearing medium in uranium deposits in the Khiagda ore field

    Science.gov (United States)

    Kochkin, B. T.; Solodov, I. N.; Ganina, N. I.; Rekun, M. L.; Tarasov, N. N.; Shugina, G. A.; Shulik, L. S.

    2017-09-01

    The Neogene uranium deposits of the Khiagda ore field (KOF) belong to the paleovalley variety of the hydrogene type and differ from other deposits of this genetic type in the geological and geochemical localization conditions. The contemporary hydrogeochemical setting and microbiological composition of ore-bearing medium are discussed. The redox potential of the medium (Eh is as low as-400 mV) is much lower than those established at other hydrogenic deposits, both ancient Late Mesozoic and young Late Alpine, studied with the same methods in Russia, Uzbekistan, and southern Kazakhstan. The pH of subsurface water (6.86-8.13) differs in significant fluctuations both between neighboring deposits and within individual ore lodes. Hydrogen-forming and denitrifying bacteria are predominant in microbiological populations, whereas sulfate-reducing bacteria are low-active. The consideration of these factors allowed us to describe the mechanism of uranium ore conservation as resulting from the development of the cryolithic zone, which isolates ore lodes from the effect of the external medium. Carbonated water supplied from the basement along fault zones also participates in the formation of the present-day hydrogeochemical setting. Based on the features of the ore-bearing medium, we propose a method of borehole in situ acid leaching to increase the efficiency of mining in the Khiagda ore field.

  8. Microbial leaching of iron from pyrite by moderate thermophile chemolithotropic bacteria

    International Nuclear Information System (INIS)

    Ilyas, S.; Niazi, S.B.

    2007-01-01

    The present work was aimed at studying the bioleachability of iron from pyrite by the selected moderately thermophilic strains of acidophilic chemolithotrophic and acidophilic heterotrophic bacteria. These included Sulfobacillus thermosulfidooxidans (chemolithotroph) and an un-identified strain of acidophilic heterotroph (code 6A1TSB) isolated from local environments. As compared to inoculated flasks, dissolution of metal (due to acid leaching) was significantly low in the un-inoculated control flasks in all the experiments in ore. A decrease in the bioleaching activity was observed at the later stages of bioleaching of metal from ore. Among the strategies adopted to enhance the metal leaching rates, a mixed consortium of the metal adapted cultures of the above-mentioned bacteria was found to exhibit the maximum metal leaching efficiency. In all the flasks where high metal leaching rates were observed, concomitantly biomass production rates were also high indicating high growth rates. It showed that the metal bioleaching capability of the bacteria was associated with their growth. Pyrite contained 42% iron. (author)

  9. Assessment of Water Quality Index and Heavy Metal Contamination in Active and Abandoned Iron Ore Mining Sites in Pahang, Malaysia

    Directory of Open Access Journals (Sweden)

    Madzin Zafira

    2017-01-01

    Full Text Available The composition of heavy metals in water and surface soils of iron ore mining sites were investigated to evaluate on the potential occurrence of heavy metal contamination. Physico-chemical characteristics of the waters were also investigated to determine the current status of water quality index (WQI of the sites. Samples of water and surface soils of active mine (Kuala Lipis and abandoned mine (Bukit Ibam in Pahang were collected at four locations, respectively. The physico-chemical parameters measured for WQI were pH, dissolved oxygen, biological oxygen demand (BOD, chemical oxygen demand (COD, suspended solids (SS, and ammoniacal nitrogen (AN. The water quality parameters were classified according to the Department of Environment (DOE water quality classification. The study revealed that most of the sites in Bukit Ibam and Kuala Lipis were categorized as clean to slightly polluted. On the other hand, heavy metal analysis in water showed that aluminium and manganese level in both sites have exceeded the allowable limits for raw and treated water standards by the Ministry of Health. For heavy metal compositions in soils showed most of the heavy metal concentrations were below the recommended guideline values except for lead, arsenic, zinc and copper.

  10. Zeolitization at uranium ore manifestation

    International Nuclear Information System (INIS)

    Petrosyan, R.V.; Buntikova, A.F.

    1981-01-01

    The process of zeolitization at uranium ore manifestation is studied. A specific type of low-temperature wall endogenous alteration of rocks due to the effect of primary acid solution with low content of carbonic acid is established. Leaching of calcium from enclosing rocks and its deposition in ore-accompanying calcium zeolites is a characteristic feature of wall-metasomatosis. Formation of desmin- calcite-laumontite and quartz-fluoroapatite of vein associations, including ore minerals (uranophane and metaotenite), is genetically connected with calcium metasomatosis. On the basis of the connection of ore minerals with endogeneous process of zeolitization a conclusion can be made on endogenous origin of uranophane and metaotenite [ru

  11. Direct Flotation of Niobium Oxide Minerals from Carbonatite Niobium Ores

    Science.gov (United States)

    Ni, Xiao

    Currently the recovery of niobium oxide minerals from carbonatite niobium ores relies on the use of non-selective cationic collectors. This leads to complicated process flowsheets involving multiple desliming and multiple reverse flotation stages, and low niobium recovery. In this research, anionic collectors that are capable of strong chemisorption on the niobium minerals were studied with the objective of directly floating the niobium oxide minerals from the carbonatite ores. In the flotation of both high purity minerals and Niobec ores, it was shown that the combination of hydroxamic acid and sodium metaphosphate was an effective reagent scheme for the direct flotation of niobium oxide from its ores. Batch flotation on the Niobec Mill Feed showed that over 95% of niobium oxide was recovered into a rougher concentrate that was less than 47% of the original feed mass. Preliminary cleaning tests showed that the reagent scheme could also be used to upgrade the rougher concentrate, although the depression of iron oxide minerals required further study. X-ray photoelectron spectroscopic (XPS) measurement results confirm that OHA (octyl hydroxamic acid) could chemisorb on pyrochlore surface while only physically adsorb on calcite, judging by the chemical shifts of electron binding energies in the elements in both OHA and the mineral surfaces. When hydroxamic acid was adsorbed on calcite surface, the binding energies of the N 1s electrons, at 400.3 eV, did not shift. However, after adsorption on pyrochlore, the N 1s binding energy peak split into two peaks, one at a binding energy of around 399 eV, representing chemically adsorbed OHA, the other at between 400 and 401 eV. The experimental data suggested a strong chemisorption of the OHA on pyrochlore surface in the form of a vertical head-on orientation of the OHA molecules so that the pyrochlore was strongly hydrophobized even at low OHA concentrations, followed by possibly randomly oriented physisorbed OHA molecules

  12. Utilization of geothermal energy in the mining and processing of tungsten ore. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, M.V.; Lacy, S.B.; Lowe, G.D.; Nussbaum, A.M.; Walter, K.M.; Willens, C.A.

    1981-01-01

    The engineering, economic, and environmental feasibility of the use of low and moderate temperature geothermal heat in the mining and processing of tungsten ore is explored. The following are covered: general engineering evaluation, design of a geothermal energy system, economics, the geothermal resource, the institutional barriers assessment, environmental factors, an alternate geothermal energy source, and alternates to geothermal development. (MHR)

  13. The redox reaction kinetics of Sinai ore for chemical looping combustion applications

    International Nuclear Information System (INIS)

    Ksepko, Ewelina; Babiński, Piotr; Nalbandian, Lori

    2017-01-01

    Highlights: • Redox reaction kinetics of Fe-Mn-rich Sinai ore was determined by TGA. • The most suitable model for reduction was D3, while R3 for oxidation. • Activation energies 35.3 and 16.70 kJ/mole were determined for reduction and oxidation. • Repetitive redox reactions favor the formation of spinel phases in Sinai ore. • Multiple redox cycles induce formation of extensive porosity of the particles. - Abstract: The objective of this work was to study the use of Sinai ore, a Fe–Mn-based ore from Egypt, as a low-cost oxygen carrier (OC) in Chemical Looping Combustion (CLC). The Sinai ore was selected because it possesses relatively high amounts of iron and manganese oxides. Furthermore, those oxides have low cost, very favorable environmental and thermodynamic properties for the CLC process. The performance of the Sinai ore as an OC in CLC was compared to that of ilmenite (Norway Tellnes mine), the most extensively studied naturally occurring Fe-based mineral. The kinetics of the reduction and oxidation reactions with the two minerals were studied using a thermogravimetric analyzer (TGA). Experiments were conducted under isothermal conditions, with multiple redox cycles, at temperatures between 750 and 950 °C. For the reduction and oxidation reactions, different concentrations of CH_4 (10–25 vol.%) and O_2 (5–20 vol.%) were applied, respectively. The kinetic parameters, such as the activation energy (E_a), pre-exponential factor (A_0), and reaction order (n), were determined for the redox reactions. Furthermore, models of the redox reactions were selected by means of a model-fitting method. For the Sinai ore, the D3 model (3-dimensional diffusion) was suitable for modeling reduction reaction kinetics. The calculated E_a was 35.3 kJ/mole, and the reaction order was determined to be approximately 0.76. The best fit for the oxidation reaction was obtained for the R3 model (shrinking core). The oxidation (regeneration) reaction E_a was equal to 16

  14. Transport measurements on superconducting iron pnictides and Heusler compounds; Transportmessungen an Supraleitenden Eisenpniktiden und Heusler-Verbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Bombor, Dirk

    2014-09-05

    In this work, results of electronic transport measurements are discussed for superconducting iron pnictides as well as for ferromagnetic Heusler compounds. The iron pnictides are a recently discovered class of high temperature superconductors where magnetism might play a crucial role. While the 122-pnictides show antiferromagnetism and migrate to the superconducting state upon doping, ferromagnetism has been observed in doped LiFeAs. On the other hand, in the undoped state this material shows interesting superconducting properties. Among other properties, Heusler compounds are well known due to their ferromagnetism. Co{sub 2}FeSi, which was investigated in this work, is one of the strongest ferromagnets. Beside this, one predicts this compound to be a half-metallic ferromagnet with completely spin polarized electronic transport where all conducting electrons have the same spin. The here addressed properties can well be investigated with the method of electronic transport measurements, whose results on single crystals are discussed in this work.

  15. Thirty years of uranium ore processing in Spain

    International Nuclear Information System (INIS)

    Josa, J.M.

    1982-01-01

    Spanish background in the uranium ore processing includes ores from pegmatitic type deposits, vein deposits, sandstone, enrichments in metamorphic rocks, radioactive coals and non-conventional sources of uranium, such as wet phosphoric acid or copper liquors. Some tests have also done in order to recover uranium from very low grade paleozoic quartzites. We have also been involved in by-products recovery (copper) from uranium ores. The technologies that have been used are: physical concentration, combustion and roasting, conventional alkaline or acid methods, pressure, heap and bacteria leaching. Special attention was paid to recover uranium from the pregnant liquors and to develop suited equipment for it; solvent extraction and continuous ion exchange equipment was carefully studied. We have been involved in commercial size (500-3000 t/d) mills, but we have also developed transportable and reussable modular plants specially designed and suited to recover uranium from small and isolated deposits. In both cases the reduction of the environmental impact was taken in account. Spanish experience also includes nuclear purification aspects in order to get uranium nuclear compounds (ADU, UO 2 , UF 4 and UF 6 ). Wet (nitric-TBP) and dry (Fluid-bed) methods have been used. The best of these 30 years of experience in studies and in industrial practice, together with our new developments towards the future, could become in a good contribution for the medium size countries which are going to develop its own uranium industry. The way for these countries could be easier if they know what is valuable and what must be avoid in the uranium ore processing development. In this aim the whole paper was thought and written. (author)

  16. Production of lightweight ceramisite from iron ore tailings and its performance investigation in a biological aerated filter (BAF) reactor

    International Nuclear Information System (INIS)

    Liu Yangsheng; Du Fang; Yuan Li; Zeng Hui; Kong Sifang

    2010-01-01

    The few reuse and large stockpile of iron ore tailings (IOT) led to a series of social and environmental problems. This study investigated the possibility of using the IOT as one of starting materials to prepare lightweight ceramisite (LWC) by a high temperature sintering process. Coal fly ash (CFA) and municipal sewage sludge (SS) were introduced as additives. The LWC was used to serve as a biomedium in a biological aerated filter (BAF) reactor for municipal wastewater treatment, and its purification performance was examined. The effects of sintering parameters on physical properties of the LWC, and leaching concentrations of heavy metals from the LWC were also determined. The microstructure and the phase composition of the LWC were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Results revealed that: (1) IOT could be used to produce the LWC under the optimal sintering parameters; (2) the leaching concentrations of heavy metals from the LWC were well below their respective regulatory levels in the China Environmental Quality Standards for Surface Water (CEQS); and (3) the BAF reactor with the LWC serving as the biomedium achieved high removal efficiencies for COD Cr (>92%), NH 4 + -N (>62%) and total phosphate (T-P) (>63%). Therefore, the LWC produced from the IOT was suitable to serve as the biomedium in the municipal wastewater treatment.

  17. General geology, alteration, and iron deposits in the Palaeoproterozoic Misi region, northern Finland

    Directory of Open Access Journals (Sweden)

    Tero Niiranen

    2003-01-01

    Full Text Available The Paleoproterozoic Misi region forms the northeastern part of the Peräpohja Schist Belt in northern Finland. The area comprises mafic volcanic and sedimentary rocks, differentiated gabbros, and late-orogenic granitoids. Three geochemically different mafic volcanic units were recognised: LREE-depleted amygdaloidal lavas, slightly LREE-enriched lavas, and mafic tuffs that have a flat REE pattern. Sedimentary rocks include arkosites, mica gneisses, dolomitic marbles, quartzites, tuffites, mica schists, calc-silicate rocks and graphite-bearing schists. Two types of gabbros wereidentified: one with a LREE-enriched pattern and another with flat REE pattern. The age of the former is according to Perttunen and Vaasjoki (2001 2117±4 Ma, whereas there is no age determination for the latter. The granitoid intrusions belong to the ca. 1800 Malate-orogenic group of the Central Lapland Granitoid Complex. The geochemistry and the stable isotope data on mafic lavas and dolomitic marbles show similarities with the mafic volcanic rocks and marbles of the lower part of the Kivalo group in the western part of Peräpohja Schist Belt. Peak metamorphic conditions in the region vary from upper-greenschist to upper-amphibolite facies. Three major stages of deformation were distinguished: N-S compressional D1 with ductile deformation, NE-SW compressional D2 with ductile to brittle-ductile deformation, and E-W compressional D3 with brittle deformation. Several magnetite occurrences are known in the region and four of those have been mined for iron. The ores are mainly composed of magnetite with minor haematite, pyrite, chalcopyrite and bornite. Besides iron, the ores contain small amounts of P, S and V aswell as trace amounts of Cu, Co, Te and Au. The magnetite bodies are hosted by skarnoids within the ca. 2220–2120 Ma dolomitic marble-quartzite sequence, and highly differentiated, intensely albitised, LREE-enriched gabbro. Multistage and -type alteration is

  18. 49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.

    Science.gov (United States)

    2010-10-01

    ... cast iron or ductile iron lines. 192.487 Section 192.487 Transportation Other Regulations Relating to... iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... the purpose of this paragraph. (b) Localized corrosion pitting. Except for cast iron or ductile iron...

  19. Production of ferrous sulfate from residue from the iron mining

    International Nuclear Information System (INIS)

    Cardoso, K.A; Riella, H.G.; Abreu, E.F.; Carvalho, E.F. Urano de; Durazzo, M.

    2012-01-01

    This paper was developed from a residue obtained by processing iron ore exploited by the mining company Samarco S/A. The residue was characterized and the analyses showed that it contains about 70% of the mineral hematite (Fe 2 O 3 ) and also that some economically important products could be produced. One is the ferrous sulfate that can be used in pharmaceuticals and also that can be used in the treatment of iron deficiency anemia. The iron, in addition to is importance for the industrial production of steel and parts in general, also has great biological importance in all living beings. In order to produce ferrous sulfate from the byproduct in question, it was developed a obtaining route using metallic iron as hematite reductor and sulfuric acid to form the salt. (author)

  20. Ore loses and dilution of the ore vein no. 4 in the Zletovo mine, Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Bogatinovski Nikola L.

    2017-01-01

    Full Text Available Zletovo mines have a tradition of exploration and exploitation of vein lead-zinc ores for almost a century. Ore losses and dilutions have always been imperative in production since traditional old methods of mining and low-productivity mineralization are used. In conditions of classical and sub-level method excavations used, the calculated ore losses in ore vein No. 4 are 13.5%, while at the level of all excavations in the Zletovo mines dilution averages at 10%. Ore dilution is also an important technical parameter and several possible variants were calculated. When analyzing the dilution that occurs during the preparation of the sub-level corridor with parameters such: different drop angle (45-60o, constant thickness of 1.47 m as the average vein thickness in the calculated ore reserves, width of the sub-level corridor of 1.57 m or to the width of the ore vein No. 4 were added 10 cm (left and right to 5 cm as much as is taken in the calculation of the planned dilution and height of 2.5 m as suggested for this mining method, it can be noticed that the planned dilution during this method of mining ranges from 26.3% to 42.3%. In conditions of use of this underground method of excavation, parameters are selected that allow for the indicated lowering of the dilution. Namely, the thickness of the ore wire would be 1.47 m, the mining width would be 1.57 m, only 10 cm (left and right up to 5cm to the thickness of the ore vein will be added, the height difference between the consecutive levels would be 7.5 m, dip angle of 45 to 60°, and with the excavation the whole ore vein would be covered in height. On the basis of these parameters, models were prepared in which the ore vein would have a different dip angle, from which the values for the planned ore dilution ranged from 6.7 to 7.8%, which is significantly lower than the average dilution in the Zletovo Mine.