WorldWideScience

Sample records for iron nitrate flow

  1. Performance of nanoscale zero-valent iron in nitrate reduction from water using a laboratory-scale continuous-flow system.

    Science.gov (United States)

    Khalil, Ahmed M E; Eljamal, Osama; Saha, Bidyut Baran; Matsunaga, Nobuhiro

    2018-04-01

    Nanoscale zero-valent iron (nZVI) is a versatile treatment reagent that should be utilized in an effective application for nitrate remediation in water. For this purpose, a laboratory-scale continuous-flow system (LSCFS) was developed to evaluate nZVI performance in removal of nitrate in different contaminated-water bodies. The equipment design (reactor, settler, and polisher) and operational parameters of the LSCFS were determined based on nZVI characterization and nitrate reduction kinetics. Ten experimental runs were conducted at different dosages (6, 10 and 20 g) of nZVI-based reagents (nZVI, bimetallic nZVI-Cu, CuCl 2 -added nZVI). Effluent concentrations of nitrogen and iron compounds were measured, and pH and ORP values were monitored. The major role exhibited by the recirculation process of unreacted nZVI from the settler to the reactor succeeded in achieving overall nitrate removal efficiency (RE) of >90%. The similar performance of both nZVI and copper-ions-modified nZVI in contaminated distilled water was an indication of LSCFS reliability in completely utilizing iron nanoparticles. In case of treating contaminated river water and simulated groundwater, the nitrate reduction process was sensitive towards the presence of interfering substances that dropped the overall RE drastically. However, the addition of copper ions during the treatment counteracted the retardation effect and greatly enhanced the nitrate RE. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Uranyl Nitrate Flow Loop

    International Nuclear Information System (INIS)

    Ladd-Lively, Jennifer L

    2008-01-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO 2 ), uranium tetrafluoride (UF 4 ), and uranium hexafluoride (UF 6 )] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF 6 product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study was sponsored by

  3. Continuous flow nitration in miniaturized devices

    Directory of Open Access Journals (Sweden)

    Amol A. Kulkarni

    2014-02-01

    Full Text Available This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed.

  4. A new method to produce nanoscale iron for nitrate removal

    International Nuclear Information System (INIS)

    Chen, S.-S.; Hsu, H.-D.; Li, C.-W.

    2004-01-01

    This article proposes a novel technology combining electrochemical and ultrasonic methods to produce nanoscale zero valent iron (NZVI). With platinum placed in the cathode and the presence of the dispersion agent, 0.2g/l cetylpyridinium chloride (CPC), a cation surfactant, in the solution, the nanoscale iron particle was successfully produced with diameter of 1-20 nm and specific surface area of 25.4m 2 /g. The produced NZVI was tested in batch experiments for nitrate removal. The results showed that the nitrate reduction was affected by pH. Al low pH, nitrate was shown faster decline and more reduction in term of g NO 3 - -N/g NZVI. The reaction was first order and kinetic coefficients for the four pHs were directly related to pH with R 2 >0.95. Comparing with microscale zero-valent iron (45μm, 0.183m 2 /g), microscale zero-valent iron converted nitrate to ammonia completely, but NZVI converted nitrate to ammonia partially from 36.2 to 45.3% dependent on pH. For mass balance of iron species, since the dissolved iron in the solution was very low ( 2 O 3 was recognized. Thus the reaction mechanisms can be determined

  5. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    Science.gov (United States)

    Scholz, Florian; Löscher, Carolin R.; Fiskal, Annika; Sommer, Stefan; Hensen, Christian; Lomnitz, Ulrike; Wuttig, Kathrin; Göttlicher, Jörg; Kossel, Elke; Steininger, Ralph; Canfield, Donald E.

    2016-11-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface. Even in the anoxic water of oxygen minimum zones, where iron solubility should be enhanced, most of the iron is rapidly re-precipitated. To constrain the mechanism(s) of iron removal in anoxic ocean regions we explored the sediment and water in the oxygen minimum zone off Peru. During our sampling campaign the water column featured two distinct redox boundaries separating oxic from nitrate-reducing (i.e., nitrogenous) water and nitrogenous from weakly sulfidic water. The sulfidic water mass in contact with the shelf sediment contained elevated iron concentrations >300 nM. At the boundary between sulfidic and nitrogenous conditions, iron concentrations dropped sharply to <20 nM coincident with a maximum in particulate iron concentration. Within the iron gradient, we found an increased expression of the key functional marker gene for nitrate reduction (narG). Part of this upregulation was related to the activity of known iron-oxidizing bacteria. Collectively, our data suggest that iron oxidation and removal is induced by nitrate-reducing microbes, either enzymatically through anaerobic iron oxidation or by providing nitrite for an abiotic reaction. Given the important role that iron plays in nitrogen fixation, photosynthesis and respiration, nitrate-dependent iron oxidation likely represents a key-link between the marine biogeochemical cycles of nitrogen, oxygen and carbon.

  6. Anomalous electrical signals associated with microbial activity: Results from Iron and Nitrate-Reducing Columns

    Science.gov (United States)

    Aaron, R. B.; Zheng, Q.; Flynn, P.; Singha, K.; Brantley, S.

    2008-12-01

    Three flow-through columns outfitted with Ag/AgCl electrodes were constructed to test the effects of different microbial processes on the geophysical measurements of self potential (SP), bulk electrical conductivity (σ b), and induced polarization (IP). The columns were filled with sieved, Fe-bearing subsurface sediment from the Delmarva Peninsula near Oyster, VA, inoculated (9:1 ratio) with a freshly-collected, shallow subsurface sediment from a wetland floodplain (Dorn Creek) near Madison, WI. Each of the columns was fed anoxic and sterile PIPES buffered artificial groundwater (PBAGW) containing different concentrations of acetate and nitrate. The medium fed to Column 1 (nitrate-reducing) was amended with 100 μM acetate and 2 mM nitrate. Column 2 (iron-reducing) was run with PBAGW containing 1.0 mM acetate and 0 mM nitrate. Column 3 (alternating redox state) was operated under conditions designed to alternately stimulate nitrate-reducing and iron-reducing populations to provide conditions, i.e., the presence of both nitrate and microbially-produced Fe(II), that would allow growth of nitrate-dependent Fe(II)-oxidizing populations. We operated Column 3 with a cycling strategy of 14-18 days of high C medium (1 mM acetate and 100 μ M nitrate) followed by 14-18 days of low C medium (100 μ M acetate and 2 mM nitrate). Effluent chemistry (NO3-, NO2-, NH4+, acetate, and Fe2+) was sampled daily for four months so as to be concurrent with the electrical measurements. We observed chemical evidence of iron reduction (dissolved [Fe(II)] = 0.2mM) in the effluent from the iron reduction and alternating redox columns. Chemical depletion of NO3- ([NO3-] ranged from 1 to 0.02mM), the production of NO2-, and possible production of NH4+ (0.2 mM) was observed in the nitrate reducing column as well as the alternating redox column. All three columns displayed loss of acetate as microbial activity progressed. σ b remained constant in the alternating redox column (~0.15 S

  7. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism

    Science.gov (United States)

    Price, Alex; Pearson, Victoria K.; Schwenzer, Susanne P.; Miot, Jennyfer; Olsson-Francis, Karen

    2018-01-01

    This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1–3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate

  8. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism

    Directory of Open Access Journals (Sweden)

    Alex Price

    2018-03-01

    Full Text Available This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1–3.7 Ga match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with

  9. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism.

    Science.gov (United States)

    Price, Alex; Pearson, Victoria K; Schwenzer, Susanne P; Miot, Jennyfer; Olsson-Francis, Karen

    2018-01-01

    This work considers the hypothetical viability of microbial nitrate-dependent Fe 2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe 2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe 2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1-3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe 2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate

  10. Comparison of the Efficiencies of Zero-Valent Iron Nanoparticles and Stabilized Iron Nanoparticles for Nitrate Reduction from Polluted Waters

    Directory of Open Access Journals (Sweden)

    Fatemeh Nooralivand

    2015-12-01

    Full Text Available The present study was conducted to evaluate the feasibility of zero-valent iron nanoparticles (ZVIN for the removal of nitrate from aqueous solutions. For this purpose, bare zero-valent iron nanoparticles (bare-ZVIN and CMC-ZVIN were synthesized using the borohydride reduction method and their morphological characteristics were examined via scanning electron microscopy (SEM, X-ray diffraction (XRD, and Fourier Transmission Infrared Spectroscopy (FTIR. The effects of pH of the aqueous solution, initial nitrate concentration, ZVIN concentration, and contact time on nitrate reduction were investigated as operational parameters and the kinetics of nitrate reduction was studied in batch experiments. The results showed that 93.65% of nitrate was removed by stabilized nanoparticles at pH=6 while non-stabilized nanoparticles at pH=2 were able to remove 85.55% of the nitrate.Furthermore, nitrate reduction was enhanced by increasing ZVIN concentration and contact time while it was decreased as a result of increasing initial nitrate concentration. The major product of nitrate reduction at an acidic pH was found to be ammonium; at an alkaline pH, however, nitrate was converted to nitrogen and nitrite production dropped to less than 2%. Kinetic analysis demonstrated that denitrification of nitrate by the nanoparticles fitted well with first-order and second-order reaction models. The results also demonstrated that the stabilized ZVI nanoparticles were more effective than bare-ZVIN for nitrate reduction in aqueous solutions.

  11. Removal of Nitrate by Zero Valent Iron in the Presence of H2O2

    Directory of Open Access Journals (Sweden)

    M.R. Samarghandi

    2014-01-01

    Full Text Available Background & Aims: Nitrate is the oxidation state of nitrogen compounds, which is founded in water resources that contaminated by municipal, industrial and agricultural waste water. If nitrate leek in to ground water resources, it can cause health problems. Material and Methods: Removal of nitrate from ground water by iron powder in the presence of H2O2 was investigated. Experiments have been done by use of 250 ml of water samples containing 100 mg/L nitrate in various condition. Various parameters such as pH (3, 5, 7, 9, iron dosage (10, 15, 20, 30 g/L, initial H2O2 concentration (5, 10, 15, 20 ml/L and contact time (10-120 min. Results: Obtained results shows the removal of nitrate was increased by pH reduction, increment of iron mass and contact time. In addition, nitrate reduction was increased by increment of initial H2O2 concentration up to 15 ml/L. High removal was observed at pH=3, iron mass=30 g/L, contact time equal 120 min and H2O2 concentration=15 ml/L. At above condition, upon 98% of nitrate was removed. Conclusion: In summary, this method is simple, low cost and effective for removal of nitrate from ground water and industrial activity.

  12. Using nitrate to quantify quick flow in a karst aquifer

    Science.gov (United States)

    Mahler, B.J.; Garner, B.D.

    2009-01-01

    In karst aquifers, contaminated recharge can degrade spring water quality, but quantifying the rapid recharge (quick flow) component of spring flow is challenging because of its temporal variability. Here, we investigate the use of nitrate in a two-endmember mixing model to quantify quick flow in Barton Springs, Austin, Texas. Historical nitrate data from recharging creeks and Barton Springs were evaluated to determine a representative nitrate concentration for the aquifer water endmember (1.5 mg/L) and the quick flow endmember (0.17 mg/L for nonstormflow conditions and 0.25 mg/L for stormflow conditions). Under nonstormflow conditions for 1990 to 2005, model results indicated that quick flow contributed from 0% to 55% of spring flow. The nitrate-based two-endmember model was applied to the response of Barton Springs to a storm and results compared to those produced using the same model with ??18O and specific conductance (SC) as tracers. Additionally, the mixing model was modified to allow endmember quick flow values to vary over time. Of the three tracers, nitrate appears to be the most advantageous because it is conservative and because the difference between the concentrations in the two endmembers is large relative to their variance. The ??18O- based model was very sensitive to variability within the quick flow endmember, and SC was not conservative over the timescale of the storm response. We conclude that a nitrate-based two-endmember mixing model might provide a useful approach for quantifying the temporally variable quick flow component of spring flow in some karst systems. ?? 2008 National Ground Water Association.

  13. Optoelectronic iron detectors for pharmaceutical flow analysis.

    Science.gov (United States)

    Rybkowska, Natalia; Koncki, Robert; Strzelak, Kamil

    2017-10-25

    Compact flow-through optoelectronic detectors fabricated by pairing of light emitting diodes have been applied for development of economic flow analysis systems dedicated for iron ions determination. Three analytical methods with different chromogens selectively recognizing iron ions have been compared. Ferrozine and ferene S based methods offer higher sensitivity and slightly lower detection limits than method with 1,10-phenantroline, but narrower ranges of linear response. Each system allows detection of iron in micromolar range of concentration with comparable sample throughput (20 injections per hour). The developed flow analysis systems have been successfully applied for determination of iron in diet supplements. The utility of developed analytical systems for iron release studies from drug formulations has also been demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of Nitrates, Thiocyanates and Selenium on the Iron and Iodine Status of Postpartum Women.

    Science.gov (United States)

    Bivolarska, Anelia V; Maneva, Ana I; Gatseva, Penka D; Katsarova, Mariana N

    2016-09-01

    To find correlations between high thiocyanate and nitrate levels and low selenium levels and the indicators of the iodine and iron status of postpartum women. The study included 41 mothers aged 26.4±5.9 yrs from Asenovgrad and nearby villages. Urinary iodine was determined by the Sandell-Kolthoff reaction and thiocyanate - by the interaction of these ions with acidic solution of KMnO4; for serum nitrates we used the colorimetric method; serum selenium was assessed by electro-thermal atomic-absorption spectrophotometry; thyroxin (FT4), the thyroid stimulating hormone (TSH), serum ferritin (SF), and serum transferrin receptor (sTfR) were determined using ELISA; Hb levels were determined by hematology analyzer. Assessing the iodine status, we found a negative correlation between the levels of iodine and thiocyanates in urine (R=-0.717, рnitrates and TSH (R=0.487, р=0.003) and a negative correlation between nitrates and FT4 (R=-0.312, р=0.06). For the iron status, we found a negative correlation between nitrates and SF (R=-0.429, р=0.009) and between nitrates and Hb (R=-0.383, р=0.021). The Mann-Whitney U-test showed that in women with nitrate levels higher than the mean value there was low FT4 level (р=0.06), high TSH level (р=0.013), low Hb concentration (р=0.061) and low SF concentration (р=0.005). The combined effects of environmental factors (elevated nitrate levels and low selenium level) on the iodine and iron status are manifested by low concentrations of FT4 (р=0.033), Hb (р=0.06) and SF (р=0.05) and high level of TSH (р=0.05). In conclusion, we found that environmental factors, especially when combined, have a negative impact on the iron and iodine status of females.

  15. Transformation of Nitrate and Toluene in Groundwater by Sulfur Modified Iron(SMI-III)

    Science.gov (United States)

    Lee, W.; Park, S.; Lim, J.; Hong, U.; Kwon, S.; Kim, Y.

    2009-12-01

    In Korea, nitrate and benzene, toluene, ethylbenzene, and xylene isomers (BTEX) are frequently detected together as ground water contaminants. Therefore, a system simultaneously treating both nitrate (inorganic compound) and BTEX (organic compounds) is required to utilize groundwater as a water resource. In this study, we investigated the efficiency of Sulfur Modified Iron (SMI-III) in treating both nitrate and BTEX contaminated groundwater. Based on XRD (X-Ray Diffraction) analysis, the SMI-III is mainly composed of Fe3O4, S, and Fe. A series of column tests were conducted at three different empty bed contact times (EBCTs) for each compound. During the experiments, removal efficiency for both nitrate and toluene were linearly correlated with EBCT, suggesting that SMI-III have an ability to transform both nitrate and toluene. The concentration of SO42- and oxidation/reduction potential (ORP) were also measured. After exposed to nitrate contaminated groundwater, the composition of SMI-III was changed to Fe2O3, Fe3O4, Fe, and Fe0.95S1.05. The trends of effluent sulfate concentrations were inversely correlated with effluent nitrate concentrations, while the trends of ORP values, having the minimum values of -480 mV, were highly correlated with effluent nitrate concentrations. XRD analysis before and after exposed to nitrate contaminated groundwater, sulfate production, and nitrite detection as a reductive transformation by-product of nitrate suggest that nitrate is reductively transformed by SMI-III. Interestingly, in the toluene experiments, the trends of ORP values were inversely correlated with effluent toluene concentrations, suggesting that probably degrade through oxidation reaction. Consequently, nitrate and toluene probably degrade through reduction and oxidation reaction, respectively and SMI-III could serve as both electron donor and acceptor.

  16. SOLVENT FREE OXIDATION OF ALCOHOLS USING IRON (III) NITRATE NONAHYDRATE

    Science.gov (United States)

    Oxidation of alcohols have been conducted with metal nitrate reagents on various mineral supports such as clay, silica and zeolite etc. To circumvent the limitations of these supported reagents namely their preparation using solvents and short shelf-life, we explored the use of i...

  17. Toxicity of xenobiotics during sulfate, iron, and nitrate reduction in primary sewage sludge suspensions

    DEFF Research Database (Denmark)

    Elsgaard, Lars

    2010-01-01

    The effect and persistence of six organic xenobiotics was tested under sulfate-, iron-, and nitrate-reducing conditions in primary sewage sludge suspensions. The xenobiotics tested were acenaphthene, phenanthrene, di(2-ethylhexyl)phthalate (DEHP), 4-nonylphenol (4-NP), linear alkylbenzene sulfonate...

  18. Effects of nitrate on the treatment of lead contaminated groundwater by nanoscale zerovalent iron.

    Science.gov (United States)

    Su, Yiming; Adeleye, Adeyemi S; Zhou, Xuefei; Dai, Chaomeng; Zhang, Weixian; Keller, Arturo A; Zhang, Yalei

    2014-09-15

    Nanoscale zerovalent iron (nZVI) is efficient for removing Pb(2+) and nitrate from water. However, the influence of nitrate, a common groundwater anion, on Pb(2+) removal by nZVI is not well understood. In this study, we showed that under excess Fe(0) conditions (molar ratio of Fe(0)/nitrate>4), Pb(2+) ions were immobilized more quickly (nitrate-free systems (∼ 15 min) due to increasing pH. With nitrate in excess (molar ratio of Fe(0)/nitratenitrate stimulated the formation of crystal PbxFe3-xO4 (ferrite), which provided additional Pb(2+) removal. However, ∼ 7% of immobilized Pb(2+) ions were released into aqueous phase within 2h due to ferrite deformation. Oxidation-reduction potential (ORP) values below -600 mV correlated with excess Fe(0) conditions (complete Pb(2+) immobilization), while ORP values ≥-475 mV characterized excess nitrate conditions (ferrite process and Pb(2+) release occurrence). This study indicates that ORP monitoring is important for proper management of nZVI-based remediation in the subsurface to avoid lead remobilization in the presence of nitrate. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Nitrate Removal Rates in Denitrifying Bioreactors During Storm Flows

    Science.gov (United States)

    Pluer, W.; Walter, T.

    2017-12-01

    Field denitrifying bioreactors are designed to reduce excess nitrate (NO3-) pollution in runoff from agricultural fields. Field bioreactors saturate organic matter to create conditions that facilitate microbial denitrification. Prior studies using steady flow in lab-scale bioreactors showed that a hydraulic retention time (HRT) between 4 and 10 hours was optimal for reducing NO3- loads. However, during storm-induced events, flow rate and actual HRT fluctuate. These fluctuations have the potential to disrupt the system in significant ways that are not captured by the idealized steady-flow HRT models. The goal of this study was to investigate removal rate during dynamic storm flows of variable rates and durations. Our results indicate that storm peak flow and duration were not significant controlling variables. Instead, we found high correlations (p=0.004) in average removal rates between bioreactors displaying a predominantly uniform flow pattern compared with bioreactors that exhibited preferential flow (24.4 and 21.4 g N m-3 d-1, respectively). This suggests that the internal flow patterns are a more significant driver of removal rate than external factors of the storm hydrograph. Designing for flow patterns in addition to theoretical HRT will facilitate complete mixing within the bioreactors. This will help maximize excess NO3- removal during large storm-induced runoff events.

  20. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    DEFF Research Database (Denmark)

    Scholz, Florian; Löscher, Carolin; Fiskal, Annika

    2016-01-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface...

  1. Effect of Stabilized Zero-Valent Iron Nanoparticles on Nitrate Removal from Sandy Soil

    Directory of Open Access Journals (Sweden)

    F. Nooralivand

    2016-02-01

    Full Text Available Introduction: During the recent decades, the use of N fertilizers has undeniable development regardless of their effects on the soil and environment. Increasing nitrate ion concentration in soil solution and then, leaching it into groundwater causes increase nitrate concentration in the water and raise the risk suffering from the people to some diseases. World health organization recommended maximum concentration level for nitrate and nitrite in the drinking water 50 and 3 mg/l, respectively. There are different technologies for the removal of nitrate ions from aqueous solution. The conventional methods are ion exchange, biological denitrification, reverse osmosis and chemical reduction. Using nanoscale Fe0 particles compared to other methods of nitrate omission was preferred because of; its high surface area, more reactive, lower cost and higher efficiency. More studies on the reduction of nitrate by zero-valent iron nanoparticles have been in aqueous solutions or in the soil in batch scale. Nanoparticles surface modified with poly-electrolytes, surfactants and polymers cause colloidal stability of the particles against the forces of attraction between particles and increases nanoparticle transport in porous media. The objectives of this study were to synthesize carboxymethyl cellulose stabilized zero-valent iron nanoparticles and consideration of their application for nitrate removal from sandy soil. Materials and Methods: The nanoparticles were synthesized in a lab using borohydride reduction method and their morphological characteristics were examined via scanning electron microscopy (SEM, X-ray diffraction (XRD and Fourier Transmission Infrared Spectroscopy (FTIR. Experiments were conducted on packed sand column (40 cm length and 2.5 cm inner diameter under conditions of different nanoparticle concentration (1, 2, and 3 g1-1and high initial NO3- concentration (150, 250, and 350 mgl-1. Homogeneous soil column was filled with the wet packed

  2. Rapid and controlled transformation of nitrate in water and brine by stabilized iron nanoparticles

    International Nuclear Information System (INIS)

    Xiong Zhong; Zhao Dongye; Pan Gang

    2009-01-01

    Highly reactive zero-valent iron (ZVI) nanoparticles stabilized with carboxymethyl cellulose (CMC) were tested for reduction of nitrate in fresh water and brine. Batch kinetic tests showed that the pseudo first-order rate constant (k obs ) with the stabilized nanoparticles was five times greater than that for non-stabilized counterparts. The stabilizer not only increased the specific surface area of the nanoparticles, but also increased the reactive particle surface. The allocation between the two reduction products, NH 4 + and N 2 , can be manipulated by varying the ZVI-to-nitrate molar ratio and/or applying a Cu-Pd bimetallic catalyst. Greater CMC-to-ZVI ratios lead to faster nitrate reduction. Application of a 0.05 M HEPES buffer increased the k obs value by 15 times compared to that without pH control. Although the presence of 6% NaCl decreased k obs by 30%, 100% nitrate was transformed within 2 h in the saline water. The technology provides a powerful alternative for treating water with concentrated nitrate such as ion exchange brine.

  3. Towards a Mechanistic Understanding of Anaerobic Nitrate Dependent Iron Oxidation: Balancing Electron Uptake and Detoxification

    Directory of Open Access Journals (Sweden)

    Hans Karl Carlson

    2012-02-01

    Full Text Available The anaerobic oxidation of Fe(II by subsurface microorganisms is an important part of biogeochemical cycling in the environment, but the biochemical mechanisms used to couple iron oxidation to nitrate respiration are not well understood. Based on our own work and the evidence available in the literature, we propose a mechanistic model for anaerobic nitrate dependent iron oxidation. We suggest that anaerobic iron oxidizing microorganisms likely exist along a continuum including: 1 bacteria that inadvertently oxidize Fe(II by abiotic or biotic reactions with enzymes or chemical intermediates in their metabolic pathways (e.g. denitrification and suffer from toxicity or energetic penalty, 2 Fe(II tolerant bacteria that gain little or no growth benefit from iron oxidation but can manage the toxic reactions, and 3 bacteria that efficiently accept electrons from Fe(II to gain a growth advantage while preventing or mitigating the toxic reactions. Predictions of the proposed model are highlighted and experimental approaches are discussed.

  4. REMOVAL OF ADDED NITRATE IN THE SINGLE, BINARY, AND TERNARY SYSTEMS OF COTTON BURR COMPOST, ZEROVALENT IRON, AND SEDIMENT: IMPLICATIONS FOR GROUNDWATER NITRATE REMEDIATION USING PERMEABLE REACTIVE BARRIERS

    Science.gov (United States)

    Recent research has shown that carbonaceous solid materials and zerovalent iron (Fe0) may potentially be used as media in permeable reactive barriers (PRBs) to degrade groundwater nitrate via heterotrophic denitrification in the solid carbon system, and via abiotic reduction and ...

  5. Iron-sulfide redox flow batteries

    Science.gov (United States)

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  6. The Importance of Microbial Iron Sulfide Oxidation for Nitrate Depletion in Anoxic Danish Sediments

    DEFF Research Database (Denmark)

    Vaclavkova, Sarka; Jacobsen, Ole Stig; Jørgensen, Christian Juncher

    2014-01-01

    of organic carbon in the sediment. An apparent salinity limitation to MISON was observed in the most brackish environment. Addition of high surface area synthetically precipitated iron sulfide (FeS x ) to the aquifer sediment with the lowest natural FeS x reactivity increased both the relative fraction of NO......Nitrate (NO3 −) reduction processes are important for depleting the NO3 − load from agricultural source areas before the discharge water reaches surface waters or groundwater aquifers. In this study, we experimentally demonstrate the co-occurrence of microbial iron sulfide oxidation by NO3 − (MISON......) and other NO3 −-depleting processes in a range of contrasting sediment types: sandy groundwater aquifer, non-managed minerotrophic freshwater peat and two brackish muddy sediments. Approximately 1/3 of the net NO3 − reduction was caused by MISON in three of the four environments despite the presence...

  7. Microbial nitrate removal in biologically enhanced treated coal gasification wastewater of low COD to nitrate ratio by coupling biological denitrification with iron and carbon micro-electrolysis.

    Science.gov (United States)

    Zhang, Zhengwen; Han, Yuxing; Xu, Chunyan; Ma, Wencheng; Han, Hongjun; Zheng, Mengqi; Zhu, Hao; Ma, Weiwei

    2018-04-21

    Mixotrophic denitrification coupled biological denitrification with iron and carbon micro-electrolysis (IC-ME) is a promising emerging bioprocess for nitrate removal of biologically enhanced treated coal gasification wastewater (BECGW) with low COD to nitrate ratio. TN removal efficiency in R1 with IC-ME assisted was 16.64% higher than R2 with scrap zero valent iron addition, 23.05% higher than R3 with active carbon assisted, 30.51% higher than R4 with only active sludge addition, 80.85% higher than R5 utilizing single IC-ME as control. Fe 2+ generated from IC-ME decreased the production of N 2 O and enriched more Nitrate-reducing Fe(Ⅱ) oxidation bacteria (NRFOB) Acidovorax and Thiobacillus, which could convert nitrate to nitrogen gas. And the presence of Fe 3+ , as the Fe 2+ oxidation product, could stimulate the growth of Fe(III)-reducing strain (FRB) that indicated by redundancy analysis. Microbial network analysis demonstrated FRB Geothrix had a co-occurrence relationship with other bacteria, revealing its dominant involvement in nitrate removal of BECGW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Distribution of iron during full loading of amberlite IRC-72 resin with uranium from nitrate solutions at 300C

    International Nuclear Information System (INIS)

    Shaffer, J.H.; Greene, C.W.

    1979-01-01

    The integrity of resin-based fuel kernels used in the fabrication of fuel elements for a high-temperature gas-cooled reactor will depend, in part, on the concentration of iron incorporated in the resin particles during their loading with uranium. Consequently, assessment of chemical specifications for iron as an impurity in uranyl nitrate solution should be based on its distribution during the resin loading operation. For this purpose, the behavior of iron, as an impurity in uranyl nitrate solutions, was investigated under equilibrium conditions at 30 0 C during full loading of Amberlite IRC-72 cation exchange reaction were derived from calculations based on complex coordination of ferric ion with the resin over the nitrate ion concentration range of approx. 0.5 to 2 N

  9. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer

    Science.gov (United States)

    Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Böhlke, J.K.

    2017-01-01

    weeks. Additionally, Fe(II)-oxidizing, nitrate-reducing microbial enrichment cultures were obtained from aquifer sediments. Growth experiments with the cultures sequentially produced nitrite and nitrous oxide from nitrate while simultaneously oxidizing Fe(II). Field and culture results suggest that nitrogen oxide reduction and Fe(II) oxidation in the aquifer are a complex interaction of coupled biotic and abiotic reactions. Overall, the results of this study demonstrate that anoxic nitrate-dependent iron oxidation can occur in groundwater; that it could control iron speciation; and that the process can impact the mobility of other chemical species (e.g., phosphate and arsenic) not directly involved in the oxidation–reduction reaction.

  10. Perrhenate sorption kinetics in zerovalent iron in high pH and nitrate media

    International Nuclear Information System (INIS)

    Lenell, Brian A.; Arai, Yuji

    2017-01-01

    Graphical abstract: Ammonium adsorption enhanced ReO 4 − adsorption in ZVI under alkaline conditions (modified from Cho et al., 2015) [39]. - Highlights: • ZVI effectively sorbs Re(VII) at near neutral pH. • Sorption of Re(VII) in ZVI is attributed to the reductive precipitation of Re(IV)O 2 . • The extent of Re(VII) sorption in ZVI decreases with increasing pH from 8 to 10. • The rate of Re(VII) sorption in ZVI increases with increasing nitrate concentration. - Abstract: Technetium(Tc)-99 is one of major risk drivers in low level radioactive liquid waste at the U.S. Department of Energy sites. Cementitious waste technology (CWT) has been considered immobilizing pertechnetate, Tc(VII)O 4 − , in brine and alkaline waste solutions, as Tc(IV) oxides and/or sulfides with the use of reducing agents like slag. In this study, zero valent iron (ZVI) was evaluated as a potential reducing agent in CWT as a function of pH and [nitrate] (0–0.1 M) using perrhenate, Re(VII)O 4 − , as an analogue for Tc(VII)O 4 − . Batch Re(VII)O 4 − sorption experiments in conjunction with X-ray absorption spectroscopic analysis showed that the Re(VII) sorption occurred via the reductive precipitation of Re(IV)O 2 (s) and the extent of sorption decreased with increasing pH from 8 to 10. Interestingly, pseudo 2nd order kinetic rates increased with increasing [nitrate] which was attributed to co-adsorption of NH 4 + (i.e., a reaction product of reduced nitrate by ZVI), facilitating electrostatic attraction towards ReO 4 − under alkaline conditions. Considering the thermodynamically favorable reduction of Tc(VII) over Re(VII), ZVI might have potential for improving the reduction capacity of the current CWT.

  11. Ochrobactrum anthropi used to control ammonium for nitrate removal by starch-stabilized nanoscale zero valent iron.

    Science.gov (United States)

    Zhou, Jun; Sun, Qianyu; Chen, Dan; Wang, Hongyu; Yang, Kai

    2017-10-01

    In this study, the hydrogenotrophic denitrifying bacterium Ochrobactrum anthropi was added in to the process of nitrate removal by starch-stabilized nanoscale zero valent iron (nZVI) to minimize undesirable ammonium. The ammonium control performance and cooperative mechanism of this combined process were investigated, and batch experiments were conducted to discuss the effects of starch-stabilized nZVI dose, biomass, and pH on nitrate reduction and ammonium control of this system. The combined system achieved satisfactory performance because the anaerobic iron corrosion process generates H 2 , which is used as an electron donor for the autohydrogenotrophic bacterium Ochrobactrum anthropi to achieve the autohydrogenotrophic denitrification process converting nitrate to N 2 . When starch-stabilized nZVI dose was increased from 0.5 to 2.0 g/L, nitrate reduction rate gradually increased, and ammonium yield also increased from 9.40 to 60.51 mg/L. Nitrate removal rate gradually decreased and ammonium yield decreased from 14.93 to 2.61 mg/L with initial OD 600 increasing from 0.015 to 0.080. The abiotic Fe 0 reduction process played a key role in nitrate removal in an acidic environment and generated large amounts of ammonium. Meanwhile, the nitrate removal rate decreased and ammonium yield also reduced in an alkaline environment.

  12. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.

    Science.gov (United States)

    Miot, J; Benzerara, K; Morin, G; Bernard, S; Beyssac, O; Larquet, E; Kappler, A; Guyot, F

    2009-06-01

    In phosphate-rich environments, vivianite (Fe(II)(3)(PO(4))(2), 8H(2)O) is an important sink for dissolved Fe(II) and is considered as a very stable mineral due to its low solubility at neutral pH. In the present study, we report the mineralogical transformation of vivianite in cultures of the nitrate-reducing iron-oxidizing bacterial strain BoFeN1 in the presence of dissolved Fe(II). Vivianite was first transformed into a greenish phase consisting mostly of an amorphous mixed valence Fe-phosphate. This precipitate became progressively orange and the final product of iron oxidation consisted of an amorphous Fe(III)-phosphate. The sub-micrometer analysis by scanning transmission X-ray microscopy of the iron redox state in samples collected at different stages of the culture indicated that iron was progressively oxidized at the contact of the bacteria and at a distance from the cells in extracellular minerals. Iron oxidation in the extracellular minerals was delayed by a few days compared with cell-associated Fe-minerals. This led to strong differences of Fe redox in between these two types of minerals and finally to local heterogeneities of redox within the sample. In the absence of dissolved Fe(II), vivianite was not significantly transformed by BoFeN1. Whereas Fe(II) oxidation at the cell contact is most probably directly catalyzed by the bacteria, vivianite transformation at a distance from the cells might result from oxidation by nitrite. In addition, processes leading to the export of Fe(III) from bacterial oxidation sites to extracellular minerals are discussed including some involving colloids observed by cryo-transmission electron microscopy in the culture medium.

  13. Removal of Nitrate from Aqueous Solutions by Starch Stabilized nano Zero-Valent Iron(nZVI

    Directory of Open Access Journals (Sweden)

    Kaveh Yaghmaeian

    2016-09-01

    Full Text Available Background and Objective: Nitrate is one of the inorganic anions derived as a result of oxidation of elemental nitrogen. Urban and industrial wastewater, animal and vegetable waste products in large cities that have organic nitrogen are excreted along the soil. The primary risk of Nitrate in drinking water occurs when nitrate in the gastrointestinal tract switch to nitrite. Nitrite causes the oxidation of iron in hemoglobin of red blood cells, result in red blood cells could not carry the oxygen, a condition called methemoglobinemia. Therefore, achieving the new technologies for nitrate removal is necessary. Material and Methods: The present study was conducted at laboratory Scale in non-continuous batches. Stabilized adsorbent was produced through reducing Iron sulfate by sodium borohydride (NaBH4 in presence of Starch (0.2W % as a stabilizer. At first, the effect of various parameters such as contact time (10-90min, pH (3-11, adsorbent dose (0.5-3 g/L and initial concentration of arsenate (50-250 mg/L were investigated on process efficiency. Freundlich and Langmuir isotherm model equilibrium constant, were calculated. Residual nitrate were measured by using the DR5000 spectrophotometer. Results: The optimum values based on RSM for pH, absorbent dose, contact time, and initial concentration of nitrate were 5.87, 2.25 g/L, 55.7 min, and 110.35 mg/L respectively. Langmuir isotherm with R2= 0.9932 for nitrate was the best graph for the experimental data. The maximum amount of nitrate adsorption was 138.88mg/g. Conclusion: Stabilized absorbent due to have numerous absorption sites and Fe0 as a reducing agent could have great potential in nitrate removal from water.

  14. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems.

    Science.gov (United States)

    Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A; Yang, Xiaofen; Tuovinen, Olli H; Dong, Hailiang; Fu, Xiang

    2013-01-15

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO(3))(2) was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0-24.2 mM Pb(II) added as Pb(NO(3))(2). Anglesite (PbSO(4)) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe(3)(SO(4))(2)(OH)(6)) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9-17.6 μM regardless of the concentrations of Pb(NO(3))(2) added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO(3))(2) addition even when anglesite was removed before inoculation. Experiments with 0-48 mM KNO(3) demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO(3))(2) addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Perrhenate sorption kinetics in zerovalent iron in high pH and nitrate media

    Energy Technology Data Exchange (ETDEWEB)

    Lenell, Brian A.; Arai, Yuji, E-mail: yarai@illinois.edu

    2017-01-05

    Graphical abstract: Ammonium adsorption enhanced ReO{sub 4}{sup −} adsorption in ZVI under alkaline conditions (modified from Cho et al., 2015) [39]. - Highlights: • ZVI effectively sorbs Re(VII) at near neutral pH. • Sorption of Re(VII) in ZVI is attributed to the reductive precipitation of Re(IV)O{sub 2}. • The extent of Re(VII) sorption in ZVI decreases with increasing pH from 8 to 10. • The rate of Re(VII) sorption in ZVI increases with increasing nitrate concentration. - Abstract: Technetium(Tc)-99 is one of major risk drivers in low level radioactive liquid waste at the U.S. Department of Energy sites. Cementitious waste technology (CWT) has been considered immobilizing pertechnetate, Tc(VII)O{sub 4}{sup −}, in brine and alkaline waste solutions, as Tc(IV) oxides and/or sulfides with the use of reducing agents like slag. In this study, zero valent iron (ZVI) was evaluated as a potential reducing agent in CWT as a function of pH and [nitrate] (0–0.1 M) using perrhenate, Re(VII)O{sub 4}{sup −}, as an analogue for Tc(VII)O{sub 4}{sup −}. Batch Re(VII)O{sub 4}{sup −} sorption experiments in conjunction with X-ray absorption spectroscopic analysis showed that the Re(VII) sorption occurred via the reductive precipitation of Re(IV)O{sub 2}(s) and the extent of sorption decreased with increasing pH from 8 to 10. Interestingly, pseudo 2nd order kinetic rates increased with increasing [nitrate] which was attributed to co-adsorption of NH{sub 4}{sup +} (i.e., a reaction product of reduced nitrate by ZVI), facilitating electrostatic attraction towards ReO{sub 4}{sup −} under alkaline conditions. Considering the thermodynamically favorable reduction of Tc(VII) over Re(VII), ZVI might have potential for improving the reduction capacity of the current CWT.

  16. Determination of nitrate in water by flow-injection analysis

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel; Večeřa, Zbyněk

    2001-01-01

    Roč. 8, č. 1 (2001), s. 115-120 ISSN 1231-7098 R&D Projects: GA ČR GA203/98/0943 Grant - others:COPERNICUS(BE) SUB-AERO EVK2-1999-000327 Institutional research plan: CEZ:AV0Z4031919 Keywords : nitrate * chemiluminescence * water Subject RIV: CB - Analytical Chemistry, Separation

  17. Biodegradation of phenols in a sandstone aquifer under aerobic conditions and mixed nitrate and iron reducing conditions

    DEFF Research Database (Denmark)

    Broholm, Mette; Arvin, Erik

    2000-01-01

    in the groundwater. The potential for biodegradation of the phenols in the sandstone aquifer at the site has been investigated in laboratory microcosms under aerobic (oxygen amended) and mixed nitrate and iron reducing (nitrate enriched and unamended) anaerobic conditions, at a range of concentrations (low: similar...... to 5 mg 1(-1): high: similar to 60 mg 1(-1), and very high: similar to 600 mg 1(-1)) and in the presence of other organic coal-tar compounds (mono- and polyaromatic hydrocarbons (BTEXs and PAHs) and heterocyclic compounds (NSOs)) and ammonia liquor. Sandstone cores and groundwater for the microcosms...

  18. Effects of groundwater-flow paths on nitrate concentrations across two riparian forest corridors

    Science.gov (United States)

    Speiran, Gary K.

    2010-01-01

    Groundwater levels, apparent age, and chemistry from field sites and groundwater-flow modeling of hypothetical aquifers collectively indicate that groundwater-flow paths contribute to differences in nitrate concentrations across riparian corridors. At sites in Virginia (one coastal and one Piedmont), lowland forested wetlands separate upland fields from nearby surface waters (an estuary and a stream). At the coastal site, nitrate concentrations near the water table decreased from more than 10 mg/L beneath fields to 2 mg/L beneath a riparian forest buffer because recharge through the buffer forced water with concentrations greater than 5 mg/L to flow deeper beneath the buffer. Diurnal changes in groundwater levels up to 0.25 meters at the coastal site reflect flow from the water table into unsaturated soil where roots remove water and nitrate dissolved in it. Decreases in aquifer thickness caused by declines in the water table and decreases in horizontal hydraulic gradients from the uplands to the wetlands indicate that more than 95% of the groundwater discharged to the wetlands. Such discharge through organic soil can reduce nitrate concentrations by denitrification. Model simulations are consistent with field results, showing downward flow approaching toe slopes and surface waters to which groundwater discharges. These effects show the importance of buffer placement over use of fixed-width, streamside buffers to control nitrate concentrations.

  19. Iron availability, nitrate uptake, and exportable new production in the subarctic Pacific. [phytoplankton population growth support and atmospheric CO2 removal

    Science.gov (United States)

    Banse, Karl

    1991-01-01

    This paper presents a critique of experimental data and papers by Martin et al. (1989, 1990), who suggested that the phytoplankton growth is iron-limited and that, small additions of iron to large subarctic ocean areas might be a way of removing significant amounts of atmospheric CO2 by increasing phytoplancton growth. Data are presented to show that, in the summer of 1987, the phytoplankton assemblage as a whole was not iron limited, as measured by the bulk removal of nitrate or by the increase of chlorophyll. It is suggested that grazing normally prevents the phytoplankton from reaching concentrations that reduce the iron (and nitrate) to levels that depress division rates drastically.

  20. Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin et al

    2008-01-01

    Full Text Available The main objectives of the present study were to investigate the chemical reduction of nitrate or nitrite species by zero-valent iron nanoparticle (ZVIN in aqueous solution and related reaction kinetics or mechanisms using fine structure characterization. This work also exemplifies the utilization of field emission-scanning electron microscope (FE–SEM, transmission electron microscopy (TEM, and x-ray diffraction (XRD to reveal the speciation and possible reaction pathway in a very complex adsorption and redox reaction process. Experimentally, ZVIN of this study was prepared by sodium borohydride reduction method at room temperature and ambient pressure. The morphology of as-synthesized ZVIN shows that the nearly ball and ultrafine particles ranged of 20–50 nm were observed with FE–SEM or TEM analysis. The kinetic model of nitrites or nitrates reductive reaction by ZVIN is proposed as a pseudo first-order kinetic equation. The nitrite and nitrate removal efficiencies using ZVIN were found 65–83% and 51–68%, respectively, based on three different initial concentrations. Based on the XRD pattern analyses, it is found that the quantitative relationship between nitrite and Fe(III or Fe(II is similar to the one between nitrate and Fe(III in the ZVIN study. The possible reason is due to the faster nitrite reduction by ZVIN. In fact, the occurrence of the relative faster nitrite reductive reaction suggested that the passivation of the ZVIN have a significant contribution to iron corrosion. The extended x-ray absorption fine structure (EXAFS or x-ray absorption near edge structure (XANES spectra show that the nitrites or nitrates reduce to N2 or NH3 while oxidizing the ZVIN to Fe2O3 or Fe3O4 electrochemically. It is also very clear that decontamination of nitrate or nitrite species in groundwater via the in-situ remediation with a ZVIN permeable reactive barrier would be environmentally attractive.

  1. Determination of Nitrite and Nitrate in Natural Waters Using Flow Injection with Spectrophotometric Detection

    International Nuclear Information System (INIS)

    Yaqoob, M.; Nabi, A.

    2013-01-01

    A simple and sensitive flow injection spectrophotometric method is reported for the room temperature determination of nitrite and nitrate based on the Griess reaction and a copperised cadmium column for reduction of nitrate. Calibration graphs were linear over the range 2 - 1000 micro g N L /sup -1/ (R2 = 0.9997 and 0.9999, n = 9) with a limit of detection (3 s.d.) of 1.0 micro g N L and relative standard deviations (n = 10) of 0.9 and 1.2% for 50 micro g N L nitrite and nitrate respectively. The sample throughput was 50 h. The effect of reagent concentrations, physical parameters (flow rate, sample volume, reaction coil and copperised cadmium column length) and the potential interferences are reported. The effect of salinity on the blank and on the determination of nitrite and nitrate are also presented. The method was applied to natural waters (rainwater, freshwater and estuarine water) and the results for nitrite + nitrate (140 - 7310 micro g N L/sup -1/) were not significantly different (95% confidence interval) from results obtained using a segmented flow analyser reference method with spectrophotometric detection. (author)

  2. Novel flow-through bioremediation system for removing nitrate from nursery discharge water.

    Science.gov (United States)

    Chris Wilson, P; Albano, Joseph P

    2013-11-30

    Nitrate losses in surface runoff water from nursery production areas can be significant. This study evaluated the potential use of microbial-based (denitrification), flow-through bioreactors for their nitrate-remediation ability. Duplicate bioreactor systems were constructed at a local foliage plant nursery. Each bioreactor system consisted of four 242 L tanks with connections alternating between bottom and top. Each tank was filled with approximately 113 L of Kaldness media to provide surface area for attachment of native microflora. Molasses was supplied as a carbon source for denitrification and water flow rates through the systems ranged from 5 to 18 L min(-1) during tests. Automatic water samplers were used to collect composite samples every 15 min from both the inflow and the exit flow water. Results indicate consistent removal of 80-100% of the nitrate flowing into the systems. Accumulation of ammoniacal and nitrite nitrogen did not occur, indicating that the nitrate-nitrogen was removed from the water, and not simply transformed into another water-soluble species. Occasions where removal rates were less than 80% were usually traced to faulty delivery of the carbon source. Results indicate that modular microbial-based bioremediation systems may be a useful tool for helping water managers meet stringent nitrogen water quality regulations, especially at nurseries with limited space for expansion of water retention facilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Removal of nitrate by zero-valent iron and pillared bentonite

    International Nuclear Information System (INIS)

    Li Jianfa; Li Yimin; Meng Qingling

    2010-01-01

    The pillared bentonite prepared by intercalating poly(hydroxo Al(III)) cations into bentonite interlayers was used together with Fe(0) for removing nitrate in column experiments. The obvious synergetic effect on nitrate removal was exhibited through uniformly mixing the pillared bentonite with Fe(0). In such a mixing manner, the nitrate was 100% removed, and the removal efficiency was much higher than the simple summation of adsorption by the pillared bentonite and reduction by Fe(0). The influencing factors such as bentonite type, amount of the pillared bentonite and initial pH of nitrate solutions were investigated. In this uniform mixture, the pillared bentonite could adsorb nitrate ions, and facilitated the mass transfer of nitrate onto Fe(0) surface, then accelerated the nitrate reduction. The pillared bentonite could also act as the proton-donor, and helped to keep the complete nitrate removal for at least 10 h even when the nitrate solution was fed at nearly neutral pH.

  4. Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron

    International Nuclear Information System (INIS)

    Jiang, Chenghong; Xu, Xuping; Megharaj, Mallavarapu; Naidu, Ravendra; Chen, Zuliang

    2015-01-01

    To investigate the effect of nanoscale zero-valent iron (nZVI) on the growth of Paracoccus sp. strain and biodenitrification under aerobic conditions, specific factors were studied, pH, concentration of nitrate, Fe (II) and carbon dioxide. Low concentration of nZVI (50 mg/L) promoted both cell growth and biodegradation of nitrate which rose from 69.91% to 76.16%, while nitrate removal fell to 67.10% in the presence of high nZVI concentration (1000 mg/L). This may be attributed to the ions produced in nZVI corrosion being used as an electron source for the biodegradation of nitrate. However, the excess uptake of Fe (II) causes oxidative damage to the cells. To confirm this, nitrate was completely removed after 20 h when 100 mg/L Fe (II) was added to the solution, which is much faster than the control (86.05%, without adding Fe (II)). However, nitrate removal reached only 45.64% after 20 h, with low cell density (OD 600 = 0.62) in the presence of 300 mg/L Fe (II). Characterization techniques indicated that nZVI adhered to microorganism cell membranes. These findings confirmed that nZVI could affect the activity of the strain and consequently change the biodenitrification. - Highlights: • Biodenitrification by Paracoccus sp. in the presence of nZVI was studied. • Biodegradation was promoted at a low nZVI concentration. • Biodegradation was inhibited at a high nZVI concentration. • nZVI that adhered to microorganism cell membranes was characterized

  5. Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chenghong; Xu, Xuping [School of Life Science, Fujian Normal University, Fuzhou 350108, Fujian Province (China); Megharaj, Mallavarapu; Naidu, Ravendra [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Chen, Zuliang, E-mail: Zuliang.chen@unisa.edu.au [School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2015-10-15

    To investigate the effect of nanoscale zero-valent iron (nZVI) on the growth of Paracoccus sp. strain and biodenitrification under aerobic conditions, specific factors were studied, pH, concentration of nitrate, Fe (II) and carbon dioxide. Low concentration of nZVI (50 mg/L) promoted both cell growth and biodegradation of nitrate which rose from 69.91% to 76.16%, while nitrate removal fell to 67.10% in the presence of high nZVI concentration (1000 mg/L). This may be attributed to the ions produced in nZVI corrosion being used as an electron source for the biodegradation of nitrate. However, the excess uptake of Fe (II) causes oxidative damage to the cells. To confirm this, nitrate was completely removed after 20 h when 100 mg/L Fe (II) was added to the solution, which is much faster than the control (86.05%, without adding Fe (II)). However, nitrate removal reached only 45.64% after 20 h, with low cell density (OD{sub 600} = 0.62) in the presence of 300 mg/L Fe (II). Characterization techniques indicated that nZVI adhered to microorganism cell membranes. These findings confirmed that nZVI could affect the activity of the strain and consequently change the biodenitrification. - Highlights: • Biodenitrification by Paracoccus sp. in the presence of nZVI was studied. • Biodegradation was promoted at a low nZVI concentration. • Biodegradation was inhibited at a high nZVI concentration. • nZVI that adhered to microorganism cell membranes was characterized.

  6. Correlation of flow accelerated corrosion rate with iron solubility

    International Nuclear Information System (INIS)

    Fujiwara, K.; Domae, M.; Yoneda, K.; Inada, F.; Ohira, T.; Hisamune, K.; Takiguchi, H.

    2009-01-01

    Flow Accelerated Corrosion (FAC) of carbon steel is one of the most important subjects in coolant systems of power plants. FAC is influenced by material, flow condition, temperature, and water chemistry. It is considered that solubility is the most important factor to determine the effect of water chemistry on FAC. In the present study, effect of specific oxide on FAC rate was studied from the thermodynamic solubility of iron. The effects of temperature and pH on the iron solubility were evaluated by taking into consideration hydrolysis reactions of ferrous iron, dissolution equilibria of Fe 3 O 4 , FeO, and Fe(OH) 2 , and charge balance. The correlation between the iron solubility and FAC behavior was evaluated by using the normalized mass transfer coefficient. It is clarified that the product of iron solubility equilibrated with Fe 3 O 4 and normalized mass transfer coefficient can explain the temperature and pH dependence of FAC. These results indicate presence of magnetite on the surface of carbon steel. Diffusion of iron from the saturated layer determines the FAC rate from water chemistry aspect. (author)

  7. Nitrate administration increases blood flow in dysfunctional but viable myocardium, leading to improved assessment of myocardial viability : A PET study

    NARCIS (Netherlands)

    Slart, Riemer H. J. A.; Agool, Ali; van Veldhuisen, Dirk J.; Dierckx, Rudi A.; Bax, Jeroen J.

    SPECT with Tc-99m-labeled agents is better able to detect viability after nitrate administration. Nitrates induce vasoclilation and may increase blood flow to severely hypoperfused but viable myocardium, thereby enhancing tracer delivery and improving the detection of viability. Quantitative data on

  8. Biodegradation of pharmaceuticals and endocrine disruptors with oxygen, nitrate, manganese (IV), iron (III) and sulfate as electron acceptors

    Science.gov (United States)

    Schmidt, Natalie; Page, Declan; Tiehm, Andreas

    2017-08-01

    Biodegradation of pharmaceuticals and endocrine disrupting compounds was examined in long term batch experiments for a period of two and a half years to obtain more insight into the effects of redox conditions. A mix including lipid lowering agents (e.g. clofibric acid, gemfibrozil), analgesics (e.g. diclofenac, naproxen), beta blockers (e.g. atenolol, propranolol), X-ray contrast media (e.g. diatrizoic acid, iomeprol) as well as the antiepileptic carbamazepine and endocrine disruptors (e.g. bisphenol A, 17α-ethinylestradiol) was analyzed in batch tests in the presence of oxygen, nitrate, manganese (IV), iron (III), and sulfate. Out of the 23 selected substances, 14 showed a degradation of > 50% of their initial concentrations under aerobic conditions. The beta blockers propranolol and atenolol and the analgesics pentoxifylline and naproxen showed a removal of > 50% under anaerobic conditions. In particular naproxen proved to be degradable with oxygen and under most anaerobic conditions, i.e. with manganese (IV), iron (III), or sulfate. The natural estrogens estriol, estrone and 17β-estradiol showed complete biodegradation under aerobic and nitrate-reducing conditions, with a temporary increase of estrone during transformation of estriol and 17β-estradiol. Transformation of 17β-estradiol under Fe(III)-reducing conditions resulted in an increase of estriol as well. Concentrations of clofibric acid, carbamazepine, iopamidol and diatrizoic acid, known for their recalcitrance in the environment, remained unchanged.

  9. Direct and indirect photodegradation of estriol in the presence of humic acid, nitrate and iron complexes in water solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yong [Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747 (United States); School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Kai [Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747 (United States); Zuo, Yuegang, E-mail: yzuo@umassd.edu [Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747 (United States)

    2013-10-01

    The photochemical behavior of a natural estrogen estriol (E3) was investigated in the presence of the natural photoreactive constituents including nitrate, iron(III), and humic acid (HA). The direct photodegradation of E3 increased with increasing incident light intensity, decreasing initial concentration of E3 and increasing pH in the range of 6.0 to 10.0. The direct photodegradation of the deprotonated speciation of E3 was much faster than that of its protonated form. The presence of NO{sub 3}{sup −} and iron(III) promoted the photochemical loss of E3 in the aqueous solutions. The quenching experiments verified that hydroxyl radicals were predominantly responsible for the indirect photodegradation of E3. HA could act as photosensitizer, light screening agent and free radical quencher. For the first time, the enhancement or inhibition effect of HA on photodegradation was found to depend on the irradiation light intensity. HA enhanced the photodegradation of E3 under sunlight or weak irradiation of simulated sunlight. In contrast, under high irradiation light intensity, HA inhibited the photodegradation. The hydroxylation photoproducts were identified using GC-MS and the photodegradation pathway of E3 was proposed. - Highlights: • Direct and indirect photodegradation of estriol (E3) were first investigated. • The direct photodegradation of E3 increased with increasing pH of the solutions. • The light intensity affected the photosensitization effect of humic acid. • Nitrate and iron(III) promoted the photodecomposition of estriol in water. • The ·OH oxidation products of E3 was first determined.

  10. Factors influencing arsenic and nitrate removal from drinking water in a continuous flow electrocoagulation (EC) process

    International Nuclear Information System (INIS)

    Kumar, N. Sanjeev; Goel, Sudha

    2010-01-01

    An experimental study was conducted under continuous flow conditions to evaluate some of the factors influencing contaminant removal by electrocoagulation (EC). A bench-scale simulation of drinking water treatment was done by adding a filtration column after a rectangular EC reactor. Contaminant removal efficiency was determined for voltages ranging from 10 to 25 V and a comparative study was done with distilled water and tap water for two contaminants: nitrate and arsenic(V). Maximum removal efficiency was 84% for nitrate at 25 V and 75% for arsenic(V) at 20 V. No significant difference in contaminant removal was observed in tap water versus distilled water. Increase in initial As(V) concentration from 1 ppm to 2 ppm resulted in a 10% increase in removal efficiency. Turbidity in the EC reactor effluent was 52 NTU and had to be filtered to achieve acceptable levels of final turbidity (5 NTU) at steady-state. The flow regime in the continuous flow reactor was also evaluated in a tracer study to determine whether it is a plug flow reactor (PFR) or constantly stirred tank reactor (CSTR) and the results show that this reactor was close to an ideal CSTR, i.e., it was fairly well-mixed.

  11. Factors influencing arsenic and nitrate removal from drinking water in a continuous flow electrocoagulation (EC) process

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N. Sanjeev [Civil Engineering Department, IIT Kharagpur, Kharagpur 721302 (India); Goel, Sudha, E-mail: sudhagoel@civil.iitkgp.ernet.in [Civil Engineering Department, IIT Kharagpur, Kharagpur 721302 (India)

    2010-01-15

    An experimental study was conducted under continuous flow conditions to evaluate some of the factors influencing contaminant removal by electrocoagulation (EC). A bench-scale simulation of drinking water treatment was done by adding a filtration column after a rectangular EC reactor. Contaminant removal efficiency was determined for voltages ranging from 10 to 25 V and a comparative study was done with distilled water and tap water for two contaminants: nitrate and arsenic(V). Maximum removal efficiency was 84% for nitrate at 25 V and 75% for arsenic(V) at 20 V. No significant difference in contaminant removal was observed in tap water versus distilled water. Increase in initial As(V) concentration from 1 ppm to 2 ppm resulted in a 10% increase in removal efficiency. Turbidity in the EC reactor effluent was 52 NTU and had to be filtered to achieve acceptable levels of final turbidity (5 NTU) at steady-state. The flow regime in the continuous flow reactor was also evaluated in a tracer study to determine whether it is a plug flow reactor (PFR) or constantly stirred tank reactor (CSTR) and the results show that this reactor was close to an ideal CSTR, i.e., it was fairly well-mixed.

  12. Kinetics of nitrate adsorption and reduction by nano-scale zero valent iron (NZVI): Effect of ionic strength and initial pH

    DEFF Research Database (Denmark)

    Kim, Do-Gun; Hwang, Yuhoon; Shin, Hang-Sik

    2016-01-01

    Kinetic models for pollutants reduction by Nano-scale Zero Valent Iron (NZVI) were tested in this study to gain a better understanding and description of the reaction. Adsorption kinetic models and a heterogeneous catalytic reaction kinetic equation were proposed for nitrate removal and for ammon...

  13. The influence of phosphorus on the corrosion of iron in calcium nitrate

    International Nuclear Information System (INIS)

    Windisch, C.F. Jr.; Baer, D.R.; Jones, R.H.; Engelhard, M.H.

    1992-01-01

    This paper reports that intergranular stress corrosion cracking (IGSCC) of metallic alloys including iron is strongly influenced by the presence of grain boundary impurities such as phosphorus. In this study to determine how phosphorus affects the corrosion of ion, electrochemical polarization methods were used in conjunction with surface analyses employing ultrahigh vacuum transfer. Specifically, these methods were used to examine the corrosion of iron, iron/phosphorus alloys, and iron implanted with phosphorus in deaerated 55 weight percent Ca(NO 3 ) 2 solutions at 60 degrees C. The presence of phosphorus in iron accelerated corrosion in both the active and passive regions, with the effect being more pronounced in the passive region. In the active region, the phosphorus was oxidized to phosphate which, in turn, appeared to assist the dissolution of the semiprotective Fe 3 O 4 . In the passive region, the phosphorus (when unoxidized) accelerated corrosion by some other mechanism. The FePO 4 that formed in the passive region did not inhibit passivation by, rather, was incorporated in the passive film. The chemical transformations would appear to explain, at least partly, the high IGSCC rates observed for ion containing phosphorus segregated at grain boundaries

  14. Inhibition of nitrate reduction by NaCl adsorption on a nano-zero-valent iron surface during a concentrate treatment for water reuse.

    Science.gov (United States)

    Hwang, Yuhoon; Kim, Dogun; Shin, Hang-Sik

    2015-01-01

    Nanoscale zero-valent iron (NZVI) has been considered as a possible material to treat water and wastewater. However, it is necessary to verify the effect of the matrix components in different types of target water. In this study, different effects depending on the sodium chloride (NaCl) concentration on reductions of nitrates and on the characteristics of NZVI were investigated. Although NaCl is known as a promoter of iron corrosion, a high concentration of NaCl (>3 g/L) has a significant inhibition effect on the degree of NZVI reactivity towards nitrate. The experimental results were interpreted by a Langmuir-Hinshelwood-Hougen-Watson reaction in terms of inhibition, and the decreased NZVI reactivity could be explained by the increase in the inhibition constant. As a result of a chloride concentration analysis, it was verified that 7.7-26.5% of chloride was adsorbed onto the surface of NZVI. Moreover, the change of the iron corrosion product under different NaCl concentrations was investigated by a surface analysis of spent NZVI. Magnetite was the main product, with a low NaCl concentration (0.5 g/L), whereas amorphous iron hydroxide was observed at a high concentration (12 g/L). Though the surface was changed to permeable iron hydroxide, the Fe(0) in the core was not completely oxidized. Therefore, the inhibition effect of NaCl could be explained as the competitive adsorption of chloride and nitrate.

  15. Flow-injection analysis of nitrate by reduction to nitrite and gas-phase molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, B.; Tavassoli, A. [Dept. of Chemistry, Inst. for Advanced Studies in Basic Sciences, Zanjan (Iran)

    2001-12-01

    Two flow-injection manifolds have been investigated for the determination of nitrate. These manifolds are based on the reduction of nitrate to nitrite and determination of nitrite by gas-phase molecular absorption spectrophotometry. Nitrate sample solution (300 {mu}L) which is injected to the flow line, is reduced to nitrite by reaction with hydrazine or passage through the on-line copperized cadmium (Cd-Cu) reduction column. The nitrite produced reacts with a stream of hydrochloric acid and the evolved gases are purged into the stream of O{sub 2}carrier gas. The gaseous phase is separated from the liquid phase using a gas-liquid separator and then swept into a flow-through cell which has been positioned in the cell compartment of an UV-visible spectrophotometer. The absorbance of the gaseous phase is measured at 204.7 nm. A linear relationship was obtained between the intensity of absorption signals and concentration of nitrate when Cd-Cu reduction method was used, but a logarithmic relationship was obtained when the hydrazine reduction method was used. By use of the Cd-Cu reduction method, up to 330 {mu}g of nitrate was determined. The limit of detection was 2.97 {mu}g nitrate and the relative standard deviations for the determination of 12.0, 30.0 and 150 {mu}g nitrate were 3.32, 3.87 and 3.6%, respectively. Maximum sampling rate was approximately 30 samples per hour. The Cd-Cu reduction method was applied to the determination of nitrate and the simultaneous determination of nitrate and nitrite in meat products, vegetables, urine, and a water sample. (orig.)

  16. Correlation of flow accelerated corrosion rate with iron solubility

    International Nuclear Information System (INIS)

    Fujiwara, K.; Domae, M.; Yoneda, K.; Inada, F.; Ohira, T.; Hisamune, K.

    2011-01-01

    Flow accelerated corrosion (FAC) of the carbon steel is one of the most important subjects in the coolant systems of the power plants. FAC is influenced by the composition of the material, the flow condition, temperature, and the water chemistry conditions. It is considered that the solubility of iron (Fe) is the most important factor in the water chemistry parameters affecting FAC. In the present study, the effects of temperature and pH on the Fe solubility were evaluated in consideration of the hydrolysis reactions of the ferrous iron, the dissolution equilibria of Fe 3 O 4 , FeO, and Fe(OH) 2 , and the charge balance. The correlation between the Fe solubility and the FAC behavior was discussed. It has been suggested that the product of the Fe solubility equilibrated with Fe 3 O 4 and the mass transfer coefficient can explain the temperature and pH dependence of FAC. These results indicate the presence of the magnetite on the surface of the carbon steel. Diffusion of the Fe from the saturated layer to the bulk solution determines the FAC rate from the water chemistry aspect.

  17. Insights Into the Biogeochemical Cycling of Iron, Nitrate, and Phosphate Across a 5,300 km South Pacific Zonal Section (153°E-150°W)

    Science.gov (United States)

    Ellwood, Michael J.; Bowie, Andrew R.; Baker, Alex; Gault-Ringold, Melanie; Hassler, Christel; Law, Cliff S.; Maher, William A.; Marriner, Andrew; Nodder, Scott; Sander, Sylvia; Stevens, Craig; Townsend, Ashley; van der Merwe, Pier; Woodward, E. Malcolm S.; Wuttig, Kathrin; Boyd, Philip W.

    2018-02-01

    Iron, phosphate, and nitrate are essential nutrients for phytoplankton growth, and hence, their supply into the surface ocean controls oceanic primary production. Here we present a GEOTRACES zonal section (GP13; 30-33°S, 153°E-150°W) extending eastward from Australia to the oligotrophic South Pacific Ocean gyre outlining the concentrations of these key nutrients. Surface dissolved iron concentrations are elevated at >0.4 nmol L-1 near continental Australia (west of 165°E) and decreased eastward to ≤0.2 nmol L-1 (170°W-150°W). The supply of dissolved iron into the upper ocean (nitrate concentrations averaged 5 ± 4 nmol L-1 between 170°W and 150°W, while surface water phosphate concentrations averaged 58 ± 30 nmol L-1. The supply of nitrogen into the upper ocean is primarily from deeper waters (24-1647 μmol m-2 d-1) with atmospheric deposition and nitrogen fixation contributing leading to almost quantitative removal of nitrate. The supply stoichiometry for iron and nitrogen relative to phosphate at and above the DCM declines eastward leading to two biogeographical provinces: one with diazotroph production and the other without diazotroph production.

  18. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic Coast

    Science.gov (United States)

    Bachman, L. Joseph; Lindsey, Bruce D.; Brakebill, John W.; Powars, David S.

    1998-01-01

    Existing data on base-flow and groundwater nitrate loads were compiled and analyzed to assess the significance of groundwater discharge as a source of the nitrate load to nontidal streams of the Chesapeake Bay watershed. These estimates were then related to hydrogeomorphic settings based on lithology and physiographic province to provide insight on the areal distribution of ground-water discharge. Base-flow nitrate load accounted for 26 to about 100 percent of total-flow nitrate load, with a median value of 56 percent, and it accounted for 17 to 80 percent of total-flow total-nitrogen load, with a median value of 48 percent. Hydrograph separations were conducted on continuous streamflow records from 276 gaging stations within the watershed. The values for base flow thus calculated were considered an estimate of ground-water discharge. The ratio of base flow to total flow provided an estimate of the relative importance of ground-water discharge within a basin. Base-flow nitrate loads, total-flow nitrate loads, and total-flow total-nitrogen loads were previously computed from water-quality and discharge measurements by use of a regression model. Base-flow nitrate loads were available from 78 stations, total-flow nitrate loads were available from 86 stations, and total-flow total-nitrogen loads were available for 48 stations. The percentage of base-flow nitrate load to total-flow nitrate load could be computed for 57 stations, whereas the percentage of base-flow nitrate load to totalflow total-nitrogen load could be computed for 36 stations. These loads were divided by the basin area to obtain yields, which were used to compare the nitrate discharge from basins of different sizes. The results indicate that ground-water discharge is a significant source of water and nitrate to the total streamflow and nitrate load. Base flow accounted for 16 to 92 percent of total streamflow at the 276 sampling sites, with a median value of 54 percent. It is estimated that of the 50

  19. Experimental analysis of flow of ductile cast iron in stream lined gating systems

    DEFF Research Database (Denmark)

    Skov-Hansen, Søren Peter; Tiedje, Niels Skat

    2008-01-01

    Streamlined gating systems have been developed for production of high integrity ductile cast iron parts. Flow of ductile cast iron in streamlined gating systems was studied in glass fronted sand moulds where flow in the gating system and casting was recorded by a digital video camera. These results...... show how the quality of pouring, design of ingates, design of bends and flow over cores influence melt flow and act to determine the quality of the castings....

  20. Flow analysis methods for the direct ultra-violet spectrophotometric measurement of nitrate and total nitrogen in freshwaters

    Energy Technology Data Exchange (ETDEWEB)

    Gentle, Brady S.; Ellis, Peter S.; Grace, Michael R. [Water Studies Centre, School of Chemistry, Monash University, Victoria 3800 (Australia); McKelvie, Ian D., E-mail: iandm@unimelb.edu.au [School of Chemistry, University of Melbourne, Victoria 3010 (Australia); School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2011-10-17

    Highlights: {yields} Second derivative UV spectrophotometry has been used to determine nitrate and total N using flow analysis techniques. {yields} A simple flow system with a single-reflection flow-through cell was used for the UV measurement of nitrate. {yields} Total N was determined after on-line UV photooxidation with alkaline peroxodisulfate. {yields} Analyses carried out using the developed flow systems show a high degree of agreement with comparative analyses. {yields} This method requires no colorimetric reagents and eliminates the requirement for a toxic cadmium reduction column. - Abstract: Second derivative ultra-violet spectrophotometric methods are described for the measurement of nitrate and total nitrogen in freshwaters using flow analysis techniques. A simple flow system consisting of a peristaltic pump and a single-reflection flow-through cell was used for the measurement of nitrate. Quantification of total nitrogen using alkaline peroxodisulfate photo-digestion was achieved by incorporating an ultra-violet photo-reactor, a hollow-fibre filter and a debubbler into the flow system. The nitrate system featured a limit of detection of 0.04 mg N L{sup -1}, 0.4%RSD (1 mg N L{sup -1} as nitrate, n = 10), a coefficient of determination (R{sup 2}) of 0.9995 over the calibration range 0.0-2.0 mg N L{sup -1}, and a data acquisition time of 1.5 s per spectrum. The total nitrogen system featured a limit of detection of 0.05 mg N L{sup -1}, 1%RSD (1 mg N L{sup -1} as ammonium chloride, n = 10), a coefficient of determination of 0.9989 over the calibration range 0.0-2.0 mg N L{sup -1}, and a throughput of 5 sample h{sup -1} measured in triplicate. Digestions of five model nitrogen compounds returned recoveries of >88%. Determinations carried out using the developed systems show a high degree of agreement with data obtained using reference methods. These methods require no colorimetric reagents and eliminate the requirement for a toxic cadmium reduction column

  1. Flow analysis methods for the direct ultra-violet spectrophotometric measurement of nitrate and total nitrogen in freshwaters

    International Nuclear Information System (INIS)

    Gentle, Brady S.; Ellis, Peter S.; Grace, Michael R.; McKelvie, Ian D.

    2011-01-01

    Highlights: → Second derivative UV spectrophotometry has been used to determine nitrate and total N using flow analysis techniques. → A simple flow system with a single-reflection flow-through cell was used for the UV measurement of nitrate. → Total N was determined after on-line UV photooxidation with alkaline peroxodisulfate. → Analyses carried out using the developed flow systems show a high degree of agreement with comparative analyses. → This method requires no colorimetric reagents and eliminates the requirement for a toxic cadmium reduction column. - Abstract: Second derivative ultra-violet spectrophotometric methods are described for the measurement of nitrate and total nitrogen in freshwaters using flow analysis techniques. A simple flow system consisting of a peristaltic pump and a single-reflection flow-through cell was used for the measurement of nitrate. Quantification of total nitrogen using alkaline peroxodisulfate photo-digestion was achieved by incorporating an ultra-violet photo-reactor, a hollow-fibre filter and a debubbler into the flow system. The nitrate system featured a limit of detection of 0.04 mg N L -1 , 0.4%RSD (1 mg N L -1 as nitrate, n = 10), a coefficient of determination (R 2 ) of 0.9995 over the calibration range 0.0-2.0 mg N L -1 , and a data acquisition time of 1.5 s per spectrum. The total nitrogen system featured a limit of detection of 0.05 mg N L -1 , 1%RSD (1 mg N L -1 as ammonium chloride, n = 10), a coefficient of determination of 0.9989 over the calibration range 0.0-2.0 mg N L -1 , and a throughput of 5 sample h -1 measured in triplicate. Digestions of five model nitrogen compounds returned recoveries of >88%. Determinations carried out using the developed systems show a high degree of agreement with data obtained using reference methods. These methods require no colorimetric reagents and eliminate the requirement for a toxic cadmium reduction column. The overlap of chloride and nitrate spectra in seawater is

  2. Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields

    Science.gov (United States)

    Zeng, Y. K.; Zhou, X. L.; Zeng, L.; Yan, X. H.; Zhao, T. S.

    2016-09-01

    The catalyst for the negative electrode of iron-chromium redox flow batteries (ICRFBs) is commonly prepared by adding a small amount of Bi3+ ions in the electrolyte and synchronously electrodepositing metallic particles onto the electrode surface at the beginning of charge process. Achieving a uniform catalyst distribution in the porous electrode, which is closely related to the flow field design, is critically important to improve the ICRFB performance. In this work, the effects of flow field designs on catalyst electrodeposition and battery performance are investigated. It is found that compared to the serpentine flow field (SFF) design, the interdigitated flow field (IFF) forces the electrolyte through the porous electrode between the neighboring channels and enhances species transport during the processes of both the catalyst electrodeposition and iron/chromium redox reactions, thus enabling a more uniform catalyst distribution and higher mass transport limitation. It is further demonstrated that the energy efficiency of the ICRFB with the IFF reaches 80.7% at a high current density (320 mA cm-2), which is 8.2% higher than that of the ICRFB with the SFF. With such a high performance and intrinsically low-cost active materials, the ICRFB with the IFF offers a great promise for large-scale energy storage.

  3. Numerical simulation of water flow and Nitrate transport through variably saturated porous media in laboratory condition using HYDRUS 2D

    Science.gov (United States)

    Jahangeer, F.; Gupta, P. K.; Yadav, B. K.

    2017-12-01

    Due to the reducing availability of water resources and the growing competition for water between residential, industrial, and agricultural users, increasing irrigation efficiency, by several methods like drip irrigation, is a demanding concern for agricultural experts. The understanding of the water and contaminants flow through the subsurface is needed for the sustainable irrigation water management, pollution assessment, polluted site remediation and groundwater recharge. In this study, the Windows-based computer software package HYDRUS-2D, which numerically simulates water and solute movement in two-dimensional, variably-saturated porous media, was used to evaluate the distribution of water and Nitrate in the sand tank. The laboratory and simulation experiments were conducted to evaluate the role of drainage, recharge flux, and infiltration on subsurface flow condition and subsequently, on nitrate movement in the subsurface. The water flow in the unsaturated zone model by Richards' equation, which was highly nonlinear and its parameters were largely dependent on the moisture content and pressure head of the partially saturated zone. Following different cases to be considered to evaluate- a) applying drainage and recharge flux to study domains, b) transient infiltration in a vertical soil column and c) subsequently, nitrate transport in 2D sand tank setup. A single porosity model was used for the simulation of water and nitrate flow in the study domain. The results indicate the transient water table position decreases as the time increase significantly by applying drainage flux at the bottom. Similarly, the water table positions in study domains increasing in the domain by applying recharge flux. Likewise, the water flow profile shows the decreasing water table elevation with increasing water content in the vertical domain. Moreover, the nitrate movement was dominated by advective flux and highly affected by the recharge flux in the vertical direction. The

  4. Nitrate concentration-drainage flow (C-Q) relationship for a drained agricultural field in Eastern North Carolina Plain

    Science.gov (United States)

    Liu, W.; Youssef, M.; Birgand, F.; Chescheir, G. M.; Maxwell, B.; Tian, S.

    2017-12-01

    Agricultural drainage is a practice used to artificially enhance drainage characteristics of naturally poorly drained soils via subsurface drain tubing or open-ditch systems. Approximately 25% of the U.S. agricultural land requires improved drainage for economic crop production. However, drainage increases the transport of dissolved agricultural chemicals, particularly nitrates to downstream surface waters. Nutrient export from artificially drained agricultural landscapes has been identified as the leading source of elevated nutrient levels in major surface water bodies in the U.S. Controlled drainage has long been practiced to reduce nitrogen export from agricultural fields to downstream receiving waters. It has been hypothesized that controlled drainage reduces nitrogen losses by promoting denitrification, reducing drainage outflow from the field, and increasing plant uptake. The documented performance of the practice was widely variable as it depends on several site-specific factors. The goal of this research was to utilize high frequency measurements to investigate the effect of agricultural drainage and related management practices on nitrate fate and transport for an artificially drained agricultural field in eastern North Carolina. We deployed a field spectrophotometer to measure nitrate concentration every 45 minutes and measured drainage flow rate using a V-notch weir every 15 minutes. Furthermore, we measured groundwater level, precipitation, irrigation amount, temperature to characterize antecedent conditions for each event. Nitrate concentration-drainage flow (C-Q) relationships generated from the high frequency measurements illustrated anti-clockwise hysteresis loops and nitrate flushing mechanism in response to most precipitation and irrigation events. Statistical evaluation will be carried out for the C-Q relationships. The results of our analysis, combined with numerical modeling, will provide a better understanding of hydrological and

  5. Change regularity of water quality parameters in leakage flow conditions and their relationship with iron release.

    Science.gov (United States)

    Liu, Jingqing; Shentu, Huabin; Chen, Huanyu; Ye, Ping; Xu, Bing; Zhang, Yifu; Bastani, Hamid; Peng, Hongxi; Chen, Lei; Zhang, Tuqiao

    2017-11-01

    The long-term stagnation in metal water supply pipes, usually caused by intermittent consumption patterns, will cause significant iron release and water quality deterioration, especially at the terminus of pipelines. Another common phenomenon at the terminus of pipelines is leakage, which is considered helpful by allowing seepage of low-quality drinking water resulting from long-term stagnation. In this study, the effect of laminar flow on alleviating water quality deterioration under different leakage conditions was investigated, and the potential thresholds of the flow rate, which can affect the iron release process, were discussed. Based on a galvanized pipe and ductile cast iron pipe pilot platform, which was established at the terminus of pipelines, this research was carried out by setting a series of leakage rate gradients to analyze the influence of different leakage flow rates on iron release, as well as the relationship with chemical and biological parameters. The results showed that the water quality parameters were obviously influenced by the change in flow velocity. Water quality was gradually improved with an increase in flow velocity, but its change regularity reflected a diversity under different flow rates (p water distribution system, when the bulk water was at the critical laminar flow velocity, the concentration of total iron, the quantity and rate of total iron release remain relatively in an ideal and safe situation. Copyright © 2017. Published by Elsevier Ltd.

  6. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  7. Mortality from different causes associated with meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and Health Study: population based cohort study

    Science.gov (United States)

    Sinha, Rashmi; Ward, Mary H; Graubard, Barry I; Inoue-Choi, Maki; Dawsey, Sanford M; Abnet, Christian C

    2017-01-01

    Objective To determine the association of different types of meat intake and meat associated compounds with overall and cause specific mortality. Design Population based cohort study. Setting Baseline dietary data of the NIH-AARP Diet and Health Study (prospective cohort of the general population from six states and two metropolitan areas in the US) and 16 year follow-up data until 31 December 2011. Participants 536 969 AARP members aged 50-71 at baseline. Exposures Intake of total meat, processed and unprocessed red meat (beef, lamb, and pork) and white meat (poultry and fish), heme iron, and nitrate/nitrite from processed meat based on dietary questionnaire. Adjusted Cox proportional hazards regression models were used with the lowest fifth of calorie adjusted intakes as reference categories. Main outcome measure Mortality from any cause during follow-up. Results An increased risk of all cause mortality (hazard ratio for highest versus lowest fifth 1.26, 95% confidence interval 1.23 to 1.29) and death due to nine different causes associated with red meat intake was observed. Both processed and unprocessed red meat intakes were associated with all cause and cause specific mortality. Heme iron and processed meat nitrate/nitrite were independently associated with increased risk of all cause and cause specific mortality. Mediation models estimated that the increased mortality associated with processed red meat was influenced by nitrate intake (37.0-72.0%) and to a lesser degree by heme iron (20.9-24.1%). When the total meat intake was constant, the highest fifth of white meat intake was associated with a 25% reduction in risk of all cause mortality compared with the lowest intake level. Almost all causes of death showed an inverse association with white meat intake. Conclusions The results show increased risks of all cause mortality and death due to nine different causes associated with both processed and unprocessed red meat, accounted for, in part, by

  8. The Effect of Gallium Nitrate on Arresting Blood Flow from a Wound

    Directory of Open Access Journals (Sweden)

    Paul H. Goodley

    2011-01-01

    Full Text Available A novel application of gallium nitrate, hitherto unreported, in reducing bleeding time from an open wound is presented. Experiments performed using simple punctures in the forearm demonstrated a very substantial reduction in bleeding time when a solution of gallium nitrate was applied relative to a control. This outcome was shown to be unaffected by the anticoagulant properties of warfarin. The mechanism for such action of gallium nitrate is unknown and merits further investigation, as do the possibilities for such an application to improve both civilian and defense trauma treatment modalities.

  9. Nitrate Uptake Capacity and Efficiency of Upper Mississippi River Flow-Regulated Backwaters

    National Research Council Canada - National Science Library

    James, William F; Richardson, William B; Soballe, David M

    2007-01-01

    In-stream uptake and processing of nitrate nitrite-N may be improved in large river systems by increasing hydrological connectivity between the main channel and adjoining backwaters, wetlands, and floodplain areas...

  10. Channel flow and trichloroethylene treatment in a partly iron-filled fracture: Experimental and model results

    Science.gov (United States)

    Cai, Zuansi; Merly, Corrine; Thomson, Neil R.; Wilson, Ryan D.; Lerner, David N.

    2007-08-01

    Technical developments have now made it possible to emplace granular zero-valent iron (Fe 0) in fractured media to create a Fe 0 fracture reactive barrier (Fe 0 FRB) for the treatment of contaminated groundwater. To evaluate this concept, we conducted a laboratory experiment in which trichloroethylene (TCE) contaminated water was flushed through a single uniform fracture created between two sandstone blocks. This fracture was partly filled with what was intended to be a uniform thickness of iron. Partial treatment of TCE by iron demonstrated that the concept of a Fe 0 FRB is practical, but was less than anticipated for an iron layer of uniform thickness. When the experiment was disassembled, evidence of discrete channelised flow was noted and attributed to imperfect placement of the iron. To evaluate the effect of the channel flow, an explicit Channel Model was developed that simplifies this complex flow regime into a conceptualised set of uniform and parallel channels. The mathematical representation of this conceptualisation directly accounts for (i) flow channels and immobile fluid arising from the non-uniform iron placement, (ii) mass transfer from the open fracture to iron and immobile fluid regions, and (iii) degradation in the iron regions. A favourable comparison between laboratory data and the results from the developed mathematical model suggests that the model is capable of representing TCE degradation in fractures with non-uniform iron placement. In order to apply this Channel Model concept to a Fe 0 FRB system, a simplified, or implicit, Lumped Channel Model was developed where the physical and chemical processes in the iron layer and immobile fluid regions are captured by a first-order lumped rate parameter. The performance of this Lumped Channel Model was compared to laboratory data, and benchmarked against the Channel Model. The advantages of the Lumped Channel Model are that the degradation of TCE in the system is represented by a first

  11. Nested-scale discharge and groundwater level monitoring to improve predictions of flow route discharges and nitrate loads

    Science.gov (United States)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.; van Geer, F. C.; Torfs, P. J. J. F.; de Louw, P. G. B.

    2010-10-01

    Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for predictions of catchment-scale discharge and nitrate loads. In order to relate field-site measurements to the catchment-scale an upscaling approach is introduced that assumes that scale differences in flow route fluxes originate from differences in the relationship between groundwater storage and the spatial structure of the groundwater table. This relationship is characterized by the Groundwater Depth Distribution (GDD) curve that relates spatial variation in groundwater depths to the average groundwater depth. The GDD-curve was measured for a single field site (0.009 km2) and simple process descriptions were applied to relate the groundwater levels to flow route discharges. This parsimonious model could accurately describe observed storage, tube drain discharge, overland flow and groundwater flow simultaneously with Nash-Sutcliff coefficients exceeding 0.8. A probabilistic Monte Carlo approach was applied to upscale field-site measurements to catchment scales by inferring scale-specific GDD-curves from hydrographs of two nested catchments (0.4 and 6.5 km2). The estimated contribution of tube drain effluent (a dominant source for nitrates) decreased with increasing scale from 76-79% at the field-site to 34-61% and 25-50% for both catchment scales. These results were validated by demonstrating that a model conditioned on nested-scale measurements simulates better nitrate loads and better predictions of extreme discharges during validation periods compared to a model that was conditioned on catchment discharge only.

  12. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans

    Directory of Open Access Journals (Sweden)

    Harry R Beller

    2013-08-01

    Full Text Available Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV and Fe(II oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II oxidation, namely (a whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV oxides as electron donors under denitrifying conditions], (b Fe(II oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c random transposon-mutagenesis studies with screening for Fe(II oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III, which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV oxidation, nor have other c-type cytochromes yet been implicated in the process.

  13. Energy efficient electrocoagulation using a new flow column reactor to remove nitrate from drinking water - Experimental, statistical, and economic approach.

    Science.gov (United States)

    Hashim, Khalid S; Shaw, Andy; Al Khaddar, Rafid; Pedrola, Montserrat Ortoneda; Phipps, David

    2017-07-01

    In this investigation, a new bench-scale electrocoagulation reactor (FCER) has been applied for drinking water denitrification. FCER utilises the concepts of flow column to mix and aerate the water. The water being treated flows through the perforated aluminium disks electrodes, thereby efficiently mixing and aerating the water. As a result, FCER reduces the need for external stirring and aerating devices, which until now have been widely used in the electrocoagulation reactors. Therefore, FCER could be a promising cost-effective alternative to the traditional lab-scale EC reactors. A comprehensive study has been commenced to investigate the performance of the new reactor. This includes the application of FCER to remove nitrate from drinking water. Estimation of the produced amount of H 2 gas and the yieldable energy from it, an estimation of its preliminary operating cost, and a SEM (scanning electron microscope) investigation of the influence of the EC process on the morphology of the surface of electrodes. Additionally, an empirical model was developed to reproduce the nitrate removal performance of the FCER. The results obtained indicated that the FCER reduced the nitrate concentration from 100 to 15 mg/L (World Health Organization limitations for infants) after 55 min of electrolysing at initial pH of 7, GBE of 5 mm, CD of 2 mA/cm 2 , and at operating cost of 0.455 US $/m 3 . Additionally, it was found that FCER emits H 2 gas enough to generate a power of 1.36 kW/m 3 . Statistically, the relationship between the operating parameters and nitrate removal could be modelled with R 2 of 0.848. The obtained SEM images showed a large number dents on anode's surface due to the production of aluminium hydroxides. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  14. Non-pumping reactive wells filled with mixing nano and micro zero-valent iron for nitrate removal from groundwater: Vertical, horizontal, and slanted wells

    Science.gov (United States)

    Hosseini, Seiyed Mossa; Tosco, Tiziana; Ataie-Ashtiani, Behzad; Simmons, Craig T.

    2018-03-01

    Non-pumping reactive wells (NPRWs) filled by zero-valent iron (ZVI) can be utilized for the remediation of groundwater contamination of deep aquifers. The efficiency of NPRWs mainly depends on the hydraulic contact time (HCT) of the pollutant with the reactive materials, the extent of the well capture zone (Wcz), and the relative hydraulic conductivity of aquifer and reactive material (Kr). We investigated nitrate removal from groundwater using NPRWs filled by ZVI (in nano and micro scales) and examined the effect of NPRWs orientations (i.e. vertical, slanted, and horizontal) on HCT and Wcz. The dependence of HCT on Wcz for different Kr values was derived theoretically for a homogeneous and isotropic aquifer, and verified using particle tracking simulations performed using the semi-analytical particle tracking and pathlines model (PMPATH). Nine batch experiments were then performed to investigate the impact of mixed nano-ZVI, NZVI (0 to 2 g l-1) and micro-ZVI, MZVI (0 to 4 g l-1) on the nitrate removal rate (with initial NO3-=132 mg l-1). The NPRWs system was tested in a bench-scale sand medium (60 cm length × 40 cm width × 25 cm height) for three orientations of NPRWs (vertical, horizontal, and slanted with inclination angle of 45°). A mixture of nano/micro ZVI, was used, applying constant conditions of pore water velocity (0.024 mm s-1) and initial nitrate concentration (128 mg l-1) for five pore volumes. The results of the batch tests showed that mixing nano and micro Fe0 outperforms these individual materials in nitrate removal rates. The final products of nitrate degradation in both batch and bench-scale experiments were NO2-, NH4+, and N2(gas). The results of sand-box experiments indicated that the slanted NPRWs have a higher nitrate reduction rate (57%) in comparison with vertical (38%) and horizontal (41%) configurations. The results also demonstrated that three factors have pivotal roles in expected HCT and Wcz, namely the contrast between the hydraulic

  15. Relation between flow and temporal variations of nitrate and pesticides in two karst springs in northern Alabama

    Science.gov (United States)

    Kingsbury, J.A.

    2008-01-01

    Two karst springs in the Mississippian Carbonate Aquifer of northern Alabama were sampled between March 1999 and March 2001 to characterize the variability in concentration of nitrate, pesticides, selected pesticide degradates, water temperature, and inorganic constituents. Water temperature and inorganic ion data for McGeehee Spring indicate that this spring represents a shallow flow system with a relatively short average ground-water residence time. Water issuing from the larger of the two springs, Meridianville Spring, maintained a constant temperature, and inorganic ion data indicate that this water represents a deeper flow system having a longer average ground-water residence time than McGeehee Spring. Although water-quality data indicate differing short-term responses to rainfall at the two springs, the seasonal variation of nitrate and pesticide concentrations generally is similar for the two springs. With the exception of pesticides detected at low concentrations, the coefficient of variation for most constituent concentrations was less than that of flow at both springs, with greater variability in concentration at McGeehee Spring. Degradates of the herbicides atrazine and fluometuron were detected at concentrations comparable to or greater than the parent pesticides. Decreases in concentration of the principal degradate of fluometuron from about July to November indicate that the degradation rate may decrease as fluometuron (demethylfluometuron) moves deeper into the soil after application. Data collected during the study show that from about November to March when recharge rates increase, nitrate and residual pesticides in the soil, unsaturated zone, and storage within the aquifer are transported to the spring discharges. Because of the increase in recharge, fluometuron loads discharged from the springs during the winter were comparable to loads discharged at the springs during the growing season. ?? 2008 American Water Resources Association.

  16. Effects of iron-reducing bacteria and nitrate-reducing bacteria on the transformations of iron corrosion products, magnetite and siderite, formed at the surface of non-alloy steel

    International Nuclear Information System (INIS)

    Etique, Marjorie

    2014-01-01

    Radioactive waste is one of the major problems facing the nuclear industry. To circumvent this issue France plans to store vitrified high-level nuclear waste in a stainless steel container, placed into a non-alloy steel overpack, at a depth of 500 m in an argillaceous formation. The main iron corrosion products formed at the surface of the non-alloy steel are siderite (Fe II CO 3 ) and magnetite (Fe II Fe III 2 O 4 ). These compounds are formed in the anoxic conditions present in the nuclear waste repository and play a protective role against corrosion as a passive layer. This work aims to investigate the activity of nitrate-reducing bacteria (NRB, Klebsiella mobilis) and iron-reducing bacteria (IRB, Shewanella putrefaciens) during the transformation of siderite and magnetite, especially those involved in anoxic iron biogeochemical cycle. Klebsiella mobilis and Shewanella putrefaciens were first incubated with siderite or magnetite suspensions (high surface specific area) in order to exacerbate the microbial iron transformation, subsequently incubated with a magnetite/siderite film synthesized by anodic polarization at applied current density. The transformation of siderite and magnetite by direct or indirect microbial processes led to the formation of carbonated green rust (Fe II 4 Fe III 2 (OH) 12 CO 3 ). As a transient phase shared by several bacterial reactions involving Fe II and Fe III , this compound is the cornerstone of the anoxic iron biogeochemical cycle. The novelty of this thesis is the consideration of bacterial metabolisms of NRB and IRB often overlooked in bio-corrosion processes. (author) [fr

  17. Simultaneous determination of nitrite and nitrate in water by chemiluminescent flow-injection analysis

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel; Večeřa, Zbyněk

    2003-01-01

    Roč. 495, 1-2 (2003), s. 225-232 ISSN 0003-2670 R&D Projects: GA AV ČR IAA4031105; GA ČR GA526/03/1182 Grant - others:COPERNICUS(XE) SUB-AERO-EVK2-1999-0052 Institutional research plan: CEZ:AV0Z4031919 Keywords : nitrate * nitrite * FIA Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.210, year: 2003

  18. Synthesis of iron nanoparticles with poly(1-vinylpyrrolidone-co-vinyl acetate) and its application to nitrate reduction

    DEFF Research Database (Denmark)

    Lee, Nara; Choi, Kyunghoon; Uthuppu, Basil

    2014-01-01

    This study aimed to synthesize dispersed and reactive nanoscale zero-valent iron (nZVI) with poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA), nontoxic and biodegradable stabilizer. The nZVI used for the experiments was prepared by reduction of ferric solution in the presence of PVP/VA with spe...

  19. Energy and materials flows in the iron and steel industry

    Energy Technology Data Exchange (ETDEWEB)

    Sparrow, F.T.

    1983-06-01

    Past energy-consumption trends and future energy-conservation opportunities are investigated for the nation's iron and steel industry. It is estimated that, in 1980, the industry directly consumed approximately 2.46 x 10/sup 15/ Btu of energy (roughly 3% of total US energy consumption) to produce 111 million tons of raw steel and to ship 84 million tons of steel products. Direct plus indirect consumption is estimated to be about 3.1 x 10/sup 15/ Btu. Of the set of conservation technologies identified, most are judged to be ready for commercialization if and when the industry's capital formation and profitability problems are solved and the gradual predicted increase in energy prices reduces the payback periods to acceptable levels.

  20. Removal of iron and manganese using biological roughing up flow filtration technology.

    Science.gov (United States)

    Pacini, Virginia Alejandra; María Ingallinella, Ana; Sanguinetti, Graciela

    2005-11-01

    The removal of iron and manganese from groundwater using biological treatment methods is almost unknown in Latin America. Biological systems used in Europe are based on the process of double rapid biofiltration during which dissolved oxygen and pH need to be strictly controlled in order to limit abiotic iron oxidation. The performance of roughing filter technology in a biological treatment process for the removal of iron and manganese, without the use of chemical agents and under natural pH conditions was studied. Two pilot plants, using two different natural groundwaters, were operated with the following treatment line: aeration, up flow roughing filtration and final filtration (either slow or rapid). Iron and manganese removal efficiencies were found to be between 85% and 95%. The high solid retention capability of the roughing filter means that it is possible to remove iron and manganese simultaneously by biotic and abiotic mechanisms. This system combines simple, low-cost operation and maintenance with high iron and manganese removal efficiencies, thus constituting a technology which is particularly suited to small waterworks.

  1. Differential nitrate accumulation, nitrate reduction, nitrate reductase ...

    African Journals Online (AJOL)

    However, the effects of potassium nitrate were higher than sodium nitrate, which was due to the positive effects of potassium on the enzyme activity, sugars transport, water and nutrient transport, protein synthesis and carbohydrate metabolism. In conclusion, potassium nitrate has better effect on the nitrate assimilatory ...

  2. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...... of transcription factors, activation of the mitochondrial apoptotic machinery or of other cell death mechanisms. The pro-inflammatory cytokine IL-1β facilitates divalent metal transporter 1 (DMT1)-induced β-cell iron uptake and consequently ROS formation and apoptosis, and we propose that this mechanism provides...

  3. Spectrophotometric determination of phosphorus in iron alloys employing a flow injection system

    OpenAIRE

    Gervasio,Ana P. G.; Miranda,Carlos E. S.; Luca,Gilmara C.; Tumang,Cristiane A.; Campos,Luis F. P.; Reis,Boaventura F.

    2001-01-01

    A flow-injection procedure for spectrophotometric determination of phosphorus in electrolytic iron and iron alloys is proposed. The method is based on the ammonium molybdate reaction followed by stannous chloride reduction in acidic medium. In order to circumvent the severe interference caused by the major constituents such as Fe(III) and Cr(III), a mini-column packed with AG50W-X8 resin was coupled to the manifold. A sample throughput of 40 determinations per hour, a dynamical range from P 0...

  4. Iron

    Science.gov (United States)

    ... Share: Search the ODS website Submit Search NIH Office of Dietary Supplements Consumer Datos en español Health ... eating a variety of foods, including the following: Lean meat, seafood, and poultry. Iron-fortified breakfast cereals ...

  5. EXTRACTION OF URANYL NITRATE FROM AQUEOUS SOLUTIONS

    Science.gov (United States)

    Furman, N.H.; Mundy, R.J.

    1957-12-10

    An improvement in the process is described for extracting aqueous uranyl nitrate solutions with an organic solvent such as ether. It has been found that the organic phase will extract a larger quantity of uranyl nitrate if the aqueous phase contains in addition to the uranyl nitrate, a quantity of some other soluble nitrate to act as a salting out agent. Mentioned as suitable are the nitrates of lithium, calcium, zinc, bivalent copper, and trivalent iron.

  6. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process.

    Science.gov (United States)

    Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-11-15

    This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N2 selectivity achieved at HRT of 80min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Thermophysical properties of sodium nitrate and sodium chloride solutions and their effects on fluid flow in unsaturated media

    International Nuclear Information System (INIS)

    Xu, Tianfu; Pruess, Karsten

    2001-01-01

    Understanding movement of saline sodium nitrate (NaNO 3 ) waste solutions is important for assessing the contaminant migration near leaking waste storage tanks in the unsaturated zone at the Hanford site (Washington, USA). The purpose of this study is to contribute a basic understanding of effects of the thermophysical behavior of NaNO 3 solutions on fluid flow in unsaturated media. We first present mathematical expressions for the dependence of density, viscosity, solubility and vapor pressure of NaNO 3 solutions on both salt concentration and temperature, which were determined by fitting from published measured data. Because the previous studies of thermophysical behavior of sodium chloride (NaCl) solutions can provide a basis for those of NaNO 3 solutions, we also present a comparison of thermophysical properties of both salt solutions. We have implemented the functional thermophysical properties of NaNO 3 solutions into a new TOUGH2 equation-of-state module EWASG-NaNO 3 , which is modified from a previous TOUGH2 equation-of-state module EWASG for NaCl. Using the simulation tool, we have investigated effects of the thermophysical properties on fluid flow in unsaturated media. The effect of density and viscosity of saline solutions has been long recognized. Here we focus our attention on the effect of vapor pressure lowering due to salinity. We present simulations of a one-dimensional problem to study this salinity-driven fluid flow. A number of simulations were performed using different values of thermal conductivity, permeability, and temperature, to illustrate conditions and parameters controlling these processes. Results indicate that heat conduction plays a very important role in this salinity-driven vapor diffusion by maintaining a nearly constant temperature. The smaller the permeability, the more water is transferred into the saline environment. Effects of permeability on water flow are also complicated by effects of capillary pressure and tortuosity. The

  8. Logistics of Materials Flow in an Iron Foundry

    Directory of Open Access Journals (Sweden)

    Kukla S.

    2013-09-01

    Full Text Available The article presents issues related to creating and realizing added value by logistic processes and processing in a casting enterprise. It discusses possibilities of improving systems of casts production by evaluating labour intensity of casts manufacture and analyzing manufacturing prime costs. Operations with added value, processes indirectly creating added value and operations without added value have been specified. The problem was presented on the example of materials flow design in a foundry, where casts are manufactured in expendable moulds and using automated foundry lines. On the basis of the Pareto analysis, a group of casts was specified whose manufacture significantly influences the functioning of the whole enterprise. Finishing treatment operations have been particularly underlined, as they are performed away from the line and are among the most labour-consuming processes during casts production.

  9. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Moussavi, Gholamreza, E-mail: moussavi@modares.ac.ir; Shekoohiyan, Sakine

    2016-11-15

    Highlights: • Simultaneous advanced oxidation and reduction processes were explored in VUV system. • Complete reduction of nitrate to N{sub 2} was achieved at the presence of acetaminophen. • Complete degradation of acetaminophen was achieved at the presence of nitrate. • Over 95% of acetaminophen was mineralized in the VUV photoreactor. • VUV is a chemical-less advanced process for treating water emerging contaminants. - Abstract: This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO· while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N{sub 2} selectivity achieved at HRT of 80 min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80 min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate.

  10. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process

    International Nuclear Information System (INIS)

    Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-01-01

    Highlights: • Simultaneous advanced oxidation and reduction processes were explored in VUV system. • Complete reduction of nitrate to N_2 was achieved at the presence of acetaminophen. • Complete degradation of acetaminophen was achieved at the presence of nitrate. • Over 95% of acetaminophen was mineralized in the VUV photoreactor. • VUV is a chemical-less advanced process for treating water emerging contaminants. - Abstract: This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO· while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N_2 selectivity achieved at HRT of 80 min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80 min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate.

  11. Freezing of aluminium oxide and iron flowing upward in circular quartz glass tubes

    International Nuclear Information System (INIS)

    Kuhn, D.; Moeschke, M.; Werle, H.

    1983-10-01

    The freezing of aluminium oxide and iron flowing upward in circular quartz glass tubes has been studied in a series of experiments. Several tubes were used in the same test. This demonstrated a good reproducibility and allowed systematic parameter variations, especially of the channel diameter. The time-dependance of the penetration was observed with a film camera and these date provide a good basis for a detailed check of sophisticated models which are in development. (orig.) [de

  12. The determination, by flow-injection analysis, of iron, sulphate, silver and cadmium

    International Nuclear Information System (INIS)

    Jones, E.A.

    1983-01-01

    This report describes the spectrophotometric determination by flow-injection analysis including, where necessary, liquid-liquid extraction of iron with 1,10-phenanthroline; of sulphate by its catalytic effect on the methylthymol blue-zirconium reaction; of silver with bromopyrogallol red and 1,10-phenanthroline; and of cadmium with dithizone. Optimum conditions for each system are established, and sensitivities and ranges of determination are given

  13. Combination effect of sponge iron and calcium nitrate on severely eutrophic urban landscape water: an integrated study from laboratory to fields.

    Science.gov (United States)

    Wang, Guan-Bai; Wang, Yi; Zhang, Ying

    2018-03-01

    In this study, the in situ restoration of urban landscape water through the combined application of sponge iron (SI) and calcium nitrate (CN) was conducted in the Xi'an Moat of China. The combination effect of SI and CN on the phosphorus (P) control was explored through laboratory and field experiments. Results showed that the optimum mass ratio of SI and CN was 4:1, and the optimum dosage of combined SI and CN was 1.4 g/L for controlling eutrophication in the water body at Xi'an Moat. The field experiment demonstrated that SI and CN efficiently controlled P concentration in overlying and interstitial water and obtained a maximum efficiency of 88.6 and 65.2% in soluble reactive P locking, respectively. The total P, organic P, and Ca-bound P contents in sediment simultaneously increased by 7.7, 15.2, and 2.4%, respectively, after 56 days. Therefore, the combined application of SI and CN achieved the goal of transferring the P from overlying and interstitial water to the sediment. Considering the environmental effect and economic investment, the combined application of SI and CN at a mass ratio of 4:1 and dosage of 1.4 g/L is an excellent choice for the in situ rehabilitation of eutrophic water with a high internal P load.

  14. In situ generated gas bubble-assisted modulation of the morphologies, photocatalytic, and magnetic properties of ferric oxide nanostructures synthesized by thermal decomposition of iron nitrate

    International Nuclear Information System (INIS)

    Tong Guoxiu; Guan Jianguo; Xiao Zhidong; Huang Xing; Guan Yao

    2010-01-01

    Ferric oxide (Fe 2 O 3 ) complex nanoarchitectures with high BET specific surface area, superior photocatalytic activity and modulated magnetic properties are facilely synthesized via controlled thermal decomposition of iron(III) nitrate nonahydrate. The products are characterized by X-ray diffraction, Fourier-transforming infrared spectra, field-emission scanning electron microscope, field-emission high-resolution transmission electron microscope, and nitrogen physisorption and micrometrics analyzer. The corresponding photocatalytic activity and static magnetic properties are also evaluated by measuring the photocatalytic degradation of Rhodamine B aqueous solution under visible light illumination and vibrating sample magnetometer, respectively. Simply tuning the decomposition temperature can conveniently modulate the adsorbing/desorbing behaviors of the in situ generated gases on the nucleus surfaces, and consequently the crystalline structures and morphologies of the Fe 2 O 3 complex nanoarchitectures. The as-prepared Fe 2 O 3 complex nanoarchitectures show strong crystal structure and/or morphology-dependent photocatalytic and magnetic performances. The Fe 2 O 3 complex nanoarchitectures with high specific surface area and favorable crystallization are found to be beneficial for improving the photocatalytic activity. This work not only reports a convenient and low-cost decomposition procedure and a novel formation mechanism of complex nanoarchitectures but also provides an efficient route to enhance catalytic and magnetic properties of Fe 2 O 3 .

  15. Effects of land use and sample location on nitrate-stream flow hysteresis descriptors during storm events

    Science.gov (United States)

    Feinson, Lawrence S.; Gibs, Jacob; Imbrigiotta, Thomas E.; Garrett, Jessica D.

    2016-01-01

    The U.S. Geological Survey's New Jersey and Iowa Water Science Centers deployed ultraviolet-visible spectrophotometric sensors at water-quality monitoring sites on the Passaic and Pompton Rivers at Two Bridges, New Jersey, on Toms River at Toms River, New Jersey, and on the North Raccoon River near Jefferson, Iowa to continuously measure in-stream nitrate plus nitrite as nitrogen (NO3 + NO2) concentrations in conjunction with continuous stream flow measurements. Statistical analysis of NO3 + NO2 vs. stream discharge during storm events found statistically significant links between land use types and sampling site with the normalized area and rotational direction of NO3 + NO2-stream discharge (N-Q) hysteresis patterns. Statistically significant relations were also found between the normalized area of a hysteresis pattern and several flow parameters as well as the normalized area adjusted for rotational direction and minimum NO3 + NO2 concentrations. The mean normalized hysteresis area for forested land use was smaller than that of urban and agricultural land uses. The hysteresis rotational direction of the agricultural land use was opposite of that of the urban and undeveloped land uses. An r2 of 0.81 for the relation between the minimum normalized NO3 + NO2 concentration during a storm vs. the normalized NO3 + NO2 concentration at peak flow suggested that dilution was the dominant process controlling NO3 + NO2 concentrations over the course of most storm events.

  16. Deconstructing the Effects of Flow on DOC, Nitrate, and Major Ion Interactions Using a High-Frequency Aquatic Sensor Network

    Science.gov (United States)

    Koenig, L. E.; Shattuck, M. D.; Snyder, L. E.; Potter, J. D.; McDowell, W. H.

    2017-12-01

    Streams provide a physical linkage between land and downstream river networks, delivering solutes derived from multiple catchment sources. We analyzed high-frequency time series of stream solutes to characterize the timing and magnitude of major ion, nutrient, and organic matter transport over event, seasonal, and annual timescales as well as to assess whether nitrate (NO3-) and dissolved organic carbon (DOC) transport are coupled in catchments, which would be expected if they are subject to similar biogeochemical controls throughout the watershed. Our data set includes in situ observations of NO3-, fluorescent dissolved organic matter (DOC proxy), and specific conductance spanning 2-4 years in 10 streams and rivers across New Hampshire, including observations of nearly 700 individual hydrologic events. We found a positive response of NO3- and DOC to flow in forested streams, but watershed development led to a negative relationship between NO3- and discharge, and thus a decoupling of the overall NO3- and DOC responses to flow. On event and seasonal timescales, NO3- and DOC consistently displayed different behaviors. For example, in several streams, FDOM yield was greatest during summer storms while NO3- yield was greatest during winter storms. Most streams had generalizable storm NO3- and DOC responses, but differences in the timing of NO3- and DOC transport suggest different catchment sources. Further, certain events, including rain-on-snow and summer storms following dry antecedent conditions, yielded disproportionate NO3- responses. High-frequency data allow for increased understanding of the processes controlling solute variability and will help reveal their responses to changing climatic regimes.

  17. Optimum cadmium reactor designs for colorimetric determination of nitrate with flow injection and gas-segmented continuous flow analyzers

    International Nuclear Information System (INIS)

    Patton, C.J.

    1989-01-01

    Cadmium reactor types can be grouped into four categories: packed bed; filamentous; open tubular; and planar. Packed bed cadmium reactors, in the form of cadmium filings, granules, powder, or electrolytically precipitated needles packed into glass or polymeric tubes, are by far the most widely used for both FIA and CFA methods. Surprisingly, filamentous cadmium reactors, in the form of cadmium wire slipped into flexible polymeric tubing, have been reported for CFA applications only. Open tubular cadmium reactors, in the form of small diameter cadmium tubing coiled into a helix, have been fully characterized and described for CFA applications. A preliminary description of planar cadmium reactors, in the form of cadmium foil sandwiched between continuous flow dialyzer blocks has also been reported. In this presentation, each reactor type is evaluated in terms of cost, ease of use, reduction efficiency, and long-term stability. Factors that make some reactors more applicable to FIA than to CFA (or the reverse) are also discussed, and experimental data are presented

  18. Study on electrolytic reduction with controlled oxygen flow for iron from molten oxide slag containing FeO

    Directory of Open Access Journals (Sweden)

    Gao Y.M.

    2013-01-01

    Full Text Available A ZrO2-based solid membrane electrolytic cell with controlled oxygen flow was constructed: graphite rod /[O]Fe+C saturated / ZrO2(MgO/(FeO slag/iron crucible. The feasibility of extraction of iron from molten oxide slag containing FeO at an applied voltage was investigated by means of the electrolytic cell. The effects of some important process factors on the FeO electrolytic reduction with the controlled oxygen flow were discussed. The results show that: solid iron can be extracted from molten oxide slag containing FeO at 1450ºC and an applied potential of 4V. These factors, such as precipitation and growth of solid iron dendrites, change of the cathode active area on the inner wall of the iron crucible and ion diffusion flux in the molten slag may affect the electrochemical reaction rate. The reduction for Fe2+ ions mainly appears on new iron dendrites of the iron crucible cathode, and a very small amount of iron are also formed on the MSZ (2.18% MgO partially stabilized zirconia tube/slag interface due to electronic conductance of MSZ tube. Internal electronic current through MSZ tube may change direction at earlier and later electrolytic reduction stage. It has a role of promoting electrolytic reduction for FeO in the molten slag at the earlier stage, but will lower the current efficiency at the later stage. The final reduction ratio of FeO in the molten slag can achieve 99%. A novel electrolytic method with controlled oxygen flow for iron from the molten oxide slag containing FeO was proposed. The theory of electrolytic reduction with the controlled oxygen flow was developed.

  19. Autotrophic denitrification of synthetic nitrate-contaminated groundwater in up-flow fixed-bed bioreactor by pumice as porous media

    Directory of Open Access Journals (Sweden)

    Masoud Tourang1

    2018-05-01

    Full Text Available Background: Background: Increasing nitrate concentrations in groundwater resources is considered a common environmental and public health problem worldwide. In this research, an autotrophic up-flow bioreactor with pumice as media was used to study the effects of the sulfur-to-nitrogen (S/N ratio and empty bed contact time (EBCT on nitrate removal efficiency and byproducts. Methods: Experiments were carried out in a 3.47 L up-flow, fixed-bed reactor with 3 sampling ports. To evaluate the overall impact of S/N ratio and EBCT on the performance of the bioreactor, several phases with different S/N ratios and EBCTs were applied. Results: At a constant S/N ratio of 3.85 g/g, as EBCT decreased from 24 hours to 2 hours, the nitrate removal efficiency decreased from 98% to 64%. On the other hand, at the desired EBCT of 4 hr, as S/N ratio decreased from 3.85 to 1.51 g/g, nitrate removal efficiency was reduced from 85% to 32%. Changing the EBCT and S/N ratio also affected the effluent nitrite and sulfate concentrations as byproducts. At the S/N ratio of 3.85 g/g and EBCT of 24 hours, effluent nitrite and sulfate concentrations were 0.1 mg NO2--N/L and 463 mg SO4 2-/L, respectively. Decreasing the S/N ratio to 1.51 g/g and the EBCT to 4 hours caused drastic changes in effluent nitrite and sulfate concentrations. Conclusion: The results indicated that the autotrophic denitrification with thiosulfate as electron donor and pumice as media was feasible and applicable for nitrate contaminated groundwater.

  20. Influence of Nitrate on the Hanford 100D Area In Situ Redox Manipulation Barrier Longevity

    International Nuclear Information System (INIS)

    Szecsody, Jim E.; Phillips, Jerry L.; Vermeul, Vince R.; Fruchter, Jonathan S.; Williams, Mark D.

    2005-01-01

    The purpose of this laboratory study is to determine the influence of nitrate on the Hanford 100D Area in situ redox manipulation (ISRM) barrier longevity. There is a wide spread groundwater plume of 60 mg/L nitrate upgradient of the ISRM barrier with lower nitrate concentrations downgradient, suggestive of nitrate reduction occurring. Batch and 1-D column experiments showed that nitrate is being slowly reduced to nitrite and ammonia. These nitrate reduction reactions are predominantly abiotic, as experiments with and without bactericides present showed no difference in nitrate degradation rates. Nitrogen species transformation rates determined in experiments covered a range of ferrous iron/nitrate ratios such that the data can be used to predict rates in field scale conditions. Field scale reaction rate estimates for 100% reduced sediment (16 C) are: (a) nitrate degradation = 202 ± 50 h (half-life), (b) nitrite production = 850 ± 300 h, and (c) ammonia production = 650 ± 300 h. Calculation of the influence of nitrate reduction on the 100D Area reductive capacity requires consideration of mass balance and reaction rate effects. While dissolved oxygen and chromate reduction rates are rapid and essentially at equilibrium in the aquifer, nitrate transformation reactions are slow (100s of hours). In the limited (20-40 day) residence time in the ISRM barrier, only a portion of the nitrate will be reduced, whereas dissolved oxygen and chromate are reduced to completion. Assuming a groundwater flow rate of 1 ft/day, it is estimated that the ISRM barrier reductive capacity is 160 pore volumes (with no nitrate), and 85 pore volumes if 60 mg/L nitrate is present (i.e., a 47% decrease in the ISRM barrier longevity). Zones with more rapid groundwater flow will be less influenced by nitrate reduction. For example, a zone with a groundwater flow rate of 3 ft/day and 60 mg/L nitrate will have a reductive capacity of 130 pore volumes. Finally, long-term column experiments

  1. Iron melt flow in thin-walled sections using vertically parted moulds

    DEFF Research Database (Denmark)

    Larsen, Per; Tiedje, Niels

    2004-01-01

    gating systems are used small changes in the casting conditions can change the flow patterns radically. Flow in thin walled sections is not only important in thin walled part. This is illustrated with a brake disc as example. 3 different layouts have been made. The filling sequences have been recorded...... sizes of the dynamic and braking forces in the gating system.......Reducing the fuel consumption of vehicles can be done in many ways. A general way of doing it, is to reduce the weight as it is applicable together with all other means of saving fuel. Even though iron castings have been used in cars from the first car ever build, a big potential still exist...

  2. A low-cost iron-cadmium redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Jiang, H. R.

    2016-10-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies that offer a potential solution to the intermittency of renewable sources such as wind and solar. The prerequisite for widespread utilization of RFBs is low capital cost. In this work, an iron-cadmium redox flow battery (Fe/Cd RFB) with a premixed iron and cadmium solution is developed and tested. It is demonstrated that the coulombic efficiency and energy efficiency of the Fe/Cd RFB reach 98.7% and 80.2% at 120 mA cm-2, respectively. The Fe/Cd RFB exhibits stable efficiencies with capacity retention of 99.87% per cycle during the cycle test. Moreover, the Fe/Cd RFB is estimated to have a low capital cost of 108 kWh-1 for 8-h energy storage. Intrinsically low-cost active materials, high cell performance and excellent capacity retention equip the Fe/Cd RFB to be a promising solution for large-scale energy storage systems.

  3. Subsurface lateral flow from hillslope and its contribution to nitrate loading in streams through an agricultural catchment during subtropical rainstorm events

    Directory of Open Access Journals (Sweden)

    B. Zhang

    2011-10-01

    Full Text Available Subsurface lateral flow from agricultural hillslopes is often overlooked compared with overland flow and tile drain flow, partly due to the difficulties in monitoring and quantifying. The objectives of this study were to examine how subsurface lateral flow generated through soil pedons from cropped hillslopes and to quantify its contribution to nitrate loading in the streams through an agricultural catchment in the subtropical region of China. Profiles of soil water potential along hillslopes and stream hydro-chemographs in a trenched stream below a cropped hillslope and at the catchment outlet were simultaneously recorded during two rainstorm events. The dynamics of soil water potential showed positive matrix soil water potential over impermeable soil layer at 0.6 to 1.50 m depths during and after the storms, indicating soil water saturation and drainage processes along the hillslopes irrespective of land uses. The hydro-chemographs in the streams, one trenched below a cropped hillslope and one at the catchment outlet, showed that the concentrations of particulate nitrogen and phosphorus corresponded well to stream flow during the storm, while the nitrate concentration increased on the recession limbs of the hydrographs after the end of the storm. All the synchronous data revealed that nitrate was delivered from the cropped hillslope through subsurface lateral flow to the streams during and after the end of the rainstorms. A chemical mixing model based on electricity conductivity (EC and H+ concentration was successfully established, particularly for the trenched stream. The results showed that the subsurface lateral flow accounted for 29% to 45% of total stream flow in the trenched stream, responsible for 86% of total NO3-N loss (or 26% of total N loss, and for 5.7% to 7.3% of total stream flow at the catchment outlet, responsible for about 69% of total NO3-N loss (or 28% of total N

  4. Transient Fluid Flow Modeling in Fractured Aquifer of Sechahoon Iron Mine Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Mojtaba Darabi

    2016-06-01

    Full Text Available Considering the fact that a large volume of iron reserve in the Sechahoon Iron Mine in Yazd Province has located under the water table, it is necessary to conduct a comprehensive study on water flow within the pit and its surroundings. The conceptual model of the aquifer was created using surface and underground geological information compared with water table data of the area of interest. In the data preparation stages, in order to create the numerical model, Logan and Lufran tests were studied to determine the hydrodynamic coefficients of the layers, precipitation and evaporation were investigated, and fractures and faults of the region, as a medium for flow channels in the hard formation, were also studied. The model was created in a transient state between 2000 and 2014. To validate its results, the water table was measured 4 times in the last 4 months of 2014. Considering the complexities in the heterogeneous fractured aquifer of the study area, numerical modeling results for the basin in a transient state present 90 percent correlation with field studies. Having investigated the water balance in the region, the boundary condition of the model was determined as the input water from the eastern south and the runoff water in the western north of the region. Since the general trend of faults in the area is north-south, variation in the water table is slight on north-south and intense on the east-west direction. On the other hand, due to the fact that the maximum flow is along the faults and fractures, the water table contour lines in different locations over the region are closed.

  5. Energy and materials flows in the fabrication of iron and steel semifinished products

    Energy Technology Data Exchange (ETDEWEB)

    Darby, J.B. Jr.; Arons, R.M.

    1979-08-01

    The flow of energy and materials in the fabrication of iron and steel semifinished products from molten metal is discussed. The focus is on techniques to reduce the amount of energy required to produce the typical products of integrated steel plants and iron and steel foundries. In integrated steel plants, if only 50% of the steel being cast were continuously cast, industry-wide energy consumption would be reduced by 6 to 15%. Further major energy savings could be achieved by increased use of by-product gases and regenerators in the various reheat operations. Finally, systems optimization studies to maintain the even flow of materials at full capacity should yield further improvements in energy efficiency. In foundry operations, alternate heating methods in forging operations and the use of no-bake molding and core materials should result in substantial energy savings. Studies of specific operations will suggest housekeeping changes to minimize wasted energy. These changes might include fixing heat leaks, reducing floor space requirements, improving temperature regulation, lowering working temperatures in some steel-forming operations, redesigning products, and minimizing scrap generation. There is also a need for new, energy conserving technologies. A good example would be the development of nondestructive testing to determine the existence, location, and size of defects in ingots at elevated temperatures. A second example is the need to reduce, through system studies, the large amount of scrap typical of foundry operations. Finally, computer control of steel mill operations (materials flow, furnace residence times, excessive heating or overheating, and full capacity utilization of all facilities at all times) deserves further study.

  6. Spectrophotometric determination of phosphorus in iron alloys employing a flow injection system

    Directory of Open Access Journals (Sweden)

    Gervasio Ana P. G.

    2001-01-01

    Full Text Available A flow-injection procedure for spectrophotometric determination of phosphorus in electrolytic iron and iron alloys is proposed. The method is based on the ammonium molybdate reaction followed by stannous chloride reduction in acidic medium. In order to circumvent the severe interference caused by the major constituents such as Fe(III and Cr(III, a mini-column packed with AG50W-X8 resin was coupled to the manifold. A sample throughput of 40 determinations per hour, a dynamical range from P 0.25 to 6.00 mg L-1, a reagent consumption of 25 mg ammonium molybdate and 2 mg stannous chloride per determination, and a relative standard deviation < 1% (n = 10 for a typical sample with 2.20 mg L-1 P were achieved. Three different types of samples were used to evaluate system performance. Accuracy was assessed by comparing the results with certified values and no significant difference at 95 % confidence level was observed.

  7. Improvement of biological nitrogen removal with nitrate-dependent Fe(II) oxidation bacterium Aquabacterium parvum B6 in an up-flow bioreactor for wastewater treatment.

    Science.gov (United States)

    Zhang, Xiaoxin; Li, Ang; Szewzyk, Ulrich; Ma, Fang

    2016-11-01

    Aquabacterium parvum strain B6 exhibited efficient nitrate-dependent Fe(II) oxidation ability using nitrate as an electron acceptor. A continuous up-flow bioreactor that included an aerobic and an anoxic section was constructed, and strain B6 was added to the bioreactor as inocula to explore the application of microbial nitrate-dependent Fe(II) oxidizing (NDFO) efficiency in wastewater treatment. The maximum NRE (anoxic section) and TNRE of 46.9% and 79.7%, respectively, could be obtained at a C/N ratio of 5.3:1 in the influent with HRT of 17. Meanwhile, the taxonomy composition of the reactor was assessed, as well. The NDFO metabolism of strain B6 could be expected because of its relatively dominant position in the anoxic section, whereas potential heterotrophic nitrification and aerobic denitrification developed into the prevailing status in the aerobic section after 50days of continuous operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species.

    Science.gov (United States)

    Poonnachit, U; Darnell, R

    2004-04-01

    Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.

  9. One-shot flow injection spectrophotometric simultaneous determination of copper, iron and zinc in patients' sera with newly developed multi-compartment flow cell

    International Nuclear Information System (INIS)

    Teshima, Norio; Gotoh, Shingo; Ida, Kazunori; Sakai, Tadao

    2006-01-01

    We propose here an affordable flow injection method for simultaneous spectrophotometric determination of copper, iron and zinc in patients' sera. The use of a newly designed multi-compartment flow cell allowed the simultaneous determination of the three metals with a single injection ('one-shot') and a double beam spectrophotometer. The chemistry relied on the reactions of these metals with 2-(5-nitro-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol (nitro-PAPS) to form corresponding colored complexes. At pH 3.8, only copper-nitro-PAPS complex was formed in the presence of pyrophosphate as a masking agent for iron, and then the copper and iron(II) complexes were formed in the presence of reductant (ascorbic acid) at the same pH, and finally all three metals reacted with nitro-PAPS at pH 8.6. The characteristics were introduced into the flow system to determine each metal selectively and sensitively. Under the optimum conditions, linear calibration curves for the three metals were obtained in the range of 0.01-1 mg L -1 with a sample throughput rate of 20 h -1 . The limits of detection (3σ) were 3.9 μg L -1 for copper, 4.1 μg L -1 for iron and 4.0 μg L -1 for zinc. The proposed method was applied to analysis of some patients' sera

  10. Biological attenuation of arsenic and iron in a continuous flow bioreactor treating acid mine drainage (AMD).

    Science.gov (United States)

    Fernandez-Rojo, L; Héry, M; Le Pape, P; Braungardt, C; Desoeuvre, A; Torres, E; Tardy, V; Resongles, E; Laroche, E; Delpoux, S; Joulian, C; Battaglia-Brunet, F; Boisson, J; Grapin, G; Morin, G; Casiot, C

    2017-10-15

    Passive water treatments based on biological attenuation can be effective for arsenic-rich acid mine drainage (AMD). However, the key factors driving the biological processes involved in this attenuation are not well-known. Here, the efficiency of arsenic (As) removal was investigated in a bench-scale continuous flow channel bioreactor treating As-rich AMD (∼30-40 mg L -1 ). In this bioreactor, As removal proceeds via the formation of biogenic precipitates consisting of iron- and arsenic-rich mineral phases encrusting a microbial biofilm. Ferrous iron (Fe(II)) oxidation and iron (Fe) and arsenic removal rates were monitored at two different water heights (4 and 25 mm) and with/without forced aeration. A maximum of 80% As removal was achieved within 500 min at the lowest water height. This operating condition promoted intense Fe(II) microbial oxidation and subsequent precipitation of As-bearing schwertmannite and amorphous ferric arsenate. Higher water height slowed down Fe(II) oxidation, Fe precipitation and As removal, in relation with limited oxygen transfer through the water column. The lower oxygen transfer at higher water height could be partly counteracted by aeration. The presence of an iridescent floating film that developed at the water surface was found to limit oxygen transfer to the water column and delayed Fe(II) oxidation, but did not affect As removal. The bacterial community structure in the biogenic precipitates in the bottom of the bioreactor differed from that of the inlet water and was influenced to some extent by water height and aeration. Although potential for microbial mediated As oxidation was revealed by the detection of aioA genes, removal of Fe and As was mainly attributable to microbial Fe oxidation activity. Increasing the proportion of dissolved As(V) in the inlet water improved As removal and favoured the formation of amorphous ferric arsenate over As-sorbed schwertmannite. This study proved the ability of this bioreactor

  11. Thermal decomposition of phase-stabilised ammonium nitrate (PSAM), HTPB based propellants. The effect of iron(III)oxide burning-rate catalyst

    NARCIS (Netherlands)

    Carvalheira, P.; Gadiot, G.M.H.J.L.; Klerk, W.P.C. de

    1995-01-01

    Phase-stabilised ammonium nitrate (PSAN) and hydroxyl-terminated polybutadiene (HTPB) are the main ingredients of propellants used with success in some pyrotechnic igniter components of the VULCAIN liquid rocket engine for the ARIANE 5. Small amounts of selected additives play an important role in

  12. Nitrate movement and removal along a shallow groundwater flow path in a riparian wetland within a sheep-grazed pastoral catchment : result of a tracer study

    International Nuclear Information System (INIS)

    Burns, D.A.; Nguyen, L.

    2002-01-01

    The movement and removal of nitrate (NO 3 ) along a groundwater flow path within a riparian wetland was investigated during a 24-day period in late autumn-early winter, using a lithium bromide (LiBr)-potassium nitrate (KNO 3 ) tracer solution containing 19 200 mg/litre as Br - and 193.8 mg/litre as NO 3 -N. The tracer solution was added as an instantaneous dose of tracer solution at a depth of 10-20 cm to four injection wells in two 1 m 2 plots within a sheep-grazed pastoral catchment at the Whatawhata Agricultural Research Centre near Hamilton, New Zealand. Bromide and NO 3- N concentrations were measured periodically in: (1) wetland groundwater samples from piezometers installed at 15 and 30 cm depths and located at 30, 60, and 100 cm down gradient from the injection wells; and (2) surface flow samples. Peak concentrations of 50-250 mg/litre of Br - and 0.2-1.1 mg/litre of NO 3 -N were reached within 1-2 days after application at most piezometers. Nitrate concentrations decreased thereafter more sharply than did those of Br - , resulting in decreased NO 3 -N/Br - ratios from Days 2 through 7. More than 99% of groundwater samples collected after the tracer application had NO 3 -N/Br - less than the value in the tracer solution indicating removal of NO 3 -N during transport. Mass flux estimates indicated removal of >90% of added NO 3 -N along the 100 cm flow path from the injection, with essentially all of the NO 3 - removed within the first 30 cm of transport. On Days 10 and 24, just after rain events, surface flow from the experimental plots had greatly elevated NO 3 -N concentrations that were not accompanied by correspondingly elevated Br - concentrations, indicating that NO 3 -N originating from the surrounding catchment was transported over the wetland surface with little penetration or mixing with wetland groundwater. Despite a significant capacity for NO 3 -N removal from shallow groundwater equivalent to an annualised value of 50 kg/ha in these wetland

  13. All-Iron Redox Flow Battery Tailored for Off-Grid Portable Applications.

    Science.gov (United States)

    Tucker, Michael C; Phillips, Adam; Weber, Adam Z

    2015-12-07

    An all-iron redox flow battery is proposed and developed for end users without access to an electricity grid. The concept is a low-cost battery which the user assembles, discharges, and then disposes of the active materials. The design goals are: (1) minimize upfront cost, (2) maximize discharge energy, and (3) utilize non-toxic and environmentally benign materials. These are different goals than typically considered for electrochemical battery technology, which provides the opportunity for a novel solution. The selected materials are: low-carbon-steel negative electrode, paper separator, porous-carbon-paper positive electrode, and electrolyte solution containing 0.5 m Fe2 (SO4 )3 active material and 1.2 m NaCl supporting electrolyte. With these materials, an average power density around 20 mW cm(-2) and a maximum energy density of 11.5 Wh L(-1) are achieved. A simple cost model indicates the consumable materials cost US$6.45 per kWh(-1) , or only US$0.034 per mobile phone charge. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor.

    Science.gov (United States)

    Hashim, Khalid S; Shaw, Andy; Al Khaddar, Rafid; Pedrola, Montserrat Ortoneda; Phipps, David

    2017-03-15

    The goal of this project was to remove iron from drinking water using a new electrocoagulation (EC) cell. In this research, a flow column has been employed in the designing of a new electrocoagulation reactor (FCER) to achieve the planned target. Where, the water being treated flows through the perforated disc electrodes, thereby effectively mixing and aerating the water being treated. As a result, the stirring and aerating devices that until now have been widely used in the electrocoagulation reactors are unnecessary. The obtained results indicated that FCER reduced the iron concentration from 20 to 0.3 mg/L within 20 min of electrolysis at initial pH of 6, inter-electrode distance (ID) of 5 mm, current density (CD) of 1.5 mA/cm 2 , and minimum operating cost of 0.22 US $/m 3 . Additionally, it was found that FCER produces H 2 gas enough to generate energy of 10.14 kW/m 3 . Statistically, it was found that the relationship between iron removal and operating parameters could be modelled with R 2 of 0.86, and the influence of operating parameters on iron removal followed the order: C 0 >t>CD>pH. Finally, the SEM (scanning electron microscopy) images showed a large number of irregularities on the surface of anode due to the generation of aluminium hydroxides. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  15. Nitrate glass

    International Nuclear Information System (INIS)

    Kirilenko, I.A.; Vinogradov, E.E.

    1977-01-01

    Experimental evidence on behaviour of nitrate glasses is reviewed in terms of relationships between the presence of water in vitrescent nitrate systems and the properties of the systems. The glasses considered belong to systems of Mg(NO 3 ) 2 - Nd(NO 3 ) 3 ; Hg(NO 3 ) 2 -Nd(NO 3 ) 3 ; NaNO 3 -Mg(NO 3 ) 2 -Nd(NO 3 ) 3 ; M-Zn(NO 3 ) 3 , where M is a mixture of 20% mass NaNO 3 and 80% mass Mg(NO 3 ) 2 , and Zn is a rare earth ion. Nitrate glass is shown to be a product of dehydration. Vitrification may be regarded as a resusl of formation of molecular complexes in the chain due to hydrogen bonds of two types, i.e. water-water, or water-nicrate group. Chain formation, along with low melting points of the nitrates, hinder crystallization of nitrate melts. Provided there is enough water, this results in vitrification

  16. Evaluation of the hooghoudt and kirkham tile drain equations in the soil and water assessment tool to simulate tile flow and nitrate-nitrogen.

    Science.gov (United States)

    Moriasi, Daniel N; Gowda, Prasanna H; Arnold, Jeffrey G; Mulla, David J; Ale, Srinivasulu; Steiner, Jean L; Tomer, Mark D

    2013-11-01

    Subsurface tile drains in agricultural systems of the midwestern United States are a major contributor of nitrate-N (NO-N) loadings to hypoxic conditions in the Gulf of Mexico. Hydrologic and water quality models, such as the Soil and Water Assessment Tool, are widely used to simulate tile drainage systems. The Hooghoudt and Kirkham tile drain equations in the Soil and Water Assessment Tool have not been rigorously tested for predicting tile flow and the corresponding NO-N losses. In this study, long-term (1983-1996) monitoring plot data from southern Minnesota were used to evaluate the SWAT version 2009 revision 531 (hereafter referred to as SWAT) model for accurately estimating subsurface tile drain flows and associated NO-N losses. A retention parameter adjustment factor was incorporated to account for the effects of tile drainage and slope changes on the computation of surface runoff using the curve number method (hereafter referred to as Revised SWAT). The SWAT and Revised SWAT models were calibrated and validated for tile flow and associated NO-N losses. Results indicated that, on average, Revised SWAT predicted monthly tile flow and associated NO-N losses better than SWAT by 48 and 28%, respectively. For the calibration period, the Revised SWAT model simulated tile flow and NO-N losses within 4 and 1% of the observed data, respectively. For the validation period, it simulated tile flow and NO-N losses within 8 and 2%, respectively, of the observed values. Therefore, the Revised SWAT model is expected to provide more accurate simulation of the effectiveness of tile drainage and NO-N management practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Inhibition of Nitrate Reduction by NaCl Adsorption on a Nano-Zero-Valent Iron Surface during a Concentrate Treatment for Water Reuse

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Kim, Dogun; Shin, Hang-Sik

    2015-01-01

    Nanoscale zero-valent iron (NZVI) has been considered as a possible material to treat water and wastewater. However, it is necessary to verify the effect of the matrix components in different types of target water. In this study, different effects depending on the sodium chloride (Na...

  18. DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths – are DOC exports mediated by iron reduction/oxidation cycles?

    Directory of Open Access Journals (Sweden)

    K.-H. Knorr

    2013-02-01

    Full Text Available Dissolved organic carbon (DOC exports from many catchments in Europe and North-America are steadily increasing. Several studies have sought to explain this observation. As possible causes, a decrease in acid rain or sulfate deposition, concomitant reductions in ionic strength and increasing temperatures were identified. DOC often originates from riparian wetlands; but here, despite higher DOC concentrations, ionic strength in pore waters usually exceeds that in surface waters. In the catchment under study, DOC concentrations were synchronous with dissolved iron concentrations in pore and stream water. This study aims at testing the hypothesis that DOC exports are mediated by iron reduction/oxidation cycles. Following the observed hydrographs, δ18O of water and DOC fluorescence, the wetlands were identified as the main source of DOC. Antecedent biogeochemical conditions, i.e., water table levels in the wetlands, influenced the discharge patterns of nitrate, iron and DOC during an event. The correlation of DOC with pH was positive in pore waters, but negative in surface waters; it was negative for DOC with sulfate in pore waters, but only weak in surface waters. Though, the positive correlation of DOC with iron was universal for pore and surface water. The decline of DOC and iron concentrations in transition from anoxic wetland pore water to oxic stream water suggests a flocculation of DOC with oxidising iron, leading to a drop in pH in the stream during high DOC fluxes. The pore water did not per se differ in pH. There is, thus, a need to consider processes more thoroughly of DOC mobilisation in wetlands when interpreting DOC exports from catchments. The coupling of DOC with iron fluxes suggested that increased DOC exports could at least, in part, be caused by increasing activities in iron reduction, possibly due to increases in temperature, increasing wetness of riparian wetlands, or by a shift from sulfate dominated to iron

  19. Changes of the corrosion potential of iron in stagnation and flow conditions and their relationship with metal release.

    Science.gov (United States)

    Fabbricino, Massimiliano; Korshin, Gregory V

    2014-10-01

    This study examined the behavior of corrosion potential (Ecorr) of iron exposed to drinking water during episodes of stagnation and flow. These measurements showed that during stagnation episodes, Ecorr values decrease prominently and consistently. This decrease is initially rapid but it becomes slower as the stagnation time increases. During flow episodes, the Ecorr values increase and reach a quasi-steady state. Experiments with varying concentrations of dissolved oxygen showed that the decrease of Ecorr values characteristic for stagnation is likely to be associated with the consumption of dissolved oxygen by the exposed metal. The corrosion potential of iron and its changes during stagnation were sensitive to the concentrations of sulfate and chloride ions. Measurements of iron release showed that both the absolute values of Ecorr measured prior to or after stagnation episodes were well correlated with the logarithms of concentrations of total iron. The slope of this dependence showed that the observed correlations between Ecorr values and Fe concentrations corresponded to the coupling between the oxidant consumption and changes of Fe redox status. These results demonstrate that in situ Ecorr measurements can be a sensitive method with which to ascertain effects of hydrodynamic conditions and short-term variations of water chemistry on metal release and corrosion in drinking water. This approach is valuable practically because Ecorr measurements are precise, can be carried out in situ with any desired time resolution, do not affect the state of exposed surface in any extent and can be carried out with readily available equipment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The study of kinetics of uranyl nitrate extraction and reextraction, di-n-butylphosphoric acid reextraction in the flow mixer in the system aqueous solutions - tri-n-butyl phosphate in diluent

    International Nuclear Information System (INIS)

    Shchepetil'nikov, N.N.; Timofeev, A.N.; Kharitonov, V.V.

    1992-01-01

    Kinetics of uranyl nitrate and HNO 3 extraction and reextraction in a flow-type mixer for the system 30 vol.% TBP in extractant dearomatized diluent (EDD) was studied. Kinetics of dibutylphosphate acid reextraction was considered and the influence of uranium and zirconium presence on the process was investigated. It is shown that in laboratory mixer of continuous action in case of phase contact duration of 1 min. in system 30 % solution of TBP in EDD extraction sufficiently similar to equilibrium extraction of uranyl nitrate and nitric acid during their extraction and reextraction is achieved

  1. Effect of preparation technique of hydrated zirconium(4) dioxide on sorption of microimpurities of nonferrous metals, iron(3) and thorium(4) from lanthanum(3) nitrate solutions

    International Nuclear Information System (INIS)

    Bekrenev, A.V.; Pyartman, A.K.; Belousov, E.A.

    1989-01-01

    A study was made on the effect of peculiarities of hydrated zirconium(4) dioxide (HZD) synthesis on reproducibility of its sorption properties. It is shown that change of zirconium(4) concentration in basic solution within the limits of 0-1.0 mol/dm 3 its HCl acidity from 0 up to 1.0 mol/dm 3 concentration of NaOH solution used for HZD precipitation within the limits of 1.0-10.0 mol/dm 3 the final pH value of HZD gel from 10 up to 14 affects slightly the impurity element sorption from lanthanum nitrate solution. Freezing of HZD leads to increase of capacity and decrease of selectivity of sorbent samples with respect to impurity ions (Ni 2+ , Co 2+ , Bi 3+ , Fe 3+ , Th 4+ ); increase of the time of gel ripening leads to decrease of capacity and growth of selectivity

  2. Nested-scale discharge and groundwater level monitoring to improve predictions of flow route discharges and nitrate loads

    NARCIS (Netherlands)

    Velde, Y. van der; Rozemeijer, J.C.; Rooij, G.H.de; Geer, F.C. van; Torfs, P.J.J.F.; Louw, P.G.B. de

    2010-01-01

    Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for predictions of catchment-scale

  3. A Stopped-Flow Kinetics Experiment for Advanced Undergraduate Laboratories: Formation of Iron(III) Thiocyannate

    Science.gov (United States)

    Clark, Charles R.

    1997-10-01

    A series of 15 stopped-flow kinetic experiments relating to the formation of iron(III)- thiocyanate at 25.0 °C and I = 1.0 M (NaClO4) is described. A methodology is given whereby solution preparation and data collection are able to be carried out within the time scale of a single laboratory period (3-4 h). Kinetic data are obtained using constant [SCN-], and at three H+ concentrations (0.10, 0.20, 0.30 M) for varying concentrations of Fe3+ (ca. 0.0025 - 0.020 M). Rate data (450 nm) are consistent with rate laws for the forward and reverse reactions: kf = (k1 + k2Ka1/[H+])[Fe3+] and kr = k-1 + k-2Ka2/[H+] respectively, with k1,k-1 corresponding to the rate constants for formation and decay of FeSCN2+, k2, k-2 to the rate constants for formation and decay of the FeSCN(OH)+ ion and Ka1,Ka2 to the acid dissociation constants (coordinated OH2 ionization) of Fe3+ and FeSCN2+. Using literature values for the latter two quantities ( Ka1 = 2.04 x 10-3 M, Ka2 = 6.5 x 10-5 M) allows values for the four rate constants to be obtained. A typical data set is analyzed to give k1 = 109(10) M-1s-1, k-1 = 0.79(0.10) s-1, k2= 8020(800) M-1s-1, k-2 = 2630(230) s-1. Absorbance change data for reaction (DeltaA) follow the expression: DeltaA = Alim.Kf.[Fe3+]/(1 + Kf.[Fe3+]), with Alim corresponding to the absorbance of fully formed FeSCN2+ (i.e. free SCN- absent) and Kf to the formation constant of this complex (value in the example 112(5) M-1, c.f. 138(29) M-1 from the kinetic data).

  4. In situ nitrate from groundwater using freely available carbon material at an industrially polluted site

    CSIR Research Space (South Africa)

    Israel, S

    2011-09-01

    Full Text Available concentrations, nitrate in drinking water can be toxic to infants and young animals. In situ treatment could be a robust and effective technique for removal of nitrate, iron and manganese....

  5. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; An, L.; Zhou, X. L.; Wei, L.

    2015-12-01

    The promise of redox flow batteries (RFBs) utilizing soluble redox couples, such as all vanadium ions as well as iron and chromium ions, is becoming increasingly recognized for large-scale energy storage of renewables such as wind and solar, owing to their unique advantages including scalability, intrinsic safety, and long cycle life. An ongoing question associated with these two RFBs is determining whether the vanadium redox flow battery (VRFB) or iron-chromium redox flow battery (ICRFB) is more suitable and competitive for large-scale energy storage. To address this concern, a comparative study has been conducted for the two types of battery based on their charge-discharge performance, cycle performance, and capital cost. It is found that: i) the two batteries have similar energy efficiencies at high current densities; ii) the ICRFB exhibits a higher capacity decay rate than does the VRFB; and iii) the ICRFB is much less expensive in capital costs when operated at high power densities or at large capacities.

  6. Ammonium nitrate-potassium nitrate system

    Energy Technology Data Exchange (ETDEWEB)

    Cady, H.H.

    1981-01-01

    A portion of the binary phase diagram for the system ammonium nitrate-potassium nitrate has been determined from -55/sup 0/C to 185/sup 0/C. Results are presented for the ammonium-nitrate-rich end of the system up to 30 wt% potassium nitrate.

  7. A Low-Cost Neutral Zinc-Iron Flow Battery with High Energy Density for Stationary Energy Storage.

    Science.gov (United States)

    Xie, Congxin; Duan, Yinqi; Xu, Wenbin; Zhang, Huamin; Li, Xianfeng

    2017-11-20

    Flow batteries (FBs) are one of the most promising stationary energy-storage devices for storing renewable energy. However, commercial progress of FBs is limited by their high cost and low energy density. A neutral zinc-iron FB with very low cost and high energy density is presented. By using highly soluble FeCl 2 /ZnBr 2 species, a charge energy density of 56.30 Wh L -1 can be achieved. DFT calculations demonstrated that glycine can combine with iron to suppress hydrolysis and crossover of Fe 3+ /Fe 2+ . The results indicated that an energy efficiency of 86.66 % can be obtained at 40 mA cm -2 and the battery can run stably for more than 100 cycles. Furthermore, a low-cost porous membrane was employed to lower the capital cost to less than $ 50 per kWh, which was the lowest value that has ever been reported. Combining the features of low cost, high energy density and high energy efficiency, the neutral zinc-iron FB is a promising candidate for stationary energy-storage applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Aminoethyl nitrate – the novel super nitrate?

    Science.gov (United States)

    Bauersachs, Johann

    2009-01-01

    Long-term use of most organic nitrates is limited by development of tolerance, induction of oxidative stress and endothelial dysfunction. In this issue of the BJP, Schuhmacher et al. characterized a novel class of organic nitrates with amino moieties (aminoalkyl nitrates). Aminoethyl nitrate was identified as a novel organic mononitrate with high potency but devoid of induction of mitochondrial oxidative stress. Cross-tolerance to nitroglycerin or the endothelium-dependent agonist acetylcholine after in vivo treatment was not observed. Like all nitrates, aminoethyl nitrate induced vasorelaxation by activation of soluble guanylate cyclase. Thus, in contrast to the prevailing view, high potency in an organic nitrate is not necessarily accompanied by induction of oxidative stress or endothelial dysfunction. This work from Daiber's group is an important step forward in the understanding of nitrate bioactivation, tolerance phenomena and towards the development of better organic nitrates for clinical use. PMID:19732062

  9. Recycled iron fuels new production in the eastern equatorial Pacific Ocean.

    Science.gov (United States)

    Rafter, Patrick A; Sigman, Daniel M; Mackey, Katherine R M

    2017-10-24

    Nitrate persists in eastern equatorial Pacific surface waters because phytoplankton growth fueled by nitrate (new production) is limited by iron. Nitrate isotope measurements provide a new constraint on the controls of surface nitrate concentration in this region and allow us to quantify the degree and temporal variability of nitrate consumption. Here we show that nitrate consumption in these waters cannot be fueled solely by the external supply of iron to these waters, which occurs by upwelling and dust deposition. Rather, a substantial fraction of nitrate consumption must be supported by the recycling of iron within surface waters. Given plausible iron recycling rates, seasonal variability in nitrate concentration on and off the equator can be explained by upwelling rate, with slower upwelling allowing for more cycles of iron regeneration and uptake. The efficiency of iron recycling in the equatorial Pacific implies the evolution of ecosystem-level mechanisms for retaining iron in surface ocean settings where it limits productivity.

  10. Investigation of iron(III) reduction and trace metal interferences in the determination of dissolved iron in seawater using flow injection with luminol chemiluminescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Ussher, Simon J. [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Milne, Angela [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Department of Oceanography, Florida State University, Tallahassee, FL 32306-4320 (United States); Landing, William M. [Department of Oceanography, Florida State University, Tallahassee, FL 32306-4320 (United States); Attiq-ur-Rehman, Kakar [Department of Chemistry, University of Balochistan, Quetta (Pakistan); Seguret, Marie J.M.; Holland, Toby [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Achterberg, Eric P. [National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH (United Kingdom); Nabi, Abdul [Department of Chemistry, University of Balochistan, Quetta (Pakistan); Worsfold, Paul J., E-mail: pworsfold@plymouth.ac.uk [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-10-12

    A detailed investigation into the performance of two flow injection-chemiluminescence (FI-CL) manifolds (with and without a preconcentration column) for the determination of sub-nanomolar dissolved iron (Fe(II) + Fe(III)), following the reduction of Fe(III) by sulphite, in seawater is described. Kinetic experiments were conducted to examine the efficiency of reduction of inorganic Fe(III) with sulphite under different conditions and a rigorous study of the potential interference caused by other transition metals present in seawater was conducted. Using 100 {mu}M concentrations of sulphite a reduction time of 4 h was sufficient to quantitatively reduce Fe(III) in seawater. Under optimal conditions, cobalt(II) and vanadium(IV)/(III) were the major positive interferences and strategies for their removal are reported. Specifically, cobalt(II) was masked by the addition of dimethylglyoxime to the luminol solution and vanadium(IV) was removed by passing the sample through an 8-hydroxyquinoline column in a low pH carrier stream. Manganese(II) also interfered by suppression of the CL response but this was not significant at typical open ocean concentrations.

  11. The effect of farmyard manure and calcium ammonium nitrate ...

    African Journals Online (AJOL)

    The effect of farmyard manure and calcium ammonium nitrate fertilisers on micronutrient density (iron, zinc, manganese, calcium and potassium) and seed yields of solanium villosum (black nightshade) and cleome gynandra (cat whiskers) on uetric nitisol.

  12. The Use of Flow-Injection Analysis with Chemiluminescence Detection of Aqueous Ferrous Iron in Waters Containing High Concentrations of Organic Compounds

    Directory of Open Access Journals (Sweden)

    Carrick M. Eggleston

    2009-06-01

    Full Text Available An evaluation of flow-injection analysis with chemiluminescence detection (FIA-CL to quantify Fe2+(aq in freshwaters was performed. Iron-coordinating and/or iron-reducing compounds, dissolved organic matter (DOM, and samples from two natural water systems were used to amend standard solutions of Fe2+(aq. Slopes of the response curves from ferrous iron standards (1 – 100 nM were compared to the response curves of iron standards containing the amendments. Results suggest that FIA-CL is not suitable for systems containing ascorbate, hydroxylamine, cysteine or DOM. Little or no change in sensitivity occurred in solutions of oxalate and glycine or in natural waters with little organic matter.

  13. Validation of a continuous flow method for the determination of soluble iron in atmospheric dust and volcanic ash.

    Science.gov (United States)

    Simonella, Lucio E; Gaiero, Diego M; Palomeque, Miriam E

    2014-10-01

    Iron is an essential micronutrient for phytoplankton growth and is supplied to the remote areas of the ocean mainly through atmospheric dust/ash. The amount of soluble Fe in dust/ash is a major source of uncertainty in modeling-Fe dissolution and deposition to the surface ocean. Currently in the literature, there exist almost as many different methods to estimate fractional solubility as researchers in the field, making it difficult to compare results between research groups. Also, an important constraint to evaluate Fe solubility in atmospheric dust is the limited mass of sample which is usually only available in micrograms to milligrams amounts. A continuous flow (CF) method that can be run with low mass of sediments (solubility studies on dust/ash. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Micron-Size Zero-Valent Iron Emplacement in Porous Media Using Polymer Additives: Column and Flow Cell Ex-periments

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Mart; Wietsma, Thomas W.; Covert, Matthew A.; Vermeul, Vince R.

    2006-03-20

    At the Hanford Site, an extensive In Situ Redox Manipulation (ISRM) permeable reactive barrier was installed to prevent chromate from reaching the Columbia River. However, chromium has been detected in several wells, indicating a premature loss of the reductive capacity in the aquifer. Laboratory experiments have been conducted to investigate whether barrier reductive capacity can be enhanced by adding micron-scale zero-valent iron to the high-permeability zones within the aquifer using shear-thinning fluids containing polymers. Porous media were packed in a wedge-shaped flow cell to create either a heterogeneous layered system with a high-permeability zone between two low-permeability zones or a high-permeability channel sur-rounded by low-permeability materials. The injection flow rate, polymer type, polymer concentration, and injected pore volumes were determined based on preliminary short- and long-column experiments. The flow cell experiments indicated that iron concentration enhancements of at least 0.6% (w/w) could be obtained using moderate flow rates and injection of 30 pore volumes. The 0.6% amended Fe0 concentration would provide approximately 20 times the average reductive capacity that is provided by the dithionite-reduced iron in the ISRM barrier. Calculations show that a 1-m-long Fe0 amended zone with an average concentration of 0.6% w/w iron subject to a groundwater velocity of 1 m/day will have an estimated longevity of 7.2 years.

  15. Nitrates of rare earths

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Pushkina, L.Ya.

    1984-01-01

    The systematization of experimental data with account of the last achievements in the field of studying the RE nitrate properties is realized. The methods of production, solubility in aqueous solutions structure, thermodynamic characteristics and thermal stability of nitrate hydrates, RE anhydrous and basic nitrates are considered. The data on RE nirtrate complexing in aqueous solutions are given. Binary nitrates, nitrate solvates and RE nitrate adducts with organic compounds are described. The use of RE nitrates in the course of RE production, in the processes of separation and fine cleaning of RE preparations is considered

  16. Determination of the total nitrate content of thorium nitrate solution with a selective electrode

    International Nuclear Information System (INIS)

    Wirkner, F.M.

    1979-01-01

    The nitrate content of thorium nitrate solutions is determined with a liquid membrane nitrate selective electrode utilizing the known addition method in 0.1 M potassium fluoride medium as ionic strength adjustor. It is studied the influence of pH and the presence of chloride, sulphate, phosphate, meta-silicate, thorium, rare earths, iron, titanium, uranium and zirconium at the same concentrations as for the aqueous feed solutions in the thorium purification process. The method is tested in synthetic samples and in samples proceeding from nitric dissolutions of thorium hidroxide and thorium oxicarbonate utilized as thorium concentrates to be purified [pt

  17. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NARCIS (Netherlands)

    Van Der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; Van Der Velde, Y.

    2014-01-01

    The retention of phosphorus in surface waters through co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from

  18. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water.

    NARCIS (Netherlands)

    Grift, van der B.; Rozemeijer, J.C.; Griffioen, J.; Velde, van der Y.

    2014-01-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and 5 P immobilization along the flow-path

  19. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NARCIS (Netherlands)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-01-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from

  20. Mapping fracture flow paths with a nanoscale zero-valent iron tracer test and a flowmeter test

    Science.gov (United States)

    Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Teng, Mao-Hua; Liou, Sofia Ya Hsuan

    2018-02-01

    The detection of preferential flow paths and the characterization of their hydraulic properties are important for the development of hydrogeological conceptual models in fractured-rock aquifers. In this study, nanoscale zero-valent iron (nZVI) particles were used as tracers to characterize fracture connectivity between two boreholes in fractured rock. A magnet array was installed vertically in the observation well to attract arriving nZVI particles and identify the location of the incoming tracer. Heat-pulse flowmeter tests were conducted to delineate the permeable fractures in the two wells for the design of the tracer test. The nZVI slurry was released in the screened injection well. The arrival of the slurry in the observation well was detected by an increase in electrical conductivity, while the depth of the connected fracture was identified by the distribution of nZVI particles attracted to the magnet array. The position where the maximum weight of attracted nZVI particles was observed coincides with the depth of a permeable fracture zone delineated by the heat-pulse flowmeter. In addition, a saline tracer test produced comparable results with the nZVI tracer test. Numerical simulation was performed using MODFLOW with MT3DMS to estimate the hydraulic properties of the connected fracture zones between the two wells. The study results indicate that the nZVI particle could be a promising tracer for the characterization of flow paths in fractured rock.

  1. A novel iron-lead redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Ren, Y. X.

    2017-04-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies for the massive utilization of intermittent renewables especially wind and solar energy. This work presents a novel redox flow battery that utilizes inexpensive and abundant Fe(II)/Fe(III) and Pb/Pb(II) redox couples as redox materials. Experimental results show that both the Fe(II)/Fe(III) and Pb/Pb(II) redox couples have fast electrochemical kinetics in methanesulfonic acid, and that the coulombic efficiency and energy efficiency of the battery are, respectively, as high as 96.2% and 86.2% at 40 mA cm-2. Furthermore, the battery exhibits stable performance in terms of efficiencies and discharge capacities during the cycle test. The inexpensive redox materials, fast electrochemical kinetics and stable cycle performance make the present battery a promising candidate for large-scale energy storage applications.

  2. Mass balances and energy flows, reference concept. (Spent Fuel - Copper-Iron - Bentonite - Granite)

    International Nuclear Information System (INIS)

    Nordman, H.; Lehikoinen, J.

    2008-12-01

    In this work, a semi-quantitative analysis of mass and energy flows and balances in a deep repository of the KBS-3V type subject to a glacial cycle has been carried out. The energy flows and temperatures show the maximum temperature at the canister surface not to exceed the design temperature of 100 deg C. If the measures taken to limit the water flow into the underground facilities are appropriate, the lifetime of the calcite buffer in the hydraulically conductive fracture zones was calculated to extend well beyond the operational phase of the repository. The results from hydrogeochemical model calculations in the backfill imply a long-term exchange of sodium for calcium in the clay component, if MX-80 bentonite is used. As this constitutes a potential threat to the swelling pressure of backfill in saline water environments, the physicochemical properties of a backfill should be carefully adjusted to meet its preplanned function. Despite short-lived episodes of oxygen-rich glacial water intrusion, the corrosion of the copper canister will likely be minor in the long term. (orig.)

  3. Nitrate reduction in an unconfined sandy aquifer

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Boesen, Carsten; Kristiansen, Henning

    1991-01-01

    of total dissolved ions in the NO3- free anoxic zone indicates the downward migration of contaminants and that active nitrate reduction is taking place. Nitrate is apparently reduced to N2 because both nitrite and ammonia are absent or found at very low concentrations. Possible electron donors......Nitrate distribution and reduction processes were investigated in an unconfined sandy aquifer of Quaternary age. Groundwater chemistry was studied in a series of eight multilevel samplers along a flow line, deriving water from both arable and forested land. Results show that plumes of nitrate...... processes of O2 and NO3- occur at rates that are fast compared to the rate of downward water transport. Nitrate-contaminated groundwater contains total contents of dissolved ions that are two to four times higher than in groundwater derived from the forested area. The persistence of the high content...

  4. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests

    International Nuclear Information System (INIS)

    Wang, Shengsen; Gao, Bin; Li, Yuncong; Creamer, Anne Elise; He, Feng

    2017-01-01

    Highlights: • Biochar supported nZVI (nZVI/BC) was synthesized. • nZVI/BC showed excellent As(V) removal efficiency in batch and CMR experiments. • 100% removal efficiency was achieved in CMRs. • Surface adsorption was the dominant removal mechanism. - Abstract: Arsenate (As(V)) removal ability by nanoscale zero-valent iron (nZVI) is compromised by aggregation of nZVI particles. In this work, pine derived biochar (PB) was used as a supporting material to stabilize nZVI for As(V) removal. The biochar supported nZVI (nZVI/BC) was synthesized by precipitating the nanoparticles on carbon surfaces. Experiments using batch and continuous flow, completely mixed reactors (CMRs) were carried out to investigate the removal of As(V) by the nZVI/BC from aqueous solutions. Batch experiments showed that nZVI/BC had high As(V) removal capacity in a wide range of pH (3–8). Kinetic data revealed that equilibrium was reached within 1 h and the isotherm data showed that the Langmuir maximum adsorption capacity of the nZVI/BC for As(V) at pH 4.1 was 124.5 g kg −1 . As(V) (100 mg L −1 ) adsorption in anoxic condition was about 8% more than in oxic conditions, where As(V) reduction was observed in anoxic condition. The performance of the nZVI/BC in flowing condition was evaluated in CMRs at influent As(V) concentrations of 2.1 and 5.5 mg L −1 and the adsorbent removed 100% and 90% of the As(V), respectively. Furthermore, the nZVI/BC composite is magnetic which facilitates collection from aqueous solutions.

  5. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengsen [Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); Gao, Bin, E-mail: bg55@ufl.edu [Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); Li, Yuncong [Tropical Research and Education Center, University of Florida, Homestead, FL 33031 (United States); Creamer, Anne Elise [Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); He, Feng [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014 (China)

    2017-01-15

    Highlights: • Biochar supported nZVI (nZVI/BC) was synthesized. • nZVI/BC showed excellent As(V) removal efficiency in batch and CMR experiments. • 100% removal efficiency was achieved in CMRs. • Surface adsorption was the dominant removal mechanism. - Abstract: Arsenate (As(V)) removal ability by nanoscale zero-valent iron (nZVI) is compromised by aggregation of nZVI particles. In this work, pine derived biochar (PB) was used as a supporting material to stabilize nZVI for As(V) removal. The biochar supported nZVI (nZVI/BC) was synthesized by precipitating the nanoparticles on carbon surfaces. Experiments using batch and continuous flow, completely mixed reactors (CMRs) were carried out to investigate the removal of As(V) by the nZVI/BC from aqueous solutions. Batch experiments showed that nZVI/BC had high As(V) removal capacity in a wide range of pH (3–8). Kinetic data revealed that equilibrium was reached within 1 h and the isotherm data showed that the Langmuir maximum adsorption capacity of the nZVI/BC for As(V) at pH 4.1 was 124.5 g kg{sup −1}. As(V) (100 mg L{sup −1}) adsorption in anoxic condition was about 8% more than in oxic conditions, where As(V) reduction was observed in anoxic condition. The performance of the nZVI/BC in flowing condition was evaluated in CMRs at influent As(V) concentrations of 2.1 and 5.5 mg L{sup −1} and the adsorbent removed 100% and 90% of the As(V), respectively. Furthermore, the nZVI/BC composite is magnetic which facilitates collection from aqueous solutions.

  6. Reverse flow injection spectrophotometric determination of ciprofloxacin in pharmaceuticals using iron from soil as a green reagent

    Science.gov (United States)

    Palamy, Sysay; Ruengsitagoon, Wirat

    2018-02-01

    A novel reverse flow injection spectrophotometric method for the determination of ciprofloxacin was successfully combined with the on-line introduction of an iron solution extracted from soil as green reagent. The assay was optimized by a univariate method to select the optimum conditions for the highest absorbance and highest stability of the complex. Beer-Lambert's law (λmax = 440 nm) is obeyed in the range 0.5-50 μg mL- 1 with a correlation coefficient (r2) of 0.9976 and 0.9996 using soil as green reagent from Khon Kaen, Thailand and Vientiane, Laos, respectively. The average percentage recoveries were in the range of 98.55-102.14% and the precision was in the range of 0.80-1.73%. The limit of detection and the limit of quantitation were 0.20 and 0.69 μg mL- 1, respectively, with a sampling rate of over 46 samples h- 1. The method was successfully applied to the determination of ciprofloxacin in commercial pharmaceutical formulations. The results were in good agreement with those obtained by the reference HPLC method using a t-test at 95% of confidence level for comparison. This method is suitable for laboratories looking for alternative analytical methods using green reagents.

  7. Flow-Injection Solid Phase Partial Least-Squares Spectrophotometric Simultaneous Determination of Iron, Nickel and Zinc

    Directory of Open Access Journals (Sweden)

    Teixeira Leonardo S. G.

    2002-01-01

    Full Text Available A PLS-2 multivariate calibration method has been developed for the simultaneous determination of iron, nickel and zinc in ternary mixtures by solid phase spectrophotometry associated with flow injection analysis. Fe(II, Ni(II and Zn(II form color complexes with 1-(2-thiazolylazo-2-naphthol (TAN, immobilized on a C18 bonded silica support, at pH 6.4. The proposed procedure is based on the different reaction/retention ratios of the studied ions on the solid support. Bilinear spectrophotometric data of the analytes, fixed in the solid support, were recorded in the 400-800 nm wavelength range as a function of time and a partial least squares (PLS-2 algorithm was used to predict results of synthetic samples. The calibration set employed was integrated by 8 ternary mixture standards and a blank solution. Mixtures containing 0.040 to 0.20 mg L-1, of each species, were successfully resolved, using 3 factors for each analyte and a restricted number of absorbance data obtained in the wavelength range from 560 to 650 nm.

  8. The effects of design parameters on the charge-discharge performance of iron-chromium redox flow batteries

    International Nuclear Information System (INIS)

    Zeng, Y.K.; Zhao, T.S.; Zhou, X.L.; Zeng, L.; Wei, L.

    2016-01-01

    Highlights: • The effects of design parameters on the ICRFB performance are investigated. • The energy efficiency of the present ICRFB reaches 80.5% at 480 mA cm"−"2. • The power density reaches 1077 and 694 mW cm"−"2 at 65 and 25 °C, respectively. • The dominant loss of ICRFBs operating at 25 and 65 °C is the ohmic loss. - Abstract: The objective of this work is to understand and identify key design parameters that influence the battery performance of iron-chromium redox flow batteries (ICRFBs). The investigated parameters include the membrane thickness, electrode compression ratio, electrode pretreatment and catalyst loading. Results show that: (i) with a thin NR-211 membrane and a high electrode compression ratio of 62.5%, the operating current density of the ICRFB can reach as high as 480 mA cm"−"2 at an energy efficiency of higher than 80%; (ii) the bismuth catalyst loading has insignificant effect on the battery performance in the range of 0.52–10.45 mg cm"−"2; (iii) the moderately oxidative thermal pretreatment of the electrode improves the energy efficiency compared to the as-received electrode while the electrode prepared with a harsh pretreatment deteriorates the battery performance; and (iv) for the present ICRFBs operating at both 25 °C and 65 °C, the dominant loss is identified to be ohmic loss rather than kinetics loss.

  9. Preconcentration and determination of iron and copper in spice samples by cloud point extraction and flow injection flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Cigdem Arpa, E-mail: carpa@hacettepe.edu.tr [Hacettepe University, Chemistry Department, 06800 Beytepe, Ankara (Turkey); Tokgoez, Ilknur; Bektas, Sema [Hacettepe University, Chemistry Department, 06800 Beytepe, Ankara (Turkey)

    2010-09-15

    A flow injection (FI) cloud point extraction (CPE) method for the determination of iron and copper by flame atomic absorption spectrometer (FAAS) has been improved. The analytes were complexed with 3-amino-7-dimethylamino-2-methylphenazine (Neutral Red, NR) and octylphenoxypolyethoxyethanol (Triton X-114) was added as a surfactant. The micellar solution was heated above 50 {sup o}C and loaded through a column packed with cotton for phase separation. Then the surfactant-rich phase was eluted using 0.05 mol L{sup -1} H{sub 2}SO{sub 4} and the analytes were determined by FAAS. Chemical and flow variables influencing the instrumental and extraction conditions were optimized. Under optimized conditions for 25 mL of preconcentrated solution, the enrichment factors were 98 and 69, the limits of detection (3s) were 0.7 and 0.3 ng mL{sup -1}, the limits of quantification (10s) were 2.2 and 1.0 ng mL{sup -1} for iron and copper, respectively. The relative standard deviation (RSD) for ten replicate measurements of 10 ng mL{sup -1} iron and copper were 2.1% and 1.8%, respectively. The proposed method was successfully applied to determination of iron and copper in spice samples.

  10. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  11. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources of...

  12. Nitrate accumulation in spinach

    NARCIS (Netherlands)

    Steingröver, Eveliene Geertruda

    1986-01-01

    Leafy vegetables, like spinach, may contain high concentrations of nitrate. In the Netherlands, about 75% of mean daily intake of nitrate orginates from the consumption of vegatables. Hazards to human health are associated with the reduction of nitrate to nitrite. Acute nitrite poisoning causes

  13. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    Science.gov (United States)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-11-01

    The retention of phosphorus in surface waters through co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from groundwater into surface water in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and surface water, we investigated Fe(II) oxidation kinetics and P immobilization processes. The oxidation rate inferred from our field measurements closely agreed with the general rate law for abiotic oxidation of Fe(II) by O2. Seasonal changes in climatic conditions affected the Fe(II) oxidation process. Lower pH and lower temperatures in winter (compared to summer) resulted in low Fe oxidation rates. After exfiltration to the surface water, it took a couple of days to more than a week before complete oxidation of Fe(II) is reached. In summer time, Fe oxidation rates were much higher. The Fe concentrations in the exfiltrated groundwater were low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into a ditch. While the Fe oxidation rates reduce drastically from summer to winter, P concentrations remained high in the groundwater and an order of magnitude lower in the surface water throughout the year. This study shows very fast immobilization of dissolved P during the initial stage of the Fe(II) oxidation process which results in P-depleted water before Fe(II) is completely depleted. This cannot be explained by surface complexation of phosphate to freshly formed Fe-oxyhydroxides but indicates the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at redox gradients

  14. Do nitrates differ?

    Science.gov (United States)

    Fung, H.-L.

    1992-01-01

    1 The organic nitrates all share a common biochemical and physiological mechanism of action. 2 The organic nitrates differ substantially in their pharmacologic potency and pharmacokinetics. In vitro potency differences appear larger than the corresponding in vivo activities. 3 The duration of action of organic nitrates, after a single immediate-release dose, is governed by the pharmacokinetics of the drug. However, the duration of action of available sustained-release preparations, whatever the nitrate or formulation, is limited to about 12 h, due to the development of pharmacologic tolerance. 4 Nitrates do not appear to differ in their production of undesirable effects. PMID:1633079

  15. Nitrate pollution of groundwater

    International Nuclear Information System (INIS)

    Heaton, T.H.E.

    1986-01-01

    Concern about the possible health risks associated with the consumption of nitrate has led many countries, including South Africa, to propose that 10mg of nitrogen (as nitrate or nitrite) per liter should be the maximum allowable limit for domestic water supplies. Groundwater in certain parts of South Africa and Namibia contains nitrate in concentrations which exceed this limit. The CSIR's Natural Isotope Division has been studying the nitrogen isotope composition of the nitrate as an aid to investigation into the sources of this nitrate contamination

  16. Ammonium nitrate explosion hazards

    Directory of Open Access Journals (Sweden)

    Negovanović Milanka

    2015-01-01

    Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.

  17. High temperature interaction studies on equimolar nitrate mixture of uranyl nitrate hexahydrate and gadolinium nitrate hexahydrate

    International Nuclear Information System (INIS)

    Kalekar, Bhupesh B.; Raje, Naina; Reddy, A.V.R.

    2015-01-01

    Rare earths including gadolinium form a sizeable fraction of the fission products in the nuclear fission of fissile material in the reactor. These fission products can interact with uranium dioxide fuel and can form various compounds which can alter the thermal behavior of the fuel. The mixed oxide formed due to the high temperature interactions of mixture of uranyl nitrate hexahydrate (UNH) and gadolinium nitrate hexahydrate (GdNH) has been studied using thermal and X- ray diffraction techniques. The equimolar mixture of UNH and GdNH was prepared by mixing the weighed amount of individual nitrates and grinding gently with mortar and pestle. Thermogravimetry (TG) measurements were carried out by separately heating 100 mg of mixture and individual nitrates at heating rate of 10°C min -1 using Netzsch thermal analyzer (Model No.: STA 409 PC Luxx) in high purity nitrogen atmosphere with a flow rate of 120 mL min -1 . The XRD measurement was carried out on a Philips X-ray diffractometer (Model PW1710) using nickel-filtered Cu-Kα radiation

  18. Electrolytic production of uranous nitrate

    International Nuclear Information System (INIS)

    Orebaugh, E.G.; Propst, R.C.

    1980-04-01

    Efficient production of uranous nitrate is important in nuclear fuel reprocessing because U(IV) acts as a plutonium reductant in solvent extraction and can be coprecipitated with plutonium and/or throium as oxalates during fuel reprocessing. Experimental conditions are described for the efficient electrolytic production of uranous nitrate for use as a reductant in the SRP Purex process. The bench-scale, continuous-flow, electrolysis cell exhibits a current efficiency approaching 100% in combination with high conversion rates of U(VI) to U(IV) in simulated and actual SRP Purex solutions. High current efficiency is achieved with a voltage-controlled mercury-plated platinum electrode and the use of hydrazine as a nitrite scavenger. Conversion of U(VI) to U(IV) proceeds at 100% efficiency. Cathodic gas generation is minimal. The low rate of gas generation permits a long residence time within the cathode, a necessary condition for high conversions on a continuous basis. Design proposals are given for a plant-scale, continuous-flow unit to meet SRP production requirements. Results from the bench-scale tests indicate that an 8-kW unit can supply sufficient uranous nitrate reductant to meet the needs of the Purex process at SRP

  19. Denitrification of nitrate waste solutions

    International Nuclear Information System (INIS)

    Michaels, S.L.; Michel, R.C.; Terpandjian, P.D.; Vora, J.N.

    1976-01-01

    Bacterial denitrification by Pseudomonas Stutzeri has been chosen as the method for removing nitrate from the effluent stream of the Y-12 uranium purification process. A model was developed to predict bacterial growth and carbon and nitrate depletion during the induction period and steady state operation. Modification of analytical procedures and automatic control of the pH in the reactor are recommended to improve agreement between the prediction of the model and experimental data. An initial carbon-to-nitrogen (C/N) mass ratio of 1.4-1.5 insures adequate population growth during the induction period. Further experiments in batch reactors and in steady state flow reactors are recommended to obtain more reliable kinetic rate constants

  20. Anaerobic columnar denitrification of high nitrate wastewater

    International Nuclear Information System (INIS)

    Francis, C.W.; Malone, C.D.

    1975-01-01

    Anaerobic columns were used to test the effectiveness of biological denitrification of nitrate solutions ranging in concentration from 1 to 10 kg NO 3 /m 3 . Several sources of nitrate (Ca(CNO 3 ) 2 , NaNO 3 , NH 4 NO 3 , and actual nitrate wastes from a UO 2 fuel fabrication plant) were evaluated as well as two packing media. The packing media were anthracite coal particles, whose effective diameter size ranged between 2 and 3 mm, and polypropylene Raschig rings 1.6 x 1.6 diameter. The anthracite coal proved to be the better packing media as excessive hydraulic short circuiting occurred in a 120 x 15 cm diameter glass column packed with the polypropylene rings after 40 days operation. With anthracite coal, floatation of the bed occurred at flow rates greater than 0.80 cm 3 /s. Tapered columns packed with anthracite coal eliminated the floatation problem, even at flow rates as high as 5 cm 3 /s. Under optimum operating conditions the anthracite coal behaved as a fluidized bed. Maximum denitrification rates were 1.0--1.4 g NO 3 /m 3 /s based on initial bed volume. Denitrification kinetics indicated that rates of denitrification became substrate inhibited at nitrate concentrations greater than 6.5 kg NO 3 /m 3 Anaerobic columns packed with anthracite coal appear to be an effective method of nitrate disposal for nitrate rich wastewater generated at UO 2 fuel fabrication plants and fuel reprocessing facilities. (U.S.)

  1. The nitrate time bomb: a numerical way to investigate nitrate storage and lag time in the unsaturated zone.

    Science.gov (United States)

    Wang, L; Butcher, A S; Stuart, M E; Gooddy, D C; Bloomfield, J P

    2013-10-01

    Nitrate pollution in groundwater, which is mainly from agricultural activities, remains an international problem. It threatens the environment, economics and human health. There is a rising trend in nitrate concentrations in many UK groundwater bodies. Research has shown it can take decades for leached nitrate from the soil to discharge into groundwater and surface water due to the 'store' of nitrate and its potentially long travel time in the unsaturated and saturated zones. However, this time lag is rarely considered in current water nitrate management and policy development. The aim of this study was to develop a catchment-scale integrated numerical method to investigate the nitrate lag time in the groundwater system, and the Eden Valley, UK, was selected as a case study area. The method involves three models, namely the nitrate time bomb-a process-based model to simulate the nitrate transport in the unsaturated zone (USZ), GISGroundwater--a GISGroundwater flow model, and N-FM--a model to simulate the nitrate transport in the saturated zone. This study answers the scientific questions of when the nitrate currently in the groundwater was loaded into the unsaturated zones and eventually reached the water table; is the rising groundwater nitrate concentration in the study area caused by historic nitrate load; what caused the uneven distribution of groundwater nitrate concentration in the study area; and whether the historic peak nitrate loading has reached the water table in the area. The groundwater nitrate in the area was mainly from the 1980s to 2000s, whilst the groundwater nitrate in most of the source protection zones leached into the system during 1940s-1970s; the large and spatially variable thickness of the USZ is one of the major reasons for unevenly distributed groundwater nitrate concentrations in the study area; the peak nitrate loading around 1983 has affected most of the study area. For areas around the Bowscar, Beacon Edge, Low Plains, Nord Vue

  2. Nitrate and nitrite in biology, nutrition and therapeutics

    Science.gov (United States)

    Lundberg, Jon O.; Gladwin, Mark T.; Ahluwalia, Amrita; Benjamin, Nigel; Bryan, Nathan S.; Butler, Anthony; Cabrales, Pedro; Fago, Angela; Feelisch, Martin; Ford, Peter C.; Freeman, Bruce A.; Frenneau, Michael; Friedman, Joel; Kelm, Malte; Kevil, Christopher G.; Kim-Shapiro, Daniel B.; Kozlov, Andrey V.; Lancaster, Jack R.; Lefer, David J.; McColl, Kenneth; McCurry, Kenneth; Patel, Rakesh; Petersson, Joel; Rassaf, Tienush; Reutov, Valentin P.; Richter-Addo, George B.; Schechter, Alan; Shiva, Sruti; Tsuchiya, Koichiro; van Faassen, Ernst E.; Webb, Andrew J.; Zuckerbraun, Brian S.; Zweier, Jay L.; Weitzberg, Eddie

    2014-01-01

    Inorganic nitrate and nitrite from endogenous or dietary sources are metabolized in vivo to nitric oxide (NO) and other bioactive nitrogen oxides. The nitrate-nitrite-NO pathway is emerging as an important mediator of blood flow regulation, cell signaling, energetics and tissue responses to hypoxia. The latest advances in our understanding of the biochemistry, physiology and therapeutics of nitrate, nitrite and NO were discussed during a recent two-day meeting at the Nobel Forum, Karolinska Institutet in Stockholm. PMID:19915529

  3. Geohydrology and numerical simulation of groundwater flow in the central Virgin River Basin of Iron and Washington Counties, Utah

    Science.gov (United States)

    Heilweil, V.M.; Freethey, G.W.; Wilkowske, C.D.; Stolp, B.J.; Wilberg, D.E.

    2000-01-01

    Because rapid growth of communities in Washington and Iron Counties, Utah, is expected to cause an increase in the future demand for water resources, a hydrologic investigation was done to better understand ground-water resources within the central Virgin River basin. This study focused on two of the principal ground-water reservoirs within the basin: the upper Ash Creek basin ground-water system and the Navajo and Kayenta aquifer system.The ground-water system of the upper Ash Creek drainage basin consists of three aquifers: the uppermost Quaternary basin-fill aquifer, the Tertiary alluvial-fan aquifer, and the Tertiary Pine Valley monzonite aquifer. These aquifers are naturally bounded by the Hurricane Fault and by drainage divides. On the basis of measurements, estimates, and numerical simulations of reasonable values for all inflow and outflow components, total water moving through the upper Ash Creek drainage basin ground-water system is estimated to be about 14,000 acre-feet per year. Recharge to the upper Ash Creek drainage basin ground-water system is mostly from infiltration of precipitation and seepage from ephemeral and perennial streams. The primary source of discharge is assumed to be evapotranspiration; however, subsurface discharge near Ash Creek Reservoir also may be important.The character of two of the hydrologic boundaries of the upper Ash Creek drainage basin ground-water system is speculative. The eastern boundary provided by the Hurricane Fault is assumed to be a no-flow boundary, and a substantial part of the ground-water discharge from the system is assumed to be subsurface outflow beneath Ash Creek Reservoir along the southern boundary. However, these assumptions might be incorrect because alternative numerical simulations that used different boundary conditions also proved to be feasible. The hydrogeologic character of the aquifers is uncertain because of limited data. Differences in well yield indicate that there is considerable

  4. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    DEFF Research Database (Denmark)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume

    2009-01-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent ......Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate...... precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria...... and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All...

  5. Cloning and nitrate induction of nitrate reductase mRNA

    OpenAIRE

    Cheng, Chi-Lien; Dewdney, Julia; Kleinhofs, Andris; Goodman, Howard M.

    1986-01-01

    Nitrate is the major source of nitrogen taken from the soil by higher plants but requires reduction to ammonia prior to incorporation into amino acids. The first enzyme in the reducing pathway is a nitrate-inducible enzyme, nitrate reductase (EC 1.6.6.1). A specific polyclonal antiserum raised against purified barley nitrate reductase has been used to immunoprecipitate in vivo labeled protein and in vitro translation products, demonstrating that nitrate induction increases nitrate reductase p...

  6. Pumping Iron and Silica Bodybuilding

    Science.gov (United States)

    Mcnair, H.; Brzezinski, M. A.; Krause, J. W.; Parker, C.; Brown, M.; Coale, T.; Bruland, K. W.

    2016-02-01

    The availability of dissolved iron influences the stoichiometry of nutrient uptake by diatoms. Under nutrient replete conditions diatoms consume silicic acid and nitrate in a 1:1 ratio, this ratio increases under iron stress. Using the tracers 32Si and PDMPO, the total community and group-specific silica production rates were measured along a gradient of dissolved iron in an upwelling plume off the California coast. At each station, a control (ambient silicic acid) and +20 µM silicic acid treatment were conducted with each tracer to determine whether silicic acid limitation controlled the rate of silica production. Dissolved iron was 1.3 nmol kg-1 nearshore and decreased to 0.15 nmol kg-1 offshore. Silicic acid decreased more rapidly than nitrate, it was nearly 9 µM higher in the nearshore and 7 µM lower than nitrate in the middle of the transect where the iron concentration had decreased. The rate of diatom silica production decreased in tandem with silicic acid concentration, and silica production limitation by low silicic acid was most pronounced when iron concentrations were >0.4 nmol kg-1. The composition of the diatom assemblage shifted from Chaetoceros spp. dominated nearshore to a more sparse pennate-dominated assemblage offshore. Changes in taxa-specific silica production rates will be reported based on examination of PDMPO labeled cells using confocal microscopy.

  7. Redox non-innocent bis(2,6-diimine-pyridine) ligand-iron complexes as anolytes for flow battery applications.

    Science.gov (United States)

    Duarte, Gabriel M; Braun, Jason D; Giesbrecht, Patrick K; Herbert, David E

    2017-12-21

    Diiminepyridines are a well-known class of "non-innocent" ligands that confer additional redox activity to coordination complexes beyond metal-centred oxidation/reduction. Here, we demonstrate that metal coordination complexes (MCCs) of diiminepyridine (DIP) ligands with iron are suitable anolytes for redox-flow battery applications, with enhanced capacitance and stability compared with bipyridine analogs, and access to storage of up to 1.6 electron equivalents. Substitution of the ligand is shown to be a key factor in the cycling stability and performance of MCCs based on DIP ligands, opening the door to further optimization.

  8. Agricultural nitrate pollution

    DEFF Research Database (Denmark)

    Anker, Helle Tegner

    2015-01-01

    Despite the passing of almost 25 years since the adoption of the EU Nitrates Directive, agricultural nitrate pollution remains a major concern in most EU Member States. This is also the case in Denmark, although a fairly strict regulatory regime has resulted in almost a 50 per cent reduction...

  9. Nitrate leaching index

    Science.gov (United States)

    The Nitrate Leaching Index is a rapid assessment tool that evaluates nitrate (NO3) leaching potential based on basic soil and climate information. It is the basis for many nutrient management planning efforts, but it has considerable limitations because of : 1) an oversimplification of the processes...

  10. Nitrate and nitrite in biology, nutrition and therapeutics

    NARCIS (Netherlands)

    Lundberg, J.O.; van Faassen, E.E.H.; Gladwin, M.T.; Ahluwalia, A.; Benjamin, N.

    2009-01-01

    Inorganic nitrate and nitrite from endogenous or dietary sources are metabolized in vivo to nitric oxide (NO) and other bioactive nitrogen oxides. The nitrate-nitrite-NO pathway is emerging as an important mediator of blood flow regulation, cell signaling, energetics and tissue responses to hypoxia.

  11. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue; Gao, Jinhao; Zhang, Bei; Zhang, Xixiang; Xu, Bing

    2010-01-01

    nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X

  12. Groundwater quality, age, and susceptibility and vulnerability to nitrate contamination with linkages to land use and groundwater flow, Upper Black Squirrel Creek Basin, Colorado, 2013

    Science.gov (United States)

    Wellman, Tristan P.; Rupert, Michael G.

    2016-03-03

    The Upper Black Squirrel Creek Basin is located about 25 kilometers east of Colorado Springs, Colorado. The primary aquifer is a productive section of unconsolidated deposits that overlies bedrock units of the Denver Basin and is a critical resource for local water needs, including irrigation, domestic, and commercial use. The primary aquifer also serves an important regional role by the export of water to nearby communities in the Colorado Springs area. Changes in land use and development over the last decade, which includes substantial growth of subdivisions in the Upper Black Squirrel Creek Basin, have led to uncertainty regarding the potential effects to water quality throughout the basin. In response, the U.S. Geological Survey, in cooperation with Cherokee Metropolitan District, El Paso County, Meridian Service Metropolitan District, Mountain View Electric Association, Upper Black Squirrel Creek Groundwater Management District, Woodmen Hills Metropolitan District, Colorado State Land Board, and Colorado Water Conservation Board, and the stakeholders represented in the Groundwater Quality Study Committee of El Paso County conducted an assessment of groundwater quality and groundwater age with an emphasis on characterizing nitrate in the groundwater.

  13. A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Zou, J.; Ren, Y. X.

    2017-06-01

    To eliminate the adverse impacts of hydrogen evolution on the capacity of iron-chromium redox flow batteries (ICRFBs) during the long-term operation and ensure the safe operation of the battery, a rebalance cell that reduces the excessive Fe(III) ions at the positive electrolyte by using the hydrogen evolved from the negative electrolyte is designed, fabricated and tested. The effects of the flow field, hydrogen concentration and H2/N2 mixture gas flow rate on the performance of the hydrogen-ferric ion rebalance cell have been investigated. Results show that: i) an interdigitated flow field based rebalance cell delivers higher limiting current densities than serpentine flow field based one does; ii) the hydrogen utilization can approach 100% at low hydrogen concentrations (≤5%); iii) the apparent exchange current density of hydrogen oxidation reaction in the rebalance cell is proportional to the square root of the hydrogen concentration at the hydrogen concentration from 1.3% to 50%; iv) a continuous rebalance process is demonstrated at the current density of 60 mA cm-2 and hydrogen concentration of 2.5%. Moreover, the cost analysis shows that the rebalance cell is just approximately 1% of an ICRFB system cost.

  14. MODELING NITRATE CONCENTRATION IN GROUND WATER USING REGRESSION AND NEURAL NETWORKS

    OpenAIRE

    Ramasamy, Nacha; Krishnan, Palaniappa; Bernard, John C.; Ritter, William F.

    2003-01-01

    Nitrate concentration in ground water is a major problem in specific agricultural areas. Using regression and neural networks, this study models nitrate concentration in ground water as a function of iron concentration in ground water, season and distance of the well from a poultry house. Results from both techniques are comparable and show that the distance of the well from a poultry house has a significant effect on nitrate concentration in groundwater.

  15. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    International Nuclear Information System (INIS)

    Mi Jiaping; Li Yuanqian; Zhou Xiaoli; Zheng Bo; Zhou Ying

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%∼100.9% for Iron, 92.50%∼108.0% for Copper, 93.00%∼110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%∼12.1%. The sampling rate is 45 samples h -1 . The determination results of the food samples were in good agreement between the proposed method and ICP-AES

  16. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    Energy Technology Data Exchange (ETDEWEB)

    Mi Jiaping; Li Yuanqian; Zhou Xiaoli; Zheng Bo; Zhou Ying [West China School of Public Health, Sichuan University, Chengdu, 610041 (China)

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%{approx}100.9% for Iron, 92.50%{approx}108.0% for Copper, 93.00%{approx}110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%{approx}12.1%. The sampling rate is 45 samples h{sup -1}. The determination results of the food samples were in good agreement between the proposed method and ICP-AES.

  17. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    Science.gov (United States)

    Mi, Jiaping; Li, Yuanqian; Zhou, Xiaoli; Zheng, Bo; Zhou, Ying

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%~100.9% for Iron, 92.50%~108.0% for Copper, 93.00%~110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%~12.1%. The sampling rate is 45 samples h-1. The determination results of the food samples were in good agreement between the proposed method and ICP-AES.

  18. Thermal denitration of high concentration nitrate salts waste water

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Latge, C.

    2003-01-01

    This study investigated the thermodynamic and the thermal decomposition properties of high concentration nitrate salts waste water for the lagoon sludge treatment. The thermodynamic property was carried out by COACH and GEMINI II based on the composition of nitrate salts waste water. The thermal decomposition property was carried out by TG-DTA and XRD. Ammonium nitrate and sodium nitrate were decomposed at 250 .deg. C and 730 . deg. C, respectively. Sodium nitrate could be decomposed at 450 .deg. C in the case of adding alumina for converting unstable Na 2 O into stable Na 2 O.Al 2 O 3 . The flow sheet for nitrate salts waste water treatment was proposed based on the these properties data. These will be used by the basic data of the process simulation

  19. Nitrate ammonification in mangrove soils: A hidden source of nitrite?

    Directory of Open Access Journals (Sweden)

    Melike eBalk

    2015-03-01

    Full Text Available Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests.The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden under the nitrate-limited conditions of most mangrove forest soils.

  20. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    KAUST Repository

    Balk, Melike; Laverman, Anniet M; Keuskamp, Joost A; Laanbroek, Hendrikus J

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  1. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    KAUST Repository

    Balk, Melike

    2015-03-02

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  2. Thermochemical nitrate reduction

    International Nuclear Information System (INIS)

    Cox, J.L.; Lilga, M.A.; Hallen, R.T.

    1992-09-01

    A series of preliminary experiments was conducted directed at thermochemically converting nitrate to nitrogen and water. Nitrates are a major constituent of the waste stored in the underground tanks on the Hanford Site, and the characteristics and effects of nitrate compounds on stabilization techniques must be considered before permanent disposal operations begin. For the thermochemical reduction experiments, six reducing agents (ammonia, formate, urea, glucose, methane, and hydrogen) were mixed separately with ∼3 wt% NO 3 - solutions in a buffered aqueous solution at high pH (13); ammonia and formate were also mixed at low pH (4). Reactions were conducted in an aqueous solution in a batch reactor at temperatures of 200 degrees C to 350 degrees C and pressures of 600 to 2800 psig. Both gas and liquid samples were analyzed. The specific components analyzed were nitrate, nitrite, nitrous oxide, nitrogen, and ammonia. Results of experimental runs showed the following order of nitrate reduction of the six reducing agents in basic solution: formate > glucose > urea > hydrogen > ammonia ∼ methane. Airnmonia was more effective under acidic conditions than basic conditions. Formate was also effective under acidic conditions. A more thorough, fundamental study appears warranted to provide additional data on the mechanism of nitrate reduction. Furthermore, an expanded data base and engineering feasibility study could be used to evaluate conversion conditions for promising reducing agents in more detail and identify new reducing agents with improved performance characteristics

  3. Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis

    International Nuclear Information System (INIS)

    Zhang, Hui; Dong, Liang; Li, Huiquan; Fujita, Tsuyoshi; Ohnishi, Satoshi; Tang, Qing

    2013-01-01

    CO 2 mitigation strategies in industrial parks are a significant component of the Chinese climate change mitigation policy, and industrial symbiosis can provide specific CO 2 mitigation opportunity. Technology is important to support symbiosis, but few studies in China have focused on this topic at the industrial park level. This research presented a case study in a national iron and steel industrial park in China. Focus was given onto carbon mitigation through industrial symbiosis technology using substance flow analysis (SFA). Three typical iron and steel industry technologies, including coke dry quenching (CDQ), combined cycle power plant (CCPP), and CO 2 capture by slag carbonization (CCSC) were evaluated with SFA. Technology assessment was further conducted in terms of carbon mitigation potential and unit reduction cost. Compared with the Business as usual (BAU) scenario, application with CDQ, CCPP, and CCSC reduced the net carbon emissions by 56.18, 134.43, and 222.89 kg CO 2 per ton crude steel inside the industrial parks, respectively, including both direct and indirect emissions. Economic assessment revealed that the unit costs for the three technologies were also high, thereby necessitating national financial support. Finally, relevant policy suggestions and future concerns were proposed and discussed. - Highlights: • A typical carbon mitigation case study on China iron/steel industrial park. • Using carbon SFA to investigate mitigation effects of industrial symbiosis technology. • CCPP greatly reduced the indirect carbon emission embodied in power purchase. • CCSC reduced the carbon emission by distributing fixed carbon into by-product. • Specific low carbon-tech promotion policies fit to China was discussed and proposed

  4. Multi-isotopic study (15N, 34S, 18O, 13C) to identify processes affecting nitrate and sulfate in response to local and regional groundwater mixing in a large-scale flow system

    International Nuclear Information System (INIS)

    Puig, R.; Folch, A.; Menció, A.; Soler, A.; Mas-Pla, J.

    2013-01-01

    Highlights: ► We studied a range-and-basin area where different scale flow systems converge. ► Pig manure and chemical fertilizers are the main nitrate and sulfate sources. ► Mixing between regional and local groundwater can favor denitrification processes. - Abstract: The integrated use of hydrogeologic and multi-isotopic approaches (δ 15 N, δ 18 O NO3 , δ 34 S, δ 18 O SO4 and δ 13 C HCO3 ) was applied in the Selva basin area (NE Spain) to characterize NO 3 - and SO 4 2- sources and to evaluate which geochemical processes affect NO 3 - in groundwater. The studied basin is within a basin-and-range physiographic province where natural hydrodynamics have been modified and different scale flow systems converge as a consequence of recent groundwater development and exploitation rates. As a result, groundwaters related to the local recharge flow system (affected by anthropogenic activities) and to the generally deeper regional flow system (recharged from the surrounding ranges) undergo mixing processes. The δ 15 N, δ 18 O NO3 and δ 34 S indicated that the predominant sources of contamination in the basin are pig manure and synthetic fertilizers. Hydrochemical data along with δ 15 N, δ 18 O NO3 , δ 34 S, δ 18 O SO4 and δ 13 C HCO3 of some wells confirmed mixing between regional and local flow systems. Apart from dilution processes that can contribute to the decrease of NO 3 - concentrations, the positive correlation between δ 15 N and δ 18 O NO3 agreed with the occurrence of denitrification processes. The δ 34 S and δ 18 O SO4 indicated that pyrite oxidation is not linked to denitrification, and δ 13 C HCO3 did not clearly point to a role of organic matter as an electron donor. Therefore, it is proposed that the mixing processes between deeper regional and local surface groundwater allow denitrification to occur due to the reducing conditions of the regional groundwater. Thus, isotopic data add useful complementary information to hydrochemical

  5. NO2-induced synthesis of nitrato-iron(III) porphyrin with diverse ...

    Indian Academy of Sciences (India)

    found serendipitously in the reaction of [Fe(4-Me-TPP)Cl] with nitrous acid, which ... Nitric oxide and its derivatives nitrite and nitrate ion ... oxide.2 Nitrate is produced in heme proteins from oxi- ... and nitrogen assimilation.4 Iron nitrate(III) porphyrins ... one-pot method.15 ... of the compound was determined based on the lack.

  6. Nitrate in groundwater of the United States, 1991-2003

    Science.gov (United States)

    Burow, Karen R.; Nolan, Bernard T.; Rupert, Michael G.; Dubrovsky, Neil M.

    2010-01-01

    An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.

  7. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis

    International Nuclear Information System (INIS)

    Xu, Dake; Li, Yingchao; Song, Fengmei; Gu, Tingyue

    2013-01-01

    Nitrate injection is used to suppress reservoir souring in oil and gas fields caused by Sulfate Reducing Bacteria (SRB) through promotion of nitrate respiration by Nitrate Reducing Bacteria (NRB). However, it is not well publicized that nitrate reduction by NRB can cause Microbiologically Influenced Corrosion (MIC) because nitrate reduction coupled with iron oxidation is thermodynamically favorable. NRB benefits bioenergetically from this redox reaction under biocatalysis. This work showed that the Bacillus licheniformis biofilm, when grown as an NRB biofilm, caused a 14.5 μm maximum pit depth and 0.89 mg/cm 2 normalized weight loss against C1018 carbon steel in one-week lab tests

  8. Iron filled carbon nanostructures from different precursors

    International Nuclear Information System (INIS)

    Costa, S.; Borowiak-Palen, E.; Bachmatiuk, A.; Ruemmeli, M.H.; Gemming, T.; Kalenczuk, R.J.

    2008-01-01

    Here, we present a study on the synthesis of different nanostructures with one single-step in situ filling (encapsulation) via carbon vapor deposition (CVD). Ferrocene, acetylferrocene and iron (II) nitrate as iron precursors were explored. The application of each of these compounds resulted in different carbon nanomaterials such as: iron filled multiwalled carbon nanotubes with a low filling ratio (Fe-MWCNT), iron filled nanocapsules and unfilled MWCNT. The as-produced samples were purified by high temperature annealing and acid treatment. The purified materials were characterised using transmission electron microscopy (TEM) and Raman spectroscopy

  9. Carbon-Supported Iron Oxide Particles

    DEFF Research Database (Denmark)

    Meaz, T.; Mørup, Steen; Koch, C. Bender

    1996-01-01

    A carbon black ws impregnated with 6 wt% iron using an aqueous solution of iron nitrate. The impregnated carbon was initially dried at 125 C. The effect of heating of the iron oxide phase was investigated at temperatures between 200 and 600 C using Mossbauer spectroscopy. All heat treatments were...... done in an oxygen-containing atmosphere. Ferrihydrite is formed and is stable at and below a temperature of 300 C. At 600 C small particles of maghemite is the dominant iron oxide. A transformation reaction is suggested....

  10. Reactivity of Metal Nitrates.

    Science.gov (United States)

    1982-07-20

    02NOCuOH Any mechanism suggested for the nitration of aromatic systems by titanium(IV) nitrate must take into account the observed similarity, in...occurs. -26- References 1. For recent reviews see (a) R. B. Moodie and K. Schofield, Accounts Chem. Res., 1976, 9, 287; (b) G. A. Olah and S. J. Kuhn...Ithaca, N.Y., 1969, Chapter VI; L. M. Stock, Prog. Phys. Org. Chem., 1976, 12, 21; J. G. Hoggett , R. B. Moodie, J. R. Penton, and K. Schofield

  11. Sensor data as a measure of native freshwater mussel impact on nitrate formation and food digestion in continuous-flow mesocosms

    Science.gov (United States)

    Bril, Jeremy S.; Durst, Jonathan J.; Hurley, Brion M.; Just, Craig L.; Newton, Teresa J.

    2014-01-01

    Native freshwater mussels can influence the aquatic N cycle, but the mechanisms and magnitude of this effect are not fully understood. We assessed the effects of Amblema plicata and Lampsilis cardium on N transformations over 72 d in 4 continuous-flow mesocosms, with 2 replicates of 2 treatments (mesocosms with and without mussels), equipped with electronic water-chemistry sensors. We compared sensor data to discrete sample data to assess the effect of additional sensor measurements on the ability to detect mussel-related effects on NO3– formation. Analysis of 624 sensor-based data points detected a nearly 6% increase in NO3– concentration in overlying water of mesocosms with mussels relative to mesocosms without mussels (p 3– between treatments. Mussels also significantly increased NO2– concentrations in the overlying water, but no significant difference in total N was observed. We used the sensor data for phytoplankton-N and NH4+ to infer that digestion times in mussels were 13 ± 6 h. The results suggest that rapid increases in phytoplankton-N levels in the overlying water can lead to decreased lag times between phytoplankton-N and NH4+ maxima. This result indicates that mussels may adjust their digestion rates in response to increased levels of food. The adjustment in digestion time suggests that mussels have a strong response to food availability that can disrupt typical circadian rhythms. Use of sensor data to measure directly and to infer mussel effects on aquatic N transformations at the mesocosm scale could be useful at larger scales in the future.

  12. Phase extraction equilibria in systems rare earth (3) nitrates-ammonium nitrate-water-trialkylmethylammonium nitrate

    International Nuclear Information System (INIS)

    Pyartman, A.K.; Kopyrin, A.A.; Puzikov, E.A.

    1995-01-01

    The distribution of rare earth metals (3) between aqueous and organic phases in the systems rare earth metal (3) (praseodymium-lutetium (3), yttrium (3)) nitrate-ammonium nitrate-water-trialkylmethylammonium (kerosene diluent nitrate has been studied. It is shown that in organic phase di- and trisolvates of metals (3) with tralkylmethylammonium nitrate are formed. The influence of concentration of rare earth metal (3) nitrate and ammonium nitrate on the values of extraction concentrational constants has been ascertained: they decrease with increase in the ordinal number of lanthanide (3). 11 refs., 4 figs. 1 tab

  13. Denitrification of nitrate waste solutions

    International Nuclear Information System (INIS)

    Bertolami, R.J.; Chao, E.I.; Choi, W.M.; Johnson, B.R.; Varlet, J.L.P.

    1976-01-01

    Growth rates for the denitrifying bacteria Pseudomonas Stutzeri were studied to minimize the time necessary to start up a bacterial denitrification reactor. Batch experiments were performed in nine 250-ml Erlenmeyer flasks, a 7-liter fermentor, and a 67-liter fermentor. All reactors maintained an anaerobic environment. Initial microorganism inoculum concentration was varied over four orders of magnitude. Initial nitrate and substrate carbon concentrations were varied from 200 to 6000 ppm and from 56 to 1596 ppm, respectively, with a carbon-to-nitrogen weight ratio of 1.18. In all experiments, except those with the highest initial substrate-to-bacteria ratio, no growth was observed due to substrate depletion during the lag period. In those experiments which did exhibit an increase in bacterial population, growth also stopped due to substrate depletion. A model simulating microbe growth during the induction period was developed, but insufficient data were available to properly adjust the model constants. Because of this, the model does not accurately predict microbe growth. The metabolism of Pseudomonas Stutzeri was studied in detail. This resulted in a prediction of the denitrification stoichiometry during steady state reactor operation. Iron was found to be an important component for bacterial anabolism

  14. Nitrate Leaching Management

    Science.gov (United States)

    Nitrate (NO3) leaching is a significant nitrogen (N) loss process for agriculture that must be managed to minimize NO3 enrichment of groundwater and surface waters. Managing NO3 leaching should involve the application of basic principles of understanding the site’s hydrologic cycle, avoiding excess ...

  15. Waterproofing Materials for Ammonium Nitrate

    OpenAIRE

    R.S. Damse

    2004-01-01

    This study explores the possibility of overcoming the problem of hygroscopicity of ammonium nitrate by coating the particles with selected waterproofing materials. Gravimetric analysis ofthe samples of ammonium nitrate coated with eight different waterproofing materials, vis-a-vis, uncoated ammonium nitrate, were conducted at different relative humidity and exposuretime. The results indicate that mineral jelly is the promising waterproofing material for ammonium nitrate among the materials te...

  16. Galactic cosmic ray iron composition

    International Nuclear Information System (INIS)

    Scherzer, R.; Enge, W.; Beaujean, R.

    1980-11-01

    We have studied the isotopic compostition of galactic cosmic ray iron in the energy interval 500-750 MeV/nucleon with a visual track detector system consisting of nuclear emulsion and cellulose-nitrate platic. Stopping iron nuclei were identified from ionization - range measurements in the two detector parts. Cone lengths were measured in the plastic sheets and the residual ranges of the particles were measured in plastic and in emulsion. We have determined the mass of 17 iron nuclei with an uncertainty of about 0.3 amu. The isotopic composition at the detector level was found to be 52 Fe: 53 Fe: 54 Fe: 55 Fe: 56 Fe: 57 Fe: 58 Fe = 0:1: 4:3:8:1:0. These numbers are not in conflict with the assumption that the isotopic composition of cosmic ray iron at the source is similar to the solar system composition. (author)

  17. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters.

    Science.gov (United States)

    Hedrich, Sabrina; Johnson, D Barrie

    2012-02-01

    A novel modular bioremediation system which facilitates the selective removal of soluble iron from extremely acidic (pH ∼2) metal-rich wastewaters by ferrous iron oxidation and selective precipitation of the ferric iron produced is described. In the first of the three modules, rapid ferrous iron oxidation was mediated by the recently-characterized iron-oxidizing autotrophic acidophile, "Ferrovum myxofaciens", which grew as long "streamers" within the reactor. Over 90% of the iron present in influent test liquors containing 280mg/L iron was oxidized at a dilution rate of 0.41h(-1), in a proton-consuming reaction. The ferric iron-rich solutions produced were pumped into a second reactor where controlled addition of sodium hydroxide caused the water pH to increase to 3.5 and ferric iron to precipitate as the mineral schwertmannite. Addition of a flocculating agent promoted rapid aggregation and settling of the fine-grain schwertmannite particles. A third passive module (a packed-bed bioreactor, also inoculated with "Fv. myxofaciens") acted as a polishing reactor, lowering soluble iron concentrations in the processed water to iron from a synthetic acidic (pH 2.1) mine water that contained soluble aluminum, copper, manganese and zinc in addition to iron. Schwertmannite was again produced, with little or no co-precipitation of other metals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Antibody-modified iron oxide nanoparticles for efficient magnetic isolation and flow cytometric determination of L. pneumophila

    International Nuclear Information System (INIS)

    Bloemen, Maarten; Verbiest, Thierry; Denis, Carla; Meester, Luc De; Peeters, Miet; Gils, Ann; Geukens, Nick

    2015-01-01

    We report on the design of superparamagnetic nanoparticles capable of selectively isolating targeted bacteria (Legionella pneumophila, serogroup 1) from aqueous solutions. The surface of magnetite nanoparticles (NP) was functionalized with a heterobifunctional poly(ethylene glycol) ligand containing reactive groups for covalent coupling of polyclonal antibodies against L. pneumophila. These bioconjugates were used to label and magnetically isolate L. pneumophila. Flow cytometry revealed high separation and efficiency in this regard. The strain specificity and efficiency of the magnetic NP was tested with recombinant strains of E. coli (expressing the red fluorescent protein) and L. pneumophila (expressing the green fluorescent protein). The detection limit of the method (by flow cytometry) is 10 4 cells∙mL -1 . The results indicate that the new multifunctional NPs are capable of selectively attracting pathogens from a complex mixture and with high efficiency. This, conceivably, paves the way to pre-concentration protocols for numerous other pathogens. (author)

  19. Purification of alkali metal nitrates

    Science.gov (United States)

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  20. Nitrate in drinking water

    DEFF Research Database (Denmark)

    Schullehner, Jörg

    is highly decentralized and fully relying on simple treated groundwater. At the same time, Denmark has an intensive agriculture, making groundwater resources prone to nitrate pollution. Drinking water quality data covering the entire country for over 35 years are registered in the public database Jupiter......Annual nationwide exposure maps for nitrate in drinking water in Denmark from the 1970s until today will be presented based on the findings in Schullehner & Hansen (2014) and additional work on addressing the issue of private well users and estimating missing data. Drinking water supply in Denmark....... In order to create annual maps of drinking water quality, these data had to be linked to 2,852 water supply areas, which were for the first time digitized, collected in one dataset and connected to the Jupiter database. Analyses of the drinking water quality maps showed that public water supplies...

  1. Presence of nitrate NO 3 a ects animal production, photocalysis is a possible solution

    Science.gov (United States)

    Barba-Molina, Heli; Barba-Ortega, J.; Joya, M. R.

    2016-02-01

    Farmers and ranchers depend on the successful combination of livestock and crops. However, they have lost in the production by nitrate pollution. Nitrate poisoning in cattle is caused by the consumption of an excessive amount of nitrate or nitrite from grazing or water. Both humans and livestock can be affected. It would appear that well fertilised pasture seems to take up nitrogen from the soil and store it as nitrate in the leaf. Climatic conditions, favour the uptake of nitrate. Nitrate poisoning is a noninfectious disease condition that affects domestic ruminants. It is a serious problem, often resulting in the death of many animals. When nitrogen fertilizers are used to enrich soils, nitrates may be carried by rain, irrigation and other surface waters through the soil into ground water. Human and animal wastes can also contribute to nitrate contamination of ground water. A possible method to decontaminate polluted water by nitrates is with methods of fabrication of zero valent iron nanoparticles (FeNps) are found to affect their efficiency in nitrate removal from water.

  2. Nitrates and nitrites intoxications’ management

    Directory of Open Access Journals (Sweden)

    Alexandra Trif

    2007-12-01

    Full Text Available The study pointed out the major sources for clinical and subclinical intoxications with nitrates/nitrites (drinking water and nitrates containing fertilizers, circumstances that determine fertilizers to became sources of intoxication (excessive fertilization/consecutive high level of nitrates in fodders, free access of animals to the fertilizers, administration into the diet instead of natrium chloride, factors that determine high nitrates accumulation in fodders despite optimal fertilization (factors related to the plants, soil, clime, harvest methods, storage, agrotechnical measures, nitrates/nitrites toxicity (over 45 ppm nitrates in drinking water, over 0.5 g nitrate/100 g D.M fodder/diet, the factors that influence nitrates/nitrites toxicity ( species, age, rate of feeding, diet balance especially energetically, pathological effects and symptoms (irritation and congestions on digestive tract, resulting diarrhoea, transformation of hemoglobin into methemoglobin determining severe respiratory insufficiency, vascular collapse, low blood pressure inthe acute nitrates intoxication; hypotiroidism, hypovitaminosis A, reproductive disturbances(abortion, low rate of fertility, dead born offspring, diarrhoea and/or respiratory insufficiency in new born e.g. calves, immunosuppression, decrease of milk production in chronic intoxication. There were presented some suggestions concerning management practices to limit nitrate intoxication (analyze of nitrates/nitrites in water and fodders, good management of the situation of risk ,e .g. dilution of the diet with low nitrate content fodders, feeding with balanced diet in energy, protein, minerals and vitamins, accommodation to high nitrate level diet, avoid grazing one week after a frost period, avoid feeding chop green fodders stored a couple of days, monitoring of health status of animals fed with fodders containing nitrates at risk level, a.o..

  3. Serum Iron and Nitric Oxide Production in Trypanosoma brucei ...

    African Journals Online (AJOL)

    JTEkanem

    reduction in the serum iron status and a modulation of nitric oxide synthase activity of T. brucei infected rats. ... inflammation and tissue damage15. ... The serum iron level was determined ... concentration or of total nitrate and nitrite ... 15. 16. 17. 18. Days. S e ru m iro n lev e l mg. /ml. Infected treated. Infected untreated. 0.

  4. Short time synthesis of high quality carbon nanotubes with high rates by CVD of methane on continuously emerged iron nanoparticles

    International Nuclear Information System (INIS)

    Bahrami, Behnam; Khodadadi, Abasali; Mortazavi, Yadollah; Esmaieli, Mohamad

    2011-01-01

    We report the variation of yield and quality of carbon nanotubes (CNTs) grown by chemical vapor deposition (CVD) of methane on iron oxide-MgO at 900-1000 deg. C for 1-60 min. The catalyst was prepared by impregnation of MgO powder with iron nitrate, dried, and calcined at 300 deg. C. As calcined and unreduced catalyst in quartz reactor was brought to the synthesis temperature in helium flow in a few minutes, and then the flow was switched to methane. The iron oxide was reduced to iron nanoparticles in methane, while the CNTs were growing. TEM micrographs, in accordance with Raman RBM peaks, indicate the formation of mostly single wall carbon nanotubes of about 1.0 nm size. High quality CNTs with I G /I D Raman peak ratio of 14.5 are formed in the first minute of CNTs synthesis with the highest rate. Both the rate and quality of CNTs degrades with increasing CNTs synthesis time. Also CNTs quality sharply declines with temperature in the range of 900-1000 deg. C, while the CNTs yield passes through a maximum at 950 deg. C. About the same CNTs lengths are formed for the whole range of the synthesis times. A model of continuous emergence of iron nanoparticle seeds for CNTs synthesis may explain the data. The data can also provide information for continuous production of CNTs in a fluidized bed reactor.

  5. Short time synthesis of high quality carbon nanotubes with high rates by CVD of methane on continuously emerged iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Behnam, E-mail: bahrami@email.sc.edu [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nanoelectronics Centre of Excellence, University of Tehran, Tehran (Iran, Islamic Republic of); Khodadadi, Abasali [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Mortazavi, Yadollah, E-mail: mortazav@ut.ac.ir [Nanoelectronics Centre of Excellence, University of Tehran, Tehran (Iran, Islamic Republic of); Esmaieli, Mohamad [Nanoelectronics Centre of Excellence, University of Tehran, Tehran (Iran, Islamic Republic of)

    2011-09-15

    We report the variation of yield and quality of carbon nanotubes (CNTs) grown by chemical vapor deposition (CVD) of methane on iron oxide-MgO at 900-1000 deg. C for 1-60 min. The catalyst was prepared by impregnation of MgO powder with iron nitrate, dried, and calcined at 300 deg. C. As calcined and unreduced catalyst in quartz reactor was brought to the synthesis temperature in helium flow in a few minutes, and then the flow was switched to methane. The iron oxide was reduced to iron nanoparticles in methane, while the CNTs were growing. TEM micrographs, in accordance with Raman RBM peaks, indicate the formation of mostly single wall carbon nanotubes of about 1.0 nm size. High quality CNTs with I{sub G}/I{sub D} Raman peak ratio of 14.5 are formed in the first minute of CNTs synthesis with the highest rate. Both the rate and quality of CNTs degrades with increasing CNTs synthesis time. Also CNTs quality sharply declines with temperature in the range of 900-1000 deg. C, while the CNTs yield passes through a maximum at 950 deg. C. About the same CNTs lengths are formed for the whole range of the synthesis times. A model of continuous emergence of iron nanoparticle seeds for CNTs synthesis may explain the data. The data can also provide information for continuous production of CNTs in a fluidized bed reactor.

  6. Degradation of the river flows and their surroundings under backwater effects of the HPP Iron Gate I - necessary reclamation and rehabilitation measures

    International Nuclear Information System (INIS)

    Perisic, M.; Mitrovic-Tutundjic, V.

    2002-01-01

    The paper presents an analysis of ecological problems of the river Danube under backwater effects of the hydroenergetic power plant (HPP) Iron Gate I. Data collected during the period of almost two decades offer possibilities for understanding of the relevant phenomena that define the water quality changes and the state of the ecosystem in this part of the river flow, effects of water purification and consequences of this process connected to high level of anthropogenic influences. This long period enables undertaking urgent measures that are necessary for the system in the context of enormous problems that are becoming more complex as time passed by. Attempts to use analyzed information to change the attitude of the authorities which was based on incorrect prognosis and results of systematic, several decades long investigations of official organizations failed to give positive results till now. Since without adequate knowledge it is impossible to plan protection measures and rehabilitation of the system, and also estimate the damage made by NATO bombing, necessity for applying experience and results tested by relevant professionals from the Danubian and broader region is emphasized. (author)

  7. Macroinvertebrates and fishes in the part of the Danube flowing through the Iron Gate national park and possibilities of their protection under in situ and ex situ conditions

    Directory of Open Access Journals (Sweden)

    Simić Vladica M.

    2004-01-01

    Full Text Available Comparison of the results of later investigations of the Danube in the part flowing through in the Iron Gate (Đerdap National Park with those of research conducted earlier (20 to 40 years ago shows that changes have occurred in regard to the presence and especially the abundance of certain hydrobionts on this sector of the river, a finding that applies to all groups examined. The paper discusses the potential and results of conservation measures realized through both legal regulations and medium-term plans for the advancement of fishing in this region. In addition to in situ study during the period from 1999 to 2003, a large number of species (especially of macroinvertebrates and fish were also investigated under artificial conditions (in the Kragujevac Aquarium in order to gain a better understanding of their ecological characteristics, especially their sensitivity to various environmental stress factors. The presented results indicate that weight of specimens and success of culturing under ex situ conditions are correlated with their sensitivity under natural conditions.

  8. COGEMA Experience in Uranous Nitrate Preparation

    International Nuclear Information System (INIS)

    Tison, E.; Bretault, Ph.

    2006-01-01

    yield of the operation and its simplicity were the main reasons for this choice. Nowadays, our catalytic hydrogenation process is used in all the commercial reprocessing plants worldwide: THORP at Sellafield, UP3 and UP2 800 at La Hague, and RRP at Rokkasho-Mura. In this process, uranyl nitrate is reduced to uranous nitrate by hydrogen in presence of a platinum based catalyst. Most of the plants implement the reaction in the same kind of reactor: 'co-current, up-flow and fixed-bed reactor'. For UP2 800 at La Hague, started in 1994, a new kind of reactor allowing a higher capacity has been developed. In this reactor, the catalyst bed is not fixed but circulating (fluidized bed). The aim of the paper is to describe both reactor technology implemented in La Hague (fixed bed and fluidized bed), to show their performance in terms of capacity and yield and to compare their operating and maintenance principles. (authors)

  9. Mononuclear non-heme iron(III) complexes of linear and tripodal ...

    Indian Academy of Sciences (India)

    The rate of oxygenation depends on the solvent and the. Lewis acidity of iron(III) ... has been achieved by non-heme iron enzymes and their ..... oxygen atoms of nitrate ion (figure 3). ... enhanced covalency of iron-catecholate interaction and.

  10. The changing trend in nitrate concentrations in major aquifers due to historical nitrate loading from agricultural land across England and Wales from 1925 to 2150

    International Nuclear Information System (INIS)

    Wang, L.; Stuart, M.E.; Lewis, M.A.; Ward, R.S.; Skirvin, D.; Naden, P.S.; Collins, A.L.; Ascott, M.J.

    2016-01-01

    Nitrate is necessary for agricultural productivity, but can cause considerable problems if released into aquatic systems. Agricultural land is the major source of nitrates in UK groundwater. Due to the long time-lag in the groundwater system, it could take decades for leached nitrate from the soil to discharge into freshwaters. However, this nitrate time-lag has rarely been considered in environmental water management. Against this background, this paper presents an approach to modelling groundwater nitrate at the national scale, to simulate the impacts of historical nitrate loading from agricultural land on the evolution of groundwater nitrate concentrations. An additional process-based component was constructed for the saturated zone of significant aquifers in England and Wales. This uses a simple flow model which requires modelled recharge values, together with published aquifer properties and thickness data. A spatially distributed and temporally variable nitrate input function was also introduced. The sensitivity of parameters was analysed using Monte Carlo simulations. The model was calibrated using national nitrate monitoring data. Time series of annual average nitrate concentrations along with annual spatially distributed nitrate concentration maps from 1925 to 2150 were generated for 28 selected aquifer zones. The results show that 16 aquifer zones have an increasing trend in nitrate concentration, while average nitrate concentrations in the remaining 12 are declining. The results are also indicative of the trend in the flux of groundwater nitrate entering rivers through baseflow. The model thus enables the magnitude and timescale of groundwater nitrate response to be factored into source apportionment tools and to be taken into account alongside current planning of land-management options for reducing nitrate losses. - Highlights: • An approach to modelling groundwater nitrate at the national scale is presented. • The long time-lag for nitrate in the

  11. The changing trend in nitrate concentrations in major aquifers due to historical nitrate loading from agricultural land across England and Wales from 1925 to 2150

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L., E-mail: lei.wang@bgs.ac.uk [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Stuart, M.E.; Lewis, M.A. [British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Ward, R.S. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Skirvin, D. [ADAS UK Ltd., Pendeford House, Pendeford Business Park, Wobaston Road, Wolverhampton WV9 5AP (United Kingdom); Naden, P.S. [Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Collins, A.L. [Sustainable Soils and Grassland Systems Department, Rothamsted Research, North Wyke, Okehampton EX20 2SB (United Kingdom); Ascott, M.J. [British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB (United Kingdom)

    2016-01-15

    Nitrate is necessary for agricultural productivity, but can cause considerable problems if released into aquatic systems. Agricultural land is the major source of nitrates in UK groundwater. Due to the long time-lag in the groundwater system, it could take decades for leached nitrate from the soil to discharge into freshwaters. However, this nitrate time-lag has rarely been considered in environmental water management. Against this background, this paper presents an approach to modelling groundwater nitrate at the national scale, to simulate the impacts of historical nitrate loading from agricultural land on the evolution of groundwater nitrate concentrations. An additional process-based component was constructed for the saturated zone of significant aquifers in England and Wales. This uses a simple flow model which requires modelled recharge values, together with published aquifer properties and thickness data. A spatially distributed and temporally variable nitrate input function was also introduced. The sensitivity of parameters was analysed using Monte Carlo simulations. The model was calibrated using national nitrate monitoring data. Time series of annual average nitrate concentrations along with annual spatially distributed nitrate concentration maps from 1925 to 2150 were generated for 28 selected aquifer zones. The results show that 16 aquifer zones have an increasing trend in nitrate concentration, while average nitrate concentrations in the remaining 12 are declining. The results are also indicative of the trend in the flux of groundwater nitrate entering rivers through baseflow. The model thus enables the magnitude and timescale of groundwater nitrate response to be factored into source apportionment tools and to be taken into account alongside current planning of land-management options for reducing nitrate losses. - Highlights: • An approach to modelling groundwater nitrate at the national scale is presented. • The long time-lag for nitrate in the

  12. Electrochemical processing of nitrate waste solutions

    International Nuclear Information System (INIS)

    Genders, D.; Weinberg, N.; Hartsough, D.

    1992-01-01

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F - ions from the synthetic mix migrating across the cation exchange membrane and forming HF in the acid anolyte. Other possibilities for anode materials were explored. A membrane separation process was investigated which employs an anion and cation exchange membrane to remove nitrite and nitrate, recovering caustic and nitric acid. Present research has shown poor current efficiencies for nitrite and nitrate transport across the anion exchange membrane due to co-migration of hydroxide anions. Precipitates form within the anion exchange membranes which would eventually result in the failure of the membranes. Electrochemical processing offers a highly promising and viable method for the treatment of nitrate waste solutions

  13. Lanthanum (samarium) nitrate-4-aminoantipyrine nitrate-water systems

    International Nuclear Information System (INIS)

    Starikova, L.I.; Zhuravlev, E.F.

    1985-01-01

    Using the isothermal method of cross-sections at 50 deg C systems lanthanum nitrate-4-aminoantipyrine nitrate-water (1), samarium nitrate-4-aminoantipyrine nitrate-water (2), are studied. Isotherms of system 1 consist of two crystallization branches of initial salt components. In system 2 formation of congruently soluble compounds of the composition Sm(No) 3 ) 3 xC 11 H 13 ON 3 xHNO 3 is established. Analytical, X-ray phase and thermogravimetric analysis of the isolated binary salt are carried out

  14. Nitrate biosensors and biological methods for nitrate determination.

    Science.gov (United States)

    Sohail, Manzar; Adeloju, Samuel B

    2016-06-01

    The inorganic nitrate (NO3‾) anion is present under a variety of both natural and artificial environmental conditions. Nitrate is ubiquitous within the environment, food, industrial and physiological systems and is mostly present as hydrated anion of a corresponding dissolved salt. Due to the significant environmental and toxicological effects of nitrate, its determination and monitoring in environmental and industrial waters are often necessary. A wide range of analytical techniques are available for nitrate determination in various sample matrices. This review discusses biosensors available for nitrate determination using the enzyme nitrate reductase (NaR). We conclude that nitrate determination using biosensors is an excellent non-toxic alternative to all other available analytical methods. Over the last fifteen years biosensing technology for nitrate analysis has progressed very well, however, there is a need to expedite the development of nitrate biosensors as a suitable alternative to non-enzymatic techniques through the use of different polymers, nanostructures, mediators and strategies to overcome oxygen interference. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Respiration of Nitrate and Nitrite.

    Science.gov (United States)

    Cole, Jeffrey A; Richardson, David J

    2008-09-01

    Nitrate reduction to ammonia via nitrite occurs widely as an anabolic process through which bacteria, archaea, and plants can assimilate nitrate into cellular biomass. Escherichia coli and related enteric bacteria can couple the eight-electron reduction of nitrate to ammonium to growth by coupling the nitrate and nitrite reductases involved to energy-conserving respiratory electron transport systems. In global terms, the respiratory reduction of nitrate to ammonium dominates nitrate and nitrite reduction in many electron-rich environments such as anoxic marine sediments and sulfide-rich thermal vents, the human gastrointestinal tract, and the bodies of warm-blooded animals. This review reviews the regulation and enzymology of this process in E. coli and, where relevant detail is available, also in Salmonella and draws comparisons with and implications for the process in other bacteria where it is pertinent to do so. Fatty acids may be present in high levels in many of the natural environments of E. coli and Salmonella in which oxygen is limited but nitrate is available to support respiration. In E. coli, nitrate reduction in the periplasm involves the products of two seven-gene operons, napFDAGHBC, encoding the periplasmic nitrate reductase, and nrfABCDEFG, encoding the periplasmic nitrite reductase. No bacterium has yet been shown to couple a periplasmic nitrate reductase solely to the cytoplasmic nitrite reductase NirB. The cytoplasmic pathway for nitrate reduction to ammonia is restricted almost exclusively to a few groups of facultative anaerobic bacteria that encounter high concentrations of environmental nitrate.

  16. Analytical Chemistry and Materials Characterization Results for Debris Recovered from Nitrate Salt Waste Drum S855793

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Patrick Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chamberlin, Rebecca M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schwartz, Daniel S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Worley, Christopher Gordon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garduno, Katherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lujan, Elmer J. W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Borrego, Andres Patricio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Castro, Alonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Colletti, Lisa Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fulwyler, James Brent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holland, Charlotte S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Keller, Russell C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Klundt, Dylan James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martin, Frances Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Montoya, Dennis Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Porterfield, Donivan R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schake, Ann Rene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schappert, Michael Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Soderberg, Constance B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Spencer, Khalil J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanley, Floyd E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thomas, Mariam R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Townsend, Lisa Ellen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Xu, Ning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-16

    Solid debris was recovered from the previously-emptied nitrate salt waste drum S855793. The bulk sample was nondestructively assayed for radionuclides in its as-received condition. Three monoliths were selected for further characterization. Two of the monoliths, designated Specimen 1 and 3, consisted primarily of sodium nitrate and lead nitrate, with smaller amounts of lead nitrate oxalate and lead oxide by powder x-ray diffraction. The third monolith, Specimen 2, had a complex composition; lead carbonate was identified as the predominant component, and smaller amounts of nitrate, nitrite and carbonate salts of lead, magnesium and sodium were also identified. Microfocused x-ray fluorescence (MXRF) mapping showed that lead was ubiquitous throughout the cross-sections of Specimens 1 and 2, while heteroelements such as potassium, calcium, chromium, iron, and nickel were found in localized deposits. MXRF examination and destructive analysis of fragments of Specimen 3 showed elevated concentrations of iron, which were broadly distributed through the sample. With the exception of its high iron content and low carbon content, the chemical composition of Specimen 3 was within the ranges of values previously observed in four other nitrate salt samples recovered from emptied waste drums.

  17. Quantifying in-stream nitrate reaction rates using continuously-collected water quality data

    Science.gov (United States)

    Matthew Miller; Anthony Tesoriero; Paul Capel

    2016-01-01

    High frequency in situ nitrate data from three streams of varying hydrologic condition, land use, and watershed size were used to quantify the mass loading of nitrate to streams from two sources – groundwater discharge and event flow – at a daily time step for one year. These estimated loadings were used to quantify temporally-variable in-stream nitrate processing ...

  18. dl-Asparaginium nitrate

    Science.gov (United States)

    Moussa Slimane, Nabila; Cherouana, Aouatef; Bendjeddou, Lamia; Dahaoui, Slimane; Lecomte, Claude

    2009-01-01

    In the title compound, C4H9N2O3 +·NO3 −, alternatively called (1RS)-2-carbamoyl-1-carboxy­ethanaminium nitrate, the asymmetric unit comprises one asparaginium cation and one nitrate anion. The strongest cation–cation O—H⋯O hydrogen bond in the structure, together with other strong cation–cation N—H⋯O hydrogen bonds, generates a succession of infinite chains of R 2 2(8) rings along the b axis. Additional cation–cation C—H⋯O hydrogen bonds link these chains into two-dimensional layers formed by alternating R 4 4(24) and R 4 2(12) rings. Connections between these layers are provided by the strong cation–anion N—H⋯O hydrogen bonds, as well as by one weak C—H⋯O inter­action, thus forming a three-dimensional network. Some of the cation–anion N—H⋯O hydrogen bonds are bifurcated of the type D—H⋯(A 1,A 2). PMID:21577586

  19. Evaluation of hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions

    International Nuclear Information System (INIS)

    Iriya, K.; Fujii, K.; Kubo, H.

    2002-02-01

    The chemical conditions of TRU waste repository were estimated as alkaline conditions effected by cementitious materials. And, some TRU wastes include soluble nitrate salt, we have to consider the repository conditions might be high ionic strength condition leaching of nitrate salt. In this study, experimental studies were carried out to evaluate hydraulic conductivities of bentonite and rock under hyper alkaline and nitrate conditions. The followings results were obtained for bentonite. 1) In the immersion experiments of bentonite in hyper alkaline fluids with and without nitrate, the disappearance of montmorillonite of bentonite was observed and CSH formation was found after 30 days. In hyper alkaline fluid with nitrate, minerals at θ=37 nm by XRD was identified. 2) Significant effects of hyper alkaline on hydraulic conductivity of compacted bentonite were not observed. However, hydraulic conductivities of hyper alkaline fluid with nitrate and ion exchanged bentonite increased. In hyper alkaline with nitrate, more higher hydraulic conductivities of exchanged bentonite were measured. The followings results were obtained for rock. 1) In the immersion experiments of crushed tuff in hyper alkaline fluids with and without nitrate, CSH and CASH phases were observed. 2) The hydraulic conductivity of tuff in hyper alkaline fluids decreased gradually. Finally, hyper alkaline flow in tuff stopped after 2 months and hyper alkaline flow with nitrate stopped shorter than without nitrate. In the results of analysis of tuff after experiment, we could identified secondary minerals, but we couldn't find the clogging evidence of pores in tuff by secondary minerals. (author)

  20. Multi-scale nitrate transport in a sandstone aquifer system under intensive agriculture

    Science.gov (United States)

    Paradis, Daniel; Ballard, Jean-Marc; Lefebvre, René; Savard, Martine M.

    2018-03-01

    Nitrate transport in heterogeneous bedrock aquifers is influenced by mechanisms that operate at different spatial and temporal scales. To understand these mechanisms in a fractured sandstone aquifer with high porosity, a groundwater-flow and nitrate transport model—reproducing multiple hydraulic and chemical targets—was developed to explain the actual nitrate contamination observed in groundwater and surface water in a study area on Prince Edward Island, Canada. Simulations show that nitrate is leached to the aquifer year-round, with 61% coming from untransformed and transformed organic sources originating from fertilizers and manure. This nitrate reaches the more permeable shallow aquifer through fractures in weathered sandstone that represent only 1% of the total porosity (17%). Some of the nitrate reaches the underlying aquifer, which is less active in terms of groundwater flow, but most of it is drained to the main river. The river-water quality is controlled by the nitrate input from the shallow aquifer. Groundwater in the underlying aquifer, which has long residence times, is also largely influenced by the diffusion of nitrate in the porous sandstone matrix. Consequently, following a change of fertilizer application practices, water quality in domestic wells and the river would change rapidly due to the level of nitrate found in fractures, but a lag time of up to 20 years would be necessary to reach a steady level due to diffusion. This demonstrates the importance of understanding nitrate transport mechanisms when designing effective agricultural and water management plans to improve water quality.

  1. The ytterbium nitrate-quinoline (piperidine) nitrate-water system

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Boeva, M.K.; Zhuravlev, E.F.

    1985-01-01

    Using the method of cross sections the solubility of solid phases in the ytterbium nitrate-quinoline nitrate - water (1) and ytterbium nitrate-piperidine nitrate-water (2) systems is studied at 25 and 50 deg C. It is established, that in system 1 congruently melting compound of the composition Yb(NO 3 ) 3 x2C 9 H 7 NxHNO 3 x3H 2 O is formed. The new solid phase has been isolated as a preparation and subjected to chemical X-ray diffraction, differential thermal and IR spectroscopic analyses. Isotherms of system 2 in the studied range of concentrations and temperatures consist of two branches, corresponding to crystallization of tetruaqueous ytterbi um nitrate and nitric acid piperidine

  2. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    DEFF Research Database (Denmark)

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly......, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations....... and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate...

  3. Aniline-induced nitrosative stress in rat spleen: Proteomic identification of nitrated proteins

    International Nuclear Information System (INIS)

    Fan Xiuzhen; Wang Jianling; Soman, Kizhake V.; Ansari, G.A.S.; Khan, M. Firoze

    2011-01-01

    Aniline exposure is associated with toxicity to the spleen which is characterized by splenomegaly, hyperplasia, fibrosis, and a variety of sarcomas on chronic exposure in rats. However, mechanisms by which aniline elicits splenotoxic responses are not well understood. Earlier we have shown that aniline exposure leads to increased nitration of proteins in the spleen. However, nitrated proteins remain to be characterized. Therefore, in the current study using proteomic approaches, we focused on characterizing the nitrated proteins in the spleen of aniline-exposed rats. Aniline exposure led to increased tyrosine nitration of proteins, as determined by 2D Western blotting with anti-3-nitrotyrosine specific antibody, compared to the controls. The analyzed nitrated proteins were found in the molecular weight range of 27.7 to 123.6 kDa. A total of 37 nitrated proteins were identified in aniline-treated and control spleens. Among them, 25 were found only in aniline-treated rats, 11 were present in both aniline-treated and control rats, while one was found in controls only. The nitrated proteins identified mainly represent skeletal proteins, chaperones, ferric iron transporter, enzymes, nucleic acids binding protein, and signaling and protein synthesis pathways. Furthermore, aniline exposure led to significantly increased iNOS mRNA and protein expression in the spleen, suggesting its role in increased reactive nitrogen species formation and contribution to increased nitrated proteins. The identified nitrated proteins provide a global map to further investigate alterations in their structural and functional properties, which will lead to a better understanding of the role of protein nitration in aniline-mediated splenic toxicity. - Highlights: → Proteomic approaches are used to identify nitrated proteins in the spleen. → Twenty five nitrated proteins were found only in the spleen of aniline-treated rats. → Aniline exposure led to increased iNOS mRNA and protein

  4. Evaluation of nitrate destruction methods

    International Nuclear Information System (INIS)

    Taylor, P.A.; Kurath, D.E.; Guenther, R.

    1993-01-01

    A wide variety of high nitrate-concentration aqueous mixed [radioactive and Resource Conservation and Recovery Act (RCRA) hazardous] wastes are stored at various US Department of Energy (DOE) facilities. These wastes will ultimately be solidified for final disposal, although the waste acceptance criteria for the final waste form is still being determined. Because the nitrates in the wastes will normally increase the volume or reduce the integrity of all of the waste forms under consideration for final disposal, nitrate destruction before solidification of the waste will generally be beneficial. This report describes and evaluates various technologies that could be used to destroy the nitrates in the stored wastes. This work was funded by the Department of Energy's Office of Technology Development, through the Chemical/Physical Technology Support Group of the Mixed Waste Integrated Program. All the nitrate destruction technologies will require further development work before a facility could be designed and built to treat the majority of the stored wastes. Several of the technologies have particularly attractive features: the nitrate to ammonia and ceramic (NAC) process produces an insoluble waste form with a significant volume reduction, electrochemical reduction destroys nitrates without any chemical addition, and the hydrothermal process can simultaneously treat nitrates and organics in both acidic and alkaline wastes. These three technologies have been tested using lab-scale equipment and surrogate solutions. At their current state of development, it is not possible to predict which process will be the most beneficial for a particular waste stream

  5. Decomposition of metal nitrate solutions

    International Nuclear Information System (INIS)

    Haas, P.A.; Stines, W.B.

    1982-01-01

    Oxides in powder form are obtained from aqueous solutions of one or more heavy metal nitrates (e.g. U, Pu, Th, Ce) by thermal decomposition at 300 to 800 deg C in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal. (author)

  6. Mortality of nitrate fertiliser workers.

    Science.gov (United States)

    Al-Dabbagh, S; Forman, D; Bryson, D; Stratton, I; Doll, R

    1986-01-01

    An epidemiological cohort study was conducted to investigate the mortality patterns among a group of workers engaged in the production of nitrate based fertilisers. This study was designed to test the hypothesis that individuals exposed to high concentrations of nitrates might be at increased risk of developing cancers, particularly gastric cancer. A total of 1327 male workers who had been employed in the production of fertilisers between 1946 and 1981 and who had been occupationally exposed to nitrates for at least one year were followed up until 1 March 1981. In total, 304 deaths were observed in this group and these were compared with expected numbers calculated from mortality rates in the northern region of England, where the factory was located. Analysis was also carried out separately for a subgroup of the cohort who had been heavily exposed to nitrates--that is, working in an environment likely to contain more than 10 mg nitrate/m3 for a year or longer. In neither the entire cohort nor the subgroup was any significant excess observed for all causes of mortality or for mortality from any of five broad categories of cause or from four specific types of cancer. A small excess of lung cancer was noted more than 20 years after first exposure in men heavily exposed for more than 10 years. That men were exposed to high concentrations of nitrate was confirmed by comparing concentrations of nitrates in the saliva of a sample of currently employed men with control men, employed at the same factory but not in fertiliser production. The men exposed to nitrate had substantially raised concentrations of nitrate in their saliva compared with both controls within the industry and with men in the general population and resident nearby. The results of this study therefore weight against the idea that exposure to nitrates in the environment leads to the formation in vivo of material amounts of carcinogens. PMID:3015194

  7. ROLE OF IRON (II, III) HYDROXYCARBONATE GREEN RUST IN ARSENIC REMEDIATION USING ZEROVALENT IRON IN COLUMN TESTS

    Science.gov (United States)

    We examined corrosion products of zerovalent iron (Peerless iron) that was used in three column tests for removing arsenic under dynamic flow conditions with and without added phosphate and silicate. Iron(II, III) hydroxycarbonate and magnetite were major iron corrosion products...

  8. Neodymium nitrate-tetraethylammonium nitrate-water system

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Boeva, M.K.

    1987-01-01

    Method of isothermal cross sections at 25 and 50 deg C is used to study solid phase solubility in the neodymium nitrate-tetraethylammonium nitrate-water system. Crystallization fields of congruently soluble compounds, the salt component ratio being 1:1:4H 2 O and 1:3:2H 2 O are detected. New solid phases are preparatively obtained and subjected to chemical, differential thermal, IR spectroscopic and X-ray diffraction analyses. The obtained compounds are acido-complexes in which nitrate groups enter into the first coordination sphere

  9. Effect of molybdenum and iron supply on molybdenum (99Mo) and iron (59Fe) uptake and activity of certain enzymes in tomato plants grown in sand culture

    International Nuclear Information System (INIS)

    Chatterjee, C.; Agarwala, S.C.

    1979-01-01

    Tomato (Lycopersicon esculentum Mill. var. Marglobe) plants were raised under controlled sand culture to study the interaction of molybdenum and iron supply on the uptake of molybdenum and iron and activity of certain enzymes affected by iron and/or molybdenum supply. Iron deficiency caused a decrease in the molybdenum uptake and accentuated the effect of molybdenum deficiency in reducing the uptake and more so the translocation of molybdenum from roots to shoots, thus inducing more severe molybdenum deficiency. The deficiency of iron and molybdenum decreased the activity of catalase, succinate dehydrogenase and nitrate reductase, the most marked decrease being found in plants supplied with both iron and molybdenum at low levels. Changes in the activities of nitrate reductase and catalase can be attributed to the interaction of iron and molybdenum supply in their absorption and translocation. (auth.)

  10. Research factors of the electrochemical remediation clay soils from the nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.A.; Babakina, O.A. [Moscow State Univ. (Russian Federation)

    2001-07-01

    The electrokinetic's methods are prevalent [1, 2], but abilities of the method for remediation nitrates contaminated soils are studied insufficiently. The investigations of effectiveness electrochemical remediation are complicated by processes of reduction nitrates to nitrites (that are more toxic) and then to nitrogen in soil under the constant electric current. Therefore, the objectives of the research was following: - Evaluate mechanism of electrokinetic's removing nitrates from soil; - Evaluate basic value of moisture and alkalinity influence for electrochemical remediation of soil from nitrates; - Determine flow-through regime effect on electrokinetic's treating. (orig.)

  11. Nitrate photolysis in salty snow

    Science.gov (United States)

    Donaldson, D. J.; Morenz, K.; Shi, Q.; Murphy, J. G.

    2016-12-01

    Nitrate photolysis from snow can have a significant impact on the oxidative capacity of the local atmosphere, but the factors affecting the release of gas phase products are not well understood. Here, we report the first systematic study of the amounts of NO, NO2, and total nitrogen oxides (NOy) emitted from illuminated snow samples as a function of both nitrate and total salt (NaCl and Instant Ocean) concentration. We show that the release of nitrogen oxides to the gas phase is directly related to the expected nitrate concentration in the brine at the surface of the snow crystals, increasing to a plateau value with increasing nitrate, and generally decreasing with increasing NaCl or Instant Ocean (I.O.). In frozen mixed nitrate (25 mM) - salt (0-500 mM) solutions, there is an increase in gas phase NO2 seen at low added salt amounts: NO2 production is enhanced by 35% at low prefreezing [NaCl] and by 70% at similar prefreezing [I.O.]. Raman microscopy of frozen nitrate-salt solutions shows evidence of stronger nitrate exclusion to the air interface in the presence of I.O. than with added NaCl. The enhancement in nitrogen oxides emission in the presence of salts may prove to be important to the atmospheric oxidative capacity in polar regions.

  12. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  13. Yttrium Nitrate mediated Nitration of Phenols at room temperature in ...

    Indian Academy of Sciences (India)

    The described method is selective for phenols. ... the significant cause of post translational modification that can ... decades, significant attention was paid on nitration of phenols to .... Progress of the reaction can be noted visually. Yttrium.

  14. Biogeochemical reactive transport of carbon, nitrogen and iron in the hyporheic zone

    Science.gov (United States)

    Dwivedi, D.; Steefel, C. I.; Newcomer, M. E.; Arora, B.; Spycher, N.; Hammond, G. E.; Moulton, J. D.; Fox, P. M.; Nico, P. S.; Williams, K. H.; Dafflon, B.; Carroll, R. W. H.

    2017-12-01

    To understand how biogeochemical processes in the hyporheic zone influence carbon and nitrogen cycling as well as stream biogeochemistry, we developed a biotic and abiotic reaction network and integrated it into a reactive transport simulator - PFLOTRAN. Three-dimensional reactive flow and transport simulations were performed to describe the hyporheic exchange of fluxes from and within an intra-meander region encompassing two meanders of East River in the East Taylor watershed, Colorado. The objectives of this study were to quantify (1) the effect of transience on the export of carbon, nitrogen, and iron; and (2) the biogeochemical transformation of nitrogen and carbon species as a function of the residence time. The model was able to capture reasonably well the observed trends of nitrate and dissolved oxygen values that decreased as well as iron (Fe (II)) values that increased along the meander centerline away from the stream. Hyporheic flow paths create lateral redox zonation within intra-meander regions, which considerably impact nitrogen export into the stream system. Simulation results further demonstrated that low water conditions lead to higher levels of dissolved iron in groundwater, which (Fe (II)> 80%) is exported to the stream on the downstream side during high water conditions. An important conclusion from this study is that reactive transport models representing spatial and temporal heterogeneities are required to identify important factors that contribute to the redox gradients at riverine scales.

  15. Evaluation of Nitrate Sources and Transformation in the Oglio River Watershed

    Energy Technology Data Exchange (ETDEWEB)

    Delconte, C. A. [Istituto di Geoscienze e Georisorse, CNR, U.O.S. di Pavia (Italy); Dipartimento di Scienze Della Terra e dell' Ambiente, Universita di Pavia (Italy); Sacchi, E. [Dipartimento di Scienze della Terra e dell' ambiente, Universita di Pavia (Italy); Istituto di Geoscienze e Georisorse, CNR, U.O.S. di Pavia (Italy); Allais, E. [ISO4 s.n.c., Torino (Italy); Racchetti, E. [Dipartimento di Scienze Ambientali, Universita di Parma (Italy)

    2013-07-15

    In agricultural watersheds, the management of nitrate contamination in rivers requires the understanding of the existing relationships between soil, groundwater and surface water. The reported data correspond to three sampling campaigns, conducted in different seasons on surface water in a nitrate Vulnerable Zone of lombardy (northern Italy). The Oglio River, its tributaries, one spring, and effluents from wastewater treatment plants were sampled to determinen content, speciation and nitrate isotopes. The nitrate content increased along the Oglio River, mostly due to groundwater inputs. In summer, nitrate tended to decrease at the downstream reach, whilst this trend was not clear in autumn and winter campaigns. In summertime chemical and isotopic data suggest the presence of weak denitrification in the Oglio riverbed. Chemical, isotopic data and flow measurements allow the definition of the N fluxes and identification of sources and processes affecting the nitrate concentration in the river. (author)

  16. Evaluation of the nitrate content in leaf vegetables produced through different agricultural systems.

    Science.gov (United States)

    Guadagnin, S G; Rath, S; Reyes, F G R

    2005-12-01

    The nitrate content of leafy vegetables (watercress, lettuce and arugula) produced by different agricultural systems (conventional, organic and hydroponic) was determined. The daily nitrate intake from the consumption of these crop species by the average Brazilian consumer was also estimated. Sampling was carried out between June 2001 to February 2003 in Campinas, São Paulo State, Brazil. Nitrate was extracted from the samples using the procedure recommended by the AOAC. Flow injection analysis with spectrophotometric detection at 460 nm was used for nitrate determination through the ternary complex FeSCNNO+. For lettuce and arugula, the average nitrate content varied (p hydroponic system. For watercress, no difference (p hydroponic samples, both having higher nitrate contents (p hydroponic system, represented 29% of the acceptable daily intake established for this ion.

  17. Geohydrology and numerical simulation of ground-water flow in the central Virgin River basin of Iron and Washington Countries, Utah

    Science.gov (United States)

    Heilweil, V.M.; Freethey, G.W.; Wilkowske, C.D.; Stolp, B.J.; Wilberg, D.E.

    2000-01-01

    Because rapid growth of communities in Washington and Iron Counties, Utah, is expected to cause an increase in the future demand for water resources, a hydrologic investigation was done to better understand ground-water resources within the central Virgin River basin. This study focused on two of the principal ground-water reservoirs within the basin: the upper Ash Creek basin ground-water system and the Navajo and Kayenta aquifer system. The ground-water system of the upper Ash Creek drainage basin consists of three aquifers: the uppermost Quaternary basin-fill aquifer, the Tertiary alluvial-fan aquifer, and the Tertiary Pine Valley monzonite aquifer. These aquifers are naturally bounded by the Hurricane Fault and by drainage divides. On the basis of measurements, estimates, and numerical simulations of reasonable values for all inflow and outflow components, total water moving through the upper Ash Creek drainage basin ground-water system is estimated to be about 14,000 acre-feet per year. Recharge to the upper Ash Creek drainage basin ground-water system is mostly from infiltration of precipitation and seepage from ephemeral and perennial streams. The primary source of discharge is assumed to be evapotranspiration; however, subsurface discharge near Ash Creek Reservoir also may be important. The character of two of the hydrologic boundaries of the upper Ash Creek drainage basin ground-water system is speculative. The eastern boundary provided by the Hurricane Fault is assumed to be a no-flow boundary, and a substantial part of the ground-water discharge from the system is assumed to be subsurface outflow beneath Ash Creek Reservoir along the southern boundary. However, these assumptions might be incorrect because alternative numerical simulations that used different boundary conditions also proved to be feasible. The hydrogeologic character of the aquifers is uncertain because of limited data. Difference in well yield indicate that there is considerable

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, ... iron-fortified foods that have iron added. Vegetarian diets can provide enough iron if you choose nonmeat ...

  19. Quantifying an aquifer nitrate budget and future nitrate discharge using field data from streambeds and well nests

    Science.gov (United States)

    Gilmore, Troy E.; Genereux, David P.; Solomon, D. Kip; Farrell, Kathleen M.; Mitasova, Helena

    2016-11-01

    Novel groundwater sampling (age, flux, and nitrate) carried out beneath a streambed and in wells was used to estimate (1) the current rate of change of nitrate storage, dSNO3/dt, in a contaminated unconfined aquifer, and (2) future [NO3-]FWM (the flow-weighted mean nitrate concentration in groundwater discharge) and fNO3 (the nitrate flux from aquifer to stream). Estimates of dSNO3/dt suggested that at the time of sampling (2013) the nitrate storage in the aquifer was decreasing at an annual rate (mean = -9 mmol/m2yr) equal to about one-tenth the rate of nitrate input by recharge. This is consistent with data showing a slow decrease in the [NO3-] of groundwater recharge in recent years. Regarding future [NO3-]FWM and fNO3, predictions based on well data show an immediate decrease that becomes more rapid after ˜5 years before leveling out in the early 2040s. Predictions based on streambed data generally show an increase in future [NO3-]FWM and fNO3 until the late 2020s, followed by a decrease before leveling out in the 2040s. Differences show the potential value of using information directly from the groundwater—surface water interface to quantify the future impact of groundwater nitrate on surface water quality. The choice of denitrification kinetics was similarly important; compared to zero-order kinetics, a first-order rate law levels out estimates of future [NO3-]FWM and fNO3 (lower peak, higher minimum) as legacy nitrate is flushed from the aquifer. Major fundamental questions about nonpoint-source aquifer contamination can be answered without a complex numerical model or long-term monitoring program.

  20. Rapid induction of GFP expression by the nitrate reductase promoter in the diatom Phaeodactylum tricornutum

    Czech Academy of Sciences Publication Activity Database

    Chu, L.; Ewe, Daniela; Bártulos, C.R.; Kroth, P. G.; Gruber, A.

    2016-01-01

    Roč. 4, AUG 25 (2016), e2344 ISSN 2167-8359 Institutional support: RVO:61388971 Keywords : Flow cytometry * Nitrogen source * Nitrate Subject RIV: EE - Microbiology, Virology Impact factor: 2.177, year: 2016

  1. Rapid induction of GFP expression by the nitrate reductase promoter in the diatom Phaeodactylum tricornutum

    Czech Academy of Sciences Publication Activity Database

    Chu, L.; Ewe, Daniela; Bártulos, C.R.; Kroth, P.G.; Gruber, A.

    2016-01-01

    Roč. 4, AUG 25 2016 (2016), e2344 ISSN 2167-8359 Institutional support: RVO:61388971 Keywords : Flow cytometry * Nitrogen source * Nitrate Subject RIV: EE - Microbiology, Virology Impact factor: 2.177, year: 2016

  2. Theoretical Investigations on the Mechanistic Aspects of O2 Activation by a Biomimetic Dinitrosyl Iron Complex

    NARCIS (Netherlands)

    Banerjee, Ambar; Sen, Souloke; Paul, Ankan

    2018-01-01

    Though dinitrosyl-iron complexes (DNICs) are largely believed to act as NO carriers, several experiments on model DNICs have suggested that they can also act as nitrating agents in presence of dioxygen. Oxygen activation by DNICs has been implicated as a possible route for protein tyrosine nitration

  3. Variability of nitrate and phosphate

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; Sundar, D.

    Nitrate and phosphate are important elements of the biogeochemical system of an estuary. Observations carried out during the dry season April-May 2002, and March 2003 and wet season September 2002, show temporal and spatial variability of these two...

  4. Vasodilator Therapy: Nitrates and Nicorandil.

    Science.gov (United States)

    Tarkin, Jason M; Kaski, Juan Carlos

    2016-08-01

    Nitrates have been used to treat symptoms of chronic stable angina for over 135 years. These drugs are known to activate nitric oxide (NO)-cyclic guanosine-3',-5'-monophasphate (cGMP) signaling pathways underlying vascular smooth muscle cell relaxation, albeit many questions relating to how nitrates work at the cellular level remain unanswered. Physiologically, the anti-angina effects of nitrates are mostly due to peripheral venous dilatation leading to reduction in preload and therefore left ventricular wall stress, and, to a lesser extent, epicardial coronary artery dilatation and lowering of systemic blood pressure. By counteracting ischemic mechanisms, short-acting nitrates offer rapid relief following an angina attack. Long-acting nitrates, used commonly for angina prophylaxis are recommended second-line, after beta-blockers and calcium channel antagonists. Nicorandil is a balanced vasodilator that acts as both NO donor and arterial K(+) ATP channel opener. Nicorandil might also exhibit cardioprotective properties via mitochondrial ischemic preconditioning. While nitrates and nicorandil are effective pharmacological agents for prevention of angina symptoms, when prescribing these drugs it is important to consider that unwanted and poorly tolerated hemodynamic side-effects such as headache and orthostatic hypotension can often occur owing to systemic vasodilatation. It is also necessary to ensure that a dosing regime is followed that avoids nitrate tolerance, which not only results in loss of drug efficacy, but might also cause endothelial dysfunction and increase long-term cardiovascular risk. Here we provide an update on the pharmacological management of chronic stable angina using nitrates and nicorandil.

  5. Headspace Analysis of Ammonium Nitrate

    Science.gov (United States)

    2017-01-25

    explosive ammonium nitrate produces ammonia and nitric acid in the gaseous headspace above bulk solids, but the concentrations of the products have been...and NO2-, a product of nitrate fragmentation (Figure 7). Brief spikes in the background and dips in oxalic acid signal were observed at the time of...either filtered air or experimental nitric acid vapor sources so that analyte signal could be measured directly opposite background. With oxalic

  6. Transforming Growth Factor-? and Nitrates in Epithelial Ovarian Cancer

    OpenAIRE

    Khalifa, Ali; Kassim, Samar K.; Ahmed, Maha I.; Fayed, Salah T.

    2002-01-01

    The role of transforming growth factor-β (TGF-β) and nitric oxide (NO) in ovarian neoplasia is still not clear. We studied the expression of TGF-β by enzyme immunoassay, and nitrates (as a stable end product of NO) in 127 ovarian tissues (36 normal, 37 benign, and 54 malignant). Ploidy status and synthetic phase fraction (SPF) were also assessed by flow cytometry. Mean ranks of TGF-β, nitrate, and SPF were significant among different groups (X2 = 12.01, P = 0.0025, X2 = 67.42, P = 0.000, X2 =...

  7. The case for iron

    International Nuclear Information System (INIS)

    Martin, J.H.; Gordon, R.M.; Fitzwater, S.E.

    1991-01-01

    Excess major nutrients occur in offshore areas ranging from the tropical equatorial Pacific to the polar Antarctic. In spite of the great ecological differences in these environments, the authors believe they share a common trait: iron deficiency. Here they present the case of iron; they point out that all of these areas are far from Fe-rich terrestrial sources and that atmospheric dust loads in these regions are among the lowest in the world. The authors summarize experiments performed in three nutrient-rich areas: The Gulf of Alaska, the Ross Sea, and the equatorial Pacific. In general, populations without added Fe doubled at rates 11-40% of the expected maxima at various temperatures. The additions of nanomole quantities of Fe increased these doubling rates by factors of 2-3. In spite of the lack of Fe, tightly coupled phytoplankton/zooplankton communities seem to inhabit these major nutrient-rich areas. Since Fe is required for the synthesis of chlorophyll and nitrate reductase, little chlorophyll is found and NH 3 is the favored N source. Normal rate values of specific productivity indicate that these populations are healthy, but limited by the insufficient Fe supply. When Fe becomes available either artificially in bottle experiments or in the environment as Fe-rich land masses are approached, diatoms quickly bloom, chlorophyll levels increase, and nutrient stocks are rapidly depleted. These combined results indicate that Fe availability is the primary factor controlling phytoplankton production in nutrient-rich areas of the open sea

  8. Redox reaction rates in shallow aquifers: Implications for nitrate transport in groundwater and streams

    Science.gov (United States)

    Tesoriero, Anthony J.

    2012-01-01

    Groundwater age and water chemistry data along flow paths from recharge areas to streams were used to evaluate the trends and transformations of agricultural chemicals. Results from this analysis indicate that median nitrate recharge concentrations in these agricultural areas have increased markedly over the last 50 years from 4 mg N/L in samples collected prior to 1983 to 7.5 mg N/L in samples collected since 1983. The effect that nitrate accumulation in shallow aquifers will have on drinking water quality and stream ecosystems is dependent on the rate of redox reactions along flow paths and on the age distribution of nitrate discharging to supply wells and streams.

  9. IRON DOME

    African Journals Online (AJOL)

    6 Israeli Navy 'First Arm of the Sea: The Successful Interception of the Iron Dome Rocket .... sky to destroy them whilst in flight to minimise civilian casualties. ..... Including The Moon and Celestial Bodies.53 Demeyere further emphasises the.

  10. Iron overdose

    Science.gov (United States)

    ... tracing) X-ray to detect and track iron tablets through the stomach and intestines Treatment may include: ... BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016: ...

  11. Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton

    Science.gov (United States)

    Botebol, Hugo; Lesuisse, Emmanuel; Šuták, Robert; Six, Christophe; Lozano, Jean-Claude; Schatt, Philippe; Vergé, Valérie; Kirilovsky, Amos; Morrissey, Joe; Léger, Thibaut; Camadro, Jean-Michel; Gueneugues, Audrey; Bowler, Chris; Blain, Stéphane; Bouget, François-Yves

    2015-01-01

    In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation. PMID:26553998

  12. Reduction of nitrate and nitrite salts under hydrothermal conditions

    International Nuclear Information System (INIS)

    Foy, B.R.; Dell'Orco, P.C.; Wilmanns, E.; McInroy, R.; Ely, J.; Robinson, J.M.; Buelow, S.J.

    1994-01-01

    The feasibility of reducing nitrate/nitrite salts under hydrothermal conditions for the treatment of aqueous mixed wastes stored in the underground tanks at the Department of Energy site at Hanford, Washington was studied. The reduction of nitrate and nitrite salts by reaction with EDTA using a tank waste simulant was examined at temperatures between 623K and 800K and pressures between 0.6 and 1.2 kbar. Continuous flow reactors were used to determine kinetics and products of reactions. All reactions were studied under pressures high enough to produce single phase conditions. The reactions are rapid, go to completion in less than a minute, and produce simple products, such as carbonate, nitrogen, and nitrous oxide gases. The experimental results demonstrate the ability of chemical reactions under hydrothermal conditions to reduce the nitrate and nitrite salts and destroy organic compounds in the waste mixtures

  13. Nitrate transport and transformation processes in unsaturated porous media

    Science.gov (United States)

    Tindall, James A.; Petrusak, Robin L.; McMahon, Peter B.

    1995-01-01

    A series of experiments was conducted on two contrasting agricultural soils to observe the influence of soil texture, preferential flow, and plants on nitrate transport and denitrification under unsaturated conditions. Calcium nitrate fertilizer was applied to the surface of four large undisturbed soil cores (30 cm diameter by 40 cm height). Two of the cores were a structured clay obtained from central Missouri and two were an unstructured fine sand obtained from central Florida. The cores were irrigated daily and maintained at a matric potential of -20 kPa, representative of soil tension in the rooting zone of irrigated agricultural fields. Volumetric water content (θ), concentration of nitrate-N in the soil solution, and nitrous oxide flux at the surface, 10, 20, and 30 cm were monitored daily. Leaching loss of surface-applied N03− -N was significant in both the sand and the clay. In unplanted sand cores, almost all of the applied nitrate was leached below 30 cm within 10 days. Gaseous N loss owing to denitrification was no greater than 2% of the nitrate-N applied to the unplanted sand cores and, in general, was less than 1 %. Although leaching was somewhat retarded in the clay cores, about 60% of the applied nitrate-N was leached from the unplanted clay soil in 5–6 weeks. Under unsaturated conditions, the clay had little to no tendency to denitrify despite the greater moisture content of the clay and retarded leaching of nitrate in the clay. The planted sand cores had surprisingly large gaseous N loss owing to denitrification, as much as 17% of the nitrate-N. Results from both the clay and sand experiments show that the dynamics of nitrate transport and transformation in unsaturated soils are affected by small, localized variations in the soil moisture content profile, the gaseous diffusion coefficient of the soil, the rate at which the nitrate pulse passes through the soil, the solubility of N2O and N2 and the diffusion of the gasses through the soil

  14. Influence oFe3+ Ions on Nitrate Removal by Autotrophic Denitrification Using Thiobacillus denitrificans

    Directory of Open Access Journals (Sweden)

    Z. Blažková

    2017-07-01

    Full Text Available he sulphur-based autotrophic denitrification process utilizing Thiobacillus denitrificans was studied experimentally as an alternative method of removing nitrates from industrial wastewater. The objective of the work was to examine the effect of ferric iron addition to the reaction mixture and determine optimal dosage for specific conditions. All experiments were carried out in anoxic batch bioreactor, and elemental sulphur was used as an electron donor. Compared to the control operation without ferric iron addition, significant increases in nitrates removal were demonstrated for the concentration of ferric iron equal to 0.1 mg L–1. However, under these conditions, increased nitrite content was detected in the reaction mixture which exceeds the limits for drinking water.

  15. [Removal of nitrate from groundwater using permeable reactive barrier].

    Science.gov (United States)

    Li, Xiu-Li; Yang, Jun-Jun; Lu, Xiao-Xia; Zhang, Shu; Hou, Zhen

    2013-03-01

    To provide a cost-effective method for the remediation of nitrate-polluted groundwater, column experiments were performed to study the removal of nitrate by permeable reactive barrier filled with fermented mulch and sand (biowall), and the mechanisms and influence factors were explored. The experimental results showed that the environmental condition in the simulated biowall became highly reduced after three days of operation (oxidation-reduction potential was below - 100 mV), which was favorable for the reduction of nitrate. During the 15 days of operation, the removal rate of nitrate nitrogen (NO3(-) -N) by the simulated biowall was 80%-90% (NO3(-)-N was reduced from 20 mg x L(-1) in the inlet water to 1.6 mg x L(-1) in the outlet water); the concentration of nitrite nitrogen (NO2(-) -N) in the outlet water was below 2.5 mg x L(-1); the concentration of ammonium nitrogen (NH4(+) -N) was low in the first two days but increased to about 12 mg x L(-1) since day three. The major mechanisms involved in the removal of nitrate nitrogen were adsorption and biodegradation. When increasing the water flow velocity in the simulated biowall, the removal rate of NO3(-) -N was reduced and the concentration of NH4(+) -N in the outlet water was significantly reduced. A simulated zeolite wall was set up following the simulated biowall and 98% of the NH4(+) -N could be removed from the water.

  16. Microbial and biogeochemical responses to projected future nitrate enrichment in the California upwelling system

    Directory of Open Access Journals (Sweden)

    Katherine Rose Marie Mackey

    2014-11-01

    Full Text Available Coastal California is a dynamic upwelling region where nitrogen (N and iron (Fe can both limit productivity and influence biogeochemistry over different spatial and temporal scales. With global change, the flux of nitrate from upwelling is expected to increase over the next century, potentially driving additional oceanic regions toward Fe limitation. In this study we explored the effect of changes in Fe/N ratio on native phytoplankton from five currently Fe-replete sites near the major California upwelling centers at Bodega Bay and Monterey Bay using nutrient addition incubation experiments. Despite the high nitrate levels (13-30 M in the upwelled water, phytoplankton at three of the five sites showed increased growth when 10 M nitrate was added. None of the sites showed enhanced growth following addition of 10 nM Fe. Nitrate additions favored slow sinking single-celled diatoms over faster sinking chain-forming diatoms, suggesting that future increases in nitrate flux could affect carbon and silicate export and alter grazer populations. In particular, solitary cells of Cylindrotheca were more abundant than the toxin-producing genus Pseudonitzschia following nitrate addition. These responses suggest the biogeochemistry of coastal California could change in response to future increases in nitrate, and multiple stressors like ocean acidification and hypoxia may further result in ecosystem shifts.

  17. ArcNLET: A GIS-based software to simulate groundwater nitrate load from septic systems to surface water bodies

    Science.gov (United States)

    Rios, J. Fernando; Ye, Ming; Wang, Liying; Lee, Paul Z.; Davis, Hal; Hicks, Rick

    2013-03-01

    Onsite wastewater treatment systems (OWTS), or septic systems, can be a significant source of nitrates in groundwater and surface water. The adverse effects that nitrates have on human and environmental health have given rise to the need to estimate the actual or potential level of nitrate contamination. With the goal of reducing data collection and preparation costs, and decreasing the time required to produce an estimate compared to complex nitrate modeling tools, we developed the ArcGIS-based Nitrate Load Estimation Toolkit (ArcNLET) software. Leveraging the power of geographic information systems (GIS), ArcNLET is an easy-to-use software capable of simulating nitrate transport in groundwater and estimating long-term nitrate loads from groundwater to surface water bodies. Data requirements are reduced by using simplified models of groundwater flow and nitrate transport which consider nitrate attenuation mechanisms (subsurface dispersion and denitrification) as well as spatial variability in the hydraulic parameters and septic tank distribution. ArcNLET provides a spatial distribution of nitrate plumes from multiple septic systems and a load estimate to water bodies. ArcNLET's conceptual model is divided into three sub-models: a groundwater flow model, a nitrate transport and fate model, and a load estimation model which are implemented as an extension to ArcGIS. The groundwater flow model uses a map of topography in order to generate a steady-state approximation of the water table. In a validation study, this approximation was found to correlate well with a water table produced by a calibrated numerical model although it was found that the degree to which the water table resembles the topography can vary greatly across the modeling domain. The transport model uses a semi-analytical solution to estimate the distribution of nitrate within groundwater, which is then used to estimate a nitrate load using a mass balance argument. The estimates given by ArcNLET are

  18. Impact of weather variability on nitrate leaching

    Science.gov (United States)

    Richards, Karl; Premrov, Alina; Hackett, Richard; Coxon, Catherine

    2016-04-01

    The loss of nitrate (NO3 - N) to water via leaching and overland flow contributes to eutrophication of freshwaters, transitional and near coastal waters with agriculture contributing significantly to nitrogen (N) loading to these water. Environmental regulations, such as the Nitrates and Water Framework Directives, have increased constraints on farmers to improve N management in regions at risk of NO3--N loss to water. In addition, farmers also have to manage their systems within a changing climate as the imapcts of climate change begin to impact resulting in more frequent extreme events such as floods and droughts. The objective of this study was to investigate the link between weather volatility and the concentration of leached NO3--N spring barley. Leaching was quantified under spring barley grown on a well-drained, gravelly sandy soil using ceramic cup samplers over 6 drainage years under the same farming practices and treatments. Soil solution NO3--N concentrations under spring barley grown by conventional inversion ploughing and reduced tillage were compared to weather parameters over the period. Weather was recorded at a national Met Eireann weather station on site. Soil solution NO3--N varied significantly between years. Within individual years NO3--N concentrations varied over the drainage season, with peak concentrations generally observed in the autumn time, decreasing thereafter. Under both treatments there was a three-fold difference in mean annual soil solution NO3--N concentration over the 6 years with no change in the agronomic practices (crop type, tillage type and fertiliser input). Soil solution nitrate concentrations were significantly influenced by weather parameters such as rainfall, effective drainage and soil moisture deficit. The impact of climate change in Ireland could lead to increased NO3--N loss to water further exacerbating eutrophication of sensitive estuaries. The increased impact on eutrophication of waters, related to climatic

  19. Solubility isotherms in ternary systems of samarium nitrate, water and nitrates of amidopyrine, benzotriazole

    International Nuclear Information System (INIS)

    Starikova, L.I.

    1991-01-01

    Solubility in the system of samarium nitrate-amidopyrine nitrate-water at 25 and 50 deg C was studied. Solubility isotherms consist of three branches, corresponding to crystallization of samarium nitrate tetrahydrate, amidopyrine nitrate and congruently soluble compounds of Sm(NO 3 ) 3 · 2C 13 H 17 ON 3 ·HNO 3 composition. Its thermal behaviour was studied. The system of samarium nitrate-benzotriazole nitrate-water is referred to eutonic type

  20. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability.

    Science.gov (United States)

    Marchetti, Adrian; Schruth, David M; Durkin, Colleen A; Parker, Micaela S; Kodner, Robin B; Berthiaume, Chris T; Morales, Rhonda; Allen, Andrew E; Armbrust, E Virginia

    2012-02-07

    In vast expanses of the oceans, growth of large phytoplankton such as diatoms is limited by iron availability. Diatoms respond almost immediately to the delivery of iron and rapidly compose the majority of phytoplankton biomass. The molecular bases underlying the subsistence of diatoms in iron-poor waters and the plankton community dynamics that follow iron resupply remain largely unknown. Here we use comparative metatranscriptomics to identify changes in gene expression associated with iron-stimulated growth of diatoms and other eukaryotic plankton. A microcosm iron-enrichment experiment using mixed-layer waters from the northeastern Pacific Ocean resulted in increased proportions of diatom transcripts and reduced proportions of transcripts from most other taxa within 98 h after iron addition. Hundreds of diatom genes were differentially expressed in the iron-enriched community compared with the iron-limited community; transcripts of diatom genes required for synthesis of photosynthesis and chlorophyll components, nitrate assimilation and the urea cycle, and synthesis of carbohydrate storage compounds were significantly overrepresented. Transcripts of genes encoding rhodopsins in eukaryotic phytoplankton were significantly underrepresented following iron enrichment, suggesting rhodopsins help cells cope with low-iron conditions. Oceanic diatoms appear to display a distinctive transcriptional response to iron enrichment that allows chemical reduction of available nitrogen and carbon sources along with a continued dependence on iron-free photosynthetic proteins rather than substituting for iron-containing functional equivalents present within their gene repertoire. This ability of diatoms to divert their newly acquired iron toward nitrate assimilation may underlie why diatoms consistently dominate iron enrichments in high-nitrate, low-chlorophyll regions.

  1. Catalyzed reduction of nitrate in aqueous solutions

    International Nuclear Information System (INIS)

    Haas, P.A.

    1994-08-01

    Sodium nitrate and other nitrate salts in wastes is a major source of difficulty for permanent disposal. Reduction of nitrate using aluminum metal has been demonstrated, but NH 3 , hydrazine, or organic compounds containing oxygen would be advantageous for reduction of nitrate in sodium nitrate solutions. Objective of this seed money study was to determine minimum conditions for reduction. Proposed procedure was batchwise heating of aqueous solutions in closed vessels with monitoring of temperatures and pressures. A simple, convenient apparatus and procedure were demonstrated for observing formation of gaseous products and collecting samples for analyses. The test conditions were 250 degree C and 1000 psi max. Any useful reduction of sodium nitrate to sodium hydroxide as the primary product was not found. The nitrate present at pHs 3 or NH 4 NO 3 is easily decomposed, and the effect of nitromethane at these low pHs was confirmed. When acetic acid or formic acid was added, 21 to 56% of the nitrate in sodium nitrate solutions was reduced by methanol or formaldehyde. With hydrazine and acetic acid, 73 % of the nitrate was decomposed to convert NaNO 3 to sodium acetate. With hydrazine and formic acid, 36% of the nitrate was decomposed. If these products are more acceptable for final disposal than sodium nitrate, the reagents are cheap and the conversion conditions would be practical for easy use. Ammonium acetate or formate salts did not significantly reduce nitrate in sodium nitrate solutions

  2. Removal of Selenium and Nitrate in Groundwater Using Organic Carbon-Based Reactive Mixtures

    Science.gov (United States)

    An, Hyeonsil; Jeen, Sung-Wook

    2016-04-01

    Treatment of selenium and nitrate in groundwater was evaluated through column experiments. Four columns consisting of reactive mixtures, either organic carbon-limestone (OC-LS) or organic carbon-zero valent iron (OC-ZVI), were used to determine the removal efficiency of selenium with different concentrations of nitrate. The source waters were collected from a mine site in Korea or were prepared artificially based on the mine drainage water or deionized water, followed by spiking of elevated concentrations of Se (40 mg/L) and nitrate (100 or 10 mg/L as NO3-N). The results for the aqueous chemistry showed that selenium and nitrate were effectively removed both in the mine drainage water and deionized water-based artificial input solution. However, the removal of selenium was delayed when selenium and nitrate coexisted in the OC-LS columns. The removal of selenium was not significant when the influent nitrate concentration was 100 mg/L as NO3-N, while most of nitrate was gradually removed within the columns. In contrast, 94% of selenium was removed when the influent nitrate concentration was reduced to 10 mg/L as NO3-N. In the OC-ZVI column, selenium and nitrate was removed almost simultaneously and completely even with the high nitrate concentration; however, a high concentration of ammonia was produced as a by-product of abiotic reaction between ZVI and nitrate. The elemental analysis for the solid samples after the termination of the experiments showed that selenium was accumulated in the reactive materials where removal of aqueous-phase selenium mostly occurred. The X-ray absorption near-edge structure (XANES) study indicated that selenium existed in the forms of SeS2 and Se(0) in the OC-LS column, while selenium was present in the forms of FeSe, SeS2 and absorbed Se(IV) in the OC-ZVI column. This study shows that OC-based reactive mixtures have an ability to remove selenium and nitrate in groundwater. However, the removal of selenium was influenced by the high

  3. Iron oxides stimulate microbial monochlorobenzene in situ transformation in constructed wetlands and laboratory systems

    International Nuclear Information System (INIS)

    Schmidt, Marie; Wolfram, Diana; Birkigt, Jan; Ahlheim, Jörg; Paschke, Heidrun; Richnow, Hans-Hermann; Nijenhuis, Ivonne

    2014-01-01

    Natural wetlands are transition zones between anoxic ground and oxic surface water which may enhance the (bio)transformation potential for recalcitrant chloro-organic contaminants due to the unique geochemical conditions and gradients. Monochlorobenzene (MCB) is a frequently detected groundwater contaminant which is toxic and was thought to be persistent under anoxic conditions. Furthermore, to date, no degradation pathways for anoxic MCB removal have been proven in the field. Hence, it is important to investigate MCB biodegradation in the environment, as groundwater is an important drinking water source in many European countries. Therefore, two pilot-scale horizontal subsurface-flow constructed wetlands, planted and unplanted, were used to investigate the processes in situ contributing to the biotransformation of MCB in these gradient systems. The wetlands were fed with anoxic MCB-contaminated groundwater from a nearby aquifer in Bitterfeld, Germany. An overall MCB removal was observed in both wetlands, whereas just 10% of the original MCB inflow concentration was detected in the ponds. In particular in the gravel bed of the planted wetland, MCB removal was highest in summer season with 73 ± 9% compared to the unplanted one with 40 ± 5%. Whereas the MCB concentrations rapidly decreased in the transition zone of unplanted gravel to the pond, a significant MCB removal was already determined in the anoxic gravel bed of the planted system. The investigation of hydro-geochemical parameters revealed that iron and sulphate reduction were relevant redox processes in both wetlands. In parallel, the addition of ferric iron or nitrate stimulated the mineralisation of MCB in laboratory microcosms with anoxic groundwater from the same source, indicating that the potential for anaerobic microbial degradation of MCB is present at the field site. - Highlights: • MCB removal in anoxic gravel bed of a planted and an unplanted constructed wetland was accompanied by iron

  4. Iron oxides stimulate microbial monochlorobenzene in situ transformation in constructed wetlands and laboratory systems

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Marie; Wolfram, Diana; Birkigt, Jan [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research — UFZ, Permoserstrasse 15, 04318 Leipzig (Germany); Ahlheim, Jörg [Department of Groundwater Remediation, Helmholtz Centre for Environmental Research — UFZ, Permoserstrasse 15, 04318 Leipzig (Germany); Paschke, Heidrun [Department of Analytical Chemistry, Helmholtz Centre for Environmental Research — UFZ, Permoserstrasse 15, 04318 Leipzig (Germany); Richnow, Hans-Hermann [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research — UFZ, Permoserstrasse 15, 04318 Leipzig (Germany); Nijenhuis, Ivonne, E-mail: ivonne.nijenhuis@ufz.de [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research — UFZ, Permoserstrasse 15, 04318 Leipzig (Germany)

    2014-02-01

    Natural wetlands are transition zones between anoxic ground and oxic surface water which may enhance the (bio)transformation potential for recalcitrant chloro-organic contaminants due to the unique geochemical conditions and gradients. Monochlorobenzene (MCB) is a frequently detected groundwater contaminant which is toxic and was thought to be persistent under anoxic conditions. Furthermore, to date, no degradation pathways for anoxic MCB removal have been proven in the field. Hence, it is important to investigate MCB biodegradation in the environment, as groundwater is an important drinking water source in many European countries. Therefore, two pilot-scale horizontal subsurface-flow constructed wetlands, planted and unplanted, were used to investigate the processes in situ contributing to the biotransformation of MCB in these gradient systems. The wetlands were fed with anoxic MCB-contaminated groundwater from a nearby aquifer in Bitterfeld, Germany. An overall MCB removal was observed in both wetlands, whereas just 10% of the original MCB inflow concentration was detected in the ponds. In particular in the gravel bed of the planted wetland, MCB removal was highest in summer season with 73 ± 9% compared to the unplanted one with 40 ± 5%. Whereas the MCB concentrations rapidly decreased in the transition zone of unplanted gravel to the pond, a significant MCB removal was already determined in the anoxic gravel bed of the planted system. The investigation of hydro-geochemical parameters revealed that iron and sulphate reduction were relevant redox processes in both wetlands. In parallel, the addition of ferric iron or nitrate stimulated the mineralisation of MCB in laboratory microcosms with anoxic groundwater from the same source, indicating that the potential for anaerobic microbial degradation of MCB is present at the field site. - Highlights: • MCB removal in anoxic gravel bed of a planted and an unplanted constructed wetland was accompanied by iron

  5. High frequency measurement of nitrate concentration in the Lower Mississippi River, USA

    Science.gov (United States)

    Duan, Shuiwang; Powell, Rodney T.; Bianchi, Thomas S.

    2014-11-01

    Nutrient concentrations in the Mississippi River have increased dramatically since the 1950s, and high frequency measurements on nitrate concentration are required for accurate load estimations and examinations on nitrate transport and transformation processes. This three year record of high temporal resolution (every 2-3 h) data clearly illustrates the importance of high frequency sampling in improving load estimates and resolving variations in nitrate concentration with river flow and tributary inputs. Our results showed large short-term (days to weeks) variations in nitrate concentration but with no diurnal patterns. A repeatable and pronounced seasonal pattern of nitrate concentration was observed, and showed gradual increases from the lowest values in September (during base-flow), to the highest in June - which was followed by a rapid decrease. This seasonal pattern was only moderately linked with water discharge, and more controlled by nitrogen transformation/export from watershed as well as mixing patterns of the two primary tributaries (the upper Mississippi and the Ohio Rivers), which have distinctly different nitrate concentrations and flow patterns. Based on continuous in situ flow measurements, we estimated 554-886 × 106 kg of nitrate-N was exported from the Mississippi River system during years 2004-2006, which was <9% and <16% lower than U.S. Geological Survey's (USGS) estimates using their LOADEST or composite methods, respectively. USGS methods generally overestimated nitrate loads during rising stages and underestimated the loads during falling stages. While changes in nitrate concentrations in large rivers are generally not as responsive to alterations in diurnal inputs and/or watershed hydrology as small rivers, high-frequency water quality sampling would help in monitoring short-term (days to weeks) variations in nutrient concentration patterns and thus improve the accuracy of nutrient flux estimates.

  6. Electrochemical processing of nitrate waste solutions

    Energy Technology Data Exchange (ETDEWEB)

    Genders, D.; Weinberg, N.; Hartsough, D. (Electrosynthesis Co., Inc., Cheektowaga, NY (United States))

    1992-10-07

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F[sup [minus

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich foods, especially during certain stages of life when more iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... that are good sources of iron include dried beans, dried fruits, eggs, lean red meat, salmon, iron- ... of iron, including iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark ...

  9. Iron in diet

    Science.gov (United States)

    ... Reasonable amounts of iron are also found in lamb, pork, and shellfish. Iron from vegetables, fruits, grains, ... strawberries, tomatoes, and potatoes) also increase iron absorption. Cooking foods in a cast-iron skillet can also ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... from developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, ... iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron- ... iron-deficiency anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for your body to absorb iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, ... iron deficiency. Endurance athletes lose iron through their gastrointestinal tracts. They also lose iron through the breakdown of ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron in your body is low. For this reason, other iron tests are also done. Ferritin measure ... iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... develop new therapies for conditions that affect the balance of iron in the body and lead to ... Disease Control and Prevention) Iron - Health Professional Fact Sheet (NIH) Iron Dietary Supplement Fact Sheet (NIH) Iron- ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... to moderate iron-deficiency anemia, or red blood cell transfusion for severe iron-deficiency anemia. You may ... body needs iron to make healthy red blood cells. Iron-deficiency anemia usually develops over time because ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... enough iron-rich foods, such as meat and fish, may result in you getting less than the ... pregnancy. Good sources of iron are meat, poultry, fish, and iron-fortified foods that have iron added. ...

  17. Iron Dextran Injection

    Science.gov (United States)

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... and severity. Treatments may include iron supplements, procedures, surgery, and dietary ... iron supplements, also called iron pills or oral iron, by mouth once or several times a ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, eggs, ... is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...

  20. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  1. Iron overload impact on P-ATPases.

    Science.gov (United States)

    Sousa, Leilismara; Pessoa, Marco Tulio C; Costa, Tamara G F; Cortes, Vanessa F; Santos, Herica L; Barbosa, Leandro Augusto

    2018-03-01

    Iron is a chemical element that is active in the fundamental physiological processes for human life, but its burden can be toxic to the body, mainly because of the stimulation of membrane lipid peroxidation. For this reason, the action of iron on many ATPases has been studied, especially on P-ATPases, such as the Na + ,K + -ATPase and the Ca 2+ -ATPase. On the Fe 2+ -ATPase activity, the free iron acts as an activator, decreasing the intracellular Fe 2+ and playing a protection role for the cell. On the Ca 2+ -ATPase activity, the iron overload decreases the enzyme activity, raising the cytoplasmic Ca 2+ and decreasing the sarco/endoplasmic reticulum and the Golgi apparatus Ca 2+ concentrations, which could promote an enzyme oxidation, nitration, and fragmentation. However, the iron overload effect on the Na + ,K + -ATPase may change according to the tissue expressions. On the renal cells, as well as on the brain and the heart, iron promotes an enzyme inactivation, whereas its effect on the erythrocytes seems to be the opposite, directly stimulating the ATPase activity, or stimulating it by signaling pathways involving ROS and PKC. Modulations in the ATPase activity may impair the ionic transportation, which is essential for cell viability maintenance, inducing irreversible damage to the cell homeostasis. Here, we will discuss about the iron overload effect on the P-ATPases, such as the Na + ,K + -ATPase, the Ca 2+ -ATPase, and the Fe 2+ -ATPase.

  2. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition.

    Science.gov (United States)

    Wang, Y H; Garvin, D F; Kochian, L V

    2001-09-01

    A subtractive tomato (Lycopersicon esculentum) root cDNA library enriched in genes up-regulated by changes in plant mineral status was screened with labeled mRNA from roots of both nitrate-induced and mineral nutrient-deficient (-nitrogen [N], -phosphorus, -potassium [K], -sulfur, -magnesium, -calcium, -iron, -zinc, and -copper) tomato plants. A subset of cDNAs was selected from this library based on mineral nutrient-related changes in expression. Additional cDNAs were selected from a second mineral-deficient tomato root library based on sequence homology to known genes. These selection processes yielded a set of 1,280 mineral nutrition-related cDNAs that were arrayed on nylon membranes for further analysis. These high-density arrays were hybridized with mRNA from tomato plants exposed to nitrate at different time points after N was withheld for 48 h, for plants that were grown on nitrate/ammonium for 5 weeks prior to the withholding of N. One hundred-fifteen genes were found to be up-regulated by nitrate resupply. Among these genes were several previously identified as nitrate responsive, including nitrate transporters, nitrate and nitrite reductase, and metabolic enzymes such as transaldolase, transketolase, malate dehydrogenase, asparagine synthetase, and histidine decarboxylase. We also identified 14 novel nitrate-inducible genes, including: (a) water channels, (b) root phosphate and K(+) transporters, (c) genes potentially involved in transcriptional regulation, (d) stress response genes, and (e) ribosomal protein genes. In addition, both families of nitrate transporters were also found to be inducible by phosphate, K, and iron deficiencies. The identification of these novel nitrate-inducible genes is providing avenues of research that will yield new insights into the molecular basis of plant N nutrition, as well as possible networking between the regulation of N, phosphorus, and K nutrition.

  3. Temporal and spatial variations in groundwater quality resulting from policy-induced reductions in nitrate leaching to the Rabis Creek aquifer, Denmark

    Science.gov (United States)

    Jessen, Søren; Engesgaard, Peter; Thorling, Lærke; Müller, Sascha; Leskelä, Jari; Postma, Dieke

    2016-04-01

    -gradient along the transect. During the 25 year monitoring period the redoxcline has moved by one to a few decimeters, as controlled by the aquifer sediment's pyrite content. Further, the data indicate that no zero-valent sulfur is precipitated during pyrite oxidation in the aquifer, while most of the pyritic iron is precipitated. Nickel (Ni2+) is released at the redoxcline resulting in concentrations more than twice the 20 μg/L Danish drinking water limit. The data clearly indicate that this Ni2+ contamination can be ascribed to the agricultural nitrate loading and would not occur under natural conditions. A 2D reactive transport model was constructed (PHAST 3) to simulate the temporal and spatial development in nitrate and sulfate concentrations in the aquifer while taking into account effects of dispersion. The model predictions indicate that sulfate concentrations, despite dispersive mixing, is still increasing along down-gradient stretches of the aquifer, where flow paths surface from the deeper up-gradient part of the aquifer, to eventually discharge into the Rabis Creek.

  4. Nitrous oxide production kinetics during nitrate reduction in river sediments.

    Science.gov (United States)

    Laverman, Anniet M; Garnier, Josette A; Mounier, Emmanuelle M; Roose-Amsaleg, Céline L

    2010-03-01

    A significant amount of nitrogen entering river basins is denitrified in riparian zones. The aim of this study was to evaluate the influence of nitrate and carbon concentrations on the kinetic parameters of nitrate reduction as well as nitrous oxide emissions in river sediments in a tributary of the Marne (the Seine basin, France). In order to determine these rates, we used flow-through reactors (FTRs) and slurry incubations; flow-through reactors allow determination of rates on intact sediment slices under controlled conditions compared to sediment homogenization in the often used slurry technique. Maximum nitrate reduction rates (R(m)) ranged between 3.0 and 7.1microg Ng(-1)h(-1), and affinity constant (K(m)) ranged from 7.4 to 30.7mg N-NO(3)(-)L(-1). These values were higher in slurry incubations with an R(m) of 37.9microg Ng(-1)h(-1) and a K(m) of 104mg N-NO(3)(-)L(-1). Nitrous oxide production rates did not follow Michaelis-Menten kinetics, and we deduced a rate constant with an average of 0.7 and 5.4ng Ng(-1)h(-1) for FTR and slurry experiments respectively. The addition of carbon (as acetate) showed that carbon was not limiting nitrate reduction rates in these sediments. Similar rates were obtained for FTR and slurries with carbon addition, confirming the hypothesis that homogenization increases rates due to release of and increasing access to carbon in slurries. Nitrous oxide production rates in FTR with carbon additions were low and represented less than 0.01% of the nitrate reduction rates and were even negligible in slurries. Maximum nitrate reduction rates revealed seasonality with high potential rates in fall and winter and low rates in late spring and summer. Under optimal conditions (anoxia, non-limiting nitrate and carbon), nitrous oxide emission rates were low, but significant (0.01% of the nitrate reduction rates). Copyright 2009 Elsevier Ltd. All rights reserved.

  5. The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers

    KAUST Repository

    Satyawali, Yamini

    2011-04-01

    Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)3) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)3), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs. © 2010 Elsevier B.V.

  6. Determination, source identification and GIS mapping for nitrate concentration in ground water from Bara aquifer

    International Nuclear Information System (INIS)

    Elfaki Taha, G. M. E.

    2010-09-01

    The study was carried-out determine the level of nitrate concentration in well water from Bara aquifer in North Kordofan State. The analysis was conducted for 69 wells from different villages within Bara basin. Physical characteristics were measured including pH, electrical conductivity and dissolved oxygen. Spectrophotometric analysis was used to determine nitrate, nitrite and ammonia. Chloride and hardness were determined telemetrically and flame photometer was used for major elements namely sodium and potassium, whereas atomic absorption spectroscopy was used for trace elements namely iron, manganese, zinc and copper. Results revealed that nitrate concentration range from 9.68 to 891 mg/1 in sampled wells with 81% exceeding the maximum permissible limits set for drinking water by WHO and SSMO. Animal waste and organic soil nitrogen were found to be the sources of nitrate in these wells as indicated by 15 N%. Majority of wells with high nitrate are located in the north and the north-east part of the study area as shown by GIS predictive map. On the average, the concentrations of sodium, potassium, calcium, magnesium, iron, manganese, zinc and copper were found to be within WHO limits for drinking water. (Author)

  7. Dietary nitrate protects submandibular gland from hyposalivation in ovariectomized rats via suppressing cell apoptosis.

    Science.gov (United States)

    Xu, Yipu; Pang, Baoxing; Hu, Liang; Feng, Xiaoyu; Hu, Lei; Wang, Jingsong; Zhang, Chunmei; Wang, Songlin

    2018-02-26

    Xerostomia, a major oral symptom of menopause, is a subjective feeling of dry mouth associated with oral pain and difficulties in deglutition and speech, which significantly reduces patient's quality of life. Dietary nitrate, which can be converted to nitric oxide, has multiple physiological functions in the body, including antioxidant activity and vasodilatation; however, its protective effect against xerostomia remains poorly understood. The present study aimed to evaluate the effects of dietary nitrate on estrogen deficiency-induced xerostomia. We established an ovariectomized (OVX) rat model, which included five groups: sham-operated, OVX, OVX + 0.4 mM nitrate, OVX + 2 mM nitrate, and OVX + 4 mM nitrate (n = 6). After ovariectomy, animals in the nitrate treatment groups received appropriate amounts of sodium nitrate dissolved in distilled water for 3 months. The results showed that nitrate treatment reduced body weight and water intake, and increased serum nitrate and nitrite levels. Furthermore, nitrate uptake increased saliva secretion as evidenced by saliva flow rates and aquaporin 5 expression, and alleviated histological lesions as evidenced by reduction of the fibrotic area and cell atrophy in the salivary glands. Although protective effects of nitrate against estrogen deficiency-induced xerostomia were observed at all doses, treatment with 2 mM nitrate was more effective than that with 0.4 mM and 4 mM nitrate. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and caspase-3 expression analyses showed that nitrate also protected cells from apoptosis, possibly through upregulation of Cu-Zn superoxide dismutase (Cu-Zn SOD) known to inhibit oxidative stress-related apoptosis. Our findings indicate that nitrate could improve functional activity of the salivary glands in OVX rats by suppressing apoptosis and upregulating Cu-Zn SOD expression, suggesting that dietary nitrate may potentially prevent hyposalivation in menopausal

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Research Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  9. Efficiency of nitrate uptake in spinach : impact of external nitrate concentration and relative growth rate on nitrate influx and efflux

    NARCIS (Netherlands)

    Ter Steege, MW; Stulen, [No Value; Wiersema, PK; Posthumus, F; Vaalburg, W

    1999-01-01

    Regulation of nitrate influx and efflux in spinach (Spinacia oleracea L., cv. Subito), was studied in short-term label experiments with N-13- and N-15-nitrate. Nitrate fluxes were examined in relation to the N demand for growth, defined as relative growth rate (RGR) times plant N concentration.

  10. Nitrate removal by Fe0/Pd/Cu nano-composite in groundwater.

    Science.gov (United States)

    Liu, Hongyuan; Guo, Min; Zhang, Yan

    2014-01-01

    Nitrate pollution in groundwater shows a great threat to the safety of drinking water. Chemical reduction by zero-valent iron is being considered as a promising technique for nitrate removal from contaminated groundwater. In this paper, Fe0/Pd/Cu nano-composites were prepared by the liquid-phase reduction method, and batch experiments of nitrate reduction by the prepared Fe0/Pd/Cu nano-composites under various operating conditions were carried out. It has been found that nano-Fe0/Pd/Cu composites processed dual functions: catalytic reduction and chemical reduction. The introduction of Pd and Cu not only improved nitrate removal rate, but also reduced the generation of ammonia. Nitrate removal rate was affected by the amount of Fe0/Pd/Cu, initial nitrate concentration, solution pH, dissolved oxygen (DO), reaction temperature, the presence of anions, and organic pollutant. Moreover, nitrate reduction by Fe0/Pd/Cu composites followed the pseudo-first-order reaction kinetics. The removal rate of nitrate and total nitrogen were about 85% and 40.8%, respectively, under the reaction condition of Fe-6.0%Pd-3.0%Cu amount of 0.25 g/L, pH value of 7.1, DO of 0.42 mg/L, and initial nitrate concentration of 100 mg/L. Compared with the previous studies with Fe0 alone or Fe-Cu, nano-Fe-6%Pd-3%Cu composites showed a better selectivity to N2.

  11. Development of a Small-Scale, High Efficiency Bioremediation System for Removing Nitrate from Nursery Runoff Water

    Science.gov (United States)

    Nitrate concentrations in runoff water from the nursery ranged from 70 to 253 mg NO3-N/L. An estimated 62 to 67% of the nitrate applied during fertigation events left the production site in runoff water. Irrigation losses during these events accounted for 36 to 49% of the amount applied, with flow r...

  12. Iron and iron derived radicals

    International Nuclear Information System (INIS)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fast! Think small! In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab

  13. Thermal Decomposition Of Hydroxylamine Nitrate

    Science.gov (United States)

    Oxley, Jimmie C.; Brower, Kay R.

    1988-05-01

    used hydroxylamine nitrate decomposes within a few minutes in the temperature range 130-140°C. Added ammonium ion is converted to N2, while hydrazinium ion is converted to HN3. Nitrous acid is an intermediate and its formation is rate-determining. A hygride transfer process is postulated. The reaction pathways have been elucidated by use of N tracers.

  14. Nitrate and bicarbonate selective CHEMFETs

    NARCIS (Netherlands)

    Antonisse, M.M.G.; Engbersen, Johannes F.J.; Reinhoudt, David

    1995-01-01

    The development of durable anion selective CHEMFET micro sensors is described. Selectivity in these sensors is either obtained from differences in hydration energy of the anions (the Hlofmeister series, giving nitrate selectivity) or by introduction of a new class of uranyl salophene ionophores

  15. Electrocnecical behaviour of zirconium during its anodic polarization in nitrate solutions

    International Nuclear Information System (INIS)

    Stabrovskij, A.I.; Karasev, A.F.

    1983-01-01

    Electrochemical behaviour of zirconium during its anodic polarization in nitrate solutions is investigated in detail to find the method of its complete dissolution. A study has been made of the influence of varioUs factors: current density electric potential, composition and temperature of the solution, anodic polarization duration on the Zr anodic polarization in nitric acid, on the maximum permissible current density and on the zirconium yield to the solution. The zirconium polarization decreases with an acid concentration and temperature increase and increases with the current density. Iron nitrate additions to nitric acid decrease, while ammonium fluoride additions increase zirconium yield into the solution

  16. Study of calcium chloride and calcium nitrate purification on inorganic sorbents

    International Nuclear Information System (INIS)

    Vasil'eva, L.V.; Knyazeva, A.N.; Fakeev, A.A.; Belyaeva, N.A.; Morozov, V.I.; Kucherova, V.V.

    1986-01-01

    Purification of calcium chloride and calcium nitrate from iron, chromium, manganese and cobalt impurities by sorption on some inorganic collectors are considered in this article. Study was conducted by means of radioactive-tracer technique at concurrent use of several γ-radioactive isotopes. As a collectors were used hydrated aluminium and zirconium oxides. Dependence of effectiveness of precipitation by collectors on ph-value of medium, quantity of collector, nature and concentration of components is studied. Optimal parameters of purification of calcium chloride and calcium nitrate are defined.

  17. A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom.

    Science.gov (United States)

    Tsuda, Atsushi; Takeda, Shigenobu; Saito, Hiroaki; Nishioka, Jun; Nojiri, Yukihiro; Kudo, Isao; Kiyosawa, Hiroshi; Shiomoto, Akihiro; Imai, Keiri; Ono, Tsuneo; Shimamoto, Akifumi; Tsumune, Daisuke; Yoshimura, Takeshi; Aono, Tatsuo; Hinuma, Akira; Kinugasa, Masatoshi; Suzuki, Koji; Sohrin, Yoshiki; Noiri, Yoshifumi; Tani, Heihachiro; Deguchi, Yuji; Tsurushima, Nobuo; Ogawa, Hiroshi; Fukami, Kimio; Kuma, Kenshi; Saino, Toshiro

    2003-05-09

    We have performed an in situ test of the iron limitation hypothesis in the subarctic North Pacific Ocean. A single enrichment of dissolved iron caused a large increase in phytoplankton standing stock and decreases in macronutrients and dissolved carbon dioxide. The dominant phytoplankton species shifted after the iron addition from pennate diatoms to a centric diatom, Chaetoceros debilis, that showed a very high growth rate, 2.6 doublings per day. We conclude that the bioavailability of iron regulates the magnitude of the phytoplankton biomass and the key phytoplankton species that determine the biogeochemical sensitivity to iron supply of high-nitrate, low-chlorophyll waters.

  18. Nitrate Removal from Ground Water: A Review

    OpenAIRE

    Archna; Sharma, Surinder K.; Sobti, Ranbir Chander

    2012-01-01

    Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion ex...

  19. Microbial dissimilatory iron(III) reduction: Studies on the mechanism and on processes of environmental relevance

    OpenAIRE

    Jahn, Michael

    2005-01-01

    Many microbes are able to respire aerobically oxygen or anaerobically other electron acceptors for example sulphate, nitrate, manganese(IV) or Fe(III). As iron minerals are widespread in nature, dissimilatory iron(III) reduction by different microorganisms is a very important process of anaerobic respiration. The general goal of this work was to improve the knowledge of processes, in which iron-reducing microbes are said to play an important role. For this purpose, in one part the focus wa...

  20. Application of sorption method on hydroxides for purification of some reactive from iron(III) markings

    International Nuclear Information System (INIS)

    Rakhmonberdiev, A.D.; Khamidov, B.O.

    1986-01-01

    The method of purification of solutions of citric acid, tartaric acid and their salts, potassium hydroxide, potassium nitrate and chloride, sodium perchlorate from iron (III) impurities by means of sorption method on zirconium hydroxide is elaborated. The control of iron(III) content in solutions is conducted by inversion voltammetry method with mercury-graphite electrode. It is defined that complete sorption of iron (III) ions achieves at ph =4÷14.

  1. Formation kinetics and abundance of organic nitrates in α-pinene ozonolysis

    Science.gov (United States)

    Berkemeier, Thomas; Ammann, Markus; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-04-01

    Formation of organic nitrates affects the total atmospheric budget of oxidized nitrogen (NOy) and alters the total aerosol mass yield from secondary sources. We investigated the formation of organic nitrate species during ozonolysis of α-pinene and subsequent formation of secondary organic aerosols (SOA) using the short-lived radioactive tracer 13N inside an aerosol flow reactor (Ammann et al., 2001). The results represent direct measurements of the organic nitrate content of α-pinene secondary aerosol and give insight into the kinetics of organic nitrate formation. Organic nitrates constituted up to 40 % of aerosol mass with a pronounced influence during the initial period of particle growth. Kinetic modelling, as well as additional experiments using OH scavengers and UV irradiation, suggests that organic peroxy radicals (RO2) from the reaction of α-pinene with secondarily produced OH are important intermediates in the organic nitrate formation process. Direct oxidation of α-pinene by NO3 was found to be a less efficient pathway for formation of particle phase nitrate. The organic nitrate content decreased very slightly with an increase of relative humidity on the experimental time scale. The experiments show a tight correlation between organic nitrate content and SOA number concentrations, implying that organic nitrates play an important role in nucleation and growth of nanoparticles. Since present in large amounts in organic aerosol, organic nitrates deposited in the lung might have implications for human health as they release nitric acid upon hydrolysis, especially in regions influenced by urban pollution and large sources of monoterpene SOA precursors. References Ammann et al. (2001) Radiochimica Acta 89, 831.

  2. Extending hydraulic lifetime of iron walls

    International Nuclear Information System (INIS)

    Mackenzie, P.D.; Sivavec, T.M.; Horney, D.P.

    1997-01-01

    Iron walls for control of groundwaters contaminated with chlorinated solvents and reducible metals are becoming much more widely used and field studies of this technology have proven successful to date. However, there is still much uncertainty in predicting long-term performance. This work focuses on two factors affecting the lifetime of the iron media: plugging at the treatment zone entrance and precipitation in the bulk iron media. Plugging at the system entrance is due principally to dissolved oxygen in the incoming water and is an issue in aerobic aquifers or in ex-situ canister tests. In an in-situ treatment system, plugging would result in a dramatic reduction in flow through the iron zone. Designs to minimize plugging in field applications include use of larger iron particles and admixing sand of comparable size with the iron particles. Mineral precipitation in the bulk iron media can lead to porosity losses in the media, again reducing flow through the treatment zone. Decreases in reactivity of the iron media may also occur. The nature of the mineral precipitation and the factors that affect extent of mineral precipitation are examined by a variety of tools, including tracer tests, aqueous inorganic profiles, and surface analysis techniques. At short treatment times, measured porosity losses are due mainly to entrapment of a film of H 2 gas on the iron surfaces and also to Fe(OH) 2 precipitation. Over longer treatment times precipitation of Fe(OH) 2 and FeCO 3 in low carbonate waters and of Fe(OH) 2 , FeCO 3 and CaCO 3 in higher carbonate waters will begin to dominate porosity losses. Preliminary results of an on-going study to control pH in an iron zone by admixing iron sulfide with iron show no difference in extent of carbonate precipitation versus a 100% iron system, suggesting that these systems are supersaturated with respect to carbonate precipitation

  3. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed with...

  4. Interaction in triple systems of neodymium nitrate, water and nitrates of trimethylammonium and tetramethylammonium

    International Nuclear Information System (INIS)

    Boeva, M.K.; Zhuravlev, E.F.

    1977-01-01

    At 20 and 40 deg C the mutual solubility is studied in systems neodymium nitrate-water-trimethylamine nitrate and neodymium nitrate-water-tetramethylammonium nitrate. It has been established that the above systems belong to those with chemical interaction of the components. The compounds have been isolated preparatively, their composition has been confirmed analytically, and their thermal behaviour studied

  5. Dietary nitrate improves vascular function in patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled study123

    Science.gov (United States)

    Velmurugan, Shanti; Gan, Jasmine Ming; Rathod, Krishnaraj S; Khambata, Rayomand S; Ghosh, Suborno M; Hartley, Amy; Van Eijl, Sven; Sagi-Kiss, Virag; Chowdhury, Tahseen A; Curtis, Mike; Kuhnle, Gunter GC; Wade, William G; Ahluwalia, Amrita

    2016-01-01

    Background: The beneficial cardiovascular effects of vegetables may be underpinned by their high inorganic nitrate content. Objective: We sought to examine the effects of a 6-wk once-daily intake of dietary nitrate (nitrate-rich beetroot juice) compared with placebo intake (nitrate-depleted beetroot juice) on vascular and platelet function in untreated hypercholesterolemics. Design: A total of 69 subjects were recruited in this randomized, double-blind, placebo-controlled parallel study. The primary endpoint was the change in vascular function determined with the use of ultrasound flow-mediated dilatation (FMD). Results: Baseline characteristics were similar between the groups, with primary outcome data available for 67 patients. Dietary nitrate resulted in an absolute increase in the FMD response of 1.1% (an ∼24% improvement from baseline) with a worsening of 0.3% in the placebo group (P nitrate group, showing a trend (P = 0.06) to improvement in comparison with the placebo group. Dietary nitrate also caused a small but significant reduction (7.6%) in platelet-monocyte aggregates compared with an increase of 10.1% in the placebo group (P = 0.004), with statistically significant reductions in stimulated (ex vivo) P-selectin expression compared with the placebo group (P nitrate were detected. The composition of the salivary microbiome was altered after the nitrate treatment but not after the placebo treatment (P nitrate treatment; of those taxa present, 2 taxa were responsible for >1% of this change, with the proportions of Rothia mucilaginosa trending to increase and Neisseria flavescens (P nitrate treatment relative to after placebo treatment. Conclusions: Sustained dietary nitrate ingestion improves vascular function in hypercholesterolemic patients. These changes are associated with alterations in the oral microbiome and, in particular, nitrate-reducing genera. Our findings provide additional support for the assessment of the potential of dietary nitrate as a

  6. Method of producing thin cellulose nitrate film

    International Nuclear Information System (INIS)

    Lupica, S.B.

    1975-01-01

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent

  7. 21 CFR 172.160 - Potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a curing...

  8. Contextualizing Wetlands Within a River Network to Assess Nitrate Removal and Inform Watershed Management

    Science.gov (United States)

    Czuba, Jonathan A.; Hansen, Amy T.; Foufoula-Georgiou, Efi; Finlay, Jacques C.

    2018-02-01

    Aquatic nitrate removal depends on interactions throughout an interconnected network of lakes, wetlands, and river channels. Herein, we present a network-based model that quantifies nitrate-nitrogen and organic carbon concentrations through a wetland-river network and estimates nitrate export from the watershed. This model dynamically accounts for multiple competing limitations on nitrate removal, explicitly incorporates wetlands in the network, and captures hierarchical network effects and spatial interactions. We apply the model to the Le Sueur Basin, a data-rich 2,880 km2 agricultural landscape in southern Minnesota and validate the model using synoptic field measurements during June for years 2013-2015. Using the model, we show that the overall limits to nitrate removal rate via denitrification shift between nitrate concentration, organic carbon availability, and residence time depending on discharge, characteristics of the waterbody, and location in the network. Our model results show that the spatial context of wetland restorations is an important but often overlooked factor because nonlinearities in the system, e.g., deriving from switching of resource limitation on denitrification rate, can lead to unexpected changes in downstream biogeochemistry. Our results demonstrate that reduction of watershed-scale nitrate concentrations and downstream loads in the Le Sueur Basin can be most effectively achieved by increasing water residence time (by slowing the flow) rather than by increasing organic carbon concentrations (which may limit denitrification). This framework can be used toward assessing where and how to restore wetlands for reducing nitrate concentrations and loads from agricultural watersheds.

  9. Nitrate removal through combination of nanofiltration and electrocatalysis; Nitratentfernung durch Kombination von Nanofiltration und Elektrokatalyse

    Energy Technology Data Exchange (ETDEWEB)

    Roehricht, M.; Stadlbauer, E.A.; Happel, H. [Fachhochschule Giessen (Germany). Zentrum fuer Umwelttechnik

    1999-07-01

    In a new process combination, nitrate-containing ground water is first of all separated by nanofiltration into a concentrate stream (some 25 %) and a largely nitrate-free permeate (75 %). Then the enriched nitrate in the concentrate is converted into nitrogen by means of electrocatalytic nitrate reduction. Whereas, in nanofiltration, a concentration takes place, electrocatalytic nitrate reduction is a process by which nitrate is converted into elemental nitrogen and, thus, removed. Nanofiltration is a membrane separating process making use of 'open' reverse osmosis membranes, which are characterized by high flow but also reduced retention. (orig.) [German] In einer neuen Verfahrenskombination wird das nitrathaltige Grundwasser zuerst durch Nanofiltration in einen Konzentratstrom (ca. 25%) und ein weitgehend nitratfreies Permeat (75%) aufgeteilt. Im Konzentrat wird dann mittels Elektrokatalytischer Nitratreduktion (EKN) das angereicherte Nitrat zu Stickstoff umgewandelt. Waehrend bei der Nanofiltration eine Aufkonzentrierung erfolgt, wird durch die Elektrokatalytische Nitratreduktion das Nitrat in elementaren Stickstoff umgewandelt und so entfernt. Die Nanofiltration ist ein Membrantrennverfahren, bei dem 'offene' Umkehrosmosemembranen eingesetzt werden, die einen hohen Fluss aber auch eine verminderte Rueckhaltung aufweisen. (orig.)

  10. Preparation of acid deficient solutions of uranyl nitrate and thorium nitrate by steam denitration

    International Nuclear Information System (INIS)

    Yamagishi, Shigeru; Takahashi, Yoshihisa

    1996-01-01

    Acid deficient heavy metal (HM) nitrate solutions are often required in the internal gelation processes for nuclear fuel fabrication. The stoichiometric HM-nitrate solutions are needed in a sol-gel process for fuel fabrication. A method for preparing such nitrate solutions with a controlled molar ratio of nitrate/metal by denitration of acid-excess nitrate solutions was developed. The denitration was conducted by bubbling a nitrate solution with a mixture of steam+Ar. It was found that steam was more effective for the denitration than Ar. The acid deficient uranyl nitrate solution with nitrate/U=1.55 was yielded by steam bubbling, while not by only Ar bubbling. As for thorium nitrate, acid deficient solutions of nitrate/Th≥3.1 were obtained by steam bubbling. (author)

  11. Dynamic probabilistic material flow analysis of nano-SiO2, nano iron oxides, nano-CeO2, nano-Al2O3, and quantum dots in seven European regions.

    Science.gov (United States)

    Wang, Yan; Nowack, Bernd

    2018-04-01

    Static environmental exposure assessment models based on material flow analysis (MFA) have previously been used to estimate flows of engineered nanomaterials (ENMs) to the environment. However, such models do not account for changes in the system behavior over time. Dynamic MFA used in this study includes the time-dependent development of the modelling system by considering accumulation of ENMs in stocks and the environment, and the dynamic release of ENMs from nano-products. In addition, this study also included regional variations in population, waste management systems, and environmental compartments, which subsequently influence the environmental release and concentrations of ENMs. We have estimated the flows and release concentrations of nano-SiO 2 , nano-iron oxides, nano-CeO 2 , nano-Al 2 O 3 , and quantum dots in the EU and six geographical sub-regions in Europe (Central Europe, Northern Europe, Southern Europe, Eastern Europe, South-eastern Europe, and Switzerland). The model predicts that a large amount of ENMs are accumulated in stocks (not considering further transformation). For example, in the EU 2040 Mt of nano-SiO 2 are stored in the in-use stock, 80,400 tonnes have been accumulated in sediments and 65,600 tonnes in natural and urban soil from 1990 to 2014. The magnitude of flows in waste management processes in different regions varies because of differences in waste handling. For example, concentrations in landfilled waste are lowest in South-eastern Europe due to dilution by the high amount of landfilled waste in the region. The flows predicted in this work can serve as improved input data for mechanistic environmental fate models and risk assessment studies compared to previous estimates using static models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Relative importance of nitrate and sulfate aerosol production mechanisms in urban atmospheres

    International Nuclear Information System (INIS)

    Middleton, P.; Kiang, C.S.

    1979-01-01

    The relative importance of the various sulfate and nitrate aerosol production mechanisms is calculated for different atmospheric conditions. The calculation scheme used to determine the rates of nitrate and sulfate production, based on the concept that vapor transfer to the aerosols and nitrate and sulfate formation within the aerosols are coupled kinetic processes, considers sulfate formation by ozone and hydrogen peroxide oxidation and catalytic oxidation in the presence of soot, iron and manganese of sulfite solutions and sulfuric acid condensation and nitrate formation by the liquid-phase oxidation of dissolved nitrogen oxides for different initial gas concentrations and particle compositions and sizes. It is found that sulfate production is higher under daytime conditions, primarily proceeding by mechanisms involving sulfuric acid and hydrogen peroxide, while at night oxidation processes on the surface of the aerosol film are more important. Nitrate tends to decrease nighttime sulfate production due to an increase in aerosol acidity and nitrate production is found to be higher under nighttime conditions and in the winter

  13. Rethinking anaerobic As(III) oxidation in filters: Effect of indigenous nitrate respirers.

    Science.gov (United States)

    Cui, Jinli; Du, Jingjing; Tian, Haixia; Chan, Tingshan; Jing, Chuanyong

    2018-04-01

    Microorganisms play a key role in the redox transformation of arsenic (As) in aquifers. In this study, the impact of indigenous bacteria, especially the prevailing nitrate respirers, on arsenite (As(III)) oxidation was explored during groundwater filtration using granular TiO 2 and subsequent spent TiO 2 anaerobic landfill. X-ray absorption near edge structure spectroscopy analysis showed As(III) oxidation (46% in 10 days) in the presence of nitrate in the simulated anaerobic landfills. Meanwhile, iron (Fe) species on the spent TiO 2 were dominated by amorphous ferric arsenate, ferrihydrite and goethite. The Fe phase showed no change during the anaerobic landfill incubation. Batch incubation experiments implied that the indigenous bacteria completely oxidized As(III) to arsenate (As(V)) in 10 days using nitrate as the terminal electron acceptor under anaerobic conditions. The bacterial community analysis indicated that various kinds of microbial species exist in groundwater matrix. Phylogenetic tree analysis revealed that Proteobacteria was the dominant phylum, with Hydrogenophaga (34%), Limnohabitans (16%), and Simplicispira (7%) as the major bacterial genera. The nitrate respirers especially from the Hydrogenophaga genus anaerobically oxidized As(III) using nitrate as an electron acceptor instead of oxygen. Our study implied that microbes can facilitate the groundwater As oxidation using nitrate on the adsorptive media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Influence of weak magnetic field and tartrate on the oxidation and sequestration of Sb(III) by zerovalent iron: Batch and semi-continuous flow study.

    Science.gov (United States)

    Fan, Peng; Sun, Yuankui; Qiao, Junlian; Lo, Irene M C; Guan, Xiaohong

    2018-02-05

    The influence of weak magnetic field (WMF) and tartrate on the oxidation and sequestration of Sb(III) by zerovalent iron (ZVI) was investigated with batch and semi-continuous reactors. The species analysis of antinomy in aqueous solution and solid precipitates implied that both Sb(III) adsorption preceding its conversion to Sb(V) in solid phase and Sb(III) oxidation to Sb(V) preceding its adsorption in aqueous phase occurred in the process of Sb(III) sequestration by ZVI. The application of WMF greatly increased the rate constants of Sb tot (total Sb) and Sb(III) disappearance during Sb(III)-tartrate and uncomplexed-Sb(III) sequestration by ZVI. The enhancing effect of WMF was primarily due to the accelerated ZVI corrosion in the presence of WMF, as evidenced by the influence of WMF on the change of solution and solid properties with reaction. However, tartrate greatly retarded Sb removal by ZVI. It was because tartrate inhibited ZVI corrosion, competed with Sb(III) and Sb(V) for the active surface sites, increased the negative surface charge of the generated iron (hydr)oxides due to its adsorption, and formed soluble complexes with Fe(III). The positive effect of WMF on Sb(III)-tartrate and uncomplexed-Sb(III) removal by ZVI was also verified with a magnetic semi-continuous reactor. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Screw calciner mechanical direct denitration process for plutonium nitrate to oxide conversion

    International Nuclear Information System (INIS)

    Souply, K.R.; Sperry, W.E.

    1977-01-01

    This report describes a screw calciner direct-denitration process for converting plutonium nitrate to plutonium oxide. The information should be used when making comparisons of alternative plutonium nitrate-to-oxide conversion processes or as a basis for further detailed studies. The report contains process flow sheets with a material balance; a process description; and a discussion of the process including history, advantages and disadvantages, and additional research required

  16. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Ruzicka, Alex M.; Haack, Henning; Chabot, Nancy L.

    2017-01-01

    By far most of the melted and differentiated planetesimals that have been sampled as meteorites are metal-rich iron meteorites or stony iron meteorites. The parent asteroids of these meteorites accreted early and differentiated shortly after the solar system formed, producing some of the oldest...... and interpretations for iron and stony iron meteorites (Plate 13.1). Such meteorites provide important constraints on the nature of metal-silicate separation and mixing in planetesimals undergoing partial to complete differentiation. They include iron meteorites that formed by the solidification of cores...... (fractionally crystallized irons), irons in which partly molten metal and silicates of diverse types were mixed together (silicate-bearing irons), stony irons in which partly molten metal and olivine from cores and mantles were mixed together (pallasites), and stony irons in which partly molten metal...

  17. Plasma nitrate and nitrite are increased by a high nitrate supplement, but not by high nitrate foods in older adults

    Science.gov (United States)

    Miller, Gary D.; Marsh, Anthony P.; Dove, Robin W.; Beavers, Daniel; Presley, Tennille; Helms, Christine; Bechtold, Erika; King, S. Bruce; Kim-Shapiro, Daniel

    2012-01-01

    Little is known about the effect of dietary nitrate on the nitrate/nitrite/NO (nitric oxide) cycle in older adults. We examined the effect of a 3-day control diet vs. high nitrate diet, with and without a high nitrate supplement (beetroot juice), on plasma nitrate and nitrite kinetics, and blood pressure using a randomized four period cross-over controlled design. We hypothesized that the high nitrate diet would show higher levels of plasma nitrate/nitrite and blood pressure compared to the control diet, which would be potentiated by the supplement. Participants were eight normotensive older men and women (5 female, 3 male, 72.5±4.7 yrs) with no overt disease or medications that affect NO metabolism. Plasma nitrate and nitrite levels and blood pressure were measured prior to and hourly for 3 hours after each meal. The mean daily changes in plasma nitrate and nitrite were significantly different from baseline for both control diet+supplement (pnitrate and nitrite, respectively) and high nitrate diet+supplement (p=0.001 and 0.002), but not for control diet (p=0.713 and 0.741) or high nitrate diet (p=0.852 and 0.500). Blood pressure decreased from the morning baseline measure to the three 2 hr post-meal follow-up time-points for all treatments, but there was no main effect for treatment. In healthy older adults, a high nitrate supplement consumed at breakfast elevated plasma nitrate and nitrite levels throughout the day. This observation may have practical utility for the timing of intake of a nitrate supplement with physical activity for older adults with vascular dysfunction. PMID:22464802

  18. Nitrate Removal from Ground Water: A Review

    Directory of Open Access Journals (Sweden)

    Archna

    2012-01-01

    Full Text Available Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion exchange. This paper reviews the developments in the field of nitrate removal processes which can be effectively used for denitrifying ground water as well as industrial water.

  19. Influence of iron on plutonium absorption by the adult and neonatal rat

    International Nuclear Information System (INIS)

    Sullivan, M.F.; Ruemmler, P.S.; Buschbom, R.L.

    1986-01-01

    To determine how iron affects plutonium absorption, adult rats were gavaged with 238 Pu nitrate (pH 2) after they had been fed an iron-deficient diet or treated with iron supplements. Neonatal rats born to dams on an iron-deficient diet were also gavaged with 238 Pu. An iron-deficient diet resulted in enhanced 238 Pu absorption both in the adults and in neonates born to iron-deficient dams. Ferric iron increased 238 Pu absorption 12-fold in adult rats; injected iron-dextran reduced that increase; gavaged ferrous iron reduced 238 Pu absorption to one-third of the control value. Rat neonates absorbed 30 to 40 times as much 238 Pu as adults; absorption was lowered in groups that received iron supplements: Iron-dextran caused a 50% reduction; ferric iron, 95%; and ferrous iron, greater than 95%. The results demonstrate an effect of the oxidation state of iron on plutonium absorption in adult rats different from that observed in suckling rats. The results suggest that the high rate of 238 Pu absorption by neonatal animals is due not only to the permeability of their intestines but also to their high demand for iron

  20. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Science.gov (United States)

    2010-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more than...

  1. Manurial properties of lead nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Berry, R A

    1924-01-01

    Water culture, pot and field experiments were conducted in order to determine the toxic and stimulating limit of lead nitrate in solution. Oats and rye grass were evaluated for evidence of lead poisoning. Results indicate that except in solutions of fairly high concentration, soil adsorbs the lead and destroys the toxicity of soluble lead salts. There was evidence to show that the addition of lead salts increased the rate of nitrification in soil.

  2. Nitration of sym-trichlorobenzene

    International Nuclear Information System (INIS)

    Quinlin, W.T.

    1981-02-01

    Basic thermal and kinetic data were obtained for the nitration of 1,3,5-trichlorobenzene to trichlorotrinitrobenzene in the presence of oleum/nitric acid. A limiting specific production rate of 5.4 kg/l/hr was determined for the addition of the first two nitro groups at 130 C and a rate of 0.16 kg/l/hr was obtained at 150 C for the addition of the third nitro group

  3. 2-Amino-5-chloropyridinium nitrate

    Directory of Open Access Journals (Sweden)

    Donia Zaouali Zgolli

    2009-11-01

    Full Text Available The title structure, C5H6ClN2+·NO3−, is held together by extensive hydrogen bonding between the NO3− ions and 2-amino-5-chloropyridinium H atoms. The cation–anion N—H...O hydrogen bonds link the ions into a zigzag- chain which develops parallel to the b axis. The structure may be compared with that of the related 2-amino-5-cyanopyridinium nitrate.

  4. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Photochemical reduction of uranyl nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Duerksen, W.K.

    1993-10-20

    The photochemical reduction of uranyl nitrate solutions to tetravalent uranium was investigated as a means of producing uranium dioxide feed for the saltless direct oxide reduction (SDOR) process. At high uranium concentrations, reoxidation of U{sup +4} occurs rapidly. The kinetics of the nitric oxidation of tetravalent uranium depend on the concentrations of hydrogen ion, nitrate ion, nitrous acid, and tetravalent uranium in the same manner as was reported elsewhere for the nitrate oxidation of PU{sup +3}. Reaction rate data were successfully correlated with a mechanism in which nitrogen dioxide is the reactive intermediate. Addition of a nitrous acid scavenger suppresses the reoxidation reaction. An immersion reactor employing a mercury vapor lamp gave reduction times fast enough for routine production usage. Precipitation techniques for conversion of aqueous U(NO{sub 3}){sub 4} to hydrous UO{sub 2} were evaluated. Prolonged dewatering times tended to make the process time consuming. Use of 3- to 4-M aqueous NaOH gave the best dewatering times observed. Reoxidation of the UO{sub 2} by water of hydration was encountered, which required the drying process to be carried out under a reducing atmosphere.

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency anemia is a ... address the cause of your iron deficiency, such as any underlying bleeding. If undiagnosed or untreated, iron- ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  8. Iron-Deficiency Anemia

    Science.gov (United States)

    ... To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  9. The effect of nitrate on ethylene biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Hun, E-mail: lee323@alumni.purdue.edu [Department of Agricultural and Biological Engineering, Purdue University, 225 South University St., West Lafayette, 47907-2093 IN (United States); Li, Congna; Heber, Albert J. [Department of Agricultural and Biological Engineering, Purdue University, 225 South University St., West Lafayette, 47907-2093 IN (United States)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Ethylene biofiltration strongly depends on nitrate concentrations and media types. Black-Right-Pointing-Pointer We examine reduced N supply can increase ethylene removals in biofilters. Black-Right-Pointing-Pointer Perlite medium is better for ethylene biofiltration than activated carbon medium. - Abstract: This study investigated the effects of filter media types and nitrate (NO{sub 3}{sup -}) concentrations in nutrient solutions on C{sub 2}H{sub 4} biofiltration. A new nutrient solution with zero NO{sub 3}{sup -} concentration was supplied to two perlite-bed biotrickling filters, two perlite-bed biofilters, and two GAC (Granular Activated Carbon)-bed biofilters, while the other with 2 g L{sup -1} of NO{sub 3}{sup -} was used for the other two GAC biofilters. All reactors underwent a total test duration of over 175 days with an EBRT (Empty Bed Residence Time) of 30 s, inlet gas flow rate of 7 L min{sup -1}, and inlet C{sub 2}H{sub 4} concentrations of 20-30 mg m{sup -3}. NO{sub 3}{sup -} concentration and media type significantly affected the C{sub 2}H{sub 4} removal efficiencies in all types of biofiltration. The perlite media with no NO{sub 3}{sup -} achieved C{sub 2}H{sub 4} removal efficiencies 10-50% higher than the others. A NO{sub 3}{sup -} concentration as high as 2 g L{sup -1} in the original nutrient solution may act as an inhibitor that suppresses the growth or activity of C{sub 2}H{sub 4} degraders. In addition, the perlite media resulted in higher C{sub 2}H{sub 4} removal efficiencies than GAC media, because the hydrophilic surface of the perlite leads to a higher moisture content and thus to favorable microbial growth.

  10. The effect of nitrate on ethylene biofiltration

    International Nuclear Information System (INIS)

    Lee, Sang-Hun; Li, Congna; Heber, Albert J.

    2012-01-01

    Highlights: ► Ethylene biofiltration strongly depends on nitrate concentrations and media types. ► We examine reduced N supply can increase ethylene removals in biofilters. ► Perlite medium is better for ethylene biofiltration than activated carbon medium. - Abstract: This study investigated the effects of filter media types and nitrate (NO 3 − ) concentrations in nutrient solutions on C 2 H 4 biofiltration. A new nutrient solution with zero NO 3 − concentration was supplied to two perlite-bed biotrickling filters, two perlite-bed biofilters, and two GAC (Granular Activated Carbon)-bed biofilters, while the other with 2 g L −1 of NO 3 − was used for the other two GAC biofilters. All reactors underwent a total test duration of over 175 days with an EBRT (Empty Bed Residence Time) of 30 s, inlet gas flow rate of 7 L min −1 , and inlet C 2 H 4 concentrations of 20–30 mg m −3 . NO 3 − concentration and media type significantly affected the C 2 H 4 removal efficiencies in all types of biofiltration. The perlite media with no NO 3 − achieved C 2 H 4 removal efficiencies 10–50% higher than the others. A NO 3 − concentration as high as 2 g L −1 in the original nutrient solution may act as an inhibitor that suppresses the growth or activity of C 2 H 4 degraders. In addition, the perlite media resulted in higher C 2 H 4 removal efficiencies than GAC media, because the hydrophilic surface of the perlite leads to a higher moisture content and thus to favorable microbial growth.

  11. Nitrate Contamination of Deep Aquifers in the Salinas Valley, California

    Science.gov (United States)

    Moran, J. E.; Esser, B. K.; Hillegonds, D. J.; Holtz, M.; Roberts, S. K.; Singleton, M. J.; Visser, A.; Kulongoski, J. T.; Belitz, K.

    2011-12-01

    The Salinas Valley, known as 'the salad bowl of the world', has been an agricultural center for more than 100 years. Irrigated row crops such as lettuce and strawberries dominate both land use and water use. Groundwater is the exclusive supply for both irrigation and drinking water. Some irrigation wells and most public water supply wells in the Salinas Valley are constructed to draw water from deep portions of the aquifer system, where contamination by nitrate is less likely than in the shallow portions of the aquifer system. However, a number of wells with top perforations greater than 75 m deep, screened below confining or semi-confining units, have nitrate concentrations greater than the Maximum Contaminant Limit (MCL) of 45 mg/L as NO3-. This study uses nitrate concentrations from several hundred irrigation, drinking water, and monitoring wells (Monterey County Water Resources Agency, 1997), along with tritium-helium groundwater ages acquired at Lawrence Livermore National Laboratory through the State of California Groundwater Monitoring and Assessment (GAMA) program (reported in Kulongoski et al., 2007 and in Moran et al., in press), to identify nitrate 'hot spots' in the deep aquifer and to examine possible modes of nitrate transport to the deep aquifer. In addition, observed apparent groundwater ages are compared with the results of transport simulations that use particle tracking and a stochastic-geostatistical framework to incorporate aquifer heterogeneity to determine the distribution of travel times from the water table to each well (Fogg et al., 1999). The combined evidence from nitrate, tritium, tritiogenic 3He, and radiogenic 4He concentrations, reveals complex recharge and flow to the capture zone of the deep drinking water wells. Widespread groundwater pumping for irrigation accelerates vertical groundwater flow such that high nitrate groundwater reaches some deep drinking water wells. Deeper portions of the wells often draw in water that recharged

  12. Aqueous-salt system containing ytterbium nitrate and pyridine nitrate

    International Nuclear Information System (INIS)

    Zhuravlev, E.F.; Khisaeva, D.A.; Izmajlova, L.V.

    1983-01-01

    Cross-section method has been used to study solubility in ternary aqueous-salt system Yb(NO 3 ) 3 -C 5 H 5 NxHNO 3 -H 2 0 at 25 and 50 deg C. It is established that the system is characterized by chemical interaction. Congruently soluble compound of Yb(NO 3 ) 3 x2[C 5 H 5 NxHNO 3 ] composition is discovered in the system. Composition of the compound is confirmed by chemical analysis; its infrared spectra are studied. Interplanar distances are determined; derivatogram of the compound is given. The results of the works are compared with analogous investigations of another rare earth nitrates

  13. Nitrate in watersheds: straight from soils to streams?

    Science.gov (United States)

    Sudduth, Elizabeth B.; Perakis, Steven S.; Bernhardt, Emily S.

    2013-01-01

    Human activities are rapidly increasing the global supply of reactive N and substantially altering the structure and hydrologic connectivity of managed ecosystems. There is long-standing recognition that N must be removed along hydrologic flowpaths from uplands to streams, yet it has proven difficult to assess the generality of this removal across ecosystem types, and whether these patterns are influenced by land-use change. To assess how well upland nitrate (NO3-) loss is reflected in stream export, we gathered information from >50 watershed biogeochemical studies that reported nitrate concentrations ([NO3-]) for stream water and for either upslope soil solution or groundwater NO3- to examine whether stream export of NO3- accurately reflects upland NO3- losses. In this dataset, soil solution and streamwater [NO3-] were correlated across 40 undisturbed forest watersheds, with streamwater [NO3-] typically half (median = 50%) soil solution [NO3-]. A similar relationship was seen in 10 disturbed forest watersheds. However, for 12 watersheds with significant agricultural or urban development, the intercept and slope were both significantly higher than the relationship seen in forest watersheds. Differences in concentration between soil solution or groundwater and stream water may be attributed to biological uptake, microbial processes including denitrification, and/or preferential flow routing. The results of this synthesis are consistent with the hypotheses that undisturbed watersheds have a significant capacity to remove nitrate after it passes below the rooting zone and that land use changes tend to alter the efficiency or the length of watershed flowpaths, leading to reductions in nitrate removal and increased stream nitrate concentrations.

  14. Electrochemical processing of nitrate waste solutions. Phase 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Genders, D.; Weinberg, N.; Hartsough, D. [Electrosynthesis Co., Inc., Cheektowaga, NY (US)

    1992-10-07

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F{sup {minus}} ions from the synthetic mix migrating across the cation exchange membrane and forming HF in the acid anolyte. Other possibilities for anode materials were explored. A membrane separation process was investigated which employs an anion and cation exchange membrane to remove nitrite and nitrate, recovering caustic and nitric acid. Present research has shown poor current efficiencies for nitrite and nitrate transport across the anion exchange membrane due to co-migration of hydroxide anions. Precipitates form within the anion exchange membranes which would eventually result in the failure of the membranes. Electrochemical processing offers a highly promising and viable method for the treatment of nitrate waste solutions.

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... making new blood cells. Visit our Aplastic Anemia Health Topic to learn more. ... recommend that you take iron supplements, also called iron pills or oral iron, by mouth once or several times a ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... red meat, salmon, iron-fortified breads and cereals, peas, tofu, dried fruits, and dark green leafy vegetables. ... stored iron has been used. Ferritin is a protein that helps store iron in your body. Reticulocyte ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... drinking black tea, which reduces iron absorption. Other treatments If you have chronic kidney disease and iron- ... and lifestyle changes to avoid complications. Follow your treatment plan Do not stop taking your prescribed iron ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... diagnoses you with iron-deficiency anemia, your treatment will depend on the cause and severity of the ... of iron. The recommended daily amounts of iron will depend on your age, sex, and whether you ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... heart failure . Increased risk of infections Motor or cognitive development delays in children Pregnancy complications, such as ... iron-deficiency anemia may require intravenous (IV) iron therapy or a blood transfusion . Iron supplements Your doctor ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for iron-deficiency anemia. Lifestyle habits Certain lifestyle habits may increase your risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, such ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... because your body’s intake of iron is too low. Low intake of iron can happen because of blood ... delivery or giving birth to a baby with low birth weight In people with chronic conditions, iron- ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... breastfeeding. Recommended daily iron intake for children and adults. The table lists the recommended amounts of iron, ... increased need for iron during growth spurts. Older adults, especially those over age 65. Unhealthy environments Children ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... girls. From birth to 6 months, babies need 0.27 mg of iron. This number goes up ... screen blood donors for low iron stores. Reliable point-of-care testing may help identify iron deficiency ...

  4. Iron metabolism and toxicity

    International Nuclear Information System (INIS)

    Papanikolaou, G.; Pantopoulos, K.

    2005-01-01

    Iron is an essential nutrient with limited bioavailability. When present in excess, iron poses a threat to cells and tissues, and therefore iron homeostasis has to be tightly controlled. Iron's toxicity is largely based on its ability to catalyze the generation of radicals, which attack and damage cellular macromolecules and promote cell death and tissue injury. This is lucidly illustrated in diseases of iron overload, such as hereditary hemochromatosis or transfusional siderosis, where excessive iron accumulation results in tissue damage and organ failure. Pathological iron accumulation in the liver has also been linked to the development of hepatocellular cancer. Here we provide a background on the biology and toxicity of iron and the basic concepts of iron homeostasis at the cellular and systemic level. In addition, we provide an overview of the various disorders of iron overload, which are directly linked to iron's toxicity. Finally, we discuss the potential role of iron in malignant transformation and cancer

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... amount of iron, and medical conditions that make it hard for your body to absorb iron from ... hepcidin. Hepcidin prevents iron from leaving cells where it is stored or from being absorbed in the ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... bleeding. If undiagnosed or untreated, iron-deficiency anemia can cause serious complications, including heart failure and development ... iron is too low. Low intake of iron can happen because of blood loss, consuming less than ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-fortified foods that have iron added. Vegetarian diets can provide enough iron if you choose nonmeat ... Anemia in Chronic Kidney Disease (National Institute of Diabetes and Digestive and Kidney Diseases) Avoiding Anemia (National ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... lean red meat, salmon, iron-fortified breads and cereals, peas, tofu, dried fruits, and dark green leafy ... sources of iron, including iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... starch. Restless legs syndrome Shortness of breath Weakness Complications Undiagnosed or untreated iron-deficiency anemia may cause ... as complete blood count and iron studies. Prevent complications over your lifetime To prevent complications from iron- ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... you do not have enough iron in your body. People with mild or moderate iron-deficiency anemia ... and where to find more information. Causes Your body needs iron to make healthy red blood cells. ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... from developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, eggs, lean red meat, ... signs of iron-deficiency anemia include: Brittle nails ...

  12. Taking iron supplements

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007478.htm Taking iron supplements To use the sharing features on this page, ... levels. You may also need to take iron supplements as well to rebuild iron stores in your ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... fruits, eggs, lean red meat, salmon, iron-fortified breads and cereals, peas, tofu, dried fruits, and dark ... choose nonmeat sources of iron, including iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... ESAs are usually used with iron therapy or IV iron, or when iron therapy alone is not enough. Look for Living With will discuss what your doctor may recommend, including lifelong lifestyle changes ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... and pregnancy. Good sources of iron are meat, poultry, fish, and iron-fortified foods that have iron ... Anemia Restless Legs Syndrome Von Willebrand Disease Other Resources NHLBI resources Your Guide to Anemia [PDF, 1. ...

  16. Nitrate Enhanced Microbial Cr(VI) Reduction-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John F. Stolz

    2011-06-15

    proteins (Gmet_2478 and Gmet_1641) were up-regulated with exposure to Cr(VI). A nine-heme cytochrome C was purified that could reduce nitrite and could be oxidized by Cr(VI). For D. desulfuricans, we found that confirmed that Cr(VI) induced a prolonged lag period when Cr(VI) was reduced. Over three hundred proteins were unequivocally identified by LC/MS-MS and a significant number of down-regulated proteins for which the levels were changed >2 fold compared to control. Sulfite reductase levels were similar, however, nitrate and nitrite reductase were down-regulated. The supernatant of spent cultures was found to contain a filterable, heat stable compound that rapidly reduced Cr(VI). In addition, desulfoviridin was purified from nitrate grown cells and shown to have nitrite reductase activity that was inhibited by Cr(VI). For S. barnesii, periplasmic nitrate reductase (Nap), nitrite reductase (Nrf), and the metalloid reductase (Rar) were purified and characterized. The supernatant of spent cultures was also found to contain a filterable, heat stable compound that rapidly reduced Cr(VI) but that Rar also reduced Cr(VI). Our results from specific aims 1 through 3 indicate that for G. metallireducens, Cr(VI) inhibits nitrate respiration as it oxidizes cytochromes involved in nitrate respiration. Iron reduction is apparently not affected and the inhibitory affects of Cr(VI) may be attenuated by the addition of sufficient Fe(III) to generate Fe(II) that abiotically reduces the chromium. For S. barnesii, although the enzyme assays indicate that the components of the respiratory pathway for nitrate (e.g. Nap and Nrf) are inhibited by chromate, the organism has a mechanism to prevent this from actually occurring. Our current hypothesis is that the non-specific metalloid reductase (Rar) is providing resistance by reducing the Cr(VI). The strategy here would be to enhance its growth and metabolism in the natural setting. Lactate is a suitable electron donor for S. barnesii but other

  17. Applicability of anaerobic nitrate-dependent Fe(II) oxidation to microbial enhanced oil recovery (MEOR).

    Science.gov (United States)

    Zhu, Hongbo; Carlson, Han K; Coates, John D

    2013-08-06

    Microbial processes that produce solid-phase minerals could be judiciously applied to modify rock porosity with subsequent alteration and improvement of floodwater sweep in petroleum reservoirs. However, there has been little investigation of the application of this to enhanced oil recovery (EOR). Here, we investigate a unique approach of altering reservoir petrology through the biogenesis of authigenic rock minerals. This process is mediated by anaerobic chemolithotrophic nitrate-dependent Fe(II)-oxidizing microorganisms that precipitate iron minerals from the metabolism of soluble ferrous iron (Fe(2+)) coupled to the reduction of nitrate. This mineral biogenesis can result in pore restriction and reduced pore throat diameter. Advantageously and unlike biomass plugs, these biominerals are not susceptible to pressure or thermal degradation. Furthermore, they do not require continual substrate addition for maintenance. Our studies demonstrate that the biogenesis of insoluble iron minerals in packed-bed columns results in effective hydrology alteration and homogenization of heterogeneous flowpaths upon stimulated microbial Fe(2+) biooxidation. We also demonstrate almost 100% improvement in oil recovery from hydrocarbon-saturated packed-bed columns as a result of this metabolism. These studies represent a novel departure from traditional microbial EOR approaches and indicate the potential for nitrate-dependent Fe(2+) biooxidation to improve volumetric sweep efficiency and enhance both the quality and quantity of oil recovered.

  18. On the mechanism by which dietary nitrate improves human skeletal muscle function

    Directory of Open Access Journals (Sweden)

    Charles eAffourtit

    2015-07-01

    Full Text Available Inorganic nitrate is present at high levels in beetroot and celery, and in green leafy vegetables such as spinach and lettuce. Though long believed inert, nitrate can be reduced to nitrite in the human mouth and, further, under hypoxia and/or low pH, to nitric oxide. Dietary nitrate has thus been associated favourably with nitric-oxide-regulated processes including blood flow and energy metabolism. Indeed, the therapeutic potential of dietary nitrate in cardiovascular disease and metabolic syndrome – both ageing-related medical disorders – has attracted considerable recent research interest. We and others have shown that dietary nitrate supplementation lowers the oxygen cost of human exercise, as less respiratory activity appears to be required for a set rate of skeletal muscle work. This striking observation predicts that nitrate benefits the energy metabolism of human muscle, increasing the efficiency of either mitochondrial ATP synthesis and/or of cellular ATP-consuming processes. In this mini-review, we evaluate experimental support for the dietary nitrate effects on muscle bioenergetics and we critically discuss the likelihood of nitric oxide as the molecular mediator of such effects.

  19. Denitrification and dilution along fracture flowpaths influence the recovery of a bedrock aquifer from nitrate contamination

    International Nuclear Information System (INIS)

    Kim, Jonathan J.; Comstock, Jeff; Ryan, Peter; Heindel, Craig; Koenigsberger, Stephan

    2016-01-01

    In 2000, elevated nitrate concentrations ranging from 12 to 34 mg/L NO_3−N were discovered in groundwater from numerous domestic bedrock wells adjacent to a large dairy farm in central Vermont. Long-term plots and contours of nitrate vs. time for bedrock wells showed “little/no”, “moderate”, and “large” change patterns that were spatially separable. The metasedimentary bedrock aquifer is strongly anisotropic and groundwater flow is controlled by fractures, bedding/foliation, and basins and ridges in the bedrock surface. Integration of the nitrate concentration vs. time data and the physical and chemical aquifer characterization suggest two nitrate sources: a point source emanating from a waste ravine and a non-point source that encompasses the surrounding fields. Once removed, the point source of NO_3 (manure deposited in a ravine) was exhausted and NO_3 dropped from 34 mg/L to 10 mg/L. Our multidisciplinary methods of aquifer characterization are applicable to groundwater contamination in any complexly-deformed and metamorphosed bedrock aquifer. - Highlights: • Bedrock wells contaminated with nitrates at a dairy farm in Vermont, U.S.A. • Nitrate concentration vs. time patterns for wells were spatially separable. • Multidisciplinary aquifer characterization used physical and chemical methods. • Denitrification dominant over dilution along fracture flowpaths • Conceptual model shows exhaustion of a nitrate point-source over 12 years.

  20. Optimizing nitrate removal in woodchip beds treating aquaculture effluents

    DEFF Research Database (Denmark)

    von Ahnen, Mathis; Pedersen, Per Bovbjerg; Hoffmann, Carl Christian

    2016-01-01

    Nitrate is typically removed from aquaculture effluents using heterotrophic denitrification reactors. Heterotrophic denitrification reactors, however, require a constant input of readily available organic carbon (C) sources which limits their application in many aquaculture systems for practical...... and/or economic reasons.A potential alternative technology for removing nitrate currently applied for treating surface and drainage water is based on using wood by-products as a carbon source for denitrification. Using lab-scale horizontal-flow woodchip filters, the current study investigated...... the potential of optimizing woodchip reactors for treating aquaculture effluent. A central composite design (CCD) was applied to assess the effects of simultaneously changing the empty bed contact time (EBCTs of 5.0-15.0 h; corresponding to theoretical hydraulic retention times of 3.3-9.9 h) and bicarbonate...

  1. Genetics Home Reference: iron-refractory iron deficiency anemia

    Science.gov (United States)

    ... refractory iron deficiency anemia Iron-refractory iron deficiency anemia Printable PDF Open All Close All Enable Javascript ... expand/collapse boxes. Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  2. Nitrate contamination of groundwater and its countermeasures

    Energy Technology Data Exchange (ETDEWEB)

    Mitamura, Hisayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The inevitable increases of food production and energy consumption with an increase in world population become main causes of an increase of nitrate load to the environment. Although nitrogen is essential for the growth of animal and plant as a constituent element of protein, excessive nitrate load to the environment contaminates groundwater resources used as drinking water and leads to seriously adverse effects on the health of man and livestock. In order to clarify the problem of nitrate contamination of groundwater and search a new trend of technology development from the viewpoint of environment remediation and protection, the present paper has reviewed adverse effects of nitrate on human health, the actual state of nitrogen cycle, several kinds of nitrate sources, measures for reducing nitrate level, etc. (author)

  3. Nitrates

    Science.gov (United States)

    ... Rounds Seminar Series & Daily Conferences Fellowships and Residencies School of Perfusion Technology Education Resources Library & Learning Resource Center CME Resources THI Journal THI Cardiac Society Register for the Cardiac Society ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... increased need for iron during growth spurts. Older adults, especially those over age ... athletes. Athletes, especially young females, are at risk for iron deficiency. Endurance ...

  5. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.

    2014-01-01

    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...... to that continuing on Earth – although on much smaller length- and timescales – with melting of the metal and silicates; differentiation into core, mantle, and crust; and probably extensive volcanism. Iron and stony-iron meteorites are our only available analogues to materials found in the deep interiors of Earth...

  6. Soft Chemistry Preparation of lead Iron Vanadate

    International Nuclear Information System (INIS)

    Melghit, Khaled

    2011-01-01

    In order to prepare the new monoclinic Pb 2 FeV 3 O 11 at low temperature; an acidic solution of vanadium oxide, pH 2, was mixed with a corresponding amount of both lead and iron nitrate at boiling temperature. The yellow precipitate obtained is a mixture of lead pyrovanadate Pb 2 V 2 O 7 and an amorphous phase. At 500deg. C, the new monoclinic Pb 2 FeV 3 O 11 phase appears but mixed with Pb 2 V 2 O 7 . At higher temperature, 570deg. C, the monoclinic phase disappears and a new phase appears. This phase is similar to triclinic Pb 2 Fe 2 V 4 O 15 , recently reported, although the EDAX analysis shows the as-prepared sample with higher amount of vanadium and iron. To understand the mechanism involved, lead and iron nitrate solution were reacted separately with vanadium oxide solution. The phases formed were found to be sensitive to initial concentration and to stirring time

  7. Hydrogeochemical investigation to understand nitrate movement in groundwater of volcanic island, Korea

    Science.gov (United States)

    Kwon, E. H.; Park, J.; Chung, E.; Kang, B. R.; Park, W. B.; Woo, N. C.

    2017-12-01

    Groundwater is the sole-source of water supply in the volcanic island, Jeju-do, Korea. Since early 1990s, the nitrate contamination of groundwater has increased especially in the western part of the island. High level of nitrate in water can cause not only health risk to human body but also environmental side effect such as eutrophication and algal bloom in the coastal area. Several studies have done to estimate nitrate contamination in groundwater of local areas, but none of them dealt with nitrate movement with flow paths. So, this study aimed to determine the source and migration of nitrate in groundwater in the Gosan area, located in the western part of Jeju island through seasonal monitoring of hydrogeochemistry and stable isotope analyses from pumping and monitoring wells. Water samples including rainfall and groundwater are measured for major ions (Ca, Na, K, Mg, SO4, HCO3, NO3, Cl, etc.) and stable isotopes (i.e., δ2H, δ18O, δ18O-NO3, δ15N-NO3). From the monitoring data, we could evaluate hydrochemical change during nitrate contamination, and also could identify that groundwater in Gosan area is recharged mainly by regional flow from the high-altitude region. In future study, we will conduct additional seasonal monitoring from the multi-depth monitoring wells and will use statistical analysis to understand pollution sources and paths specifically.

  8. Teor de nitrato em alface hidropônica em função de vazões e períodos de pós-colheita Nitrate content in hydroponic lettuce in function of flow rate and post-harvest periods

    Directory of Open Access Journals (Sweden)

    Antonio Aprígio

    2012-09-01

    Full Text Available O objetivo do trabalho foi determinar o teor de nitrato (NO3- presente em plantas de alface (Lactuca sativa L. da cultivar Vera, conduzida por hidroponia, em função de vazões e períodos de pós-colheita. O experimento foi realizado no município de Cascavel, PR, em casa de vegetação da Universidade Estadual do Oeste do Paraná (UNIOESTE. As plantas foram nutridas mediante utilização de uma solução nutritiva caracterizada por possuir condutividade elétrica média de 1,2 dS m-1 e que, ao percorrer toda a bancada de cultivo, retornava ao tanque de irrigação e reiniciava o processo, constituindo, desta forma, um sistema fechado. No experimento, utilizou-se o delineamento inteiramente casualizado com oito repetições que foram representadas, individualmente, por duas plantas de alface, no esquema fatorial (3 x 4. Os tratamentos resultaram da combinação entre três vazões (0,5; 1,0 e 1,5 L min-1 e quatro períodos de armazenamento pós-colheita (0; 24; 48 e 72 h. A determinação do teor de nitrato foi realizada por meio do método colorimétrico e os valores obtidos foram inferiores ao limite máximo exigido pela Comunidade Europeia. Os fatores investigados influenciaram significativamente os teores médios de nitrato.The objective of this study was to determine the nitrate (NO3- content present in lettuce plants (Lactuca sativa L. of the Vera cultivar, produced under hydroponic system, in function of different flow rates and post-harvest periods. The experiment was conducted in the city of Cascavel-PR, in a greenhouse of the Universidade Estadual do Oeste do Paraná (UNIOESTE. The plants were nourished by the use of a nutrient solution, characterized by mean electrical conductivity of 1.2 dS m-1 which after passing the entire growing bench, returned to the irrigation tank and restarted the process, forming a closed system. The experiment was conducted in completely randomized design with eight replications, which were represented

  9. Nitrat i drikkevandet og vores sundhed

    DEFF Research Database (Denmark)

    Hansen, Birgitte; Schullehner, Jörg; Sigsgaard, Torben

    2014-01-01

    Nitrat i drikkevandet er uønsket, da det kan påvirke vores sundhed negativt. Den øvre grænse for hvor meget nitrat der tillades i drikkevandet er fastsat i forhold til risikoen for akut forgiftning med nitrit og blå børn-syndromet. Men nitrat i drikkevandet mistænkes også for at være medvirkende...

  10. Alpha autoradiography by cellulose nitrate layer

    International Nuclear Information System (INIS)

    Simonovic, J.; Vukovic, J.; Antanasijevic, R.

    1977-01-01

    From domestic cellulose nitrate bulk material thin layers for α-particle autoradiography were prepared. An artificial test specimen of a uniformly alpha labelled grid source was used. The efficiency of autoradiography by cellulose nitrate was calculated comparing with data from an Ilford K2 nuclear emulsion exposed under the same conditions as the cellulose nitrate film. The resolution was determined as the distance from grid pitch edge at which the track density fell considerably. (Auth.)

  11. Alpha autoradiography by cellulose nitrate layer

    International Nuclear Information System (INIS)

    Simonovic, J.; Vukovic, J.; Antanasijevic, R.

    1976-01-01

    From domestic cellulose nitrate bulk material thin layers for α-particle autoradiography were prepared. An artifical test specimen of a uniformly alpha labelled grid source was used. The efficiency of autoradiographs by cellulose nitrate was calculated comparing with data from an Ilford K2 nuclear emulsion exposed under the same conditions as the cellulose nitrate film. The resolution was determined as the distance from grid pitch edge at which the track density fell considerably. (orig.) [de

  12. Inhaled plutonium nitrate in dogs

    International Nuclear Information System (INIS)

    Dagle, G.E.

    1987-01-01

    The major objective of this project is to determine dose-effect relationships of inhaled plutonium nitrate in dogs to aid in predicting health effects of accidental exposure in man. For lifespan dose-effect studies, beagle dogs were given a single inhalation exposure to 239 Pu(NO 3 ) 4 , in 1976 and 1977. The earliest biological effect was on the hematopoietic system; lymphopenia and neutropenia occurred at the two highest dose levels. They have also observed radiation pneumonitis, lung cancer, and bone cancer at the three highest dose levels. 1 figure, 3 tables

  13. Silver nitrate based gel dosimeter

    International Nuclear Information System (INIS)

    Titus, D; Samuel, E J J; Srinivasan, K; Roopan, S M; Madhu, C S

    2017-01-01

    A new radiochromic gel dosimeter based on silver nitrate and a normoxic gel dosimeter was investigated using UV-Visible spectrophotometry in the clinical dose range. Gamma radiation induced the synthesis of silver nanoparticles in the gel and is confirmed from the UV-Visible spectrum which shows an absorbance peak at around 450 nm. The dose response function of the dosimeter is found to be linear upto12Gy. In addition, the gel samples were found to be stable which were kept under refrigeration. (paper)

  14. Inhaled plutonium nitrate in dogs

    International Nuclear Information System (INIS)

    Dagle, G.E.

    1986-01-01

    The major objective of this project is to determine dose-effect relationships of inhaled plutonium nitrate in dogs to aid in predicting health effects of accidental exposure in man. For lifespan dose-effect studies, beagle dogs were given a single inhalation exposure to 239 Pu(NO 3 ) 4 , in 1976 and 1977. The earliest biological effect was on the hematopoietic system; lymphopenia and neutropenia occurred at the two highest dose levels. The authors have also observed radiation pneumonitis, lung cancer, and bone cancer at the three highest dose levels. 1 figure, 4 tables

  15. Inhaled plutonium nitrate in dogs

    International Nuclear Information System (INIS)

    Dagle, G.E.

    1982-01-01

    The major objective of this project is to determine dose-effect relationships of inhaled plutonium nitrate in dogs to aid in the prediction of health effects of accidental exposure in man. For lifespan dose-effect studies, beagle dogs were given a single inhalation exposure to 239 Pu(NO 3 ) 4 , in 1976 and 1977. The earliest biological effect was on the hematopoietic system; as described in previous Annual Reports, lymphopenia and neutropenia occurred at the two highest dose levels. Radiation pneumonitis, lung cancer, and bone cancer have been observed at the highest dose levels

  16. Nitrate pollution of a karstic groundwater system in Svaty Jan Pod Skalou, Czech Republic

    International Nuclear Information System (INIS)

    Buzek, F.; Kadlecova, R.; Zak, K.

    1998-01-01

    Due to increasing agricultural activity after the 1960's both shallow and deep water resources in the Czech Republic including karstic systems have been contaminated by infiltrating nitrate. Nitrate content of one of the largest spring (19L/s) now varies from 50 to 60 mg/L. To specify the sources of nitrate pollution and collect sufficient data for the prediction of possible future development, flow dynamics, chemical and isotopic composition (δ 18 O in water, δ 15 N in nitrate) were monitored in the spring and precipitation together with potential sources of pollution (fertilizers, solutes in soil profile). Observed data were modelled by a simple mixing cell model to specify system parameters (volume and mean residence time). (author)

  17. Nitrate Accumulation and Leaching in Surface and Ground Water Based on Simulated Rainfall Experiments

    Science.gov (United States)

    Wang, Hong; Gao, Jian-en; Li, Xing-hua; Zhang, Shao-long; Wang, Hong-jie

    2015-01-01

    To evaluate the process of nitrate accumulation and leaching in surface and ground water, we conducted simulated rainfall experiments. The experiments were performed in areas of 5.3 m2 with bare slopes of 3° that were treated with two nitrogen fertilizer inputs, high (22.5 g/m2 NH4NO3) and control (no fertilizer), and subjected to 2 hours of rainfall, with. From the 1st to the 7th experiments, the same content of fertilizer mixed with soil was uniformly applied to the soil surface at 10 minutes before rainfall, and no fertilizer was applied for the 8th through 12th experiments. Initially, the time-series nitrate concentration in the surface flow quickly increased, and then it rapidly decreased and gradually stabilized at a low level during the fertilizer experiments. The nitrogen loss in the surface flow primarily occurred during the first 18.6 minutes of rainfall. For the continuous fertilizer experiments, the mean nitrate concentrations in the groundwater flow remained at less than 10 mg/L before the 5th experiment, and after the 7th experiment, these nitrate concentrations were greater than 10 mg/L throughout the process. The time-series process of the changing concentration in the groundwater flow exhibited the same parabolic trend for each fertilizer experiment. However, the time at which the nitrate concentration began to change lagged behind the start time of groundwater flow by approximately 0.94 hours on average. The experiments were also performed with no fertilizer. In these experiments, the mean nitrate concentration of groundwater initially increased continuously, and then, the process exhibited the same parabolic trend as the results of the fertilization experiments. The nitrate concentration decreased in the subsequent experiments. Eight days after the 12 rainfall experiments, 50.53% of the total nitrate applied remained in the experimental soil. Nitrate residues mainly existed at the surface and in the bottom soil layers, which represents a

  18. 76 FR 46907 - Ammonium Nitrate Security Program

    Science.gov (United States)

    2011-08-03

    ... Maritime Transportation Security Act NAICS North American Industrial Classification System NPRM Notice of.... Commenters noted, for example, that equipment used for transporting bulk ammonium nitrate, such as hoppers...

  19. Automated analysis for nitrate by hydrazine reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kamphake, L J; Hannah, S A; Cohen, J M

    1967-01-01

    An automated procedure for the simultaneous determinations of nitrate and nitrite in water is presented. Nitrite initially present in the sample is determined by a conventional diazotization-coupling reaction. Nitrate in another portion of sample is quantitatively reduced with hydrazine sulfate to nitrite which is then determined by the same diazotization-coupling reaction. Subtracting the nitrite initially present in the sample from that after reduction yields nitrite equivalent to nitrate initially in the sample. The rate of analysis is 20 samples/hr. Applicable range of the described method is 0.05-10 mg/l nitrite or nitrate nitrogen; however, increased sensitivity can be obtained by suitable modifications.

  20. Iron from Zealandic bog iron ore -

    DEFF Research Database (Denmark)

    Lyngstrøm, Henriette Syrach

    2011-01-01

    og geologiske materiale, metallurgiske analyser og eksperimentel arkæologiske forsøg - konturerne af en jernproduktion med udgangspunkt i den sjællandske myremalm. The frequent application by archaeologists of Werner Christensen’s distribution map for the occurrence of bog iron ore in Denmark (1966...... are sketched of iron production based on bog iron ore from Zealand....

  1. Heterogeneous chemical reaction of chlorine nitrate and water on sulfuric-acid surfaces at room temperature

    Science.gov (United States)

    Rossi, Michel J.; Malhotra, Ripudaman; Golden, David M.

    1987-01-01

    The use of H2SO4 as a catalyst for aerosol production of chlorine compounds in the chemistry of the antarctic stratosphere was investigated in laboratory trials. The experiments involved the gas surface collision rate of a molecule on a given surface during its residence time in a Knudsen cell in molecular flow conditions. Chlorine nitrate gas was made to flow through a chamber exposed to a container holding a 95.6 pct H2SO4 solution. Gas leaving the cell was scanned with a mass spectrometer. A sticking coefficient of 0.00032 was found for the chlorine nitrate, a value five times that previously reported.

  2. Negative feedback loops leading to nitrate homeostasis and oscillatory nitrate assimilation in plants and fungi.

    OpenAIRE

    Huang, Yongshun

    2011-01-01

    Master's thesis in Biological Chemistry Nitrate is an important nutrient for plants and fungi. For plants it has been shown that cytosolic nitrate levels are under homeostatic control. Here we describe two networks that can obtain robust, i.e. perturbation independent, homeostatic behavior in cytosolic nitrate concentration. One of the networks, a member in the family of outflow controllers, is based on a negative feedback loop containing a nitrate-induced activation of a controller molecu...

  3. Native iron

    DEFF Research Database (Denmark)

    Brooks, Charles Kent

    2015-01-01

    System, was reduced. The oxidized outer layers of the Earth have formed by two processes. Firstly, water is decomposed to oxygen and hydrogen by solar radiation in the upper parts of the atmosphere, the light hydrogen diffusing to space, leaving oxygen behind. Secondly, plants, over the course......, hematite, or FeO.Fe2O3, magnetite), with carbon in the form of coke. This is carried out in a blast furnace. Although the Earth's core consists of metallic iron, which may also be present in parts of the mantle, this is inaccessible to us, so we must make our own. In West Greenland, however, some almost......We live in an oxidized world: oxygen makes up 22 percent of the atmosphere and by reacting with organic matter produces most of our energy, including the energy our bodies use to function: breathe, think, move, etc. It has not always been thus. Originally the Earth, in common with most of the Solar...

  4. Optimizing Electrocoagulation Process for the Removal of Nitrate From Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Dehghani

    2016-01-01

    Full Text Available Background High levels of nitrate anion are frequently detected in many groundwater resources in Fars province. Objectives The present study aimed to determine the removal efficiency of nitrate from aqueous solutions by electrocoagulation process using aluminum and iron electrodes. Materials and Methods A laboratory-scale batch reactor was conducted to determine nitrate removal efficiency using the electrocoagulation method. The removal of nitrate was determined at pH levels of 3, 7, and 11, different voltages (15, 20, and 30 V, and operation times of 30, 60, and 75 min, respectively. Data were analyzed using the SPSS software version 16 (Chicago, Illinois, USA and Pearson’s correlation coefficient was used to analyze the relationship between the parameters. Results Results of the present study showed that the removal efficiency was increased from 27% to 86% as pH increased from 3 to 11 at the optimal condition of 30 V and 75 min operation time. Moreover, by increasing the reaction time from 30 V to 75 min the removal efficiency was increased from 63% to 86%, respectively (30 V and pH = 11. Pearson’s correlation analysis showed that there was a significant relationship between removal efficiency and voltage and reaction time as well (P < 0.01. Conclusions In conclusion, the electrocoagulation process can be used for removing nitrate from water resources because of high efficiency, simplicity, and relatively low cost.

  5. Spatial and temporal dynamics of nitrate fluxes in a mesoscale catchment

    Science.gov (United States)

    Muller, C.; Musolff, A.; Strachauer, U.; Brauns, M.; Tarasova, L.; Merz, R.; Knoeller, K.

    2017-12-01

    Spatially and temporally variable and often superimposing processes like mobilization and turnover of N-species strongly affect nitrate fluxes at catchment outlets. It remains thus challenging to determine dominant nitrate sources to derive an effective river management. Here, we combine data sets from two spatially highly resolved key-date monitoring campaigns of nitrate fluxes along a mesoscale catchment in Germany with four years of monitoring data from two representative sites within the catchment. The study area is characterized by a strong land use gradient from pristine headwaters to lowland sub-catchments with intense agricultural land use and wastewater sources. Flow conditions were assessed by a hydrograph separation showing the clear dominance of base flow during both investigations. However, the absolute amounts of discharge differed significantly from each other (outlet: 1.42 m³ s-1 versus 0.43 m³ s-1). Nitrate concentration and flux in the headwater was found to be low. In contrast, nitrate loads further downstream originate from anthropogenic sources such as effluents from wastewater treatment plants (WWTP) and agricultural land use. The agricultural contribution did not vary in terms of nitrate concentration and isotopic signature between the years but in terms of flux. The contrasting amounts of discharge between the years led to a strongly increased relative wastewater contribution with decreasing discharge. This was mainly manifested in elevated δ18O-NO3- values downstream from the wastewater discharge. The four-year monitoring at two sides clearly indicates the chemostatic character of the agricultural N-source and its distinct, yet stable isotopic fingerprint. Denitrification was found to play no dominant role only for controlling nitrate loads in the river. The spatially highly resolved monitoring approach helped to accurately define hot spots of nitrate inputs into the stream while the long-term information allowed a classification of the

  6. Modeling effects of nitrate from non-point sources on groundwater quality in an agricultural watershed in Prince Edward Island, Canada

    Science.gov (United States)

    Jiang, Yefang; Somers, George

    2009-05-01

    Intensification of potato farming has contaminated groundwater with nitrate in many cases in Prince Edward Island, Canada, which raises concerns for drinking water quality and associated ecosystem protection. Numerical models were developed to simulate nitrate-N transport in groundwater and enhance understanding of the impacts of farming on water quality in the Wilmot River watershed. Nitrate is assumed non-reactive based on δ15N and δ18O in nitrate and geochemical information. The source functions were reconstructed from tile drain measurements, N budget and historical land-use information. The transport model was calibrated to long-term nitrate-N observations in the Wilmot River and verified against nitrate-N measurements in two rivers from watersheds with similar physical conditions. Simulations show groundwater flow is stratified and vertical flux decreases exponentially with depth. While it would take several years to reduce the nitrate-N in the shallow portion of the aquifer, it would take several decades or even longer to restore water quality in the deeper portions of the aquifer. Elevated nitrate-N concentrations in base flow are positively correlated with potato cropping intensity and significant reductions in nitrate-N loading are required if the nitrate level of surface water is to recover to the standard in the Canadian Water Quality Guidelines.

  7. Challenges with nitrate therapy and nitrate tolerance: prevalence, prevention, and clinical relevance.

    Science.gov (United States)

    Thadani, Udho

    2014-08-01

    Nitrate therapy has been an effective treatment for ischemic heart disease for over 100 years. The anti-ischemic and exercise-promoting benefits of sublingually administered nitrates are well established. Nitroglycerin is indicated for the relief of an established attack of angina and for prophylactic use, but its effects are short lived. In an effort to increase the duration of beneficial effects, long-acting orally administered and topical applications of nitrates have been developed; however, following their continued or frequent daily use, patients soon develop tolerance to these long-acting nitrate preparations. Once tolerance develops, patients begin losing the protective effects of the long-acting nitrate therapy. By providing a nitrate-free interval, or declining nitrate levels at night, one can overcome or reduce the development of tolerance, but cannot provide 24-h anti-anginal and anti-ischemic protection. In addition, patients may be vulnerable to occurrence of rebound angina and myocardial ischemia during periods of absent nitrate levels at night and early hours of the morning, and worsening of exercise capacity prior to the morning dose of the medication. This has been a concern with nitroglycerin patches but not with oral formulations of isosorbide-5 mononitrates, and has not been adequately studied with isosorbide dinitrate. This paper describes problems associated with nitrate tolerance, reviews mechanisms by which nitrate tolerance and loss of efficacy develop, and presents strategies to avoid nitrate tolerance and maintain efficacy when using long-acting nitrate formulations.

  8. The influence of nitrate concentrations and acidity on the electrocatalytic reduction of nitrate on platinum

    NARCIS (Netherlands)

    Groot, de M.T.; Koper, M.T.M.

    2004-01-01

    A study was performed to determine the influence of nitrate concentration and acidity on the reaction rate and selectivity of the electrocatalytic nitrate reduction on platinum. There are two different nitrate reduction mechanisms on platinum: a direct mechanism (0.4–0.1 V vs. SHE) and an indirect

  9. NITRATE POLLUTION IN SHALLOW GROUNDWATER OF A HARD ROCK REGION IN SOUTH CENTRAL INDIA

    Science.gov (United States)

    Brindha, K.; Rajesh, R.; Murugan, R.; Elango, L.

    2009-12-01

    Groundwater forms a major source of drinking water in most parts of the world. Due to the lack of piped drinking water supply, the population in rural areas depend on the groundwater resources for domestic purposes. Hence, the quality of groundwater in such regions needs to be monitored regularly. Presence of high concentration of nitrate in groundwater used for drinking is a major problem in many countries as it causes health related problems. Most often infants are affected by the intake of high nitrate in drinking water and food. The present study was carried out with the objective of assessing the nitrate concentration in groundwater and determining the causes for nitrate in groundwater in parts of Nalgonda district in India which is located at a distance of about 135 km towards ESE direction from Hyderabad. Nitrate concentration in groundwater of this area was analysed by collecting groundwater samples from forty six representative wells. Samples were collected once in two months from March 2008 to March 2009. A total of 244 groundwater samples were collected during the study. Soil samples were collected from fifteen locations during May 2009 and the denitrifying bacteria were isolated from the soil using spread plate method. The nitrate concentration in groundwater samples were analysed in the laboratory using Metrohm 861 advanced compact ion chromatograph using appropriate standards. The highest concentration of nitrate recorded during the sampling period was 879.65mg/l and the lowest concentration was below detection limit. The maximum permissible limit of nitrate for drinking water as per Bureau of Indian Standards is 45mg/l. About 13% of the groundwater samples collected from this study area possessed nitrate concentration beyond this limit. The nitrate concentration was high in the southeastern part of the study area. This implies that the nitrate concentration in groundwater tends to increase along the flow direction. Application of fertilizers is one

  10. Hydro-energy production and water works face to face with environmental flow approach in Romania

    International Nuclear Information System (INIS)

    Mihailescu, Neculai; Varduca, Aurel; Popescu, Liviu N.; Varduca, Ioana Cristina

    2007-01-01

    In order to achieve an equilibrium between the requirements of 'environmental flow' and other needs like energy in this case studies are presented in the paper concerning: (i) Iron Gate Hydroelectric Complex on the lower Danube river and (ii) Dambovita river complex hydrotehnical works within and downstream Bucharest. For the first case the most relevant impacts are related with: (i) nutrient 'pump' particular properties; (ii) contamination of sediments with heavy metals and other associated pollutants; (iii) decrease of solid (suspended matter) loads - hydromorphological alterations; (iv) cutting the fish migration and other related issues. In the second case study the environmental flow issues practically do not exist. The case of Dambovita river downstream Bucharest faces increased organic loads, nitrates and especially hazardous substances contamination. (authors)

  11. Linking field and laboratory studies to investigate nitrate removal using permeable reactive barrier technology during managed recharge

    Science.gov (United States)

    Gorski, G.; Beganskas, S.; Weir, W. B.; Redford, K.; Saltikov, C.; Fisher, A. T.

    2017-12-01

    We present data from a series of field and laboratory studies investigating mechanisms for the enhanced removal of nitrate during infiltration as a part of managed recharge. These studies combine physical, geochemical, and microbiological data collected during controlled infiltration experiments at both a plot and a laboratory scale using permeable reactive barrier (PRB) technology. The presence of a PRB, made of wood chips or biochar, enhances nitrate removal by stimulating the growth and productivity of native soil microbes to process nitrate via denitrification. Earlier work has shown that unamended soil can remove up to 50% of nitrate during infiltration at rates microbiological data show significant population changes below the PRB where most of the cycling occurs. Coupled with isotopic analyses, these results suggest that a PRB expands the range of infiltration rates at which significant nitrate can be removed by microbial activity. Further, nitrate removal occurs at different depths below the biochar and redwood chips, suggesting different mechanisms of nitrate removal in the presence of different PRB materials. In laboratory studies we flowed artificial groundwater through intact sediment cores collected at the same field site where we also ran infiltration tests. These experiments show that the fluid flow rate and the presence of a PRB exhibit primary control on nitrate removal during infiltration, and that the relationship between flow rate and nitrate removal is fundamentally different in the presence of a PRB. These data from multiple scales and flow regimes are combined to offer a deeper understanding how the use of PRB technology during infiltration can help address a significant non-point source issue at the surface-subsurface interface.

  12. Nitration Study of Cyclic Ladder Polyphenylsilsesquioxane

    Directory of Open Access Journals (Sweden)

    LIANG Jia-xiang

    2017-05-01

    Full Text Available Several nitration reagents including fuming nitric acid, HNO3-H2SO4, KNO3-H2SO4, HNO3-KNO3, CH3COOH-KNO3, (CH3CO2O-HNO3 were used to nitrate cyclic ladder polyphenylsilsesquioxane (CL-PPSQ in different conditions in order to enhance the compatibility of the CL-PPSQ in polymers, the NO2-PPSQ was obtained. FTIR, element analysis, GPC, TGA and 1H NMR were used to characterize the structures of the nitrated products. The results show that the nitrating abilities of the fuming nitric acid, HNO3-H2SO4 and KNO3-H2SO4 are very strong. Many nitro groups can be linked with phenyl groups in CL-PPSQ, but with low molecular mass, fracture occurs in siloxane segment. However, the Mn of the product NO2-PPSQ sharply drops by 50% compared with that of CL-PPSQ, so the nitration reagents can break the cyclic structure of CL-PPSQ. The nitrating reagents of HNO3-KNO3 and CH3COOH-KNO3 have no nitration effects on CL-PPSQ. At last, NO2-CL-PPSQ was prepared using (CH3CO2O-HNO3 because of the moderate nitration process and ability. The cyclic structure of PPSQ is remained, although the number of —NO2 group is not too much. At the same time, the nitration mechanism using different nitration reagents was analyzed. A certain amount of NO2+, which is a kind of activator owning strong nitration ability, can be found in the fuming nitric acid and H2SO4-HNO3(KNO3 systems. As to the (CH3CO2O-HNO3 system, the main activator is CH3COONO2.

  13. The systems terbium (holmium) nitrate-piperidine nitrate-water

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Zhuravlev, E.F.; Semenova, Eh.B.

    1982-01-01

    Using the method of cross sections at 25 and 50 deg C solubility in the systems Tb(NO 3 ) 2 -C 5 H 10 NHxHNO 3 -H 2 O and Ho(NO 3 ) 3 -C 5 H 10 NHxHNO 3 -H 2 O has been studied. The systems are characterized by chemical interaction of components. Solubility isotherms have crystallization fields of solid phases of the composition Tb(NO 3 ) 3 x3[C 5 H 10 NHxHNO 3 ]x3H 2 O and Ho(NO 3 ) 3 x2[C 5 H 10 NHxHNO 3 ]. The compounds detected are singled out preparatively, their IR spectra are studied, their thermogravimetric analysis is carried out. Investigation results are compared with similar systems formed by nitrates of other representatives of rare earth group

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... blocks the intestine from taking up iron. Other medical conditions Other medical conditions that may lead to iron-deficiency anemia ... daily amount of iron. If you have other medical conditions that cause iron-deficiency anemia , such as ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español ... bleeding Consuming less than recommended daily amounts of iron Iron-deficiency anemia can be caused by getting ...

  16. Serum iron test

    Science.gov (United States)

    Fe+2; Ferric ion; Fe++; Ferrous ion; Iron - serum; Anemia - serum iron; Hemochromatosis - serum iron ... A blood sample is needed. Iron levels are highest in the morning. Your health care provider will likely have you do this test in the morning.

  17. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... also are hoping to determine which iron supplements work best to treat iron-deficiency anemia in children who do not consume the daily recommended amount of iron. Read less Participate in NHLBI Clinical Trials We lead or sponsor many studies related to iron-deficiency anemia. See if you ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... peas, tofu, dried fruits, and dark green leafy vegetables. Foods rich in vitamin C, such as oranges, strawberries, ... iron are meat, poultry, fish, and iron-fortified foods that have iron ... green leafy vegetables. You can also take an iron supplement. Follow ...

  20. Iron deficiency anemia

    Science.gov (United States)

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  1. Enhanced removal of nitrate from water using amine-grafted agricultural wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kalaruban, Mahatheva; Loganathan, Paripurnanda [Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007 (Australia); Shim, W.G. [Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007 (Australia); Department of Polymer Science and Engineering, Sunchon National University, 255 Jungang-ro, Suncheon, Jeollanam-do (Korea, Republic of); Kandasamy, Jaya; Ngo, H.H. [Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007 (Australia); Vigneswaran, Saravanamuthu, E-mail: s.vigneswaran@uts.edu.au [Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007 (Australia)

    2016-09-15

    Adsorption using low-cost adsorbents is a favourable water treatment method for the removal of water contaminants. In this study the enhanced removal of nitrate, a contaminant at elevated concentration affecting human health and causing eutrophication of water, was tested using chemically modified agricultural wastes as adsorbents. Batch and fixed-bed adsorption studies were performed on corn cob and coconut copra that were surface modified by amine-grafting to increase the surface positive charges. The Langmuir nitrate adsorption capacities (mg N/g) were 49.9 and 59.0 for the amine-grafted (AG) corn cob and coconut copra, respectively at pH 6.5 and ionic strength 1 × 10{sup −3} M NaCl. These values are higher than those of many commercially available anion exchange resins. Fixed-bed (15-cm height) adsorption capacities (mg N/g) calculated from the breakthrough curves were 15.3 and 18.6 for AG corn cob and AG coconut copra, respectively, for an influent nitrate concentration 20 mg N/L at a flow velocity 5 m/h. Nitrate adsorption decreased in the presence of sulphate, phosphate and chloride, with sulphate being the most competitive anion. The Thomas model fitted well to the fixed-bed adsorption data from four repeated adsorption/desorption cycles. Plug-flow model fitted well to the data from only the first cycle. - Highlights: • Ground coconut copra and corn cob particles surfaces are readily amine-grafted. • Amine-grafting reversed the particles' surface charge from negative to positive. • Amine-grafting of the waste particles increased nitrate adsorption capacity. • Nitrate adsorption capacity reduced by co-ions; sulphate > chloride > phosphate. • Fixed-bed nitrate adsorption data fitted well to Thomas and plug-flow models.

  2. Enhanced removal of nitrate from water using amine-grafted agricultural wastes

    International Nuclear Information System (INIS)

    Kalaruban, Mahatheva; Loganathan, Paripurnanda; Shim, W.G.; Kandasamy, Jaya; Ngo, H.H.; Vigneswaran, Saravanamuthu

    2016-01-01

    Adsorption using low-cost adsorbents is a favourable water treatment method for the removal of water contaminants. In this study the enhanced removal of nitrate, a contaminant at elevated concentration affecting human health and causing eutrophication of water, was tested using chemically modified agricultural wastes as adsorbents. Batch and fixed-bed adsorption studies were performed on corn cob and coconut copra that were surface modified by amine-grafting to increase the surface positive charges. The Langmuir nitrate adsorption capacities (mg N/g) were 49.9 and 59.0 for the amine-grafted (AG) corn cob and coconut copra, respectively at pH 6.5 and ionic strength 1 × 10"−"3 M NaCl. These values are higher than those of many commercially available anion exchange resins. Fixed-bed (15-cm height) adsorption capacities (mg N/g) calculated from the breakthrough curves were 15.3 and 18.6 for AG corn cob and AG coconut copra, respectively, for an influent nitrate concentration 20 mg N/L at a flow velocity 5 m/h. Nitrate adsorption decreased in the presence of sulphate, phosphate and chloride, with sulphate being the most competitive anion. The Thomas model fitted well to the fixed-bed adsorption data from four repeated adsorption/desorption cycles. Plug-flow model fitted well to the data from only the first cycle. - Highlights: • Ground coconut copra and corn cob particles surfaces are readily amine-grafted. • Amine-grafting reversed the particles' surface charge from negative to positive. • Amine-grafting of the waste particles increased nitrate adsorption capacity. • Nitrate adsorption capacity reduced by co-ions; sulphate > chloride > phosphate. • Fixed-bed nitrate adsorption data fitted well to Thomas and plug-flow models.

  3. Complex electrical monitoring of biopolymer and iron mineral precipitation for microbial enhanced hydrocarbon recovery

    Science.gov (United States)

    Wu, Y.; Hubbard, C. G.; Dong, W.; Hubbard, S. S.

    2011-12-01

    Microbially enhanced hydrocarbon recovery (MEHR) mechanisms are expected to be impacted by processes and properties that occur over a wide range of scales, ranging from surface interactions and microbial metabolism at the submicron scale to changes in wettability and pore geometry at the pore scale to geological heterogeneities at the petroleum reservoir scale. To eventually ensure successful, production-scale implementation of laboratory-developed MEHR procedures under field conditions, it is necessary to develop approaches that can remotely monitor and accurately predict the complex microbially-facilitated transformations that are expected to occur during MEHR treatments in reservoirs (such as the evolution of redox profiles, oil viscosity or matrix porosity/permeability modifications). Our initial studies are focused on laboratory experiments to assess the geophysical signatures of MEHR-induced biogeochemical transformations, with an ultimate goal of using these approaches to monitor field treatments. Here, we explore the electrical signatures of two MEHR processes that are designed to produce end-products that will plug high permeability zones in reservoirs and thus enhance sweep efficiency. The MEHR experiments to induce biopolymers (in this case dextran) and iron mineral precipitates were conducted using flow-through columns. Leuconostoc mesenteroides, a facultative anaerobe, known to produce dextran from sucrose was used in the biopolymer experiments. Paused injection of sucrose, following inoculation and initial microbial attachment, was carried out on daily basis, allowing enough time for dextran production to occur based on batch experiment observations. Electrical data were collected on daily basis and fluid samples were extracted from the column for characterization. Changes in electrical signal were not observed during initial microbial inoculation. Increase of electrical resistivity and decrease of electrical phase response were observed during the

  4. Isotopic Evidence of Nitrate Sources and its Relationship to Algae in the San Joaquin River, California

    Science.gov (United States)

    Silva, S. R.; Kendall, C.; Young, M. B.; Stringfellow, W. T.; Borglin, S. E.; Kratzer, C. R.; Dahlgren, R. A.; Schmidt, C.; Rollog, M. E.

    2007-12-01

    Many competing demands have been placed on the San Joaquin River including deep water shipping, use as agricultural and drinking water, transport of agricultural and urban runoff, and recreation. These long-established demands limit the management options and increase the importance of understanding the river dynamics. The relationships among sources of water, nitrate, and algae in the San Joaquin River must be understood before management decisions can be made to optimize aquatic health. Isotopic analyses of water samples collected along the San Joaquin River in 2005-2007 have proven useful in assessing these relationships: sources of nitrate, the productivity of the San Joaquin River, and the relationship between nitrate and algae in the river. The San Joaquin River receives water locally from wetlands and agricultural return flow, and from three relatively large tributaries whose headwaters are in the Sierra Nevada. The lowest nitrate concentrations occur during periods of high flow when the proportion of water from the Sierra Nevada is relatively large, reflecting the effect of dilution from the big tributaries and indicating that a large fraction of the nitrate is of local origin. Nitrogen isotopes of nitrate in the San Joaquin River are relatively high (averaging about 12 per mil), suggesting a significant source from animal waste or sewage and/or the effects of denitrification. The d15N of nitrate varies inversely with concentration, indicating that these high isotopic values are also a local product. The d15N values of nitrate from most of the local tributaries is lower than that in the San Joaquin suggesting that nitrate from these tributaries does not account for a significant fraction of nitrate in the river. The source of the non-tributary nitrate must be either small unmeasured surface inputs or groundwater. To investigate whether groundwater might be a significant source of nitrate to the San Joaquin River, groundwater samples are being collected

  5. The crystal structure of urea nitrate

    NARCIS (Netherlands)

    Harkema, Sybolt; Feil, D.

    1969-01-01

    The structure of urea nitrate has been solved, by the use of three-dimensional X-ray data. Data were collected using Cu Ke and Mo K0~ radiations. The structure consists of layers with urea and nitrate groups held together by hydrogen bonds. The positions of all hydrogen atoms were found. The final R

  6. Spectrophotometric Determination of Nitrate in Vegetables Using ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    ABSTRACT: A rapid and sensitive spectrophotometric method for the determination of nitrate in vegetables is described. The method is based on the measurement of the absorbance of yellow sodium nitrophenoxide formed via the reaction of phenol with the vegetable-based nitrate in presence of sulphuric acid.

  7. NITRATE CONTAMINATION OF GROUND WATER (GW-761)

    Science.gov (United States)

    The occurrence of nitrate and related compounds in ground water is discussed from the perspectives of its natural as well as anthropogenic origins. A brief explanation of the nitrogen cycle touches on the production as well as utilization of ammonia, nitrite, nitrate, and nitrog...

  8. Nitrate metabolism in the gromiid microbial universe

    DEFF Research Database (Denmark)

    Høgslund, Signe; Risgaard-Petersen, Nils; Cedhagen, Tomas

    enclose and regulate a small biogeochemical universe within their cell. Their transparent proteinaceous cell wall surrounds a complex matrix consisting of sediment, bacteria and nitrate which is concentrated to hundreds of mM in the gromiid cell. The nitrate is respired to dinitrogen, but in contrast...

  9. 4-Methoxy-N,N′-diphenylbenzamidinium nitrate

    Directory of Open Access Journals (Sweden)

    Renata S. Silva

    2016-09-01

    Full Text Available The asymmetric unit of the title salt N,N′-diphenyl-4-methoxybenzamidinium nitrate, C20H19N2O+·NO3−, comprises two independent N,N′-diphenyl-4-methoxybenzamidinium cations and two nitrate anions. The crystal structure features N—H...O hydrogen bonds and C—H...O contacts responsible for the packing.

  10. Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths

    Science.gov (United States)

    Tesoriero, Anthony J.; Liebscher, Hugh; Cox, Stephen E.

    2000-01-01

    The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive agricultural activity in this area has resulted in nitrate concentrations in groundwater often exceeding drinking water standards. Both the extent and rate of denitrification varied depending on the groundwater flow path. While little or no denitrification occurred in much of the upland portions of the aquifer, a gradual redox gradient is observed as aerobic upland groundwater moves deeper in the aquifer. In contrast, a sharp shallow redox gradient is observed adjacent to a third‐order stream as aerobic groundwater enters reduced sediments. An essentially complete loss of nitrate concurrent with increases in excess N2 provide evidence that denitrification occurs as groundwater enters this zone. Electron and mass balance calculations suggest that iron sulfide (e.g., pyrite) oxidation is the primary source of electrons for denitrification. Denitrification rate estimates were based on mass balance calculations using nitrate and excess N2 coupled with groundwater travel times. Travel times were determined using a groundwater flow model and were constrained by chlorofluorocarbon‐based age dates. Denitrification rates were found to vary considerably between the two areas where denitrification occurs. Denitrification rates in the deep, upland portions of the aquifer were found to range from from 1.0 to 2.7 mM of N per year. Potential denitrification rates in groundwater adjacent to the stream may be much faster, with rates up to 140 mM per year based on an in situ experiment conducted in this zone.

  11. Use of Ferrihydrite-Coated Pozzolana and Biogenic Green Rust to Purify Waste Water Containing Phosphate and Nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Ruby, Christian; Naille, Sébastien; Ona-Nguema, Georges; Morin, Guillaume; Mallet, Martine; Guerbois, Delphine; Barthélémy, Kévin; Etique, Marjorie; Zegeye, Asfaw; Zhang, Yuhai; Boumaïza, Hella; Al-Jaberi, Muayad; Renard, Aurélien; Noël, Vincent; Binda, Paul; Hanna, Khalil; Despas, Christelle; Abdelmoula, Mustapha; Kukkadapu, Ravi; Sarrias, Joseph; Albignac, Magali; Rocklin, Pascal; Nauleau, Fabrice; Hyvrard, Nathalie; Génin, Jean-Marie

    2016-06-27

    The activated sludge treatments combined to the addition of ferric chloride is commonly used to eliminate nitrate and phosphate from waste water in urban area. These processes that need costly infrastructures are not suitable for rural areas and passive treatments (lagoons, reed bed filters…) are more frequently performed. Reed bed filters are efficient for removing organic matter but are not suitable for treating phosphate and nitrate as well. Passive water treatments using various materials (hydroxyapatite, slag…) were already performed, but those allowing the elimination of both nitrate and phosphate are not actually available. The goal of this work is to identify the most suitable iron based materials for such treatments and to determine their optimal use conditions, in particular in hydrodynamic mode. The reactivity of the iron based minerals was measured either by using free particles in suspension or by depositing these particles on a solid substrate. Pouzzolana that is characterized by a porous sponge-like structure suits for settling a high amount of iron oxides. The experimental conditions enabling to avoid any ammonium formation when green rust encounters nitrate were determined within the framework of a full factorial design. The process is divided into two steps that will be performed inside two separated reactors. Indeed, the presence of phosphate inhibits the reduction of nitrate by green rust and the dephosphatation process must precede the denitrification process. In order to remove phosphate, ferrihydrite coated pouzzolana is the best materials. The kinetics of reaction of green rust with nitrate is relatively slow and often leads to the formation of ammonium. The recommendation of the identified process is to favor the accumulation of nitrite in a first step, these species reacting much more quickly with green rust and do not transform into ammonium.

  12. Dietary nitrates, nitrites, and cardiovascular disease.

    Science.gov (United States)

    Hord, Norman G

    2011-12-01

    Dietary nitrate (NO(3)), nitrite (NO(2)), and arginine can serve as sources for production of NO(x) (a diverse group of metabolites including nitric oxide, nitrosothiols, and nitroalkenes) via ultraviolet light exposure to skin, mammalian nitrate/nitrite reductases in tissues, and nitric oxide synthase enzymes, respectively. NO(x) are responsible for the hypotensive, antiplatelet, and cytoprotective effects of dietary nitrates and nitrites. Current regulatory limits on nitrate intakes, based on concerns regarding potential risk of carcinogenicity and methemoglobinemia, are exceeded by normal daily intakes of single foods, such as soya milk and spinach, as well as by some recommended dietary patterns such as the Dietary Approaches to Stop Hypertension diet. This review includes a call for regulatory bodies to consider all available data on the beneficial physiologic roles of nitrate and nitrite in order to derive rational bases for dietary recommendations.

  13. Use of nitrates in ischemic heart disease.

    Science.gov (United States)

    Giuseppe, Cocco; Paul, Jerie; Hans-Ulrich, Iselin

    2015-01-01

    Short-acting nitrates are beneficial in acute myocardial ischemia. However, many unresolved questions remain about the use of long-acting nitrates in stable ischemic heart disease. The use of long-acting nitrates is weakened by the development of endothelial dysfunction and tolerance. Also, we currently ignore whether lower doses of transdermal nitroglycerin would be better than those presently used. Multivariate analysis data from large nonrandomized studies suggested that long-acting nitrates increase the incidence of acute coronary syndromes, while data from another multivariate study indicate that they have positive effects. Because of methodological differences and open questions, the two studies cannot be compared. A study in Japanese patients with vasospastic angina has shown that, when compared with calcium antagonists, long-acting nitrates do not improve long-term prognosis and that the risk for cardiac adverse events increases with the combined therapy. We have many unanswered questions.

  14. Influence of groundwater composition on subsurface iron and arsenic removal

    KAUST Repository

    Moed, David H.; Van Halem, Doris; Verberk, J. Q J C; Amy, Gary L.; Van Dijk, Johannis C.

    2012-01-01

    Subsurface arsenic and iron removal (SAR/SIR) is a novel technology to remove arsenic, iron and other groundwater components by using the subsoil. This research project investigated the influence of the groundwater composition on subsurface treatment. In anoxic sand column experiments, with synthetic groundwater and virgin sand, it was found that several dissolved substances in groundwater compete for adsorption sites with arsenic and iron. The presence of 0.01 mmol L -1phosphate, 0.2 mmol L -1 silicate, and 1 mmol L -1 nitrate greatly reduced the efficiency of SAR, illustrating the vulnerability of this technology in diverse geochemical settings. SIR was not as sensitive to other inorganic groundwater compounds, though iron retardation was limited by 1.2 mmol L -1 calcium and 0.06 mmol L -1 manganese. © IWA Publishing 2012.

  15. Influence of groundwater composition on subsurface iron and arsenic removal

    KAUST Repository

    Moed, David H.

    2012-06-01

    Subsurface arsenic and iron removal (SAR/SIR) is a novel technology to remove arsenic, iron and other groundwater components by using the subsoil. This research project investigated the influence of the groundwater composition on subsurface treatment. In anoxic sand column experiments, with synthetic groundwater and virgin sand, it was found that several dissolved substances in groundwater compete for adsorption sites with arsenic and iron. The presence of 0.01 mmol L -1phosphate, 0.2 mmol L -1 silicate, and 1 mmol L -1 nitrate greatly reduced the efficiency of SAR, illustrating the vulnerability of this technology in diverse geochemical settings. SIR was not as sensitive to other inorganic groundwater compounds, though iron retardation was limited by 1.2 mmol L -1 calcium and 0.06 mmol L -1 manganese. © IWA Publishing 2012.

  16. Efficient syntheses of climate relevant isoprene nitrates and (1R,5S)-(-)-myrtenol nitrate.

    Science.gov (United States)

    Bew, Sean P; Hiatt-Gipson, Glyn D; Mills, Graham P; Reeves, Claire E

    2016-01-01

    Here we report the chemoselective synthesis of several important, climate relevant isoprene nitrates using silver nitrate to mediate a 'halide for nitrate' substitution. Employing readily available starting materials, reagents and Horner-Wadsworth-Emmons chemistry the synthesis of easily separable, synthetically versatile 'key building blocks' (E)- and (Z)-3-methyl-4-chlorobut-2-en-1-ol as well as (E)- and (Z)-1-((2-methyl-4-bromobut-2-enyloxy)methyl)-4-methoxybenzene has been achieved using cheap, 'off the shelf' materials. Exploiting their reactivity we have studied their ability to undergo an 'allylic halide for allylic nitrate' substitution reaction which we demonstrate generates (E)- and (Z)-3-methyl-4-hydroxybut-2-enyl nitrate, and (E)- and (Z)-2-methyl-4-hydroxybut-2-enyl nitrates ('isoprene nitrates') in 66-80% overall yields. Using NOESY experiments the elucidation of the carbon-carbon double bond configuration within the purified isoprene nitrates has been established. Further exemplifying our 'halide for nitrate' substitution chemistry we outline the straightforward transformation of (1R,2S)-(-)-myrtenol bromide into the previously unknown monoterpene nitrate (1R,2S)-(-)-myrtenol nitrate.

  17. Denitrification and dilution along fracture flowpaths influence the recovery of a bedrock aquifer from nitrate contamination

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonathan J., E-mail: jon.kim@vermont.gov [Vermont Geological Survey, 1 National Life Drive, Main 2, Montpelier, VT 05620 (United States); Comstock, Jeff [Vermont Agency of Agriculture, 116 State Street, Montpelier, VT 05620 (United States); Ryan, Peter [Dept. of Geology, Middlebury College, Middlebury, VT 05753 (United States); Heindel, Craig [Waite-Heindel Environmental Management, 7 Kilburn Street, Suite 301, Burlington, VT 05401 (United States); Koenigsberger, Stephan [Dept. of Geology, Middlebury College, Middlebury, VT 05753 (United States)

    2016-11-01

    In 2000, elevated nitrate concentrations ranging from 12 to 34 mg/L NO{sub 3}−N were discovered in groundwater from numerous domestic bedrock wells adjacent to a large dairy farm in central Vermont. Long-term plots and contours of nitrate vs. time for bedrock wells showed “little/no”, “moderate”, and “large” change patterns that were spatially separable. The metasedimentary bedrock aquifer is strongly anisotropic and groundwater flow is controlled by fractures, bedding/foliation, and basins and ridges in the bedrock surface. Integration of the nitrate concentration vs. time data and the physical and chemical aquifer characterization suggest two nitrate sources: a point source emanating from a waste ravine and a non-point source that encompasses the surrounding fields. Once removed, the point source of NO{sub 3} (manure deposited in a ravine) was exhausted and NO{sub 3} dropped from 34 mg/L to < 10 mg/L after ~ 10 years; however, persistence of NO{sub 3} in the 3 to 8 mg/L range (background) reflects the long term flux of nitrates from nutrients applied to the farm fields surrounding the ravine over the years predating and including this study. Inferred groundwater flow rates from the waste ravine to either moderate change wells in basin 2 or to the shallow bedrock zone beneath the large change wells are 0.05 m/day, well within published bedrock aquifer flow rates. Enrichment of {sup 15}N and {sup 18}O in nitrate is consistent with lithotrophic denitrification of NO{sub 3} in the presence of dissolved Mn and Fe. Once the ravine point-source was removed, denitrification and dilution collectively were responsible for the down-gradient decrease of nitrate in this bedrock aquifer. Denitrification was most influential when NO{sub 3}−N was > 10 mg/L. Our multidisciplinary methods of aquifer characterization are applicable to groundwater contamination in any complexly-deformed and metamorphosed bedrock aquifer. - Highlights: • Bedrock wells contaminated

  18. Laboratory studies of nitrate radical chemistry - application to atmospheric processes

    Energy Technology Data Exchange (ETDEWEB)

    Noremsaune, Ingse

    1997-12-31

    This thesis studies atmospheric chemistry and tries in particular to fill gaps in the data base of atmospheric reactions. It studies the nitrate radical reactions with chloroethenes and with but-2-yne (2-butyne). The mechanisms and rate coefficients for the NO{sub 3}-initiated degradation of the chloroethenes and 2-butyne were investigated by means of the static reaction chamber and the fast flow-discharge technique. The reactions between the nitrate radical and the chloroethenes were studied at atmospheric pressure in a reaction chamber with synthetic air as bath gas. FTIR (Fourier Transform InfraRed spectroscopy) spectroscopy was used to follow the reactions and to identify the products. Products were observed for the reactions with (E)-1,2-dichloroethene and tetrachloroethene, although the absorption bands are weak. The alkyl peroxynitrate and nitrate compounds form very strong and characteristic absorption bands. The rate coefficients for the reactions between NO{sub 3} and the chloroethenes were investigated at room temperature by three different methods. The results are given in tables. 132 refs., 44 figs., 21 tabs.

  19. The systems lanthanum (cerium, samarium) nitrate-tetramethyl-ammonium nitrate-water

    International Nuclear Information System (INIS)

    Zhuravlev, E.F.; Khisaeva, D.A.; Semenova, Eh.B.

    1984-01-01

    The method of cross sections at 25 and 50 deg C has been applied to study solubility in the systems lanthanum nitrate-tetramethyl ammonium nitrate-water (1), cesium (3) nitrate-tetramethyl ammonium nitrate-water (2) and samarium nitrate-tetramethyl ammonium nitrate-water (3). Crystallization fields of congruently dissolving compounds with 1:3 ratio of salt components (in system 1) and 1:2 ratio (in systems 2 and 3) are found in the systems. New solid phases are separated preparatively and subjected to chemical, differential thermal and IR spectroscopic analyses. Compositions of formed compounds are compared with the compositions known for nitrates of other representatives of light lanthanides

  20. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.

    Science.gov (United States)

    Jeong, Daun; Kim, Kitae; Min, Dae Wi; Choi, Wonyong

    2015-11-03

    Dissolution of iron from mineral dust particles greatly depends upon the type and amount of copresent inorganic anions. In this study, we investigated the roles of sulfate, chloride, nitrate, and perchlorate on the dissolution of maghemite and lepidocrocite in ice under both dark and UV irradiation and compared the results with those of their aqueous counterparts. After 96 h of reaction, the total dissolved iron in ice (pH 3 before freezing) was higher than that in the aqueous phase (pH 3) by 6-28 times and 10-20 times under dark and UV irradiation, respectively. Sulfuric acid was the most efficient in producing labile iron under dark condition, whereas hydrochloric acid induced the most dissolution of the total and ferrous iron in the presence of light. This ice-induced dissolution result was also confirmed with Arizona Test Dust (AZTD). In the freeze-thaw cycling test, the iron oxide samples containing chloride, nitrate, or perchlorate showed a similar extent of total dissolved iron after each cycling while the sulfate-containing sample rapidly lost its dissolution activity with repeating the cycle. This unique phenomenon observed in ice might be related to the freeze concentration of protons, iron oxides, and inorganic anions in the liquid-like ice grain boundary region. These results suggest that the ice-enhanced dissolution of iron oxides can be a potential source of bioavailable iron, and the acid anions critically influence this process.

  1. Phase diagram of ammonium nitrate

    International Nuclear Information System (INIS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-01-01

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO–AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N 2 , N 2 O, and H 2 O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV ′ transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C

  2. Sodium nitrate combustion limit tests

    International Nuclear Information System (INIS)

    Beitel, G.A.

    1976-04-01

    Sodium nitrate is a powerful solid oxidant. Energetically, it is capable of exothermically oxidizing almost any organic material. Rate-controlling variables such as temperature, concentration of oxidant, concentration of fuel, thermal conductivity, moisture content, size, and pressure severely limit the possibility of a self-supported exothermic reaction (combustion). The tests reported in this document were conducted on one-gram samples at atmospheric pressure. Below 380 0 C, NaNO 3 was stable and did not support combustion. At moisture concentrations above 22 wt percent, exothermic reactions did not propagate in even the most energetic and reactive compositions. Fresh resin and paraffin were too volatile to enable a NaNO 2 -supported combustion process to propagate. Concentrations of NaNO 3 above 95 wt percent or below 35 wt percent did not react with enough energy release to support combustion. The influence of sample size and confining pressure, both important factors, was not investigated in this study

  3. Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface

    International Nuclear Information System (INIS)

    Wu, Weimin; Carley, Jack M.; Green, Stefan; Luo, Jian; Kelly, Shelly D.; Van Nostrand, Joy; Lowe, Kenneth Alan; Mehlhorn, Tonia L.; Carroll, Sue L.; Boonchayanant, Benjaporn; Loeffler, Frank E.; Jardine, Philip M.; Criddle, Craig

    2010-01-01

    The effects of nitrate on the stability of reduced, immobilized uranium were evaluated in field experiments at a U.S. Department of Energy site in Oak Ridge, TN. Nitrate (2.0 mM) was injected into a reduced region of the subsurface containing high levels of previously immobilized U(IV). The nitrate was reduced to nitrite, ammonium, and nitrogen gas; sulfide levels decreased; and Fe(II) levels increased then deceased. Uranium remobilization occurred concomitant with nitrite formation, suggesting nitrate-dependent, iron-accelerated oxidation of U(IV). Bromide tracer results indicated changes in subsurface flowpaths likely due to gas formation and/or precipitate. Desorption-adsorption of uranium by the iron-rich sediment impacted uranium mobilization and sequestration. After rereduction of the subsurface through ethanol additions, background groundwater containing high levels of nitrate was allowed to enter the reduced test zone. Aqueous uranium concentrations increased then decreased. Clone library analyses of sediment samples revealed the presence of denitrifying bacteria that can oxidize elemental sulfur, H 2 S, Fe(II), and U(IV) (e.g., Thiobacillus spp.), and a decrease in relative abundance of bacteria that can reduce Fe(III) and sulfate. XANES analyses of sediment samples confirmed changes in uranium oxidation state. Addition of ethanol restored reduced conditions and triggered a short-term increase in Fe(II) and aqueous uranium, likely due to reductive dissolution of Fe(III) oxides and release of sorbed U(VI). After two months of intermittent ethanol addition, sulfide levels increased, and aqueous uranium concentrations gradually decreased to <0.1 μM.

  4. Iron absorption in relation to iron status

    International Nuclear Information System (INIS)

    Magnusson, B.; Bjoern-Rasmussen, E.; Hallberg, L.; Rossander, L.

    1981-01-01

    The absorption from a 3 mg dose of ferrous iron was measured in 250 male subjects. The absorption was related to the log concentration of serum ferritin in 186 subjects of whom 99 were regular blood donors (r= -0.76), and to bone marrow haemosiderin grading in 52 subjects with varying iron status. The purpose was to try and establish a percentage absorption from such a dose that is representative of subjects who are borderline iron deficient. This information is necessary for food iron absorption studies in order (1) to calculate the absorption of iron from the diet at a given iron status and (2) compare the absorption of iron from different meals studied in different groups of subjects by different investigarors. The results suggest that an absorption of about 40% of a 3 mg reference dose of ferrous iron is given in a fasting state, roughly corresponds to the absorption in borderline-iron-deficient subjects. The results indicate that this 40% absorption value corresponds to a serum ferritin level of 30 μg/l and that food iron absorption in a group of subjects should be expressed preferably as the absorption corresponding to a reference-dose absorption of 45%, or possibly a serum ferritin level of 30 μg/l. (author)

  5. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    Science.gov (United States)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    where pH remains neutral. The "low-acid" oxidation of sulfides with nitrate as an electron acceptor has been demonstrated at the laboratory scale. In 90-day microcosm respirometry experiments, we exposed a mixture of pulverized quartz and pyrite -rich ore to natural, high-nitrate groundwater and inoculated the microcosms with a culture of aerobic and anaerobic nitrate-dependent iron and sulfur-oxidising microorganisms, which were enriched from ore, groundwater and activated waste water. Incubations were performed under both oxic and anoxic conditions, in addition to abiotic controls. Initial results show that oxidation of the sulfides under nitrate-rich and microbially enhanced conditions does produce less acid than the same material under oxic conditions, and to some degree can match the models as long as oxygen ingress can be controlled. These results are the focus of further research into how this process can be enhanced and whether it can be applied in the field. Nitrate-driven oxidation of sulfides could potentially be used as a new approach to reduce acid generation and leaching of contaminants from waste dumps, in a passive or actively managed process designed to deplete and/or ameliorate (i.e. through surface passivation) the mineralogical hazard. Developing our understanding of biological aspects of these processes may also allow testing of longer-term "bio-caps" for various tailings and dump materials.

  6. Timescales for nitrate contamination of spring waters, northern Florida, USA

    Science.gov (United States)

    Katz, B.G.; Böhlke, J.K.; Hornsby, H.D.

    2001-01-01

    Residence times of groundwater, discharging from springs in the middle Suwannee River Basin, were estimated using chlorofluorocarbons (CFCs), tritium (3H), and tritium/helium-3 (3H/3He) age-dating methods to assess the chronology of nitrate contamination of spring waters in northern Florida. During base-flow conditions for the Suwannee River in 1997–1999, 17 water samples were collected from 12 first, second, and third magnitude springs discharging groundwater from the Upper Floridan aquifer. Extending age-dating techniques, using transient tracers to spring waters in complex karst systems, required an assessment of several models [piston-flow (PFM), exponential mixing (EMM), and binary-mixing (BMM)] to account for different distributions of groundwater age. Multi-tracer analyses of four springs yielded generally concordant PFM ages of around 20±2 years from CFC-12, CFC-113, 3H, and 3He, with evidence of partial CFC-11 degradation. The EMM gave a reasonable fit to CFC-113, CFC-12, and 3H data, but did not reproduce the observed 3He concentrations or 3H/3He ratios, nor did a combination PFM–EMM. The BMM could reproduce most of the multi-tracer data set only if both endmembers had 3H concentrations not much different from modern values. CFC analyses of 14 additional springs yielded apparent PFM ages from about 10 to 20 years from CFC-113, with evidence of partial CFC-11 degradation and variable CFC-12 contamination. While it is not conclusive, with respect to the age distribution within each spring, the data indicate that the average residence times were in the order of 10–20 years and were roughly proportional to spring magnitude. Applying similar models to recharge and discharge of nitrate based on historical nitrogen loading data yielded contrasting trends for Suwanee County and Lafayette County. In Suwanee County, spring nitrate trends and nitrogen isotope data were consistent with a peak in fertilizer input in the 1970s and a relatively high overall ratio

  7. Research studies on in vitro and ex vivo yield of the miconazole nitrate from oral biomucoadhesive tablets.

    Science.gov (United States)

    Birsan, Magdalena; Cojocaru, Ileana; Scutariu, Mihaela Monica; Popovici, Iuliana

    2014-01-01

    Among the various routes of drug administration, the oral mucosa is perhaps the most often preferred by patients and medical staff. However, oral administration of drugs has disadvantages, which may limit or prevent oral administration of some drugs, especially peptides and proteins, little when they are inserted in special administration systems for the colon. The disaggregation of some oral biomucoadhesive tablets and the in vitro yield of the miconazole nitrate was evaluated and in parallel with this, the evaluation of the in vivo yield of the antifungal from the pharmaceutical form. Thus, for a clear determination of the oral mucobioadhesive tablets' disintegration with miconazole nitrate, it was necessary to implement a method to simulate the conditions of the oral cavity at a flow of solution (artificial saliva) similar to that of the human one. miconazole nitrate. The determination of disintegration time according to method A (FRX); the disaggregation of oral biomucoadhesive tablets with miconazole nitrate by means of simulation methods of in vitro conditions; the quantitative determination of the miconazole nitrate by means of HPLC method, after the in vitro dissolution test; the study of miconazole nitrate's yield in dynamic condition from biomucoadhesive tablets in the presence of artificial saliva (AFNOR). The yield profile of the miconazole nitrate in the disintegration solutions by means of classical method from FR X, by HPLC dosage was researched. The release of miconazole nitrate from the oral mucobioadhesive tablets was determined, that varies in time, depending on the type and relation of matrix forming polymers; a low yield speed of the miconazole nitrate from the tablets was determined; the yield profile of miconazole nitrate in disintegration solutions by means of the new suggested method was researched. The release of miconazole nitrate from the formulated biomucoadhesive tablets is of swelling and erosion.

  8. Manganese and iron oxidation by fungi isolated from building stone.

    Science.gov (United States)

    de la Torre, M A; Gomez-Alarcon, G

    1994-01-01

    Acid and nonacid generating fungal strains isolated from weathered sandstone, limestone, and granite of Spanish cathedrals were assayed for their ability to oxidize iron and manganese. In general, the concentration of the different cations present in the mineral salt media directly affected Mn(IV) oxide formation, although in some cases, the addition of glucose and nitrate to the culture media was necessary. Mn(II) oxidation in acidogenic strains was greater in a medium containing the highest concentrations of glucose, nitrate, and manganese. High concentrations of Fe(II), glucose, and mineral salts were optimal for iron oxidation. Mn(IV) precipitated as oxides or hydroxides adhered to the mycelium. Most of the Fe(III) remained in solution by chelation with organic acids excreted by acidogenic strains. Other metabolites acted as Fe(III) chelators in nonacidogenic strains, although Fe(III) deposits around the mycelium were also detected. Both iron and manganese oxidation were shown to involve extracellular, hydrosoluble enzymes, with maximum specific activities during exponential growth. Strains able to oxidize manganese were also able to oxidize iron. It is concluded that iron and manganese oxidation reported in this work were biologically induced by filamentous fungi mainly by direct (enzymatic) mechanisms.

  9. Sorption of nitrate onto amine-crosslinked wheat straw: characteristics, column sorption and desorption properties.

    Science.gov (United States)

    Xing, Xu; Gao, Bao-Yu; Zhong, Qian-Qian; Yue, Qin-Yan; Li, Qian

    2011-02-15

    The nitrate removal process was evaluated using a fixed-bed column packed with amine-crosslinked wheat straw (AC-WS). Column sorption and desorption characteristics of nitrate were studied extensively. Solid-state (13)C NMR and zeta potential analysis validated the existence of crosslinked amine groups in AC-WS. Raman shift of the nitrate peaks suggested the electrostatic attraction between the adsorbed ions and positively charged amine sites. The column sorption capacity (q(ed)) of the AC-WS for nitrate was 87.27 mg g(-1) in comparison with the raw WS of 0.57 mg g(-1). Nitrate sorption in column was affected by bed height, influent nitrate concentration, flow rate and pH, and of all these, influent pH demonstrated an essential effect on the performance of the column. In addition, desorption and dynamic elution tests were repeated for several cycles, with high desorption rate and slight losses in its initial column sorption capacity. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Colorimetric determination of nitrate plus nitrite in water by enzymatic reduction, automated discrete analyzer methods

    Science.gov (United States)

    Patton, Charles J.; Kryskalla, Jennifer R.

    2011-01-01

    This report documents work at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) to validate enzymatic reduction, colorimetric determinative methods for nitrate + nitrite in filtered water by automated discrete analysis. In these standard- and low-level methods (USGS I-2547-11 and I-2548-11), nitrate is reduced to nitrite with nontoxic, soluble nitrate reductase rather than toxic, granular, copperized cadmium used in the longstanding USGS automated continuous-flow analyzer methods I-2545-90 (NWQL laboratory code 1975) and I-2546-91 (NWQL laboratory code 1979). Colorimetric reagents used to determine resulting nitrite in aforementioned enzymatic- and cadmium-reduction methods are identical. The enzyme used in these discrete analyzer methods, designated AtNaR2 by its manufacturer, is produced by recombinant expression of the nitrate reductase gene from wall cress (Arabidopsis thaliana) in the yeast Pichia pastoris. Unlike other commercially available nitrate reductases we evaluated, AtNaR2 maintains high activity at 37°C and is not inhibited by high-phenolic-content humic acids at reaction temperatures in the range of 20°C to 37°C. These previously unrecognized AtNaR2 characteristics are essential for successful performance of discrete analyzer nitrate + nitrite assays (henceforth, DA-AtNaR2) described here.

  11. CARBON-BASED REACTIVE BARRIER FOR NITRATE ...

    Science.gov (United States)

    Nitrate (NO3-) is a common ground water contaminant related to agricultural activity, waste water disposal, leachate from landfills, septic systems, and industrial processes. This study reports on the performance of a carbon-based permeable reactive barrier (PRB) that was constructed for in-situ bioremediation of a ground water nitrate plume caused by leakage from a swine CAFO (concentrated animal feeding operation) lagoon. The swine CAFO, located in Logan County, Oklahoma, was in operation from 1992-1999. The overall site remediation strategy includes an ammonia recovery trench to intercept ammonia-contaminated ground water and a hay straw PRB which is used to intercept a nitrate plume caused by nitrification of sorbed ammonia. The PRB extends approximately 260 m to intercept the nitrate plume. The depth of the trench averages 6 m and corresponds to the thickness of the surficial saturated zone; the width of the trench is 1.2 m. Detailed quarterly monitoring of the PRB began in March, 2004, about 1 year after construction activities ended. Nitrate concentrations hydraulically upgradient of the PRB have ranged from 23 to 77 mg/L N, from 0 to 3.2 mg/L N in the PRB, and from 0 to 65 mg/L N hydraulically downgradient of the PRB. Nitrate concentrations have generally decreased in downgradient locations with successive monitoring events. Mass balance considerations indicate that nitrate attenuation is dominantly from denitrification but with some component of

  12. Comparative evaluation of nitrate removal technologies

    International Nuclear Information System (INIS)

    Darbi, A.; Viraraghavan, T.; Butler, R.; Corkal, D.

    2002-01-01

    Due to the extensive application of artificial nitrogen-based fertilizers and animal manure on land, many water agencies face problems of increasing concentrations of nitrate in groundwater. The contamination of groundwater by nitrate may pose a significant public health problem. The threat of methemoglobinemia is well documented and reflected in the U.S. drinking water standard of 10 mg/L as nitrate-nitrogen. Approximately 45% of Saskatchewan's population use groundwater for drinking purposes, out of which, approximately 23% (230,000) are rural residents. The water used is made available from over 48,000 privately owned wells in regions where there is an extensive application of chemical fertilizers. Biological denitrification, ion exchange and reveres osmosis (RO) processes were selected for further study. Field studies were conducted on these processes. The sulfur/limestone autotrophic denitrification (SLAD) process was selected to achieve biological removal of nitrate from groundwater. The feasibility of the system was evaluated under anaerobic conditions. An ion exchange study was conducted using Ionac A554 which is strong anion exchange resins. In the case of groundwater containing low sulfate concentrations, A554 offered high nitrate removal. However, the disposal of regenerant brine can be a problem. A reverse osmosis unit with Filmtec membrane elements (FT30-Element Family) was used in the study on nitrate removal. The unit effluent average nitrate concentration was less than the maximum allowable concentration. (author)

  13. Copper nitrate redispersion to arrive at highly active silica-supported copper catalysts

    NARCIS (Netherlands)

    Munnik, P.|info:eu-repo/dai/nl/328228524; Wolters, M.|info:eu-repo/dai/nl/304829560; Gabrielsson, A.; Pollington, S.D.; Headdock, G.; Bitter, J.H.|info:eu-repo/dai/nl/160581435; de Jongh, P.E.|info:eu-repo/dai/nl/186125372; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2011-01-01

    In order to obtain copper catalysts with high dispersions at high copper loadings, the gas flow rate and gas composition was varied during calcination of silica gel impregnated with copper nitrate to a loading of 18 wt % of copper. Analysis by X-ray diffraction (XRD), N2O chemisorption, and

  14. Method of injecting iron ion into reactor coolant

    International Nuclear Information System (INIS)

    Ito, Kazuyuki; Sawa, Toshio; Nishino, Yoshitaka; Adachi, Tetsuro; Osumi, Katsumi.

    1988-01-01

    Purpose: To form iron ions stably and inject them into nuclear reactor coolants with no substantial degradation of the severe water quality conditions for reactor coolants. Method: Iron ions are formed by spontaneous corrosion of iron type materials and electroconductivity is increased with the iron ions. Then, the liquids are introduced into an electrolysis vessel using iron type material as electrodes and, thereafter, incorporation of newly added ions other than the iron ions are prevented by supplying electric current. Further, by retaining the iron type material in the packing vessel by the magnetic force therein, only the iron ions are flow out substantially from the packing vessel while preventing the discharge of iron type materials per se or solid corrosion products and then introduced into the electrolysis vessel. Powdery or granular pure iron or carbon steel is used as the iron type material. Thus, iron ions and hydroxides thereof can be injected into coolants by using reactor water at low electroconductivity and incapable of electrolysis. (Kamimura, M.)

  15. Biogeochemical impact of a model western iron source in the Pacific Equatorial Undercurrent

    OpenAIRE

    Slemons, L.; Gorgues, T.; Aumont, Olivier; Menkès, Christophe; Murray, J. W.

    2009-01-01

    Trace element distributions in the source waters of the Pacific Equatorial Undercurrent (EUC) show the existence of elevated total acid-soluble iron concentrations. This region has been suggested to contribute enough bioavailable iron to regulate interannual and interglacial variability in biological productivity downstream in the high-nitrate low-chlorophyll upwelling zone of the eastern equatorial Pacific. We investigated the advection and first-order biogeochemical impact of an imposed, da...

  16. Elimination of nitrate in secondary effluent of wastewater treatment plants by Fe0 and Pd-Cu/diatomite

    Directory of Open Access Journals (Sweden)

    Yupan Yun

    2018-03-01

    Full Text Available Because total nitrogen (TN, in which nitrate (NO3– is dominant in the effluent of most wastewater treatment plants, cannot meet the requirement of Chinese wastewater discharge standard (<15 mg/L, NO3– elimination has attracted considerable attention. In this research, the novel diatomite-supported palladium-copper catalyst (Pd-Cu/diatomite with zero-valent iron (Fe0 was tried to use for catalytic reduction of nitrate in wastewater. Firstly, specific operational conditions (such as mass ratio of Pd:Cu, catalyst amounts, reaction time and pH of solution were optimized for nitrate reduction in artificial solution. Secondly, the selected optimal conditions were further employed for nitrate elimination of real effluent of a wastewater treatment plant in Beijing, China. Results showed that 67% of nitrate removal and 62% of N2 selectivity could be obtained under the following conditions: 5 g/L Fe0, 3:1 mass ratio (Pd:Cu, 4 g/L catalyst, 2 h reaction time and pH 4.3. Finally, the mechanism of catalytic nitrate reduction was also proposed.

  17. Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China.

    Science.gov (United States)

    Han, Dongmei; Cao, Guoliang; McCallum, James; Song, Xianfang

    2015-12-15

    Groundwater within the coastal aquifer systems of the Daweijia area in northeastern China is characterized by a large of variations (33-521mg/L) in NO3(-) concentrations. Elevated nitrate concentrations, in addition to seawater intrusion in the Daweijia well field, both attributable to anthropogenic activities, may impact future water-management practices. Chemical and stable isotopic (δ(18)O, δ(2)H) analysis, (3)H and CFCs methods were applied to provide a better understanding of the relationship between the distribution of groundwater mean residence time (MRT) and nitrate transport, and to identify sources of nitrate concentrations in the complex coastal aquifer systems. There is a relatively narrow range of isotopic composition (ranging from -8.5 to -7.0‰) in most groundwater. Generally higher tritium contents observed in the wet season relative to the dry season may result from rapid groundwater circulation in response to the rainfall through the preferential flow paths. In the well field, the relatively increased nitrate concentrations of groundwater, accompanied by the higher tritium contents in the wet season, indicate the nitrate pollution can be attributed to domestic wastes. The binary exponential and piston-flow mixing model (BEP) yielded feasible age distributions based on the conceptual model. The good inverse relationship between groundwater MRTs (92-467years) and the NO3(-) concentrations in the shallow Quaternary aquifers indicates that elevated nitrate concentrations are attributable to more recent recharge for shallow groundwater. However, there is no significant relationship between the MRTs (8-411years) and the NO3(-) concentrations existing in the carbonate aquifer system, due to the complex hydrogeological conditions, groundwater age distributions and the range of contaminant source areas. Nitrate in the groundwater system without denitrification effects could accumulate and be transported for tens of years, through the complex carbonate

  18. Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water.

    Science.gov (United States)

    Smith, Richard L; Buckwalter, Seanne P; Repert, Deborah A; Miller, Daniel N

    2005-05-01

    Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated from a sole-source drinking-water aquifer. The autotrophic capacity of the purple non-sulfur photosynthetic bacterium made it particularly adept for this purpose. Initial tests used a commercial bioreactor filled with glass beads and countercurrent, non-sterile flow of an autotrophic, air-saturated, growth medium and hydrogen gas. Complete removal of 2 mM nitrate was achieved for more than 300 days of operation at a 2-h retention time. A low-cost hydrogen generator/bioreactor system was then constructed from readily available materials as a water treatment approach using the Rhodocyclus strain. After initial tests with the growth medium, the constructed system was tested using nitrate-amended drinking water obtained from fractured granite and sandstone aquifers, with moderate and low TDS loads, respectively. Incomplete nitrate removal was evident in both water types, with high-nitrite concentrations in the bioreactor output, due to a pH increase, which inhibited nitrite reduction. This was rectified by including carbon dioxide in the hydrogen stream. Additionally, complete nitrate removal was accomplished with wastewater-impacted surface water, with a concurrent decrease in dissolved organic carbon. The results of this study using three chemically distinct water supplies demonstrate that hydrogen-coupled denitrification can serve as the basis for small-scale remediation and that pilot-scale testing might be the next logical step.

  19. Reverse polarity capillary zone electrophoresis analysis of nitrate and nitrite in natural water samples

    Energy Technology Data Exchange (ETDEWEB)

    Metcalf, S.G.

    1998-06-11

    This paper describes the application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in natural water samples. Using hexamethonium bromide (HMB) as an electroosmotic flow modifier in a borate buffer at pH 9.2, the resolution of nitrate and nitrite was accomplished in less than 3 minutes. RPCE was compared with ion chromatographic (IC) and cadmium reduction flow injection analysis (Cd-FIA) methods which are the two most commonly used standard methods for the analysis of natural water samples for nitrate and nitrite. When compared with the ion chromatographic method for the determination of nitrate and nitrite, RPCE reduced analysis time, decreased detection limits by a factor of 10, cut laboratory wastes by more than two orders of magnitude, and eliminated interferences commonly associated with IC. When compared with the cadmium reduction method, RPCE had the advantage of simultaneous determination of nitrate and nitrite, could be used in the presence of various metallic ions that normally interfere in cadmium reduction, and decreased detection limits by a factor of 10.

  20. Reverse polarity capillary zone electrophoresis analysis of nitrate and nitrite in natural water samples

    International Nuclear Information System (INIS)

    Metcalf, S.G.

    1998-01-01

    This paper describes the application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in natural water samples. Using hexamethonium bromide (HMB) as an electroosmotic flow modifier in a borate buffer at pH 9.2, the resolution of nitrate and nitrite was accomplished in less than 3 minutes. RPCE was compared with ion chromatographic (IC) and cadmium reduction flow injection analysis (Cd-FIA) methods which are the two most commonly used standard methods for the analysis of natural water samples for nitrate and nitrite. When compared with the ion chromatographic method for the determination of nitrate and nitrite, RPCE reduced analysis time, decreased detection limits by a factor of 10, cut laboratory wastes by more than two orders of magnitude, and eliminated interferences commonly associated with IC. When compared with the cadmium reduction method, RPCE had the advantage of simultaneous determination of nitrate and nitrite, could be used in the presence of various metallic ions that normally interfere in cadmium reduction, and decreased detection limits by a factor of 10

  1. Nitrate analogs as attractants for soybean cyst nematode.

    Science.gov (United States)

    Hosoi, Akito; Katsuyama, Tsutomu; Sasaki, Yasuyuki; Kondo, Tatsuhiko; Yajima, Shunsuke; Ito, Shinsaku

    2017-08-01

    Soybean cyst nematode (SCN) Heterodera glycines Ichinohe, a plant parasite, is one of the most serious pests of soybean. In this paper, we report that SCN is attracted to nitrate and its analogs. We performed attraction assays to screen for novel attractants for SCN and found that nitrates were attractants for SCN and SCN recognized nitrate gradients. However, attraction of SCN to nitrates was not observed on agar containing nitrate. To further elucidate the attraction mechanism in SCN, we performed attraction assays using nitrate analogs ([Formula: see text], [Formula: see text], [Formula: see text]). SCN was attracted to all nitrate analogs; however, attraction of SCN to nitrate analogs was not observed on agar containing nitrate. In contrast, SCN was attracted to azuki root, irrespective of presence or absence of nitrate in agar media. Our results suggest that the attraction mechanisms differ between plant-derived attractant and nitrate.

  2. Ferritin expression in rat hepatocytes and Kupffer cells after lead nitrate treatment.

    Science.gov (United States)

    Fan, Yang; Yamada, Toshiyuki; Shimizu, Takeshi; Nanashima, Naoki; Akita, Miki; Suto, Kohji; Tsuchida, Shigeki

    2009-02-01

    Lead nitrate induces hepatocyte proliferation and subsequent apoptosis in rat livers. Iron is a constituent of heme and is also required for cell proliferation. In this study, the expression of ferritin light-chain (FTL), the major iron storage protein, was investigated in rat livers after a single intravenous injection of lead nitrate. Western blotting and immunohistochemistry revealed that FTL was increased in hepatocytes around the central veins and strongly expressed in nonparenchymal cells. Some FTL-positive nonparenchymal cells were identified as Kupffer cells that were positive for CD68. FTL-positive Kupffer cells occupied about 60% of CD68-positive cells in the periportal and perivenous areas. The relationships between FTL expression and apoptosis induction or the engulfment of apoptotic cells were examined. TUNEL-positive cells were increased in the treatment group, and enhanced expression of milk fat globule EGF-like 8 was demonstrated in some Kupffer cells and hepatocytes, indicating enhanced apoptosis induction and phagocytosis of apoptotic cells. FTL-positive Kupffer cells were not detected without lead nitrate treatment or in rat livers treated with clofibrate, which induces hepatocyte proliferation but not apoptosis. These results suggest that FTL expression in Kupffer cells after lead treatment is dependent on phagocytosis of apoptotic cells.

  3. Rebalancing electrolytes in redox flow battery systems

    Science.gov (United States)

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  4. Photodegradation of Paracetamol in Nitrate Solution

    Science.gov (United States)

    Meng, Cui; Qu, Ruijuan; Liang, Jinyan; Yang, Xi

    2010-11-01

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  5. Photodegradation of Paracetamol in Nitrate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Meng; Ruijuan, Qu; Jinyan, Liang; Xi, Yang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China)

    2010-11-24

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  6. Photodegradation of Paracetamol in Nitrate Solution

    International Nuclear Information System (INIS)

    Meng Cui; Qu Ruijuan; Liang Jinyan; Yang Xi

    2010-01-01

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  7. Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China

    International Nuclear Information System (INIS)

    Han, Dongmei; Cao, Guoliang; McCallum, James; Song, Xianfang

    2015-01-01

    Groundwater within the coastal aquifer systems of the Daweijia area in northeastern China is characterized by a large of variations (33–521 mg/L) in NO_3"− concentrations. Elevated nitrate concentrations, in addition to seawater intrusion in the Daweijia well field, both attributable to anthropogenic activities, may impact future water-management practices. Chemical and stable isotopic (δ"1"8O, δ"2H) analysis, "3H and CFCs methods were applied to provide a better understanding of the relationship between the distribution of groundwater mean residence time (MRT) and nitrate transport, and to identify sources of nitrate concentrations in the complex coastal aquifer systems. There is a relatively narrow range of isotopic composition (ranging from − 8.5 to − 7.0‰) in most groundwater. Generally higher tritium contents observed in the wet season relative to the dry season may result from rapid groundwater circulation in response to the rainfall through the preferential flow paths. In the well field, the relatively increased nitrate concentrations of groundwater, accompanied by the higher tritium contents in the wet season, indicate the nitrate pollution can be attributed to domestic wastes. The binary exponential and piston-flow mixing model (BEP) yielded feasible age distributions based on the conceptual model. The good inverse relationship between groundwater MRTs (92–467 years) and the NO_3"− concentrations in the shallow Quaternary aquifers indicates that elevated nitrate concentrations are attributable to more recent recharge for shallow groundwater. However, there is no significant relationship between the MRTs (8–411 years) and the NO_3"− concentrations existing in the carbonate aquifer system, due to the complex hydrogeological conditions, groundwater age distributions and the range of contaminant source areas. Nitrate in the groundwater system without denitrification effects could accumulate and be transported for tens of years, through the

  8. Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dongmei [Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); National Centre for Groundwater Research and Training, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Cao, Guoliang [National Centre for Groundwater Research and Training, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Center for Water Research, College of Engineering, Peking University, Beijing 100871 (China); McCallum, James [National Centre for Groundwater Research and Training, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); School of the Environment, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Song, Xianfang [Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China)

    2015-12-15

    Groundwater within the coastal aquifer systems of the Daweijia area in northeastern China is characterized by a large of variations (33–521 mg/L) in NO{sub 3}{sup −} concentrations. Elevated nitrate concentrations, in addition to seawater intrusion in the Daweijia well field, both attributable to anthropogenic activities, may impact future water-management practices. Chemical and stable isotopic (δ{sup 18}O, δ{sup 2}H) analysis, {sup 3}H and CFCs methods were applied to provide a better understanding of the relationship between the distribution of groundwater mean residence time (MRT) and nitrate transport, and to identify sources of nitrate concentrations in the complex coastal aquifer systems. There is a relatively narrow range of isotopic composition (ranging from − 8.5 to − 7.0‰) in most groundwater. Generally higher tritium contents observed in the wet season relative to the dry season may result from rapid groundwater circulation in response to the rainfall through the preferential flow paths. In the well field, the relatively increased nitrate concentrations of groundwater, accompanied by the higher tritium contents in the wet season, indicate the nitrate pollution can be attributed to domestic wastes. The binary exponential and piston-flow mixing model (BEP) yielded feasible age distributions based on the conceptual model. The good inverse relationship between groundwater MRTs (92–467 years) and the NO{sub 3}{sup −} concentrations in the shallow Quaternary aquifers indicates that elevated nitrate concentrations are attributable to more recent recharge for shallow groundwater. However, there is no significant relationship between the MRTs (8–411 years) and the NO{sub 3}{sup −} concentrations existing in the carbonate aquifer system, due to the complex hydrogeological conditions, groundwater age distributions and the range of contaminant source areas. Nitrate in the groundwater system without denitrification effects could accumulate and be

  9. Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes

    Directory of Open Access Journals (Sweden)

    T. D. Fairlie

    2010-04-01

    Full Text Available We use a 3-D global chemical transport model (GEOS-Chem to interpret aircraft observations of nitrate and sulfate partitioning in transpacific dust plumes during the INTEX-B campaign of April–May 2006. The model includes explicit transport of size-resolved mineral dust and its alkalinity, nitrate, and sulfate content. The observations show that particulate nitrate is primarily associated with dust, sulfate is primarily associated with ammonium, and Asian dust remains alkaline across the Pacific. This can be reproduced in the model by using a reactive uptake coefficient for HNO3 on dust (γ(HNO3 ~10−3 much lower than commonly assumed in models and possibly reflecting limitation of uptake by dust dissolution. The model overestimates gas-phase HNO3 by a factor of 2–3, typical of previous model studies; we show that this cannot be corrected by uptake on dust. We find that the fraction of aerosol nitrate on dust in the model increases from ~30% in fresh Asian outflow to 80–90% over the Northeast Pacific, reflecting in part the volatilization of ammonium nitrate and the resulting transfer of nitrate to the dust. Consumption of dust alkalinity by uptake of acid gases in the model is slow relative to the lifetime of dust against deposition, so that dust does not acidify (at least not in the bulk. This limits the potential for dust iron released by acidification to become bio-available upon dust deposition. Observations in INTEX-B show no detectable ozone depletion in Asian dust plumes, consistent with the model. Uptake of HNO3 by dust, suppressing its recycling to NOx, reduces Asian pollution influence on US surface ozone in the model by 10–15% or up to 1 ppb.

  10. California GAMA Program: Sources and Transport of Nitrate in Groundwater in the Livermore Valley Basin, California

    International Nuclear Information System (INIS)

    Beller, H; Eaton, G F; Ekwurzel, B E; Esser, B K; Hu, Q; Hudson, G B; Leif, R; McNab, W; Moody-Bartel, C; Moore, K; Moran, J E

    2005-01-01

    A critical component of the State Water Resource Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program is to assess the major threats to groundwater resources that supply drinking water to Californians (Belitz et al., 2004). Nitrate concentrations approaching and greater than the maximum contaminant level (MCL) are impairing the viability of many groundwater basins as drinking water sources Source attribution and nitrate fate and transport are therefore the focus of special studies under the GAMA program. This report presents results of a study of nitrate contamination in the aquifer beneath the City of Livermore, where high nitrate levels affect both public supply and private domestic wells. Nitrate isotope data are effective in determining contaminant sources, especially when combined with other isotopic tracers such as stable isotopes of water and tritium-helium ages to give insight into the routes and timing of nitrate inputs to the flow system. This combination of techniques is demonstrated in Livermore, where it is determined that low nitrate reclaimed wastewater predominates in the northwest, while two flowpaths with distinct nitrate sources originate in the southeast. Along the eastern flowpath, (delta) 15 N values greater than 10(per t housand) indicate that animal waste is the primary source. Diminishing concentrations over time suggest that contamination results from historical land use practices. The other flowpath begins in an area where rapid recharge, primarily of low nitrate imported water (identified by stable isotopes of water and a tritium-helium residence time of less than 1 year), mobilizes a significant local nitrate source, bringing groundwater concentrations above the MCL of 45 mg NO 3 L -1 . In this area, artificial recharge of imported water via local arroyos induces flux of the contaminant to the regional aquifer. The low (delta) 15 N value (3.1(per t housand)) in this location implicates synthetic fertilizer

  11. Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments

    Science.gov (United States)

    Sun, W.; Sierra-Alvarez, R.; Milner, L.; Oremland, R.; Field, J.A.

    2009-01-01

    The objective of this study was to explore a bioremediation strategy based on injecting NO3- to support the anoxic oxidation of ferrous iron (Fe(II)) and arsenite (As(III)) in the subsurface as a means to immobilize As in the form of arsenate (As(V)) adsorbed onto biogenic ferric (Fe(III)) (hydr)oxides. Continuous flows and filled columns were used to simulate a natural anaerobic groundwater and sediment system with co-occurring As(III) and Fe(II) in the presence (column SF1) or absence (column SF2) of nitrate, respectively. During operation for 250 days, the average influent arsenic concentration of 567 ??g L-1 was reduced to 10.6 (??9.6) ??g L-1 in the effluent of column SF1. The cumulative removal of Fe(II) and As(III) in SF1 was 6.5 to 10-fold higher than that in SF2. Extraction and measurement of the mass of iron and arsenic immobilized on the sand packing of the columns were close to the iron and arsenic removed from the aqueous phase during column operation. The dominant speciation of the immobilized iron and arsenic was Fe(III) and As(V) in SF1, compared with Fe(II) and As(III) in SF2. The speciation was confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicate that microbial oxidation of As(III) and Fe(II) linked to denitrification resulted in the enhanced immobilization of aqueous arsenic in anaerobic environments by forming Fe(III) (hydr)oxide coated sands with adsorbed As(V). ?? 2009 American Chemical Society.

  12. Nitrate and Perchlorate removal from groundwater by ion exchange; TOPICAL

    International Nuclear Information System (INIS)

    Burge, S; Halden, R

    1999-01-01

    This study was conducted to evaluate the performance of a small scale ion exchange unit (Krudico, Inc of Auborn, IA) for removal of nitrate and perchlorate from groundwater at Lawrence Livermore National Laboratory's Site 300. The unit was able to treat 3,600 gallons of Site 300 groundwater, at an average influent concentration of 100 mg/L NO(sub 3)(sup -) before breakthrough occurred. The unit contained 2.5 ft(sup 3) of Sybron SR-7 resin. Seventy gallons of regeneration waste were generated (water treated to waste ratio of 51:1). The effluent concentration was about 20 mg/L NO(sub 3)(sup -), which is equivalent to a treatment efficiency of at least 80%. There are several options for implementing this technology at Site 300. A target well, in the 817 area, has been selected. It has a 3 to 4 gpm flow rate, and concentrations of 90 mg/L NO(sub 3)(sup -) and 40(micro)g/L perchlorate. The different treatment options include ion exchange treatment of nitrate only, nitrate and perchlorate, or perchlorate only. Option 1: For the treatment of nitrate only, this unit will be able to treat 3,700 gallons of water before regeneration is required. If both columns of the ion exchange unit are used, 7,400 gallons could be treated before the columns will need to be regenerated (producing 140 gallons of waste, per cycle or every 1.5 days). The effluent nitrate concentration is expected to be about 17 mg/L. Annual operation and maintenance costs are estimated to be$0.14 per gallon of water treated. Option 2: If only perchlorate is to be removed with ion exchange at the 817 area, a smaller unit should be considered. A 55 gallon canister filled with ion exchange resin should be able to reduce perchlorate concentrations in the groundwater from 40(micro)g/L to non-detect levels for three years before the resin would need to be replaced. The contaminant-laden resin would be disposed of as hazardous waste. It is not practical to regenerate the resin because of the extreme difficulty of

  13. Impact of Sulfide on Nitrate Conversion in Eutrophic Nitrate-Rich Marine Sludge

    DEFF Research Database (Denmark)

    Schwermer, Carsten U.; Krieger, Bärbel; Lavik, Gaute

    2006-01-01

    IMPACT OF SULFIDE ON NITRATE CONVERSION IN EUTROPHIC NITRATE-RICH MARINE SLUDGE C.U. Schwermer 1, B.U. Krieger 2, G. Lavik 1, A. Schramm 3, J. van Rijn 4, D. de Beer 1, D. Minz 5, E. Cytryn 4, M. Kuypers 1, A. Gieseke 1 1 Max Planck Institute for Marine Microbiology, Bremen, Germany; 2 Dept...... nitrate conversion from denitrification to dissimilatory nitrate-reduction to ammonium (DNRA). In situ microsensor profiling in stagnant sludge revealed the typical stratification of nitrate reduction on top of sulfate reduction. Increasing the bulk nitrate concentration lead to a downward shift....... Our results show that the presence of sulfide generally decreased growth rates but increased N2O production. We conclude that sulfide plays a key role in causing incomplete denitrification, presumably by inhibiting the N2O reductase, and enhancing DNRA compared to denitrification.  ...

  14. Nitrate removal from alkaline high nitrate effluent by in situ generation of hydrogen using zinc dust

    International Nuclear Information System (INIS)

    Rajagopal, S.; Chitra, S.; Paul, Biplob

    2016-01-01

    Alkaline radioactive low level waste generated in Nuclear Fuel Cycle contains substantial amount of nitrate and needs to be treated to meet Central Pollution Control Board discharge limits of 90 mg/L in marine coastal area. Several denitrification methods like chemical treatment, electrochemical reduction, biological denitrification, ion exchange, reverse osmosis, photochemical reduction etc are followed for removal of nitrate. In effluent treatment plants where chemical treatment is carried out, chemical denitrification can be easily adapted without any additional set up. Reducing agents like zinc and aluminum are suitable for reducing nitrate in alkaline solution. Study on denitrification with zinc dust was taken up in this work. Not much work has been done with zinc dust on reduction of nitrate to nitrogen in alkaline waste with high nitrate content. In the present work, nitrate is reduced by nascent hydrogen generated in situ, caused by reaction between zinc dust and sodium hydroxide

  15. Technical Report on Hydroxylamine Nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Harlow, Donald G. [Dept. of Energy (DOE), Washington DC (United States); Felt, Rowland E. [Dept. of Energy (DOE), Washington DC (United States); Agnew, Steve [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Barney, G. Scott [B& W Hanford Company, Richland, WA (United States); McKibben, J. Malvyn [Westinghouse Savannah River Company, Aiken, SC (United States); Garber, Robert [Parallax Inc., Rocklin, CA (United States); Lewis, Margie [Parallax Inc., Rocklin, CA (United States)

    1998-02-01

    This report presents the chemical properties and safe conditions for handling and storing solutions of hydroxylamine nitrate (HAN, NH2OH•HNO3 or NH3OH+) in nitric acid (HNO3). Section 1.0 summarizes the accidents experienced within the Department of Energy (DOE) weapons complex involving HAN or hydroxylamine sulfate (HAS), a chemical with similar properties. Section 2.0 describes past and current uses of HAN by DOE, the U.S. Military and foreign countries. Section 3.0 presents the basic chemistry of HAN, including chemical reaction and energy content equations. Section 4.0 provides experience and insights gained from previous uncontrolled reactions involving HAN and experimental data from Hanford & Savannah River Site (SRS). This information was used to develop safe conditions for the storage and handling of HAN as presented in Section 5.0. Section 6.0 summarizes recommendations for safe facility operations involving HAN and future research needs.

  16. Phase diagram of ammonium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Dunuwille, Mihindra; Yoo, Choong-Shik, E-mail: csyoo@wsu.edu [Department of Chemistry and Institute for Shock Physics, Washington State University, Pullman, Washington 99164 (United States)

    2013-12-07

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO–AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N{sub 2}, N{sub 2}O, and H{sub 2}O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV{sup ′} transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... fatigue or tiredness, shortness of breath, or chest pain. If your doctor diagnoses you with iron-deficiency ... Common symptoms of iron-deficiency anemia include: Chest pain Coldness in the hands and feet Difficulty concentrating ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... body to absorb iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, you ... to iron-deficiency anemia include: Bleeding in your GI tract, from an ulcer, colon cancer, or regular ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... complications, including heart failure and development delays in children. Explore this Health ... red blood cells. Iron-deficiency anemia usually develops over time because your body’s intake of iron ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... heart failure . Increased risk of infections Motor or cognitive development delays in children Pregnancy complications, such as ... for iron-deficiency anemia. Learn about exciting research areas that NHLBI is exploring about iron-deficiency anemia. ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Health and Human Development, we are investigating how best to treat premature newborns with low hemoglobin levels. ... are hoping to determine which iron supplements work best to treat iron-deficiency anemia in children who ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... your doctor may recommend changes to help you meet the recommended daily amount of iron. If you ... stop bleeding. Healthy lifestyle changes To help you meet your daily recommended iron levels, your doctor may ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... an MCV of less than 80 femtoliters (fL). Prevention strategies If you have certain risk factors , such ... drinking black tea, which reduces iron absorption. Other treatments If you have chronic kidney disease and iron- ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... same for boys and girls. From birth to 6 months, babies need 0.27 mg of iron. ... for iron deficiency at certain ages: Infants between 6 and 12 months, especially if they are fed ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... your blood may be normal even if the total amount of iron in your body is low. ... iron-deficiency anemia in blood donors affects the quality of donated red blood cells, such as how ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... of the condition. Your doctor may recommend healthy eating changes, iron supplements, intravenous iron therapy for mild ... less Look for Treatment will discuss medicines and eating pattern changes that your doctors may recommend if ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Disorders Lung Diseases Heart and Vascular Diseases Precision Medicine Activities Obesity, Nutrition, and Physical Activity Population and ... lose blood, you lose iron. Certain conditions or medicines can cause blood loss and lead to iron- ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... absorb iron and lead to iron-deficiency anemia. These conditions include: Intestinal and digestive conditions, such as ... tract. Inflammation from congestive heart failure or obesity . These chronic conditions can lead to inflammation that may ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... C to help your body absorb iron. Avoid drinking black tea, which reduces iron absorption. Other treatments ... improve health through research and scientific discovery. Improving health with current research Learn about the following ways ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... higher risk, as most of a newborn’s iron stores are developed during the third trimester of pregnancy. ... red blood cells on hand, their bodies can store iron to prepare for blood loss during delivery. ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... may be diagnosed with iron-deficiency anemia if you have low iron or ferritin levels in your blood. More testing may be needed to rule out other types of anemia. Tests for gastrointestinal ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... were born prematurely may be at an even higher risk, as most of a newborn’s iron stores ... men of the same age. Women are at higher risk for iron-deficiency anemia under some circumstances, ...

  13. Iron supplements (image)

    Science.gov (United States)

    The mineral iron is an essential nutrient for humans because it is part of blood cells, which carry oxygen to all body cells. There is no conclusive evidence that iron supplements contribute to heart attacks.

  14. Total iron binding capacity

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003489.htm Total iron binding capacity To use the sharing features on this page, please enable JavaScript. Total iron binding capacity (TIBC) is a blood test to ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... may require intravenous (IV) iron therapy or a blood transfusion . Iron supplements Your doctor may recommend that you ... Anemia Aplastic Anemia Arrhythmia Blood Donation Blood Tests Blood Transfusion Heart-Healthy Lifestyle Changes Heart Failure Hemolytic Anemia ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, you lose iron. Certain ... domestic small businesses that have strong potential for technology commercialization through the Small Business Innovation Research (SBIR) ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich foods, especially during certain stages of life when more iron is needed, such as ... to advancing science and translating discoveries into clinical practice to promote ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... also often take other medicines—such as proton pump inhibitors, anticoagulants, or blood thinners—that may cause iron-deficiency anemia. Proton pump inhibitors interfere with iron absorption, and blood thinners ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Look for Treatment will discuss medicines and eating pattern changes that your doctors may recommend if you ... iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, such as ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... striking the ground, such as with marathon runners. Sex Girls and women between the ages of 14 ... developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, eggs, ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... increase your risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron- ... factors , such as if you are following a vegetarian eating pattern, your doctor may recommend changes to ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... deficiency anemia. Proton pump inhibitors interfere with iron absorption, and blood thinners increase the likelihood of bleeding ... oranges, strawberries, and tomatoes, may help increase your absorption of iron. If you are pregnant, talk to ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Not eating enough iron-rich foods, such as meat and fish, may result in you getting less ... include dried beans, dried fruits, eggs, lean red meat, salmon, iron-fortified breads and cereals, peas, tofu, ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... mg and women need 18 mg. After age 51, both men and women need 8 mg. Pregnant ... for iron-deficiency anemia. Learn about exciting research areas that NHLBI is exploring about iron-deficiency anemia. ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia. These conditions include: Intestinal and digestive conditions, such as celiac disease; inflammatory bowel diseases, ... iron-deficiency anemia , such as bleeding in the digestive or urinary tract or heavy menstrual bleeding, your ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... prevent complications such as abnormal heart rhythms and depression. Learn the warning signs of serious complications and ... donors for low iron stores. Reliable point-of-care testing may help identify iron deficiency before potentially ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... breastfeeding women older than 18 need 9 mg. Problems absorbing iron Even if you consume the recommended ... interested in learning how having iron-deficiency anemia early in life affects later behavior, thinking, and mood ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... conditions that can cause iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen ... the size of your liver and spleen. Blood tests Based on results from blood tests to screen ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... as most of a newborn’s iron stores are developed during the third trimester of pregnancy. Children between ... This makes it harder to stop bleeding and can increase the risk of iron-deficiency anemia from ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... your doctor may recommend you eat heart-healthy foods or control other conditions that can cause iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... have less hemoglobin than normal. Hemoglobin is a protein inside red blood cells that carries oxygen from ... stored iron has been used. Ferritin is a protein that helps store iron in your body. Reticulocyte ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... and Strategic Vision Leadership Scientific Divisions Operations and Administration Advisory Committees Budget and Legislative Information Jobs and ... blood cells. Iron-deficiency anemia usually develops over time because your body’s intake of iron is too ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... vegan eating patterns. Not eating enough iron-rich foods, such as meat and fish, may result in ... be hard to get the recommended amount from food alone. Pregnant women need more iron to support ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... learning how having iron-deficiency anemia early in life affects later behavior, thinking, and mood during adolescence. ... iron-deficiency anemia in blood donors affects the quality of donated red blood cells, such as how ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia in blood donors affects the quality of donated red blood cells, such as how ... Cells From Iron-deficient Donors: Recovery and Storage Quality. Learn more about participating in a clinical trial . ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... endoscopy or colonoscopy, to stop bleeding. Healthy lifestyle changes To help you meet your daily recommended iron ... iron-deficiency anemia early in life affects later behavior, thinking, and mood during adolescence. Treating anemia in ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... family history and genetics , lifestyle habits, or sex. Age You may be at increased risk for iron ... Signs, Symptoms, and Complications Iron-deficiency anemia can range from mild to severe. People with mild or ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... leaving cells where it is stored or from being absorbed in the duodenum, the first part of ... treatments for iron-deficiency anemia. Living With After being diagnosed with iron-deficiency anemia, it is important ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron to prepare for blood loss during delivery. Screening and Prevention Your doctor may screen you for ... and symptoms of iron-deficiency anemia. Return to Screening and Prevention to review tests to screen for ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Teens, who have increased need for iron during growth spurts. Older adults, especially those over age 65. ... need for iron increases during these periods of growth and development, and it may be hard to ...