WorldWideScience

Sample records for iron manganese alloys

  1. Contribution to the study of iron-manganese alloy oxidation in oxygen at high temperatures

    International Nuclear Information System (INIS)

    Olivier, Francoise

    1972-01-01

    This research thesis reports a systematic investigation of the oxidation of three relatively pure iron-manganese alloys in oxygen, under atmospheric pressure, and between 400 and 1000 C, these alloys being annealed as well as work-hardened. It also compares their behaviour with that of non-alloyed iron oxidized under the same conditions. The author describes the experimental techniques and installations, discusses the morphology of oxide films formed under the experimental conditions, discusses the film growth kinetics which is studied by thermogravimetry, proposes interpretations of results, and outlines the influence of manganese addition to iron on iron oxidation

  2. Adhesive wear of iron chromium nickel silicon manganese molybdenum niobium alloys with duplex structure

    International Nuclear Information System (INIS)

    Lugscheider, E.; Deppe, E.; Ambroziak, A.; Melzer, A.

    1991-01-01

    Iron nickel chromium manganese silicon and iron chromium nickel manganese silicon molybdenum niobium alloys have a so-called duplex structure in a wide concentration range. This causes an excellent resistance to wear superior in the case of adhesive stress with optimized concentrations of manganese, silicon, molybdenum and niobium. The materials can be used for welded armouring structures wherever cobalt and boron-containing alloy systems are not permissible, e.g. in nuclear science. Within the framework of pre-investigations for manufacturing of filling wire electrodes, cast test pieces were set up with duplex structure, and their wear behavior was examined. (orig.) [de

  3. Iron Intermetallic Phases in the Alloy Based on Al-Si-Mg by Applying Manganese

    Directory of Open Access Journals (Sweden)

    Podprocká R.

    2017-09-01

    Full Text Available Manganese is an effective element used for the modification of needle intermetallic phases in Al-Si alloy. These particles seriously degrade mechanical characteristics of the alloy and promote the formation of porosity. By adding manganese the particles are being excluded in more compact shape of “Chinese script” or skeletal form, which are less initiative to cracks as Al5FeSi phase. In the present article, AlSi7Mg0.3 aluminium foundry alloy with several manganese content were studied. The alloy was controlled pollution for achieve higher iron content (about 0.7 wt. % Fe. The manganese were added in amount of 0.2 wt. %, 0.6 wt. %, 1.0 wt. % and 1.4 wt. %. The influence of the alloying element on the process of crystallization of intermetallic phases were compared to microstructural observations. The results indicate that increasing manganese content (> 0.2 wt. % Mn lead to increase the temperature of solidification iron rich phase (TAl5FeSi and reduction this particles. The temperature of nucleation Al-Si eutectic increase with higher manganese content also. At adding 1.4 wt. % Mn grain refinement and skeleton particles were observed.

  4. Effect of Iron Impurity on the Phase Composition, Structure and Properties of Magnesium Alloys Containing Manganese and Aluminum

    Science.gov (United States)

    Volkova, E. F.

    2017-07-01

    Results of a study of the interaction between iron impurity and manganese and aluminum alloying elements during formation of phase composition in alloys of the Mg - Mn, Mg - Al, Mg - Al - Mn, and Mg - Al - Zn - Mn systems are presented. It is proved that this interaction results in introduction of Fe into the intermetallic phase. The phase compositions of model magnesium alloys and commercial alloys MA2-1 and MA5 are studied. It is shown that both manganese and aluminum may bind the iron impurity into phases. Composite Fe-containing intermetallic phases of different compositions influence differently the corrosion resistance of magnesium alloys.

  5. Investigation into iron moessbauer atom state in a deformed iron-manganese alloys

    International Nuclear Information System (INIS)

    Mints, R.I.; Semenkin, V.A.; Shevchenko, Yu.A.

    1977-01-01

    A plastically deformed Fe + 12 at. %. Mn alloy was investigated by the method of nuclear gamma-resonance on Fe 57 nuclei. The specimens were deformed by 5 to 57 %. The obtained nuclear gamma-resonance spectra, which are a superposition of the paramagnetic single line (ν-phase) and the Zeeman splitting line (α-phase), were statistically processed with the aid of a computer. The behaviour of the values of Moessbauer parameters possessing a least dispersion, such as isomer chemical shift, quadrupolar reaction constant, effectiveness of magnetic field and of area of the nuclear gamma-resonance spectrum, points to their connection with the degree of the deformation disintegration of the initial solid solution

  6. Progress in development of iron base alloys

    International Nuclear Information System (INIS)

    Zackay, V.V.; Parker, E.R.

    1980-01-01

    The ways of development of new iron base high-strength alloys are considered. Perspectiveness of ferritic steel strengthening with intermetallides (TaFe 2 , for instance) is shown. Favourable combination of plasticity, strength and fracture toughness in nickel-free iron-manganese alloys (16-20%) is also pointed out. A strength level of alloyed maraging steels can be achieved by changes in chemical composition and by proper heat treatments of low- and medium-alloyed steels

  7. In vitro and in vivo corrosion properties of new iron-manganese alloys designed for cardiovascular applications.

    Science.gov (United States)

    Drynda, Andreas; Hassel, Thomas; Bach, Friedrich Wilhelm; Peuster, Matthias

    2015-04-01

    The principle of biodegradation for the production of temporary implant materials (e.g. stents) plays an important role in the treatment of congenital heart defects. In the last decade several attempts have been made with different alloy materials-mainly based on iron and magnesium. None of the currently available materials in this field have demonstrated satisfying results and have therefore not found entry into broad clinical practice. While magnesium or magnesium alloy systems corrode too fast, the corrosion rate of pure iron-stents is too slow for cardiovascular applications. In the last years FeMn alloy systems were developed with the idea that galvanic effects, caused by different electrochemical properties of Fe and Mn, would increase the corrosion rate. In vitro tests with alloys containing up to 30% Mn showed promising results in terms of biocompatibility. This study deals with the development of new FeMn alloy systems with lower Mn concentrations (FeMn 0.5 wt %, FeMn 2.7 wt %, FeMn 6.9 wt %) to avoid Mn toxicity. Our results show, that these alloys exhibit good mechanical features as well as suitable in vitro biocompatibility and corrosion properties. In contrast, the evaluation of these alloys in a mouse model led to unexpected results-even after 9 months no significant corrosion was detectable. Preliminary SEM investigations showed that passivation layers (FeMn phosphates) might be the reason for corrosion resistance. If this can be proved in further experiments, strategies to prevent or dissolve those layers need to be developed to expedite the in vivo corrosion of FeMn alloys. © 2014 Wiley Periodicals, Inc.

  8. Thermodynamic Interactions Among Carbon, Silicon and Iron in Carbon Saturated Manganese Melts

    International Nuclear Information System (INIS)

    Paek, Min-Kyu; Lee, Won-Kyu; Jin, Jinan; Jang, Jung-Mock; Pak, Jong-Jin

    2012-01-01

    Thermodynamics of carbon in manganese alloy melts is important in manufacturing low carbon ferromanganese and silico-manganese alloys. In order to predict the carbon solubility in liquid Mn-Si-Fe-Csat alloys as a function of melt composition and temperature, thermodynamic interactions among carbon, silicon and iron in carbon saturated liquid manganese should be known. In the present study, the effects of silicon and iron on the carbon solubility in Mn-Si, Mn-Fe and Mn-Si-Fe melts were measured in the temperature range from 1673 to 1773 K. The carbon solubility decreases significantly as silicon and iron contents increase in liquid manganese alloy. The interaction parameters among carbon, silicon and iron in carbon saturated liquid manganese were determined from the carbon solubility data and the Lupis' relation for the interaction coefficient at constant activity.

  9. Effect of microstructure and strain on the degradation behavior of novel bioresorbable iron-manganese alloy implants.

    Science.gov (United States)

    Heiden, Michael; Kustas, Andrew; Chaput, Kevin; Nauman, Eric; Johnson, David; Stanciu, Lia

    2015-02-01

    Advancing the understanding of microstructural effects and deformation on the degradability of Fe-Mn bioresorbable alloys (specifically, Fe-33%Mn) will help address the current problems associated with designing degradable fracture fixation implants for hard tissues. Potentiostatic polarization tests were conducted on a wide variety of metal samples to examine how different deformation processes affect the instantaneous rate of degradation of Fe-Mn alloys. Large-strain machining (LSM), a novel severe plastic deformation (SPD) technique was utilized during these experiments to modify the degradation properties of the proposed Fe-Mn alloy. It was discovered that Fe-33%Mn after LSM with a rake angle of 0° (effective strain = 2.85) showed the most promising increase in degradation rate compared to as-cast, annealed, and additional deformation conditions (rolled and other LSM parameters) for the same alloy. The mechanisms for enhancement of the corrosion rate are discussed. © 2014 Wiley Periodicals, Inc.

  10. Iron and manganese deposits in Uruguay

    International Nuclear Information System (INIS)

    Alvarado, B.

    1959-01-01

    This report is the results of the study carried out for the United Nations expert which the main object was: the study of the information available about iron and manganese formation in Uruguay, as well as the main researching deposit to determinate economical possibilities in the exportation.

  11. Autonomic function in manganese alloy workers

    Energy Technology Data Exchange (ETDEWEB)

    Barrington, W.W.; Angle, C.R.; Willcockson, N.K.; Padula, M.A. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Korn, T.

    1998-07-01

    The observation of orthostatic hypotension in an index case of manganese toxicity lead to this prospective attempt to evaluate cardiovascular autonomic function and cognitive and emotional neurotoxicity in eight manganese alloy welders and machinists. The subjects consisted of a convenience sample consisting of an index case of manganese dementia, his four co-workers in a frog shop for gouging, welding, and grinding repair of high manganese railway track and a convenience sample of three mild steel welders with lesser manganese exposure also referred because of cognitive or autonomic symptoms. Frog shop air manganese samples 9.6--10 years before and 1.2--3.4 years after the diagnosis of the index case exceeded 1.0 mg/m{sup 3} in 29% and 0.2 mg/m{sup 3} in 62%. Twenty-four-hour electrocardiographic (Holter) monitoring was used to determine the temporal variability of the heartrate (RR{prime} interval) and the rates of change at low frequency and high frequency. MMPI and MCMI personality assessment and short-term memory, figure copy, controlled oral word association, and symbol digit tests were used.

  12. Iron and manganese removal from drinking water

    OpenAIRE

    Pascu, Daniela-Elena; Neagu (Pascu), Mihaela; Alina Traistaru, Gina; Nechifor, Aurelia Cristina; Raluca Miron, Alexandra

    2016-01-01

    The purpose of the present study is to find a suitable method for removal of iron and manganese from ground water, considering both local economical and environmental aspects. Ground water is a highly important source of drinking water in Romania. Ground water is naturally pure from bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too high, the water is not drinkable. Different processes, such as electrochemical and combined electrochemical-adsorption m...

  13. Manganese

    Science.gov (United States)

    Cannon, William F.; Kimball, Bryn E.; Corathers, Lisa A.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Manganese is an essential element for modern industrial societies. Its principal use is in steelmaking, where it serves as a purifying agent in iron-ore refining and as an alloy that converts iron into steel. Although the amount of manganese consumed to make a ton of steel is small, ranging from 6 to 9 kilograms, it is an irreplaceable component in the production of this fundamental material. The United States has been totally reliant on imports of manganese for many decades and will continue to be so for at least the near future. There are no domestic reserves, and although some large low-grade resources are known, they are far inferior to manganese ores readily available on the international market. World reserves of manganese are about 630 million metric tons, and annual global consumption is about 16 million metric tons. Current reserves are adequate to meet global demand for several decades. Global resources in traditional land-based deposits, including both reserves and rocks sufficiently enriched in manganese to be ores in the future, are much larger, at about 17 billion metric tons. Manganese resources in seabed deposits of ferromanganese nodules and crusts are larger than those on land and have not been fully quantified. No production from seabed deposits has yet been done, but current research and development activities are substantial and may bring parts of these seabed resources into production in the future. The advent of economically successful seabed mining could substantially alter the current scenario of manganese supply by providing a large new source of manganese in addition to traditional land-based deposits.From a purely geologic perspective, there is no global shortage of proven ores and potential new ores that could be developed from the vast tonnage of identified resources. Reserves and resources are very unevenly distributed, however. The Kalahari manganese district in South Africa contains 70 percent of the world’s identified resources

  14. Adsorptive removal of manganese, arsenic and iron from groundwater

    NARCIS (Netherlands)

    Buamah, R.

    2009-01-01

    Arsenic, manganese and iron in drinking water at concentrations exceeding recommended guideline values pose health risks and aesthetic defects. Batch and pilot experiments on manganese adsorption equilibrium and kinetics using iron-oxide coated sand (IOCS), Aquamandix and other media have been

  15. Ferromagnetic properties of manganese doped iron silicide

    Science.gov (United States)

    Ruiz-Reyes, Angel; Fonseca, Luis F.; Sabirianov, Renat

    We report the synthesis of high quality Iron silicide (FeSi) nanowires via Chemical Vapor Deposition (CVD). The materials exhibits excellent magnetic response at room temperature, especially when doped with manganese showing values of 2.0 X 10-04 emu for the FexMnySi nanowires. SEM and TEM characterization indicates that the synthesized nanowires have a diameter of approximately 80nm. MFM measurements present a clear description of the magnetic domains when the nanowires are doped with manganese. Electron Diffraction and XRD measurements confirms that the nanowires are single crystal forming a simple cubic structure with space group P213. First-principle calculations were performed on (111) FeSi surface using the Vienna ab initio simulation package (VASP). The exchange correlations were treated under the Ceperley-Alder (CA) local density approximation (LDA). The Brillouin Zone was sampled with 8x8x1 k-point grid. A total magnetic moment of about 10 μB was obtained for three different surface configuration in which the Iron atom nearest to the surface present the higher magnetization. To study the effect of Mn doping, Fe atom was replaced for a Mn. Stronger magnetization is presented when the Mn atom is close to the surface. The exchange coupling constant have been evaluated calculating the energy difference between the ferromagnetic and anti-ferromagnetic configurations.

  16. Iron and manganese removal from drinking water

    Directory of Open Access Journals (Sweden)

    Daniela-Elena Pascu

    2016-04-01

    Full Text Available The purpose of the present study is to find a suitable method for removal of iron and manganese from ground water, considering bothlocal economical and environmental aspects. Ground water is a highly important source of drinking water in Romania. Ground water is naturally pure from bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too high, the water is not drinkable. Different processes, such as electrochemical and combined electrochemical-adsorption methods have been applied to determine metals content in accordance to reports of National Water Agency from Romania (ANAR. Every water source contains dissolved or particulate compounds. The concentrations of these compounds can affect health, productivity, compliance requirements, or serviceability and cannot be economically removed by conventional filtration means. In this study, we made a comparison between the electrochemical and adsorption methods (using membranes. Both methods have been used to evaluate the efficiency of iron and manganese removal at various times and temperatures. We used two membrane types: composite and cellulose, respectively. Different approaches, including lowering the initial current density and increasing the initial pH were applied. Reaction kinetics was achieved using mathematical models: Jura and Temkin.

  17. Metabolism of manganese, iron, copper, and selenium in calves

    International Nuclear Information System (INIS)

    Ho, S.Y.

    1981-01-01

    Sixteen male Holstein calves were used to study manganese and iron metabolism. The calves were fed one of the following diets for 18 days: control, control + iron, control + manganese, and control + iron and manganese. All calves were dosed orally with manganese-54. Tissue concentrations of manganese, iron and manganese-54 were determined. Small intestinal iron was lower in calves fed the high manganese diet than in controls. Tissue manganese-54 was lower in calves fed a high manganese diet. Fecal manganese content increased in calves fed both high manganese and high manganese-high iron diets. Serum total iron was not affected by the dietary treatments. To study the effects of high dietary levels of copper and selenium on the intracellular distributions of these two elements in liver and kidney cytosol, calves were fed one of four diets for 15 days. These were 0 and 100 ppM supplemental copper and 0 and 1 ppM added selenium. The control diet containing 0.1 ppM of selenium and 15 ppM of copper. All calves were orally dosed 48 hrs prior to sacrifice with selenium-75. A high copper diet increased copper concentrations in all intracellular liver fractions and most kidney fractions. Only the effects in the liver were significant. Less copper was found in the mitochondria fractions in liver and kidney of calves fed a high selenium diet. Three major copper-binding protein peaks were separated from the soluble fractions of calf liver and kidney. Peak 1 appeared to be the major copper-binding protein in liver and kidney cytosol of copper-loaded animals. Added selenium alone or in combination with copper accentuated the copper accumulation in this peak. Most of selenium-75 was recovered in the same peak as the copper. The results of this experiment indicated that the large molecular proteins in liver and kidney cytosol of calves play an important role in copper and selenium-75 metabolism

  18. Removal of Iron and Manganese in Groundwater using Natural Biosorbent

    Science.gov (United States)

    Baharudin, F.; Tadza, M. Y. Mohd; Imran, S. N. Mohd; Jani, J.

    2018-04-01

    This study was conducted to measure and compare the concentration of iron, manganese and hardness of the river and groundwater and to determine the effectiveness of iron and manganese removal by using natural biosorbent which is banana peels. The samples of river and groundwater were collected at riverbank filtration site at Jenderam Hilir, Dengkil. Based on the water quality investigation, the concentration of iron and manganese in the samples of groundwater have exceeded the drinking water quality standard which are 0.3 mg/L for iron and 0.1 mg/L for manganese. The removal process of the iron and manganese in the groundwater was done by using 2, 4 and 8 grams of banana peels activated carbon. It is found that with higher amount of activated banana peels, the removal of iron and manganese is more effective. The ranges of percentage of iron and manganese removal are between 82.25% to 90.84% and 98.79% to 99.43% respectively. From the result, banana peels activated carbon can be concluded as a one of the most effective low-cost adsorbent for groundwater treatment.

  19. Biological removal of iron and manganese in rapid sand filters - Process understanding of iron and manganese removal

    DEFF Research Database (Denmark)

    Lin, Katie

    to precipitation and corrosion. Manganese and iron can either be removed physico-chemically or biologically or combined. The physico-chemical oxidation and precipitation of manganese can theoretically be achieved by aeration, but this process is slow unless pH is raised far above neutral, making the removal...... of manganese by simple aeration and precipitation under normal drinking water treatment conditions insignificant. Manganese may also be oxidized autocatalytically. Iron is usually easier to remove. First, iron is rapidly chemically oxidized by oxygen at neutral pH followed by precipitation and filtration......-filter, where iron is removed. Step 2: Filtration in an after-filter where e.g. ammonium and manganese is removed. The treatment relies on microbial processes and may present an alternative, greener and more sustainable approach for drinking water production spending less chemicals and energy than chemical (e...

  20. Bioconcentration of manganese and iron in Panaeoloideae Sing

    NARCIS (Netherlands)

    Stijve, T.; Blake, C.

    1994-01-01

    According to literature, the manganese content of most basidiomycetes fluctuates between 10 and 60 mg/kg, whereas the iron levels range from 100-500 mg/kg (both expressed on dry weight). The present authors report that bioconcentration of manganese is a distinguishing feature of the Panaeoloideae,

  1. Arsenic, chromium, copper, iron, manganese, lead, selenium and ...

    African Journals Online (AJOL)

    Arsenic, chromium, copper, iron, manganese, lead, selenium and zinc in the tissues of the largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913), from the Vaal Dam, South Africa, and associated consumption risks.

  2. Iron and manganese oxide mineralization in the Pacific

    Science.gov (United States)

    Hein, J. R.; Koschinsky, A.; Halbach, P.; Manheim, F. T.; Bau, M.; Jung-Keuk, Kang; Lubick, N.

    1997-01-01

    Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. These processes are discussed.

  3. Iron-responsive olfactory uptake of manganese improves motor function deficits associated with iron deficiency.

    Directory of Open Access Journals (Sweden)

    Jonghan Kim

    Full Text Available Iron-responsive manganese uptake is increased in iron-deficient rats, suggesting that toxicity related to manganese exposure could be modified by iron status. To explore possible interactions, the distribution of intranasally-instilled manganese in control and iron-deficient rat brain was characterized by quantitative image analysis using T1-weighted magnetic resonance imaging (MRI. Manganese accumulation in the brain of iron-deficient rats was doubled after intranasal administration of MnCl(2 for 1- or 3-week. Enhanced manganese level was observed in specific brain regions of iron-deficient rats, including the striatum, hippocampus, and prefrontal cortex. Iron-deficient rats spent reduced time on a standard accelerating rotarod bar before falling and with lower peak speed compared to controls; unexpectedly, these measures of motor function significantly improved in iron-deficient rats intranasally-instilled with MnCl(2. Although tissue dopamine concentrations were similar in the striatum, dopamine transporter (DAT and dopamine receptor D(1 (D1R levels were reduced and dopamine receptor D(2 (D2R levels were increased in manganese-instilled rats, suggesting that manganese-induced changes in post-synaptic dopaminergic signaling contribute to the compensatory effect. Enhanced olfactory manganese uptake during iron deficiency appears to be a programmed "rescue response" with beneficial influence on motor impairment due to low iron status.

  4. Manganese and iron oxidation by fungi isolated from building stone.

    Science.gov (United States)

    de la Torre, M A; Gomez-Alarcon, G

    1994-01-01

    Acid and nonacid generating fungal strains isolated from weathered sandstone, limestone, and granite of Spanish cathedrals were assayed for their ability to oxidize iron and manganese. In general, the concentration of the different cations present in the mineral salt media directly affected Mn(IV) oxide formation, although in some cases, the addition of glucose and nitrate to the culture media was necessary. Mn(II) oxidation in acidogenic strains was greater in a medium containing the highest concentrations of glucose, nitrate, and manganese. High concentrations of Fe(II), glucose, and mineral salts were optimal for iron oxidation. Mn(IV) precipitated as oxides or hydroxides adhered to the mycelium. Most of the Fe(III) remained in solution by chelation with organic acids excreted by acidogenic strains. Other metabolites acted as Fe(III) chelators in nonacidogenic strains, although Fe(III) deposits around the mycelium were also detected. Both iron and manganese oxidation were shown to involve extracellular, hydrosoluble enzymes, with maximum specific activities during exponential growth. Strains able to oxidize manganese were also able to oxidize iron. It is concluded that iron and manganese oxidation reported in this work were biologically induced by filamentous fungi mainly by direct (enzymatic) mechanisms.

  5. Bioconcentration of manganese and iron in Panaeoloideae Sing

    OpenAIRE

    Stijve, T.; Blake, C.

    1994-01-01

    According to literature, the manganese content of most basidiomycetes fluctuates between 10 and 60 mg/kg, whereas the iron levels range from 100-500 mg/kg (both expressed on dry weight). The present authors report that bioconcentration of manganese is a distinguishing feature of the Panaeoloideae, as demonstrated by the analysis of 44 collections representing 15 taxons. Carpophores generally contain between 250 and 2500 mg/kg on dry weight, and, with the notable exception of Panaeolus semiova...

  6. Manganese and Iron Catalysts in Alkyd Paints and Coatings

    Directory of Open Access Journals (Sweden)

    Ronald Hage

    2016-04-01

    Full Text Available Many paint, ink and coating formulations contain alkyd-based resins which cure via autoxidation mechanisms. Whilst cobalt-soaps have been used for many decades, there is a continuing and accelerating desire by paint companies to develop alternatives for the cobalt soaps, due to likely classification as carcinogens under the REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals legislation. Alternative driers, for example manganese and iron soaps, have been applied for this purpose. However, relatively poor curing capabilities make it necessary to increase the level of metal salts to such a level that often coloring of the paint formulation occurs. More recent developments include the application of manganese and iron complexes with a variety of organic ligands. This review will discuss the chemistry of alkyd resin curing, the applications and reactions of cobalt-soaps as curing agents, and, subsequently, the paint drying aspects and mechanisms of (model alkyd curing using manganese and iron catalysts.

  7. [Factors affecting biological removal of iron and manganese in groundwater].

    Science.gov (United States)

    Xue, Gang; He, Sheng-Bing; Wang, Xin-Ze

    2006-01-01

    Factors affecting biological process for removing iron and manganese in groundwater were analyzed. When DO and pH in groundwater after aeration were 7.0 - 7.5 mg/L and 6.8 - 7.0 respectively, not only can the activation of Mn2+ oxidizing bacteria be maintained, but also the demand of iron and manganese removal can be satisfied. A novel inoculating approach of grafting mature filter material into filter bed, which is easier to handle than selective culture media, was employed in this research. However, this approach was only suitable to the filter material of high-quality manganese sand with strong Mn2+ adsorption capacity. For the filter material of quartz sand with weak adsorption capacity, only culturing and domesticating Mn2+ oxidizing bacteria by selective culture media can be adopted as inoculation in filter bed. The optimal backwashing rate of biological filter bed filled with manganese sand and quartz sand should be kept at a relatively low level of 6 - 9 L/(m2 x s) and 7 -11 L/( m2 x s), respectively. Then the stability of microbial phase in filter bed was not disturbed, and iron and manganese removal efficiency recovered in less than 5h. Moreover, by using filter material with uniform particle size of 1.0 - 1.2 mm in filter bed, the filtration cycle reached as long as 35 - 38h.

  8. Iron-nickel-chromium alloys

    International Nuclear Information System (INIS)

    Karenko, M.K.

    1981-01-01

    A specification is given for iron-nickel-chromium age-hardenable alloys suitable for use in fast breeder reactor ducts and cladding, which utilize the gamma-double prime strengthening phase and are characterized in having a delta or eta phase distributed at or near grain boundaries. A range of compositions is given. (author)

  9. Adsorptive removal of manganese, arsenic and iron from groundwater

    NARCIS (Netherlands)

    Buamah, R.

    2009-01-01

    To determine the scale of the problem of arsenic, iron and manganese contamination of groundwater in Ghana a survey was performed in the first phase of the research to provide in depth information with respect to these contaminants. Presence of these mentioned contaminants in groundwater is not

  10. Arsenic, chromium, copper, iron, manganese, lead, selenium and ...

    African Journals Online (AJOL)

    2014-05-20

    May 20, 2014 ... Arsenic, chromium, copper, iron, manganese, lead, selenium and zinc in the ... and sediment were collected and trace element concentrations were measured with an ICP-MS. ..... Clay minerals are known to have high sorption affinities ..... sediment/water quality interaction with particular reference to the.

  11. Manganese, iron and copper contents in leaves of maize plants ...

    African Journals Online (AJOL)

    Micronutrients such as boron (B), copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) play important physiological roles in humans and animals. Zn and B are the micronutrients most often deficient in maize, in Iran. A completely randomized factorial block design experiment was carried out at Fars province of Iran during ...

  12. Pilot study points way to iron/manganese removal

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, N.; Barnes, A. [Progressive Consulting Engineers Inc., Minneapolis, MN (United States)

    1994-12-31

    The use of coal, greensand and sand in filters for removing iron and manganese from the Brooklyn Park, Minnesota, water supply was investigated. The most effective and economic treatment involved using a dual media filtration and potassium permanganate as the oxidant.

  13. Criticality of iron and its principal alloying elements.

    Science.gov (United States)

    Nuss, Philip; Harper, E M; Nassar, N T; Reck, Barbara K; Graedel, T E

    2014-04-01

    Because modern technology depends on reliable supplies of a wide variety of materials and because of increasing concern about those supplies, a comprehensive methodology was created to quantify the degree of criticality of the metals of the periodic table. In this paper, we apply this methodology to iron and several of its main alloying elements (i.e., vanadium, chromium, manganese, and niobium). These elements represent the basic metals of any industrial society and are vital for national security and economic well-being. Assessments relating to the dimensions of criticality - supply risk, vulnerability to supply restriction, and environmental implications - for 2008 are made on the global level and for the United States. Evaluations of each of the multiple indicators are presented, with aggregate results plotted in "criticality space", together with Monte Carlo simulation-derived "uncertainty cloud" estimates. Iron has the lowest supply risk, primarily because of its widespread geological occurrence. Vanadium displays the highest cradle-to-gate environmental implications, followed by niobium, chromium, manganese, and iron. Chromium and manganese, both essential in steel making, display the highest vulnerability to supply restriction, largely because substitution or substitution at equal performance is not possible for all end-uses. From a comprehensive perspective, we regard the overall criticality as low for iron and modest for the alloying elements we evaluated.

  14. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide

    Science.gov (United States)

    Balistrieri, L.S.; Chao, T.T.

    1990-01-01

    This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites

  15. Gold, iron and manganese in central Amapá, Brazil

    Directory of Open Access Journals (Sweden)

    Wilson Scarpelli

    Full Text Available ABSTRACT: Greenstone belts with deposits of gold, iron and manganese are common in the Paleoproterozoic Maroni-Itacaiunas Tectonic Province of the Guiana Shield. In Brazil, in the State of Amapá and northwest of Pará, they are represented by the Vila Nova Group, constituted by a basal unit of metabasalts, covered by metasediments of clastic and chemical origin. The basal metasediments, the Serra do Navio Formation, are made of a cyclothem with lenses of manganese marbles at the top of each cycle. Under the intense weathering of the Amazon, these lenses were oxidized to large deposits of high-grade manganese oxides. The exploitation of these oxides left behind the manganese carbonates and low-grade oxides. The overlaying Serra da Canga Formation presents a calcium and magnesium domain grading to an iron domain with banded silicate and oxide iron formations, mined for iron ores. Overlapping structures and superposed metamorphic crystallizations indicate two phases of dynamothermal metamorphism, the first one with axis to north-northeast and the second one to northwest, with an intermediate phase of thermal metamorphism related to syntectonic granitic intrusions. Shears oriented north-south, possibly formed during the first dynamothermal metamorphism and reactivated in the second, are ideal sites for hydrothermalism and gold mineralization, which is greater when occurs in iron formation and carbonate-bearing rocks, as it happened at the Tucano mine. Layered mafic-ultramafic intrusions in the greenstones represent a potential for chromite and platinum group elements. Pegmatites are source of cassiterite and tantalite exploited from alluvial deposits.

  16. Factors affecting radium removal using mixed iron-manganese oxides

    International Nuclear Information System (INIS)

    Mott, H.V. Singh, S.; Kondapally, V.R.

    1993-01-01

    Batch experiments confirmed that sorption of radium by a mixed iron-manganese oxide solid phase shows promise for treating radium-contaminated water. The capacities of these mixed oxides for sorption of radium depend on the composition of the solid phase, the pH of the aqueous solution, and the presence of competing cations. The removal of the oxide-radium complexes from aqueous suspension by manganese greensand filtration was also investigated. It was found that influent radium concentrations of 100 pCi/L were reduced to 2--9 pCi/L by this process. Additional study of the fate of radium in manganese greensand filters is recommended before this procedure is used for drinking water treatment

  17. Factors affecting radium removal using mixed iron-manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Mott, H.V. Singh, S.; Kondapally, V.R. (South Dakota School of Mines and Technology, Rapid City, SD (United States))

    1993-10-01

    Batch experiments confirmed that sorption of radium by a mixed iron-manganese oxide solid phase shows promise for treating radium-contaminated water. The capacities of these mixed oxides for sorption of radium depend on the composition of the solid phase, the pH of the aqueous solution, and the presence of competing cations. The removal of the oxide-radium complexes from aqueous suspension by manganese greensand filtration was also investigated. It was found that influent radium concentrations of 100 pCi/L were reduced to 2--9 pCi/L by this process. Additional study of the fate of radium in manganese greensand filters is recommended before this procedure is used for drinking water treatment.

  18. Restoration of growth by manganese in a mutant strain of Escherichia coli lacking most known iron and manganese uptake systems

    DEFF Research Database (Denmark)

    Taudte, Nadine; German, Nadezhda; Zhu, Yong-Guan

    2016-01-01

    The interplay of manganese and iron homeostasis and oxidative stress in Escherichia coli can give important insights into survival of bacteria in the phagosome and under differing iron or manganese bioavailabilities. Here, we characterized a mutant strain devoid of all know iron/manganese-uptake ......The interplay of manganese and iron homeostasis and oxidative stress in Escherichia coli can give important insights into survival of bacteria in the phagosome and under differing iron or manganese bioavailabilities. Here, we characterized a mutant strain devoid of all know iron...

  19. Arsenic enrichment in estuarine sediments-impact of iron and manganese mining

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, M.; Joseph, T.; Balachandran, K.K.; Nair, K.K.C.; Paimpillii, J.S.

    River Mandovi and Zuari, Goa (west coast of India) are flowing through iron and manganese mining areas and are heavily used for iron and manganese ore transport. This region generates 25-30 million tons of mining rejects per year. The iron ore...

  20. Dimensional crossover in manganese based analogues of iron pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Zingl, Manuel; Assmann, Elias; Aichhorn, Markus [University of Technology, Institute of Theoretical Physics and Computational Physics, Graz (Austria)

    2016-07-01

    The manganese pnicitides BaMn{sub 2}As{sub 2} and LaOMnAs crystallize in the same structure as the extensively studied iron pnictide high-temperature superconductors BaFe{sub 2}As{sub 2} and LaOFeAs. In contrast to the d{sup 6} configuration of the iron systems, the manganese d-shell is only half-filled (d{sup 5}). As a consequence, electronic correlations are much stronger, placing these compounds at the verge of the Mott metal-insulator transition. In this region of the phase diagram materials are prone to enhanced magnetism, apparent in the remarkably high Neel temperature of 625 K for BaMn{sub 2}As{sub 2}. We demonstrate that the experimentally observed differences in the Neel temperatures, the band gap, and the optical properties of the manganese compounds under consideration can be traced back to their effective dimensionality. Our fully charge self-consistent DFT+DMFT calculations show excellent agreement with experiments, especially measured optical spectra.

  1. Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions.

    Science.gov (United States)

    Yin, Yongyuan; Guo, Xuetao; Peng, Dan

    2018-08-01

    Maize straw modified by iron and manganese oxides was synthesized via a simple and environmentally friendly method. Three maize straw materials, the original maize straw, maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides, were detected by SEM, BET, XPS, XRD and FTIR. The results showed that maize straw was successfully modified and maize straw modified by iron and manganese oxides has a larger surface area than MS. According to the experimental data, the sorption trend could conform to the pseudo-second-order kinetic model well, and the sorption ability of tylosin on sorbents followed the order of original maize straw oxides iron and manganese oxides. The study indicated that manganese oxides and iron-manganese oxides could significantly enhance the sorption capacity of original maize straw. The sorption isotherm data of tylosin on original maize straw fit a linear model well, while Freundlich models were more suitable for maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides. The pH, ionic strength and temperature can affect the sorption process. The sorption mechanisms of tylosin on iron and manganese oxides modified maize straw were attribute to the surface complexes, electrostatic interactions, H bonding and hydrophobic interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Early diagenesis of manganese, iron and phosphorus in European continental margin sediments

    NARCIS (Netherlands)

    Zee, C. van der

    2002-01-01

    This thesis describes the results of a project that was carried out as a part of the Sedimentary Manganese and Iron cycLEs (SMILE) research program funded by the Netherlands Organisation of Scientific Research (NWO/ALW). SMILE aimed at studying the biogeochemistry of iron and manganese cycles in

  3. Early diagenesis of Manganese, Iron and Phosphorus in European continental margin sediments

    NARCIS (Netherlands)

    van der Zee, C.

    2002-01-01

    This thesis describes the results of a project that was carried out as a part of the Sedimentary Manganese and Iron cycLEs (SMILE) research program funded by the Netherlands Organisation of Scientific Research (NWO/ALW). SMILE aimed at studying the biogeochemistry of iron and manganese cycles in

  4. Iron and manganese removal from a groundwater supply

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, W.; Seifert, K.; Kasch, O.K. (Arber Richard P. Associates, Inc., Denver, CO (USA))

    1988-11-01

    The treatment options and planning techniques used by the town of Castle Rock (Colorado) for a new water treatment facility are described. Castle Rock officials assessed the available treatment options for dissolved iron and manganese removal and selected potassium permanganate as the primary oxidant to be followed by manganese greensand. A backup prechlorination system for oxidation was also installed. In addition, to prevent excess headloss buildup in the manganese greensand filter media, an anthracite carbon cap was used as the top filter medium for precipitate removal. It is recommended that a treatability study be performed to determine individual design criteria to allow for specific site conditions. The town also assessed the capital and operation and maintenance costs for both treatment at individual well fields and a centralized location for treatment of a cluster of well fields. The results indicate that it is more economical to provide centralized water treatment even though there are capital costs associated with piping raw water from the individual well fields to the central facility. 3 refs.

  5. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  6. Removal of iron and manganese from groundwater: a study of using potassium permanganate and sedimentation

    Directory of Open Access Journals (Sweden)

    Elsheikh Mohamed

    2018-01-01

    Full Text Available Experiments are done for different combinations of Fe+2 and Mn+2 concentrations. The obtained results show that Potassium Permanganate (PP gives good results in iron and manganese removal. By using PP dose near to half of the theoretically required one, it can remove up to 100 % and 90 % of iron and manganese, respectively over different tested concentrations at pH=7.0. Increasing rate of filtration influences the Mn+2 removal process obviously. Sedimentation is required when combined concentrations of iron and manganese are greater than 5.0 ppm to reduce filter rapid clogging. Using conventional treatment with adding alum, flocculation, sedimentation and filtration can remove up to 97% and 18% of iron and manganese, respectively. Using PP in addition to alum enhances manganese removal but decreases iron removal. However, using alum with increasing pH to 10 leads to 100 % and 95 % of Fe+2 and Mn+2 removal and increases filter working period.

  7. The influence of high iron diet on rat lung manganese absorption

    International Nuclear Information System (INIS)

    Thompson, Khristy; Molina, Ramon; Donaghey, Thomas; Brain, Joseph D.; Wessling-Resnick, Marianne

    2006-01-01

    Individuals chronically exposed to manganese are at high risk for neurotoxic effects of this metal. A primary route of exposure is through respiration, although little is known about pulmonary uptake of metals or factors that modify this process. High dietary iron levels inversely affect intestinal uptake of manganese, and a major goal of this study was to determine if dietary iron loading could increase lung non-heme iron levels and alter manganese absorption. Rats were fed a high iron (1% carbonyl iron) or control diet for 4 weeks. Lung non-heme iron levels increased ∼2-fold in rats fed the high iron diet. To determine if iron-loading affected manganese uptake, 54 Mn was administered by intratracheal (it) instillation or intravenous (iv) injection for pharmacokinetic studies. 54 Mn absorption from the lungs to the blood was lower in it-instilled rats fed the 1% carbonyl iron diet. Pharmacokinetics of iv-injected 54 Mn revealed that the isotope was cleared more rapidly from the blood of iron-loaded rats. In situ analysis of divalent metal transporter-1 (DMT1) expression in lung detected mRNA in airway epithelium and bronchus-associated lymphatic tissue (BALT). Staining of the latter was significantly reduced in rats fed the high iron diet. In situ analysis of transferrin receptor (TfR) mRNA showed staining in BALT alone. These data demonstrate that manganese absorption from the lungs to the blood can be modified by iron status and the route of administration

  8. Identification of a cast iron alloy containing nonstrategic elements

    Science.gov (United States)

    Cooper, C. V.; Anton, D. L.; Lemkey, F. D.; Nowotny, H.; Bailey, R. S.; Favrow, L. H.; Smeggil, J. G.; Snow, D. B.

    1989-01-01

    A program was performed to address the mechanical and environmental needs of Stirling engine heater head and regenerator housing components, while reducing the dependence on strategic materials. An alloy was developed which contained no strategic elemental additions per se. The base is iron with additions of manganese, molybdenum, carbon, silicon, niobium, and ferro-chromium. Such an alloy should be producible on a large scale at very low cost. The resulting alloy, designated as NASAUT 4G-Al, contained 15 Mn, 15 Cr, 2 Mo, 1.5 C, 1.0 Si, 1.0 Nb (in weight percent) with a balance of Fe. This alloy was optimized for chemistry, based upon tensile strength, creep-rupture strength, fracture behavior, and fatigue resistance up to 800 C. Alloys were also tested for environmental compatibility. The microstructure and mechanic properties (including hardness) were assessed in the as-cast condition and following several heat treatments, including one designed to simulate a required braze cycle. The alloy was fabricated and characterized in the form of both equiaxed and columnar-grained castings. The columnar grains were produced by directional solidification, and the properties were characterized in both the longitudinal and transverse orientations. The NASAUT 4G-Al alloy was found to be good in cyclic-oxidation resistance and excellent in both hydrogen and hot-corrosion resistance, especially in comparison to the baseline XF-818 alloy. The mechanical properties of yield strength, stress-rupture life, high-cycle-fatigue resistance, and low-cycle-fatigue resistance were good to excellent in comparison to the current alloy for this application, HS-31 (X-40), with precise results depending in a complex manner on grain orientation and temperature. If required, the ductility could be improved by lowering the carbon content.

  9. Voltammetric determination of arsenic in high iron and manganese groundwaters.

    Science.gov (United States)

    Gibbon-Walsh, Kristoff; Salaün, Pascal; Uroic, M Kalle; Feldmann, Joerg; McArthur, John M; van den Berg, Constant M G

    2011-09-15

    Determination of the speciation of arsenic in groundwaters, using cathodic stripping voltammetry (CSV), is severely hampered by high levels of iron and manganese. Experiments showed that the interference is eliminated by addition of EDTA, making it possible to determine the arsenic speciation on-site by CSV. This work presents the CSV method to determine As(III) in high-iron or -manganese groundwaters in the field with only minor sample treatment. The method was field-tested in West-Bengal (India) on a series of groundwater samples. Total arsenic was subsequently determined after acidification to pH 1 by anodic stripping voltammetry (ASV). Comparative measurements by ICP-MS as reference method for total As, and by HPLC for its speciation, were used to corroborate the field data in stored samples. Most of the arsenic (78±0.02%) was found to occur as inorganic As(III) in the freshly collected waters, in accordance with previous studies. The data shows that the modified on-site CSV method for As(III) is a good measure of water contamination with As. The EDTA was also found to be effective in stabilising the arsenic speciation for longterm sample storage at room temperature. Without sample preservation, in water exposed to air and sunlight, the As(III) was found to become oxidised to As(V), and Fe(II) oxidised to Fe(III), removing the As(V) by adsorption on precipitating Fe(III)-hydroxides within a few hours. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Determination of iron, copper, manganese and zinc in the soils, grapes and wines of the Azores

    Directory of Open Access Journals (Sweden)

    María Teresa Ribeiro de Lima

    2004-06-01

    Full Text Available This paper describes the determination of iron, copper, manganese and zinc in the soils, grapes and wines of the three viticultural regions of the Azores. Iron, copper and zinc were determined by flame atomic absorption spectrometry and manganese by graphite furnace atomic absorption. The concentrations of the four elements differed in soils of the three regions; there was no difference in the concentration in grapes, whereas significant differences were observed for the wines as regards the amounts of iron, manganese and zinc. The concentrations of these four elements in wine correspond with the mean values observed for other European regions.

  11. Synthesis, structure and magnetism of manganese and iron dipicolinates with N,N '-donor ligands

    Czech Academy of Sciences Publication Activity Database

    Uhrecký, Róbert; Svoboda, I.; Růžičková, Z.; Koman, M.; Dlháň, L.; Pavlík, J.; Moncol, J.; Boca, R.

    2015-01-01

    Roč. 425, JAN (2015), s. 134-144 ISSN 0020-1693 Institutional support: RVO:61388980 Keywords : Manganese * Iron * Dipicolinate complexes * Crystal structure * Magnetism Subject RIV: CA - Inorganic Chemistry Impact factor: 1.918, year: 2015

  12. Sublethal effects of cadmium, manganese, lead, zinc and iron on the ...

    African Journals Online (AJOL)

    The toxicological evaluations of cadmium, iron, manganese, lead and zinc were carried out against albino mice model, Mus musculus. On the basis of 96 hrLC50 value, cadmium (0.47 mM) was found to be the most toxic followed by zinc (2.40 mM), lead (2.42 mM), iron (4.25 mM) and manganese (5.70 mM) was least toxic.

  13. Characteristics and treatment mechanism of mine water with high concentration of iron and manganese

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.; Yang, J.; He, X.; Yang, J.; Tian, T. [Hebei University of Engineering, Handan (China)

    2006-12-15

    The characteristics and treatment of mine water with high concentration or iron and manganese were studied with mine water produced in Jiukuang and Siwan belonging to Hebi Coal Industry Group Co., Ltd. Analysis shows that the mine water is abundant in dissolved oxygen and has high TDS and high turbidity so the mine water does not need aeration. The effect of removal of iron and manganese by coagulation-sedimentation and the influence of filter material and influent water flow rate on effluent quality were investigated. It is shown that the removal rate of iron can reach 90% while removal of manganese can only reach about 20%. The concentration of iron and manganese in the effluent is lower than 0.1 mg/L with filter material of manganese sand which was immersed in KMnO{sub 4} solution at a filtration rate of 7 - 9 m/h. The results show that the layer of activated compound substance membrane formed on the surface of the manganese sand plays an important role in the removal of manganese. 7 refs., 2 figs., 3 tabs.

  14. Effects of manganese oxide and sulphate on the olefin selectivity of iron catalysts in the Fischer Tropsch reaction

    NARCIS (Netherlands)

    Dijk, van W.L.; Niemantsverdriet, J.W.; Kraan, van der A.M.; van der Baan, Hessel

    1982-01-01

    Although it has been claimed by various authors that the addition of manganese oxide, MnO, to an iron catalyst gives a marked increase in the olefin selectivity of iron catalysts, we have been unable to confirm these claims in Fischer Tropsch experiments at 513 K for an iron manganese oxide catalyst

  15. Mineral resource of the month: manganese

    Science.gov (United States)

    Corathers, Lisa A.

    2012-01-01

    Manganese is a silver-colored metal resembling iron and often found in conjunction with iron. The earliest-known human use of manganese compounds was in the Stone Age, when early humans used manganese dioxide as pigments in cave paintings. In ancient Rome and Egypt, people started using it to color or remove the color from glass - a practice that continued to modern times. Today, manganese is predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production. Steel and cast iron together provide the largest market for manganese (historically 85 to 90 percent), but it is also alloyed with nonferrous metals such as aluminum and copper. Its importance to steel cannot be overstated, as almost all types of steel contain manganese and could not exist without it.

  16. Removal of iron and manganese using biological roughing up flow filtration technology.

    Science.gov (United States)

    Pacini, Virginia Alejandra; María Ingallinella, Ana; Sanguinetti, Graciela

    2005-11-01

    The removal of iron and manganese from groundwater using biological treatment methods is almost unknown in Latin America. Biological systems used in Europe are based on the process of double rapid biofiltration during which dissolved oxygen and pH need to be strictly controlled in order to limit abiotic iron oxidation. The performance of roughing filter technology in a biological treatment process for the removal of iron and manganese, without the use of chemical agents and under natural pH conditions was studied. Two pilot plants, using two different natural groundwaters, were operated with the following treatment line: aeration, up flow roughing filtration and final filtration (either slow or rapid). Iron and manganese removal efficiencies were found to be between 85% and 95%. The high solid retention capability of the roughing filter means that it is possible to remove iron and manganese simultaneously by biotic and abiotic mechanisms. This system combines simple, low-cost operation and maintenance with high iron and manganese removal efficiencies, thus constituting a technology which is particularly suited to small waterworks.

  17. Manganese

    Science.gov (United States)

    ... research suggests that taking a specific product (7-Keto Naturalean) containing manganese, 7-oxo-DHEA, L-tyrosine, ... can absorb.Milk proteinAdding milk protein to the diet might increase the amount of manganese the body ...

  18. Iron-titanium-mischmetal alloys for hydrogen storage

    Science.gov (United States)

    Sandrock, Gary Dale

    1978-01-01

    A method for the preparation of an iron-titanium-mischmetal alloy which is used for the storage of hydrogen. The alloy is prepared by air-melting an iron charge in a clay-graphite crucible, adding titanium and deoxidizing with mischmetal. The resultant alloy contains less than about 0.1% oxygen and exhibits a capability for hydrogen sorption in less than half the time required by vacuum-melted, iron-titanium alloys.

  19. Microcapillary Features in Silicon Alloyed High-Strength Cast Iron

    Directory of Open Access Journals (Sweden)

    R.K. Hasanli

    2017-04-01

    Full Text Available Present study explores features of silicon micro capillary in alloyed high-strength cast iron with nodular graphite (ductile iron produced in metal molds. It identified the nature and mechanism of micro liquation of silicon in a ductile iron alloyed with Nickel and copper, and demonstrated significant change of structural-quality characteristics. It was concluded that the matrix of alloyed ductile iron has a heterogeneous structure with cross reinforcement and high-silicon excrement areas.

  20. Manganese

    International Nuclear Information System (INIS)

    Fayziev, A.R.

    2002-01-01

    Present article is devoted to manganese content in fluoride. The manganese content of some geologic deposits of Tajikistan was determined by means of chemical analysis. The mono mineral samples of fluorite of 5 geologic deposits of various mineralogical and genetic type was studied. The manganese content in fluorite of geologic deposits of various mineralogical and genetic type was defined.

  1. Manganese exposure in foundry furnacemen and scrap recycling workers

    DEFF Research Database (Denmark)

    Lander, F; Kristiansen, J; Lauritsen, Jens

    1999-01-01

    Cast iron products are alloyed with small quantities of manganese, and foundry furnacemen are potentially exposed to manganese during tapping and handling of smelts. Manganese is a neurotoxic substance that accumulates in the central nervous system, where it may cause a neurological disorder...

  2. The scavenging of silver by manganese and iron oxides in stream sediments collected from two drainage areas of Colorado

    Science.gov (United States)

    Chao, T.T.; Anderson, B.J.

    1974-01-01

    Stream sediments of two well-weathered and aerated drainage areas of Colorado containing anomalous amounts of silver were allowed to react by shaking with nitric acid of different concentrations (1-10M). Silver, manganese, and iron simultaneously dissolved were determined by atomic absorption. The relationship between silver dissolution and the dissolution of manganese and/or iron was evaluated by linear and multiple regression analyses. The highly significant correlation coefficient (r = 0.913) between silver and manganese dissolution suggests that manganese oxides are the major control on the scavenging of silver in these stream sediments, whereas iron oxides only play a secondary role in this regard. ?? 1974.

  3. Aluminium alloys containing iron and nickel

    International Nuclear Information System (INIS)

    Coriou, H.; Fournier, R.; Grall, L.; Hure, J.; Herenguel, J.; Lelong, P.

    1958-01-01

    The first part of this report addresses mechanism, kinetics and structure factors of aluminium alloys containing iron and nickel in water and high temperature steam. The studied alloys contain from 0.3 to 0.7 per cent of iron, and 0.2 to 1.0 per cent of nickel. Corrosion resistance and corrosion structure have been studied. The experimental installation, process and samples are presented. Corrosion structures in water at 350 C are identified and discussed (structure of corrosion products, structure of metal-oxide interface), and then in steam at different temperatures (350-395 C). Corrosion kinetics is experimentally studied (weight variation in time) in water at 350 C and in steam at different temperatures. Reactions occurring at over-heated steam (more than 400 C) are studied, and the case of welded alloys is also addressed. The second part addresses the metallurgical mechanism and processes influencing aluminium alloy resistance to corrosion by high temperature water as it appeared that separated phases protect the solid solution through a neighbourhood action. In order to avoid deep local corrosions, it seems necessary to multiply protective phases in an as uniform as possible way. Some processes enabling this result are described. They belong to conventional metallurgy or to powder metallurgy (with sintering and extrusion)

  4. Distribution of uranium and thorium isotopes in iron-manganese concretions of the Pacific ocean

    International Nuclear Information System (INIS)

    Kuznetsov, V.Yu.; Andreev, S.I.

    1995-01-01

    Distribution of 238 U, 234 U, 232 Th, 230 Th in cross sections of samples from the Pacific Ocean iron-manganese concretions (IMC) of different genetic types has been studied, the results are presented. Possible influence of diagenetic processes in the deposits mentioned on distribution of the radionuclides in iron-manganese septarian nodules has been considered. The assumption is made that remobilization of Mn, Ni, Cu from IMC containing deposits does not upset uranium and thorium distribution in the concretions resulted from sedimentation mechanism of their formation. 18 refs., 3 tabs

  5. Daily dietary intake of iron, copper, zinc and manganese in a Spanish population.

    Science.gov (United States)

    Rubio, Carmen; Gutiérrez, Angel José; Revert, Consuelo; Reguera, Juan Ignacio; Burgos, Antonio; Hardisson, Arturo

    2009-11-01

    To evaluate the daily dietary intake of essential metals in the Canary Islands, the iron, copper, zinc and manganese contents in 420 food and drink samples collected in local markets were analysed by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The estimated daily dietary intakes of iron, copper, zinc and manganese are 13.161 mg/day, 2.098 mg/day, 8.954 mg/day and 2.372 mg/day, respectively. The iron dietary intake was found to be below the recommendations fixed for adult women, while the copper and manganese dietary intakes fulfilled the Recommended Dietary Allowances. The mean daily intake of zinc was below the Recommended Dietary Allowance. Cereals were found to be the food group that contributed most to the intake of these metals. While the island of El-Hierro presented iron, copper, zinc and manganese mean intakes over the estimated intakes for the whole archipelago, Fuerteventura island showed the lowest intakes. Tenerife and Fuerteventura showed the lowest iron intakes, being below the recommendations.

  6. Oxygen stabilized zirconium-vanadium-iron alloy

    International Nuclear Information System (INIS)

    Gruen, D.M.; Mendelsohn, M.H.

    1982-01-01

    An oxygen stabilized intermetallic compound having the formula (Zrsub(1-x)Tisub(x))sub(2-u)(Vsub(1-y)Fesub(y))Osub(z) where x = 0.0 to 0.9, y = 0.01 to 0.9, z = 0.25 to 0.5 and u = 0 to 1. The compound is capable of reversibly sorbing hydrogen at temperatures from -196 deg C to 200 deg C at pressures down to 10 - 6 torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices, and the iron content may be substituted by nickel, cobalt or manganese. (author)

  7. Oxygen stabilized zirconium-vanadium-iron alloy

    International Nuclear Information System (INIS)

    Gruen, D.M.; Mendelsohn, M.H.

    1982-01-01

    An oxygen stabilized intermetallic compound having the formula (Zrsub(1-x)Tisub(x))sub(2-u)(Vsub(1-y)Fesub(y))Osub(z) where x=0.0 to 0.9, y=0.01 to 0.9, z=0.25 to 0.5 and u=0 to 1. The compound is capable of reversibly sorbing hydrogen at temperatures from -196 0 C to 200 0 C at pressures down to 10 - 6 torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices, and the iron content may be substituted by nickel, cobalt or manganese. (author)

  8. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake

    Science.gov (United States)

    Herndon, Elizabeth M.; Havig, Jeff R.; Singer, David M.; McCormick, Michael L.; Kump, Lee R.

    2018-06-01

    Manganese and iron are redox-sensitive elements that yield clues about biogeochemistry and redox conditions both in modern environments and in the geologic past. Here, we investigated Mn and Fe-bearing minerals preserved in basin sediments underlying Fayetteville Green Lake, a redox-stratified lake that serves as a geochemical analogue for Paleoproterozoic oceans. Synchrotron-source microprobe techniques (μXRF, μXANES, and μXRD) and bulk geochemical analyses were used to examine the microscale distribution and speciation of Mn, Fe, and S as a function of depth in the top 48 cm of anoxic lake sediments. Manganese was primarily associated with calcite grains as a manganese-rich carbonate that precipitated in the chemocline of the water column and settled through the euxinic basin to collect in lake sediments. Iron was preserved in framboidal iron sulfides that precipitated in euxinic bottom waters and underwent transformation to pyrite and marcasite in the sediments. Previous studies attribute the formation of manganese-rich carbonates to the diagenetic alteration of manganese oxides deposited in basins underlying oxygenated water. Our study challenges this paradigm by providing evidence that Mn-bearing carbonates form in the water column and accumulate in sediments below anoxic waters. Consequently, manganoan carbonates preserved in the rock record do not necessarily denote the presence of oxygenated bottom waters in ocean basins.

  9. Absorption of manganese and iron in a mouse model of hemochromatosis.

    Directory of Open Access Journals (Sweden)

    Jonghan Kim

    Full Text Available Hereditary hemochromatosis, an iron overload disease associated with excessive intestinal iron absorption, is commonly caused by loss of HFE gene function. Both iron and manganese absorption are regulated by iron status, but the relationships between the transport pathways of these metals and how they are affected by HFE-associated hemochromatosis remain poorly understood. Loss of HFE function is known to alter the intestinal expression of DMT1 (divalent metal transporter-1 and Fpn (ferroportin, transporters that have been implicated in absorption of both iron and manganese. Although the influence of HFE deficiency on dietary iron absorption has been characterized, potential effects on manganese metabolism have yet to be explored. To investigate the role of HFE in manganese absorption, we characterized the uptake and distribution of the metal in Hfe (-/- knockout mice after intravenous, intragastric, and intranasal administration of (54Mn. These values were compared to intravenous and intragastric administration of (59Fe. Intestinal absorption of (59Fe was increased and clearance of injected (59Fe was also increased in Hfe(-/- mice compared to controls. Hfe (-/- mice displayed greater intestinal absorption of (54Mn compared to wild-type Hfe(+/+ control mice. After intravenous injection, the distribution of (59Fe to heart and liver was greater in Hfe (-/- mice but no remarkable differences were observed for (54Mn. Although olfactory absorption of (54Mn into blood was unchanged in Hfe (-/- mice, higher levels of intranasally-instilled (54Mn were associated with Hfe(-/- brain compared to controls. These results show that manganese transport and metabolism can be modified by HFE deficiency.

  10. Absorption of Manganese and Iron in a Mouse Model of Hemochromatosis

    Science.gov (United States)

    Kim, Jonghan; Buckett, Peter D.; Wessling-Resnick, Marianne

    2013-01-01

    Hereditary hemochromatosis, an iron overload disease associated with excessive intestinal iron absorption, is commonly caused by loss of HFE gene function. Both iron and manganese absorption are regulated by iron status, but the relationships between the transport pathways of these metals and how they are affected by HFE-associated hemochromatosis remain poorly understood. Loss of HFE function is known to alter the intestinal expression of DMT1 (divalent metal transporter-1) and Fpn (ferroportin), transporters that have been implicated in absorption of both iron and manganese. Although the influence of HFE deficiency on dietary iron absorption has been characterized, potential effects on manganese metabolism have yet to be explored. To investigate the role of HFE in manganese absorption, we characterized the uptake and distribution of the metal in Hfe −/− knockout mice after intravenous, intragastric, and intranasal administration of 54Mn. These values were compared to intravenous and intragastric administration of 59Fe. Intestinal absorption of 59Fe was increased and clearance of injected 59Fe was also increased in Hfe−/− mice compared to controls. Hfe −/− mice displayed greater intestinal absorption of 54Mn compared to wild-type Hfe+/+ control mice. After intravenous injection, the distribution of 59Fe to heart and liver was greater in Hfe −/− mice but no remarkable differences were observed for 54Mn. Although olfactory absorption of 54Mn into blood was unchanged in Hfe −/− mice, higher levels of intranasally-instilled 54Mn were associated with Hfe−/− brain compared to controls. These results show that manganese transport and metabolism can be modified by HFE deficiency. PMID:23705020

  11. Performance of Iron Plaque of Wetland Plants for Regulating Iron, Manganese, and Phosphorus from Agricultural Drainage Water

    Directory of Open Access Journals (Sweden)

    Xueying Jia

    2018-01-01

    Full Text Available Agricultural drainage water continues to impact watersheds and their receiving water bodies. One approach to mitigate this problem is to use surrounding natural wetlands. Our objectives were to determine the effect of iron (Fe-rich groundwater on phosphorus (P removal and nutrient absorption by the utilization of the iron plaque on the root surface of Glyceria spiculosa (Fr. Schmidt. Rosh. The experiment was comprised of two main factors with three regimes: Fe2+ (0, 1, 20, 100, 500 mg·L−1 and P (0.01, 0.1, 0.5 mg·L−1. The deposition and structure of iron plaque was examined through a scanning electron microscope and energy-dispersive X-ray analyzer. Iron could, however, also impose toxic effects on the biota. We therefore provide the scanning electron microscopy (SEM on iron plaques, showing the essential elements were iron (Fe, oxygen (O, aluminum (Al, manganese (Mn, P, and sulphur (S. Results showed that (1 Iron plaque increased with increasing Fe2+ supply, and P-deficiency promoted its formation; (2 Depending on the amount of iron plaque on roots, nutrient uptake was enhanced at low levels, but at higher levels, it inhibited element accumulation and translocation; (3 The absorption of manganese was particularly affected by iron plague, which also enhanced phosphorus uptake until the external iron concentration exceeded 100 mg·L−1. Therefore, the presence of iron plaque on the root surface would increase the uptake of P, which depends on the concentration of iron-rich groundwater.

  12. The Efficiency of Iron and Manganese Removal from Groundwater Using Tower Aeration

    Directory of Open Access Journals (Sweden)

    Meghdad Pirsaheb

    2012-09-01

    Full Text Available Groundwaters passing through different layers of soil and due to its water properties and its high solubility, contain elements and minerals of material in the soil that sometimes can be dangerous for the health of consumers or at least undesirable in terms of cognitive beautiful. Iron and manganese are from constitutive of the soil and rocks of the Earth's surface. Water penetration through soil and rock can minerals such as these elements have dissolved and bring them into solution. The problems of iron and manganese in groundwater in domestic installations, commercial, industrial and refineries are created, and because much of the community water supply from underground water supplies will be removed where iron and manganese concentrations exceeded it is necessary. In this study Tower aeration system performance for the removal of iron and manganese from groundwater sources have been studied. In this research, pilot column aeration tower design, implementation and was established. This system made of PVC with a diameter and height 150 cm and 15 cm which was filled with flexible pipe parts. The initial pH=5, 7 and 9 and the initial concentration of Fe and Mn 2, 3 and 4 mg/l of the output system, sampling was done.

  13. Removal of Iron and Manganese Using Cascade Aerator and Limestone Roughing Filter

    Directory of Open Access Journals (Sweden)

    Mohd Sanusi Azrin

    2016-01-01

    Full Text Available Combination between oxidation and filtration can be used for removing iron and manganese from groundwater especially when the concentrations of these metals were high. This study focused on the effectiveness of the cascade aerator and the size of the limestone filter media to remove iron and manganese from groundwater. Water samples used for this study were collected from orphanage home, Rumah Nur Kasih, Taiping. Universiti Sains Malaysia (USM has provided a tube well of 15 m depth and 150 mm diameter for the orphanage home. However, the water cannot be used for domestic consumption due to high amount of iron and manganese at 6.48 and 1.9 mg/L which exceeded the drinking water standard of 0.3 and 0.1 mg/L respectively. Using laboratory physical model, the study has shown that the removals of iron and manganese have reduce the concentration until 0.17 and 0.2 mg/L respectively. Thus, the results from this study which utilize cascade aerator and limestone roughing filter could be implemented on site for the community to use the ground water for domestic purposes.

  14. X-ray fluorescence determination of cobalt in iron-manganese oceanic concretions

    International Nuclear Information System (INIS)

    Ivanenko, V.V.; Kustov, V.N.; Metelev, A.Yu.; Rakita, K.A.

    1989-01-01

    A method was developed for resolution of weak analytical lines for elements determined by radionuclide-excited X-ray fluorescence multi-element analysis. The method was used aboart for determining cobalt and some other commercially valuable elements in iron-manganese concretions of Pacific ocean 109 Cd was used as an ionizing radiation source

  15. Iron and manganese deposits in Uruguay; Los yacimientos de hierro y manganeso en el Uruguay

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, B

    1959-07-01

    This report is the results of the study carried out for the United Nations expert which the main object was: the study of the information available about iron and manganese formation in Uruguay, as well as the main researching deposit to determinate economical possibilities in the exportation.

  16. Speciation of iron and manganese in the sediments of Mandovi Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, D.A.; Rajendran, A.

    Several attempts have been made to study the distribution of iron and manganese in Mandovi Estuary, Goa, India. But this is the first report of its kind on the speciation of these metals in sediments from Indian waters. This study would be useful...

  17. Redox transitions of chromium, manganese, iron, cobalt and nickel protoporphyrins in aqueous solution

    NARCIS (Netherlands)

    de Groot, M.T.; Koper, M.T.M.

    2008-01-01

    The electrochemical redox behavior of immobilized chromium, manganese, iron, cobalt, and nickel protoporphyrins IX has been investigated over the pH 0–14 range. In the investigated potential domain the metalloporphyrins were observed in four different oxidation states (MI, MII, MIII and MIV). The

  18. Magnetic particles extracted from manganese nodules: Suggested origin from stony and iron meteorites

    Science.gov (United States)

    Finkelman, R.B.

    1970-01-01

    On the basis of x-ray diffraction and electron microprobe data, spherical and ellipsoidal particles extracted from manganese nodules were divided into three groups. Group I particles are believed to be derived from iron meteorites, and Group II particles from stony meteorites. Group III particles are believed to be volcanic in origin.

  19. Studies on neutron irradiation effects of iron alloys and nickel-base heat resistant alloys

    International Nuclear Information System (INIS)

    Watanabe, Katsutoshi

    1987-09-01

    The present paper describes the results of neutron irradiation effects on iron alloys and nickel-base heat resistant alloys. As for the iron alloys, irradiation hardening and embrittlement were investigated using internal friction measurement, electron microscopy and tensile testings. The role of alloying elements was also investigated to understand the irradiation behavior of iron alloys. The essential factors affecting irradiation hardening and embrittlement were thus clarified. On the other hand, postirradiation tensile and creep properties were measured of Hastelloy X alloy. Irradiation behavior at elevated temperatures is discussed. (author)

  20. Influence of iron supply on toxic effects of manganese, molybdenum and vanadium on soybean, peas, and flax

    Energy Technology Data Exchange (ETDEWEB)

    Warington, K

    1954-01-01

    The investigations were carried out in nutrient solution with iron as ferric citrate and nitrogen in the form of nitrate. The addition of 2.5 ppm vanadium to plants in which iron chlorosis was already established, either by a lack of iron or by excess manganese, failed to counteract the condition, and caused toxic symptoms. The reduction of the standard iron supply to 1/2 or 1/3 accentuated the toxicity of 2.5 or 5 ppm V to soybean and flax, but a similar reduction in phosphorus had no influence. The toxicity to peas, however, was increased when the phosphorus was reduced to 1/10, provided the iron level was high (20 ppm Fe). Raising the iron supply to 20 or 30 ppm counteracted the toxicity of manganese (10 ppm), molybdenum (40 ppm) and vanadium (2.5 ppm), but the result was less marked when these three elements were combined. Iron supplied in successive, small doses proved less efficient in overcoming molybdenum or vanadium, but not manganese excess, than the same amount of iron supplied in fewer and larger quantities. Varying the iron supply had little effect when the concentration of the three elements was low. When increased iron supply had reduced the chlorosis caused by high manganese or vanadium, it also reduced the manganese and vanadium contents of the shoot (ppm/dm), but the molybdenum content was only lowered by high iron when given in non-toxic concentrations (0.1 ppm Mo) combined with excess manganese. Yield data for soybean and flax indicated an interaction between manganese with both molybdenum and vanadium if the iron supply was low, but none between molybdenum and vanadium. The effect of all three metals was additive in respect to iron.

  1. ANALYSIS OF KINETICS OF CAST IRON ALLOYING THROUGH SLAG PHASE

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2012-01-01

    Full Text Available The mechanism of cast iron alloying through slag phase due to use of nickel and copper oxides is considered and the analysis of kinetics regularity of alloying in case of absence of fuse in the form of milled cast-iron chips in slag and at their presence in it is carried out.

  2. Precipitation hardenable iron-nickel-chromium alloy having good swelling resistance and low neutron absorbence

    International Nuclear Information System (INIS)

    Korenko, M.K.; Merrick, H.F.; Gibson, R.C.

    1982-01-01

    An iron-nickel-chromium age-hardenable alloy suitable for use in fast breeder reactor ducts and cladding utilizes the gamma-double prime strengthening phase and has a morphology of the gamma-double prime phase enveloping the gamma-prime phase and delta phase distributed at or near the grain boundaries. The alloy consists essentially of about 40-50 percent nickel, 7.5-14 percent chromium, 1.5-4 percent niobium, .25-.75 percent silicon, 1-3 percent titanium, .1-.5 percent aluminum, .02-1 percent carbon, .002-.015 percent boron, and the balance iron. Up to 2 percent manganese and up to .01 percent magnesium may be added to inhibit trace element effects; up to .1 percent zirconium may be added to increase radiation swelling resistance; and up to 3 percent molybdenum may be added to increase strength

  3. Spatial Bimetallic Castings Manufactured from Iron Alloys

    Directory of Open Access Journals (Sweden)

    M. Cholewa

    2007-07-01

    Full Text Available In this paper a conception for manufacturing method of skeleton castings with composite features was shown. Main application of such castings are the working organs of machines subjected to intensive abrasive and erosive wear. Skeleton geometry was based on three-dimensional cubic net consisting of circular connectors and nodes joining 6 connectors according to Cartesian co-ordinate system. Dimension of an elementary cell was equal to 10 mm and diameter of single connector was equal to 5 mm. For bimetallic castings preparation two Fe based alloys were used: L25SHMN cast steel for skeleton substrate and ZlCr15NiMo cast iron for working part of the casting. In presented work obtained structure was analyzed with indication of characteristic regions. Authors described phenomena occurring at the alloys interface and phases in transition zone. A thesis was formulated concerning localization of transition zone at the cast iron matrix – cast steel reinforcement interface. Direction of further studies were indicated.

  4. Extraction of Iron and Manganese from Pyrolusite Absorption Residue by Ammonium Sulphate Roasting–Leaching Process

    Directory of Open Access Journals (Sweden)

    Lin Deng

    2018-01-01

    Full Text Available The residue from desulfurization and denitrification of exhaust gas treatment process with pyrolusite ore as absorbent is regarded as a potential source of iron and manganese. In this study, an extraction process is proposed for recovery of iron and manganese with ammonium sulphate roasting followed by sulphuric acid leaching. Firstly, the conversion mechanism was analyzed through mineral phase analysis of roasting products at different roasting temperature by means of X-ray diffraction (XRD technology. Then, the parameters of the roasting procedure such as roasting temperature and time, ammonium sulphate dosage, leaching temperature, leaching time, and sulphuric acid concentration are examined. The results implicate that the iron oxide and manganese dioxide in the residue are firstly converted into the water-soluble ( NH 4 3 Fe ( SO 4 3 and ( NH 4 2 Mn 2 ( SO 4 3 at 200–350 °C, and then the more stable NH 4 Fe ( SO 4 2 and MnSO 4 are formed, at temperature higher than 350 °C. Under optimum conditions, 95.2% Fe and 97.0% Mn can be extracted. Reactant diffusion through inert layer of silicon dioxide was considered as the rate-limiting step for iron extraction with an activation energy of 20.56 kJ/mol, while, the recovery process of Mn was controlled by both reactant diffusion and chemical reaction with an activation energy of 29.52 kJ/mol.

  5. Removal of Arsenic, Iron, Manganese, and Ammonia in Drinking Water: Nagaoka International Corporation CHEMILES NCL Series Water Treatment System

    Science.gov (United States)

    The Nagaoka International Corporation CHEMILES NCL Series system was tested to verify its performance for the reduction of multiple contaminants including: arsenic, ammonia, iron, and manganese. The objectives of this verification, as operated under the conditions at the test si...

  6. A predictive regression model for the geochemical variability of iron and manganese in a coral reef ecosystem

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinath, A.; Kumar, N.C.; Jayalakshmy, K.V.; Padmalal, D.; Nair, S.M.

    This article focuses on the influence of nutrient forms (nitrogen/phosphorous forms) and parameters like pH and organic carbon in the distributional characteristics of two important trace metals, viz. iron and manganese, in different sedimentary...

  7. Study of the pyrophoric characteristics of uranium-iron alloys

    International Nuclear Information System (INIS)

    Duplessis, X.

    2000-01-01

    The objective of the study is to understand the pyrophoric characteristics of uranium-iron alloys. In order to carry out this research we have elected to use uranium-iron alloy powder with granules of 200 μm and 1000 μm diameter with 4%, 10.8% and 14% iron content. The experiments were performed on small samples of few milligrams and on larger quantities of few hundred grams. The main conclusions obtained are the followings: -The reaction start at 453 K (180 deg. C) and the ignition at 543 K (270 deg. C) - The influence of the specific area seems more important than the iron concentration in the alloys - When the alloy ignites, the fire spreads quickly and the alloy rapidly consumes. (author)

  8. Methods for the shipboard determination of dissolved iron and manganese in samples of sediment interstitial water

    International Nuclear Information System (INIS)

    Hydes, D.J.; Chapman, E.

    1986-01-01

    Iron is extremely unstable in the presence of oxygen. A working atmosphere containing less than 0.2% oxygen is required if iron losses are not to be significant. Iron can be determined with a single addition of reagent, either manually or by a continuous flow procedure using ferrozine. Using a continuous flow procedure with a 5 cm colorimeter cell the method is linear up to 40 μM Fe and the precision is 2%. Manganese can similarly be determined with a single reagent addition using formaldoxime. For the continuous flow procedure with a 5 cm colorimeter cell the method is linear up to 60 μM Mn and the precision is 1%; however, under these conditions a solution containing 100 μm of iron produces an interference equivalent to 4.7 μM of manganese. A two-reagent procedure was developed using EDTA to suppress the iron interference. Using a 5% EDTA solution interference from a solution containing 100 μM of iron was undetectable. (author)

  9. Effect of diluted alloying elements on mechanical properties of iron

    International Nuclear Information System (INIS)

    Hassan, A.A.S.

    1996-01-01

    Iron and its alloys have extensive applications. The effect of solute additions on mechanical properties of iron was investigated to check the efficiency of solute atoms on strength and surface e life. Additions in the range of 0.1 wt.% and 0.3 wt.% of alloying elements of Cu,Ni and Si were used. Samples of grains size ranged from 6-40 m which have been prepared by annealing followed by furnace cooling. The recrystallization temperature increases with alloying addition (475 degree C for Fe-0.3 wt. % C alloy compared to 375 degree C for pure iron). Si and Cu additions inhibit grain growth of iron whereas Ni addition enhances it.Addition of Si or Ni to iron induced softening below room temperature whereas addition of Cu caused hardening. The work hardening parameters decreased due to alloying additions. The strength coefficient K was 290 M N/m2 for Fe-03 wt % Ni compared to 340 M N/m2 for pure iron. The work hardening exponent n is 0.12 for fe-0.3 wt. Cu alloy compared to 0.17 for pure iron. All the investigated alloys fulfilled the Hall-Petch relation at liquid Nitrogen and at room temperature. Alloying addition which caused softening addition which caused hardening increased the Half-Petch parameters. Ni addition favors ductility of iron whereas Cu addition reduces it. Alloying additions generally lead to brittle fracture and decrease the crack resistance of iron. 9 tabs., 55 figs., 103 refs

  10. Associations of iron metabolism genes with blood manganese levels: a population-based study with validation data from animal models

    Directory of Open Access Journals (Sweden)

    Claus Henn Birgit

    2011-11-01

    Full Text Available Abstract Background Given mounting evidence for adverse effects from excess manganese exposure, it is critical to understand host factors, such as genetics, that affect manganese metabolism. Methods Archived blood samples, collected from 332 Mexican women at delivery, were analyzed for manganese. We evaluated associations of manganese with functional variants in three candidate iron metabolism genes: HFE [hemochromatosis], TF [transferrin], and ALAD [δ-aminolevulinic acid dehydratase]. We used a knockout mouse model to parallel our significant results as a novel method of validating the observed associations between genotype and blood manganese in our epidemiologic data. Results Percentage of participants carrying at least one copy of HFE C282Y, HFE H63D, TF P570S, and ALAD K59N variant alleles was 2.4%, 17.7%, 20.1%, and 6.4%, respectively. Percentage carrying at least one copy of either C282Y or H63D allele in HFE gene was 19.6%. Geometric mean (geometric standard deviation manganese concentrations were 17.0 (1.5 μg/l. Women with any HFE variant allele had 12% lower blood manganese concentrations than women with no variant alleles (β = -0.12 [95% CI = -0.23 to -0.01]. TF and ALAD variants were not significant predictors of blood manganese. In animal models, Hfe-/- mice displayed a significant reduction in blood manganese compared with Hfe+/+ mice, replicating the altered manganese metabolism found in our human research. Conclusions Our study suggests that genetic variants in iron metabolism genes may contribute to variability in manganese exposure by affecting manganese absorption, distribution, or excretion. Genetic background may be critical to consider in studies that rely on environmental manganese measurements.

  11. Biomimetic oxidation of piperine and piplartine catalyzed by iron(III) and manganese(III) porphyrins.

    Science.gov (United States)

    Schaab, Estela Hanauer; Crotti, Antonio Eduardo Miller; Iamamoto, Yassuko; Kato, Massuo Jorge; Lotufo, Letícia Veras Costa; Lopes, Norberto Peporine

    2010-01-01

    Synthetic metalloporphyrins, in the presence of monooxygen donors, are known to mimetize various reactions of cytochrome P450 enzymes systems in the oxidation of drugs and natural products. The oxidation of piperine and piplartine by iodosylbenzene using iron(III) and manganese(III) porphyrins yielded mono- and dihydroxylated products, respectively. Piplartine showed to be a more reactive substrate towards the catalysts tested. The structures of the oxidation products were proposed based on electrospray ionization tandem mass spectrometry.

  12. Evaluation of iron, zinc, copper, manganese and selenium in oral hospital diets.

    OpenAIRE

    Moreira, Daniele Caroline Faria; Sá, Júlia Sommerlatte Manzoli de; Cerqueira, Isabel B.; Oliveira, Ana P. F. de; Morgano, Marcelo Antonio; Quintaes, Késia Diego

    2013-01-01

    Background & aims: Many trace elements are nutrients essential to humans, acting in the metabolism as constituents or as enzymatic co-factors. The iron, zinc, copper, manganese and selenium contents of hospital diets (regular, blend and soft) and of oral food complement (OFC) were determined, evaluating the adequacy of each element in relation to the nutritional recommendations (DRIs) and the percent contribution alone and with OFC. Methods: Duplicate samples were taken of six daily meals ...

  13. Use of a portable X-ray analyser for manganese and iron assay in minerals

    International Nuclear Information System (INIS)

    Taqueda, M.H.S.; Agudo, E.G.

    1975-01-01

    The use of a protable X-ray fluorescence analyser for manganese and iron assay in minerals is described. The concentration range in the measured samples was 30% to 60% for Mn and 2% to 20% for Fe. The excitation source used was a 3 mCi 109 Cd sealed source. Balanced filters were used for the X-ray analysis. The statistical study of results showed a precision better than 0,5 for Mn, but only 4% for iron. They can be improved either increasing the counting time or using a 238 Pu source

  14. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation

    Science.gov (United States)

    Nealson, K. H.; Saffarini, D.

    1994-01-01

    Dissimilatory iron and/or manganese reduction is known to occur in several organisms, including anaerobic sulfur-reducing organisms such as Geobacter metallireducens or Desulfuromonas acetoxidans, and facultative aerobes such as Shewanella putrefaciens. These bacteria couple both carbon oxidation and growth to the reduction of these metals, and inhibitor and competition experiments suggest that Mn(IV) and Fe(III) are efficient electron acceptors similar to nitrate in redox abilities and capable of out-competing electron acceptors of lower potential, such as sulfate (sulfate reduction) or CO2 (methanogenesis). Field studies of iron and/or manganese reduction suggest that organisms with such metabolic abilities play important roles in coupling the oxidation of organic carbon to metal reduction under anaerobic conditions. Because both iron and manganese oxides are solids or colloids, they tend to settle downward in aquatic environments, providing a physical mechanism for the movement of oxidizing potential into anoxic zones. The resulting biogeochemical metal cycles have a strong impact on many other elements including carbon, sulfur, phosphorous, and trace metals.

  15. The concentration of manganese, iron and strontium in bone of red fox Vulpes vulpes (L. 1758).

    Science.gov (United States)

    Budis, Halina; Kalisinska, Elzbieta; Lanocha, Natalia; Kosik-Bogacka, Danuta I

    2013-12-01

    The aims of the study were to determine manganese (Mn), iron (Fe) and strontium (Sr) concentrations in fox bone samples from north-western Poland and to examine the relationships between the bone Mn, Fe and Sr concentrations and the sex and age of the foxes. In the studied samples of fox cartilage, cartilage with adjacent compact bone, compact bone and spongy bone, the concentrations of the analysed metals had the following descending order: Fe > Sr > Mn. The only exception was in compact bone, in which the concentrations were arranged in the order Sr > Fe > Mn. Manganese concentrations were significantly higher in cartilage, compact bone and cartilage with compact bone than in spongy bone. Iron concentrations were higher in cartilage and spongy bone compared with compact bone. Strontium concentrations were greater in compact bone than in cartilage and spongy bone. The manganese, iron and strontium concentrations in the same type of bone material in many cases correlated with each other, with the strongest correlation (r > 0.70) between Mn and Fe in almost all types of samples. In addition, concentrations of the same metals in different bone materials were closely correlated for Mn and Fe in cartilage and cartilage with adjacent compact bone, and for Sr in compact bone and cartilage with compact bone. In the fox from NW Poland, there were no statistically significant differences in Mn, Fe and Sr in any of the types of bone material between the sexes and immature and adult foxes.

  16. Effects of iron and manganese on the formation of HAAs upon chlorinating Chlorella vulgaris

    International Nuclear Information System (INIS)

    Ge, Fei; Wu, Xiuzhen; Wang, Na; Zhu, Runliang; Wang, Tong; Xu, Yin

    2011-01-01

    The major objective of the present study was to investigate the role of iron and manganese on the formation of haloacetic acids (HAAs) when algae are chlorinated at different pHs. The results showed that both iron and manganese can reduce the yields of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) on chlorinating green alga Chlorella vulgaris (C. vulgaris) at a pH range of 6.0-9.0, and the decline of DCAA and TCAA was shown to be more significant at the low pH range. At pH 6.0, DCAA and TCAA yields decreased by 44.5% and 57.3%, respectively with the addition of 0.5 mg L -1 iron, and decreased 39.5% and 49.4%, respectively with the addition of 0.5 mg L -1 manganese. The main reason for decreasing the yields of HAAs as shown by scanning electron microscope (SEM) is that Fe(OH) 3(am) or MnO 2(am) coat the algal cells , which then improves their agglomeration of algal cells which is also revealed by the laser particle size analysis (LPSA).

  17. Effects of iron and manganese on the formation of HAAs upon chlorinating Chlorella vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Fei, E-mail: gefei@xtu.edu.cn [Department of Environmental Science and Engineering, Xiangtan University, Egongtang Road, Xiangtan, Hunan 411105 (China); Wu, Xiuzhen; Wang, Na; Zhu, Runliang; Wang, Tong; Xu, Yin [Department of Environmental Science and Engineering, Xiangtan University, Egongtang Road, Xiangtan, Hunan 411105 (China)

    2011-05-15

    The major objective of the present study was to investigate the role of iron and manganese on the formation of haloacetic acids (HAAs) when algae are chlorinated at different pHs. The results showed that both iron and manganese can reduce the yields of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) on chlorinating green alga Chlorella vulgaris (C. vulgaris) at a pH range of 6.0-9.0, and the decline of DCAA and TCAA was shown to be more significant at the low pH range. At pH 6.0, DCAA and TCAA yields decreased by 44.5% and 57.3%, respectively with the addition of 0.5 mg L{sup -1} iron, and decreased 39.5% and 49.4%, respectively with the addition of 0.5 mg L{sup -1} manganese. The main reason for decreasing the yields of HAAs as shown by scanning electron microscope (SEM) is that Fe(OH){sub 3(am)} or MnO{sub 2(am)} coat the algal cells{sub ,} which then improves their agglomeration of algal cells which is also revealed by the laser particle size analysis (LPSA).

  18. Removal of iron and manganese using granular activated carbon and zeolite in artificial barrier of riverbank filtration

    Science.gov (United States)

    Ismail, Abustan; Harmuni, Halim; Mohd, Remy Rozainy M. A. Z.

    2017-04-01

    Iron and Manganese was examined from riverbank filtration (RBF) and river water in Sungai Kerian, Lubok Buntar, Serdang Kedah. Water from the RBF was influenced by geochemical and hydro chemical processes in the aquifer that made concentrations of iron (Fe), and manganese (Mn) high, and exceeded the standard values set by the Malaysia Ministry of Health. Therefore, in order to overcome the problem, the artificial barrier was proposed to improve the performance of the RBF. In this study, the capability and performance of granular activated carbon, zeolite and sand were investigated in this research. The effects of dosage, shaking speed, pH and contact time on removal of iron and manganese were studied to determine the best performance. For the removal of iron using granular activated carbon (GAC) and zeolite, the optimum contact time was at 2 hours with 200rpm shaking speed with 5g and 10g at pH 5 with percentage removal of iron was 87.81% and 83.20% respectively. The removal of manganese and zeolite arose sharply in 75 minutes with 90.21% removal, with 100rpm shaking speed. The GAC gave the best performance with 99.39% removal of manganese. The highest removal of manganese was achieved when the adsorbent dosage increased to 10g with shaking speed of 200rpm.

  19. Elimination of Iron Based Particles in Al-Si Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2015-03-01

    Full Text Available This paper deals with influence on segregation of iron based phases on the secondary alloy AlSi7Mg0.3 microstructure by chrome. Iron is the most common and harmful impurity in aluminum casting alloys and has long been associated with an increase of casting defects. In generally, iron is associated with the formation of Fe-rich phases. It is impossible to remove iron from melt by standard operations, but it is possible to eliminate its negative influence by addition some other elements that affect the segregation of intermetallics in less harmful type. Realization of experiments and results of analysis show new view on solubility of iron based phases during melt preparation with higher iron content and influence of chrome as iron corrector of iron based phases. By experimental work were used three different amounts of AlCr20 master alloy a three different temperature of chill mold. Our experimental work confirmed that chrome can be used as an iron corrector in Al-Si alloy, due to the change of intermetallic phases and shortening their length.

  20. Effect of iron and silicon in aluminium and its alloys

    International Nuclear Information System (INIS)

    Kovacs, I.

    1990-01-01

    The iron and silicon are the main impurities in aluminium, they are always present in alloys made from commercially pure base material. The solid solubility of iron in aluminium is very low, therefore its largest amount forms intermetallic compounds the kind of which depends strongly on the other impurities of alloying elements. Although the solid solubility of silicon is much larger than that of the iron, it is the constituent of both the primary and the secondary particles, the structure of which depends in general on the iron-silicon concentration ratio. These Fe and Si containing particles can cause various and basic changes in the macroscopic properties of the alloy. Since commercially pure aluminium has extensive consumer and industrial use, it is very important to know, not only from scientific but also from practical point of view, the effect of iron and silicon on the physical and mechanical properties of aluminium and its alloys. The aim of the ''International Workshop on the Effect of Iron and Silicon in Aluminium and its Alloys'' was to clarify the present knowledge on this subject. The thirty papers presented at the Workshop and collected in this Proceedings cover many important fields of the subject. I hope that they will contribute to both the deeper understanding of the related phenomena and the improvement of technologies for producing better aluminium alloys

  1. Textural and morphological studies on zinc-iron alloy electrodeposits

    Indian Academy of Sciences (India)

    Zinc-iron alloy electrodeposits have industrial significance, since they provide better corrosion resistance and with improved mechanical properties when compared to pure zinc coatings. This is due to the unique phase structure of the alloy formed. But this deposition belongs to anomalous deposition, where the ...

  2. Roentgenoelectronic investigation into oxidation of iron-chromium and iron-chromium-nickel alloys

    International Nuclear Information System (INIS)

    Akimov, A.G.; Rozenfel'd, I.L.; Kazanskij, L.P.; Machavariani, G.V.

    1978-01-01

    Kinetics of iron-chromium and iron-chromium-nickel alloy oxidation (of the Kh13 and Kh18N10T steels) in oxygen was investigated using X-ray electron spectroscopy. It was found that according to X-ray electron spectra chromium oxidation kinetics in the iron-chromium alloy differs significantly from oxidation kinetics of chromium pattern. Layer by layer X-ray electron analysis showed that chromium is subjected to a deeper oxidation as compared to iron, and accordingly, Cr 2 O 3 layer with pure iron impregnations is placed between the layer of mixed oxide (Fe 3 O 4 +Cr 2 O 3 ) and metal. A model of the iron-chromium alloy surface is suggested. The mixed oxide composition on the steel surface is presented as spinel Fesub(2+x)Crsub(1-x)Osub(y)

  3. Influence of Iron in AlSi10MgMn Alloy

    Directory of Open Access Journals (Sweden)

    Žihalová M.

    2014-12-01

    Full Text Available Presence of iron in Al-Si cast alloys is common problem mainly in secondary (recycled aluminium alloys. Better understanding of iron influence in this kind of alloys can lead to reduction of final castings cost. Presented article deals with examination of detrimental iron effect in AlSi10MgMn cast alloy. Microstructural analysis and ultimate tensile strength testing were used to consider influence of iron to microstructure and mechanical properties of selected alloy.

  4. Simultaneous removal of iron and manganese of aqueous solutions using as adsorbent a Mexican natural zeolite

    International Nuclear Information System (INIS)

    Garcia M, A.; Solache R, M. J.; Olguin G, M. T.

    2009-01-01

    In this work was evaluated the removal capacity of iron and manganese of aqueous solutions using a Mexican natural zeolite. It was observed that the Freundlich pattern describes the adsorption process appropriately and that a competitive effect exists between both metals by the exchange places of the zeolite, when it is starting of solutions that contain to both metals, impacting mainly in the manganese removal. A natural zeolite coming from the Puebla State, Mexico was used. The material was milled and sieved to a mesh size 30 and was conditioned with a solution 0.5 N of sodium chloride. Later on was characterized by means of scanning electron microscopy and X-ray diffraction.

  5. Properties of Mo-alloyed sintered manganese steels

    International Nuclear Information System (INIS)

    Romanski, A.; Cias, A.

    1998-01-01

    Sintered alloy steels are needed for mostly PM structural parts. Powder metallurgy techniques provide a means of fabricating high quality steel parts with tailored mechanical properties. It is now possible to produce sintered steel parts with properties equal to an even superior to those of parts made by more traditional routes. Challenges arise both with the material selection and component fabrication. This work outlines the processing for high performance structural application. (author)

  6. Study on microstructure and mechanical properties of Al–Mg–Si–Cu alloy with high manganese content

    International Nuclear Information System (INIS)

    Han, Yi; Ma, Ke; Li, Lian; Chen, Wei; Nagaumi, Hiromi

    2012-01-01

    Highlights: ► We examine the precipitates by HRTEM in the high manganese Al–Mg–Si–Cu alloy. ► Manganese content determines amount of secondary phases after homogenization. ► Increasing magnesium content promotes to precipitate S phase. ► Yield strength of the new alloy is 52–65% higher than that of commercial 6061 alloy. ► Uniform distribution of Mn dispersoids encourages to enhance mechanical properties. -- Abstract: The microstructure and mechanical properties of Al–Mg–Si–Cu alloy with high manganese content were studied in the present work to develop a new alloy. The microstructure features were quantificationally determined by a combination of scanning electron microscope and high resolution transmission electron microscopy. The dominant strengthening precipitates comprising the needle-shaped pre-β″(or β″) and lath-shaped Q′ phases were identified in the T6 temper. With the increase of magnesium content, S phase was promoted to precipitate to give an enhancement in strength. The yield strength of the examined alloys with high manganese content was found to be about 52–65% higher than that of commercial 6061 alloy. It was considered that, in addition to the strengthening precipitates, Mn dispersoids generating the dispersion hardening effect and the homogeneous deformation contributed a lot to the favorable mechanical properties.

  7. Atomic and magnetic correlations in a copper - 5% manganese alloy

    Energy Technology Data Exchange (ETDEWEB)

    Murani, A P; Schaerpf, O; Andersen, K [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Raphel, R [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France)

    1997-04-01

    Interest in magnetism of Cu-Mn alloys has been revived and sustained by a number of very interesting neutron investigations on single-crystal samples which show `spin-density wave` (SDW) peaks at incommensurate wave-vectors. Recently such peaks have been observed even in very dilute samples with Mn concentration as low as {approx} 0.5 at.%. The proposed interpretation by the authors that these peaks represent incommensurate antiferromagnetic ordering, therefore, questions the widely-held view that at low enough temperatures the solute spins in this and similar alloys freeze with random or quasi-random orientations, forming a spin-glass state. Atomic and magnetic correlations have been investigated in a single crystal of Cu-5 at.% Mn within the first Brillouin zone using polarised neutrons and making use of the multi-angle three-dimensional polarisation analysis capability of the D7 spectrometer as a firs step in our aim to shed further light on the phenomenon. (author). 6 refs.

  8. Removal of iron and manganese by artificial destratification in a tropical climate (Upper Layang Reservoir, Malaysia).

    Science.gov (United States)

    Ismail, R; Kassim, M A; Inman, M; Baharim, N H; Azman, S

    2002-01-01

    Environmental monitoring was carried out at Upper Layang Reservoir situated in Masai, Johor, Malaysia. The study shows that thermal stratification and natural mixing of the water column do exist in the reservoir and the level of stratification varies at different times of the year. Artificial destratification via diffused air aeration techniques was employed at the reservoir for two months. The results show that thermal stratification was eliminated after a week of continuous aeration. The concentrations of iron and to a lesser extent manganese in the water column was also reduced during the aeration period.

  9. Control of manganese and iron in Skagerrak sediments (northeastern North Sea)

    Digital Repository Service at National Institute of Oceanography (India)

    Rajendran, A.; DileepKumar, M.; Bakker, J.F.

    - 80. I00 E E 40" "I- l-- n 6Or hl 80" ioo (a) MANGANESE ( mmo\\[. kg ''1 ) ,? 2,0 3p ~, A ,o =o 40" 6O" I00 B (b) IRON (mmol. kg '-I ) 4o 6o- 8O" IO( ~o,oo ,ooo i I I 590 I A o 20- . 40" 60" ,J o 2o 40" 60" 80- IOO... in these sediments, expressed as change in concentration with time on a volume basis of sediments or pore water \\[see Berner (1980) for a discussion \\], the steady-state equations of Burdige and Gieskes (1983) have been used. These are, ( 1 ) oxic zone...

  10. Effects of Exogenous Gibberellic Acid3 on Iron and Manganese Plaque Amounts and Iron and Manganese Uptake in Rice

    Science.gov (United States)

    Guo, Yue; Zhu, Changhua; Gan, Lijun; Ng, Denny; Xia, Kai

    2015-01-01

    Gibberellins (GA) regulate various components of plant development. Iron and Mn plaque result from oxiding and hydroxiding Fe and Mn, respectively, on the roots of aquatic plant species such as rice (Oryza sativa L.). In this study, we found that exogenous gibberellic acid3 (GA3) spray decreased Fe plaque, but increased Mn plaque, with applications of Kimura B nutrient solution. Similar effects from GA3, leading to reduced Fe plaque and increased Mn plaque, were also found by scanning electron microscopy and energy dispersive X-ray spectrometric microanalysis. Reduced Fe plaque was observed after applying GA3 to the groups containing added Fe2+ (17 and 42 mg•L-1) and an increasing trend was detected in Mn plaques of the Mn2+ (34 and 84 mg•L-1) added treatments. In contrast, an inhibitor of GA3, uniconazole, reversed the effects of GA3. The uptake of Fe or Mn in rice plants was enhanced after GA3 application and Fe or Mn plaque production. Strong synergetic effects of GA3 application on Fe plaque production were detected. However, no synergetic effects on Mn plaque production were detected. PMID:25710173

  11. STRUCTURE FORMATION OF ALLOYS ON IRON BASIS AFTER LASER ALLOYING

    Directory of Open Access Journals (Sweden)

    О. V. Diachenko

    2016-01-01

    Full Text Available The paper is devoted to investigations on influence of laser treatment regimes of gas-thermal and adhesive coatings from self-fluxing powders on iron basis and after melting with modifying plaster on their roughness and phase composition. One of mathematical planning methods that is a complete factor experiment method has been used for investigation of parameters’ influence on micro-geometry of coatings. The executed investigations have made it possible to observe a general regularity which does not depend on a type of alloying plaster: while increasing speed of laser beam relatively to treated part, beam diameter value of Ra parameter is becoming less. Decrease in height of surface irregularities in case of increasing laser beam speed is related with intensification of evaporation processes. An increase in beam diameter diminishes Ra parameter of the surface. This is due to the fact that decrease in power density occurs at high rate of beam defocusing. Overlapping coefficient does not exert a pronounced effect on Ra parameter of fused coatings. While increasing the speed of laser beam relatively to the part structure is transferred from dendrite into supersaturated one with carbide and boride precipitations. It has been established that technological parameters of laser treatment and particularly speed of laser beam influence on coating composition. While increasing the speed up to v5 = 5 × 10–3 m/s amount of chromium has become larger by 1.5-fold that resulted in increase of micro-hardness of the coating from 9.5–10.1 GPa up to 11.04–15.50 GPa.

  12. Constitution and magnetism of iron and its alloys

    CERN Document Server

    Pepperhoff, Werner

    2001-01-01

    Iron played an important role in the development of the industrial society and has not lost any of its significance since today. This book provides the foundations of understanding the physical nature of iron and its alloys. Basics and recent developments concerning its constitution and magnetism are presented as well as its thermal properties. The exceptional role of iron with its wide spectrum of most different technological and physical properties relies on its versatility, its polymorphism of its crystal structure and its magnetism. Therefore it is the aim of the book to link together the constitution and magnetism of iron.

  13. Solid - solid and solid - liquid phase transitions of iron and iron alloys under laser shock compression

    Science.gov (United States)

    Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.

    2017-12-01

    An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.

  14. Improvement of magnetocaloric properties of Gd-Ge-Si alloys by alloying with iron

    Directory of Open Access Journals (Sweden)

    Erenc-Sędziak T.

    2013-01-01

    Full Text Available The influence of annealing of Gd5Ge2Si2Fex alloys at 1200°C and of alloying with various amount of iron on structure as well as thermal and magnetocaloric properties is investigated. It was found that annealing for 1 to 10 hours improves the entropy change, but reduces the temperature of maximum magnetocaloric effect by up to 50 K. Prolonged annealing of the Gd5Ge2Si2 alloy results in the decrease of entropy change due to the reduction of Gd5Ge2Si2 phase content. Addition of iron to the ternary alloy enhances the magnetocaloric effect, if x = 0.4 – 0.6, especially if alloying is combined with annealing at 1200°C: the peak value of the isothermal entropy change from 0 to 2 T increases from 3.5 to 11 J/kgK. Simultaneously, the temperature of maximum magnetocaloric effect drops to 250 K. The changes in magnetocaloric properties are related to the change in phase transformation from the second order for arc molten ternary alloy to first order in the case of annealed and/or alloyed with iron. The results of this study indicate that the minor addition of iron and heat treatment to Gd-Ge-Si alloys may be useful in improving the materials’ magnetocaloric properties..

  15. Superconductivity in the lanthanum-yttrium-manganese alloy system

    International Nuclear Information System (INIS)

    Stierman, R.J.

    1980-03-01

    An empirical approach involving lattice instabilities was investigated in the search for new superconducting materials. Pseudo-lanthanide compounds using La and Y were prepared for the system La/sub 1-x/Y/sub x/Mn 2 by arc melting and subsequent heat treatment. Low temperature magnetic susceptibility and low temperature heat capacity measurements were made. The unit cell lattice parameters were determined from x-ray powder patterns taken on most samples and metallographic examination was carried out on selected samples. Alloys with low La concentrations (x greater than or equal to 0.6) showed RMn 2 in the cubic C15 Laves phase as the major component with second phase material present. The magnetic susceptibility and x-ray data indicated a superconducting phase which seemed to be the RMn 2 phase, but heat capacity measurements showed the second phase material was the superconductor, while the RMn 2 was not. Failure to form compounds with higher La content was experienced and may be due to the lattice instability expected at x = 0.56. This indicates that perhaps more stingent conditions are required to form pseudo-lanthanide compounds than were previously considered. More systems should be investigated to see if this is true, and to determine the possibilities of this approach

  16. Redox speciation of particulate iron and manganese during river/ocean mixing

    International Nuclear Information System (INIS)

    Zaw, M.; Szymczak, R.; Payne, T.

    2000-01-01

    Full text: A synchrotron radiation experiment was performed at the Australian National Beamline Facility (Photon Factory, Tsukuba, Japan) to investigate changes in the physico-chemical nature of particles during estuarine mixing. X-ray absorption near edge structure spectra (XANES) analysis was used to determine solid-state redox speciation of iron and manganese throughout the river/ocean salinity transects. Particles (>0.4μm) collected using clean techniques were stored under nitrogen during TROPICS Project expeditions to the Fly and Sepik Rivers, PNG. Results indicated that initially, particulate manganese was mostly present as Mn(IV) and Mn(III) compounds with some surface-adsorbed Mn(II). Similarly, iron was present as particulate Fe(III) and Fe(II/III) compounds with some adsorbed Fe(II). During river-ocean mixing, the proportions of both Mn(II) and Fe(III) significantly increased. These observations maybe due to increasing photochemical activity in the river plume, surface-sorption of reduced species related to the estuarine residence time of particles, or enhanced scavenging of ocean-sourced elements. Copyright (2000) American Chemical Society

  17. Evaluation of chromium, nickel, iron and manganese content in wheat, flour, bran and selected baked products

    Directory of Open Access Journals (Sweden)

    Bawiec Piotr

    2014-06-01

    Full Text Available Considering the nutritional values, breadstuff plays a big part in covering human nourishment needs and constitutes a base of all day diet. Moreover, bread is an excellent source of numerous vitamins and minerals the abundance of which depends on the degree of grinding. Thus, it seems to be very important to know the composition and level of bio-elements. That is why the main target of this study was to evaluate the concentration of selected trace elements: chromium (Cr, nickel (Ni, iron (Fe and manganese (Mn in wheat grain, wheat bran, different wheat and rye flour types and variety of breadstuff also with addition of grains and seeds from different bakeries and mills. Another task was to analyze if the technological process has an influence on secondary despoil of bread goods with heavy metal elements. The analyzed trace elements were measured with a precise and accurate atomic absorption spectrophotometric method (AAS and the results were expressed in mg/kg of selected sample. Obtained results show that bread and grain products are a good source of trace elements like chromium, nickel, iron and manganese. However, the higher levels of chromium and nickel in bread goods could rather be an effect of impurity caused by a technological process in mill and bakeries.

  18. Multimicronutrient Slow-Release Fertilizer of Zinc, Iron, Manganese, and Copper

    Directory of Open Access Journals (Sweden)

    Siladitya Bandyopadhyay

    2014-01-01

    Full Text Available The process for the production of a slow-release micronutrient fertilizer is described. The compound contains zinc, iron, manganese, and copper as micronutrients and is produced by polymerizing a system containing phosphoric acid, zinc oxide, hematite, pyrolusite, copper sulfate, and magnesium oxide followed by neutralization of the polyphosphate chain with ammonium hydroxide. Changes in temperature, density, and viscosity of the reaction system during polymerization were studied. Reaction kinetics was studied at three different temperatures. Rate curves revealed a multistage process with essentially linear rates at each stage. Thus, each stage displayed zero order kinetics. The product was crystalline and revealed ordering of P-O-P chains. It had low solubility in water but high solubility in 0.33 M citric acid and 0.005 M DTPA. Three different field trials showed significant yield increments using the slow-release micronutrient fertilizer compared to the conventional micronutrients. Yield increments in rice were in the range of 10–55% over control (with no micronutrient and up to 17% over the conventional micronutrient fertilizers. There were significant increases in total uptake of zinc, iron, and manganese in the grain. Slow-release fertilizers also produced significant yield increases in potato as well as significant increase in vitamin C content of the tuber.

  19. Investigation of sulphides in iron alloys of high purity

    International Nuclear Information System (INIS)

    Wyjadlowski, T.

    1973-01-01

    This research thesis reports the study of the morphology and composition of sulphides in iron alloys with respect to metal composition and to the nature of impurities. In order to understand the specific action of each addition on inclusion morphology, this work has started with high-purity alloys (binary alloys and then ternary alloys). The author studied whether solubility variations would entail either intergranular or intragranular or hybrid iron sulphide precipitation. He examined whether sulphide morphology is depending on thermal treatment, and whether equilibrium precipitates were different in terms of morphology and composition at high and room temperature. He studied the influence of addition elements on sulphide morphology and composition, an important issue as some elements may reduce brittleness. These elements are classified in terms of affinity with sulphur

  20. Pilot scale evaluation of biological and pressure clarification processes for the removal of high level of iron and manganese

    Energy Technology Data Exchange (ETDEWEB)

    Yannoni, C.C.; Kinsley, B.P. [Fay, Spofford & Thorndike, Inc., Burlington, MA (United States); Marston, T.R. [Connecticut Water Company, Clinton, CT (United States)

    1996-11-01

    Iron and manganese originating from groundwater supplies have a long history of causing consumer complaints in water distribution systems. Although iron and manganese are not public health concerns, they are a major concern from an aesthetic standpoint. The elevated awareness of consumers in regard to the quality of drinking water, an increase in regulations requiring additional treatment and the cost associated with developing new sources of supply, has required many utilities to implement improvements to existing facilities. Historical water quality data collected from the Connecticut Water Company`s (CWC) Westbrook Well revealed an increasing trend in iron and manganese concentrations. As a result, the existing greensand filtration facility located at the well, provides insufficient removal rates and inefficient operating cycles. Variations in operating procedures were not successful in correcting these problems. A water treatment feasibility study recommended evaluation of biological and pressure clarification processes to reduce iron (9 mg/l) and manganese (1.5 mg/l) levels below the secondary maximum contaminant levels of 0.30 and 0.05 mg/l, respectively. Assessment of these processes was accomplished through the construction and operation of a 5 gallon per minute (gpm) capacity pilot plant at the Westbrook Water Treatment Plant. Application of biological treatment for iron removal was then piloted on the existing full-scale treatment facility.

  1. High levels of hair manganese in children living in the vicinity of a ferro-manganese alloy production plant.

    Science.gov (United States)

    Menezes-Filho, José A; Paes, Ciro R; Pontes, Angela M de C; Moreira, Josino C; Sarcinelli, Paula N; Mergler, Donna

    2009-11-01

    Manganese (Mn) is an essential element, but an effective toxic at high concentrations. While there is an extensive literature on occupational exposure, few studies have examined adults and children living near important sources of airborne Mn. The objective of this study was to analyze hair Mn of children living in the vicinity of a ferro-manganese alloy production plant in the Great Salvador region, State of Bahia, Brazil and examine factors that influence this bioindicator of exposure. We examined 109 children in the age range of 1-10 years, living near the plant. Four separate housing areas were identified a priori on the bases of proximity to the emission sources and downwind location. A non-exposed group (n=43) of similar socio-economic status was also evaluated. Mn hair (MnH) concentration was measured by graphite atomic absorption spectrometry (GFAAS). Possible confounding hematological parameters were also assessed. Mean MnH concentration was 15.20 microg/g (1.10-95.50 microg/g) for the exposed children and 1.37 microg/g (0.39-5.58 microg/g) for the non-exposed. For the former, MnH concentrations were 7.95+/-1.40 microg/g (farthest from the plant), 11.81+/-1.11 microg/g (mid-region), 34.43+/-8.66 microg/g (closest to the plant) and 34.22+/-9.15 microg/g (directly downwind). Multiple regression analysis on log transformed MnH concentrations for the exposed children derived a model that explained 36.8% of the variability. In order of importance, area of children's residence, gender (girls>boys) and time of mother's residence in the area at the birth of the child, were significantly associated with MnH. Post hoc analyses indicated two groupings for exposure areas, with those living closest to and downwind of the plant displaying higher MnH concentrations compared to the others. The contribution of the time the mother lived in the community prior to the child's birth to the children's current MnH suggests that in utero exposure may play a role. A study of

  2. Iron titanium manganase alloy hydrogen storage

    Science.gov (United States)

    Reilly, James J.; Wiswall, Jr., Richard H.

    1979-01-01

    A three component alloy capable of reversible sorption of hydrogen having the chemical formula TiFe.sub.1-x Mn.sub.x where x is in the range of about 0.02 to 0.5 and the method of storing hydrogen using said alloy.

  3. Correlation between airborne manganese concentration at the workstations in the iron foundry and manganese concentration in workers’ blood

    Directory of Open Access Journals (Sweden)

    Seyedtaghi Mirmohammadi

    2017-08-01

    Full Text Available Background: Manganese (Mn used as raw material for melting process in the ferrous foundry is considered as hazardous neurotoxic substance because it accumulates in the central nervous system and may cause neurological disorders. The furnace-men and melting department workers are potentially exposed to manganese particles or fume in the workplace. The objective of the research has been to investigate the sources and levels of manganese exposure in the foundry by correlation of blood-manganese (B-Mn and air-manganese (air-Mn measurement. Material and Methods: Air-Mn and Mn of blood serum were measured involving workers who worked in a big-sized foundry during 1 year. The standard method of the Occupational Safety and Health Administration (OSHA ID-121 was used for air and blood assessment and atomic absorption spectroscopy (AAS was carried out for air and blood sample analysis. Results: The air sampling results have revealed that there is a high exposure to manganese (4.5 mg/m3 in the workplace as compared to the National Institute for Occupational Safety and Health’s (NIOSH time weighted average (the reference time-weighted average (TWA = 1 mg/m3. The average blood serum Mn concentration was 2.745 μg/l for subjects working for shorter than 3 months and 274.85 μg/l for subjects working 3–12 months. Conclusions: Against the research hypothesis there was no correlation between the air-Mn concentration and the B-Mn (serum level of manganese in the serum of the exposed subjects. It may be due to short time of air sampling of manganese airborne particles, and a real-time monitoring of airborne manganese particles is suggested for any future study. Med Pr 2017;68(4:449–458

  4. Bacterial Disproportionation of Elemental Sulfur Coupled to Chemical Reduction of Iron or Manganese

    Science.gov (United States)

    Thamdrup, Bo; Finster, Kai; Hansen, Jens Würgler; Bak, Friedhelm

    1993-01-01

    A new chemolithotrophic bacterial metabolism was discovered in anaerobic marine enrichment cultures. Cultures in defined medium with elemental sulfur (S0) and amorphous ferric hydroxide (FeOOH) as sole substrates showed intense formation of sulfate. Furthermore, precipitation of ferrous sulfide and pyrite was observed. The transformations were accompanied by growth of slightly curved, rod-shaped bacteria. The quantification of the products revealed that S0 was microbially disproportionated to sulfate and sulfide, as follows: 4S0 + 4H2O → SO42- + 3H2S + 2H+. Subsequent chemical reactions between the formed sulfide and the added FeOOH led to the observed precipitation of iron sulfides. Sulfate and iron sulfides were also produced when FeOOH was replaced by FeCO3. Further enrichment with manganese oxide, MnO2, instead of FeOOH yielded stable cultures which formed sulfate during concomitant reduction of MnO2 to Mn2+. Growth of small rod-shaped bacteria was observed. When incubated without MnO2, the culture did not grow but produced small amounts of SO42- and H2S at a ratio of 1:3, indicating again a disproportionation of S0. The observed microbial disproportionation of S0 only proceeds significantly in the presence of sulfide-scavenging agents such as iron and manganese compounds. The population density of bacteria capable of S0 disproportionation in the presence of FeOOH or MnO2 was high, > 104 cm-3 in coastal sediments. The metabolism offers an explanation for recent observations of anaerobic sulfide oxidation to sulfate in anoxic sediments. PMID:16348835

  5. Stabilizing the strengthening precipitates in aluminum-manganese alloys by the addition of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yangyang; Makhlouf, Makhlouf M., E-mail: mmm@wpi.edu

    2017-04-13

    The Al-Mn-W system has considerable potential as a basis for lightweight aluminum alloys that are intended for use at temperatures approaching 350 °C (623 K). In this ternary system, aluminum, manganese, and tungsten co-precipitate to form the meta-stable Al{sub 12}(Mn{sub (1-x)}W{sub x}) phase, which is thermally stable and will not coarsen when held at elevated temperatures for extended periods of time. This enhanced thermal stability of the Al{sub 12}(Mn{sub (1-x)}W{sub x}) phase in comparison to the Al{sub 12}Mn phase which forms in binary Al-Mn alloys is explained in terms of the Gibbs free energy of the two phases. It is shown that co-precipitating tungsten with aluminum and manganese lowers the Gibbs free energy of the precipitated phase and by so doing, it slows down its coarsening rate and enhances its thermal stability.

  6. Study of granitic biotites by X-ray fluorescence analysis: determination of iron, manganese, titanium, calcium, potassium, silicon and aluminium

    International Nuclear Information System (INIS)

    Toubes, R. O.; Bermudez Polonio, J.

    1968-01-01

    A method for the quantitative determination of iron, manganese, titanium, calcium potassium, silicon, and aluminium, is reported, Sample preparation is carried out by the miniature flux technique, and rubidium is used as internal standard for silicon and aluminium. (Author) 5 refs

  7. Bio-inspired iron and manganese complexes derived from mixed N,O ligands for the oxidation of olefins

    NARCIS (Netherlands)

    Moelands, M.A.H.

    2014-01-01

    This Thesis describes the synthesis and structural analysis of bio-inspired iron and manganese complexes used for the catalytic oxidation of olefin substrates. The development of catalytic systems for oxidation chemistry that are based on first row transition metals and that apply a green oxidant

  8. The synthesis, structures and characterisation of new mixed-ligand manganese and iron complexes with tripodal, tetradentate ligands

    NARCIS (Netherlands)

    van Gorkum, R.; Berding, J.; Mills, A.M.; Kooijman, H.; Tooke, D.M.; Spek, A.L.; Mutikainen, I.; Turpeinen, U.; Reedijk, J.; Bouwman, E.

    2008-01-01

    The preparation of new manganese and iron complexes with the general formula [M(tripod)(anion)] is described, where M = FeIII or MnIII, “tripod” is a dianionic tetradentate tripodal ligand and the anion is a chelating β-diketonate, 8-oxyquinoline or acetate. The synthesis of this type of complexes

  9. Iron and manganese shuttles control the formation of authigenic phosphorus minerals in the euxinic basins of the Baltic Sea

    NARCIS (Netherlands)

    Jilbert, T.|info:eu-repo/dai/nl/304835714; Slomp, C.P.|info:eu-repo/dai/nl/159424003

    2013-01-01

    Microanalysis of epoxy resin-embedded sediments is used to demonstrate the presence of authigenic iron (Fe) (II) phosphates and manganese (Mn)-calcium (Ca)-carbonate-phosphates in the deep euxinic basins of the Baltic Sea. These minerals constitute major burial phases of phosphorus (P) in this area,

  10. The iron-regulated transporter 1 plays an essential role in uptake, translocation and grain-loading of manganese, but not iron, in barley

    DEFF Research Database (Denmark)

    Long, Lizhi; Persson, Daniel Olaf; Duan, Fengying

    2018-01-01

    Transporters involved in manganese (Mn) uptake and intracellular Mn homeostasis in Arabidopsis and rice are well characterized, while much less is known for barley, which is particularly prone to Mn deficiency. In this study we have investigated the role of the iron-regulated transporter 1 (IRT1...

  11. Solubility of nitrogen in iron alloys with vanadium and niobium

    International Nuclear Information System (INIS)

    Pomarin, Yu.M.; Grigorenko, G.M.; Lakomskij, V.I.

    1975-01-01

    The solubility of nitrogen in the concentration range under study in Fe-N-V and Fe-N-Nb systems is in compliance with Syverts' law. An equation has been set up so as to estimate the nitrogen solubility in the iron alloys containing up to 10 per cent of vanadium and niobium in the wide temperature range

  12. Dissolution of manganese and cobalt and their deposition on Type 304 stainless steel in liquid sodium

    International Nuclear Information System (INIS)

    Yokota, Norikatsu; Shimoyashiki, Shigehiro

    1989-01-01

    Dissolution of manganese and cobalt and their deposition on Type 304 stainless steel in liquid sodium at 833 K for 3.6 x 10 3 ks were examined using a liquid sodium pot. Manganese was easily dissolved in sodium from the iron-manganese alloy specimen and deposited on the steel to form two kind of deposition particles, α-phase (body-centered cubic) composed of iron and γ-phase (face-centered cubic) composed of iron and manganese, respectively. Cobalt which was less easily dissolved than manganese also deposited on the Type 304 stainless steel, giving an iron-cobalt alloy. These three deposition particles corresponded to the precipitation lines of iron-manganese and iron-cobalt phase diagrams at 833 K, respectively. Therefore, the deposition process of manganese or cobalt in sodium was explained as a precipitation process of iron-manganese or iron-cobalt in the solid region of the binary phase diagram. A sodium chromite (NaCrO 2 ) layer was formed on the steel surface. (author)

  13. Removal of Iron and Manganese from Natural Groundwater by Continuous Reactor Using Activated and Natural Mordenite Mineral Adsorption

    Science.gov (United States)

    Zevi, Y.; Dewita, S.; Aghasa, A.; Dwinandha, D.

    2018-01-01

    Mordenite minerals derived from Sukabumi natural green stone founded in Indonesia was tested in order to remove iron and manganese from natural groundwater. This research used two types of adsorbents which were consisted of physically activated and natural mordenite. Physical activation of the mordenite was carried out by heating at 400-600°C for two hours. Batch system experiments was also conducted as a preliminary experiment. Batch system proved that both activated and natural mordenite minerals were capable of reducing iron and manganese concentration from natural groundwater. Then, continuous experiment was conducted using down-flow system with 45 ml/minute of constant flow rate. The iron & manganese removal efficiency using continuous reactor for physically activated and natural mordenite were 1.38-1.99%/minute & 0.8-1.49%/minute and 2.26%/minute & 1.37-2.26%/minute respectively. In addition, the regeneration treatment using NH4Cl solution managed to improve the removal efficiency of iron & manganese to 1.98%/minute & 1.77-1.90%/minute and 2.25%/minute & 2.02-2.21%/minute on physically activated mordenite and natural mordenite respectively. Subsequently, the activation of the new mordenite was carried out by immersing mordenite in NH4Cl solution. This chemical activation showed 2.42-2.75%/minute & 0.96 - 2.67 %/minute and 2.66 - 2.78 %/minute & 1.34 - 2.32 %/minute of iron & manganese removal efficiency per detention time for chemically activated and natural mordenite respectively.

  14. Combined Effects of Copper and Tin at Intermediate Level of Manganese on the Structure and Properties of As-Cast Nodular Graphite Cast Iron

    Directory of Open Access Journals (Sweden)

    Lacaze J.

    2017-06-01

    Full Text Available Copper, manganese and tin are commonly used as pearlite promoter elements in cast irons. A number of studies have been aimed at quantitatively evaluate the effect of each of these elements, individually or at given levels of the others. As a matter of fact, while tin may be necessary for achieving a fully pearlitic matrix, it is known that when in excess it is detrimental for mechanical properties. As the pearlite promoting effect of each of those elements is totally different, it is of real interest to know the optimum combination of them for a given cooling rate. The present report is a first part of a work dedicated at characterizing the best alloying levels in terms of room temperature mechanical properties of as-cast pearlitic materials.

  15. The quality of Metroxylon Sago sucker: morphology and uptake of manganese and iron

    International Nuclear Information System (INIS)

    Nashriyah Mat; Abdul Khalik Wood; Ramli Ishak

    2001-01-01

    Metroxylon sago or sagopalm is an important source of carbohydrate for the South East Asian countries, apart from rice. In Malaysia, wild sagopalm grows in Sarawak in its natural habitats, the coastal peat swamp. The quality of sucker growing vegetatively on sagopalm was studied at Sungai Talau experimental station, Dalat plantation and Oya/Mukah plantation in Sarawak. The coefficients of variability (C) and Index of similiarity (I) were calculated based on sucker morphology and uptake of manganese and iron, The matrix of hypothetical exact interpoint distances (Indices of Similarity and Dissimilarity) shows that sucker on matured sagopalm at Sungai Talam experimental station was a high quality, sucker on 5 years old sagopalm at Mukah sago plantation was approximately one-third as good, whereas sucker on 1.5 years old sagopalm at Oya/dalat sago plantation was of inferior quality. (Author)

  16. Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxides.

    Science.gov (United States)

    Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C

    2003-07-28

    A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate.

  17. Manganese and lead in dust fall accumulation in elementary schools near a ferromanganese alloy plant

    Energy Technology Data Exchange (ETDEWEB)

    Menezes-Filho, José Antonio, E-mail: antomen@ufba.br [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Souza, Karine O. Fraga de, E-mail: karinefraga11@hotmail.com [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Rodrigues, Juliana L. Gomes, E-mail: juuhrodrigues@icloud.com [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Santos, Nathália Ribeiro dos, E-mail: nathalia-rib@hotmail.com [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Bandeira, Matheus de Jesus, E-mail: matheusbandeira1@hotmail.com [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Koin, Ng Lai, E-mail: nglaikoin@hotmail.com [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Oliveira, Sérgio S. do Prado, E-mail: sergiosprado.33@gmail.com [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); Godoy, Ana Leonor P. Campos, E-mail: leonor.godoy@ufba.br [Federal University of Bahia, College of Pharmacy, Laboratory of Toxicology, Avenue Barão Jeremoabo, s/n, Ondina, 40170-115 Salvador, Bahia (Brazil); and others

    2016-07-15

    Previous studies have shown elevated airborne manganese (Mn) in villages adjacent to a Mn alloy production plant in Brazil and negative associations between biomarkers of Mn and children's cognition and behavior. Since small Mn particles may be carried for long distances, we measured manganese (Mn) and lead (Pb) dust fall accumulation in 15 elementary schools, located between 1.25 and 6.48 km from the plant in the municipality of Simões Filho, Bahia, Brazil. Passive samplers (polyethylene Petri dishes) were set in interior and exterior environments. After 30 days, the samplers’ content was solubilized with diluted nitric acid and Mn and Pb levels were analyzed by electrothermal absorption spectrometry. The overall geometric mean and range of Mn and Pb accumulation in dust fall (loading rates) were 1582 μg Mn/m{sup 2}/30 days (37–37,967) and 43.2 μg Pb/m{sup 2}/30 days (2.9–210.4). A logarithmic decrease in interior and exterior Mn loading rates was observed with distance from the ferro-manganese alloy plant. Multiple regression analyses of log-transformed Mn loading rate within the schools showed a positive association with Mn levels in outdoor dust, a negative association with distance from the plant; as well, wind direction (downwind>upwind) and school location (urban>rural) entered significantly into the model. For the interior school environments, located within a 2-km radius from the plant, loading rate was, on average, 190 times higher than the Mn levels reported by Gulson et al., (2014) in daycare centers in Sydney, Australia, using a similar method. Pb loading rates were not associated with distance from the plant and were lower than the rates observed in the same daycare centers in Sydney. Our findings suggest that a significant portion of the children in this town in Brazil may be exposed to airborne Mn at concentrations that may affect their neurodevelopment. - Highlights: • Manganese levels in settled dust in schools are inversely

  18. Manganese and lead in dust fall accumulation in elementary schools near a ferromanganese alloy plant

    International Nuclear Information System (INIS)

    Menezes-Filho, José Antonio; Souza, Karine O. Fraga de; Rodrigues, Juliana L. Gomes; Santos, Nathália Ribeiro dos; Bandeira, Matheus de Jesus; Koin, Ng Lai; Oliveira, Sérgio S. do Prado; Godoy, Ana Leonor P. Campos

    2016-01-01

    Previous studies have shown elevated airborne manganese (Mn) in villages adjacent to a Mn alloy production plant in Brazil and negative associations between biomarkers of Mn and children's cognition and behavior. Since small Mn particles may be carried for long distances, we measured manganese (Mn) and lead (Pb) dust fall accumulation in 15 elementary schools, located between 1.25 and 6.48 km from the plant in the municipality of Simões Filho, Bahia, Brazil. Passive samplers (polyethylene Petri dishes) were set in interior and exterior environments. After 30 days, the samplers’ content was solubilized with diluted nitric acid and Mn and Pb levels were analyzed by electrothermal absorption spectrometry. The overall geometric mean and range of Mn and Pb accumulation in dust fall (loading rates) were 1582 μg Mn/m 2 /30 days (37–37,967) and 43.2 μg Pb/m 2 /30 days (2.9–210.4). A logarithmic decrease in interior and exterior Mn loading rates was observed with distance from the ferro-manganese alloy plant. Multiple regression analyses of log-transformed Mn loading rate within the schools showed a positive association with Mn levels in outdoor dust, a negative association with distance from the plant; as well, wind direction (downwind>upwind) and school location (urban>rural) entered significantly into the model. For the interior school environments, located within a 2-km radius from the plant, loading rate was, on average, 190 times higher than the Mn levels reported by Gulson et al., (2014) in daycare centers in Sydney, Australia, using a similar method. Pb loading rates were not associated with distance from the plant and were lower than the rates observed in the same daycare centers in Sydney. Our findings suggest that a significant portion of the children in this town in Brazil may be exposed to airborne Mn at concentrations that may affect their neurodevelopment. - Highlights: • Manganese levels in settled dust in schools are inversely associated

  19. Acute Toxicity and Accumulation of Iron, Manganese and, Aluminum in Caspian Kutum Fish (Rutilus kutum

    Directory of Open Access Journals (Sweden)

    Saeed Zahedi

    2014-03-01

    Full Text Available Background: Iron, manganese, and aluminum are three abundant metals on earth and their concentrations have increased in aquatic environments as a result of natural and industrial activities. This study was undertaken to report the median acute toxicity (LC50 and accumulation of the sub-lethal concentration (10% 96-h LC50 of iron (Fe, manganese (Mn and aluminum (Al in kutum (Rutilus kutum fingerlings. Methods: For the 96-h LC50, the fish were exposed to concentrations of 105, 111, 117, 123, 129 and 135 mg/l of Fe and 40, 45, 50, 55, 60, and 65 mg/l of Mn and 18, 22, 26, 30, 34 and 38 mg/l of aluminum for 4 days. For sublethal exposure, they were exposed to mediums with concentrations of 12.3, 5.4 and 2.9 for Fe, Mn, and aluminum, respectively. Metal concentrations were determined by atomic absorption spectrophotometry in the gill tissues. Results: Probit analysis showed the 96-h LC50 values of 122.98, 54.39, and 28.89 mg/l for Fe, Mn, and aluminum, respectively. Sub-lethal tests were conducted with nominal concentrations of 12.3, 5.4, and 2.9 mg/l of Fe, Mn, and aluminum for four days, respectively. Significant accumulations were observed in gills for all tested metals as compared to the control groups in short-term exposure (P<0.05. Conclusion: Obtained results clearly show that aluminum is the most toxic metal among tested ones for kutum fingerlings and it has the highest branchial AF value during sub-lethal exposure.

  20. Moessbauer effect studies of magnetic interactions in iron and dilute iron alloys

    International Nuclear Information System (INIS)

    Woude, F. van der; Schurer, P.J.; Sawatzky, G.A.

    1975-01-01

    A temperature-dependent Moessbauer study was conducted in FeX alloys, where X = Al, Si, Ti, V, Cr, Mn, Co, and Ni, aimed at solving the problem of 'what is localized and what is itinerant in iron ferromagnetism'. The experimental results are interpreted using a phenomenological model based on a modified Zener-Vonsovskij theory. Absorption spectra of FeX alloys were measured as a function of temperature. It was found that the 3d magnetic moments in iron were mainly localized while exchange coupling was provided by partly itinerant 3d electrons. (L.D.)

  1. Salt Fog Testing Iron-Based Amorphous Alloys

    International Nuclear Information System (INIS)

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-01-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  2. Integrated pyrolucite fluidized bed-membrane hybrid process for improved iron and manganese control in drinking water.

    Science.gov (United States)

    Dashtban Kenari, Seyedeh Laleh; Barbeau, Benoit

    2017-04-15

    Newly developed ceramic membrane technologies offer numerous advantages over the conventional polymeric membranes. This work proposes a new configuration, an integrated pyrolucite fluidized bed (PFB)-ceramic MF/UF hybrid process, for improved iron and manganese control in drinking water. A pilot-scale study was undertaken to evaluate the performance of this process with respect to iron and manganese control as well as membrane fouling. In addition, the fouling of commercially available ceramic membranes in conventional preoxidation-MF/UF process was compared with the hybrid process configuration. In this regard, a series of experiments were conducted under different influent water quality and operating conditions. Fouling mechanisms and reversibility were analyzed using blocking law and resistance-in-series models. The results evidenced that the flux rate and the concentration of calcium and humic acids in the feed water have a substantial impact on the filtration behavior of both membranes. The model for constant flux compressible cake formation well described the rise in transmembrane pressure. The compressibility of the filter cake substantially increased in the presence of 2 mg/L humic acids. The presence of calcium ions caused significant aggregation of manganese dioxide and humic acid which severely impacted the extent of membrane fouling. The PFB pretreatment properly alleviated membrane fouling by removing more than 75% and 95% of iron and manganese, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evaluation of trends for iron and manganese concentrations in wells, reservoirs, and water distribution networks, Qom city, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Fahiminia

    2015-06-01

    Full Text Available Background: This study aimed to evaluated trends for iron and manganese concentrations in wells, reservoirs, and water distribution networks in Qom city during the summer of 2012. Methods: This was a cross-sectional study. The studied scopes consisted of groundwater (60 wells, reservoirs (10 tanks, and water distribution network (33 points. One sample was taken from each source monthly. Statistical tests used included post hoc tests (Tukey HSD. Finally, the results were compared with drinking water standards. Results: The average concentrations of iron in groundwater, reservoirs, and distribution networks were 0.09, 0.07, and 0.07 mg/l, respectively. The average concentrations of manganese in groundwater, reservoirs, and distribution networks were 0.15, 0.09, and 0.1 mg/l, respectively. The turbidity averages in groundwater, reservoirs, and distribution networks were 0.58, 0.6, and 0.52 NTU, respectively. The average concentrations of free chlorine residual in water reservoirs and distribution networks were 1.74 and 1.06 mg/l, respectively. The pH averages in groundwater, reservoirs, and distribution networks were 7.4, 7.7, and 7.5, respectively. The amounts of iron, manganese, turbidity, free chlorine residual, and pH in the investigated resources had no significant differences (P > 0.05. Conclusion: The amounts of iron, manganese, turbidity, free chlorine residual and pH in groundwater, reservoirs, and water distribution networks of Qom are within permissible limits of national standards and EPA guidelines. Only the amount of manganese was higher than the Environmental Protection Agency (EPA permissible limit.

  4. Method for producing dysprosium-iron-boron alloy powder

    International Nuclear Information System (INIS)

    Camp, F.E.; Wooden, S.A.

    1989-01-01

    A method for producing a dysprosium-iron alloy adapted for use in the manufacture of rare-earth element containing, iron-boron permanent magnets, the method including providing a particle mixture comprising dysprosium oxide, iron and calcium, compacting the particle mixture to produce a consolidated article, heating the article for a time at temperature to form a metallic compound comprising dysprosium and iron and to form calcium oxide, producing a particle mass of -35 mesh from the compact, washing the particle mass with water at a temperature no greater than 10 0 C to react to the calcium and to the calcium oxide therewith to form a calcium hydroxide, while preventing oxidation of the particle mass, and removing the calcium hydroxide from the particle mass

  5. Preparing rare earth-silicon-iron-aluminum alloys

    International Nuclear Information System (INIS)

    Marchant, J.D.; Morrice, E.; Herve, B.P.; Wong, M.M.

    1980-01-01

    As part of its mission to assure the maximum recovery and use of the Nation's mineral resources, the Bureau of Mines, investigated an improved procedure for producing rare earth-silicon alloys. For example, a charge consisting of 681 grams of mixed rare-earth oxides, 309 grams of ferrosilicon (75 wt-pct Si), and 182 grams of aluminum metal along with a flux consisting of 681 grams of CaO and 45 grams of MgO was reacted at 1500 0 C in an induction furnace. Good slag-metal separation was achieved. The alloy product contained, in weight-percent, 53 RE, 28 Si, 11 Fe, and 4 Al with a rare earth recovery of 80 pct. In current industrial practice rare earth recoveries are usually about 60 pct in alloy products that contain approximately 30 wt-pct each of rare earths and silicon. Metallurgical evaluations showed the alloys prepared in this investigation to be as effective in controlling the detrimental effect of sulfur in steel and cast iron as the commercial rare earth-silicon-iron alloys presently used in the steel industry

  6. Fractography of hydrogen-embrittled iron-chromium-nickel alloys

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1980-01-01

    Tensile specimens of iron-chromium-nickel base alloys were broken in either a hydrogen environment or in air following thermal charging with hydrogen. Fracture surfaces were examined by scanning electron microscopy. Fracture morphology of hydrogen-embrittled specimens was characterized by: changed dimple size, twin-boundary parting, transgranular cleavage, and intergranular separation. The nature and extent of the fracture mode changes induced by hydrogen varied systematically with alloy composition and test temperature. Initial microstructure developed during deformation processing and heat treating had a secondary influence on fracture mode

  7. Alkaline stress corrosion of iron-nickel-chromium austenitic alloys

    International Nuclear Information System (INIS)

    Hocquellet, Dominique

    1984-01-01

    This research thesis reports the study of the behaviour in stress corrosion of austenitic iron-nickel-chromium alloys by means of tensile tests at imposed strain rate, in a soda solution at 50 pc in water and 350 degrees C. The author shows that the mechanical-chemical model allows the experimental curves to be found again, provided the adjustment of characteristic parameters, on the one hand, of corrosion kinetics, and on the other hand, of deformation kinetics. A classification of the studied alloys is proposed [fr

  8. Chemical and mineralogical characterization of silicon manganese iron slag as railway ballast

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ralph Werner Heringer; Barreto, Rairane Aparecida, E-mail: ralph@em.ufop.br, E-mail: rairanebarreto@hotmail.com [Universidade Federal de Ouro Preto (UFOP), MG (Brazil); Fernandes, Gilberto, E-mail: gilberto@unicerp.edu.br [Centro Universitário do Cerrado Patrocínio (UNICERP), Patrocínio, MG (Brazil); Sousa, Fabiano Carvalho, E-mail: fabiano.carvalho.sousa@vale.com [Vale, Belo Horizonte, MG (Brazil)

    2017-10-15

    In nature, metal ores such as iron, lead, aluminum and others are found in an impure state, sometimes oxidized and mixed with silicates of other metals. During casting, when the ore is exposed to high temperatures, these impurities are separated from the molten metal and can be removed. The mass formed by these compounds is slag. Slag is the co-product of the smelting of ore to purify metals. It may be considered a mixture of metal oxides, but may also contain metal sulphites and metal atoms in their elemental form. After it is reprocessed to separate the metals contained, the co-products of this process can be used in cement, rail ballast, road paving and various other purposes. The objective of this research work is the presentation of the chemical and mineralogical characterization tests of the silicon-manganese iron slag with the purpose of reusing the coproduct as rail ballast. X-ray diffraction tests, quantitative chemical analyzes, scanning electron microscopy and free lime content were prepared for these characterizations. The results of these tests showed the technical feasibility of using slag as rail ballast. (author)

  9. Chemical and mineralogical characterization of silicon manganese iron slag as railway ballast

    International Nuclear Information System (INIS)

    Oliveira, Ralph Werner Heringer; Barreto, Rairane Aparecida; Fernandes, Gilberto; Sousa, Fabiano Carvalho

    2017-01-01

    In nature, metal ores such as iron, lead, aluminum and others are found in an impure state, sometimes oxidized and mixed with silicates of other metals. During casting, when the ore is exposed to high temperatures, these impurities are separated from the molten metal and can be removed. The mass formed by these compounds is slag. Slag is the co-product of the smelting of ore to purify metals. It may be considered a mixture of metal oxides, but may also contain metal sulphites and metal atoms in their elemental form. After it is reprocessed to separate the metals contained, the co-products of this process can be used in cement, rail ballast, road paving and various other purposes. The objective of this research work is the presentation of the chemical and mineralogical characterization tests of the silicon-manganese iron slag with the purpose of reusing the coproduct as rail ballast. X-ray diffraction tests, quantitative chemical analyzes, scanning electron microscopy and free lime content were prepared for these characterizations. The results of these tests showed the technical feasibility of using slag as rail ballast. (author)

  10. Spectroscopic studies of the iron and manganese reconstituted tyrosyl radical in Bacillus cereus ribonucleotide reductase R2 protein.

    Directory of Open Access Journals (Sweden)

    Ane B Tomter

    Full Text Available Ribonucleotide reductase (RNR catalyzes the rate limiting step in DNA synthesis where ribonucleotides are reduced to the corresponding deoxyribonucleotides. Class Ib RNRs consist of two homodimeric subunits: R1E, which houses the active site; and R2F, which contains a metallo cofactor and a tyrosyl radical that initiates the ribonucleotide reduction reaction. We studied the R2F subunit of B. cereus reconstituted with iron or alternatively with manganese ions, then subsequently reacted with molecular oxygen to generate two tyrosyl-radicals. The two similar X-band EPR spectra did not change significantly over 4 to 50 K. From the 285 GHz EPR spectrum of the iron form, a g(1-value of 2.0090 for the tyrosyl radical was extracted. This g(1-value is similar to that observed in class Ia E. coli R2 and class Ib R2Fs with iron-oxygen cluster, suggesting the absence of hydrogen bond to the phenoxyl group. This was confirmed by resonance Raman spectroscopy, where the stretching vibration associated to the radical (C-O, ν(7a = 1500 cm(-1 was found to be insensitive to deuterium-oxide exchange. Additionally, the (18O-sensitive Fe-O-Fe symmetric stretching (483 cm(-1 of the metallo-cofactor was also insensitive to deuterium-oxide exchange indicating no hydrogen bonding to the di-iron-oxygen cluster, and thus, different from mouse R2 with a hydrogen bonded cluster. The HF-EPR spectrum of the manganese reconstituted RNR R2F gave a g(1-value of ∼2.0094. The tyrosyl radical microwave power saturation behavior of the iron-oxygen cluster form was as observed in class Ia R2, with diamagnetic di-ferric cluster ground state, while the properties of the manganese reconstituted form indicated a magnetic ground state of the manganese-cluster. The recent activity measurements (Crona et al., (2011 J Biol Chem 286: 33053-33060 indicates that both the manganese and iron reconstituted RNR R2F could be functional. The manganese form might be very important, as it has 8

  11. Cobalt-Iron-Manganese Catalysts for the Conversion of End-of-Life-Tire-Derived Syngas into Light Terminal Olefins.

    Science.gov (United States)

    Falkenhagen, Jan P; Maisonneuve, Lise; Paalanen, Pasi P; Coste, Nathalie; Malicki, Nicolas; Weckhuysen, Bert M

    2018-03-26

    Co-Fe-Mn/γ-Al 2 O 3 Fischer-Tropsch synthesis (FTS) catalysts were synthesized, characterized and tested for CO hydrogenation, mimicking end-of-life-tire (ELT)-derived syngas. It was found that an increase of C 2 -C 4 olefin selectivities to 49 % could be reached for 5 wt % Co, 5 wt % Fe, 2.5 wt % Mn/γ-Al 2 O 3 with Na at ambient pressure. Furthermore, by using a 5 wt % Co, 5 wt % Fe, 2.5 wt % Mn, 1.2 wt % Na, 0.03 wt % S/γ-Al 2 O 3 catalyst the selectivity towards the fractions of C 5+ and CH 4 could be reduced, whereas the selectivity towards the fraction of C 4 olefins could be improved to 12.6 % at 10 bar. Moreover, the Na/S ratio influences the ratio of terminal to internal olefins observed as products, that is, a high Na loading prevents the isomerization of primary olefins, which is unwanted if 1,3-butadiene is the target product. Thus, by fine-tuning the addition of promoter elements the volume of waste streams that need to be recycled, treated or upgraded during ELT syngas processing could be reduced. The most promising catalyst (5 wt % Co, 5 wt % Fe, 2.5 wt % Mn, 1.2 wt % Na, 0.03 wt % S/γ-Al 2 O 3 ) has been investigated using operando transmission X-ray microscopy (TXM) and X-ray diffraction (XRD). It was found that a cobalt-iron alloy was formed, whereas manganese remained in its oxidic phase. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A TEM Study on the Ti-Alloyed Grey Iron

    DEFF Research Database (Denmark)

    Moumeni, Elham; Tiedje, Niels Skat; Grumsen, Flemming Bjerg

    2014-01-01

    The microstructure of graphite flakes in titanium alloyed cast iron is studied using electron microscopy techniques. Dual beam SEM/FIB has been used for TEM sample preparation. A TEM study has been carried out on graphite flakes in grey cast iron using selected area electron diffraction. Based...... and that there is a high proportion of twins in the fine grained graphite. It appears that twinning and stacking faults are involved in the fine grained structure of the graphite. It is discussed how Ti addition affect crystal growth and may lead to formation of superfine graphite....

  13. Development of low-cost technology for the removal of iron and manganese from ground water in siwa oasis.

    Science.gov (United States)

    El-Naggar, Hesham M

    2010-01-01

    Ground water is the only water resource for Siwa Oasis. It is obtained from natural freshwater wells and springs fed by the Nubian aquifer. Water samples collected from Siwa Oasis had relatively higher iron (Fe) and manganese (Mn) than the permissible limits specified in WHO Guidelines and Egyptian Standards for drinking water quality. Aeration followed by sand filtration is the most commonly used method for the removal of iron from ground water. The study aimed at development of low-cost technology for the removal of iron and manganese from ground water in Siwa Oasis. The study was carried out on Laboratory-scale columns experiments sand filters with variable depths of 15, 30, 45, 60, 75, 90 cm and three graded types of sand were studied. The graded sand (E.S. =0.205 mm, U.C. =3.366, depth of sand = 60 cm and filtration rate = 1.44 m3/m2/hr) was the best type of filter media. Iron and manganese concentrations measured in ground water with aeration only, decreased with an average removal percentage of 16%, 13% respectively. Iron and manganese concentrations after filtration with aeration came down to 0.1123, 0.05 mg/L respectively in all cases from an initial concentration of 1.14, 0.34 mg/L respectively. Advantages of such treatment unit included simplicity, low cost design, and no need for chemical addition. In addition, the only maintenance required was periodic washing of the sand filter or replacement of the sand in order to maintain reasonable flow rate through the system.

  14. Bio-accumulation of copper, zinc, iron and manganese in oyster Saccostrea cucullata, Snail Cerithium rubus and Clam Tellina angulata from the Bombay coast

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Nair, V.R; Moraes, C.

    accumulation was high in S. cucullata, manganese in C. rubus and iron in T. angulata. Similarly, copper and zinc in S. cucullata and copper in C. rubus were found occasionally higher than accepted health standards...

  15. Acceptability and use of iron and iron-alloy cooking pots: implications for anaemia control programmes.

    Science.gov (United States)

    Tripp, Katherine; Mackeith, Nancy; Woodruff, Bradley A; Talley, Leisel; Mselle, Laurent; Mirghani, Zahra; Abdalla, Fathia; Bhatia, Rita; Seal, Andrew J

    2010-01-01

    To evaluate the acceptability of iron and iron-alloy cooking pots prior to an intervention trial and to investigate factors affecting retention and use. Pre-trial research was conducted on five types of iron and iron-alloy pots using focus group discussions and a laboratory evaluation of Fe transfer during cooking was undertaken. Usage and retention during the subsequent intervention trial were investigated using focus group discussions and market monitoring. Three refugee camps in western Tanzania. Refugee health workers were selected for pre-trial research. Mothers of children aged 6-59 months participated in the investigation of retention and use. Pre-trial research indicated that the stainless steel pot would be the only acceptable type for use in this population due to excessive rusting and/or the high weight of other types. Cooking three typical refugee dishes in stainless steel pots led to an increase in Fe content of 3.2 to 17.1 mg/100 g food (P basic acceptability criteria. The relatively low usage reported during the trial highlights the limitations of using high-value iron-alloy cooking pots as an intervention in populations where poverty and the availability of other pots may lead to selling.

  16. Thermomagnetic identification of manganese and iron minerals present in soils and industrial dusts

    Science.gov (United States)

    Wawer, Małgorzata; Rachwał, Marzena; Jabłońska, Mariola; Krzykawski, Tomasz; Magiera, Tadeusz

    2017-04-01

    Many industries (e.g. metallurgy, power, cement, and coking plants) constitute a sources of industrial dusts containing technogenic magnetic particles (TMP). TMP are mostly iron oxides with ferrimagnetic or antiferromagnetic properties, therefore their presence in dusts, soils and sediments can be easily detected by magnetic susceptibility measurements. TMP, thanks their specific mineral and magnetic properties, and well developed specific surface area, are characterized by a chemical affinity for some elements like heavy metals. The main objective of this study was identification of manganese and iron (hydro)oxides occurring in industrial dusts and soils being under their deposition for long time period. In principle, Mn and Fe (hydro)oxides present in these samples originate from high-temperature technological processes. Soils samples (collected from different soil horizons) taken from surroundings of power station, iron/steel and non-ferrous plants as well as metallurgical dusts and fly ashes from power stations were subjected to investigation. During the studies temperature dependent magnetic susceptibility measurements and X-ray powder diffraction analyses were applied. Thermomagnetic analyses (K-T) revealed differences between samples from particular industries, however an inflexion at 450-500°C of all curves was observed indicating a probable occurrence of maghemite- or titanomagnetite-like phases. The curves of TMP emitted by power plants have inflection at 580 °C indicating that magnetite was the main magnetic phase. In case of TMP originated from non-ferrous metal smelting additional curve deflection at 130 and 210 °C occurred relating to intermediate titanomagnetite or iron sulfides. X-ray diffraction proved the occurrence of magnetite and maghemite in almost all samples, especially connected with power industry and iron/steel metallurgy. Mineral analysis revealed that kind of industrial process influenced on the dominating mineral forms found in

  17. Evaluation of Iron and Manganese-Coated Pumice Application for the Removal of as(v from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Leila Babaie Far

    2012-12-01

    Full Text Available Arsenic contamination of water has been recognized as a serious environmental issue and there are reports on its epidemiological problems to human health. The objective of this study was to evaluate the performances of iron-coated pumice and manganese-coated pumice as the adsorbents for removing arsenate from aqueous solutions. The effect of various parameters such as adsorbent dose, contact time, pH and initial concentration on removal efficiency of arsenate were evaluated in batch mode. The data obtained from the kinetic studies were analyzed using kinetic models of pseudo-first-order and pseudo-second-order. In addition, two isotherm models of Freundlich and Langmuir were used to fit the experimental data. The results showed that the optimum dosage of iron-coated pumice and manganese-coated pumice for arsenate removal were 40 and 80 g/L whereas the adsorption process reached equilibrium after 80 and 100 min, respectively. The maximum removal efficiency of arsenate using the two adsorbents were both recorded in pH=3 as the removal efficiency gradually declinedfollowing every increase in pH values of the solution. Iron-coated pumice also showed to have high removal efficiency when the initial concentration of arsenate was high while the low concentration of arsenate was efficiently removed by manganese-coated pumice. Moreover, it was depicted that the adsorption kinetics by bothadsorbents followed pseudo-second order equation and the uptake data of arsenate were well fitted with Langmuir isotherm model. Therefore, it could be concluded that iron and manganese-coated pumice could beconsidered as suitable adsorbents for arsenate removal from aqueous solutions.

  18. Determination of calcium, copper, chromium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Fernandes, E.A.N.

    1981-01-01

    The direct determinacao of calcium, copper, chomium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry with, air-acetylene flame is proposed. Effects of fuel/oxidant ratio, burner height and water content in the samples were investigated in detail. The method allows the determition of the elements with good precision (r.s.d. -1 for the elements tested. (author) [pt

  19. TEM investigation of ductile iron alloyed with vanadium.

    Science.gov (United States)

    Dymek, S; Blicharski, M; Morgiel, J; Fraś, E

    2010-03-01

    This article presents results of the processing and microstructure evolution of ductile cast iron, modified by an addition of vanadium. The ductile iron was austenitized closed to the solidus (1095 degrees C) for 100 h, cooled down to 640 degrees C and held on at this temperature for 16 h. The heat treatment led to the dissolution of primary vanadium-rich carbides and their subsequent re-precipitation in a more dispersed form. The result of mechanical tests indicated that addition of vanadium and an appropriate heat treatment makes age hardening of ductile iron feasible. The precipitation processes as well as the effect of Si content on the alloy microstructure were examined by scanning and transmission electron microscopy. It was shown that adjacent to uniformly spread out vanadium-rich carbides with an average size of 50 nm, a dispersoid composed of extremely small approximately 1 nm precipitates was also revealed.

  20. Charge state mapping of mixed valent iron and manganese mineral particles using Scanning Transmission X-ray Microscopy (STXM)

    International Nuclear Information System (INIS)

    Pecher, K.; Nealson, K.; Kneedler, E.; Rothe, J.; Meigs, G.; Warwick, T.; Tonner, B.

    2000-01-01

    The interfaces between solid mineral particles and water play a crucial role in partitioning and chemical transformation of many inorganic as well as organic pollutants in environmental systems. Among environmentally significant minerals, mixed-valent oxides and hydroxides of iron (e.g. magnetite, green rusts) and manganese (hausmanite, birnessite) have been recognized as particularly strong sorbents for metal ions. In addition, minerals containing Fe(II) have recently been proven to be powerful reductants for a wide range of pollutants. Chemical properties of these minerals strongly depend on the distribution and availability of reactive sites and little is known quantitatively about the nature of these sites. We have investigated the bulk distribution of charge states of manganese (Mn (II, III, IV)) and iron (Fe(II, III)) in single particles of natural manganese nodules and synthetic green rusts using Scanning Transmission X-ray SpectroMicroscopy (STXM). Pixel resolved spectra (XANES) extracted from stacks of images taken at different wave lengths across the metal absorption edge were fitted to total electron yield (TEY) spectra of single valent reference compounds. Two dimensional maps of bulk charge state distributions clearly reveal domains of different oxidation states within single particles of Mn-nodules and green rust precipitates. Changes of oxidation states of iron were followed as a result of reductive transformation of an environmental contaminant (CCl 4 ) using green rust as the only reductant

  1. Effect of Microstructures on Working Properties of Nickel-Manganese-Copper Cast Iron

    Directory of Open Access Journals (Sweden)

    Daniel Medyński

    2018-05-01

    Full Text Available In the paper, the effects, on basic usable properties (abrasive wear and corrosion resistance, of solidification (acc. to the stable and non-stable equilibrium system and transformations occurring in the matrix during the cooling of castings of Ni-Mn-Cu cast iron were determined. Abrasive wear resistance was mainly determined by the types and arrangements of high-carbon phases (indicated by eutectic saturation degree, and the kinds of matrices (indicated by the nickel equivalent value, calculated from chemical composition. The highest abrasive wear resistance was found for white cast iron, with the highest degree of austenite to martensite transformation occurring in its matrix. Irrespective of solidification, a decrease of the equivalent value below a limit value resulted in increased austenite transformation, and thus, to a significant rise in hardness and abrasive wear resistance for the castings. At the same time, corrosion resistance of the alloy was slightly reduced. The examinations showed that corrosion resistance of Ni-Mn-Cu cast iron is, too a much lesser degree, decided by the means of solidification of the castings, rather than transformations occurring in the matrix, as controlled by nickel equivalent value (especially elements with high electrochemical potential.

  2. Mineralogical issues in long-term corrosion of iron and iron-nickel alloys

    International Nuclear Information System (INIS)

    VanOrden, A.C.; McNeil, M.B.

    1988-01-01

    Prediction of very long term corrosion behavior of buried objects in general requires taking into account that the corrosion processes themselves after the local conditions. Recent work has analyzed corrosion processes in terms of trajectories on Pourbaix diagrams and appears to offer the prospect for using short-term corrosion tests to project corrosion behavior over very long periods. Two different classes of materials are considered here: essentially pure iron, which is an analogue to the carbon steel design overpacks for the salt and basalt sites (on which work has been suspended at present, and iron-nickel alloys, which are the best analogues available for some of the alloys being considered on the tuff site. There are a number of sources of data on corrosion of iron over archaeological times; the data used in this paper are from the recent National Bureau of Standards work on Roman iron nails for Inchtuthill in Scotland, which can be dated fairly precisely to about 70 A.D. and whose method of production is understood. The only available source of natural-analogue data on Fe-Ni alloys is the corrosion of meteorites

  3. Growth rates of iron-manganese concretions in the Pacific and Indian oceans

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.V.; Pospelov, Yu.N.

    1978-01-01

    Radiochemical analysis has been used for studying the distribution of 231 Pa, 230 Th, 232 Th, 226 Ra, 234 U, and 238 U isotopes in nineteen iron-manganese concretions. The study has shown a considerable violation of the equilibrium between uranium and daughter isotopes, viz, protactinium-231 and thorium-230. A sharp decrease of the ratios between the 231 Pain concretions made it possible to find the growth rates of 10 concretions from pelagic regions of the Pacific and Indian oceans. The obtained data deviate in narrow limits and amount to (3-6)mm/10 6 years when evaluation is made according to 230 Th decay and (4-7)mm/10 6 years when 231 Pa is used. The presence of Ra excess (as compared with mother isotopes 230 Th) in inner layers of the concretions points to the fact that the growth rates determined by the radium method are raised too high due to radium migration from the surface layers into the depth of the concretion. It is shown that accumulation of 231 Pa and 230 Th in concretions accounts for a small part (less than 25%) of their production from uranium dissolved in the sea water

  4. Substitution of manganese and iron into hydroxyapatite: Core/shell nanoparticles

    International Nuclear Information System (INIS)

    Pon-On, Weeraphat; Meejoo, Siwaporn; Tang, I.-Ming

    2008-01-01

    The bioceramics, hydroxyapatite (HAP), is a material which is biocompatible to the human body and is well suited to be used in hyperthermia applications for the treatment of bone cancer. We investigate the substitution of iron and manganese into the hydroxyapatite to yield ceramics having the empirical formula Ca 9.4 Fe 0.4 Mn 0.2 (PO 4 ) 6 (OH) 2 . The samples were prepared by the co-precipitation method. The formation of the nanocrystallites in the HAP structure as the heating temperatures were raised to obtain a glass-ceramic system are confirmed by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and electron spin resonance (ESR). TEM images show the core/shell structure of the nanoparticles, with the core being formed by the ferrites and the shell by the hydroxyapatite. The ED patterns indicate the nanoparticles formed at 500 deg. C have an amorphous structure while the nanoparticles formed at 1000 deg. C are crystalline. ESR spectroscopy indicated that the Fe 3+ ions have a g-factor of 4.23 and the Mn 2+ ions have a g-factor of 2.01. The values of the parameters in the spin Hamiltonian which describes the interaction between the transition metal ions and the Ca 2+ ions, indicate that the Mn 2+ ion substitute into the Ca 2+ sites which are ninefold coordinated, i.e., the Ca(1) sites

  5. Development and Evaluation of a Manganese and Iron Food Frequency Questionnaire for Pediatrics.

    Science.gov (United States)

    Zipkin, Frida B; Falciglia, Grace A; Kuhnell, Pierce; Haynes, Erin N

    2017-09-14

    Manganese (Mn) is an essential nutrient, but overexposure can lead to neurotoxicity. Given the essentiality of Mn in the diet, particularly during children's growth and development, it is imperative to quantify dietary Mn intake in populations that may be exposed to industrial sources of Mn. Dietary absorption of Mn is inversely associated with iron (Fe) stores, yet there is currently no food frequency questionnaire (FFQ) to assess dietary Mn and Fe intake. The study objective was to develop and evaluate the validity of a FFQ to measure dietary Mn and Fe intake in pediatrics by comparing the estimated intakes of Mn and Fe with biomarkers: Mn in blood and hair and Fe in serum. This study utilized a subset of the Communities Actively Researching Exposure Study (CARES) population residing in Guernsey County, Ohio. Dietary Mn was not correlated with either blood or hair Mn; however, dietary Mn and serum ferritin were significantly correlated, with a correlation coefficient of 0.51, p < 0.01. Moreover, dietary Fe and serum ferritin were also significantly correlated, with a correlation coefficient of 0.51, p < 0.01. This FFQ is a valid measurement tool for Fe intake as measured by serum ferritin; however, Mn intake did not correlate with either blood or hair Mn.

  6. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese

    DEFF Research Database (Denmark)

    Thamdrup, Bo; Finster, Kai; Hansen, Jens Würgler

    1993-01-01

    and pyrite was observed. The transformations were accompanied by growth of slightly curved, rod-shaped bacteria. The quantification of the products revealed that S was microbially disproportionated to sulfate and sulfide, as follows: 4S + 4H(2)O --> SO(4) + 3H(2)S + 2H. Subsequent chemical reactions between...... reduction of MnO(2) to Mn. Growth of small rod-shaped bacteria was observed. When incubated without MnO(2), the culture did not grow but produced small amounts of SO(4) and H(2)S at a ratio of 1:3, indicating again a disproportionation of S. The observed microbial disproportionation of S only proceeds...... significantly in the presence of sulfide-scavenging agents such as iron and manganese compounds. The population density of bacteria capable of S disproportionation in the presence of FeOOH or MnO(2) was high, > 10 cm in coastal sediments. The metabolism offers an explanation for recent observations of anaerobic...

  7. Concentrations of manganese and iron in some woody and herbs plants

    Directory of Open Access Journals (Sweden)

    Stanković Dragica M.

    2011-01-01

    Full Text Available Heavy metals are the substances that indicate environmental pollution. The plants polluted with heavy metals may endanger natural environment and cause health problems in humans. In our multidisciplinary research of the concentrations of pollutants in forest ecosystems and natural environment in Belgrade, we examined the contents of heavy metals essential for plants but harmful in greater concentrations on a long-term basis. The fact that heavy metals manganese and iron are accumulated in plants to the greatest extent focused our work on determination of the level of concentrations of Mn and Fe in the vegetative parts of 8 plant types on three locations on the Avala Mountain and one location in the centre of the city of Belgrade. The analyses of heavy metals contents in plants were performed by the method of flame atomic absorption spectrophotometry. The examination of the existence of important differences between the average values was performed by implementation of Duncan’s test for the level of significance of 95%. The current contents of heavy metals in plants in the area of the protected natural resource Avala do not represent danger that would presently cause notable damage to forests but show the tendency of the increase of concentrations. Therefore, this issue should be constantly monitored.

  8. Thiosulfate and sulfite distributions in porewater of marine sediments related to manganese, iron, and sulfur geochemistry

    Science.gov (United States)

    Thamdrup, Bo; Finster, Kai; Fossing, Henrik; Hansen, Jens Würgler; Jørgensen, Bo Barker

    1994-01-01

    Depth distributions of thiosulfate (S 2O 32-) and sulfite (SO 32-) were measured in the porewaters of a Danish salt marsh and subtidal marine sediments by HPLC analysis after derivatization with DTNP [2,2'-dithiobis(5-nitropyridine)]. The distributions were compared to the redox zonation as indicated by Eh and Mn 2+, Fe 2+ and H 2S distributions. Concentrations of S 2O 32- varied from below detection (<50 nM) to 600 nM while SO 32- concentrations generally were 2-3 times higher, 100-1500 nM. Depth distributions of the two species were roughly similar. Lowest concentrations were found in the oxidized zone, including both the oxic surface layer and the suboxic zone of intense manganese and iron reduction, and concentrations tended to increase through the suboxic and into the reduced, sulfidic zone. The similarity of SO 32- and S 2O 32- profiles suggested a close coupling of the cycling of the two species. Rates of consumption were suggested as the main factor governing their distribution. Rapid turnover times for S 2O 32- and H 2S of 4 and 1.1 h, respectively, were estimated for the upper 0-1 cm of a subtidal sediment.

  9. Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water.

    Science.gov (United States)

    Zhang, Ruifeng; Huang, Tinglin; Wen, Gang; Chen, Yongpan; Cao, Xin; Zhang, Beibei

    2017-07-19

    An iron-manganese co-oxide filter film (MeO x ) has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeO x was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeO x was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6-8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeO x included both biological (accounted for about 41.05%) and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%). The investigation of the characterizations suggested that MeO x was formed by abiotic ways and the main elements on the surface of MeO x were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeO x as both ammonia molecules and ammonium ions and the active species of O₂ were possibly • O and O₂ - .

  10. Evaluation of iron, zinc, copper, manganese and selenium in oral hospital diets.

    Science.gov (United States)

    Moreira, Daniele C F; de Sá, Júlia S M; Cerqueira, Isabela B; Oliveira, Ana P F; Morgano, Marcelo A; Quintaes, Késia D

    2014-10-01

    Many trace elements are nutrients essential to humans, acting in the metabolism as constituents or as enzymatic co-factors. The iron, zinc, copper, manganese and selenium contents of hospital diets (regular, blend and soft) and of oral food complement (OFC) were determined, evaluating the adequacy of each element in relation to the nutritional recommendations (DRIs) and the percent contribution alone and with OFC. Duplicate samples were taken of six daily meals and of the OFC on two non-consecutive days from a hospital in Belo Horizonte (MG, Brazil) in May and September of 2010 and January of 2011. The elements were determined by ICP OES. Of the diets, the soft diet showed the highest elements content. Offering the OFC was insufficient to provide adequate levels of the trace elements. The oral hospital diets were inadequate in relation to the RDAs for the trace elements studied and the use of the OFCs was insufficient to compensate the values. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  11. Thermodynamic Properties of Alloys of Iron and Silicon

    International Nuclear Information System (INIS)

    Vecher, R.A.; Gejderih, V.A.; Gerasimov, Ja.I.

    1966-01-01

    The Fe-Si phase diagram is complex. At 1000°K there are FeSi 2 (β) and FeSi phases and solid solutions of silicon in α and α' iron. EMF measurements were made on the electrochemical cells: Fe|Fe 2+ , KI + Nal|Fe-Si at 600-800°C molten The alloys were prepared from particularly pure components by powder metallurgy and protracted annealing. Studies were made of ten alloys with silicon content between 85 and 4% in all the phase fields in the diagram section at 1000°K. We calculated the integral thermodynamic quantities ΔG, ΔH and ΔS for the formation of the silicides FeSi 2 (β), FeSi and Fe 3 Si at the mean temperature for the experimental range (1000°K), and also (using the thermal capacity of the silicides, the iron and the silicon) at 298, 1188 and 1798°K. The heats of formation of the silicides mentioned at 298°K (kcal/mole) are -19.4, -17.6 and -22.4 respectively. The data existing in the literature enable us to calculate the heat of formation of FeSi 2.33 (α-leboite) at 298°K and this is found to be -14.4 kcal/mole. The heats calculated by us are 1.5-3 kcal higher than the experimental values of Corber and Olsen. The heats of mixing calculated by us for liquid alloys agree well with data in the literature. The data obtained can be regarded as due to the change in the character of the bond in silicides from metallic to covalent when the silicon content is increased. From the data for alloy solutions of silicon in a-iron, the iron activities were calculated. It was found that the α ⇌ α' transformation observed is a real phase transformation. The two-phase range is wider than shown in the phase diagram (from data in the literature). Conversion of the iron activities in solid solution to liquid solution gives good agreement with the data of Chipman. (author) [fr

  12. Model of the Alphinising Coating Crystallisation on Iron Alloys

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available The study presents a hypothetical model of crystallisation of the alphinising coating produced on iron alloys by immersion in the bath of silumin. Basing on a wide-range of experiments and investigations, the effect of the type of inserted material (“armco” iron, C45 steel, grey cast iron and nodular graphite cast iron and of the technological regime of the alphinising process (chemical composition of silumin bath, its temperature, the time of holding an insert in the bath, and the insert surface roughness height “Rz” on the coating structure was determined. The type of the coating structure was established by metallographic examinations carried out by optical microscopy, electron transmission microsopy and scanning electron microscopy, using additionally an X-ray microanalyser and X-ray diffraction patterns. The results of these investigations were described in [1÷7]. Basing on the obtained results, a probable model of the crystallisation of an alphi-nising coating on iron alloys, produced by immersion in the alphinising bath, was developed. It has been stated that, most probably, the alphinising process begins when the insert reaches its contact temperature “ts”.. Since that moment, due to the wetting process and convec-tion movement of bath around the insert surface, an intense process of the dissolution starts. A reactive diffusion of the atoms of Fe and Si from the insert to the bath and of the atoms of Al and Si from the bath to the insert takes place. An intermetallic Al3Fe phase is crystallis-ing on the steel, while on the cast iron, a silicon carbide Fe4CSi is growing, probably due to carbon diffusion from graphite. Then, on the steel, as an effect of the peritectic reaction, are successively crystallising the phases of Al12Fe3Si2 and Al9Fe3Si2. The Al3Fe phase probably crystallises on the cast iron to be transformed later, due to peritectic reaction, into an Al12Fe3Si2 phase on which the Al9Fe3Si2 phase will be growing

  13. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: Arsenic, manganese, fluoride, iron, and uranium

    Energy Technology Data Exchange (ETDEWEB)

    Bacquart, Thomas [Better Life Laboratories, Calais, VT (United States); Frisbie, Seth [Better Life Laboratories, Calais, VT (United States); Department of Chemistry and Biochemistry, Norwich University, Northfield, VT (United States); Mitchell, Erika [Better Life Laboratories, Calais, VT (United States); Grigg, Laurie [Department of Earth and Environmental Science, Norwich University, Northfield, VT (United States); Cole, Christopher [Department of Chemistry and Biochemistry, Norwich University, Northfield, VT (United States); Small, Colleen [Vermont Department of Health Laboratory, Burlington, VT (United States); Sarkar, Bibudhendra, E-mail: bsarkar@sickkids.ca [Department of Molecular Structure and Function, The Research Institute of The Hospital for Sick Children, University of Toronto, Toronto, Ontario (Canada); Department of Biochemistry, University of Toronto, Toronto, Ontario (Canada)

    2015-06-01

    In South Asia, the technological and societal shift from drinking surface water to groundwater has resulted in a great reduction of acute diseases due to water borne pathogens. However, arsenic and other naturally occurring inorganic toxic substances present in groundwater in the region have been linked to a variety of chronic diseases, including cancers, heart disease, and neurological problems. Due to the highly specific symptoms of chronic arsenic poisoning, arsenic was the first inorganic toxic substance to be noticed at unsafe levels in the groundwater of West Bengal, India and Bangladesh. Subsequently, other inorganic toxic substances, including manganese, uranium, and fluoride have been found at unsafe levels in groundwater in South Asia. While numerous drinking water wells throughout Myanmar have been tested for arsenic, relatively little is known about the concentrations of other inorganic toxic substances in Myanmar groundwater. In this study, we analyzed samples from 18 drinking water wells (12 in Myingyan City and 6 in nearby Tha Pyay Thar Village) and 2 locations in the Ayeyarwaddy River for arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, fluoride, iron, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, uranium, vanadium, and zinc. Concentrations of arsenic, manganese, fluoride, iron, or uranium exceeded health-based reference values in most wells. In addition, any given well usually contained more than one toxic substance at unsafe concentrations. While water testing and well sharing could reduce health risks, none of the wells sampled provide water that is entirely safe with respect to inorganic toxic substances. It is imperative that users of these wells, and users of other wells that have not been tested for multiple inorganic toxic substances throughout the region, be informed of the need for drinking water testing and the health consequences of drinking water contaminated with inorganic toxic

  14. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: Arsenic, manganese, fluoride, iron, and uranium

    International Nuclear Information System (INIS)

    Bacquart, Thomas; Frisbie, Seth; Mitchell, Erika; Grigg, Laurie; Cole, Christopher; Small, Colleen; Sarkar, Bibudhendra

    2015-01-01

    In South Asia, the technological and societal shift from drinking surface water to groundwater has resulted in a great reduction of acute diseases due to water borne pathogens. However, arsenic and other naturally occurring inorganic toxic substances present in groundwater in the region have been linked to a variety of chronic diseases, including cancers, heart disease, and neurological problems. Due to the highly specific symptoms of chronic arsenic poisoning, arsenic was the first inorganic toxic substance to be noticed at unsafe levels in the groundwater of West Bengal, India and Bangladesh. Subsequently, other inorganic toxic substances, including manganese, uranium, and fluoride have been found at unsafe levels in groundwater in South Asia. While numerous drinking water wells throughout Myanmar have been tested for arsenic, relatively little is known about the concentrations of other inorganic toxic substances in Myanmar groundwater. In this study, we analyzed samples from 18 drinking water wells (12 in Myingyan City and 6 in nearby Tha Pyay Thar Village) and 2 locations in the Ayeyarwaddy River for arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, fluoride, iron, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, uranium, vanadium, and zinc. Concentrations of arsenic, manganese, fluoride, iron, or uranium exceeded health-based reference values in most wells. In addition, any given well usually contained more than one toxic substance at unsafe concentrations. While water testing and well sharing could reduce health risks, none of the wells sampled provide water that is entirely safe with respect to inorganic toxic substances. It is imperative that users of these wells, and users of other wells that have not been tested for multiple inorganic toxic substances throughout the region, be informed of the need for drinking water testing and the health consequences of drinking water contaminated with inorganic toxic

  15. Corrosion of iron-base alloys by lithium

    International Nuclear Information System (INIS)

    Selle, J.E.

    1976-01-01

    A review of corrosion mechanisms operating in lithium-iron-base alloy systems is presented along with data obtained with thermal-convection loops of niobium-stabilized 2 1 / 4 percent Cr-1 percent Mo steel and types 304L and 321 stainless steels. A corrosion rate of 2.3 μm/year (0.09 mil/year) was obtained on the 2 1 / 4 percent Cr-1 percent Mo steel at 600 0 C. Considerably more mass transport of alloying constituents and a maximum corrosion rate of about 14 μm/year (0.55 mil/year) was obtained with the austenitic stainless steels. Results of metallography, x-ray fluorescence analysis, scanning electron microscopy, and weight-change data are presented and discussed

  16. Microbial community response reveals underlying mechanism of industrial-scale manganese sand biofilters used for the simultaneous removal of iron, manganese and ammonia from groundwater.

    Science.gov (United States)

    Zhang, Yu; Sun, Rui; Zhou, Aijuan; Zhang, Jiaguang; Luan, Yunbo; Jia, Jianna; Yue, Xiuping; Zhang, Jie

    2018-01-08

    Most studies have employed aeration-biofiltration process for the simultaneous removal of iron, manganese and ammonia in groundwater. However, what's inside the "black box", i.e., the potential contribution of functional microorganisms behavior and interactions have seldom been investigated. Moreover, little attention has been paid to the correlations between environmental variables and functional microorganisms. In this study, the performance of industrial-scale biofilters for the contaminated groundwater treatment was studied. The effluent were all far below the permitted concentration level in the current drinking water standard. Pyrosequencing illustrated that shifts in microbial community structure were observed in the microbial samples from different depths of filter. Microbial networks showed that the microbial community structure in the middle- and deep-layer samples was similar, in which a wide range of manganese-oxidizing bacteria was identified. By contrast, canonical correlation analysis showed that the bacteria capable of ammonia-oxidizing and nitrification was enriched in the upper-layer, i.e., Propionibacterium, Nitrosomonas, Nitrosomonas and Candidatus Nitrotoga. The stable biofilm on the biofilter media, created by certain microorganisms from the groundwater microflora, played a crucial role in the simultaneous removal of the three pollutants.

  17. The Corrosion of Magnesium and of the Magnesium Aluminum Alloys Containing Manganese

    Science.gov (United States)

    Boyer, J A

    1927-01-01

    The extensive use of magnesium and its alloys in aircraft has been seriously handicapped by the uncertainties surrounding their resistance to corrosion. This problem has been given intense study by the American Magnesium Corporation and at the request of the Subcommittee on Materials for Aircraft of the National Advisory Committee for Aeronautics this report was prepared on the corrosion of magnesium. The tentative conclusions drawn from the experimental facts of this investigation are as follows: the overvoltage of pure magnesium is quite high. On immersion in salt water the metal corrodes with the liberation of hydrogen until the film of corrosion product lowers the potential to a critical value. When the potential reaches this value it no longer exceeds the theoretical hydrogen potential plus the overvoltage of the metal. Rapid corrosion consequently ceases. When aluminum is added, especially when in large amounts, the overvoltage is decreased and hydrogen plates out at a much lower potential than with pure magnesium. The addition of small amount of manganese raises the overvoltage back to practically that of pure metal, and the film is again negative.

  18. Biomonitoring for iron, manganese, chromium, aluminum, nickel and cadmium in workers exposed to welding fume: a preliminary study

    Directory of Open Access Journals (Sweden)

    Mulyana

    2015-05-01

    Full Text Available The control of exposure to welding fumes is increasing importance in promoting a healthy, safe and productive work environment. This study is a case-control design, random study was conducted among welder (56 subjects and non welder (39 subjects with more than 1 years experience in the same job task in an automotive parts manufactory within the industrial area at Cikarang in 2013. All subjects were completed physical examination, informed consent and questionnaire. Blood heavy metals were determined by Inductively-Coupled Plasma Mass Spectrometry (ICP-MS. Whole blood iron, manganese, chromium and lead in welder were higher than non-welder, but not different for aluminum, nickel and cadmium. In welder, chromium and manganese correlated with smoking status, cadmium correlated with age and smoking status. In multivariate analysis, wholeblood cadmium correlates with age and smoking status.

  19. Atomic contributions to the valence band photoelectron spectra of metal-free, iron and manganese phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Bidermane, I., E-mail: ieva.bidermane@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden); Institut des Nanosciences de Paris, UPMC Univ. Paris 06, CNRS UMR 7588, F-75005 Paris (France); Brumboiu, I.E. [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden); Totani, R. [Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, Coppito, I-67010 L’Aquila (Italy); Grazioli, C. [CNR-IOM, Laboratorio TASC, ss. 14 km. 163.5, Basovizza, 34149 Trieste (Italy); Departement of Chemical and Pharmaceutical Sciences, University of Trieste (Italy); Shariati-Nilsson, M.N.; Herper, H.C.; Eriksson, O.; Sanyal, B. [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden); Ressel, B. [University of Nova Gorica, Vipavska Cesta 11c, 5270 Ajdovščina (Slovenia); Simone, M. de [CNR-IOM, Laboratorio TASC, ss. 14 km. 163.5, Basovizza, 34149 Trieste (Italy); Lozzi, L. [Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, Coppito, I-67010 L’Aquila (Italy); Brena, B.; Puglia, C. [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden)

    2015-11-15

    Highlights: • In detail comparison between the valence band structure of H{sub 2}Pc, FePc and MnPc. • Comparison between the gas phase samples and thin evaporated films on Au (1 1 1). • Detailed analysis of the atomic orbital contributions to the valence band features. • DFT/HSE06 study of the valence band electronic structure of H{sub 2}Pc, FePc and MnPc. - Abstract: The present work reports a photoelectron spectroscopy study of the low-energy region of the valence band of metal-free phthalocyanine (H{sub 2}Pc) compared with those of iron phthalocyanine (FePc) and manganese phthalocyanine (MnPc). We have analysed in detail the atomic orbital composition of the valence band both experimentally, by making use of the variation in photoionization cross-sections with photon energy, and theoretically, by means of density functional theory. The atomic character of the Highest Occupied Molecular Orbital (HOMO), reflected on the outermost valence band binding energy region, is different for MnPc as compared to the other two molecules. The peaks related to the C 2p contributions, result in the HOMO for H{sub 2}Pc and FePc and in the HOMO-1 for MnPc as described by the theoretical predictions, in very good agreement with the experimental results. The DFT simulations, discerning the atomic contribution to the density of states, indicate how the central metal atom interacts with the C and N atoms of the molecule, giving rise to different partial and total density of states for these three Pc molecules.

  20. Control of arsenic mobilization in paddy soils by manganese and iron oxides.

    Science.gov (United States)

    Xu, Xiaowei; Chen, Chuan; Wang, Peng; Kretzschmar, Ruben; Zhao, Fang-Jie

    2017-12-01

    Reductive mobilization of arsenic (As) in paddy soils under flooded conditions is an important reason for the relatively high accumulation of As in rice, posing a risk to food safety and human health. The extent of As mobilization varies widely among paddy soils, but the reasons are not well understood. In this study, we investigated As mobilization in six As-contaminated paddy soils (total As ranging from 73 to 122 mg kg -1 ) in flooded incubation and pot experiments. Arsenic speciation in the solution and solid phases were determined. The magnitude of As mobilization into the porewater varied by > 100 times among the six soils. Porewater As concentration correlated closely with the concentration of oxalate-extractable As, suggesting that As associated with amorphous iron (oxyhydr)oxides represents the potentially mobilizable pool of As under flooded conditions. Soil containing a high level of manganese oxides showed the lowest As mobilization, likely because Mn oxides retard As mobilization by slowing down the drop of redox potential upon soil flooding and maintaining a higher arsenate to arsenite ratio in the solid and solution phases. Additions of a synthetic Mn oxide (hausmannite) to two paddy soils increased arsenite oxidation, decreased As mobilization into the porewater and decreased As concentrations in rice grain and straw. Consistent with previous studies using simplified model systems or pure mineral phases, the present study shows that Mn oxides and amorphous Fe (oxyhydr)oxides are important factors controlling reductive As mobilization in As-contaminated paddy soils. In addition, this study also suggests a potential mitigation strategy using exogenous Mn oxides to decrease As uptake by rice in paddy soils containing low levels of indigenous Mn oxides, although further work is needed to verify its efficacy and possible secondary effects under field conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury

    International Nuclear Information System (INIS)

    Chadwick, Shawn P.; Babiarz, Chris L.; Hurley, James P.; Armstrong, David E.

    2006-01-01

    The biogeochemical cycling of iron, manganese, sulfide, and dissolved organic carbon were investigated to provide information on the transport and removal processes that control the bioavailability of isotopic mercury amended to a lake. Lake profiles showed a similar trend of hypolimnetic enrichment of Fe, Mn, DOC, sulfide, and the lake spike ( 202 Hg, purity 90.8%) and ambient of pools of total mercury (HgT) and methylmercury (MeHg). Hypolimnetic enrichment of Fe and Mn indicated that reductive mobilization occurred primarily at the sediment-water interface and that Fe and Mn oxides were abundant within the sediments prior to the onset of anoxia. A strong relationship (r 2 = 0.986, n = 15, p 2 = 0.966, n = 15, p 2 = 0.964, n = 15, p 2 = 0.920, n = 27, p 2 = 0.967, n = 23, p 2 = 0.406, n = 27, p 2 = 0.314, n = 15, p = 0.002) suggest a role of organic matter in Hg transport and cycling. However, a weak relationship between the ambient and lake spike pools of MeHg to DOC indicated that other processes have a major role in controlling the abundance and distribution of MeHg. Our results suggest that Fe and Mn play important roles in the transport and cycling of ambient and spike HgT and MeHg in the hypolimnion, in part through processes linked to the formation and dissolution of organic matter-containing Fe and Mn hydrous oxides particles

  2. Stability Behavior and Thermodynamic States of Iron and Manganese in Sandy Soil Aquifer, Manukan Island, Malaysia

    International Nuclear Information System (INIS)

    Lin, Chin Yik; Abdullah, Mohd. Harun; Musta, Baba; Praveena, Sarva Mangala; Aris, Ahmad Zaharin

    2011-01-01

    A total of 20 soil samples were collected from 10 boreholes constructed in the low lying area, which included ancillary samples taken from the high elevation area. Redox processes were investigated in the soil as well as groundwater in the shallow groundwater aquifer of Manukan Island, Sabah, Malaysia. Groundwater samples (n = 10) from each boreholes were also collected in the low lying area to understand the concentrations and behaviors of Fe and Mn in the dissolved state. This study strives to obtain a general understanding of the stability behaviors on Fe and Mn at the upper unsaturated and the lower-saturated soil horizons in the low lying area of Manukan Island as these elements usually play a major role in the redox chemistry of the shallow groundwater. Thermodynamic calculations using PHREEQC showed that the groundwater samples in the study area are oversaturated with respect to goethite, hematite, Fe(OH) 3 and undersaturated with respect to manganite and pyrochroite. Low concentrations of Fe and Mn in the groundwater might be probably due to the lack of minerals of iron and manganese oxides, which exist in the sandy aquifer. In fact, high organic matters that present in the unsaturated horizon are believed to be responsible for the high Mn content in the soil. It was observed that the soil samples collected from high elevation area (BK) comprises considerable amount of Fe in both unsaturated (6675.87 mg/kg) and saturated horizons (31440.49 mg/kg) compared to the low Fe content in the low lying area. Based on the stability diagram, the groundwater composition lies within the stability field for Mn 2+ and Fe 2+ under suboxic condition and very close to the FeS/Fe 2+ stability boundary. This study also shows that both pH and Eh values comprise a strong negative value thus suggesting that the redox potential is inversely dependent on the changes of pH.

  3. low temperature irradiation effects in iron-alloys and ceramics

    International Nuclear Information System (INIS)

    Kuramoto, Eiichi; Abe, Hironobu; Tanaka, Minoru; Nishi, Kazuya; Tomiyama, Noriyuki.

    1991-01-01

    Electron beam irradiation at 77K and neutron irradiation at 20K were carried out on Fe-Cr and Fe-Cr-Ni alloys and ZnO and graphite system ceramics, and by measuring positron annihilation lifetime, the micro-information about irradiation-introduced defects was obtained. The temperature of the movement of atomic vacancies in pure iron is about 200K, but it was clarified that by the addition of Cr, it was not much affected. However, in the case of high concentration Cr alloys, the number of atomic vacancies which take part in the formation of micro-voids decreased as compared with the case of pure iron. It is considered that among the irradiation defects of ZnO, O-vac. restored below 300degC. It is considered that in the samples without irradiation, the stage of restoration exists around 550degC, which copes with structural defects. By the measurement of graphite without irradiation, the positron annihilation lifetime corresponding with the interface of matrix and crystal grains, grain boundaries and internal surfaces was almost determined. The materials taken up most actively in the research and development of nuclear fusion reactor materials are austenitic and ferritic stainless steels, and their irradiation defects have been studied. (K.I.)

  4. Analysis of iron-base alloys by low-wattage glow discharge emission spectrometry

    International Nuclear Information System (INIS)

    Wagatsuma, K.; Hirokawa, K.

    1984-01-01

    Several iron-base alloys were investigated by low-wattage glow discharge emission spectrometry. The emission intensity principally depended on the sputtering parameters of constituent elements in the alloy. However, in the case of chromium, stable and firm oxides formed on the surface influencing the yield of ejected atoms. This paper discusses the relation between the sputtering parameters in Fe-Ni, Fe-Cr, and Fe-Co alloys and their relative emission intensities. Additionally, quantitative analysis was performed for some ternary iron-base alloys and commercial stainless steels with the calibration factors of binary alloy systems

  5. Phosphorus effect on structure and physical properties of iron-nickel alloys

    International Nuclear Information System (INIS)

    Berseneva, F.N.; Kalinin, V.M.; Rybalko, O.F.

    1982-01-01

    The structure and properties of iron-nickel alloys (30-50 % Ni) containing from 0.02 to 0.5 wt. % P have been investigated. It has been found that phosphorus solubility in iron-nickel alloys at most purified from impurities exceeds limiting solubility values usually observed for commercial alloys. Phosphide eutectics precipitation over the grain boundaries of studied alloys occurs but with phosphorus content equal 0.45 wt. %. The 0.4 wt. % P addition in invar alloys increases saturation magnetization and the Curie point and leads to a more homogeneous structure

  6. Effect of cerium addition on microstructures of carbon-alloyed iron ...

    Indian Academy of Sciences (India)

    All the alloys exhibited a typical two-phase microstructure consisting of Fe3AlC carbides in an iron aluminide matrix. In the alloy without Ce addition, large bulky carbides were equally distributed throughout the matrix with many smaller precipitates interspersed in between. In the alloy with Ce addition, the carbide grain sizes ...

  7. Role of manganese on the grain refining efficiency of AZ91D magnesium alloy refined by Al4C3

    International Nuclear Information System (INIS)

    Liu Shengfa; Zhang Yuan; Han Hui

    2010-01-01

    A novel Mg-50% Al 4 C 3 (hereafter in wt.%) master alloy has been developed by powder in situ synthesis process, the role of manganese on the grain refining efficiency of AZ91D magnesium alloy refined by this master alloy has been investigated. X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) results show the existence of Al 4 C 3 particles in this master alloy. After addition of 0.6% Al 4 C 3 or combined addition of 0.6% Al 4 C 3 and 0.27% Mn, the average grain size of AZ91D decreased dramatically from 360 μm to 210 μm, and from 360 μm to130 μm, respectively. However, no further refinement of grain size was achieved with additional amount of Mn exceeding 0.27% for AZ91D alloy refined by 0.6% Al 4 C 3 in the present investigation. Al-C-O-Mn-Fe-rich intermetallic particles with an Al-C-O-rich coating film, often observed in the central region of magnesium grains of the AZ91D alloy treated by the combination of Al 4 C 3 and Mn, are proposed to be the potent nucleating substrates for primary α-Mg.

  8. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  9. Manganese: it turns iron into steel (and does so much more)

    Science.gov (United States)

    Cannon, William F.

    2014-01-01

    Manganese is a common ferrous metal with atomic weight of 25 and the chemical symbol Mn. It constitutes roughly 0.1 percent of the Earth’s crust, making it the 12th most abundant element. Its early uses were limited largely to pigments and oxidants in chemical processes and experiments, but the significance of manganese to human societies exploded with the development of modern steelmaking technology in the 1860s. U.S consumption of manganese is about 500,000 metric tons each year, predominantly by the steel industry. Because manganese is essential and irreplaceable in steelmaking and its global mining industry is dominated by just a few nations, it is considered one of the most critical mineral commodities for the United States.

  10. RF plasma nitriding of severely deformed iron-based alloys

    International Nuclear Information System (INIS)

    Ferkel, H.; Glatzer, M.; Estrin, Y.; Valiev, R.Z.; Blawert, C.; Mordike, B.L.

    2003-01-01

    The effect of severe plastic deformation by cold high pressure torsion (HPT) on radio frequency (RF) plasma nitriding of pure iron, as well as St2K50 and X5CrNi1810 steels was investigated. Nitriding was carried out for 3 h in a nitrogen atmosphere at a pressure of 10 -5 bar and temperatures of 350 and 400 deg. C. Nitrided specimens were analysed by scanning electron microscopy (SEM), X-ray diffraction and micro hardness measurements. It was found that HPT enhances the effect of nitriding leading almost to doubling of the thickness of the nitrided layer for pure iron and the high alloyed steel. The largest increase in hardness was observed when HPT was combined with RF plasma nitriding at 350 deg. C. In the case of pure iron, the X-ray diffraction spectra showed the formation of ε and γ' nitrides in the compound layer, with a preferential formation of γ' at the expense of the α-phase at the higher nitriding temperature. The corresponding surface hardness was up to 950 HV0.01. While the HPT-processed St2K50 exhibits both nitride phases after nitriding at 350 deg. C, only the γ'-phase was observed after nitriding at 400 deg. C. A surface hardness of up to 1050 HV0.01 was measured for this steel. The high alloyed steel X5CrNi1810 exhibited the highest increase in surface hardness when HPT was combined with nitriding at 350 deg. C. The surface hardness of this steel was greater than 1400 HV0.025. The XRD analyses indicate the formation of the expanded austenite (S-phase) in the surface layer as a result of RF plasma nitriding. Furthermore, after HPT X5CrNi1810 was transformed completely into deformation martensite which did not transform back to austenite under thermochemical treatment. However, in the case of nitriding of the HPT-processed high alloyed steel at 400 deg. C, the formation of the S-phase was less pronounced. In view of the observed XRD peak broadening, the formation of nitrides, such as e.g. CrN, cannot be ruled out

  11. Relating dynamic conditions to the performance of biological rapid sand filters used to remove ammonium, iron, and manganese from drinking water

    DEFF Research Database (Denmark)

    Lee, Carson; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    consistently meeting regulatory guidelines for compounds like ammonium and reduced forms of iron and manganese. These compounds can cause biological instability in the distribution system and can lead to many problems including the growth of pathogens and aesthetic problems (taste, odor, and color...... and media samples were collected throughout the depth of the column and over the operational cycle of the columns. Substrate analysis included ammonium, nitrite, nitrate, iron, and manganese. Qpcr analysis were also performed to quantify ammonium oxidizing bacteria (AOBs), ammonium oxidizing archea ( AOAs...

  12. Grains of Nonferrous and Noble Metals in Iron-Manganese Formations and Igneous Rocks of Submarine Elevations of the Sea of Japan

    Science.gov (United States)

    Kolesnik, O. N.; Astakhova, N. V.

    2018-01-01

    Iron-manganese formations and igneous rocks of submarine elevations in the Sea of Japan contain overlapping mineral phases (grains) with quite identical morphology, localization, and chemical composition. Most of the grains conform to oxides, intermetallic compounds, native elements, sulfides, and sulfates in terms of the set of nonferrous, noble, and certain other metals (Cu, Zn, Sn, Pb, Ni, Mo, Ag, Pd, and Pt). The main conclusion that postvolcanic hydrothermal fluids are the key sources of metals is based upon a comparison of the data of electron microprobe analysis of iron-manganese formations and igneous rocks dredged at the same submarine elevations in the Sea of Japan.

  13. Influence of biofilms on iron and manganese deposition in drinking water distribution systems.

    Science.gov (United States)

    Ginige, Maneesha P; Wylie, Jason; Plumb, Jason

    2011-02-01

    Although health risk due to discoloured water is minimal, such water continues to be the source of one of the major complaints received by most water utilities in Australia. Elevated levels of iron (Fe) and/or manganese (Mn) in bulk water are associated with discoloured water incidents. The accumulation of these two elements in distribution systems is believed to be one of the main causes for such elevated levels. An investigation into the contribution of pipe wall biofilms towards Fe and Mn deposition, and discoloured water events is reported in this study. Eight laboratory-scale reactors were operated to test four different conditions in duplicate. Four reactors were exposed to low Fe (0.05 mg l(-1)) and Mn (0.02 mg l(-1)) concentrations and the remaining four were exposed to a higher (0.3 and 0.4 mg l(-1) for Fe and Mn, respectively) concentration. Two of the four reactors which received low and high Fe and Mn concentrations were chlorinated (3.0 mg l(-1) of chlorine). The biological activity (measured in terms of ATP) on the glass rings in these reactors was very low (∼1.5 ng cm(-2) ring). Higher concentrations of Fe and Mn in bulk water and active biofilms resulted in increased deposition of Fe and Mn on the glass rings. Moreover, with an increase in biological activity, an increase in Fe and Mn deposition was observed. The observations in the laboratory-scale experiments were in line with the results of field observations that were carried out using biofilm monitors. The field data additionally demonstrated the effect of seasons, where increased biofilm activities observed on pipe wall biofilms during late summer and early autumn were found to be associated with increased deposition of Fe and Mn. In contrast, during the cooler months, biofilm activities were a magnitude lower and the deposited metal concentrations were also significantly less (ie a drop of 68% for Fe and 86% for Mn). Based on the laboratory-scale investigations, detachment of pipe wall

  14. Low temperature irradiation effects on iron-boron based amorphous metallic alloys

    International Nuclear Information System (INIS)

    Audouard, Alain.

    1983-01-01

    Three iron-boron amorphous alloys and the crystalline Fe 3 B alloy have been irradiated at liquid hydrogen temperature. 2,4 MeV electron irradiation induces the creation of point defects in the amorphous alloys as well as in the crystalline Fe 3 B alloy. These point defects can be assimilated to iron ''Frenkel pairs''. They have been characterized by determining their intrinsic electrical resistivity and their formation volume. The displacement threshold energy of iron atoms has also been determined. 10 B fission fragments induce, in these amorphous alloys, displacement cascades which lead to stable vacancy rich zones. This irradiation also leads to a structural disorder in relation with the presence of defects. 235 U fission fragments irradiation modifies drastically the structure of the amorphous alloys. The results have been interpreted on the basis of the coexistence of two opposite processes which induce local disorder and crystallisation respectively [fr

  15. Aluminum fin-stock alloys

    International Nuclear Information System (INIS)

    Gul, R.M.; Mutasher, F.

    2007-01-01

    Aluminum alloys have long been used in the production of heat exchanger fins. The comparative properties of the different alloys used for this purpose has not been an issue in the past, because of the significant thickness of the finstock material. However, in order to make fins lighter in weight, there is a growing demand for thinner finstock materials, which has emphasized the need for improved mechanical properties, thermal conductivity and corrosion resistance. The objective of this project is to determine the effect of iron, silicon and manganese percentage increment on the required mechanical properties for this application by analyzing four different aluminum alloys. The four selected aluminum alloys are 1100, 8011, 8079 and 8150, which are wrought non-heat treatable alloys with different amount of the above elements. Aluminum alloy 1100 serve as a control specimen, as it is commercially pure aluminum. The study also reports the effect of different annealing cycles on the mechanical properties of the selected alloys. Metallographic examination was also preformed to study the effect of annealing on the precipitate phases and the distribution of these phases for each alloy. The microstructure analysis of the aluminum alloys studied indicates that the precipitated phase in the case of aluminum alloys 1100 and 8079 is beta-FeAI3, while in 8011 it is a-alfa AIFeSi, and the aluminum alloy 8150 contains AI6(Mn,Fe) phase. The comparison of aluminum alloys 8011 and 8079 with aluminum alloy 1100 show that the addition of iron and silicon improves the percent elongation and reduces strength. The manganese addition increases the stability of mechanical properties along the annealing range as shown by the comparison of aluminum alloy 8150 with aluminum alloy 1100. Alloy 8150 show superior properties over the other alloys due to the reaction of iron and manganese, resulting in a preferable response to thermal treatment and improved mechanical properties. (author)

  16. Surface chemistry and electrocatalytic behaviour of tetra-carboxy substituted iron, cobalt and manganese phthalocyanine monolayers on gold electrode

    International Nuclear Information System (INIS)

    Mashazi, Philani N.; Westbroek, Philippe; Ozoemena, Kenneth I.; Nyokong, Tebello

    2007-01-01

    Surface chemistry and electrocatalytic properties of self-assembled monolayers of metal tetra-carboxylic acid phthalocyanine complexes with cobalt (Co), iron (Fe) and manganese (Mn) as central metal ions have been studied. These phthalocyanine molecules are immobilized on gold electrode via the coupling reaction between the ring substituents and pre-formed mercaptoethanol self-assembled monolayer (Au-ME SAM). X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed chemisorption of mercaptoethanol via sulfur group on gold electrode and also coupling reaction between phthalocyanines and Au-ME SAM. Electrochemical parameters of the immobilized molecules show that these molecules are densely packed with a perpendicular orientation. The potential applications of the gold modified electrodes were investigated towards L-cysteine detection and the analysis at phthalocyanine SAMs. Cobalt and iron tetra-carboxylic acid phthalocyanine monolayers showed good oxidation peak for L-cysteine at potentials where metal oxidation (M III /M II ) takes place and this metal oxidation mediates the catalytic oxidation of L-cysteine. Manganese tetra-carboxylic acid phthalocyanine monolayer also exhibited a good catalytic oxidation peak towards L-cysteine at potentials where Mn IV /Mn III redox peak occurs and this redox peak mediates L-cysteine oxidation. The analysis of cysteine at phthalocyanine monolayers displayed good analytical parameters with good detection limits of the orders of 10 -7 mol L -1 and good linearity for a studied concentration range up to 60 μmol L -1

  17. Removal of aluminum, iron and manganese ions from industrial wastes using granular activated carbon and Amberlite IR-120H

    Directory of Open Access Journals (Sweden)

    Mohamed E. Goher

    2015-01-01

    Full Text Available The removal of aluminum, iron and manganese from some pollution sources that drain into Ismailia Canal has been investigated using two different sorbents; granular activated carbon (GAC and Amberlite IR-120H (AIR-120H. Batch equilibrium experiments showed that the two sorbents have maximum removal efficiency for aluminum and iron pH 5 and 10 min contact time in ambient room temperature, while pH 7 and 30 min were the most appropriate for manganese removal. Dosage of 2 g/l for both GAC and AIR-120H was established to give the maximum removal capacity. At optimum conditions, the removal trend was in order of Al+3 > Fe+2 > Mn+2 with 99.2, 99.02 and 79.05 and 99.55, 99.42 and 96.65% of metal removal with GAC and AIR-120H, respectively. For the three metals, Langmuir and Freundlich isotherms showed higher R2 values, with a slightly better fitting for the Langmuir model. In addition, separation factors (RL and exponent (n values indicated favorable Langmuir (0 < RL < 1 and Freundlich (1 < n < 10 approach. GAC and AIR-120H can be used as excellent alternative, effective and inexpensive materials to remove high amounts of heavy metals from waste water.

  18. Adsorption and transformation of selected human-used macrolide antibacterial agents with iron(III) and manganese(IV) oxides

    Energy Technology Data Exchange (ETDEWEB)

    Feitosa-Felizzola, Juliana [Laboratoire Chimie Provence, Aix-Marseille Universites-CNRS (UMR 6264), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France); Hanna, Khalil [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement, CNRS-Universite Henri Poincare-Nancy 1 (UMR 7564), 405 rue de Vandoeuvre, 54600 Villers-les-Nancy (France); Chiron, Serge [Laboratoire Chimie Provence, Aix-Marseille Universites-CNRS (UMR 6264), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)], E-mail: serge.chiron@univ-provence.fr

    2009-04-15

    The adsorption/transformation of two members (clarithromycin and roxithromycin) of the macrolide (ML) antibacterial agents on the surface of three environmental subsurface sorbents (clay, iron(III) and manganese(IV) oxy-hydroxides) was investigated. The adsorption fitted well to the Freundlich model with a high sorption capacity. Adsorption probably occurred through a surface complexation mechanism and was accompanied by slow degradation of the selected MLs. Transformation proceeded through two parallel pathways: a major pathway was the hydrolysis of the cladinose sugar, and to a lesser extent the hydrolysis of the lactone ring. A minor pathway was the N-dealkylation of the amino sugar. This study indicates that Fe(III) and Mn(IV) oxy-hydroxides in aquatic sediments may play an important role in the natural attenuation of MLs. Such an attenuation route yields a range of intermediates that might retain some of their biological activity. - Iron(III) and manganese(IV) oxy-hydroxides in aquatic sediments may play an important role in the natural attenuation of macrolide antibacterial agents.

  19. Biodegradation of pharmaceuticals and endocrine disruptors with oxygen, nitrate, manganese (IV), iron (III) and sulfate as electron acceptors

    Science.gov (United States)

    Schmidt, Natalie; Page, Declan; Tiehm, Andreas

    2017-08-01

    Biodegradation of pharmaceuticals and endocrine disrupting compounds was examined in long term batch experiments for a period of two and a half years to obtain more insight into the effects of redox conditions. A mix including lipid lowering agents (e.g. clofibric acid, gemfibrozil), analgesics (e.g. diclofenac, naproxen), beta blockers (e.g. atenolol, propranolol), X-ray contrast media (e.g. diatrizoic acid, iomeprol) as well as the antiepileptic carbamazepine and endocrine disruptors (e.g. bisphenol A, 17α-ethinylestradiol) was analyzed in batch tests in the presence of oxygen, nitrate, manganese (IV), iron (III), and sulfate. Out of the 23 selected substances, 14 showed a degradation of > 50% of their initial concentrations under aerobic conditions. The beta blockers propranolol and atenolol and the analgesics pentoxifylline and naproxen showed a removal of > 50% under anaerobic conditions. In particular naproxen proved to be degradable with oxygen and under most anaerobic conditions, i.e. with manganese (IV), iron (III), or sulfate. The natural estrogens estriol, estrone and 17β-estradiol showed complete biodegradation under aerobic and nitrate-reducing conditions, with a temporary increase of estrone during transformation of estriol and 17β-estradiol. Transformation of 17β-estradiol under Fe(III)-reducing conditions resulted in an increase of estriol as well. Concentrations of clofibric acid, carbamazepine, iopamidol and diatrizoic acid, known for their recalcitrance in the environment, remained unchanged.

  20. Adsorption and transformation of selected human-used macrolide antibacterial agents with iron(III) and manganese(IV) oxides

    International Nuclear Information System (INIS)

    Feitosa-Felizzola, Juliana; Hanna, Khalil; Chiron, Serge

    2009-01-01

    The adsorption/transformation of two members (clarithromycin and roxithromycin) of the macrolide (ML) antibacterial agents on the surface of three environmental subsurface sorbents (clay, iron(III) and manganese(IV) oxy-hydroxides) was investigated. The adsorption fitted well to the Freundlich model with a high sorption capacity. Adsorption probably occurred through a surface complexation mechanism and was accompanied by slow degradation of the selected MLs. Transformation proceeded through two parallel pathways: a major pathway was the hydrolysis of the cladinose sugar, and to a lesser extent the hydrolysis of the lactone ring. A minor pathway was the N-dealkylation of the amino sugar. This study indicates that Fe(III) and Mn(IV) oxy-hydroxides in aquatic sediments may play an important role in the natural attenuation of MLs. Such an attenuation route yields a range of intermediates that might retain some of their biological activity. - Iron(III) and manganese(IV) oxy-hydroxides in aquatic sediments may play an important role in the natural attenuation of macrolide antibacterial agents

  1. Radium desorption, manganese and iron dissolution from sand filters of a conventional ground water treatment plant under reductive conditions

    International Nuclear Information System (INIS)

    Al-Hobaib, A.S.; Al-Sulaiman, K.M.; Al-Dhayan, D.M.; Al-Suhybani, A.A.

    2006-01-01

    Sand filters are used as a filter bed in many ground water treatment plants to remove the physical contaminants and oxidation products. A build-up of radioactivity may take place on the granules, where iron and manganese oxides are deposited and form thin films on the surface of sand filter. The oxides of iron and manganese play an important role in adsorbing radium from ground water. The disposal of those granules makes a significant problem. A batch technique is used for solubilization of radium from sand filters in the presence of some organic acids, which act as reducing agents. These acids are formic acid, acetic acid, benzoic acid, succinic acid, oxalic acid, phthalic acid, and adipic acid. The data were obtained as a function of acidity, temperature, contact time and liquid/solid ratio particle size and shaking speed. It was found that oxalic acid was the best for radium removal. The effectiveness of these acids on radium removal was as follows: oxalic acid > phthalic acid > adipic acid > succinic acid > formic acid > acetic acid. The maximum removal obtained was 69.9% at 1M oxalic acid at 8 ml/g ratio. Reaction kinetics and mechanism parameters of the dissolution process were studied and compared with other published data. (author)

  2. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: arsenic, manganese, fluoride, iron, and uranium.

    Science.gov (United States)

    Bacquart, Thomas; Frisbie, Seth; Mitchell, Erika; Grigg, Laurie; Cole, Christopher; Small, Colleen; Sarkar, Bibudhendra

    2015-06-01

    In South Asia, the technological and societal shift from drinking surface water to groundwater has resulted in a great reduction of acute diseases due to water borne pathogens. However, arsenic and other naturally occurring inorganic toxic substances present in groundwater in the region have been linked to a variety of chronic diseases, including cancers, heart disease, and neurological problems. Due to the highly specific symptoms of chronic arsenic poisoning, arsenic was the first inorganic toxic substance to be noticed at unsafe levels in the groundwater of West Bengal, India and Bangladesh. Subsequently, other inorganic toxic substances, including manganese, uranium, and fluoride have been found at unsafe levels in groundwater in South Asia. While numerous drinking water wells throughout Myanmar have been tested for arsenic, relatively little is known about the concentrations of other inorganic toxic substances in Myanmar groundwater. In this study, we analyzed samples from 18 drinking water wells (12 in Myingyan City and 6 in nearby Tha Pyay Thar Village) and 2 locations in the Ayeyarwaddy River for arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, fluoride, iron, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, uranium, vanadium, and zinc. Concentrations of arsenic, manganese, fluoride, iron, or uranium exceeded health-based reference values in most wells. In addition, any given well usually contained more than one toxic substance at unsafe concentrations. While water testing and well sharing could reduce health risks, none of the wells sampled provide water that is entirely safe with respect to inorganic toxic substances. It is imperative that users of these wells, and users of other wells that have not been tested for multiple inorganic toxic substances throughout the region, be informed of the need for drinking water testing and the health consequences of drinking water contaminated with inorganic toxic

  3. Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, Shawn P. [University of Wisconsin-Madison, Environmental Chemistry and Technology Program, 660 North Park Street, Madison, WI 53706-1481 (United States)]. E-mail: spchadwick@wisc.edu; Babiarz, Chris L. [University of Wisconsin-Madison, Environmental Chemistry and Technology Program, 660 North Park Street, Madison, WI 53706-1481 (United States); Hurley, James P. [University of Wisconsin-Madison, Environmental Chemistry and Technology Program, 660 North Park Street, Madison, WI 53706-1481 (United States); University of Wisconsin Aquatic Sciences Center, 1975 Willow Drive Madison, WI 53706-1177 (United States); Armstrong, David E. [University of Wisconsin-Madison, Environmental Chemistry and Technology Program, 660 North Park Street, Madison, WI 53706-1481 (United States)

    2006-09-01

    The biogeochemical cycling of iron, manganese, sulfide, and dissolved organic carbon were investigated to provide information on the transport and removal processes that control the bioavailability of isotopic mercury amended to a lake. Lake profiles showed a similar trend of hypolimnetic enrichment of Fe, Mn, DOC, sulfide, and the lake spike ({sup 202}Hg, purity 90.8%) and ambient of pools of total mercury (HgT) and methylmercury (MeHg). Hypolimnetic enrichment of Fe and Mn indicated that reductive mobilization occurred primarily at the sediment-water interface and that Fe and Mn oxides were abundant within the sediments prior to the onset of anoxia. A strong relationship (r {sup 2} = 0.986, n = 15, p < 0.001) between filterable Fe and Mn indicated that reduction of Fe and Mn hydrous oxides in the sediments is a common in-lake source of Fe(II) and Mn(II) to the hypolimnion and that a consistent Mn : Fe mass ratio of 0.05 exists in the lake. A strong linear relationship of both the filterable [Fe] (r {sup 2} = 0.966, n = 15, p < 0.001) and [Mn] (r {sup 2} = 0.964, n = 15, p < 0.001) to [DOC] indicated a close linkage of the cycles of Fe and Mn to DOC. Persistence of iron oxides in anoxic environments suggested that DOC was being co-precipitated with Fe oxide and released into solution by the reductive dissolution of the oxide. The relationship between ambient and lake spike HgT (r {sup 2} = 0.920, n = 27, p < 0.001) and MeHg (r {sup 2} = 0.967, n = 23, p < 0.001) indicated that similar biogeochemical processes control the temporal and spatial distribution in the water column. The larger fraction of MeHg in the lake spike compared to the ambient pool in the hypolimnion suggests that lake spike may be more available for methylation. A linear relationship of DOC to both filterable ambient HgT (r {sup 2} = 0.406, n = 27, p < 0.001) and lake spike HgT (r {sup 2} = 0.314, n = 15, p = 0.002) suggest a role of organic matter in Hg transport and cycling. However, a weak

  4. Bubble formation upon crystallization of high nitrogen iron base alloys

    International Nuclear Information System (INIS)

    Svyazhin, A.G.; Sivka, E.; Skuza, Z.

    2000-01-01

    A study is made into the conditions of nitrogen bubble formation during crystallization of unalloyed iron, alloys of Fe-O, Fe-O-S systems, steels 1Kh13, 0Kh18N9 and a two-phase Fe-11%Cr-1%Mo-0.2%V steel. It is revealed that the amount of bubbles in a high nitrogen steel casting increases with a degree of nitrogen supersaturation and decreases with a cooling rate growth and with a rise of surfactant concentration in the metal. In sound castings a nitrogen content can be increased due to a cooling rate growth, nitrogen dilution with inert gas, an increase of nitrogen pressure during crystallization as well as due to the introduction of such surfactants as sulphur, selenium, tellurium, tin [ru

  5. Elastic properties of magnetostrictive rare-earth-iron alloys

    International Nuclear Information System (INIS)

    Cullen, J.R.; Blessing, G.; Rinaldi, S.

    1978-01-01

    The elastic properties of certain magnetostrictive rare-earth-iron alloys, namely polycrystalline Tbsub(0.3)Dysub(0.7)Fesub(2), Smsub(0.88)Dysub(0.12)Fesub(2)and amorphous TbFesub(2), were investigated ultrasonically. In all cases two shear waves were observed propagating simultaneously when a magnetic field was applied perpendicular to the direction of propagation. A model to explain this behaviour, based on magnetic-elastic coupling within local regions of these disordered materials, is developed and discussed in two limiting cases: (i) strongly coupled regions for which an effective isotropic magneto-elastic coupling is appropriate, and (ii) materials for which the elastic properties of the conglomerate are determined by averaging over those of independent regions. Experimental results up to fields of 25 kOe on the alloys mentioned above are exhibited and compared with the limiting cases (i) and (ii). In the case of polycrystalline Tbsub(0.3)Dysub(0.7)Fesub(2) further comparison is made between the determination of the magneto-elastic coupling constants using this model and the determination by using the results of a previous single-crystal study. (author)

  6. Field Induced Magnetic Moments in a Metastable Iron-Mercury Alloy

    DEFF Research Database (Denmark)

    Pedersen, M.S.; Mørup, Steen; Linderoth, Søren

    1996-01-01

    The magnetic properties of a metastable iron-mercury alloy have been investigated in the temperature range from 5 to 200 K by Mossbauer spectroscopy and magnetization measurements. At low temperature the magnetic moment per iron atom is larger than af alpha-Fe. The effective spontaneous magnetic ....... It was found that the field-induced increase of the magnetic moment in the metastable iron-mecury alloy was about 0.06 Bohr magnetons per iron atom in the temperature range from 5 to 200 K for a field change from 6 to 12 T....

  7. [Effect of selenium on the uptake and translocation of manganese, iron, phosphorus and selenium in rice (Oryza sativa L.)].

    Science.gov (United States)

    Hu, Ying; Huang, Yi-Zong; Huang, Yan-Chao; Liu, Yun-Xia; Liang, Jian-Hong

    2013-10-01

    A pot experiment was conducted to clarify the effect of selenium on the uptake and translocation of manganese (Mn), iron (Fe) , phosphorus (P) and selenium (Se) in rice ( Oryza sativa L.). The results showed that addition of Se led to the significant increase of Se concentration in iron plaque on the root surface, root, shoot, husk and brown rice, and significant decrease of Mn concentration in shoot, husk and brown rice. At the Se concentrations of 0.5 and 1.0 mg.kg-1 in soil, Mn concentrations in rice shoot decreased by 32. 2% and 35.0% respectively, in husk 22.0% and 42.6% , in brown rice 27.5% and 28.5% , compared with the Se-free treatment. There was no significant effect of Se on the P and Fe concentrations in every parts of rice, except for Fe concentrations in husk. The translocation of P and Fe from iron plaque, root, shoot and husk to brown rice was not significantly affected by Se addition, but Mn translocation from iron plaque and root to brown rice was significantly inhibited by Se addition. Addition of 1.0 mg.kg-1. Se resulted in the decrease of translocation factor from iron plaque and root to brown rice by 38.9% and 37.9%, respectively, compared with the control treatment. The distribution ratios of Mn, Fe, P and Se in iron plaque, root, shoot, husk and brown rice were also affected by Se addition. The results indicated that Mn uptake, accumulation and translocation in rice could be decreased by the addition of Se in soil, therefore, Se addition could reduce the Mn harm to human health through food chain.

  8. INFLUENCE OF IMPULSE MAGNETIC FIELD ON GRAPHITE MORPHOLOGY OF HIGH-ALLOY IRON

    Directory of Open Access Journals (Sweden)

    A. G. Anisovich

    2011-01-01

    Full Text Available The results of researches of change of microstructure of heavily alloyed austenitic cast-iron ChN1507 subjected to magnetoimpulse processing are given. It is established that microhardness rises on all section of the sample.

  9. Void swelling in fast reactor irradiated high purity binary iron-chromium alloys

    International Nuclear Information System (INIS)

    Little, E.A.; Stow, D.A.

    The void swelling characteristics of a series of high purity binary iron-chromium alloys containing 0 - 615 0 C. The void swelling behaviour can be qualitatively rationalized in terms of point defect trapping and precipitation processes involving chromium atoms

  10. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    Science.gov (United States)

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  11. Method of forming magnetostrictive rods from rare earth-iron alloys

    Science.gov (United States)

    McMasters, O. Dale

    1986-09-02

    Rods of magnetrostructive alloys of iron with rare earth elements are formed by flowing a body of rare earth-iron alloy in a crucible enclosed in a chamber maintained under an inert gas atmosphere, forcing such molten rare-earth-iron alloy into a hollow mold tube of refractory material positioned with its lower end portion within the molten body by means of a pressure differential between the chamber and mold tube and maintaining a portion of the molten alloy in the crucible extending to a level above the lower end of the mold tube so that solid particles of higher melting impurities present in the alloy collect at the surface of the molten body and remain within the crucible as the rod is formed in the mold tube.

  12. Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron and manganese in the Gulf of Finland, Baltic Sea

    NARCIS (Netherlands)

    Almroth, E.; Tengberg, A.; Andersson, J.H.; Pakhomova, S.; Hall, P.O.J.

    2009-01-01

    The effect of resuspension on benthic fluxes of oxygen (O2), ammonium (NH4+), nitrate (NO3-), phosphate (PO43-), silicate (Si(OH)4), dissolved inorganic carbon (DIC), total dissolved iron (Fe) and total dissolved manganese (Mn) was studied at three different stations in the Gulf of Finland (GoF),

  13. Martensitic transformation and magnetic properties of manganese-rich Ni-Mn-In and Ni-Mn-Sn Heusler alloys

    International Nuclear Information System (INIS)

    Krenke, T.

    2007-01-01

    In the present work, the martensitic transition and the magnetic properties of Manganese rich Ni 50 Mn 50-x Sn x and Ni 50 Mn 50-y In y alloys with 5 at%≤x(y)≤25 at% were investigated. Calorimetry, X-ray and neutron diffraction, magnetization, and strain measurements were performed on polycrystalline samples. It was shown that alloys close to the stoichiometric composition Ni 50 Mn 25 Sn 25 and Ni 50 Mn 25 Sn 25 do not exhibit a structural transition on lowering of the temperature, whereas alloys with x≤15 at% Tin and y≤16 at% Indium transform martensitically. The structural transition temperatures increase linearly with decreasing Tin or Indium content. The crystal structures of the low temperature martensite are modulated as well as unmodulated. Alloys with compositions close to stoichiometry are dominated by ferromagnetic interactions, whereas those close to the binary composition Ni 50 Mn 50 order antiferromagnetically. Ferromagnetic order and structural instability coexist in a narrow composition range between 13 at%≤x≤15 at% and 15 at%≤x≤16 at% for Ni 50 Mn 50-x Sn x and Ni 50 Mn 50-y In y respectively. As a consequence, interesting magnetoelastic effects are observed. The Ni 50 Mn 34 In 16 alloy shows a magnetic field-induced structural transition, whereby application of an external magnetic field in the martensitic state stabilizes the high temperature L2 1 structure. Evidence for this was given by neutron diffraction experiments in external magnetic fields. Moreover, the structural transition temperatures of this alloy show large magnetic field dependencies. By use of calorimetry, M(T), and strain measurements, changes in M s up to -11 K/Tesla are observed. Such large values have, until now, not been observed in Heusler alloys. Since during transformation the volume changes reversibly, magnetic field-induced strains of about 0.12 % appear. Additionally, the alloys Ni 50 Mn 35 Sn 15 , Ni 50 Mn 37 Sn 13 , Ni 50 Mn 34 In 16 , Ni 51.5 Mn 33 In

  14. Pilot study of iron and manganese removal from Mexican drinking water supply sources; Estudio piloto para remocion de fierro y manganeso en las fuentes de abastecimiento de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Simeonova, Verguinia Petkova; Mintchev, Mintcho Lliev; Rivera, Maria Lourdes [Instituto Mexicano de Tecnologia del Agua, Jiutepec, Morelos (Mexico)

    1999-08-01

    This study demonstrates the efficiency of a technique for manganese removal through adsorption-oxidation on zeolite. Several Mexican groundwater sources were selected for pilot installations. The results show that the final iron and manganese concentrations are within the limits set in the Official Mexican Standard, NOM-127-SSA1, referring to drinking water. An analysis was made of the effect of the operating rate and the granule size of the filtering material on iron and manganese removal and of calcium and magnesium salts associated with hardness. Zeolite covered with manganese precipitates was highly selective for iron and manganese; this made the treatment of groundwater with high iron and manganese concentrations possible, even in the presence of hardness and alkalinity. A description is given of the procedures to prepare the material and regenerate its filtration capacity without interrupting the filtration process. [Spanish] El presente estudio comprueba la eficiencia de la tecnica propuesta para la remocion de manganeso por adsorcion-oxidacion sobre zeolita a traves de estudios piloto en varias fuentes subterraneas de Mexico. Los resultados demuestran que la concentracion de fierro y manganeso en el agua producida cumple con la Norma Oficial Mexicana NOM-127-SSA1 para el consumo humano en todo los casos estudiados. Fueron analizadas la influencia de la tasa de operacion y la granulometria del material filtrante sobre el grado de remocion de fierro y manganeso, asi como el efecto de las sales de calcio y magnesio que originan la dureza del agua. Durante la experimentacion se comprobo que la zeolita recubierta con los precipitados de manganeso es altamente selectiva respecto al fierro y manganeso, lo que permite tratar el agua de las fuentes subterraneas con elevada concentracion de Fe y Mn en presencia de alta dureza y alcalinidad. En el articulo se describen los procedimientos para la preparacion del material filtrante y la regeneracion de su capacidad sin

  15. Metal Tolerance Protein 8 Mediates Manganese Homeostasis and Iron Reallocation during Seed Development and Germination

    Czech Academy of Sciences Publication Activity Database

    Eroglu, S.; Giehl, R.F.H.; Meier, B.; Takahashi, M.; Terada, Y.; Ignatyev, K.; Andresen, Elisa; Küpper, Hendrik; Peiter, E.; von Wiren, N.

    2017-01-01

    Roč. 174, č. 3 (2017), s. 1633-1647 ISSN 0032-0889 Institutional support: RVO:60077344 Keywords : diffusion facilitator family * arabidopsis-thaliana * x-ray * vacuolar manganese Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 6.456, year: 2016

  16. Distribution of iron, manganese, cobalt and nickel in sediment cores of the northeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, Ch.M.; Setty, M.G.A.P.

    :72; 3:205; and 6:265; (b) for the slope it is 1:116; and (c) the basin 6:170. The values are highest in one core. This suggests an enrichment of manganese in the shelf region and in the basin, but great mobility in the slope and parts of the shelf...

  17. High temperature cathodic charging of hydrogen in zirconium alloys and iron and nickel base alloys

    International Nuclear Information System (INIS)

    John, J.T.; De, P.K.; Gadiyar, H.S.

    1990-01-01

    These investigations lead to the development of a new technique for charging hydrogen into metals and alloys. In this technique a mixture of sulfates and bisulfates of sodium and potassium is kept saturated with water at 250-300degC in an open pyrex glass beaker and electrolysed using platinum anode and the material to be charged as the cathode. Most of the studies were carried out on Zr alloys. It is shown that because of the high hydrogen flux available at the surface and the high diffusivity of hydrogen in metals at these temperatures the materials pick up hydrogen faster and more uniformly than the conventional electrolytic charging at room temperature and high temperature autoclaving in LiOH solutions. Chemical analysis, metallographic examination and XRD studies confirm this. This technique has been used to charge hydrogen into many iron and nickel base austentic alloys, which are very resistant to hydrogen pick up and to H-embrittlement. Since this involved a novel method of electrolysing water, the hydrogen/deuterium isotopic ratio has been studied. At this temperatures the D/H ratio in the evolved hydrogen gas was found to be closer to the value in the liquid water, which means a smaller separation factor. This confirm the earlier observation that separation factor decreases with increase of temperature. (author). 16 refs., 21 fi gs., 6 tabs

  18. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods

  19. Influence of Chemical Composition on Rupture Properties at 1200 Degrees F. of Forged Chromium-Cobalt-Nickel-Iron Base Alloys in Solution-Treated and Aged Condition

    Science.gov (United States)

    Reynolds, E E; Freeman, J W; White, A E

    1951-01-01

    The influence of systematic variations of chemical composition on rupture properties at 1200 degrees F. was determined for 62 modifications of a basic alloy containing 20 percent chromium, 20 percent nickel, 20 percent cobalt, 3 percent molybdenum, 2 percent tungsten, 1 percent columbium, 0.15 percent carbon, 1.7 percent manganese, 0.5 percent silicon, 0.12 percent nitrogen and the balance iron. These modifications included individual variations of each of 10 elements present and simultaneous variations of molybdenum, tungsten, and columbium. Laboratory induction furnace heats were hot-forged to round bar stock, solution-treated at 2200 degrees F., and aged at 1400 degrees F. The melting and fabrication conditions were carefully controlled in order to minimize all variable effects on properties except chemical composition. Information is presented which indicates that melting and hot-working conditions play an important role in high-temperature properties of alloys of the type investigated.

  20. A review of ordering phenomena in iron-silicon alloys

    Directory of Open Access Journals (Sweden)

    González, F.

    2013-06-01

    Full Text Available Silicon steel is an industrially-desired alloy of iron and silicon, characterised by soft magnetic properties, low eddy-current losses, and low magnetostriction. Silicon steels have narrow hysteresis cycles, making them particularly advantageous in applications using electromagnetic fields, such as transformers, generators, electric motor cores, and few other components in industry. Despite its incontestable industrial value, there is not much agreement on the atomic structure of silicon steel. Gaining better understanding of e.g. ordering processes in Fe-Si alloys could not only explain their magnetic properties, but also open opportunities to reduce their weaker characteristics, such as brittleness that adversely affects silicon steel workability and its associated high production costs. This review summarises the state-of-the-art knowledge about ordering in silicon steel and describes the most relevant experimental techniques used for studying its microstructure. In addition, the process of building the iron rich part of the Fe-Si phase diagram is explained. Lastly, the influence of order on the alloy’s magnetic and mechanical properties is illustrated.El acero al silicio es una aleación de importancia industrial, caracterizada por propiedades magnéticas blandas, bajas pérdidas por corrientes de Foucault y baja magnetostricción. Los aceros al silicio tienen ciclo de histéresis estrecho, lo que es una ventaja en aplicaciones con campos electromagnéticos, como transformadores, generadores, núcleos de motores eléctricos y otros componentes industriales. A pesar de su incomparable valor industrial, no hay convenio sobre la estructura atómica del acero al silicio. Obtener mayor conocimiento sobre los procesos de orden no sólo podría explicar las propiedades magnéticas sino que también podría abrir vías para la reducción de sus características más débiles, como su fragilidad, la cual afecta negativamente a la fabricación del

  1. Effect of Ternary Addition of Iron on Shape Memory Characteristics of Cu-Al Alloys

    Science.gov (United States)

    Raju, T. N.; Sampath, V.

    2011-07-01

    The effect of alloying Cu-Al alloys with Fe on their transformation temperatures and shape memory properties was investigated by differential scanning calorimetry and bend test. It was found that the minor additions of iron resulted in change of transformation temperatures and led to excellent shape memory properties of the alloys. Since the transformation temperatures are high, they are an ideal choice for high-temperature applications.

  2. Modeling the Performance of Biological Rapid Sand Filters Used to Remove Ammonium, Iron, and Manganese From Drinking Water

    DEFF Research Database (Denmark)

    Lee, Carson; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    activated carbon and are often used following ozonation to remove additional biodegradable organics created during ozonation. In Europe, biological filters are also used to remove ammonium and reduced forms of iron and manganese. These compounds can cause biological instability in the distribution system...... tracer, are performed during an operational cycle of a filter to examine how the filter flow changes with time. The data is used to validate a mathematical model that can both predict process performance and to gain an understanding of how dynamic conditions can influence filter performance....... The mathematical model developed is intended to assist in the design of new filters, set up of pilot plant studies, and as a tool to troubleshoot existing problems in full scale filters. Unlike previous models, the model developed accounts for the effects of particle/precipitate accumulation and its effects...

  3. Water-soluble Manganese and Iron Mesotetrakis(carboxyl)porphyrin: DNA Binding, Oxidative Cleavage, and Cytotoxic Activities.

    Science.gov (United States)

    Shi, Lei; Jiang, Yi-Yu; Jiang, Tao; Yin, Wei; Yang, Jian-Ping; Cao, Man-Li; Fang, Yu-Qi; Liu, Hai-Yang

    2017-06-29

    Two new water-soluble metal carboxyl porphyrins, manganese (III) meso -tetrakis (carboxyl) porphyrin and iron (III) meso -tetrakis (carboxyl) porphyrin, were synthesized and characterized. Their interactions with ct-DNA were investigated by UV-Vis titration, fluorescence spectra, viscosity measurement and CD spectra. The results showed they can strongly bind to ct-DNA via outside binding mode. Electrophoresis experiments revealed that both complexes can cleave pBR322 DNA efficiently in the presence of hydrogen peroxide, albeit 2-Mn exhibited a little higher efficiency. The inhibitor tests suggest the oxidative DNA cleavage by these two complexes may involve hydroxyl radical active intermediates. Notably, 2-Mn exhibited considerable photocytotoxicity against Hep G2 cell via triggering a significant generation of ROS and causing disruption of MMP after irradiation.

  4. Study of solubility of akaline earth metals in liquid iron and in alloys on its base

    International Nuclear Information System (INIS)

    Ageev, Yu.A.; Archugov, S.A.

    1985-01-01

    Solubility of magnesium, calcium, strontium and barium in liquid iron and its alloys with aluminium, silicon, nickel, chromium and carbon at 1600 deg C has been measured. Interaction parameters taking account of the effect of added elements on alkaline earth metal solubility in liquid iron have been estimated

  5. Iron and manganese in oxide minerals and in glasses: preliminary consideration of Eh buffering potential at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Caporuscio, F.A.; Vaniman, D.T.

    1985-04-01

    The tuffs of Yucca Mountain at the Nevada Test Site are currently under investigation as a possible deep burial site for high-level radioactive waste disposal. One of the main concerns is the effect of oxidizing groundwater on the transport of radionuclides. Rock components that may affect the oxygen content of groundwater include Fe-Ti oxides, Mn oxides, and glasses that contain ferrous iron. Some phenocryst Fe-Ti oxides at Yucca Mountain are in reduced states, whereas groundmass Fe-Ti oxides have been oxidized to hematite, rutile, and pseudobrookite (Fe 3+ -bearing phases) exclusively. Estimates of Fe 2+ -bearing oxides indicate that less than 0.33 vol% phenocrysts is available to act as solid buffering agents of Eh. Of this percentage, significant amounts of Fe-Ti oxides are isolated from effective interaction with groundwater because they occur in densely welded, devitrified tuffs that have low interstitial permeability. Manganese oxides occur primarily along fractures in the ash-flow tuffs. Because the Mn oxides are concentrated along the same pathways (fractures) where transport has occurred in the past, these small volume percentages could act as buffers. However, the oxidation states of actual Mn-oxide phases are high (Mn 4+ ), and these minerals have virtually no potential for reducing groundwater Eh. Manganese oxides may even act as oxidizing agents. However, regardless of their poor capabilities as reducing agents, the Mn oxides could be important as sorbents of heavy metals at Yucca Mountain. The lack of accessible, pristine Fe-Ti oxides and the generally high oxidation states of Mn oxides seem to rule out these oxides as Eh buffers of the Yucca Mountain groundwater system. Reduction of ferrous iron within glassy tuffs may have some effect on Eh, but further study is needed. At present it is prudent to assume that minerals and glasses have little or no capacity for reducing oxygen-rich groundwater at Yucca Mountain. 25 refs., 3 figs., 12 tabs

  6. QUANTITATIVE CHANGES OF IRON, MANGANESE, ZINC AND COPPER IN PINE BARK COMPOSTED WITH PLANT MASS AND EFFECTIVE MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Jacek Czekała

    2014-10-01

    Full Text Available The objective of the investigation was to ascertain changes in the total contents, as well as water-soluble forms of iron, manganese, zinc and copper during the process of composting of pine bark with plant material (PM, with or without the addition of effective microorganisms (EM. Experiments were carried out at a forest nursery area and comprised the following treatments: pile 1. pine bark, pile 2. pine bark + PM, pile 3. pine bark + PM + EM. Compost piles were formed from pine bark (4 m3 and as described above, 2 Mg of plant material were added to pile 2 and to pile 3 – plant material and effective microorganisms in the amount of 3 dm3·m-3 bark. All compost files were also supplemented with 0.3 kg P2O5·m-3 (in the form of superphosphate 20% P2O5 and 0,1 kg K2O·m-3 (in the form of potassium salt 60%. The plant material comprised a mixture of buckwheat, field pea, serradella and vetch harvested before flowering. Piles were mixed and formed with the tractor aerator. At defined dates, using the method of atomic spectrophotometry, total contents of iron, manganese, zinc and copper, as well as their water-soluble forms were determined. It was found that all the examined elements underwent changes, albeit with different dynamics. This was particularly apparent in the case of water-soluble forms. This solubility was, in general, high during the initial days of the process and declined with the passage of time. No significant impact of effective microorganisms on the solubility of the examined chemical elements was determined, especially in mature composts.

  7. [Vitamin and mineral supplements in the diet of military personnel: effect on the balance of iron, copper and manganese, immune reactivity and physical work-capacity].

    Science.gov (United States)

    Zaĭtseva, I P; Nosolodin, V V; Zaĭtsev, O N; Gladkikh, I P; Koznienko, I V; Beliakov, R A; Arshinov, N P

    2012-03-01

    Conducted with the participation of 50 students of military educational study the effect of various vitamin and mineral complexes for the provision by the body naturally iron, copper and manganese on the immune and physical status. Found that diets enriched BMV was accompanied by a significant delay in the micro-elements, mainly iron, which indicates a deficiency of these bioelements in chickens Santo during the summer. Under the influence of vitamin-mineral complexes significantly increased rates of natural and specific immunity. As the delay increases significantly increased iron medical indicators of immunological reaction efficiency and physical performance.

  8. Contribution to the study of the electrodeposition of iron-nickel alloys

    International Nuclear Information System (INIS)

    Valignat, J.

    1968-01-01

    Using a coulometric technique based upon the anodic intentiostatic dissolution, we studied the potentiostatic, deposition of nickel, iron and nickel iron alloys. We have shown that the minimum of the curve I = f (t) (deposition current versus time) is probably due to the transitory blocking of the surface by hydrogen and that the syn-crystallisation of nickel and iron is responsible for the anomalous co-deposition of these two elements. (author) [fr

  9. Elastic characteristics and microplastic deformation of amorphous alloys on iron base

    International Nuclear Information System (INIS)

    Pol'dyaeva, G.P.; Zakharov, E.K.; Ovcharov, V.P.; Tret'yakov, B.N.

    1983-01-01

    Investigation results of elasticity and microplasticity properties (modulus of normal elasticity E, elasticity limit σsub(0.01) and yield limit σsub(0.2)) of three amorphous alloys on iron base Fe 80 B 20 , Fe 70 Cr 10 B 20 and Fe 70 Cr 5 Ni 5 B 20 are given. Amorphous band of the alloys is obtained using the method of melt hardening. It is shown that amorphous alloys on iron base possess high elasticity and yield limits and hardness and are very perspective for the use as spring materials

  10. Preparation and Characterization of Nicke-iron Alloy Film as Freestanding Electrode for Oxygen Evolution Reaction

    Directory of Open Access Journals (Sweden)

    Yao Mengqi

    2018-01-01

    Full Text Available This work reports the porous nicke-iron alloy film supported on stainless steel mesh as freestanding electrode for enhanced oxygen evolution reaction (OER catalyst prepared from an one step electrodeposition method. Results indicated that the porous nickle-iron alloy film exhibits a low overpotential of 270 mV at 10 mA cm-2 and excellent electroconductibility. The superior OER properties can be attributed to its novel synthetic process, conductive substrate and porous structure. This work will provide a new strategy to fabricate alloy film for OER electrocatalyst.

  11. Elastic characteristics and microplastic deformation of amorphous alloys on iron base

    Energy Technology Data Exchange (ETDEWEB)

    Pol' dyaeva, G.P.; Zakharov, E.K.; Ovcharov, V.P.; Tret' yakov, B.N. (Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR))

    1983-01-01

    Investigation results of elasticity and microplasticity properties (modulus of normal elasticity E, elasticity limit sigmasub(0.01) and yield limit sigmasub(0.2)) of three amorphous alloys on iron base Fe/sub 80/B/sub 20/, Fe/sub 70/Cr/sub 10/B/sub 20/ and Fe/sub 70/Cr/sub 5/Ni/sub 5/B/sub 20/ are given. Amorphous band of the alloys is obtained using the method of melt hardening. It is shown that amorphous alloys on iron base possess high elasticity and yield limits and hardness and are very perspective for the use as spring materials.

  12. Effect of Iron and Magnesium on Alloy AL9M Structure and Properties

    Science.gov (United States)

    Bazhenov, V. E.; Koltygin, A. V.; Belov, V. D.

    2017-09-01

    The effect of iron impurity on the structure and properties of aluminum alloy AL9M, especially its action on magnesium distribution within the structure, is studied. The microstructure of a cast component of this alloy broken during operation is analyzed. It is shown that iron impurity has an unfavorable effect on structure and mechanical properties of a casting due to appearance of Al9Fe2Si and Al18Fe2Mg7Si10 intermetallics. Formation of these intermetallics consumes a considerable amount of magnesium and lowers the content of the Q(Al5Cu2Mg8Si6) strengthening phase in the alloy structure.

  13. Structure and growth of oxide on iron-chromium alloys

    International Nuclear Information System (INIS)

    Cox, M.G.C.; McEnaney, B.; Scott, V.D.

    1974-01-01

    Several oxides form during the initial stages of oxidation of iron-chromium alloys at 400 to 600 0 C in CO 2 -1%CO gas. The nature of the oxidation product depends upon crystallographic orientation and composition of the substrate, and can be explained by considering the maximum solubility of chromium in different oxide phases together with interfacial and strain energy factors. Kinetics of oxidation together with micrographic observations indicate that, as oxidation proceeds spinel oxide M 3 O 4 nucleates at sites on the substrate surface associated with asperities. The spinel nuclei grow laterally and vertically until they coalesce and the scale subsequently thickens according to a parabolic rate law. The duplex structure of scales is interpreted in terms of an outward diffusion of cations together with simultaneous growth of an inner layer in the space created by this outward movement. Scale porosity provides a route for gas-phase transport of oxidant to support the growth of the inner layer. Regularly spaced lamellar voids which may form in the inner layer are believed to be associated with a cyclic vacancy condensation process. Enrichment of the inner layer in chromium is explained by analysis of the possible diffusion path networks in close-packed oxides. Some comments are made concerning possible practical applications of these data. (author)

  14. The hyperfine properties of iron-gallium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Gismelseed, A.; Al-Rawas, A.; Yousif, A.; Widatallah, H.; Al-Azri, Maya [Sultan Qaboos University, Department of Physics (Oman); Al-Barwani, M. [NYU Abu Dhabi (United Arab Emirates)

    2016-12-15

    The hyperfine properties at Fe site in iron-gallium alloy are calculated using the full-potential linear-augmented-plane-waves method. We have calculated the Fermi contact field (B{sub hf}) and isomer shift (δ) at the Fe site versus the number of neighbouring Ga atoms. We found that B{sub hf} decrease whereas δ increases with increasing number of neighbouring G atom. In addition we have calculated the hyperfine properties of FeGa system with DO{sub 3} structure, where various distributions of 4 the Ga atoms in the conventional unit cell are considered (including the regular DO{sub 3} structure). We found that the DO{sub 3} structure has the lowest energy as compared to the other configurations. The two distinct A and D sites of the ordered DO{sub 3} conventional unit cell have two distinct values for B{sub hf} and δ. On changing the atomic arrangement of the Ga atoms within the conventional unit cell, the configuration of the A site is maintained whereas that of the D site becomes imperfect. The contact magnetic hyperfine fields of the D-like sites in the imperfect structures are lower than that of the DO{sub 3}D site.

  15. Oxidation influence on crystallisation in iron-based amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gloriant, T.; Surinach, S.; Munoz, J.S.; Baro, M.D. [Universitat Autonoma de Barcelona (Spain). Dept. de Fisica; Inoue, A. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    2001-07-01

    The partially crystalline iron-based nanophase composites elaborated by rapid solidification techniques are very attractive for their excellent soft magnetic properties and their potential for industrial applications. In these nanocomposite materials a control of both the structure (size, shape and distribution of the nanoparticles in the amorphous matrix) and the kinetic behaviour (nucleation and growth mechanism) is essential in order to obtain the best properties and to be able to produce them at the industrial scale. Our group has been working in this research area for a long time and the investigation presented here is the result of an international collaboration. This study deals with the effect of cobalt addition in Fe-Nb-B melt-spun amorphous alloys on the devitrification/crystallisation processes induced by thermal treatments and characterised by X-ray diffraction analysis (XRD), thermomagnetic analysis (TMG) and transmission electron microscopy observations (TEM). The transformation sequences, from the initial amorphous phase to the fully crystallised final state, were carried out using different annealing experiments (under vacuum and in air) and have revealed a strong influence of the environmental atmosphere during devitrification. It is shown that oxidation can greatly affect the crystallisation behaviour as a result of the high metastable state of the initial amorphous phase. The results and observations of this phenomenon will be presented. (orig.)

  16. Procedure of identification of fullerenes isolated from iron-carbon alloys

    International Nuclear Information System (INIS)

    Zakirnichnaya, M.M.

    2001-01-01

    A method of fullerenes isolation from the structure of iron-carbon alloys and their identification using physical methods which provide determination of the different parameters of nanoobjects is developed. Qualitative (mass-spectrometry of positive and negative ions, small angle X-ray scattering) and quantitative (IR-spectrometry, liquid chromatography) evaluation of fullerenes in the samples obtained from iron-carbon alloys and their visual observation using scanning tunnel microscopy are performed. It is found that the method provides isolation and identification of fullerenes present in the structure of steels and irons [ru

  17. Determination of trace impurities in iron-based alloy using neutron activation analysis

    International Nuclear Information System (INIS)

    Zaidi, J.H.; Waheed, S.; Ahmad, S.

    2000-01-01

    A radiochemical neutron activation analysis procedure has been developed and applied to investigate 40 major, minor, and trace impurities in iron-based alloy. A comparison of RNAA and INAA indicated a significant improvement in the detection limits. The extensive use of these alloys in the heavy mechanical industry, manufacturing of aircraft engines, nuclear applications, medical devices and chemical equipment requires their precise characterization. The concentration of iron in the iron-based alloy was found to be 86.7%, whereas Ca, Cr, K, Mg, Mn, V and W were the other constituents of the alloy, which constituted to around 12.89%. The rest of the elements were present in minor or trace levels. Most of the rare earth elements were also present in trace amounts. (orig.)

  18. Microstructure and Aging of Powder-Metallurgy Al Alloys

    Science.gov (United States)

    Blackburn, L. B.

    1987-01-01

    Report describes experimental study of thermal responses and aging behaviors of three new aluminum alloys. Alloys produced from rapidly solidified powders and contain 3.20 to 5.15 percent copper, 0.24 to 1.73 percent magnesium, 0.08 to 0.92 percent iron, and smaller amounts of manganese, nickel, titanium, silicon, and zinc. Peak hardness achieved at lower aging temperatures than with standard ingot-metallurgy alloys. Alloys of interest for automobile, aircraft, and aerospace applications.

  19. Vanadium Influence on Iron Based Intermetallic Phases in AlSi6Cu4 Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2014-10-01

    Full Text Available Negative effect of iron in Al-Si alloys mostly refers with iron based intermetallic phases, especially Al5FeSi phases. These phases are present in platelet-like forms, which sharp edges are considered as main cracks initiators and also as contributors of porosity formation. In recent times, addition of some elements, for example Mn, Co, Cr, Ni, V, is used to reduce influence of iron. Influence of vanadium in aluminium AlSi6Cu4 alloy with intentionally increased iron content is presented in this article. Vanadium amount has been graduated and chemical composition of alloy has been analysed by spectral analysis. Vanadium influence on microstructural changes was evaluated by microstructural analysis and some of intermetallic particles were reviewed by EDX analysis.

  20. Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys

    International Nuclear Information System (INIS)

    Hsu, U.S.; Hung, U.D.; Yeh, J.W.; Chen, S.K.; Huang, Y.S.; Yang, C.C.

    2007-01-01

    High-entropy alloys are newly developed alloys that are composed, by definition, of at least five principal elements with concentrations in the range of 5-35 at.%. Therefore, the alloying behavior of any given principal element is significantly affected by all the other principal elements present. In order to elucidate this further, the influence of iron, silver and gold addition on the microstructure and hardness of AlCoCrCuNi-based equimolar alloys has been examined. The as-cast AlCoCrCuNi base alloy is found to have a dendritic structure, of which only solid solution FCC and BCC phases can be observed. The BCC dendrite has a chemical composition close to that of the nominal alloy, with a deficiency in copper however, which is found to segregate and form a FCC Cu-rich interdendrite. The microstructure of the iron containing alloys is similar to that of the base alloy. It is found that both of these aforementioned alloys have hardnesses of about 420 HV, which is equated to their similar microstructures. The as-cast ingot forms two layers of distinct composition with the addition of silver. These layers, which are gold and silver in color, are determined to have a hypoeutectic Ag-Cu composition and a multielement mixture of the other principal elements, respectively. This indicates the chemical incompatibility of silver with the other principal elements. The hardnesses of the gold (104 HV) and silver layers (451 HV) are the lowest and highest of the alloy systems studied. This is attributed to the hypoeutectic Ag-Cu composition of the former and the reduced copper content of the latter. Only multielement mixtures, i.e. without copper segregation, form in the gold containing alloy. Thus, it may be said that gold acts as a 'mixing agent' between copper and the other elements. Although several of the atom pairs in the gold containing alloy have positive enthalpies, thermodynamic considerations show that the high entropy contribution is sufficient to counterbalance

  1. Low temperature irradiation effects on iron boron based amorphous metallic alloys

    International Nuclear Information System (INIS)

    Audouard, A.

    1982-09-01

    Three Fe-B amorphous alloys (Fe 80 B 20 , Fe 27 Mo 2 B 20 and Fe 75 B 25 ) and the crystallized Fe 3 B alloy have been irradiated at the temperature of liquid hydrogen. Electron irradiation and irradiation by 10 B fission fragments induce point defects in amorphous alloys. These defects are characterized by an intrinsic resistivity and a formation volume. The threshold energy for the displacement of iron atoms has also been calculated. Irradiation by 235 U fission fragments induces some important structural modifications in the amorphous alloys [fr

  2. Synthesis and Characterization of Mixed Iron-Manganese Oxide Nanoparticles and Their Application for Efficient Nickel Ion Removal from Aqueous Samples

    Science.gov (United States)

    Serra, Antonio; Monteduro, Anna Grazia; Padmanabhan, Sanosh Kunjalukkal; Licciulli, Antonio; Bonfrate, Valentina; Salvatore, Luca; Calcagnile, Lucio

    2017-01-01

    Mixed iron-manganese oxide nanoparticles, synthesized by a simple procedure, were used to remove nickel ion from aqueous solutions. Nanostructures, prepared by using different weight percents of manganese, were characterized by transmission electron microscopy, selected area diffraction, X-ray diffraction, Raman spectroscopy, and vibrating sample magnetometry. Adsorption/desorption isotherm curves demonstrated that manganese inclusions enhance the specific surface area three times and the pores volume ten times. This feature was crucial to decontaminate both aqueous samples and food extracts from nickel ion. Efficient removal of Ni2+ was highlighted by the well-known dimethylglyoxime test and by ICP-MS analysis and the possibility of regenerating the nanostructure was obtained by a washing treatment in disodium ethylenediaminetetraacetate solution. PMID:28804670

  3. Synthesis and Characterization of Mixed Iron-Manganese Oxide Nanoparticles and Their Application for Efficient Nickel Ion Removal from Aqueous Samples

    Directory of Open Access Journals (Sweden)

    Alessandro Buccolieri

    2017-01-01

    Full Text Available Mixed iron-manganese oxide nanoparticles, synthesized by a simple procedure, were used to remove nickel ion from aqueous solutions. Nanostructures, prepared by using different weight percents of manganese, were characterized by transmission electron microscopy, selected area diffraction, X-ray diffraction, Raman spectroscopy, and vibrating sample magnetometry. Adsorption/desorption isotherm curves demonstrated that manganese inclusions enhance the specific surface area three times and the pores volume ten times. This feature was crucial to decontaminate both aqueous samples and food extracts from nickel ion. Efficient removal of Ni2+ was highlighted by the well-known dimethylglyoxime test and by ICP-MS analysis and the possibility of regenerating the nanostructure was obtained by a washing treatment in disodium ethylenediaminetetraacetate solution.

  4. Microstructural study and wear behavior of ductile iron surface alloyed by Inconel 617

    International Nuclear Information System (INIS)

    Arabi Jeshvaghani, R.; Jaberzadeh, M.; Zohdi, H.; Shamanian, M.

    2014-01-01

    Highlights: • The Ni-base alloy was deposited on the surface of ductile iron by TIG welding process. • Microstructure of alloyed layer consisted of carbides embedded in Ni-rich dendrite. • Hardness and wear resistance of coated sample greatly improved. • The formation of oxide layer and delamination were dominant mechanisms of wear. - Abstract: In this research, microstructure and wear behavior of Ni-based alloy is discussed in detail. Using tungsten inert gas welding process, coating of nearly 1–2 mm thickness was deposited on ductile iron. Optical and scanning electron microscopy, as well as X-ray diffraction analysis and electron probe microanalysis were used to characterize the microstructure of the surface alloyed layer. Micro-hardness and wear resistance of the alloyed layer was also studied. Results showed that the microstructure of the alloyed layer consisted of M 23 C 6 carbides embedded in Ni-rich solid solution dendrites. The partial melted zone (PMZ) had eutectic ledeburit plus martensite microstructure, while the heat affected zone (HAZ) had only a martensite structure. It was also noticed that hardness and wear resistance of the alloyed layer was considerably higher than that of the substrate. Improvement of wear resistance is attributed to the solution strengthening effect of alloying elements and also the presence of hard carbides such as M 23 C 6 . Based on worn surface analysis, the dominant wear mechanisms of alloyed layer were found to be oxidation and delamination

  5. The effect of microstructure of low-alloy spheroidal cast iron on impact strength

    Directory of Open Access Journals (Sweden)

    T. Szykowny

    2010-01-01

    Full Text Available The study presents an evaluation of the effect of microstructure of low-alloy spheroidal cast iron on impact strength within the temperature range from –60 to 100°C. Analyses were conducted on one type of cast iron containing 0.51% Cu and 0.72% Ni. Cast iron was austempered or normalized. Values of KCV and static mechanical properties were determined. Structural and fractographic analyses were based on light and scanning microscopy as well as X-ray diffraction. It was found that thermal processing considerably improves impact strength in relation to cast iron after casting. At the same time static mechanical properties are enhanced.

  6. FEATURES OF SPHEROIDIZING MODIFICATION OF HIGH-STRENGTH CAST IRON WITH MASTER ALLOYS BASED ON COPPER

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The increase of efficiency of modification process for ductile iron is topically, thereby increasing its mechanical and operational properties. For these purposes, in practice, various magnesium containing alloys are used, including «heavy» ones on the basis of Copper and Nickel. The analysis has shown that the application of bulk inoculating alloys based on copper basis were not effectively due to long dissolution period. From this point of view, the interest is high-speed casting, allowing the production of inoculating alloys in the form of strips – chips that are characterized by a low dissolution time and low piroeffekt. The aim of this work is to study the features of structure formation in nodular cast iron using different spheroidizing alloys based on copper. Studies have shown that the transition from the use of briquetted form alloys based on copper and magnesium to the «chips-inoculating alloys» allowed increasing the efficiency of the spheroidizing process. Further improvement in the quality of ductile iron can be achieved by the use in «chip-inoculating alloys» additives of nanosized yttrium oxide powder. 

  7. Volatilization from PCA steel alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hagrman, D.L.; Smolik, G.R.; McCarthy, K.A.; Petti, D.A.

    1996-08-01

    The mobilizations of key components from Primary Candidate Alloy (PCA) steel alloy have been measured with laboratory-scale experiments. The experiments indicate most of the mobilization from PCA steel is due to oxide formation and spalling but that the spalled particles are large enough to settle rapidly. Based on the experiments, models for the volatization of iron, manganese, and cobalt from PCA steel in steam and molybdenum from PCA steel in air have been derived.

  8. Trithiocyanurate Complexes of Iron, Manganese and Nickel and Their Anticholinesterase Activity

    Directory of Open Access Journals (Sweden)

    Pavel Kopel

    2014-04-01

    Full Text Available The complexes of Fe(II, Mn(II and Ni(II with a combination of a Schiff base, nitrogen-donor ligand or macrocyclic ligand and trithiocyanuric acid (ttcH3 were prepared and characterized by elemental analysis and spectroscopies. Crystal and molecular structures of the iron complex of composition [Fe(L1](ttcH2(ClO4·EtOH·H2O (1, where L1 is Schiff base derived from tris(2-aminoethylamine and 2-pyridinecarboxaldehyde, were solved. It was found that the Schiff base is coordinated to the central iron atom by six nitrogens forming deformed octahedral arrangement, whereas trithiocyanurate(1- anion, perchlorate and solvent molecules are not coordinated. The X-ray structure of the Schiff base sodium salt is also presented and compared with the iron complex. The anticholinesterase activity of the complexes was also studied.

  9. Engineering and Optimization of Silicon-Iron-Manganese Nanoalloy Electrode for Enhanced Lithium-Ion Battery

    Science.gov (United States)

    Alaboina, Pankaj K.; Cho, Jong-Soo; Cho, Sung-Jin

    2017-10-01

    The electrochemical performance of a battery is considered to be primarily dependent on the electrode material. However, engineering and optimization of electrodes also play a crucial role, and the same electrode material can be designed to offer significantly improved batteries. In this work, Si-Fe-Mn nanomaterial alloy (Si/alloy) and graphite composite electrodes were densified at different calendering conditions of 3, 5, and 8 tons, and its influence on electrode porosity, electrolyte wettability, and long-term cycling was investigated. The active material loading was maintained very high ( 2 mg cm-2) to implement electrode engineering close to commercial loading scales. The densification was optimized to balance between the electrode thickness and wettability to enable the best electrochemical properties of the Si/alloy anodes. In this case, engineering and optimizing the Si/alloy composite electrodes to 3 ton calendering (electrode densification from 0.39 to 0.48 g cm-3) showed enhanced cycling stability with a high capacity retention of 100% over 100 cycles. [Figure not available: see fulltext.

  10. Hydrometallurgical method for recycling rare earth metals, cobalt, nickel, iron, and manganese from negative electrodes of spent Ni-MH mobile phone batteries

    International Nuclear Information System (INIS)

    Santos, Vinicius Emmanuel de Oliveira dos; Lelis, Maria de Fatima Fontes; Freitas, Marcos Benedito Jose Geraldo de

    2014-01-01

    A hydrometallurgical method for the recovery of rare earth metals, cobalt, nickel, iron, and manganese from the negative electrodes of spent Ni-MH mobile phone batteries was developed. The rare earth compounds were obtained by chemical precipitation at pH 1.5, with sodium cerium sulfate (NaCe(SO 4 ) 2 .H 2 O) and lanthanum sulfate (La 2 (SO 4 ) 3 .H 2 O) as the major recovered components. Iron was recovered as Fe(OH) 3 and FeO. Manganese was obtained as Mn 3 O 4 .The recovered Ni(OH) 2 and Co(OH) 2 were subsequently used to synthesize LiCoO 2 , LiNiO 2 and CoO, for use as cathodes in ion-Li batteries. The anodes and recycled materials were characterized by analytical techniques. (author)

  11. Fiber laser cladding of nickel-based alloy on cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Arias-González, F., E-mail: felipeag@uvigo.es [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Val, J. del [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Comesaña, R. [Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain); Penide, J.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J. [Applied Physics Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo E-36310 (Spain)

    2016-06-30

    Highlights: • Fiber laser cladding of Ni-based alloy on cast iron was experimentally studied. • Two different types of cast iron have been analyzed: gray and ductile cast iron. • Suitable processing parameters to generate a Ni-based coating were determined. • Dilution is higher in gray cast iron samples than in ductile cast iron. • Ni-based coating presents higher hardness than cast iron but similar Young's modulus. - Abstract: Gray cast iron is a ferrous alloy characterized by a carbon-rich phase in form of lamellar graphite in an iron matrix while ductile cast iron presents a carbon-rich phase in form of spheroidal graphite. Graphite presents a higher laser beam absorption than iron matrix and its morphology has also a strong influence on thermal conductivity of the material. The laser cladding process of cast iron is complicated by its heterogeneous microstructure which generates non-homogeneous thermal fields. In this research work, a comparison between different types of cast iron substrates (with different graphite morphology) has been carried out to analyze its impact on the process results. A fiber laser was used to generate a NiCrBSi coating over flat substrates of gray cast iron (EN-GJL-250) and nodular cast iron (EN-GJS-400-15). The relationship between processing parameters (laser irradiance and scanning speed) and geometry of a single laser track was examined. Moreover, microstructure and composition were studied by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD). The hardness and elastic modulus were analyzed by means of micro- and nanoindentation. A hardfacing coating was generated by fiber laser cladding. Suitable processing parameters to generate the Ni-based alloy coating were determined. For the same processing parameters, gray cast iron samples present higher dilution than cast iron samples. The elastic modulus is similar for the coating and the substrate, while the Ni

  12. Thin wall ductile iron casting as a substitute for aluminum alloy casting in automotive industry

    Directory of Open Access Journals (Sweden)

    M. Górny

    2009-01-01

    Full Text Available In paper it is presented thin wall ductile iron casting (TWDI as a substitute of aluminium alloy casting. Upper control arm made of ductile iron with wall thickness ranging from 2 – 3.7 mm was produced by inmold process. Structure, mechanical properties and computer simulations were investigated. Structural analysis of TWDI shows pearlitic-ferritic matrix free from chills and porosity. Mechanical testing disclose superior ultimate tensile strength (Rm, yield strength (Rp0,2 and slightly lower elongation (E of TWDI in comparison with forged control arm made of aluminium alloy (6061-T6. Moreover results of computer simulation of static loading for tested control arms are presented. Analysis show that the light-weight ductile iron casting can be loaded to similar working conditions as the forged Al alloy without any potential failures.

  13. The GENIALL process for generation of nickel-iron alloys from nickel ores or mattes

    International Nuclear Information System (INIS)

    Diaz, G.; Frias, C.; Palma, J.

    2001-01-01

    A new process, called GENIALL (acronym of Generation of Nickel Alloys), for nickel recovery as ferronickel alloys from ores or mattes without previous smelting is presented in this paper. Its core technology is a new electrolytic concept, the ROSEL cell, for electrowinning of nickel-iron alloys from concentrated chloride solutions. In the GENIALL Process the substitution of iron-based solid wastes as jarosite, goethite or hematite, by saleable ferronickel plates provides both economic and environmental attractiveness. Another advantage is that no associated sulfuric acid plant is required. The process starts with leaching of the raw material (ores or mattes) with a solution of ferric chloride. The leachate liquor is purified by conventional methods like cementation or solvent extraction, to remove impurities or separate by-products like copper and cobalt. The purified solution, that contains a mixture of ferrous and nickel chlorides is fed to the cathodic compartment of the electrowinning cell, where nickel and ferrous ions are reduced together to form an alloy. Simultaneously, ferrous chloride is oxidized to ferric chloride in the anodic compartment, from where it is recycled to the leaching stage. The new electrolytic equipment has been developed and scaled up from laboratory to pilot prototypes with commercial size electrodes of 1 m 2 . Process operating conditions have been established in continuous runs at bench and pilot plant scale. The technology has shown a remarkable capacity to produce nickel-iron alloys of a wide range of compositions, from 10% to 80% nickel, just by adjusting the operating parameters. This emerging technology could be implemented in many processes in which iron and other non-ferrous metals are harmful impurities to be removed, or valuable metals to be recovered as a marketable iron alloy. Other potential applications of this technology are regeneration of spent etching liquors, and iron removal from aqueous effluents. (author)

  14. Method for determining the hardness of strain hardening articles of tungsten-nickel-iron alloy

    International Nuclear Information System (INIS)

    Wallace, S.A.

    1984-01-01

    The present invention is directed to a rapid nondestructive method for determining the extent of strain hardening in an article of tungsten-nickel-iron alloy. The method comprises saturating the article with a magnetic field from a permanent magnet, measuring the magnetic flux emanating from the article, comparing the measurements of the magnetic flux emanating from the article with measured magnetic fluxes from similarly shaped standards of the alloy with known amounts of strain hardening to determine the hardness

  15. Relation between feeding mechanisms and solidification mode in 380 aluminium alloy with different iron contents

    International Nuclear Information System (INIS)

    Tovio, D. O.; Gonzalez, A.C.; Mugica, G. W.; Cuyas, J. C.

    2003-01-01

    In the present work the effect of iron (0.15, 0.42 and 0.86%) content in feeding mechanisms for 380 aluminium alloy has been studied. The feeding capacity has been evaluated by a device that produces a barrier removable to allowing the movement of the inter dendritic liquid. The results show the flow of different quantity of liquid, it depends of the temperature of operating the device and of the iron content. For minimum and maximum iron content, the inter dendritic and bursts feeding mechanisms are fundamentally involved, for 0.42% of iron the feeding mechanisms was the inter dendritic. The authors establish this behavior by the solidification mode of alloy, which promotes the presence of particles of Si or plates of b-Al 3 FeDi phase, in the inter dendritic channels and produce the different feeding mechanisms. (Author) 15 refs

  16. Chemical interaction silicon nitride ceramics and iron alloys

    Directory of Open Access Journals (Sweden)

    Oliveira, F. J.

    2000-12-01

    Full Text Available Metal/ceramic diffusion experiments are helpful to study bonding mechanisms or the effect of metal composition on the chemical wear of ceramic cutting tools. The reaction kinetics of Fe alloys/Si3 N4 ceramic diffusion couples was investigated in the temperature range 1050ºC-1250ºC, for 0.5h to 80h, under inert atmosphere. Optical microscopy, SEM and EPMA were carried out in cross sections of the reacted pairs. Si3N4 decomposes into Si and N that dissolve and diffuse through the metal. Both the diffusion zone on the metal side and the reaction zone on the ceramic side obey parabolic growth laws of time, with activation energies in the range Q=310-460kJmol-1. The amount of dissolved Si, the length of the diffusion zone and thus the reactivity of the ceramic increase as the alloy carbon content decreases. Due to Si accumulation, the α-Fe solid solution is stabilised at the reaction temperature and a steep decrease in the Si concentration is observed beyond the diffusion zone. The reinforcement of the Si3N4 composites with A12O3 platelets enhances the chemical resistance of the ceramic due to the inertness of this oxide and to the partial crystallisation of the intergranular phase. Other dispersoids such as HfN, BN and TiN do not improve the chemical resistance of the matrix by iron attack.

    Los experimentos de difusión metal/cerámica permiten estudiar mecanismos de unión y analizar el efecto de la composición del metal en el desgaste químico de herramientas de corte cerámicas. En este trabajo se investigó la cinética de reacción en pares de difusión aleaciones de Fe/Si3N4 a temperaturas entre 1050ºC-1250ºC, tiempos entre 0.5h a 80h, en atmósfera inerte. Las secciones transversales de los pares de difusión se analizaron mediante microscopía óptica, SEM y microsonda electrónica. El Si3N4 se descompone en Si y N que se disuelven y difunden en el metal. Tanto la zona de difusión en el metal como la zona de reacción en la cer

  17. Adsorption of Arsenate by Nano Scaled Activated Carbon Modified by Iron and Manganese Oxides

    Directory of Open Access Journals (Sweden)

    George P. Gallios

    2017-09-01

    Full Text Available The presence of arsenic in water supplies is a major problem for public health and still concerns large parts of population in Southeast Asia, Latin America and Europe. Removal of arsenic is usually accomplished either by coagulation with iron salts or by adsorption with iron oxides or activated alumina. However, these materials, although very efficient for arsenic, normally do not remove other undesirable constituents from waters, such as chlorine and organo-chlorine compounds, which are the results of water chlorination. Activated carbon has this affinity for organic compounds, but does not remove arsenic efficiently. Therefore, in the present study, iron modified activated carbons are investigated as alternative sorbents for the removal of arsenic(V from aqueous solutions. In addition, modified activated carbons with magnetic properties can easily be separated from the solutions. In the present study, a simple and efficient method was used for the preparation of magnetic Fe3(Mn2+O4 (M:Fe and/or Mn activated carbons. Activated carbons were impregnated with magnetic precursor solutions and then calcinated at 400 °C. The obtained carbons were characterized by X-ray diffraction (XRD, nitrogen adsorption isotherms, scanning electron microscopy (SEM, vibrating sample magnetometer (VSM, Fourier Transform Infrared Spectrometry (FTIR and X-ray photoelectron spectroscopy (XPS measurements. Their adsorption performance for As(V was evaluated. The iron impregnation presented an increase in As(V maximum adsorption capacity (Qmax from about 4 mg g−1 for the raw carbon to 11.05 mg g−1, while Mn incorporation further increased the adsorption capacity at 19.35 mg g−1.

  18. Nanostructured Iron and Manganese Oxide Electrode Materials for Lithium Batteries: Influence of Chemical and Physical Properties on Electrochemistry

    Science.gov (United States)

    Durham, Jessica L.

    The widespread use of portable electronics and growing interest in electric and hybrid vehicles has generated a mass market for batteries with increased energy densities and enhanced electrochemical performance. In order to address a variety of applications, commercially fabricated secondary lithium-ion batteries employ transition metal oxide based electrodes, the most prominent of which include lithium nickel manganese cobalt oxide (LiNixMn yCo1-x-yO2), lithium iron phosphate (LiFePO4), and lithium manganese oxide (LiMn 2O4). Transition metal oxides are of particular interest as cathode materials due to their robust framework for lithium intercalation, potential for high energy density, and utilization of earth-abundant elements (i.e. iron and manganese) leading to decreased toxicity and cost-effective battery production on industrial scales. Specifically, this research focuses on MgFe2O4, AgxMn8O16, and AgFeO 2 transition metal oxides for use as electrode materials in lithium-based batteries. The electrode materials are prepared via co-precipitation, reflux, and hydrothermal methods and characterized by several techniques (XRD, SEM, BET, TGA, DSC, XPS, Raman, etc.). The low-temperature syntheses allowed for precise manipulation of structural, compositional, and/or functional properties of MgFe2O4, AgxMn8 O16, and AgFeO2 which have been shown to influence electrochemical behavior. In addition, advanced in situ and ex situ characterization techniques are employed to study the lithiation/de-lithiation process and establish valid redox mechanisms. With respect to both chemical and physical properties, the influence of MgFe2O4 particle size and morphology on electrochemical behavior was established using ex situ X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) imaging. Based on composition, tunneled AgxMn8O16 nanorods, prepared with distinct Ag+ contents and crystallite sizes, display dramatic differences in ion-transport kinetics due to

  19. Molecular-Level Processes Governing the Interaction of Contaminants with Iron and Manganese Oxides - Final Report; FINAL

    International Nuclear Information System (INIS)

    Brown, G. E. Jr.; Chambers, S. A.

    1999-01-01

    Many of the inorganic and organic contaminants present in sediments at DOE sites can be altered or destroyed by reduction and oxidation (redox) reactions occurring at mineral surfaces. A fundamental understanding of such redox processes provided by molecular-level studies on structurally and compositionally well-defined mineral surfaces will lead to: (i) improved models of contaminant fate and transport in geochemical systems, and (ii) optimized manipulation of these processes for remediation purposes. To contribute to this understanding, we will study, both experimentally and theoretically, redox processes involving three important contaminants - chromate ion, carbon tetrachloride, and trichloroethene TCE, on the following iron and manganese oxides - hematite, magnetite, maghemite, and pyrolusite. These oxides and their hydroxylated analogs commonly occur as coatings on minerals or as interfaces in the subsurface environment. Single-crystal surfaces of these oxides will be synthesized in carefully controlled fashion by molecular beam epitaxy. These surfaces, as well as high surface are powdered samples of these oxides, will be used in spectroscopic and kinetic experiments in both aqueous and gas phases. Our goal is to identify products and to determine the kinetics and mechanisms of surface-catalyzed redox reaction of Cr(VI) and CR(III), and the reductive dechlorination of carbon tetrachloride and TCE. The combination of theory and experiment will provide the base information needed to scale from the molecular level to the microscopic grain level minerals

  20. Environmental natural radioactive and radiation hazard in sedimentary rocks for manganese-iron ore at Um Bogma Area, Sinai, Egypt

    International Nuclear Information System (INIS)

    Abu-Zeid, H.M; Nada, A; Abd-Elmaksoud, T.M; Ragab, F.M.; El-Assy, I

    2011-01-01

    The aim of this study was to measure concentrations and distributions of natural radionuclides occurring in sedimentary rocks. The activity concentrations of the naturally occurring radionuclides 238 U, 232 Th,and 40 K in the manganese-iron ore of Um Bogma area which subdivided into three localities Wadi Nasieb (NS), Abu Thor (AT) and Um Bogma (UB) were measured using a high-purity germanium detector.The average concentration values of 238 U, 232 Th, and 40 K in the surveyed samples in Wadi Nasieb are 261.38, 9.57 and 130.63 Bqkg -1 respectively also in Abu Thor 224.51,6.7,94.99 Bqkg -1 and in Um Bogma 441.47,7.87 and 272.69 Bqkg -1 . The overall outdoor terrestrial gamma dose rates fluctuate from 103.38 to 193.5 nGyh -1 for all localities. The annual effective dose rate for all localities ranged from 0.13 to 0.24 mSvy -1 have been compared with the global averages which are within the safety range for workers in the studied localities.

  1. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir.

    Science.gov (United States)

    Greene, A C; Patel, B K; Sheehy, A J

    1997-04-01

    A thermophilic anaerobic bacterium, designated strain BMAT (T = type strain), was isolated from the production water of Beatrice oil field in the North Sea (United Kingdom). The cells were straight to bent rods (1 to 5 by 0.3 to 0.5 microns) which stained gram negative. Strain BMAT obtained energy from the reduction of manganese (IV), iron(III), and nitrate in the presence of yeast extract, peptone, Casamino Acids, tryptone, hydrogen, malate, acetate, citrate, pyruvate, lactate, succinate, and valerate. The isolate grew optimally at 60 degrees C (temperature range for growth, 50 to 65 degrees C) and in the presence of 2% (wt/vol) NaCl (NaCl range for growth, 0 to 5% [wt/vol]). The DNA base composition was 34 mol% G + C. Phylogenetic analyses of the 16S rRNA gene indicated that strain BMAT is a member of the domain Bacteria. The closest known bacterium is the moderate thermophile Flexistipes sinusarabici (similarity value, 88%). Strain BMAT possesses phenotypic and phylogenetic traits that do not allow its classification as a member of any previously described genus; therefore, we propose that this isolate should be described as a member of a novel species of a new genus, Deferribacter thermophilus gen. nov., sp. nov.

  2. Surface properties of self-assembled monolayer films of tetra-substituted cobalt, iron and manganese alkylthio phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Akinbulu, Isaac Adebayo; Khene, Samson [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.z [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa)

    2010-09-30

    Self-assembled monolayer (SAM) films of iron (SAM-1), cobalt (SAM-2) and manganese (SAM-3) phthalocyanine complexes, tetra-substituted with diethylaminoethanethio at the non-peripheral positions, were formed on gold electrode in dimethylformamide (DMF). Electrochemical, impedimentary and surface properties of the SAM films were investigated. Cyclic voltammetry was used to investigate the electrochemical properties of the films. Ability of the films to inhibit common faradaic processes on bare gold surface (gold oxidation, solution redox chemistry of [Fe(H{sub 2}O){sub 6}]{sup 3+}/[Fe(H{sub 2}O){sub 6}]{sup 2+} and underpotential deposition (UDP) of copper) was investigated. Electrochemical impedance spectroscopy (EIS), using [Fe(CN){sub 6}]{sup 3-/4-} redox process as a probe, offered insights into the electrical properties of the films/electrode interfaces. Surface properties of the films were probed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The films were employed for the electrocatalytic oxidation of the pesticide, carbofuran. Electrocatalysis was evidenced from enhanced current signal and less positive oxidation potential of the pesticide on each film, relative to that observed on the bare gold electrode. Mechanism of electrocatalytic oxidation of the pesticide was studied using rotating disc electrode voltammetry.

  3. Influence of iron and beryllium additions on heat resistance of silicide coatings on TsMB-30 molybdenum alloy

    International Nuclear Information System (INIS)

    Zajtseva, A.L.; Fedorchuk, N.M.; Lazarev, Eh.M.; Korotkov, N.A.

    1985-01-01

    Alloying of titanium modified silicide coatings on TsMB-30 molybdenum alloy with iron or beryllium is stated to improve their protective properties. Coatings with low content of alloying elements have the best protective properties. Service life of coatings is determined by the formed oxide film and phase transformations taking place in the coating

  4. Effects of iron on intermetallic compound formation in scandium modified Al–Si–Mg Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Patakham, Ussadawut [National Metal and Materials Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Klong Nueng, Klong Luang, Pathumthani 12120 (Thailand); Limmaneevichitr, Chaowalit, E-mail: chaowalit.lim@mail.kmutt.ac.th [Production Engineering Department, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand)

    2014-12-15

    Highlights: • Iron reduces the modification effects of scandium in Al–Si–Mg alloys. • Morphologies of Sc-rich intermetallic phases vary with Fe and Sc contents and the cooling rates. • Sc neutralizes effects of Fe by changing Fe-rich intermetallic phases from platelets to more cubic. - Abstract: In general, iron has a strong tendency to dissolve in molten aluminum. Iron has very low solid solubility in aluminum–silicon casting alloys, so it will form intermetallic compounds that cause detrimental effects on mechanical properties. In this work, the effects of iron on intermetallic compound formations in scandium modified Al–Si–Mg alloys were studied. There were two levels of iron addition (0.2 and 0.4 wt.%) and two levels of scandium addition (0.2 and 0.4 wt.%). We found that the effects of scandium modification decreased with increasing iron addition. The morphologies of the complex intermetallic compounds were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) techniques. It was found that scandium changes the morphology of Fe-rich intermetallic compounds from β-phase (plate-like) to α-phase, which reduces the harmful effects of β-phase.

  5. Method of fabricating thin-walled articles of tungsten-nickel-iron alloy

    Science.gov (United States)

    Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.

    1982-01-01

    The present invention relates to a method for fabricating thin-walled high-density structures oftungsten-nickel-iron alloys. A powdered blend of the selected alloy constituents is plasma sprayed onto a mandrel having the desired article configuration. The sprayed deposit is removed from the mandrel and subjected to liquid phase sintering to provide the alloyed structure. The formation of the thin-walled structure by plasma spraying significantly reduces shrinkage, and cracking while increasing physical properties of the structure over that obtainable by employing previously known powder metallurgical procedures.

  6. Interstitial-phase precipitation in iron-base alloys: a comparative study

    International Nuclear Information System (INIS)

    Pelton, A.R.

    1982-06-01

    Recent developments have elucidated the atomistic mechanisms of precipitation of interstitial elements in simple alloy systems. However, in the more technologically important iron base alloys, interstitial phase precipitation is generally not well understood. The present experimental study was therefore designed to test the applicability of these concepts to more complex ferrous alloys. Hence, a comparative study was made of interstitial phase precipitation in ferritic Fe-Si-C and in austenitic phosphorus-containing Fe-Cr-Ni steels. These systems were subjected to a variety of quench-age thermal treatments, and the microstructural development was subsequently characterized by transmission electron microscopy

  7. The influence of various cooling rates during laser alloying on nodular iron surface layer

    Science.gov (United States)

    Paczkowska, Marta; Makuch, Natalia; Kulka, Michał

    2018-06-01

    The results of research referring to modification of the nodular iron surface layer by laser alloying with cobalt were presented. The aim of this study was to analyze the possibilities of cobalt implementation into the surface layer of nodular iron in various laser heat treatment conditions (by generating different cooling rates of melted surface layer). The modified surface layer of nodular iron was analyzed with OM, SEM, TEM, XRD, EDS and Vickers microhardness tester. The modified surface layer of nodular iron after laser alloying consisted of: the alloyed zone (melted with cobalt), the transition zone and the hardened zone from solid state. The alloyed zone was characterized by higher microstructure homogeneity - in contrast to the transition and the hardened zones. All the alloyed zones contained a dendritic microstructure. Dendrites consisted of martensite needles and retained austenite. Cementite was also detected. It was stated, that due to similar dimension of iron and cobalt atoms, their mutual replacement in the crystal lattice could occur. Thus, formation of phases based on α solution: Co-Fe (44-1433) could not be excluded. Although cobalt should be mostly diluted in solid solutions (because of its content in the alloyed zone), the other newly formed phases as Co (ε-hex.), FeC and cobalt carbides: Co3C, CoC0.25 could be present in the alloyed zones as a result of unique microstructure creation during laser treatment. Pearlite grains were observed in the zone, formed using lower power density of the laser beam and its longer exposition time. Simply, such conditions resulted in the cooling rate which was lower than critical cooling rate. The alloyed zones, produced at a higher cooling rate, were characterized by better microstructure homogeneity. Dendrites were finer in this case. This could result from a greater amount of crystal nuclei appearing at higher cooling rate. Simultaneously, the increased amount of γ-Fe and Fe3C precipitates was expected in

  8. Modification of fuel performance code to evaluate iron-based alloy behavior under LOCA scenario

    Energy Technology Data Exchange (ETDEWEB)

    Giovedi, Claudia; Martins, Marcelo Ramos, E-mail: claudia.giovedi@labrisco.usp.br, E-mail: mrmartin@usp.br [Laboratorio de Analise, Avaliacao e Gerenciamento de Risco (LabRisco/POLI/USP), São Paulo, SP (Brazil); Abe, Alfredo; Muniz, Rafael O.R.; Gomes, Daniel de Souza; Silva, Antonio Teixeira e, E-mail: ayabe@ipen.br, E-mail: dsgomes@ipen.br, E-mail: teixiera@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Accident tolerant fuels (ATF) has been studied since the Fukushima Daiichi accident in the research efforts to develop new materials which under accident scenarios could maintain the fuel rod integrity for a longer period compared to the cladding and fuel system usually utilized in Pressurized Water Reactors (PWR). The efforts have been focused on new materials applied as cladding, then iron-base alloys appear as a possible candidate. The aim of this paper is to implement modifications in a fuel performance code to evaluate the behavior of iron based alloys under Loss-of-Coolant Accident (LOCA) scenario. For this, initially the properties related to the thermal and mechanical behavior of iron-based alloys were obtained from the literature, appropriately adapted and introduced in the fuel performance code subroutines. The adopted approach was step by step modifications, where different versions of the code were created. The assessment of the implemented modification was carried out simulating an experiment available in the open literature (IFA-650.5) related to zirconium-based alloy fuel rods submitted to LOCA conditions. The obtained results for the iron-based alloy were compared to those obtained using the regular version of the fuel performance code for zircaloy-4. The obtained results have shown that the most important properties to be changed are those from the subroutines related to the mechanical properties of the cladding. The results obtained have shown that the burst is observed at a longer time for fuel rods with iron-based alloy, indicating the potentiality of this material to be used as cladding with ATF purposes. (author)

  9. Modification of fuel performance code to evaluate iron-based alloy behavior under LOCA scenario

    International Nuclear Information System (INIS)

    Giovedi, Claudia; Martins, Marcelo Ramos; Abe, Alfredo; Muniz, Rafael O.R.; Gomes, Daniel de Souza; Silva, Antonio Teixeira e

    2017-01-01

    Accident tolerant fuels (ATF) has been studied since the Fukushima Daiichi accident in the research efforts to develop new materials which under accident scenarios could maintain the fuel rod integrity for a longer period compared to the cladding and fuel system usually utilized in Pressurized Water Reactors (PWR). The efforts have been focused on new materials applied as cladding, then iron-base alloys appear as a possible candidate. The aim of this paper is to implement modifications in a fuel performance code to evaluate the behavior of iron based alloys under Loss-of-Coolant Accident (LOCA) scenario. For this, initially the properties related to the thermal and mechanical behavior of iron-based alloys were obtained from the literature, appropriately adapted and introduced in the fuel performance code subroutines. The adopted approach was step by step modifications, where different versions of the code were created. The assessment of the implemented modification was carried out simulating an experiment available in the open literature (IFA-650.5) related to zirconium-based alloy fuel rods submitted to LOCA conditions. The obtained results for the iron-based alloy were compared to those obtained using the regular version of the fuel performance code for zircaloy-4. The obtained results have shown that the most important properties to be changed are those from the subroutines related to the mechanical properties of the cladding. The results obtained have shown that the burst is observed at a longer time for fuel rods with iron-based alloy, indicating the potentiality of this material to be used as cladding with ATF purposes. (author)

  10. Review of lithium iron-base alloy corrosion studies

    International Nuclear Information System (INIS)

    DeVan, J.H.; Selle, J.E.; Morris, A.E.

    1976-01-01

    An extensive literature search was conducted on the compatibility of ferrous alloys with lithium, with the emphasis on austenitic stainless steels. The information is summarized and is divided into two sections. The first section gives a brief summary and the second is an annotated bibliography. Comparisons of results are complicated by differences in lithium purity, alloy composition, alloy treatment, flow rates, and lithium handling procedures. For long-term application, austenitic stainless steels appear to be limited to about 500 0 C. While corrosion can probably not be decreased to zero, a considerable reduction to tolerable and predictable amounts appears possible

  11. Low alloy additions of iron, silicon, and aluminum to uranium: a literature survey

    International Nuclear Information System (INIS)

    Ludwig, R.L.

    1980-01-01

    A survey of the literature has been made on the experimental results of small additions of iron, silicon, and aluminum to uranium. Information is also included on the constitution, mechanical properties, heat treatment, and deformation of various binary and ternary alloys. 42 references, 24 figures, 13 tables

  12. An electron-microscope study of alpha to gamma transformation in an iron-nickel alloy

    Science.gov (United States)

    Lobodyuk, V. A.; Khandros, L. G.; Fedas, N. P.

    1980-01-01

    Procedures used to study the alpha to gamma conversion in thin foils of an iron alloy with 32% nickel concentration and initial martensite conversion temperature of -60 C are described. Photomicrographs show deformation twinning as well as changes in samples after they were heated. Reverse conversion is discussed and results are examined.

  13. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nikel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) seamless pipe and tube

  14. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045 and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) plate, sheet and strip

  15. Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    Standard specification for Nickel-Chromium-Iron alloys (UNS N06600, N06601, N06603, N06690, N06693, N06025, N06045, and N06696), Nickel-Chromium-Cobalt-Molybdenum alloy (UNS N06617), and Nickel-Iron-Chromium-Tungsten alloy (UNS N06674) rod, bar, and wire

  16. Fundamental studies of oral contrast agents for MR. Comparison of manganese agent and iron agent

    International Nuclear Information System (INIS)

    Fujita, Osamu; Hiraishi, Kumiko; Suginobu, Yoshito; Takeuchi, Masayasu; Narabayashi, Isamu

    1996-01-01

    We investigated and compared signal intensity and the effect of imaging the upper abdomen with blueberry juice (B.J.), a Mn agent utilizing the properties of paramagnetic metals, and FerriSeltz (F.S.), an iron agent. Since the relaxation effect was much stronger with B.J. than with F.S., the signal intensity required of a peroral contrast agent was able to be obtained at a much lower concentration of B.J. In imaging the upper abdomen, B.J. had a positive effect on imaging in T1-weighted images, and a negative effect in T2-weighted images. F.S. had a positive imaging effect in both, and because it showed extremely high signals in T2-weighted images, motion artifact arose. (author)

  17. Manganese, Iron, and Sulfur Cycling in a Coastal Marine Sediment, Aarhus Bay, Denmark

    DEFF Research Database (Denmark)

    THAMDRUP, B.; FOSSING, H.; JØRGENSEN, BB

    1994-01-01

    -scale measurements showed that it extended to the upper 0-2.5 mm during summer, when the zones of Mn and Fe reduction were compressed towards the surface. Most of the H2S produced precipitated as iron sulfides and S0 by reaction with Fe. Both Fe(III) and a nonsulfur-bound authigenic Fe(II) pool reacted efficiently...... of a diatom spring bloom caused distinct maxima in SRR and Mn2+ at 0.5-1 cm depth within two weeks. In autumn, the reactive Mn oxides were depleted due to a net release of Mn2+ to the water column. Thus, the Mn cycle extended significantly into the water column, while a constant Fe pool over the year suggests...

  18. Diffusion Coefficient in the Zinc Coating Shaped on the Surface of Cast Iron and Steel Alloys

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2015-06-01

    Full Text Available The article presents the method to assess the diffusion coefficient D in the sub-layer of intermetallic phases formed during hot-dip galvanizing “Armco” iron and ductile cast iron EN-GJS-500-7. Hot-dip galvanizing is one of the most popular forms of long-term protection of Fe-C alloys against corrosion. The process for producing a protective layer of sufficient quality is closely related to diffusion of atoms of zinc and iron. The simulation consist in performed a hot-dip galvanizing in laboratory condition above Fe-C alloys, in the Department of Engineering of Cast Alloys and Composites. Galvanizing time ranged from 15 to 300 seconds. Then metallographic specimens were prepared, intermetallic layers were measured and diffusion coefficient (D were calculated. It was found that the diffusion coefficient obtained during hot-dip galvanizing “Armco” iron and zinc is about two orders of magnitude less than the coefficient obtained on ductile cast iron EN-GJS-500-7.

  19. Galvannealing of (high-)manganese-alloyed TRIP- and X-IP registered -steel

    Energy Technology Data Exchange (ETDEWEB)

    Blumenau, M. [ThyssenKrupp Steel Europe AG, Bamenohler Strasse 211, D-57402 Finnentrop (Germany); Norden, M. [DOC Dortmunder Oberflaechencentrum GmbH, Eberhardstrasse 12, D-44145 Dortmund (Germany); Friedel, F.; Peters, K. [ThyssenKrupp Steel Europe AG, Kaiser-Wilhelm-Strasse 100, D-47166 Duisburg (Germany)

    2010-12-15

    In this study the influence of Mn on galvannealed coatings of 1.7% Mn-1.5% Al TRIP- and 23% Mn X-IP registered -steels was investigated. It is shown that the external selective oxides like Mn, Al and Si of the TRIP steel which occur after annealing at 800 C for 60 s at a dew point (DP) of -25 C (5% H{sub 2}) hamper the Fe/Zn-reaction during subsequent galvannealing. Preoxidation was beneficially utilized to increase the surface-reactivity of the TRIP steel under the same dew point conditions. The influence of Mn on the steel alloy was investigated by using a 23% Mn containing X-IP registered -steel which was bright annealed at 1100 C for 60 s at DP -50 C (5% H{sub 2}) to obtain a mainly oxide free surface prior to hot dip galvanizing (hdg) and subsequent galvannealing. As well known from the literature Mn alloyed to the liquid zinc melt stabilizes {delta}-phase at lower temperatures by participating in the Fe-Zn-phase reactions, it was expected that the metallic Mn of the X-IP registered -steel increases the Fe/Zn-reactivity in the same manner. The approximation of the effective diffusion coefficient (D{sub eff}(Fe)) during galvannealing was found to be higher than compared to a low alloyed steel reference. Contrary to the expectation no increased Fe/Zn-reaction was found by microscopic investigations. Residual {eta}- and {zeta}-phase fractions prove a hampered Fe/Zn-reaction. As explanation for the observed hampered Fe/Zn-reaction the lower Fe-content of the high-Mn-alloyed X-IP registered -steel was suggested as the dominating factor for galvannealing. (Copyright copyright 2010 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Study of the pyrophoric characteristics of uranium-iron alloys; Etude du caractere pyrophorique des alliages uranium fer

    Energy Technology Data Exchange (ETDEWEB)

    Duplessis, X

    2000-02-23

    The objective of the study is to understand the pyrophoric characteristics of uranium-iron alloys. In order to carry out this research we have elected to use uranium-iron alloy powder with granules of 200 {mu}m and 1000 {mu}m diameter with 4%, 10.8% and 14% iron content. The experiments were performed on small samples of few milligrams and on larger quantities of few hundred grams. The main conclusions obtained are the followings: -The reaction start at 453 K (180 deg. C) and the ignition at 543 K (270 deg. C) - The influence of the specific area seems more important than the iron concentration in the alloys - When the alloy ignites, the fire spreads quickly and the alloy rapidly consumes. (author)

  1. Effect of alloying elements on characteristics of iron passive state in sulfuric acid

    International Nuclear Information System (INIS)

    Rejes Jola, O.; Mustafa-Zade, F.M.; Sukhotin, A.M.; Tchannikova, O.A.

    1981-01-01

    The curves of anodic polarization of iron binary alloys with Cr, Mo, W, Ni, Si, Co, Mn, Re, Ti, Al, Cu, Bi, Zn, In, V, Sb, Ta, Hf, Pb, Sn, Zr, Nb, Ce, B, P, S in 0.5 MH 2 SO 4 are studied. Passivation potentials, potentials of total passivation, transpassivity and current density are determined in the passivity region. All alloys had alpha-structure, the content of alloying elements was close to solubility in solid solution. Elements are classified according to the type of their effect on passive state of iron. Character of this effect does not have a direct connection with passivation ability the elements themselves, it is determined, probably, by a possibility to form stable passivating ruixed oxides of the ferrospinel type [ru

  2. Iron-nickel alloys as canister material for radioactive waste disposal in underground repositories

    International Nuclear Information System (INIS)

    Apps, J.A.

    1982-01-01

    Canisters containing high-level radioactive waste must retain their integrity in an underground waste repository for at least one thousand years after burial (Nuclear Regulatory Commission, 1981). Since no direct means of verifying canister integrity is plausible over such a long period, indirect methods must be chosen. A persuasive approach is to examine the natural environment and find a suitable material which is thermodynamically compatible with the host rock under the environmental conditions with the host rock under the environmental conditions expected in a waste repository. Several candidates have been proposed, among them being iron-nickel alloys that are known to occur naturally in altered ultramafic rocks. The following review of stability relations among iron-nickel alloys below 350 0 C is the initial phase of a more detailed evaluation of these alloys as suitable canister materials

  3. Study of phase transformations in Fe-Mn-Cr Alloys

    International Nuclear Information System (INIS)

    Schule, W.; Panzarasa, A.; Lang, E.

    1988-01-01

    Nickel free alloys for fusion reactor applications are examined. Phase changes in fifteen, mainly austenitic iron-manganese-chromium-alloys of different compositions were investigated in the temperature range between -196 0 C and 1000 0 C after different thermo-mechanical treatments. A range of different physical measuring techniques was employed to investigate the structural changes occurring during heating and cooling and after cold-work: electrical resistivity techniques, differential thermal analysis, magnetic response, Vickers hardness and XRD measurement. The phase boundary between the α Fe-phase and the γ-phase of the iron manganese alloy is approximately maintained if chromium is added to the two component materials. Consequently all the alloy materials for contents of manganese smaller than about 30% Mn are not stable below 500 0 C. This concerns also the AMCR alloys. However the α Fe-phase is not formed during slow cooling from 1000 0 C to ambient temperature and is only obtained if nucleation sites are provided and after very long anneals. A cubic α Mn-type-phase is found for alloys with 18% Cr and 15% Mn, with 13% Cr and 25% Mn, with 10% Cr and 30% Mn, and with 10% Cr and 40% Mn. For these reasons the γ-phase field of the iron-chromium-manganese alloys is very small below 600 0 C and much narrower than reported in the literature. 95 figs. 22 refs

  4. Preconcentration and atomic absorption spectrometric determination of cadmium, cobalt, copper, iron, lead, manganese, nickel and zinc in water samples using 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone

    International Nuclear Information System (INIS)

    Khuhawar, M.Y.; Das, P.; Dewani, V.K.

    2005-01-01

    The reagent 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone (MPAPT) has been examined for the pre-concentration of metal ions and determination using air acetylene flame atomic absorption spectrometer. The method is based on the complexation and extraction of cadmium (II), cobalt(III), copper(II), lead(II), nickel(II), iron(II), iron(II), manganese(II) and zinc(II) in chloroform. The metal iron are back extracted in nitric acid (1:1) or after evaporation of solvent the residue is digested in nitric acid. After necessary adjustment of volume the metal ions were determined in aqueous solution. Pre-concentration is obtained 10-25 times. Metal ions recovery was 95.4-100.8% with coefficient of variation 0.2-7.5%. The method used for the determination of metals in canal and sewerage waters, within 2-6433 mu g/L with C. V 0.-5.2%. (author)

  5. Microstructural characteristics of Al-alloyed austempered ductile irons

    International Nuclear Information System (INIS)

    Kiani-Rashid, A.R.; Edmonds, D.V.

    2009-01-01

    Microstructural development after austempering ductile irons containing 0.48% and 4.88%Al has been studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental irons were made by green sand casting and gravity die casting. After austenitising at 920 deg. C for 90 min, an austempering treatment at 400 deg. C for times up to 100 min resulted in microstructures consisting of carbide-free bainitic ferrite with considerable amounts of high carbon retained austenite.

  6. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.

    Science.gov (United States)

    Lovley, D R; Phillips, E J

    1988-06-01

    A dissimilatory Fe(III)- and Mn(IV)-reducing microorganism was isolated from freshwater sediments of the Potomac River, Maryland. The isolate, designated GS-15, grew in defined anaerobic medium with acetate as the sole electron donor and Fe(III), Mn(IV), or nitrate as the sole electron acceptor. GS-15 oxidized acetate to carbon dioxide with the concomitant reduction of amorphic Fe(III) oxide to magnetite (Fe(3)O(4)). When Fe(III) citrate replaced amorphic Fe(III) oxide as the electron acceptor, GS-15 grew faster and reduced all of the added Fe(III) to Fe(II). GS-15 reduced a natural amorphic Fe(III) oxide but did not significantly reduce highly crystalline Fe(III) forms. Fe(III) was reduced optimally at pH 6.7 to 7 and at 30 to 35 degrees C. Ethanol, butyrate, and propionate could also serve as electron donors for Fe(III) reduction. A variety of other organic compounds and hydrogen could not. MnO(2) was completely reduced to Mn(II), which precipitated as rhodochrosite (MnCO(3)). Nitrate was reduced to ammonia. Oxygen could not serve as an electron acceptor, and it inhibited growth with the other electron acceptors. This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe(III) or Mn(IV) reduction can yield energy for microbial growth. GS-15 provides a model for how enzymatically catalyzed reactions can be quantitatively significant mechanisms for the reduction of iron and manganese in anaerobic environments.

  7. Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize.

    Directory of Open Access Journals (Sweden)

    Yanfang Xue

    Full Text Available The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn, iron (Fe, manganese (Mn and copper (Cu in maize (Zea mays L. were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain. Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N levels. Fe, Mn and Cu RIEs (average 64.4, 18.1 and 5.3 g, respectively were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60% and decreased Zn concentrations in straw (a 56% decrease and grain (decreased from 16.9 to 12.2 mg kg-1 rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively. The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.

  8. Manganese associated nanoparticles agglomerate of iron(III) oxide: synthesis, characterization and arsenic(III) sorption behavior with mechanism.

    Science.gov (United States)

    Gupta, Kaushik; Maity, Arjun; Ghosh, Uday Chand

    2010-12-15

    Three samples of manganese associated hydrous iron(III) oxide (MNHFO), prepared by incinerating metal hydroxide precipitate at T (± 5)=90, 300 and 600°C, showed increase of crystalline nature in XRD patterns with decreasing As(III) removal percentages. TEM images showed the increase of crystallinity from sample-1 (MNHFO-1) to sample-3 (MNHFO-3). Dimensions (nm) of particles estimated were 5.0, 7.0 and 97.5. Optimization of pH indicated that MNHFO-1 could remove aqueous As(III) efficiently at pH between 3.0 and 7.0. Kinetic and equilibrium data of reactions under the experimental conditions described the pseudo-second order and the Langmuir isotherm equations very well, respectively. The Langmuir capacity (q(m)) estimated was 691.04 mmol kg(-1). The values of enthalpy, Gibb's free energy and entropy changes (ΔH(0)=+23.23 kJ mol(-1), ΔG(0)=-3.43 to -7.20 kJ mol(-1) at T=283-323K, ΔS(0)=+0.094 kJ mol(-1)K(-1)) suggested that the reaction was endothermic, spontaneous and took place with increasing entropy. The As(III) sorbed by MNHFO-1 underwent surface oxidation to As(V), and evidences appeared from the XPS and FTIR investigations. MNHFO-1 packed column (internal diameter: 1.0 cm, height: 3.7 cm) filtered 11.5 dm(3) groundwater (105 μg As dm(-3)) with reducing arsenic concentration to ≤ 10 μg dm(-3). Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Low-temperature superacid catalysis: Reactions of n - butane and propane catalyzed by iron- and manganese-promoted sulfated zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.; Gates, B.C. [Univ. of California, Davis, CA (United States)

    1995-12-31

    The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part from coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.

  10. Trace Element Status (Zinc, Copper, Selenium, Iron, Manganese) in Patients with Long-Term Home Parenteral Nutrition.

    Science.gov (United States)

    Dastych, Milan; Šenkyřík, Michal; Dastych, Milan; Novák, František; Wohl, Petr; Maňák, Jan; Kohout, Pavel

    2016-01-01

    The objective of the present study was to determine concentrations of zinc (Zn), copper (Cu), iron (Fe), selenium (Se) in blood plasma and manganese (Mn) in the whole blood in patients with long-term home parenteral nutrition (HPN) in comparison to the control group. We examined 68 patients (16 men and 52 women) aged from 28 to 68 years on a long-term HPN lasting from 4 to 96 months. The short bowel syndrome was an indication for HPN. The daily doses of Zn, Cu, Fe, Se and Mn in the last 3 months were determined. No significant differences in blood plasma were found for Zn, Cu and Fe in patients with HPN and in the control group (p > 0.05). The concentration of Mn in whole blood was significantly increased in HPN patients (p < 0.0001), while Se concentration in these patients was significantly decreased (p < 0.005). The concentration of Mn in the whole blood of 16 patients with cholestasis was significantly increased compared to the patients without cholestasis (p < 0.001). The Cu concentration was increased with no statistical significance. In long-term HPN, the status of trace elements in the patients has to be continually monitored and the daily substitution doses of these elements have to be flexibly adjusted. Dosing schedule needs to be adjusted especially in cases of cholestatic hepatopathy. A discussion about the optimal daily dose of Mn in patients on HPN is appropriate. For clinical practice, the availability of a substitution mixture of trace elements lacking Mn would be advantageous. © 2016 S. Karger AG, Basel.

  11. Production of rare earth-silicon-iron alloys

    International Nuclear Information System (INIS)

    Mehra, O.K.; Bose, D.K.; Gupta, C.K.

    1987-01-01

    At Metallurgy Division, BARC, improved procedures for producing rare earth-silicon alloys have been investigated. In these methods, reduction of mixed rare earth oxide by a ferro-silicon and aluminium mixture in combination with CaO-MgO flux/CaO-CaF 2 flux have been tried to prepare an alloy product with a higher rare earth recovery at a higher rare earth content than the present commercial production method. The rare earth recovery using CaO-CaF 2 was 85 per cent while in the case of CaO-MgO flux it was 76 per cent. The corresponding rare earth contents in the alloy correspond to 40 per cent and 55 per cent by weight respectively. (author)

  12. Development of weldable, corrosion-resistant iron-aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    Corrosion-resistant, weldable FeAl alloys have been developed with improved high-temperature strength industrial applications. Previous processing difficulties with these alloys led to their evaluation as weld-overlay claddings on conventional structural steels to take advantage of their good properties now. Simplified and better processing methods for monolithic FeAl components are also currently being developed so that components for industrial testing can be made. Other avenues for producing FeAl coatings are currently being explored. Neutron scattering experiments residual stress distributions in the FeAl weld-overlay cladding began in FY 1993 and continued this year.

  13. On aging of iron-nickel-titanium alloys

    International Nuclear Information System (INIS)

    Vintajkin, E.Z.; Dmitriev, V.B.; Udovenko, V.A.

    1978-01-01

    The mechanism of structural transformations on the initial stages of aging of Fe-(26-29) at. % Ni-(2.5-5.75) at. % Ti alloys was studied by neutron radiography. It was shown that at the earliest aging stages at 550 deg C there appear ordered areas which are FCC nuclei of the Ni 3 Ti phase. The rate of nucleation depends on the content of titanium in the all. In alloys with more than 3% Ti, nuclei appear even at the hardening stage. During the subsequent aging, the nuclei are enriched with nickel and titanium

  14. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  15. Preparation of Iron-nickel Alloy Nanostructures via Two Cationic Pyridinium Derivatives as Soft Templates

    Directory of Open Access Journals (Sweden)

    Jingxin Zhou

    2015-09-01

    Full Text Available In this paper, crystalline iron-nickel alloy nanostructures were successfully prepared from two cationic pyridinium derivatives as soft templates in solution. The crystal structure and micrograph of FeNi alloy nanostructures were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, and the content was confirmed by energy-dispersive spectrometry. The results indicated that the as-prepared nanostructures showed slightly different diameter ranges with the change of cationic pyridinium derivatives on the surface. The experimental data indicated that the adsorption of cationic pyridinium compounds on the surface of particles reduces the surface charge, leading to an isotropic distribution of the residual surface charges. The magnetic behaviours of as-prepared FeNi alloy nanostructures exhibited disparate behaviours, which could be attributed to their grain sizes and distinctive structures. The present work may give some insight into the synthesis and character of new alloy nanomaterials with special nanostructures using new soft templates.

  16. SOFTWARE FOR IMAGE PROCESSING OF IRON-CARBONACEOUS ALLOY MICROSTRUCTURES

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2011-01-01

    Full Text Available The paper proposes a mathematical apparatus for image processing of a cast-iron microstructure of a pearlite class that has casually distributed graphite inclusions in the structure the software has been developed and it allows to determine statistical functions concerning distribution of graphite inclusion characteristics according to areas, perimeters and distances between inclusions. The paper shows that computer processing of gray pig-iron microstructure image makes it possible to classify microstructures on the basis of statistical distribution of a graphite phase which are considered as indiscernible while applying conventional metallographic methods and it has practical significance for investigation of the interrelations – «workability – cast iron microstructure».

  17. A chemical approach toward low temperature alloying of immiscible iron and molybdenum metals

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Rabia [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Applied Chemistry Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore 54600 (Pakistan); Ahmed, Sohail [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mazhar, Muhammad, E-mail: mazhar42pk@yahoo.com [Department of Chemistry, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Akhtar, Muhammad Javed; Siddique, Muhammad [Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Khan, Nawazish Ali [Material Science Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Shah, Muhammad Raza [HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270 (Pakistan); Nadeem, Muhammad [Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2013-11-15

    Graphical abstract: - Highlights: • Low temperature pyrolysis of [Fe(bipy){sub 3}]Cl{sub 2} and [Mo(bipy)Cl{sub 4}] homogeneous powder. • Easy low temperature alloying of immiscible metals like Fe and Mo. • Uniform sized Fe–Mo nanoalloy with particle size of 48–68 nm. • Characterization by EDXRF, AFM, XRPD, magnetometery, {sup 57}Fe Mössbauer and impedance. • Alloy behaves as almost superparamagnetic obeying simple –R(CPE)– circuit. - Abstract: The present research is based on a low temperature operated feasible method for the synthesis of immiscible iron and molybdenum metals’ nanoalloy for technological applications. The nanoalloy has been synthesized by pyrolysis of homogeneous powder precipitated, from a common solvent, of the two complexes, trisbipyridineiron(II)chloride, [Fe(bipy){sub 3}]Cl{sub 2}, and bipyridinemolybedenum(IV) chloride, [Mo(bipy)Cl{sub 4}], followed by heating at 500 °C in an inert atmosphere of flowing argon gas. The resulting nanoalloy has been characterized by using EDXRF, AFM, XRD, magnetometery, {sup 57}Fe Mössbauer and impedance spectroscopies. These results showed that under provided experimental conditions iron and molybdenum metals, with known miscibility barrier, alloy together to give (1:1) single phase material having particle size in the range of 48–66 nm. The magnetism of iron is considerably reduced after alloy formation and shows its trend toward superparamagnetism. The designed chemical synthetic procedure is equally feasible for the fabrication of other immiscible metals.

  18. A chemical approach toward low temperature alloying of immiscible iron and molybdenum metals

    International Nuclear Information System (INIS)

    Nazir, Rabia; Ahmed, Sohail; Mazhar, Muhammad; Akhtar, Muhammad Javed; Siddique, Muhammad; Khan, Nawazish Ali; Shah, Muhammad Raza; Nadeem, Muhammad

    2013-01-01

    Graphical abstract: - Highlights: • Low temperature pyrolysis of [Fe(bipy) 3 ]Cl 2 and [Mo(bipy)Cl 4 ] homogeneous powder. • Easy low temperature alloying of immiscible metals like Fe and Mo. • Uniform sized Fe–Mo nanoalloy with particle size of 48–68 nm. • Characterization by EDXRF, AFM, XRPD, magnetometery, 57 Fe Mössbauer and impedance. • Alloy behaves as almost superparamagnetic obeying simple –R(CPE)– circuit. - Abstract: The present research is based on a low temperature operated feasible method for the synthesis of immiscible iron and molybdenum metals’ nanoalloy for technological applications. The nanoalloy has been synthesized by pyrolysis of homogeneous powder precipitated, from a common solvent, of the two complexes, trisbipyridineiron(II)chloride, [Fe(bipy) 3 ]Cl 2 , and bipyridinemolybedenum(IV) chloride, [Mo(bipy)Cl 4 ], followed by heating at 500 °C in an inert atmosphere of flowing argon gas. The resulting nanoalloy has been characterized by using EDXRF, AFM, XRD, magnetometery, 57 Fe Mössbauer and impedance spectroscopies. These results showed that under provided experimental conditions iron and molybdenum metals, with known miscibility barrier, alloy together to give (1:1) single phase material having particle size in the range of 48–66 nm. The magnetism of iron is considerably reduced after alloy formation and shows its trend toward superparamagnetism. The designed chemical synthetic procedure is equally feasible for the fabrication of other immiscible metals

  19. Carbon Dissolution Using Waste Biomass—A Sustainable Approach for Iron-Carbon Alloy Production

    Directory of Open Access Journals (Sweden)

    Irshad Mansuri

    2018-04-01

    Full Text Available This paper details the characterisation of char obtained by high-temperature pyrolysis of waste macadamia shell biomass and its application as carbon source in iron-carbon alloy production. The obtained char was characterised by ultimate and proximate analysis, X-ray diffraction (XRD, Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR, X-ray photon spectroscopy (XPS, Brunauer-Emmett-Teller (BET surface area via N2 isothermal adsorption and scanning electron microscopy (SEM. The results indicated that obtained char is less porous, low in ash content, and high in carbon content. Investigation of iron-carbon alloy formation through carbon dissolution at 1550 °C was carried out using sessile drop method by using obtained char as a carbon source. Rapid carbon pickup by iron was observed during first two minutes of contact and reached a saturation value of ~5.18 wt % of carbon after 30 min. The carbon dissolution rate using macadamia char as a source of carbon was comparatively higher using than other carbonaceous materials such as metallurgical coke, coal chars, and waste compact discs, due to its high percentage of carbon and low ash content. This research shows that macadamia shell waste, which has a low content of ash, is a valuable supplementary carbon source for iron-carbon alloy industries.

  20. Identification of fullerenes in iron-carbon alloys structure.

    Directory of Open Access Journals (Sweden)

    KUZEEV Iskander Rustemovich

    2017-11-01

    Full Text Available Steels of various purposes are used in the construction industry, for example, as the reinforcement material in reinforced concrete structures. In the oil and gas industry, steel structures are used for storage and transportation of explosive toxic media. In this case the catastrophic damages might take place, that points at insufficiently deep knowledge about the processes running in structural materials when load is applied. Recent studies show that many properties of steel are set at the nanoscale level during crystallization from the molten metal and thermal treatment. To detect and identify fullerenes С60 and С70, which are independent nanoscale objects in steel structure, by various methods requires studying of how these objects influence on formation of steel properties. Iron atoms can serve as a catalyst and, interacting with large aromatic structures or fragments of the graphite planes, they form voluminous fullerene-type structures. The inverse phenomenon, i.e. influence of the formed nanoscale objects on structuring of the iron atoms, is also possible, as fullerene size is comparable with the size of the stable nucleus of the iron crystalline phase. The article discusses the issue of mechanisms of fullerenes formation in steels and cast irons. The most complicated issue in the study is the fullerenes identification by spectral methods as the quantity of released molecules is small. In order to increase the sensitivity of the fullerenes IR-spectrometry method, potassium bromide has been proposed to use. Dried and reduced sediment obtained as a result of dissolving iron matrix in steels is mixed with potassium bromide, the mixture becomes bright-orange. This fact points to presence of bromic fullerenes and to presence of fullerenes in the studied specimens. It is shown that the offered specimen preparation algorithm significantly increases sensitivity of the method.

  1. A Study on Zinc-Iron Alloy Electrodeposition from a Chloride Electrolyte

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl

    1998-01-01

    The electrodeposition of zinc-iron alloys from a chloride-based electrolyte has been studied using electrochemical polarisation techniques, Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDXA) and Computer Assisted Pulse Plating (CAPP...... this system ideal for production of compositional modulated alloy (CMA) electrodeposits. Chloride content, pH and agitation of the electrolyte have been observed to have a strong influence on the reaction at the cathode surface, just as the use of pulse reversal current during electrodeposition. A theory...

  2. Internal friction in iron-aluminium alloys having a high aluminium content

    International Nuclear Information System (INIS)

    Hillairet, J.; Delaplace, J.; Silvent, A.

    1966-01-01

    By using a torsion pendulum to measure the internal friction of iron-aluminium alloys containing between 25 and 50 atom per cent of aluminium, it has been possible to show the existence of three damping peaks due to interstitial carbon. Their evolution is followed as a function of the carbon content, of the thermal treatment and of the aluminium content. A model based on the preferential occupation of tetrahedral sites is proposed as an interpretation of the results. A study of the Zener peak in these substitution alloys shows also that a part of the short distance disorder existing at high temperatures can be preserved by quenching. (author) [fr

  3. Process for fabricating articles of tungsten-nickel-iron alloy

    Science.gov (United States)

    Northcutt, Jr., Walter G.; Snyder, Jr., William B.

    1976-01-01

    A high density W--Ni--Fe alloy of composition 85-96% by weight W and the remainder Ni and Fe in a wt. ratio of 5:5-8:2 having enhanced mechanical properties is prepared by compacting the mixed powders, sintering the compact in reducing atmosphere to near theoretical density followed by further sintering at a temperature where a liquid phase is present, vacuum annealing, and cold working to achieve high uniform hardness.

  4. Thermal behaviour in dynamic recrystallisation. Application for iron base alloys

    International Nuclear Information System (INIS)

    Belkebir, A.; Kobylanski, A.

    1995-01-01

    A constitutive relationship for predicting the flow stress with dynamic recrystallization were proposed. The approach is based on a phenomenological formalism of the law θ-ε where θ correspond to the work-hardening rate at constant strain rate and temperature. The equations proposed were justified by the experimental data collected by hot compression test of low-alloy steels. The model can be used to estimate the critical strain for the onset of dynamic recrystallization. (orig.)

  5. Process for fabricating articles of tungsten--nickel--iron alloy

    International Nuclear Information System (INIS)

    Northcutt, W.G. Jr.; Snyder, W.B. Jr.

    1976-01-01

    A high density W--Ni--Fe alloy of composition 85 to 96 percent by weight W and the remainder Ni and Fe in a wt. ratio of 5:5 to 8:2 having enhanced mechanical properties is prepared by compacting the mixed powders, sintering the compact in reducing atmosphere to near theoretical density followed by further sintering at a temperature where a liquid phase is present, vacuum annealing, and cold working to achieve high uniform hardness. 7 claims

  6. Spectrophotometric determination of phosphorus in iron alloys employing a flow injection system

    OpenAIRE

    Gervasio,Ana P. G.; Miranda,Carlos E. S.; Luca,Gilmara C.; Tumang,Cristiane A.; Campos,Luis F. P.; Reis,Boaventura F.

    2001-01-01

    A flow-injection procedure for spectrophotometric determination of phosphorus in electrolytic iron and iron alloys is proposed. The method is based on the ammonium molybdate reaction followed by stannous chloride reduction in acidic medium. In order to circumvent the severe interference caused by the major constituents such as Fe(III) and Cr(III), a mini-column packed with AG50W-X8 resin was coupled to the manifold. A sample throughput of 40 determinations per hour, a dynamical range from P 0...

  7. Transmission electron microscopy characterization of laser-clad iron-based alloy on Al-Si alloy

    International Nuclear Information System (INIS)

    Mei, Z.; Wang, W.Y.; Wang, A.H.

    2006-01-01

    Microstructure characterization is important for controlling the quality of laser cladding. In the present work, a detailed microstructure characterization by transmission electron microscopy was carried out on the iron-based alloy laser-clad on Al-Si alloy and an unambiguous identification of phases in the coating was accomplished. It was found that there is austenite, Cr 7 C 3 and Cr 23 C 6 in the clad region; α-Al, NiAl 3 , Fe 2 Al 5 and FeAl 2 in the interface region; and α-Al and silicon in the heat-affected region. A brief discussion was given for their existence based on both kinetic and thermodynamic principles

  8. Low iron stores are related to higher blood concentrations of manganese, cobalt and cadmium in non-smoking, Norwegian women in the HUNT 2 study

    International Nuclear Information System (INIS)

    Margrete Meltzer, Helle; Lise Brantsaeter, Anne; Borch-Iohnsen, Berit; Ellingsen, Dag G.; Alexander, Jan; Thomassen, Yngvar; Stigum, Hein; Ydersbond, Trond A.

    2010-01-01

    Low iron (Fe) stores may influence absorption or transport of divalent metals in blood. To obtain more knowledge about such associations, the divalent metal ions cadmium (Cd), manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn) and lead (Pb) and parameters of Fe metabolism (serum ferritin, haemoglobin (Hb) and transferrin) were investigated in 448 healthy, menstruating non-smoking women, age 20-55 years (mean 38 years), participating in the Norwegian HUNT 2 study. The study population was stratified for serum ferritin: 257 were iron-depleted (serum ferritin 2 for the models were 0.28, 0.48 and 0.34, respectively. Strong positive associations between blood concentrations of Mn, Co and Cd were observed, also when controlled for their common association with ferritin. Apart from these associations, the models showed no significant interactions between the six divalent metals studied. Very mild anaemia (110≤Hb<120 g/L) did not seem to have any effect independent of low ferritin. Approximately 26% of the women with iron deficiency anaemia had high concentrations of all of Mn, Co and Cd as opposed to 2.3% of iron-replete subjects. The results confirm that low serum ferritin may have an impact on body kinetics of certain divalent metal ions, but not all. Only a fraction of women with low iron status exhibited an increased blood concentration of divalent metals, providing indication of complexities in the body's handling of these metals.

  9. A photo-oxidation procedure using UV radiation/H{sub 2}O{sub 2} for decomposition of wine samples - Determination of iron and manganese content by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Walter N.L. dos [Departamento de Ciencias Exatas e da Terra, Universidade do Estado da Bahia, Salvador, Bahia (Brazil); Universidade Federal da Bahia, Instituto de Quimica, Campus Ondina, Salvador, Bahia, 40170-290 Brazil (Brazil)], E-mail: wlopes@uneb.br; Brandao, Geovani C.; Portugal, Lindomar A.; David, Jorge M.; Ferreira, Sergio L.C. [Universidade Federal da Bahia, Instituto de Quimica, Campus Ondina, Salvador, Bahia, 40170-290 Brazil (Brazil)

    2009-06-15

    This paper proposes the use of photo-oxidation with UV radiation/H{sub 2}O{sub 2} as sample pretreatment for the determination of iron and manganese in wines by flame atomic absorption spectrometry (FAAS). The optimization involved the study of the following variables: pH and concentration of buffer solution, concentrated hydrogen peroxide volume and irradiation time. The evaluation of sample degradation was monitored by measuring the absorbance at the maximum wavelength of red wine (530 nm). Using the experimental conditions established during the optimization (irradiation time of 30 min, oxidant volume of 2.5 mL, pH 10, and a buffer concentration of 0.15 mol L{sup - 1}), this procedure allows the determination of iron and manganese with limits of detection of 30 and 22 {mu}g L{sup - 1}, respectively, for a 5 mL volume of digested sample. The precision levels, expressed as relative standard deviation (RSD), were 2.8% and 0.65% for iron and 2.7% and 0.54% for manganese for concentrations of 0.5 and 2.0 mg L{sup - 1}, respectively. Addition/recovery tests for evaluation of the accuracy were in the ranges of 90%-111% and 95%-107% for iron and manganese, respectively. This digestion procedure has been applied for the determination of iron and manganese in six wine samples. The concentrations varied from 1.58 to 2.77 mg L{sup - 1} for iron and from 1.30 to 1.91 mg L{sup - 1} for manganese. The results were compared with those obtained by an acid digestion procedure and determination of the elements by FAAS. There was no significant difference between the results obtained by the two methods based on a paired t-test (at 95% confidence level)

  10. Equation for calculation of nitrogen solubility in iron alloys

    International Nuclear Information System (INIS)

    Pomarin, Yu.M.; Grigorenko, G.M.

    1989-01-01

    Equation for calculating nitrogen solubility in multicomponent iron melts in a wide range of partial pressures (1-1600 kPa), of doping component concentrations and temperatures (1773-2373 K) is proposed. Comparative analysis of experimental and calculated values of nitrogen solubility has demonstrated a principle possibility of applying the equation proposed for evaluating absorption ability to nitrogen of industrial nitrogen containing steels and ferroalloys subjected to melting or remelting in plasma or other melting devices

  11. Nanocrystalline Iron-Cobalt Alloys for High Saturation Indutance

    Science.gov (United States)

    2016-02-24

    film deposited just like the pick-up of a turn-table music player. The contact pads provide the electrical contacts to the starting and end point of...anisotropy using the geometry of the thin toroid. We have shown experimentally that the thin film toroid calculations may be applicable to up to millimeter...thin film as well as bulk devices. 15. SUBJECT TERMS Micromagnetic Calculations, Nanocrystalline cobalt-iron, Thin Film Toroids 16. SECURITY

  12. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

    Science.gov (United States)

    Distefano, S.; Rameshan, R.; Fitzgerald, D. J.

    1991-01-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.

  13. Comparison of low cycle fatigue of ductile cast irons with different matrix alloyed with nickel

    Czech Academy of Sciences Publication Activity Database

    Petrenec, Martin; Tesařová, H.; Beran, Přemysl; Šmíd, Miroslav; Roupcová, Pavla

    2010-01-01

    Roč. 2, č. 1 (2010), s. 2307-2316 E-ISSN 1877-7058. [ Fatigue 2010. Praha, 06.06.2010-11.06.2010] R&D Projects: GA ČR GAP108/10/2371 Institutional research plan: CEZ:AV0Z20410507; CEZ:AV0Z10480505 Keywords : Low cycle fatigue * ferritic ductile cast iron * ADI * nickel alloying * neutron diffraction Subject RIV: JL - Materials Fatigue , Friction Mechanics

  14. Electroerosion formation and technology of cast iron coatings on aluminum alloys

    Directory of Open Access Journals (Sweden)

    Smolentsev Vladislav P.

    2017-01-01

    Full Text Available At present in the course of designing basic production parts and industrial equipment designers pay more and more attention to aluminum alloys having a number of properties compared favorably with other materials. In particular, technological aluminum tool electrodes without coating in the presence of products of processing with alkali in the composition of operation environment are being destroyed at the expense of intensified material dissolution. It is shown in the paper that the method offered by the authors and covered by the patents on cast iron coating of products made of aluminum alloys, allows obtaining on a product surface the layers with high adhesion durability ensuring a high protection against destruction in the friction units including operation in hostile environment. Thereupon, aluminum, as compared with iron-based alloys used at manufacturing technological equipment for electrical methods of processing, has a high electrical and thermal conduction, its application will allow achieving considerable energy-saving in the course of parts production. A procedure for the design of a technological process of qualitative cast iron coatings upon aluminum tool electrodes and parts of basic production used in different branches of mechanical engineering is developed.

  15. Anodic behaviours, dissolution and passivation of iron-nickel alloys in sulphuric environment. Influence of friction

    International Nuclear Information System (INIS)

    Ponthiaux, Pierre

    1990-01-01

    This research thesis reports the study of anodic dissolution and passivation of iron-nickel alloys (10, 20 and 31 pc nickel) in a sulphuric environment, with or without friction, by using anodic polarization curves. Without friction, the three alloys have a similar behaviour as pure iron. The analysis reveals different dissolution and passivation mechanisms with pure iron, and highlights the influence of nickel content on corresponding kinetics. The influence of cyclic plane-on-plane friction has been studied for the 31 pc nickel alloy which has an unsteady austenitic structure. Fretting results in some modifications of polarization curves. These modifications are analysed with respect to fretting parameters (relative speed of antagonist surfaces, contact pressure). They reveal the specific influence of the following phenomena: material strain hardening, martensitic transformation induced by strain hardening, partial destruction of adsorbates and/or of the passive film. Modifications of polarization curves give also information on the evolution of friction characteristics with respect to speed (a phenomenon of lubrication by the electrolyte occurs) [fr

  16. Manganese deposition in drinking water distribution systems.

    Science.gov (United States)

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Effect of cerium addition on the corrosion behaviour of carbon-alloyed iron aluminides

    International Nuclear Information System (INIS)

    Sriram, S.; Balasubramaniam, R.; Mungole, M.N.; Bharagava, S.; Baligidad, R.G.

    2006-01-01

    The effect of Ce addition on the microstructure and corrosion behavior of carbon-alloyed iron aluminides Fe-20.0Al-2.0C, Fe-18.5Al-3.6C and Fe-19.2Al-3.3C-0.07Ce (in at.%) has been studied. The potentiodynamic polarization behaviour of the alloys was evaluated in freely aerated 0.25 mol/l H 2 SO 4 . A 0.05% C steel was used for comparison purposes. All the alloys exhibited active-passive behaviour in the acidic solution. The addition of Ce destroyed passivity as indicated by lower breakdown potentials in polarization studies. This has been related to the finer distribution of the carbides in the microstructure. Corrosion rates were evaluated by immersion testing. The iron aluminide with Ce addition exhibited a lower corrosion rate compared to the aluminides without Ce addition. This has been attributed to modifications in surface film with Ce addition. Scanning electron microscopy of corroded surfaces indicated that the carbon-alloyed intermetallics were susceptible to localized galvanic corrosion due to the presence of carbides in the microstructure

  18. Aluminium alloys containing iron and nickel; Alliages d'aluminium contenant du fer et du nickel

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H.; Fournier, R.; Grall, L.; Hure, J. [Commissariat a l' Energie atomique, Centre d' Etudes Nucleaires de Saclay, Departement de Metallurgie et de Chimie Appliquee (France); Herenguel, J.; Lelong, P. [Centre de Recherches d' Antony, des Trefileries et Laminoirs du Havre (France)

    1958-07-01

    The first part of this report addresses mechanism, kinetics and structure factors of aluminium alloys containing iron and nickel in water and high temperature steam. The studied alloys contain from 0.3 to 0.7 per cent of iron, and 0.2 to 1.0 per cent of nickel. Corrosion resistance and corrosion structure have been studied. The experimental installation, process and samples are presented. Corrosion structures in water at 350 C are identified and discussed (structure of corrosion products, structure of metal-oxide interface), and then in steam at different temperatures (350-395 C). Corrosion kinetics is experimentally studied (weight variation in time) in water at 350 C and in steam at different temperatures. Reactions occurring at over-heated steam (more than 400 C) are studied, and the case of welded alloys is also addressed. The second part addresses the metallurgical mechanism and processes influencing aluminium alloy resistance to corrosion by high temperature water as it appeared that separated phases protect the solid solution through a neighbourhood action. In order to avoid deep local corrosions, it seems necessary to multiply protective phases in an as uniform as possible way. Some processes enabling this result are described. They belong to conventional metallurgy or to powder metallurgy (with sintering and extrusion)

  19. Corrosion modelling of iron based alloy in nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Bataillon, C., E-mail: christian.bataillon@cea.f [CEA, DEN, DPC, SCCME, F-91191 Gif sur Yvette (France); Bouchon, F.; Chainais-Hillairet, C. [Clermont Universite, Universite Blaise Pascal, Laboratoire de Mathematiques, BP10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6620, Laboratoire de Mathematiques, F-63177 Aubiere (France); Desgranges, C. [CEA, DEN, DPC, SCCME, F-91191 Gif sur Yvette (France); Hoarau, E. [ANDRA/DS, 92298 Chatenay-Malabry Cedex (France); Martin, F.; Perrin, S. [CEA, DEN, DPC, SCCME, F-91191 Gif sur Yvette (France); Tupin, M. [CEA, DEN, DMN, SEMI, LM2E, F-91191 Gif sur Yvette (France); Talandier, J. [ANDRA/DS, 92298 Chatenay-Malabry Cedex (France)

    2010-06-01

    The Diffusion Poisson Coupled Model (DPCM) is presented to modelling the oxidation of a metal covered by an oxide layer. This model is similar to the Point Defect Model and the Mixed Conduction Model except for the potential profile which is not assumed but calculated in solving the Poisson equation. This modelling considers the motions of two moving interfaces linked through the ratio of Pilling-Bedworth. Their locations are unknowns of the model. Application to the case of iron in neutral or slightly basic solution is discussed. Then, DPCM has been first tested in a simplified situation where the locations of interfaces were fixed. In such a situation, DPCM is in agreement with Mott-Schottky model when iron concentration profile is homogeneous. When it is not homogeneous, deviation from Mott-Schottky model has been observed and is discussed. The influence of the outer and inner interfacial structures on the kinetics of electrochemical reactions is illustrated and discussed. Finally, simulations for the oxide layer growth are presented. The expected trends have been obtained. The steady-state thickness is a linear function of the applied potential and the steady-state current density is potential independent.

  20. Globally sustainable manganese metal production and use.

    Science.gov (United States)

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also

  1. Transmission electron microscope study of fusion-environment radiation damage in iron and iron-chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Horton, L.L.S.

    1982-07-01

    A transmission electron microscopy study of radiation damage microstructures in iron and iron-chromium alloys has been performed. This study consisted of both qualitative and quantitative characterization of the dislocation and cavity microstructures, including determination of vacancy/interstitial character and Burgers vectors for dislocation loops and analysis of the cavity morphology. The effects of irradiation temperature, fluence, helium implantation, and chromium content were investigated. Neutron irradiation (iron specimens, 1 dpa, 455 to 1000 K) and triple-beam ion irradiation (Fe-10% Cr specimens, 10 dpa, 725 to 950 K; Fe-10% Cr specimens, 850 K, 0.3 to 100 dpa; and Fe, Fe-5% Cr, Fe-10% Cr specimens, 850 K, 10 dpa) were employed. In the triple-beam ion irradiation procedure, simultaneous bombardment with 4 MeV Fe/sup + +/ ions and energetic He/sup +/ and D/sub 2//sup +/ ions was used to simulate the fusion environment (10 at. ppM He/dpa and 41 at. ppM D/dpa). In addition, single-beam 4 MeV Fe/sup + +/ ion irradiations of Fe-10% Cr both with and without pre-injection of helium and deuterium were performed.

  2. Transmission electron microscope study of fusion-environment radiation damage in iron and iron-chromium alloys

    International Nuclear Information System (INIS)

    Horton, L.L.S.

    1982-07-01

    A transmission electron microscopy study of radiation damage microstructures in iron and iron-chromium alloys has been performed. This study consisted of both qualitative and quantitative characterization of the dislocation and cavity microstructures, including determination of vacancy/interstitial character and Burgers vectors for dislocation loops and analysis of the cavity morphology. The effects of irradiation temperature, fluence, helium implantation, and chromium content were investigated. Neutron irradiation (iron specimens, 1 dpa, 455 to 1000 K) and triple-beam ion irradiation (Fe-10% Cr specimens, 10 dpa, 725 to 950 K; Fe-10% Cr specimens, 850 K, 0.3 to 100 dpa; and Fe, Fe-5% Cr, Fe-10% Cr specimens, 850 K, 10 dpa) were employed. In the triple-beam ion irradiation procedure, simultaneous bombardment with 4 MeV Fe ++ ions and energetic He + and D 2 + ions was used to simulate the fusion environment (10 at. ppM He/dpa and 41 at. ppM D/dpa). In addition, single-beam 4 MeV Fe ++ ion irradiations of Fe-10% Cr both with and without pre-injection of helium and deuterium were performed

  3. Dry sliding wear of Ni alloyed austempered ductile iron

    Directory of Open Access Journals (Sweden)

    E. Akbarzadeh Chiniforush

    2016-09-01

    Full Text Available Measurements of dry sliding wear are presented for ductile irons with composition Fe-3.56C-2.67Si-0.25Mo-0.5Cu and Ni contents of 0.8 and 1.5 in wt.% with applied loads of 50, 100 and 150 N for austempering temperatures of 270, 320, and 370 °C after austenitizing at 870 °C for 120 min. The mechanical property measurements show that the grades of the ASTM 897M: 1990 Standard can be satisfied for the selected austempering conditions. The results show that wear resistance is independent of austempering temperature with an applied load of 50 N, but there is a strong dependence at higher austempering temperatures with applied loads of 100 and 150 N. Observations indicate that wear is due to subsurface fatigue with cracks nucleated at deformed graphite nodules.

  4. Low iron stores are related to higher blood concentrations of manganese, cobalt and cadmium in non-smoking, Norwegian women in the HUNT 2 study

    Energy Technology Data Exchange (ETDEWEB)

    Margrete Meltzer, Helle, E-mail: helle.margrete.meltzer@fhi.no [Division of Environmental Medicine, Department of Food Safety and Nutrition, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo (Norway); Lise Brantsaeter, Anne [Division of Environmental Medicine, Department of Food Safety and Nutrition, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo (Norway); Borch-Iohnsen, Berit [Institute of Basic Medical Sciences, Department of Nutrition, University of Oslo, PO Box 1046 Blindern, N-0316 Oslo (Norway); Ellingsen, Dag G. [National Institute of Occupational Health, PO Box 8149 Dep, N-0033 Oslo (Norway); Alexander, Jan [Division of Environmental Medicine, Department of Food Safety and Nutrition, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo (Norway); Thomassen, Yngvar [National Institute of Occupational Health, PO Box 8149 Dep, N-0033 Oslo (Norway); Stigum, Hein [Division of Epidemiology, Department of Chronic Diseases, Norwegian Institute of Public Health, PO Box 4404 Nydalen, N-0403 Oslo (Norway); Ydersbond, Trond A. [Statistics Norway, P.Box 8131 Dep, N-0033 Oslo (Norway)

    2010-07-15

    Low iron (Fe) stores may influence absorption or transport of divalent metals in blood. To obtain more knowledge about such associations, the divalent metal ions cadmium (Cd), manganese (Mn), cobalt (Co), copper (Cu), zinc (Zn) and lead (Pb) and parameters of Fe metabolism (serum ferritin, haemoglobin (Hb) and transferrin) were investigated in 448 healthy, menstruating non-smoking women, age 20-55 years (mean 38 years), participating in the Norwegian HUNT 2 study. The study population was stratified for serum ferritin: 257 were iron-depleted (serum ferritin <12 {mu}g/L) and 84 had iron deficiency anaemia (serum ferritin <12 {mu}g/L and Hb<120 g/L). The low ferritin group had increased blood concentrations of Mn, Co and Cd but normal concentrations of Cu, Zn and Pb. In multiple regression models, ferritin emerged as the main determinant of Mn, Co and Cd (p<0.001), while no significant associations with Cu, Zn and Pb were found. Adjusted r{sup 2} for the models were 0.28, 0.48 and 0.34, respectively. Strong positive associations between blood concentrations of Mn, Co and Cd were observed, also when controlled for their common association with ferritin. Apart from these associations, the models showed no significant interactions between the six divalent metals studied. Very mild anaemia (110{<=}Hb<120 g/L) did not seem to have any effect independent of low ferritin. Approximately 26% of the women with iron deficiency anaemia had high concentrations of all of Mn, Co and Cd as opposed to 2.3% of iron-replete subjects. The results confirm that low serum ferritin may have an impact on body kinetics of certain divalent metal ions, but not all. Only a fraction of women with low iron status exhibited an increased blood concentration of divalent metals, providing indication of complexities in the body's handling of these metals.

  5. B2-ordered iron-aluminium alloys strengthening. Influence of additions (Ni and B) and microstructure

    International Nuclear Information System (INIS)

    Colas, David

    2004-01-01

    We study the effects of additions (Ni and B) and microstructure on the mechanical behaviour of 40 at. % Al iron-aluminium alloys. From a macroscopic point of view, we show that nickel reinforces FeAl alloys over the whole temperature range, but that it simultaneously leads to emphasize the room temperature brittleness of these alloys through a cleavage stress decrease. We confirm powder metallurgy grain refining interest to enhance yield stress as well as fracture resistance. We show that nickel-induced yield stress effect is additive to 'Hall-Petch' one. Also, we point out that the strengthening phenomena (nickel or grain size) cause the yield stress anomaly, which these alloys usually present, to be hidden. Through a dislocation structures analysis of deformed materials we precise that low temperature nickel-induced solid solution hardening (SSH) cannot be explained on the basis of classical SSH theories but more probably through nickel influence upon the Peierls stress. Moreover, we show that the APB tubes dragging model may be compatible with our microscopic and macroscopic results about the anomaly. Eventually, we put into relation a dynamic super-dislocations multiplication process observation (in situ transmission microscopy) with the nickel-containing alloys tendency to cleavage. (author) [fr

  6. Characteristics of Iron-Palladium alloy thin films deposited by magnetron sputtering

    Science.gov (United States)

    Chiu, Y.-J.; Shen, C.-Y.; Chang, H.-W.; Jian, S.-R.

    2018-06-01

    The microstructural features, magnetic, nanomechanical properties and wettability behaviors of Iron-Palladium (FePd) alloy thin films are investigated by using X-ray diffraction (XRD), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), nanoindentation and water contact angle (CA) techniques, respectively. The FePd alloy thin films were deposited on glass substrates using a magnetron sputtering system. The post-annealing processes of FePd alloy thin films were carried out at 400 °C and 750 °C and resulted in a significant increase of both the average grain size and surface roughness. The XRD analysis showed that FePd alloy thin films exhibited a predominant (1 1 1) orientation. The magnetic field dependence of magnetization of all FePd thin films are measured at room temperature showed the ferromagnetic characteristics. The nanoindentation with continuous stiffness measurement (CSM) is used to measure the hardness and Young's modulus of present films. The contact angle (θCA) increased with increasing surface roughness. The maximum θCA of 75° was achieved for the FePd alloy thin film after annealing at 750 °C and a surface roughness of 4.2 nm.

  7. Segregation and precipitation in iron-chromium alloys during thermal ageing and irradiation

    International Nuclear Information System (INIS)

    Senninger, O.

    2013-01-01

    Iron-Chromium alloys have a peculiar thermodynamic and diffusion behavior which is due to their magnetic properties. The alloy decomposition under thermal ageing has been studied in this thesis. An atomistic kinetic model has been performed in this aim in which we have modeled in details the chemical species thermodynamic and diffusion properties. In particular, the evolution of elements diffusion properties which the ferro-paramagnetic transition has been introduced in the model. Simulated decompositions have been compared with experiments for a large range of concentrations and temperatures. A good agreement between simulations and experiments was observed and these comparisons have highlighted the ferro to paramagnetic transition key role in the concentrated alloys kinetic decomposition. This study has also evidenced that the elements diffusion at phases interfaces is responsible for the alloy decomposition kinetic in long lasting.We have also started a study of the alloy radiation induced segregation. For that purpose, atomistic kinetic model has been performed modeling defects migration through a perfect planar sink. It have been shown, I agreement with former studies, that chromium tends to segregate in the vicinity of sinks at low temperatures and deplete at high temperature. (author) [fr

  8. EFFECT OF ALLOYING ON TEMPERATURE OF TRANSFORMATION «PEARLITE – AUSTENITE» IN COMPLEX-ALLOYED WHITE CAST IRONS

    Directory of Open Access Journals (Sweden)

    T. V. Pastukhova

    2014-11-01

    Full Text Available Purpose. Pearlite is not accepted in the microstructure of wear resistant steels and cast irons. To prevent the pearlite by means of appropriate selection of mode of quenching requires the knowledge of the temperature of the critical points Ac1 and Ac3 for various steels and cast irons. Purpose of work is determine the effect of V (5-10% and Cr (up to 9% on the temperature range of the phase-structural transformation "pearlite®austenite in the complex-alloyed V-Cr-Mn-Ni white cast irons with spheroidal vanadium carbides. Methodology. Nine Mg-treated cast irons smelted in laboratory furnace were used for investigation. The metallographic and optical dilatometric analysis methods as well as energy-dispersive spectroscopy were used. Findings. It is shown that in irons studied the critical point Ac1 is in a temperature range from 710-780 °C (lower limit up to 730-850 °C (upper limit. The data on the concentrations of chromium and vanadium in a matrix of iron are presented, the regression equation describing the effect of vanadium and chromium on the temperature limits of the transformation «pearlite ® austenite» are obtained. Originality. It is shown that increase the chromium content leads to growth of lower and upper limits of the temperature interval of transformation "pearlite ® austenite"; vanadium increases only the upper limit of the range. It was found that the effect of chromium on the critical point Ac1 is attributed to its solubility in the metallic matrix (concentration of Cr in the austenite reaches 7%; vanadium, due to its slight dissolution in the matrix (vanadium content does not exceed 1.75%, affects the critical point indirectly by increasing of chromium concentration in the matrix due to enhanced carbon sequestration in VC carbides. Practical value. The temperature ranges of heating for quenching of V-Cr-Mn-Ni cast irons with spheroidal vanadium carbides, which provides the formation of austenitic-martensitic matrix without

  9. Preparation of hard magnetic materials based on nitrogenated rare-earth iron alloys

    International Nuclear Information System (INIS)

    Guilherme, Eneida da Graca

    1999-01-01

    Nd Fe 11 Ti, Nd Fe 10.5 Mo 1.5 and Nd Fe 10.75 Mo 1.25 alloys were synthesized by reduction-diffusion calciothermic process (RDC) from neodymium chloride (NdCl 3 ), iron, titanium, molybdenum and reduction agent (metallic calcium). The effect of process variables, like temperature, time, excess amount of NdCl 3 , heating rate, and composition variation of the Nd Fe 12-x Mo x (1 ≥ x ≥ 2). Mother alloys in which 1:12 phase is major were nitrogenated by gas-solid reaction with N 2 and by chemical reaction with sodium zide (Na N 3 ). In addition, the influence of reducing particle size of the powdered mother alloys in the nitrogenation step with Na N 3 were studied. As prepared and interstitially modified Nd Fe 11 Ti, Nd Fe 10.5 Mo 1.5 and Nd Fe 10.75 Mo 1.25 alloys with nitrogen , were characterized by X-ray diffraction, Moessbauer spectroscopy, thermomagnetic, SEM and EDS. Nitrogenation by gas-solid reaction with N 2 is found to be not promising, since resulted Curie temperatures (Tc) were lower than literature values. However, nitrogenation by chemical reaction with Na N 3 was efficient with higher or same Tc than previous reported results. The average increases on Tc and volumetric expansion were 200 deg C and 4%, respectively. Milling of the mother alloys before nitrogenation at 330 deg C is preferred because reaction kinetics is enhanced. Nevertheless, at 450 deg C, a competition between the interstitially modified compound formation (alloy + N) and alloy dissociation has occurred, resulting in a Fe-α phase increase. (author)

  10. Combined effects of ultrasonic vibration and manganese on Fe-containing inter-metallic compounds and mechanical properties of Al-17Si alloy with 3wt.%Fe

    Directory of Open Access Journals (Sweden)

    Lin Chong

    2013-05-01

    Full Text Available The research studied the combined effects of ultrasonic vibration (USV and manganese on the Fe-containing inter-metallic compounds and mechanical properties of Al-17Si-3Fe-2Cu-1Ni (wt.% alloys. The results showed that, without USV, the alloys with 0.4wt.% Mn or 0.8wt.% Mn both contain a large amount of coarse plate-like δ-Al4(Fe,MnSi2 phase and long needle-like β-Al5(Fe,MnSi phase. When the Mn content changes from 0.4wt.% to 0.8wt.% in the alloys, the amount and the length of needle-like β-Al5(Fe,MnSi phase decrease and the plate-like δ-Al4(Fe,MnSi2 phase becomes much coarser. After USV treatment, the Fe-containing compounds in the alloys are refined and exist mainly as δ-Al4(Fe,MnSi2 particles with an average grain size of about 20 μm, and only a small amount of β-Al5(Fe,MnSi phase remains. With USV treatment, the ultimate tensile strengths (UTS of the alloys containing 0.4wt.%Mn and 0.8wt.%Mn at room temperature are 253 MPa and 262 MPa, respectively, and the ultimate tensile strengths at 350 °C are 129 MPa and 135 MPa, respectively. It is considered that the modified morphology and uniform distribution of the Fe-containing inter-metallic compounds, which are caused by the USV process, are the main reasons for the increase in the tensile strength of these two alloys.

  11. Study of granitic biotites by X-ray fluorescence analysis: determination of iron, manganese, titanium, calcium, potassium, silicon and aluminium; Estudio de biotitas graniticas por fluorescencia de rayos X: Determinacion de hierro, manganeso, titanio, calcio, potasio, silicio y aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Toubes, R. O.; Bermudez Polonio, J.

    1968-07-01

    A method for the quantitative determination of iron, manganese, titanium, calcium potassium, silicon, and aluminium, is reported, Sample preparation is carried out by the miniature flux technique, and rubidium is used as internal standard for silicon and aluminium. (Author) 5 refs.

  12. Hydrogen solubility in iron, platinum and their alloys under pressure up to 67 kbars

    International Nuclear Information System (INIS)

    Belash, I.T.; Antonov, V.E.; Ponyatovskij, E.G.

    1979-01-01

    The solubility of hydrogen was studied in iron, nickel and Fe-Pt-H alloy at a high pressure. It was shown that at T=250 deg C and psub(Hsub(2))=67 kbar, the solubility hy of hydrogen in α-iron and platinum is below the sensitivity threshold of the employed method of chemical analysis, deltasub(n) approximately 0.05 (n - atomic ratio hydrogen metal). At this pressure and at a temperature of T=150 deg C, the equilibrium concentration of hydrogen in non-ordered Fe-Pt alloys with a FCC lattice, containing 25 and 32 at. % Pt, attains, respectively, n = (5+-2)x10 -2 and (2+-5)x10 -2 . Ordering of the alloy with 25 at. % Pt produces no substantial change in the solubility of hydrogen. In a hydrogen atmosphere, the dependence of the Curie point Tsub(c)(psub(Hsub(2)) deviates from Tsub(c)(p). In an inert medium, at p=67 kbar, ΔTsub(c)=Tsub(c)(psub(Hsub(2)) - Tsub(c)(p) = 35+-10 deg C

  13. Microstructural evolution of ferritic steel powder during mechanical alloying with iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yuren; Liu, Yong; Liu, Donghua; Tang, Bei [Central South Univ., State Key Lab. of Powder Metallurgy, Changsha (China); Liu, C.T. [The Hong Kong Polytechnic Univ., Dept. of Mechanical Engineering, Hong Kong (China)

    2011-02-15

    Mechanical alloying of mixed powders is of great importance for preparing oxide dispersion strengthened ferritic steels. In this study, the microstructural evolution of ferritic steel powder mixed with TiH{sub x}, YH{sub 2} and Fe{sub 2}O{sub 3} in the process of mechanical alloying is systematically investigated by using X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy and microhardness tests. It is found that titanium, yttrium hydrides and iron oxide are completely dissolved during milling, and homogeneous element distribution can be achieved after milling for 12 h. The disintegration of the composite powder particles occurs at 24 h and reaches the balance of welding and fracturing after 36 h. The oxygen content increases sharply with the disintegration of powder particles due to the absorption of oxygen at the solid/gas interface from the milling atmosphere, which is the main source of extra oxygen in the milled powder. Grain refinement down to nanometer level occurs due to the severe plastic deformation of particles; however, the grain size does not change much with further disintegration of particles. The hardness increases with milling time and then becomes stable during further milling. The study indicates that the addition of iron oxide and hydrides may be more beneficial for the dispersion and homogenization of chemical compositions in the powder mixture, thus shortening the mechanical alloying process. (orig.)

  14. Effect of alloying elements on solidification of primary austenite in Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2011-04-01

    Full Text Available Within the research, determined were direction and intensity of alloying elements influence on solidification way (directional orvolumetric of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu. 50 cast shafts dia. 20 mm were analysed.Chemical composition of the alloy was as follows: 1.7 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.9 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to0.16 % P and 0.03 to 0.04 % S. The discriminant analysis revealed that carbon influences solidification of primary austenite dendrites most intensively. It clearly increases the tendency to volumetric solidification. Influence of the other elements is much weaker. This means that the solidification way of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu does not differ from that in an unalloyed cast iron.

  15. Iron -chromium alloys and free surfaces: from ab initio calculations to thermodynamic modeling

    International Nuclear Information System (INIS)

    Levesque, M.

    2010-11-01

    Ferritic steels possibly strengthened by oxide dispersion are candidates as structural materials for generation IV and fusion nuclear reactors. Their use is limited by incomplete knowledge of the iron-chromium phase diagram at low temperatures and of the phenomena inducing preferential segregation of one element at grain boundaries or at surfaces. In this context, this work contributes to the multi-scale study of the model iron-chromium alloy and their free surfaces by numerical simulations. This study begins with ab initio calculations of properties related to the mixture of atoms of iron and chromium. We highlight complex dependency of the magnetic moments of the chromium atoms on their local chemical environment. Surface properties are also proving sensitive to magnetism. This is the case of impurity segregation of chromium in iron and of their interactions near the surface. In a second step, we construct a simple energy model for high numerical efficiency. It is based on pair interactions on a rigid lattice to which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that we compare to Monte Carlo simulations. The last step of our work is to introduce free surfaces in our model. We then study the effect of ab initio calculated bulk and surface properties on surface segregation.Finally, we calculate segregation isotherms. We therefore propose an evolution model of surface composition of iron-chromium alloys as a function of bulk composition. which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that

  16. High resisting alloy without Co used in nuclear industry

    International Nuclear Information System (INIS)

    Balleret, Alain.

    1976-01-01

    The description is given of a high resistance alloy characterised in that it includes by weight 5 to 14% molybdenum, 19 to 32% chromium, 2 to 8% tungsten, 6 to 50% nickel, 0.2 to 2.8% carbon, 0 to 5% vanadium, 0 to 5% zirconium, 0 to 5% niobium-tantalum, 0 to 3% manganese, 0 to 3% silicon, 0 to 1.5% boron and iron in an amount to ensure the global balance of this alloy [fr

  17. First-principles investigations of iron-based alloys and their properties

    Science.gov (United States)

    Limmer, Krista Renee

    Fundamental understanding of the complex interactions governing structure-property relationships in iron-based alloys is necessary to advance ferrous metallurgy. Two key components of alloy design are carbide formation and stabilization and controlling the active deformation mechanism. Following a first-principles methodology, understanding on the electronic level of these components has been gained for predictive modeling of alloys. Transition metal carbides have long played an important role in alloy design, though the complexity of their interactions with the ferrous matrix is not well understood. Bulk, surface, and interface properties of vanadium carbide, VCx, were calculated to provide insight for the carbide formation and stability. Carbon vacancy defects are shown to stabilize the bulk carbide due to increased V-V bonding in addition to localized increased V-C bond strength. The VCx (100) surface energy is minimized when carbon vacancies are at least two layers from the surface. Further, the Fe/VC interface is stabilized through maintaining stoichiometry at the Fe/VC interface. Intrinsic and unstable stacking fault energy, gammaisf and gamma usf respectively, were explicitly calculated in nonmagnetic fcc Fe-X systems for X = Al, Si, P, S, and the 3d and 4d transition elements. A parabolic relationship is observed in gamma isf across the transition metals with minimums observed for Mn and Tc in the 3d and 4d periods, respectively. Mn is the only alloying addition that was shown to decrease gamma isf in fcc Fe at the given concentration. The effect of alloying on gammausf also has a parabolic relationship, with all additions decreasing gammaisf yielding maximums for Fe and Rh.

  18. Monitoring of occupational exposure in manufacturing of stainless steel constructions. Part I: Chromium, iron, manganese, molybdenum, nickel and vanadium in the workplace air of stainless steel welders.

    Science.gov (United States)

    Kucera, J; Bencko, V; Pápayová, A; Saligová, D; Tejral, J; Borská, L

    2001-11-01

    Exposure to workplace airborne pollutants was examined in a group of 20 workers dealing mainly with welding, polishing, drilling and assembling of stainless steel constructions. Airborne particulate matter (APM) collected using both personal and stationary samplers was analyzed by instrumental neutron activation analysis (INAA). Quality assurance procedures of both sampling and analytical stages are described. Of the elements determined, results are presented for chromium, iron, manganese, molybdenum, nickel and vanadium. The median values of element concentrations exceeded the maximum admissible limits for workplace pollutants only for chromium, while for nickel the limit was exceeded in several individual cases. Sampling of hair, nails, blood, urine and saliva to be used for biological monitoring of the exposed and control groups is also described.

  19. High temperature Moessbauer study of order-disorder transformation in iron-aluminum alloys

    International Nuclear Information System (INIS)

    Oki, Kensuke; Yamamura, Akihiko; Kudo, Kazunao; Eguchi, Tetsuo

    1979-01-01

    Ordering process of iron rich Fe-Al alloys has been investigated at elevated temperatures by mean of Moessbauer spectroscopy. The observed spectra are analyzed to obtain the temperature dependences of the internal field, isomer shift and line width, and the results are discussed in connection with the ordering process. The alloy with 24.7 at% Al exhibits spectra, which are characteristic of the superposition of a single-line spectrum and a six-line one, originating from the ordered paramagnetic B2 or DO 3 state and disordered ferromagnetic α, respectively, and the results confirm the coexistence of α phase with B2 or DO 3 . The isomer shift of the paramagnetic component of the spectra shows discontinuous changes at the temperatures of transformation α reversible B2 and B2 reversible DO 3 . (author)

  20. Estimation of the effect of molybdenum on chemical and electrochemical stability of iron-based alloys

    International Nuclear Information System (INIS)

    Tyurin, A.G.

    2003-01-01

    The E-pH diagram for Mo-H 2 O system is made more precise. It is shown that a passivating film on molybdenum in weakly acid, neutral and alkali solutions may constitute MoO 2 only. In strongly acid solutions at anodic polarization the film should transform according to the following scheme: MoO 2 → Mo 4 O 11 → Mo 9 O 26 → MoO 3 . Sections of a Fe-Mo-O system phase diagram and a Fe-Mo-H 2 O system E-pH diagram at 25 deg C are plotted. MoO 2 is found to be a product of iron-molybdenum alloy oxidation in the air and in water. For the system of alloy Kh17N13M2-H 2 O the section of a E-pH diagram is plotted at 25 deg C [ru

  1. Corrosion-resistant amorphous alloy ribbons for electromagnetic filtration of iron rusts from water

    International Nuclear Information System (INIS)

    Kawashima, Asahi; Asami, Katsuhiko; Sato, Takeaki; Hashimoto, Koji

    1985-01-01

    An attempt was made to use corrosion-resistant amorphous Fe-9Cr-13P-7C alloy ribbons as an electromagnetic filter material for trapping various iron rusts suspended in water at 40 0 C. The ferrimagnetic Fe 3 O 4 rust was trapped with the 100 % efficiency and paramagnetic rusts such as α-Fe 2 O 3 , α-FeOOH and amorphous ferric oxyhydroxide were trapped with certain efficiencies at the magnetic field strength of 0.5-10 kOe. The regeneration of the filter by back-washing was easy. The trapping capacity of electromagnetic filter was proportional to the edge length of the filter material where the high magnetic field strength existed. Therefore, melt-spun thin and narrow amorphous alloy ribbons having the high corrosion resistance have the potential utility as electromagnetic filter material. (author)

  2. Role of samarium additions on the shape memory behavior of iron based alloys

    International Nuclear Information System (INIS)

    Shakoor, R.A.; Khalid, F. Ahmad; Kang, Kisuk

    2011-01-01

    Research highlights: → The effect of samarium contents on shape memory behavior has been studied. → Addition of samarium increases the strength, c/a ratio and ε (hcp martensite). → Addition of samarium retards the nucleation of α (bcc martensite). → Improvement in shape memory effect with the increase in samarium contents. - Abstract: The effect of samarium contents on shape memory behavior of iron based shape memory alloys has been studied. It is found that the strength of the alloys increases with the increase in samarium contents. This effect can be attributed to the solid solution strengthening of austenite by samarium addition. It is also noticed that the shape memory effect increases with the increase in samarium contents. This improvement in shape memory effect presumably can be regarded as the effect of improvement in strength, increase in c/a ratio and obstruction of nucleation of α in the microstructure.

  3. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance

    International Nuclear Information System (INIS)

    Farah, Alessandro Fraga

    1997-01-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  4. Survey of heavy metal pollution (copper, lead, zinc, cadmium, iron and manganese in drinking water resources of Nurabad city, Lorestan, Iran 2013

    Directory of Open Access Journals (Sweden)

    GHodratolah Shams Khorramabadi

    2016-09-01

    Full Text Available Background: Healthy water passes through the pipelines from supply resources to consuming places in which passing from these stages may cause some cases of contamination like heavy metal contamination. Therefore, the aim of this study was to evaluate the contamination of heavy metals (copper, lead, zinc, cadmium, iron, and manganese in water resources of Nurabad city of Lorestan in 2013. Materials and Methods: In this cross-sectional study, samples were collected from 7 wells of drinking water and 2 water storage tanks during 6 months in Nurabad. So that, heavy metal parameters such as copper, lead, zinc, cadmium, iron, and manganese were measured using an atomic absorption device and also electrical conductivity, sulfate, chloride and total dissolved solids were also measured in accordance with standard methods. Results: Results indicated that the concentration of studied metals in water sources was lower than the national standards and World Health Organization standard, and in the water supply system the concentration of some metals was more than standard level. Moreover, the results showed that the concentration of studied heavy metals were more in winter than in autumn. Conclusion: Generally, in the water resources of Nurabad city the concentration of studied heavy metals was lower than the national standards and World Health Organization standard and there are not problems for water consumers. However, due to public health and the presence of a high concentration of these metals in the distribution supply, the heavy metal concentration in drinking water of this region should be monitored regularly by responsible organizations.

  5. Evolution of Iron-containing Compounds in Al-Cu Alloys during Heat Treatment

    Directory of Open Access Journals (Sweden)

    Liu Kun

    2016-01-01

    Full Text Available The evolution of iron-containing compounds in Al-Cu 206 cast alloy during solution treatment has been investigated. Results show that platelet β-Fe and Chinese script α-Fe are the two iron-containing compounds in as-cast condition. Little change is observed on β-Fe during solution treatment. However, fine blocky post β-Fe begins to form on α-Fe when solution treated at 520°C for 8hrs. When soaking time is extended to 24 hrs, α–Fe is found to decompose to fine branches while post β-Fe present as clusters on these branches. Al-Cu-Mg-Si Q phase is observed to form at the edge of decomposed α-Fe, possibly the result of Si from decomposed α-Fe.

  6. Properties of grain boundaries in BCC iron and iron-based alloys

    International Nuclear Information System (INIS)

    Terentyev, D.; He, Xinfu

    2010-01-01

    The report contains a summary of work done within the collaboration established between SCK-CEN and CIEA, performed during the internship of Xinfu He (CIAE) in the period of September 2009 to June 2010. In this work, we have carried out an atomistic study addressing the properties of grain boundaries in BCC Fe and Fe-Cr alloys. Throughout this work we report on the structural and cohesive properties of grain boundaries; thermal stability; interaction of grain boundaries with He and diffusivity of He in the core of the grain boundaries; equilibrium segregation of Cr near the grain boundary zone; cleavage fracture of grain boundaries; influence of the Cr precipitates, voids and He bubbles on the structure and strength of grain boundaries.

  7. Properties of grain boundaries in BCC iron and iron-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Terentyev, D.; He, Xinfu

    2010-08-15

    The report contains a summary of work done within the collaboration established between SCK-CEN and CIEA, performed during the internship of Xinfu He (CIAE) in the period of September 2009 to June 2010. In this work, we have carried out an atomistic study addressing the properties of grain boundaries in BCC Fe and Fe-Cr alloys. Throughout this work we report on the structural and cohesive properties of grain boundaries; thermal stability; interaction of grain boundaries with He and diffusivity of He in the core of the grain boundaries; equilibrium segregation of Cr near the grain boundary zone; cleavage fracture of grain boundaries; influence of the Cr precipitates, voids and He bubbles on the structure and strength of grain boundaries.

  8. The kinetics of phase transformations of undercooled austenite of the Mn-Ni iron based model alloy

    OpenAIRE

    E. Rożniata; R. Dziurka; J. Pacyna

    2011-01-01

    Purpose: Present work corresponds to the research on the kinetics of phase transformations of undercooled austenite of Mn-Ni iron based model alloy. The kinetics of phase transformations of undercooled austenite of investigated alloy was presented on CCT diagram (continuous cooling transformation). Also the methodology of a dilatometric samples preparation and the method of the critical points determination were described.Design/methodology/approach: The austenitising temperature was defined ...

  9. Effects of Alloying Elements (Mo, Ni, and Cu on the Austemperability of GGG-60 Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Erkan Konca

    2017-08-01

    Full Text Available The interest in austempered ductile irons (ADI is continuously increasing due to their various advantageous properties over conventional ductile irons and some steels. This study aimed to determine the roles of alloying elements Ni, Cu, and Mo, on the austemperability of GGG-60 ductile cast iron. Two different sets of GGG-60 (EN-GJS-600-3 samples, one set alloyed with Ni and Cu and the other set alloyed with Mo, Ni, and Cu, were subjected to austempering treatments at 290 °C, 320 °C, and 350 °C. A custom design heat treatment setup, consisting of two units with the top unit (furnace serving for austenitizing and the 200 L capacity bottom unit (stirred NaNO2-KNO3 salt bath serving for isothermal treatment, was used for the experiments. It was found that austempering treatment at 290 °C increased the hardness of the Ni-Cu alloyed GGG-60 sample by about 44% without causing a loss in its ductility. In the case of the Mo-Ni-Cu alloyed sample, the increase in hardness due to austempering reached to almost 80% at the same temperature while some ductility was lost. Here, the microstructural investigation and mechanical testing results of the austempered samples are presented and the role of alloying elements (Mo, Ni, and Cu on the austemperability of GGG-60 is discussed.

  10. Effects of alloying elements on the microstructure and fatigue properties of cast iron for internal combustion engine exhaust manifolds

    Science.gov (United States)

    Eisenmann, David J.

    In the design of exhaust manifolds for internal combustion engines the materials used must exhibit resistance to corrosion at high temperatures while maintaining a stable microstructure. Cast iron has been used for manifolds for many years by auto manufacturers due to a combination of suitable mechanical properties, low cost, and ease of casting. Over time cast iron is susceptible to microstructural changes, corrosion, and oxidation which can result in failure due to fatigue. This thesis seeks to answer the question: "Can observed microstructural changes and measured high temperature fatigue life in cast iron alloys be used to develop a predictive model for fatigue life?" the importance of this question lies in the fact that there is little data for the behavior of cast iron alloys at high temperature. For this study two different types of cast iron, 50HS and HSM will be examined. Of particular concern for the high Si+C cast irons (and Mo in the case of the HSM cast iron) are subsurface microstructural changes that result due to heat treatment including (1) decarburization, (2) ferrite formation, (3) graphitization, (4) internal oxidation of the Si, (5) high temperature fatigue resistance, and (6) creep potential. Initial results obtained include microstructure examination after being exposed to high temperatures, grain size, nodule size, and hardness measurements. The initial examinations concluded that both cast irons performed fairly similarly, although the microstructure of the HSM samples did show slightly better resistance to high temperature as compared to that of the 50HS. Follow on work involved high temperature fatigue testing of these two materials in order to better determine if the newer alloy, HSM is a better choice for exhaust manifolds. Correlations between fatigue performance and microstructure were made and discussed, with the results examined in light of current and proposed models for predicting fatigue performance based on computational methods

  11. Swelling of austenitic iron-nickelchromium ternary alloys during fast neutron irradiation

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1984-01-01

    Swelling data are now available for 15 iron-nickel-chromium ternary alloys irradiated to exposures as high as 110 displacements per atom (dpa) in Experimental Breeder Reactor-II (EBR-II) between 400 and 650 0 C. These data confirm trends observed at lower exposure levels and extend the generality of earlier conclusions to cover a broader range of composition and temperature. It appears that all austenitic iron-nickel-chromium ternary alloys eventually approach an intrinsic swelling rate of about1%/dpa over a range of temperature even wider than studied in this experiment. The duration of the transient regime that precedes the attainment of this rate is quite sensitive to nickel and chromium content, however. At nickel and chromium levels typical of 300 series steels, swelling does not saturate at engineering-relevant levels. However, there appears to be a tendency toward saturation that increases with declining temperature, increasing nickel and decreasing chromium levels. Comparisons of these results are made with those of similar studies conducted with charged particles. Conclusions are then drawn concerning the validity of charged particle simulation studies to determine the compositional and temperature dependence of swelling

  12. High density tungsten-nickel-iron-cobalt alloys having improved hardness and method for making same

    International Nuclear Information System (INIS)

    Penrice, T.W.; Bost, J.

    1988-01-01

    This patent describes the process of making high density alloy containing about 85 to 98 weight percent tungsten and the balance of the alloy being essentially a binder of nickel, iron and cobalt, and wherein the cobalt is present in an amount within the range of about 5 to 47.5 weight percent of the binder, comprising: blending powders of the tungsten, nickel, iron and cobalt into a homogeneous composition, compacting the homogeneous composition into a shaped article, heating the shaped article to a temperature and for a time sufficient to sinter the article, subjecting the sintered article to a temperature sufficient to enable the intermetallic phase formed at the matrix to tungsten interface to diffuse into the gamma austenitic phase whereby the alpha tungsten/gamma austenite boundaries are essentially free of such intermetallic phase, quenching the article, and swaging the article to a reduction in area of about 5 to 40 percent, the article having improved mechanical properties, including improved tensile strength and hardness while maintaining suitable ductility for subsequent working thereof

  13. Composition tunable cobalt–nickel and cobalt–iron alloy nanoparticles below 10 nm synthesized using acetonated cobalt carbonyl

    International Nuclear Information System (INIS)

    Schooneveld, Matti M. van; Campos-Cuerva, Carlos; Pet, Jeroen; Meeldijk, Johannes D.; Rijssel, Jos van; Meijerink, Andries; Erné, Ben H.; Groot, Frank M. F. de

    2012-01-01

    A general organometallic route has been developed to synthesize Co x Ni 1−x and Co x Fe 1−x alloy nanoparticles with a fully tunable composition and a size of 4–10 nm with high yield. In contrast to previously reported synthesis methods using dicobalt octacarbonyl (Co 2 (CO) 8 ), here the cobalt–cobalt bond in the carbonyl complex is first broken with anhydrous acetone. The acetonated compound, in the presence of iron carbonyl or nickel acetylacetonate, is necessary to obtain small composition tunable alloys. This new route and insights will provide guidelines for the wet-chemical synthesis of yet unmade bimetallic alloy nanoparticles.

  14. Iron-chrome-aluminum alloy cladding for increasing safety in nuclear power plants

    Science.gov (United States)

    Rebak, Raul B.

    2017-12-01

    After a tsunami caused plant black out at Fukushima, followed by hydrogen explosions, the US Department of Energy partnered with fuel vendors to study safer alternatives to the current UO2-zirconium alloy system. This accident tolerant fuel alternative should better tolerate loss of cooling in the core for a considerably longer time while maintaining or improving the fuel performance during normal operation conditions. General electric, Oak ridge national laboratory, and their partners are proposing to replace zirconium alloy cladding in current commercial light water power reactors with an iron-chromium-aluminum (FeCrAl) cladding such as APMT or C26M. Extensive testing and evaluation is being conducted to determine the suitability of FeCrAl under normal operation conditions and under severe accident conditions. Results show that FeCrAl has excellent corrosion resistance under normal operation conditions and FeCrAl is several orders of magnitude more resistant than zirconium alloys to degradation by superheated steam under accident conditions, generating less heat of oxidation and lower amount of combustible hydrogen gas. Higher neutron absorption and tritium release effects can be minimized by design changes. The implementation of FeCrAl cladding is a near term solution to enhance the safety of the current fleet of commercial light water power reactors.

  15. Phase composition of iron-rich R-Fe-Si (R=Dy, Ho, Er) alloys

    International Nuclear Information System (INIS)

    Ivanova, G.V.; Makarova, G.M.; Shcherbakova, E.V.; Belozerov, E.V.

    2005-01-01

    Phase composition is studied in iron-rich alloys of R-Fe-Si (R=Dy, Ho, Er). In the as-cast state R 2 (Fe, Si) 17 of type Th 2 Ni 17 and R(Fe, Si) 12 compounds are observed; in the alloys of rated composition of R(Fe 0.85 Si 0.15 ) 8.5 (R=Dy, Er) a compound R 2 (Fe, Si) 17 of Th 2 Zn 17 -type is revealed as well. The annealing at 1273 K results in formation of Dy 3 (Fe, Si) 29 and also the compounds with the presumed composition of Dy 4 (Fe, Si) 41 and Ho 4 (Fe, Si) 41 . As this takes place the alloys contain a transition structure as well that represents a set of small-sized areas with various type short-range order in mutual displacement of Fe-Fe(Si) dumpbell chains. The process of phase formation at 1273 K is faced with difficulties. Even the annealing for 1000 h does not result in the state of equilibrium [ru

  16. Method of simultaneous continuous determination of transfer rates of iron and chromium into solution during Fe-Cr alloys dissolution

    International Nuclear Information System (INIS)

    Shirinov, T.I.; Florianovich, G.M.; Skuratnik, Ya.B.

    1978-01-01

    Radiometry method of simultaneous continuous registration of transfer rates of iron and chromium into solution from Fe-Cr alloys with various composition has been developed. Using gamma-spectrometer components of Fe-Cr alloys can be determined with high sensitivity in separate samples according to Fe 59 and Cr 51 radioactive labels, obtained by neutron activation. The above method is applied to estimate Fe and Cr transfer rates into H 2 SO 4 solution at the temperature of 50 deg from Fe - 28% Cr alloy during its active dissolution. It is established, that beginning with some seconds of alloy and solution contact, its components transfer into the solution in the same composition, as in the alloy. The method enables to determine Fe with the accuracy of up to 5% and Cr with that of up to 10%

  17. Study of the recrystallization mechanisms of ultra-high purity iron doped with carbon, manganese and phosphorus; Etude des mecanismes de recristallisation dans le fer de ultra-haute purete dope en carbone, manganese et phosphore

    Energy Technology Data Exchange (ETDEWEB)

    Lesne, L.

    2000-07-04

    High purity steels have the potential to improve deep drawing properties for automotive applications. Understanding the influence of the chemical composition on the recrystallization mechanisms and on texture development should help to improve their properties. We have studied the influence of 10 ppm of carbon, 1000 ppm of manganese and 120 ppm of phosphorus on the recrystallization mechanisms of ultra-high purity iron (UHP iron > 99.997%). For this purpose we used 4 materials: one undoped (UHP), one doped with C, one doped with C, Mn and one doped With C, Mn, P. In order to restrict grain coarsening in the hot strips, hot rolling was performed in the ferritic region, in one pass of 80% thickness reduction. The hot bands were then fully recrystallized but exhibited non-isotropic textures, with in particular an intense Goss [110]<001> component for the doped materials. The hot-bands were subsequently cold rolled down to a thickness of 0.8 mm corresponding to a thickness reduction of 80%, and then continuously annealed at 10 deg. C/s. The recrystallization kinetics are delayed with the addition of doping elements. In particular, the incubation time for nucleation is shifted towards higher temperatures while the recrystallization velocity increases. The textures of the fully recrystallized materials exhibit a strong Goss component prejudicial for deep drawing properties. We have established that this component can only appear if coarse grains and carbon in solid solution were simultaneously present in the material before deformation. Characterisation of the cold deformed state enabled us to evaluate the energy stored during deformation as a function of the material composition and the grain orientation: - the overall stored energy increases with the doping elements content. - the stored energy in the {gamma} fibre grains is greater than in the {alpha} fibre grains: 30 J/mol for the {gamma} fibre instead of 5 J/mol for the {alpha} fibre, in the undoped UHP iron. In the

  18. Influence of manganese, carbon and nitrogen on high-temperature strength of Fe-Cr-Mn austenitic alloys

    International Nuclear Information System (INIS)

    Hosoi, Y.; Okazaki, Y.; Wade, N.; Miyahara, K.

    1990-01-01

    High Mn-Cr-Fe base alloys are candidates for the first wall material of fusion reactors because of rapid decay of radioactivity of the alloys after neutron irradiation compared with that of Ni-Cr-Fe base alloys. Their high temperature properties, however, are not clearly understood at present. In this paper, a study has been made of the effects of Mn, C and N content on the high-temperature tensile strength and creep properties of a 12% CR-Fe base alloy. Mn tends to decrease tensile strength and proof stress at intermediate temperatures. At higher temperatures in the austenite range, however, tensile properties scarcely depend on Mn content. C and N additions improve the tensile properties markedly. The combined addition of 0.2%C and 0.2%N to a 12%Cr-15%Mn-Fe base alloy makes the strength at 873K as high as that of a modified type 316 stainless steel. Combined alloying with C and N also improves the creep strength. Cold working is very useful in increasing the creep strength because of the finely dispersed precipitates in the matrix during creep. From these results, Fe-12%Cr-15%Mn-15%Mn-0.2%c-0.2%N is recommended as one of the most suitable alloys in this system for high temperature usage. (author)

  19. Neutralization of the negative influence of iron and silicon on the mechanical properties of aluminium casting alloys

    International Nuclear Information System (INIS)

    Zolotorevsky, V.S.; Axenov, A.A.; Belov, N.A.

    1990-01-01

    In most of casting aluminium alloys iron is a harmful impurity due to the appearance of rough particles with needle, plate or sceleton shapes of intermetallic compounds during crystallization. As a result of it the plasticity, fracture toughness and sometimes the strength are decreased

  20. PERSPECTIVE SOURCES OF METALS RESOURCES (CU, NI FOR CAST IRON ALLOYING, ARISING ON THE TERRITORY OF THE REPUBLIC OF BELARUS

    Directory of Open Access Journals (Sweden)

    V. L. Tribushevski

    2005-01-01

    Full Text Available The article is dedicated to the practical foundation of combined resources-economy technologies of the alloyed cast iron melting using wastes of galvanic productions, containing sulfates and hydroxides of these metals, instead of metallic nickel and copper.

  1. Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia

    KAUST Repository

    Casula, Maria F.

    2016-06-10

    A simple, one pot method to synthesize water-dispersible Mn doped iron oxide colloidal clusters constructed of nanoparticles arranged into secondary flower-like structures was developed. This method allows the successful incorporation and homogeneous distribution of Mn within the nanoparticle iron oxide clusters. The formed clusters retain the desired morphological and structural features observed for pure iron oxide clusters, but possess intrinsic magnetic properties that arise from Mn doping. They show distinct performance as imaging contrast agents and excellent characteristics as heating mediators in magnetic fluid hyperthermia. It is expected that the outcomes of this study will open up new avenues for the exploitation of doped magnetic nanoparticle assemblies in biomedicine. © the Owner Societies 2016.

  2. Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia

    KAUST Repository

    Casula, Maria F.; Conca, Erika; Bakaimi, Ioanna; Sathya, Ayyappan; Materia, Maria Elena; Casu, Alberto; Falqui, Andrea; Sogne, Elisa; Pellegrino, Teresa; Kanaras, Antonios G.

    2016-01-01

    A simple, one pot method to synthesize water-dispersible Mn doped iron oxide colloidal clusters constructed of nanoparticles arranged into secondary flower-like structures was developed. This method allows the successful incorporation and homogeneous distribution of Mn within the nanoparticle iron oxide clusters. The formed clusters retain the desired morphological and structural features observed for pure iron oxide clusters, but possess intrinsic magnetic properties that arise from Mn doping. They show distinct performance as imaging contrast agents and excellent characteristics as heating mediators in magnetic fluid hyperthermia. It is expected that the outcomes of this study will open up new avenues for the exploitation of doped magnetic nanoparticle assemblies in biomedicine. © the Owner Societies 2016.

  3. EVALUATION OF MACHINABILITY OF DUCTILE IRONS ALLOYED WITH Ni AND Cu IN TERMS OF CUTTING FORCES AND SURFACE QUALITY

    Directory of Open Access Journals (Sweden)

    Yücel AŞKUN

    2003-02-01

    Full Text Available Due to the enhanced strength, ductility and thoughness of Ductile Iron (DI when compared to the other types cast iron, its machinability is relatively poor. When a steel part is replaced with ductile iron, however, better machinability is considered to be the most important gain. This study presents the results of machining tests of ductile irons alloyed with Ni and Cu at various contents to determine the effect of their microstructure and mechanical properties on cutting forces and surface roughness. Six different specimen groups of ductile iron alloyed with various amounts of nickel and copper were subjected to machining tests and their machinabilities were investigated based on cutting forces and surface roughness criteria. The results were evaluated according to microstructure and mechanical properties of specimens determined before. In terms of both criterion, the best result obtained was specimen added 0.7 % Ni and 0.7 % Cu. When the specimens were evaluated according to their mechanical properties, the specimens alloyed 1 % Ni and 0.65 % Cu seemed promising.

  4. Effect of processing variables on mechanical properties of sintered manganese steels Fe-3%Mn-0.8%C

    International Nuclear Information System (INIS)

    Sulowski, M.; Cias, A.

    1998-01-01

    The powder metallurgy route may allow sintered manganese steels to be made based on pure iron powder and ferromanganese powder with control over alloy microstructure. The factors that contribute to the mechanical properties of sintered Fe-3%Mn-0.8%C manganese steel, such as the sintering atmosphere, dew point, sintering temperature, cooling rate are summarised. The paper shows the influence of these parameters on the tensile strength, yield strength, transverse rupture strength, impact strength and hardness. It is showed that tensile high strength level higher than those of many present sintered steels can be obtained already in the as-sintered condition. (author)

  5. Manganese-induced hydroxyl radical formation in rat striatum is not attenuated by dopamine depletion or iron chelation in vivo

    NARCIS (Netherlands)

    W.N. Sloot (W.); J. Korf (Jakob); J.F. Koster (Johan); L.E.A. de Wit (Elly); J.-B.P. Gramsbergen (J. B P)

    1996-01-01

    textabstractThe present studies were aimed at investigating the possible roles of dopamine (DA) and iron in production of hydroxyl radicals (.OH) in rat striatum after Mn2+ intoxication. For this purpose, DA depletions were assessed concomitant with in vivo 2,3- and 2,5-dihydroxybenzoic acid (DHBA)

  6. The solubility of metals in Pb-17Li liquid alloy

    International Nuclear Information System (INIS)

    Borgstedt, H.U.; Feuerstein, H.

    1992-01-01

    The solubility data of iron in the eutectic alloy Pb-17Li which were evaluated from corrosion tests in a turbulent flow of the molten alloy are discussed in the frame of solubilities of the transition metals in liquid lead. It is shown that the solubility of iron in the alloy is close to that in lead. This is also the fact for several other alloying elements of steels. A comparison of all known data shows that they are in agreement with generally shown trends for the solubility of the transition metals in low melting metals. These trends indicate comparably high solubilities of nickel and manganese in the liquid metals, lower saturation concentration of vanadium, chromium, iron, and cobalt, and extremely low solubility of molybdenum. (orig.)

  7. Effect of shot peening process on fatigue behavior of an alloyed austempered ductile iron

    Directory of Open Access Journals (Sweden)

    Amir Sadighzadeh Benam

    2011-08-01

    Full Text Available Shot peening is one of the most common surface treatments to improve the fatigue behavior of metallic parts. In this study the effect of shot peening process on the fatigue behavior of an alloyed austempered ductile iron (ADI has been studied. Austempering heat treatment consisted of austenitizing at 875℃ for 90 min followed by austempering at three different temperatures of 320, 365 and 400℃. Rotating-bending fatigue test was carried out on samples after shot peening by 0.4 – 0.6 mm shots. XRD and SEM analysis, micro hardness and roughness tests were carried out to study the fatigue behavior of the samples. Results indicate that the fatigue strengths of samples austempered at 320, 365 and 400℃ are increased by 27.3%, 33.3% and 48.4%, respectively, after shot peening process.

  8. Oxidation behavior of austenitic iron-base ODS alloy in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Behnamian, Y.; Dong, Z.; Zahiri, R.; Kohandehghan, A.; Mitlin, D., E-mail: behnamia@ualberta.ca, E-mail: zdong@ualberta.ca, E-mail: kohandeh@ualberta.ca, E-mail: rzahiris@ualberta.ca, E-mail: dave.mitlin@ualberta.ca [Univ. of Alberta, Edmondon, AB (Canada); Zhou, Z., E-mail: zhouzhj@mater.ustb.edu.cn [Univ. of Science and Tech. Beijing, Beijing (China); Chen, W.; Luo, J., E-mail: weixing.chen@ualberta.ca, E-mail: Jingli.luo@ualberta.ca [Univ. of Alberta, Edmonton, AB (Canada); Zheng, W., E-mail: wenyue@nrcan.gc.ca [Natural Resources Canada, Canmet MATERIALS, Hamilton, ON (Canada); Guzonas, D. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    In this study, the effect of exposure time on the corrosion of the 304 stainless steel based oxide dispersion strengthened alloy, SS304ODS, in supercritical water was investigated at 650 {sup o}C with constant dissolved oxygen concentration. The results show that the oxidation of SS304ODS in supercritical water followed a parabolic law at 650 {sup o}C. Discontinuous oxide scale with two distinct layers has formed after 550 hours. The inner layer was chromium-rich while the outer layer was iron-rich (Magnetite). The oxide islands grow with increasing the exposure time. With increasing exposure time, the quantity of oxide islands increased in which major preferential growth along oxide-substrate interface was observed. The possible mechanism of SS304ODS oxidation in supercritical water was also discussed. (author)

  9. Effect of Manganese on Microstructures and Solidification Modes of Cast Fe-Mn-Si-Cr-Ni Shape Memory Alloys

    Science.gov (United States)

    Peng, Huabei; Wen, Yuhua; Du, Yangyang; Yu, Qinxu; Yang, Qin

    2013-10-01

    We investigated microstructures and solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys to clarify whether Mn was an austenite former during solidification. Furthermore, we examined whether the Creq/Nieq equations (Delong, Hull, Hammer and WRC-1992 equations) and Thermo-Calc software® together with database TCFE6 were valid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys. The results have shown that the solidification modes of Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni alloys changed from the F mode to the FA mode with increasing the Mn concentration. Mn is an austenite former during the solidification for the cast Fe-Mn-Si-Cr-Ni shape memory alloys. The Delong, Hull, Hammer, and WRC-1992 equations as well as Thermo-Calc software® together with database TCFE6 are invalid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni SMAs. To predict the solidification modes of cast Fe-Mn-Si-Cr-Ni alloys, a new Creq/Nieq equation should be developed or the thermodynamic database of Thermo-Calc software® should be corrected.

  10. Streptococcus sanguinis class Ib ribonucleotide reductase: high activity with both iron and manganese cofactors and structural insights.

    Science.gov (United States)

    Makhlynets, Olga; Boal, Amie K; Rhodes, Delacy V; Kitten, Todd; Rosenzweig, Amy C; Stubbe, JoAnne

    2014-02-28

    Streptococcus sanguinis is a causative agent of infective endocarditis. Deletion of SsaB, a manganese transporter, drastically reduces S. sanguinis virulence. Many pathogenic organisms require class Ib ribonucleotide reductase (RNR) to catalyze the conversion of nucleotides to deoxynucleotides under aerobic conditions, and recent studies demonstrate that this enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(•)) cofactor in vivo. The proteins required for S. sanguinis ribonucleotide reduction (NrdE and NrdF, α and β subunits of RNR; NrdH and TrxR, a glutaredoxin-like thioredoxin and a thioredoxin reductase; and NrdI, a flavodoxin essential for assembly of the RNR metallo-cofactor) have been identified and characterized. Apo-NrdF with Fe(II) and O2 can self-assemble a diferric-tyrosyl radical (Fe(III)2-Y(•)) cofactor (1.2 Y(•)/β2) and with the help of NrdI can assemble a Mn(III)2-Y(•) cofactor (0.9 Y(•)/β2). The activity of RNR with its endogenous reductants, NrdH and TrxR, is 5,000 and 1,500 units/mg for the Mn- and Fe-NrdFs (Fe-loaded NrdF), respectively. X-ray structures of S. sanguinis NrdIox and Mn(II)2-NrdF are reported and provide a possible rationale for the weak affinity (2.9 μM) between them. These streptococcal proteins form a structurally distinct subclass relative to other Ib proteins with unique features likely important in cluster assembly, including a long and negatively charged loop near the NrdI flavin and a bulky residue (Thr) at a constriction in the oxidant channel to the NrdI interface. These studies set the stage for identifying the active form of S. sanguinis class Ib RNR in an animal model for infective endocarditis and establishing whether the manganese requirement for pathogenesis is associated with RNR.

  11. A new high-strength iron base austenitic alloy with good toughness and corrosion resistance (GE-EPRI alloy-TTL)

    International Nuclear Information System (INIS)

    Ganesh, S.

    1989-01-01

    A new high strength, iron based, austenitic alloy has been successfully developed by GE-EPRI to satisfy the strength and corrosion resistance requirements of large retaining rings for high capacity generators (>840Mw). This new alloy is a modified version of the EPRI alloy-T developed by the University of California, Berkeley, in an earlier EPRI program. It is age hardenable and has the nominal composition (weight %): 34.5 Ni, 5Cr, 3Ti, 1Nb, 1Ta, 1Mo, .5Al, .3V, .01B. This composition was selected based on detailed metallurgical and processing studies on modified versions of alloy-T. These studies helped establish the optimum processing conditions for the new alloy and enabled the successful scale-up production of three large (50-52 inch dia) test rings from a 5,000 lb VIM-VAR billet. The rings were metallurgically sound and exhibited yield strength capabilities in the range 145 to 220 ksi depending on the extent of hot/cold work induced. The test rings met or exceeded all the property goals. The above alloy can provide a good combination of strength, toughness and corrosion resistance and, through an suitable modification of chemistry or processing conditions, could be a viable candidate for high strength LWR internal applications. 3 figs

  12. Spectrophotometric determination of phosphorus in iron alloys employing a flow injection system

    Directory of Open Access Journals (Sweden)

    Gervasio Ana P. G.

    2001-01-01

    Full Text Available A flow-injection procedure for spectrophotometric determination of phosphorus in electrolytic iron and iron alloys is proposed. The method is based on the ammonium molybdate reaction followed by stannous chloride reduction in acidic medium. In order to circumvent the severe interference caused by the major constituents such as Fe(III and Cr(III, a mini-column packed with AG50W-X8 resin was coupled to the manifold. A sample throughput of 40 determinations per hour, a dynamical range from P 0.25 to 6.00 mg L-1, a reagent consumption of 25 mg ammonium molybdate and 2 mg stannous chloride per determination, and a relative standard deviation < 1% (n = 10 for a typical sample with 2.20 mg L-1 P were achieved. Three different types of samples were used to evaluate system performance. Accuracy was assessed by comparing the results with certified values and no significant difference at 95 % confidence level was observed.

  13. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  14. Hydroxyapatite formation on titania-based materials in a solution mimicking body fluid: Effects of manganese and iron addition in anatase.

    Science.gov (United States)

    Shin, Euisup; Kim, Ill Yong; Cho, Sung Baek; Ohtsuki, Chikara

    2015-03-01

    Hydroxyapatite formation on the surfaces of implanted materials plays an important role in osteoconduction of bone substitutes in bone tissues. Titania hydrogels are known to instigate hydroxyapatite formation in a solution mimicking human blood plasma. To date, the relationship between the surface characteristics of titania and hydroxyapatite formation on its surface remains unclear. In this study, titania powders with varying surface characteristics were prepared by addition of manganese or iron to examine hydroxyapatite formation in a type of simulated body fluid (Kokubo solution). Hydroxyapatite formation was monitored by observation of deposited particles with scale-like morphology on the prepared titania powders. The effect of the titania surface characteristics, i.e., crystal structure, zeta potential, hydroxy group content, and specific surface area, on hydroxyapatite formation was examined. Hydroxyapatite formation was observed on the surface of titania powders that were primarily anatase, and featured a negative zeta potential and low specific surface areas irrespective of the hydroxy group content. High specific surface areas inhibited the formation of hydroxyapatite because calcium and phosphate ions were mostly consumed by adsorption on the titania surface. Thus, these surface characteristics of titania determine its osteoconductivity following exposure to body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Characterization of iron and manganese minerals and their associated microbiota in different mine sites to reveal the potential interactions of microbiota with mineral formation.

    Science.gov (United States)

    Park, Jin Hee; Kim, Bong-Soo; Chon, Chul-Min

    2018-01-01

    Different environmental conditions such as pH and dissolved elements of mine stream induce precipitation of different minerals and their associated microbial community may vary. Therefore, mine precipitates from various environmental conditions were collected and their associated microbiota were analyzed through metagenomic DNA sequencing. Various Fe and Mn minerals including ferrihydrite, schwertmannite, goethite, birnessite, and Mn-substituted δ-FeOOH (δ-(Fe 1-x , Mn x )OOH) were found in the different environmental conditions. The Fe and Mn minerals were enriched with toxic metal(loid)s including As, Cd, Ni and Zn, indicating they can act as scavengers of toxic metal(loid)s in mine streams. Under acidic conditions, Acidobacteria was dominant phylum and Gallionella (Fe oxidizing bacteria) was the predominant genus in these Fe rich environments. Manganese oxidizing bacteria, Hyphomicrobium, was found in birnessite forming environments. Leptolyngbya within Cyanobacteria was found in Fe and Mn oxidizing environments, and might contribute to Fe and Mn oxidation through the production of molecular oxygen. The potential interaction of microbial community with minerals in mine sites can be traced by analysis of microbial community in different Fe and Mn mineral forming environments. Iron and Mn minerals contribute to the removal of toxic metal(loid)s from mine water. Therefore, the understanding characteristics of mine precipitates and their associated microbes helps to develop strategies for the management of contaminated mine water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Monitoring of occupational exposure in manufacturing of stainless steel constructions. Part I: Chromium, iron, manganese, molybdenum, nickel and vanadium in the workplace air of stainless steel welders

    International Nuclear Information System (INIS)

    Kucera, J.; Hnatowicz, V.; Bencko, V.; Papayova, A.; Saligova, D.; Tejral, J.; Borska, L.

    2000-01-01

    Exposure to workplace airborne pollutants was examined in a group of 20 workers dealing mainly with welding, polishing, drilling and assembling of stainless steel constructions. Monitoring of airborne particulate matter (ARM) was performed using both personal and stationary samplers. For the personal full-shift monitoring, a SKC 224 PCRX-4 constant flow rate pump was used which was connected to a sampling head with mixed cellulose matched-weight filters having a diameter of 32 mm and a 0.8 μm pore size. The constant flow rate amounted to 2 L min -1 . For the stationary sampling, the ''Gent'' stacked filter unit PM10 sampler was used, operating at a flow rate of 16 L min -1 . It collects particles having an equivalent aerodynamic diameter (EAD) of less than 10,um in the separate ''coarse'' (2-10 μm EAD) and ''fine'' (< 2 μm EAD) size fractions on two sequential polycarbonate (Costar, Nuclepore) filters with a 47 mm diameter. The filters of both types were analyzed by instrumental neutron activation analysis (INAA). Of the elements determined, results for chromium, iron, manganese, molybdenum, nickel and vanadium are presented. Procedures for quality assurance of both sampling and analytical stages are described. Sampling of biological material for elemental analysis (hair, nails, urine and blood and/or serum) of exposed and control persons in contamination-free conditions was also performed. In addition, saliva samples were collected for studying immunological and genotoxicity aspects of occupational exposure. (author)

  17. Synthesis of nanostructured mixed oxide CeO2-Mn2O3 and investigation of their sorption ability for arsenic, ammoniac, iron, manganese

    International Nuclear Information System (INIS)

    Luu Minh Dai; Dao Ngoc Nhiem; Duong Thi Lim

    2012-01-01

    The nanostrutured mixed oxide CeO 2 -Mn 2 O 3 have been synthesised at low temperature (350 o C) by the combustion of gel prepared from polyvinyl alcohol (PVA), Ce (NO 3 ) 4 and Mn(No 3 ) 3 , CeO 2 -Mn 2 O 3 characterizations were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET (Brunauce-Emmet-Teller) measurements. The phase of CeO 2 -Mn 2 O 3 , with large specific surface ares 65.3 m 2 /g was obtained at 350 o C for 2 hours. The nanostructured CeO 2 -Mn 2 O 3 has been investigated for removing iron, manganese, arsenic and ammoniac from water. The sorption characteristics of the nanostrutured CeO 2 -Mn 2 O 3 for AS(V), NH4 + , Fe(III), Mn(II) according to the langmuir isotherm. The sorption capacities of nanostrutured CeO 2 -Mn 2 O 3 are 57.10 mg As(V)g; 154.54 mg NH4 + /g; 72.97 mg Fe(III)/g; 60.27 Mn(II) / g. (author)

  18. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Elastic and plastic properties of iron-aluminium alloys. Special problems raised by the brittleness of alloys of high aluminium content

    International Nuclear Information System (INIS)

    Mouturat, P.

    1966-06-01

    The present study embodies the results obtained with iron-aluminium alloys whose composition runs from 0 to nearly 50 atoms per cent aluminium. Conditions of elaboration and transformation have been studied successively, as well as the Young's modulus and the flow stress; the last chapter embodies, a study of the Portevin-le-Chatelier effect in alloys of 40 atoms per cent of aluminium. I) The principal difficulty to clear up consisted in the intergranular brittleness of ordered alloys; this brittleness has been considerably reduced with appropriate conditions of elaboration and transformation. II) The studies upon the Young's modulus are in connection with iron-aluminium alloys; transformation temperatures are well shown up. The formation of covalent bonds on and after 25 atoms per cent show the highest values of the modulus. III) The analysis of variations of the flow stress according to the temperature show some connection with ordered structures, the existence of antiphase domains and the existence of sur-structure dislocations. IV) In the ordered Fe Al domain the kinetics of the Portevin-le-Chatelier effect could be explained by a mechanism of diffusion of vacancies. The role they play has been specified by the influence they exert upon the dislocations; this has led us to the inhomogeneous Rudman order; this inhomogeneous order could explain the shape of the traction curves. (author) [fr

  20. Comparison of iron and copper doped manganese cobalt spinel oxides as protective coatings for solid oxide fuel cell interconnects

    DEFF Research Database (Denmark)

    Talic, Belma; Molin, Sebastian; Wiik, Kjell

    2017-01-01

    MnCo2O4, MnCo1.7Cu0.3O4 and MnCo1.7Fe0.3O4 are investigated as coatings for corrosion protection of metallic interconnects in solid oxide fuel cell stacks. Electrophoretic deposition is used to deposit the coatings on Crofer 22 APU alloy. All three coating materials reduce the parabolic oxidation...... rate in air at 900 °C and 800 °C. At 700 °C there is no significant difference in oxidation rate between coated samples and uncoated pre-oxidized Crofer 22 APU. The cross-scale area specific resistance (ASR) is measured in air at 800 °C using La0.85Sr0.1Mn1.1O3 (LSM) contact plates to simulate...... contain significant amounts of Cr after aging, while all three coatings effectively prevent Cr diffusion into the LSM. A complex Cr-rich reaction layer develops at the coating-alloy interface during oxidation. Cu and Fe doping reduce the extent of this reaction layer at 900 °C, while at 800 °C the effect...

  1. Comparative study of crystallized melt-spun iron-boron alloys by Moessbauer effect and resistivity measurements

    International Nuclear Information System (INIS)

    Arshad, M.; Siddique, M.; Anwar-ul-Islam, M.; Butt, N.M.; Ashfaq, A.; Shamim, A.

    1993-01-01

    Moessbauer study of two as-quenched, melt-spun iron-boron completely crystallized alloys, Fe/sub 72/01/B/sub 28/ and Fe/sub 88/01/B/sub 12/, indicates the presence of alpha-Fe, Fe/sub 2/B and Fe/sub 3/B. The percentage of these phases is different in the two alloys. Resistivity measurements show to phase transformation of Fe/sub 3/B and Fe/sub 2/B, respectively. (author)

  2. Sliding wear and corrosion behaviour of alloyed austempered ductile iron subjected to novel two step austempering treatment

    Science.gov (United States)

    Sethuram, D.; Srisailam, Shravani; Rao Ponangi, Babu

    2018-04-01

    Austempered Ductile Iron(ADI) is an exciting alloy of iron which offers the design engineers the best combination high strength-to-weight ratio, low cost design flexibility, good toughness, wear resistance along with fatigue strength. The two step austempering procedure helps in simultaneously improving the tensile strength as-well as the ductility to more than that of the conventional austempering process. Extensive literature survey reveals that it’s mechanical and wear behaviour are dependent on heat treatment and alloy additions. Current work focuses on characterizing the two-step ADI samples (TSADI) developed by novel heat treatment process for resistance to corrosion and wear. The samples of Ductile Iron were austempered by the two-Step Austempering process at temperatures 300°C to 450°C in the steps of 50°C.Temperaturesare gradually increased at the rate of 14°C/Hour. In acidic medium (H2SO4), the austempered samples showed better corrosive resistance compared to conventional ductile iron. It has been observed from the wear studies that TSADI sample at 350°C is showing better wear resistance compared to ductile iron. The results are discussed in terms of fractographs, process variables and microstructural features of TSADI samples.

  3. Deformation mechanism maps for pure iron, corrosion resistant austenitic steels and a low-alloy carbon steel

    International Nuclear Information System (INIS)

    Frost, H.Y.; Ashby, M.F.

    1980-01-01

    Principles of construction of deformation mechanisms charts for iron base alloys are presented. Deformation mechanisms charts for pure iron, 316 and 314 stainless steels, a ferritic steel with 1% Cr, Mo, V are given, examples of the charts application being provided. The charts construction is based, when it is possible, on the state equations, deduced from theoretical models and satisfying experimental data. The charts presented should be considered as an attempt to unite the main regularities of the theory of dislocations and diffusion with the observed experimental picture of plastic deformation and creep of commercial steels [ru

  4. Investigation of effects of boron additives and heat treatment on carbides and phase transition of highly alloyed duplex cast iron

    International Nuclear Information System (INIS)

    Tasgin, Yahya; Kaplan, Mehmet; Yaz, Mehmet

    2009-01-01

    The effect of boron additives and heat treatment on the microstructural morphology of the transition zone in a duplex cast iron, which has an outer shell of white cast iron (with a high Cr-content and containing boron additives) and an inner side composed of normal gray cast iron, has been investigated. For this purpose, two experimental materials possessing different compositions of white-gray duplex cast iron were produced. Subsequently, metallographic investigations were carried out to study the effect of heat treatment applied to the experimental materials by using the scanning electron microscopy technique, along with optical microscopy and energy dispersive X-ray spectroscopy. Moreover, the formation of various phases and carbide composites in the samples and their effects on the hardness were also investigated using X-ray diffraction techniques. The results of investigations, and hardness showed that addition of the elements Cr and B to high-alloyed white cast iron affected carbide formation significantly, while simultaneously hardening the microstructure, and consequently the carbide present in the transition area of white-gray cast iron was spread out and became thinner. However, B additives and heat treatment did not cause any damage to the transition region of high Cr-content duplex cast iron.

  5. Comparison of iron and copper doped manganese cobalt spinel oxides as protective coatings for solid oxide fuel cell interconnects

    Science.gov (United States)

    Talic, Belma; Molin, Sebastian; Wiik, Kjell; Hendriksen, Peter Vang; Lein, Hilde Lea

    2017-12-01

    MnCo2O4, MnCo1.7Cu0.3O4 and MnCo1.7Fe0.3O4 are investigated as coatings for corrosion protection of metallic interconnects in solid oxide fuel cell stacks. Electrophoretic deposition is used to deposit the coatings on Crofer 22 APU alloy. All three coating materials reduce the parabolic oxidation rate in air at 900 °C and 800 °C. At 700 °C there is no significant difference in oxidation rate between coated samples and uncoated pre-oxidized Crofer 22 APU. The cross-scale area specific resistance (ASR) is measured in air at 800 °C using La0.85Sr0.1Mn1.1O3 (LSM) contact plates to simulate the interaction with the cathode in a SOFC stack. All coated samples have three times lower ASR than uncoated Crofer 22 APU after 4370 h aging. The ASR increase with time is lowest with the MnCo2O4 coating, followed by the MnCo1.7Fe0.3O4 and MnCo1.7Cu0.3O4 coatings. LSM plates contacted to uncoated Crofer 22 APU contain significant amounts of Cr after aging, while all three coatings effectively prevent Cr diffusion into the LSM. A complex Cr-rich reaction layer develops at the coating-alloy interface during oxidation. Cu and Fe doping reduce the extent of this reaction layer at 900 °C, while at 800 °C the effect of doping is insignificant.

  6. Studies of plutonium-iron and uranium-plutonium-iron alloys; Etudes d'alliages plutonium-fer et d'alliages uranium-plutonium-fer

    Energy Technology Data Exchange (ETDEWEB)

    Avivi, Ehud [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-01-15

    We study the plutonium-iron system, by means of dilatometry, X rays and metallography, especially in the domain between PuFe{sub 2} and Fe. We determine the solubilities of Fe in PuFe{sub 2} and of Pu in Fe. We show the presence of an hexagonal PuFe{sub 2} phase and we propose a modification in the Pu-Fe phase diagram. Some low iron concentration U-Pu-Fe alloys have also been investigated. We characterise the different phases. We confirm that adding some iron lowers the quantity of the zeta U-Pu phase. We emphasize some characteristics of the alloys having the global concentration (U, Pu){sub 6} Fe. (authors) [French] On etudie par dilatometrie, rayons X et micrographie le systeme plutonium-fer, principalement dans la region comprise entre PuFe{sub 2} et Fe, On determine les solubilites du fer dans PuFe{sub 2}, et de Pu dans Fe. On met en evidence une phase PuFe{sub 2} hexagonale et on propose une modification du diagramme d'equilibre Pu-Fe. Certains alliages U-Pu-Fe a faibles concentrations en fer sont egalement etudies. On caracterise les phases en presence. On confirme que l'addition de fer diminue rapidement la quantite de phase U-Pu zeta. Enfin on revele certaines caracteristiques des alliages de composition globale (U, Pu){sub 6} Fe. (auteurs)

  7. Manganese Oxidation by Bacteria: Biogeochemical Aspects

    Digital Repository Service at National Institute of Oceanography (India)

    Sujith, P.P.; LokaBharathi, P.A.

    Manganese is an essential trace metal that is not as readily oxidizable like iron. Several bacterial groups posses the ability to oxidize Mn effectively competing with chemical oxidation. The oxides of Mn are the strongest of the oxidants, next...

  8. Wear Resistant Thermal Sprayed Composite Coatings Based on Iron Self-Fluxing Alloy and Recycled Cermet Powders

    Directory of Open Access Journals (Sweden)

    Heikki SARJAS

    2012-03-01

    Full Text Available Thermal spray and WC-Co based coatings are widely used in areas subjected to abrasive wear. Commercial  cermet thermal spray powders for HVOF are relatively expensive. Therefore applying these powders in cost-sensitive areas like mining and agriculture are hindered. Nowadays, the use of cheap iron based self-fluxing alloy powders for thermal spray is limited. The aim of this research was to study properties of composite powders based on self-fluxing alloys and recycled cermets and to examine the properties of thermally sprayed (HVOF coatings from composite powders based on iron self-fluxing alloy and recycled cermet powders (Cr3C2-Ni and WC-Co. To estimate the properties of  recycled cermet powders, the sieving analysis, laser granulometry and morphology were conducted. For deposition of coatings High Velocity Oxy-Fuel spray was used. The structure and composition of powders and coatings were estimated by SEM and XRD methods. Abrasive wear performance of coatings was determined and compared with wear resistance of coatings from commercial powders. The wear resistance of thermal sprayed coatings from self-fluxing alloy and recycled cermet powders at abrasion is comparable with wear resistance of coatings from commercial expensive spray powders and may be an alternative in tribological applications in cost-sensitive areas.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1338

  9. THE ROLE OF IRON IN Deinococcus radiodurans ENGINEERED FOR GROWTH ON TOLUENE AND THE ROLE OF MANGANESE IN THE EXTREME RADIATION RESISTANCE PHENOTYPE

    International Nuclear Information System (INIS)

    Hassan Brim; Elena K. Gaidamakova; Vera Y. Matrosova; Min Zhai; Amudhan Venkateswaran; Marina Omelchenko; Kira S. Makarova; Lawrence P. Wackett; James K. Fredrickson; Michael J. Daly

    2004-01-01

    Toluene and other fuel hydrocarbons are commonly found in association with radionuclides at numerous Department of Energy (DOE) sites, frequently occurring together with Cr(VI) and other heavy metals. In this study, the extremely radiation resistant bacterium Deinococcus radiodurans was engineered for complete toluene mineralization by cloned expression of tod and xyl genes of Pseudomonas putida. The recombinant Tod/Xyl strain showed significant incorporation of carbon from the toluene aromatic ring into cellular macromolecules and carbon dioxide, in the absence or presence of chronic radiation. We have shown that intracellular iron concentrations in wild-type D. radiodurans in minimal medium are exceptionally low and not sufficient to support growth on toluene using Fe-dependent oxygenases cloned from P. putida. Introducing the fur mutation into D. radiodurans increased intracellular Fe levels, and imparted on the engineered strain the ability to grow on meta-toluate as the sole carbon and energy source. The organism's native Cr(VI) reduction capabilities were facilitated by toluene when present as the sole carbon and energy source in natural sediment analogues of DOE contaminated environments. The engineered bacteria were able to oxidize toluene under both minimal and complex nutrient conditions, which is important since both conditions have environmental equivalents in the context of bioremediation processes. As such, the Tod/Xyl strain is providing a model for understanding the role of Fe and reduction of metals coupled to organic contaminant oxidation in aerobic radionuclide contaminated sediments. We have shown that D. radiodurans contains high intracellular manganese levels, and that Mn restriction sensitizes cells to irradiation. We propose that the unusually high Mn/Fe ratio of D. radiodurans facilitates survival by quenching oxidative stress during recovery.

  10. Manganese-incorporated iron(III) oxide-graphene magnetic nanocomposite: synthesis, characterization, and application for the arsenic(III)-sorption from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Debabrata; Gupta, Kaushik; Ghosh, Arup Kumar [Presidency University, Department of Chemistry and Biochemistry (India); De, Amitabha [Saha Institute of Nuclear Physics, Chemical Science Division (India); Banerjee, Sangam [Saha Institute of Nuclear Physics, Surface Physics Division (India); Ghosh, Uday Chand, E-mail: ucghosh@yahoo.co.in [Presidency University, Department of Chemistry and Biochemistry (India)

    2012-12-15

    High specific surface area of graphene (GR) has gained special scientific attention in developing magnetic GR nanocomposite aiming to apply for the remediation of diverse environmental problems like point-of-use water purification and simultaneous separation of contaminants applying low external magnetic field (<1.0 T) from ground water. Fabrication of magnetic manganese-incorporated iron(III) oxide (Mn{sub x}{sup 2+}Fe{sub 2-x}{sup 3+}O{sub 4}{sup 2-}) (IMBO)-GR nanocomposite is reported by exfoliating the GR layers. Latest microscopic, spectroscopic, powder X-ray diffraction, BET surface area, and superconducting quantum interference device characterizations showed that the material is a magnetic nanocomposite with high specific surface area (280 m{sup 2} g{sup -1}) and pore volume (0.3362 cm{sup 3} g{sup -1}). Use of this composite for the immobilization of carcinogenic As(III) from water at 300 K and pH {approx}7.0 showed that the nanocomposite has higher binding efficiency with As(III) than the IMBO owing to its high specific surface area. The composite showed almost complete (>99.9 %) As(III) removal ({<=}10 {mu}g L{sup -1}) from water. External magnetic field of 0.3 T efficiently separated the water dispersed composite (0.01 g/10 mL) at room temperature (300 K). Thus, this composite is a promising material which can be used effectively as a potent As(III) immobilizer from the contaminated groundwater (>10 {mu}g L{sup -1}) to improve drinking water quality.

  11. Removal and distribution of iron, manganese, cobalt and nickel within a Pennsylvania constructed wetland treating coal combustion by-product leachate

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Z.H.; Whiting, S.N.; Lin, Z.-Q.; Lytle, C.M.; Qian, J.H.; Terry, N. [University of California, Berkeley, CA (USA). Dept. of Plant and Microbial Biology

    2001-08-01

    A flow-through wetland treatment system was constructed to treat coal combustion by-product leachate from an electrical power station at Springdale, Pennsylvania. In a nine-compartment treatment system, four cattail (Typha latifolia L.) wetland cells (designated Cells 1 through 4) successfully removed iron (Fe) and manganese (Mn) from the inlet water; Fe and Mn concentrations were decreased by an average of 91% in the first year and by 94 and 98% in the second year respectively. Cobalt (Co) and nickel (Ni) were decreased by an average of 39 and 47% in the first and 98 and 63% in the second year respectively. Most of the metal removed by the wetland cells was accumulated in sediments, which constituted the largest sink. Except for Fe, metal concentrations in the sediments tended to be greater in the top 5 cm of sediment than in the 5 to 10 or 10 to 15 cm layers and in Cell 1 than in Cells 2, 3 and 4. Plants constituted a much smaller sink for metals; only 0.91, 4.18, 0.19, and 0.38% of the Fe, Mn, Co and Ni were accumulated annually in the aboveground tissues of cattail, respectively. A greater proportion of each metal (except Mn) was accumulated in cattail fallen litter and submerged Chara (a macroalga) tissues, that is 2.81, 2.75 and 1.05% for Fe, Co and Ni, respectively. Considerably higher concentrations of metals were associated with cattail root than shoots, although Mn was a notable exception. 48 refs., 6 figs., 4 tabs.

  12. THE ROLE OF IRON IN Deinococcus radiodurans ENGINEERED FOR GROWTH ON TOLUENE AND THE ROLE OF MANGANESE IN THE EXTREME RADIATION RESISTANCE PHENOTYPE

    Energy Technology Data Exchange (ETDEWEB)

    Hassan Brim; Elena K. Gaidamakova; Vera Y. Matrosova; Min Zhai; Amudhan Venkateswaran; Marina Omelchenko; Kira S. Makarova; Lawrence P. Wackett; James K. Fredrickson; Michael J. Daly

    2004-03-17

    Toluene and other fuel hydrocarbons are commonly found in association with radionuclides at numerous Department of Energy (DOE) sites, frequently occurring together with Cr(VI) and other heavy metals. In this study, the extremely radiation resistant bacterium Deinococcus radiodurans was engineered for complete toluene mineralization by cloned expression of tod and xyl genes of Pseudomonas putida. The recombinant Tod/Xyl strain showed significant incorporation of carbon from the toluene aromatic ring into cellular macromolecules and carbon dioxide, in the absence or presence of chronic radiation. We have shown that intracellular iron concentrations in wild-type D. radiodurans in minimal medium are exceptionally low and not sufficient to support growth on toluene using Fe-dependent oxygenases cloned from P. putida. Introducing the fur mutation into D. radiodurans increased intracellular Fe levels, and imparted on the engineered strain the ability to grow on meta-toluate as the sole carbon and energy source. The organism's native Cr(VI) reduction capabilities were facilitated by toluene when present as the sole carbon and energy source in natural sediment analogues of DOE contaminated environments. The engineered bacteria were able to oxidize toluene under both minimal and complex nutrient conditions, which is important since both conditions have environmental equivalents in the context of bioremediation processes. As such, the Tod/Xyl strain is providing a model for understanding the role of Fe and reduction of metals coupled to organic contaminant oxidation in aerobic radionuclide contaminated sediments. We have shown that D. radiodurans contains high intracellular manganese levels, and that Mn restriction sensitizes cells to irradiation. We propose that the unusually high Mn/Fe ratio of D. radiodurans facilitates survival by quenching oxidative stress during recovery.

  13. Steel dust in the New York City subway system as a source of manganese, chromium, and iron exposures for transit workers.

    Science.gov (United States)

    Chillrud, Steven N; Grass, David; Ross, James M; Coulibaly, Drissa; Slavkovich, Vesna; Epstein, David; Sax, Sonja N; Pederson, Dee; Johnson, David; Spengler, John D; Kinney, Patrick L; Simpson, H James; Brandt-Rauf, Paul

    2005-03-01

    The United States Clean Air Act Amendments of 1990 reflected increasing concern about potential effects of low-level airborne metal exposure on a wide array of illnesses. Here we summarize results demonstrating that the New York City (NYC) subway system provides an important microenvironment for metal exposures for NYC commuters and subway workers and also describe an ongoing pilot study of NYC transit workers' exposure to steel dust. Results from the TEACH (Toxic Exposure Assessment, a Columbia and Harvard) study in 1999 of 41 high-school students strongly suggest that elevated levels of iron, manganese, and chromium in personal air samples were due to exposure to steel dust in the NYC subway. Airborne concentrations of these three metals associated with fine particulate matter were observed to be more than 100 times greater in the subway environment than in home indoor or outdoor settings in NYC. While there are currently no known health effects at the airborne levels observed in the subway system, the primary aim of the ongoing pilot study is to ascertain whether the levels of these metals in the subway air affect concentrations of these metals or related metabolites in the blood or urine of exposed transit workers, who due to their job activities could plausibly have appreciably higher exposures than typical commuters. The study design involves recruitment of 40 transit workers representing a large range in expected exposures to steel dust, the collection of personal air samples of fine particulate matter, and the collection of blood and urine samples from each monitored transit worker.

  14. Interlaboratory comparison survey of the determination of chromium, manganese, iron, titanium in dust and arsenic, cadmium, cobalt and chromium in urine

    International Nuclear Information System (INIS)

    Christensen, Jytte Molin

    2000-01-01

    This report describes an intercomparison survey based on the Danish External Quality Assessment Scheme (DEQAS). The study was carried out in 1998 for 10 laboratories in a research project on assessment of levels and health effects of airborne particulate matter in mining, metal refining and metal working industries using nuclear and related analytical techniques. The project was co-ordinated by the IAEA. Eight laboratories measured chromium (Cr), manganese (Mn), iron (Fe) and titanium (Ti) in welding fume dust loaded on filters. Six laboratories measured arsenic (As), four laboratories measured cadmium (Cd), five laboratories measured cobalt (Co) and four laboratories measured chromium (Cr) in urine. The target values of the quality control materials were traceable to certified reference materials with respect to Cr in welding fume and As, Cd, Co and Cr in urine. For Mn, Fe and Ti in welding fume the target values were established based on values from reference laboratories and consensus values from several DEQAS rounds. For evaluating the analytical performance the z-score and E n number were calculated as recommended in ISO 45. The judgement of laboratories according to the performance scores revealed that few laboratories could maintain an ideal z-score below 3 and an ideal E n number below 1. Nearly all participants had a high precision in the reported results. This is a good basis for improvements. The deviations from the target values appear to be systematic, because the deviations for Mn, Fe, Ti in welding dust as well as for As, Cd, Co and Cr in urine were a linear function of the target values (ISO 5725 evaluation). The cause for this bias is unknown at present and might not be the same for all participants. It is necessary to look further into the cause for this bias. Therefore, validation of the methodologies and regularly use of certified reference materials are highly recommended. (author)

  15. Spatial variability of arsenic concentration in soils and plants, and its relationship with iron, manganese and phosphorus

    International Nuclear Information System (INIS)

    Hossain, M.B.; Jahiruddin, M.; Panaullah, G.M.; Loeppert, R.H.; Islam, M.R.; Duxbury, J.M.

    2008-01-01

    Spatial distribution of arsenic (As) concentrations of irrigation water, soil and plant (rice) in a shallow tube-well (STW) command area (8 ha), and their relationship with Fe, Mn and P were studied. Arsenic concentrations of water in the 110 m long irrigation channel clearly decreased with distance from the STW point, the range being 68-136 μg L -1 . Such decreasing trend was also noticed with Fe and P concentrations, but the trend for Mn concentrations was not remarkable. Concerning soil As, the concentration showed a decreasing tendency with distance from the pump. The NH 4 -oxalate extractable As contributed 36% of total As and this amount of As was associated with poorly crystalline Fe-oxides. Furthermore only 22% of total As was phosphate extractable so that most of the As was tightly retained by soil constituents and was not readily exchangeable by phosphate. Soil As (both total and extractable As) was significantly and positively correlated with rice grain As (0.296 ± 0.063 μg g -1 , n = 56). Next to drinking water, rice could be a potential source of As exposure of the people living in the As affected areas of Bangladesh. - Arsenic concentrations of irrigation water, soil and rice decreased with distance from STW point and it was related with iron and phosphorus concentrations

  16. DEVELOPMENT OF TREAD ON THE BASIS OF COLOR ALLOYS RECYCLED IRON-CARBON ALLOYS PROTECTION FROM CORROSION

    Directory of Open Access Journals (Sweden)

    A. A. Pivovarchyk

    2016-01-01

    Full Text Available The results of development of the compositions of protectors for the corrosion protection low-carbon alloys used in the automotive industry, using as the raw material of the secondary aluminum raw materials. The results of research on the effectiveness of the tread designed to protect the alloy composition.

  17. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.

    Science.gov (United States)

    Liu, B; Zheng, Y F

    2011-03-01

    Pure iron was determined to be a valid candidate material for biodegradable metallic stents in recent animal tests; however, a much faster degradation rate in physiological environments was desired. C, Mn, Si, P, S, B, Cr, Ni, Pb, Mo, Al, Ti, Cu, Co, V and W are common alloying elements in industrial steels, with Cr, Ni, Mo, Cu, Ti, V and Si being acknowledged as beneficial in enhancing the corrosion resistance of iron. The purpose of the present work (using Fe-X binary alloy models) is to explore the effect of the remaining alloying elements (Mn, Co, Al, W, B, C and S) and one detrimental impurity element Sn on the biodegradability and biocompatibility of pure iron by scanning electron microscopy, X-ray diffraction, metallographic observation, tensile testing, microhardness testing, electrochemical testing, static (for 6 months) and dynamic (for 1 month with various dissolved oxygen concentrations) immersion testing, cytotoxicity testing, hemolysis and platelet adhesion testing. The results showed that the addition of all alloying elements except for Sn improved the mechanical properties of iron after rolling. Localized corrosion of Fe-X binary alloys was observed in both static and dynamic immersion tests. Except for the Fe-Mn alloy, which showed a significant decrease in corrosion rate, the other Fe-X binary alloy corrosion rates were close to that of pure iron. It was found that compared with pure iron all Fe-X binary alloys decreased the viability of the L929 cell line, none of experimental alloying elements significantly reduced the viability of vascular smooth muscle cells and all the elements except for Mn increased the viability of the ECV304 cell line. The hemolysis percentage of all Fe-X binary alloy models were less than 5%, and no sign of thrombogenicity was observed. In vitro corrosion and the biological behavior of these Fe-X binary alloys are discussed and a corresponding mechanism of corrosion of Fe-X binary alloys in Hank's solution proposed. As a

  18. Preliminary neutronic assessment for ATF (Accident Tolerant Fuel) based on iron alloy

    International Nuclear Information System (INIS)

    Abe, Alfredo; Carluccio, Thiago; Piovezan, Pamela; Giovedi, Claudia; Martins, Marcelo R.

    2015-01-01

    After Fukushima Daiichi nuclear accident in 2011, the nuclear fuel performance under accident condition became a very important issue and currently different research and development program are in progress toward to reliability and withstand under accident condition. These initiatives are known as ATF (Accident Tolerant Fuel) R and D program, which many countries with different research institutes, fuel vendors and others are nowadays involved. Accident Tolerant Fuel (ATF) can be defined as enhanced fuel which can tolerate loss of active cooling system capability for a considerably longer time period and the fuel/cladding system can be maintained without significant degradation and can also improve the fuel performance during normal operations and transients, as well as design-basis accident (DBA) and beyond design-basis (BDBA) accident. Different materials have being proposed as fuel cladding candidates considering thermo-mechanical properties and lower reaction kinetic with steam and slower hydrogen production. The aim of this work is to perform a neutronic assessment for several cladding candidates based on iron alloy considering a standard PWR fuel rod (fuel pellet and dimension). The purpose of the assessment is to address different parameters that might contribute for possible neutronic reactivity gain in order to overcome the penalty due to increase of neutron absorption in the cladding materials. All the neutronic assessment is performed using MCNP, Monte Carlo code. (author)

  19. Statistical study to determine the effect of carbon, silicon, nickel and other alloying elements on the mechanical properties of as-cast ferritic ductile irons

    International Nuclear Information System (INIS)

    Lacaze, J.; Sertucha, J.; Larranaga, P.; Suarez, R.

    2016-01-01

    There is a great interest in fully ferritic ductile irons due to their structural homogeneity, remarkable ductility and good response when machining. On the other hand the wide variety of raw materials available in foundry plants becomes a problem when controlling the chemical composition of the manufactured alloys. The present work shows a statistical study about the effect of different C, Si, Ni contents and other minor elements on structural and mechanical properties of a group of ferritic ductile iron alloys. A set of equations are finally presented to predict room temperature mechanical properties of ferritic ductile irons by means of their chemical composition and pearlite content. (Author)

  20. Statistical study to determine the effect of carbon, silicon, nickel and other alloying elements on the mechanical properties of as-cast ferritic ductile irons

    Energy Technology Data Exchange (ETDEWEB)

    Lacaze, J.; Sertucha, J.; Larranaga, P.; Suarez, R.

    2016-10-01

    There is a great interest in fully ferritic ductile irons due to their structural homogeneity, remarkable ductility and good response when machining. On the other hand the wide variety of raw materials available in foundry plants becomes a problem when controlling the chemical composition of the manufactured alloys. The present work shows a statistical study about the effect of different C, Si, Ni contents and other minor elements on structural and mechanical properties of a group of ferritic ductile iron alloys. A set of equations are finally presented to predict room temperature mechanical properties of ferritic ductile irons by means of their chemical composition and pearlite content. (Author)

  1. Trapping of self-interstitials at manganese atoms in electron-irradiated dilute AlMn alloys

    International Nuclear Information System (INIS)

    Bartels, A.; Dworschak, F.

    1985-01-01

    Dilute AlMn alloys were irradiated isothermally at different temperatures in stage II with 1.8 MeV electrons and the resistivity damage rates were measured as a function of the residual resistivity increase. The results demonstrate that Mn atoms provide deep traps at least up to 150 K for mobile interstitials. A quantitative evaluation of the data with respect to trapping radii is somewhat handicapped by the fact that the resistivity contribution of a Mn-Al interstitial complex was found to be considerably less than the sum of the resistivity contributions of an isolated solute Mn atom and an Al self-interstitial. The results can be explained by a model which assumes that both the trapping radius and the resistivity contribution of solute-self-interstitial complexes increase with the number of trapped interstitials. (author)

  2. Manganese (II) induces chemical hypoxia by inhibiting HIF-prolyl hydroxylase: Implication in manganese-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Han, Jeongoh; Lee, Jong-Suk; Choi, Daekyu; Lee, Youna; Hong, Sungchae; Choi, Jungyun; Han, Songyi; Ko, Yujin; Kim, Jung-Ae; Mi Kim, Young; Jung, Yunjin

    2009-01-01

    Manganese (II), a transition metal, causes pulmonary inflammation upon environmental or occupational inhalation in excess. We investigated a potential molecular mechanism underlying manganese-induced pulmonary inflammation. Manganese (II) delayed HIF-1α protein disappearance, which occurred by inhibiting HIF-prolyl hydroxylase (HPH), the key enzyme for HIF-1α hydroxylation and subsequent von Hippel-Lindau(VHL)-dependent HIF-1α degradation. HPH inhibition by manganese (II) was neutralized significantly by elevated dose of iron. Consistent with this, the induction of cellular HIF-1α protein by manganese (II) was abolished by pretreatment with iron. Manganese (II) induced the HIF-1 target gene involved in pulmonary inflammation, vascular endothelial growth factor (VEGF), in lung carcinoma cell lines. The induction of VEGF was dependent on HIF-1. Manganese-induced VEGF promoted tube formation of HUVEC. Taken together, these data suggest that HIF-1 may be a potential mediator of manganese-induced pulmonary inflammation

  3. Transport of trace metals in the Magela Creek system, Northern Territory. I. Concentrations and loads of iron, manganese, cadmium, copper, lead and zinc during flood periods in the 1978-1979 wet season

    International Nuclear Information System (INIS)

    Hart, B.T.; Davies, S.H.R.; Thomas, P.A.

    1981-12-01

    In order that realistic effluent standards may be established for the Ranger uranium operations at Jabiru, Northern Territory, it is necessary that there be a clear and detailed knowledge of the pre-mining levels of trace metals and their behaviour within the Magela Creek system. During the wet season, floodwaters were sampled for conductivity, suspended solids and the trace metals, iron, manganese, cadmium, copper, lead and zinc. All concentrations were found to be very low, as were the denudation rates for the trace metals and suspended materials

  4. Final report on in-reactor uniaxial tensile deformation of pure iron and Fe-Cr alloy

    International Nuclear Information System (INIS)

    Singh, B.N.; Xiaoxu Huang; Taehtinen, S.; Moilamen, P.; Jacquet, P.; Dekeyser, J.

    2007-11-01

    Traditionally, the effect of irradiation on mechanical properties of metals and alloys is determined using post-irradiation tests carried out on pre-irradiated specimens and in the absence of irradiation environment. The results of these tests may not be representative of deformation behaviour of materials used in the structural components of a fission or fusion reactor where the materials will be exposed concurrently to displacement damage and external and/or internal stresses. In an effort to evaluate and understand the dynamic response of materials under these conditions, we have recently performed a series of uniaxial tensile tests on Fe-Cr and pure iron specimens in the BR-2 reactor at Mol (Belgium). The present report first provides a brief description of the test facilities and the procedure used for performing the in-reactor tests. The results on the mechanical response of materials during these tests are presented in the form of stress-displacement dose and the conventional stress-strain curves. For comparison, the results of post-irradiation tests and tests carried out on unirradiated specimens are also presented. Results of microstructural investigations on the unirradiated and deformed, irradiated and undeformed, post-irradiation deformed and the in-reactor deformed specimens are also described. During the in-reactor tests the specimens of both Fe-Cr alloy and pure iron deform in a homogeneous manner and do not exhibit the phenomenon of yield drop. An increase in the pre-yield dose increases the yield stress but not the level of maximum flow stress during the in-reactor deformation of Fe-Cr alloy. Neither the in-reactor nor the post-irradiation deformed specimens of Fe-Cr alloy and pure iron showed any evidence of cleared channel formation. Both in Fe-Cr and pure iron, the in-reactor deformation leads to accumulation of dislocations in a homogeneous fashion and only to a modest density. No dislocation cells are formed during the in-reactor or post

  5. Theoretical study of the correlation between magnetism and the properties of defects in iron, chromium and their alloys

    International Nuclear Information System (INIS)

    Soulairol, R.

    2011-09-01

    This PhD thesis is devoted to the study of the correlation between the magnetism and the properties of defects in 3d metals, mainly iron- and chromium-based systems, which are used in many technological applications, such as the new-generation nuclear reactors. This work is based on two complementary approaches: the Density Functional Theory (DFT) and a Tight Binding model (TB). We begin this study by the properties of pure materials such as chromium and α-iron. For the first one, we observe that the presence of a spin density wave (SDW) induces an anisotropy in the formation of point defects as well as the migration of vacancies. For the second, the solution energy of various 3d impurities depends on two terms: a chemical contribution mainly linked to the difference between the number of d electrons of iron and solute, and a magnetic contribution that reveals to be predominant in Fe-Cr. In the following parts, we tackle the correlation between magnetism and extended defects. We show in particular that the existence of magnetic frustrations near Fe/Cr interfaces can lead to the creation of non collinear magnetic structures. It also influences the energetic stability of these interfaces. We have noticed, in agreement with experimental findings, the presence of SDW near Fe/Cr interfaces, which is able to decrease those magnetic frustrations at the interface. We have also studied the magnetic structure of iron or chromium clusters embedded in an Fe-Cr alloy. We have finally shown, in the last part of this work, how the TB approach was able to account for the energetic and magnetic properties of defects not only in pure iron or chromium, but also in Fe-Cr alloys. (author)

  6. Synthesis and characterization of iron-cobalt (FeCo) alloy nanoparticles supported on carbon

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Barfod, Rasmus; Eriksen, Kim Michael

    2017-01-01

    of the alloy nanoparticles differed depending on the preparation method. When the wet impregnation technique of acetate precursor salts of Fe and Co were used for the synthesis, the size of FeCo alloy nanoparticles was approximately 13 nm. FeCo alloy nanoparticles were characterized by crystallography (XRD...

  7. Gamma→alpha transformation during cooling of Fe-Mn alloys

    International Nuclear Information System (INIS)

    Shtejnberg, M.M.; Mirzaev, D.A.; Ponomareva, T.N.

    1977-01-01

    Consideration is given to the effect of the cooling rate on the temperatures of γ→α transformation initiation, the structure and microhardness of Fe-Mn alloys. The general principles governing phase transformations in these alloys are similar to those which have been the subject of earlier investigations for Fe-Ni, Fe-Cr, Fe-Mo systems. It has been found that the higher manganese content results in a more intensive temperature drop for all the stages and elimination of stage 111 at a relatively low manganese content. Support is provided for the existence of the four stages of γ→α transformation in the iron alloys. The yield point, ultimate strength and microhardness of each alloy are related by Petch's relations to the size of the martensite packet which at the given grain size of the γsup(')-phase is defined by a transformation stage and a cooling rate at the given stage

  8. The effect of thermal processing on microstructure and mechanical properties in a nickel-iron alloy

    Science.gov (United States)

    Yang, Ling

    The correlation between processing conditions, resulted microstructure and mechanical properties is of interest in the field of metallurgy for centuries. In this work, we investigated the effect of thermal processing parameters on microstructure, and key mechanical properties to turbine rotor design: tensile yield strength and crack growth resistance, for a nickel-iron based superalloy Inconel 706. The first step of the designing of experiments is to find parameter ranges for thermal processing. Physical metallurgy on superalloys was combined with finite element analysis to estimate variations in thermal histories for a large Alloy 706 forging, and the results were adopted for designing of experiments. Through the systematic study, correlation was found between the processing parameters and the microstructure. Five different types of grain boundaries were identified by optical metallography, fractography, and transmission electron microscopy, and they were found to be associated with eta precipitation at the grain boundaries. Proportions of types of boundaries, eta size, spacing and angle respect to the grain boundary were found to be dependent on processing parameters. Differences in grain interior precipitates were also identified, and correlated with processing conditions. Further, a strong correlation between microstructure and mechanical properties was identified. The grain boundary precipitates affect the time dependent crack propagation resistance, and different types of boundaries have different levels of resistance. Grain interior precipitates were correlated with tensile yield strength. It was also found that there is a strong environmental effect on time dependent crack propagation resistance, and the sensitivity to environmental damage is microstructure dependent. The microstructure with eta decorated on grain boundaries by controlled processing parameters is more resistant to environmental damage through oxygen embrittlement than material without eta

  9. A mixed iron-manganese based pyrophosphate cathode, Na2Fe0.5Mn0.5P2O7, for rechargeable sodium ion batteries.

    Science.gov (United States)

    Shakoor, Rana A; Park, Chan Sun; Raja, Arsalan A; Shin, Jaeho; Kahraman, Ramazan

    2016-02-07

    The development of secondary batteries based on abundant and cheap elements is vital. Among various alternatives to conventional lithium-ion batteries, sodium-ion batteries (SIBs) are promising due to the abundant resources and low cost of sodium. While there are many challenges associated with the SIB system, cathode is an important factor in determining the electrochemical performance of this battery system. Accordingly, ongoing research in the field of SIBs is inclined towards the development of safe, cost effective cathode materials having improved performance. In particular, pyrophosphate cathodes have recently demonstrated decent electrochemical performance and thermal stability. Herein, we report the synthesis, electrochemical properties, and thermal behavior of a novel Na2Fe0.5Mn0.5P2O7 cathode for SIBs. The material was synthesized through a solid state process. The structural analysis reveals that the mixed substitution of manganese and iron has resulted in a triclinic crystal structure (P1[combining macron] space group). Galvanostatic charge/discharge measurements indicate that Na2Fe0.5Mn0.5P2O7 is electrochemically active with a reversible capacity of ∼80 mA h g(-1) at a C/20 rate with an average redox potential of 3.2 V. (vs. Na/Na(+)). It is noticed that 84% of initial capacity is preserved over 90 cycles showing promising cyclability. It is also noticed that the rate capability of Na2Fe0.5Mn0.5P2O7 is better than Na2MnP2O7. Ex situ and CV analyses indicate that Na2Fe0.5Mn0.5P2O7 undergoes a single phase reaction rather than a biphasic reaction due to different Na coordination environment and different Na site occupancy when compared to other pyrophosphate materials (Na2FeP2O7 and Na2MnP2O7). Thermogravimetric analysis (25-550 °C) confirms good thermal stability of Na2Fe0.5Mn0.5P2O7 with only 2% weight loss. Owing to promising electrochemical properties and decent thermal stability, Na2Fe0.5Mn0.5P2O7, can be an attractive cathode for SIBs.

  10. One-step hydrothermal synthesis and electrochemical performance of sodium-manganese-iron phosphate as cathode material for Li-ion batteries

    Science.gov (United States)

    Karegeya, Claude; Mahmoud, Abdelfattah; Vertruyen, Bénédicte; Hatert, Frédéric; Hermann, Raphaël P.; Cloots, Rudi; Boschini, Frédéric

    2017-09-01

    The sodium-manganese-iron phosphate Na2Mn1.5Fe1.5(PO4)3 (NMFP) with alluaudite structure was obtained by a one-step hydrothermal synthesis route. The physical properties and structure of this material were obtained through XRD and Mössbauer analyses. X-ray diffraction Rietveld refinements confirm a cationic distribution of Na+ and presence of vacancies in A(2)', Na+ and small amounts of Mn2+ in A(1), Mn2+ in M(1), 0.5 Mn2+ and Fe cations (Mn2+,Fe2+ and Fe3+) in M(2), leading to the structural formula Na2Mn(Mn0.5Fe1.5)(PO4)3. The particles morphology was investigated by SEM. Several reactions with different hydrothermal reaction times were attempted to design a suitable synthesis protocol of NMFP compound. The time of reaction was varied from 6 to 48 h at 220 °C. The pure phase of NMFP particles was firstly obtained when the hydrothermal reaction of NMFP precursors mixture was maintained at 220 °C for 6 h. When the reaction time was increased from 6 to 12, 24 and 48 h, the dandelion structure was destroyed in favor of NMFP micro-rods. The combination of NMFP (NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H) structure refinement and Mössbauer characterizations shows that the increase of the reaction time leads to the progressive increment of Fe(III) and the decrease of the crystal size. The electrochemical tests indicated that NMFP is a 3 V sodium intercalating cathode. The comparison of the discharge capacity evolution of studied NMFP electrode materials at C/5 current density shows different capacities of 48, 40, 34 and 34 mA h g-1 for NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H respectively. Interestingly, all samples show excellent capacity retention of about 99% during 50 cycles.

  11. Alloys of nickel-iron and nickel-silicon do not swell under fast neutron irradiation

    International Nuclear Information System (INIS)

    Silvestre, G.; Silvent, A.; Regnard, C.; Sainfort, G.

    1975-01-01

    This research is concerned with the effect of fast-neutron irradiation on the swelling of nickel and nickel alloys. Ni-Fe (0-60at%Fe) and Ni-Si (0-8at%Si) were studied, and the fluences were in the range 10 20 -4.3x10 22 n/cm 2 . In dilute alloys, the added elements are dissolved and reduce swelling, silicon being particularly effective. In more concentrated alloys, irradiation of Ni-Fe and Ni-Si alloys brings about the formation of plate-shaped precipitates of Ni 3 X and these alloys do not swell. (Auth.)

  12. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    Science.gov (United States)

    Saito, Tatsuya; Tsuruta, Hijiri; Watanabe, Asako; Ishimine, Tomoyuki; Ueno, Tomoyuki

    2018-04-01

    We developed Fe/FeSiAl soft magnetic powder cores (SMCs) for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (˜20 kHz). We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k) of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  13. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    Directory of Open Access Journals (Sweden)

    Tatsuya Saito

    2018-04-01

    Full Text Available We developed Fe/FeSiAl soft magnetic powder cores (SMCs for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (∼20 kHz. We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  14. Study on wear resistance of vanadium alloying compacted/vermicular graphite cast iron

    International Nuclear Information System (INIS)

    Park, Yoon Woo

    1987-01-01

    Wear resistance of the Compacted/Vermicular graphite cast irons was studied by changing the vanadium content in the cast irons. The results obtained in this work are summarized as follows. 1. When the same amount of vanadium was added to the flake graphite cast iron, spheroidal graphitecast iron and Compacted/Vermicular graphite cast iron, spheroidal graphite cast iron and Compacted/Vermicular graphite cast iron wear resistance decreased in following sequence, that is, flake graphite cast iron> spheroidal graphite cast iron>Compacted/Vermicular graphite cast iron. 2. Addition of vanadium to the Compacted/Vermicular cast iron leaded to a remarkable increase in hardness because it made the amount of pearlite in matrix increase. 3. Addition of vanadium to the compacted/Vermicular graphite cast iron significantly enhanced wear resistance and the maximum resistance was achieved at about 0.36% vanadium. 4. The maximum amount of wear apppeared at sliding speed of about 1.4m/sec and wear mode was considered to be oxidation abrasion from the observation of wear tracks. (Author)

  15. Contribution to the Study of the Relation between Microstructure and Electrochemical Behavior of Iron-Based FeCoC Ternary Alloys

    Directory of Open Access Journals (Sweden)

    Farida Benhalla-Haddad

    2012-01-01

    Full Text Available This work deals with the relation between microstructure and electrochemical behavior of four iron-based FeCoC ternary alloys. First, the arc-melted studied alloys were characterized using differential thermal analyses and scanning electron microscopy. The established solidification sequences of these alloys show the presence of two primary crystallization phases (δ(Fe and graphite as well as two univariante lines : peritectic L+(Fe↔(Fe and eutectic L↔(Fe+Cgraphite. The ternary alloys were thereafter studied in nondeaerated solution of 10−3 M NaHCO3 + 10−3 M Na2SO4, at 25°C, by means of the potentiodynamic technique. The results indicate that the corrosion resistance of the FeCoC alloys depends on the carbon amount and the morphology of the phases present in the studied alloys.

  16. On the rolling of hard-to-work iron-cobalt alloys with application of electric current of high density

    International Nuclear Information System (INIS)

    Klimov, K.M.; Mordukhovich, A.M.; Glezer, A.M.; Molotilov, B.V.

    1981-01-01

    Results on experimental fabrication of thin sheets of commercial iron-cobalt 49KF alloy (Se-Co-2%V) without preliminary quenching and intermediate annealings by rolling with application of high-density electric current are considered. It is shown that rolling with application of high-density electric current in the deformation zone permits to obtain thin sheets of difficult-to-form magnetically soft materials without preliminary thermal treatments. Electric current effect on metal in the deformation zone results in the increase of dislocation mobility and facilitates the cross glide [ru

  17. Investigation of electrochemical synthesis of ferrate, Part I: Electrochemical behavior of iron and its several alloys in concentrated alkaline solutions

    Directory of Open Access Journals (Sweden)

    Čekerevac Milan I.

    2009-01-01

    Full Text Available In recent years, considerable attention has been paid to various applications of Fe(VI due to its unique properties such as oxidizing power, selective reactivity, stability of the salt, and non-toxic decomposition by-products of ferric ion. In environmental remediation processes, Fe(VI has been proposed as green oxidant, coagulant, disinfectant, and antifoulant. Therefore, it is considered as a promising multi-purpose water treatment chemical. Fe(VI has also potential applications in electrochemical energy source, as 'green cathode'. The effectiveness of ferrate as a powerful oxidant in the entire pH range, and its use in environmental applications for the removal of wide range of contaminants has been well documented by several researchers. There is scientific evidence that ferrate can effectively remove arsenic, algae, viruses, pharmaceutical waste, and other toxic heavy metals. Although Fe(VI was first discovered in early eighteen century, detailed studies on physical and chemical properties of Fe(VI had to wait until efficient synthetic and analytical methods of Fe(VI were developed by Schreyer et al. in the 1950s. Actually, there have been developed three ways for the preparation of Fe(VI compounds : the wet oxidation of Fe(II and Fe(III compounds, the dry oxidation of the same, and the electrochemistry method, mainly based on the trans passive oxidation of iron. High purity ferrates Fe(VI can be generated when electrode of the pure iron metal or its alloys are anodized in concentrated alkaline solution. It is known that the efficiency of electrochemical process of Fe(VI production depends on many factors such as current density, composition of anode material, types of electrolyte etc. In this paper, the electrochemical synthesis of ferrate(VI solution by the anodic dissolution of iron and its alloys in concentrated water solution of NaOH and KOH is investigated. The process of transpassive dissolution of iron to ferrate(VI was studied by

  18. Distribution of iron and manganese

    Digital Repository Service at National Institute of Oceanography (India)

    Mesquita, A.; Kaisary, S.

    inverse distance weighting the spatial distributions of the particulate and dissolved concentrations of Fe and Mn were mapped along the salinity gradient of the two rivers. Significant seasonal signals were observed in the spatial variations...

  19. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...... of transcription factors, activation of the mitochondrial apoptotic machinery or of other cell death mechanisms. The pro-inflammatory cytokine IL-1β facilitates divalent metal transporter 1 (DMT1)-induced β-cell iron uptake and consequently ROS formation and apoptosis, and we propose that this mechanism provides...

  20. Iron

    Science.gov (United States)

    ... Share: Search the ODS website Submit Search NIH Office of Dietary Supplements Consumer Datos en español Health ... eating a variety of foods, including the following: Lean meat, seafood, and poultry. Iron-fortified breakfast cereals ...

  1. Four-branched compounds coupled Si and iron-rich intermetallics in near eutectic Al-Si alloys

    International Nuclear Information System (INIS)

    Wu, Yuying; Liu, Xiangfa; Jiang, Binggang; Bian, Xiufang

    2007-01-01

    Many four-branched compounds coupled Si and iron-rich intermetallics were observed in near eutectic Al-Si alloy modified with Al-P master alloy. Such four-branched compounds have never been reported before, but in our case it seems to be commonly observed. In this work the growth characterization of the four-branched compounds are scrutinized with a JXA-8800 electron microprobe (EPMA). More deep study of the formation of four-branched compounds is performed by SEM and TEM analysis. The characterization of the four-branched compounds is that of a primary silicon in the center with four iron-rich intermetallics around. Experimental results also show that the precipitation of primary silicon is the key factor for the formation of four-branched compounds. And WHS-theory explains the growth mechanism of the four-branched compounds. In detail, subsequent twinning within the primary silicon provides four-fold coordination sites on the surface, and then the α-Al(Fe,Mn)-Si phase nucleates on the surface of the primary silicon

  2. Recovery of manganese from manganese oxide ores in the EDTA solution

    Science.gov (United States)

    Zhang, Chao; Wang, Shuai; Cao, Zhan-fang; Zhong, Hong

    2018-04-01

    A new process has been experimentally and theoretically established for the recovery of manganese from manganese oxide ores, mainly including the reductive leaching of manganese by ethylenediaminetetraacetic acid (EDTA), EDTA recovery, and manganese electrolysis. The experimental conditions for this process were investigated. Moderate leaching environment by EDTA with the pH in the range of 5-6 is of benefit to leach manganese from some manganese oxide ores with high-content impurities, such as iron and aluminum. Most of EDTA can be recovered by acidification. A small amount of the residual EDTA in the electrolyte can prevent the generation of anode mud. In addition, trimanganese tetroxide (Mn3O4) can be obtained by the roasting of the EDTA-Mn crystallized product.

  3. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  4. Sulfidation/oxidation resistant alloys

    International Nuclear Information System (INIS)

    Smith, G.D.; Tassen, C.S.

    1989-01-01

    The patent describes a nickel-base, high chromium alloy. It is characterized by excellent resistance to sulfidation and oxidation at elevated temperatures as high as 2000 degrees F. (1093 degrees C.) and higher, a stress-rupture life of about 200 hours or more at a temperature at least as high as 1800 degrees F. (990:0083 degrees C.) and under a stress of 2000 psi, good tensile strength and good ductility both at room and elevated temperature. The alloy consists essentially of about 27 to 35% chromium, about 2.5 to 5% aluminum, about 2.5 to about 6% iron, 0.5 to 2.5% columbium, up to 0.1% carbon, up to 1% each of titanium and zirconium, up to 0.05% cerium, up to 0.05% yttrium, up to 1% silicon, up to 1% manganese, and the balance nickel

  5. Corrosion resistance of cast irons and titanium alloys as reference engineered metal barriers for use in basalt geologic storage: a literature assessment

    International Nuclear Information System (INIS)

    Charlot, L.A.; Westerman, R.E.

    1981-07-01

    A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allows its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt

  6. Iron alloy Fischer-tropsch catalysts--1. Oxidation-reduction studies of the Fe-Ni system

    Energy Technology Data Exchange (ETDEWEB)

    Unmuth, E.E.; Schwartz, L.H.; Butt, J.B.

    1980-01-01

    Catalysts containing 5% iron, nickel, or 4:1 iron-nickel on silica were hydrogen-reduced at 425/sup 0/C for 12 or 24 hr, reoxidized in air for 2 or 4 hr, reduced again in hydrogen for 12 hr, and studied at each treatment step by Moessbauer spectroscopy, X-ray diffraction, and temperature-programed desorption. The nickel was reduced directly to the metal, redispersed during the oxidation, and gave 20% smaller particles in the second reduction than in the first reduction. The ..cap alpha..-Fe/sub 2/O/sub 3/ reduced via an Fe/sub 3/O/sub 4/ intermediate and yielded approx. 70% metallic iron and the second reduction produced about the same particle size as the first reduction. The alloy catalyst reduced into a mixture of two phases, a face-centered cubic phase containing approx. 37.5% Ni, i.e., the bulk equilibrium value, and a body-centered cubic phase, and the particle sizes obtained in the first and second reductions were similar. The activation energies for the reduction were determined.

  7. Inhibitory Effect of Dissolved Silica on the H2O2 Decomposition by Iron(III) and Manganese(IV) Oxides: Implications for H2O2-based In Situ Chemical Oxidation

    Science.gov (United States)

    Pham, Anh Le-Tuan; Doyle, Fiona M.; Sedlak, David L.

    2011-01-01

    The decomposition of H2O2 on iron minerals can generate •OH, a strong oxidant that can transform a wide range of contaminants. This reaction is critical to In Situ Chemical Oxidation (ISCO) processes used for soil and groundwater remediation, as well as advanced oxidation processes employed in waste treatment systems. The presence of dissolved silica at concentrations comparable to those encountered in natural waters decreases the reactivity of iron minerals toward H2O2, because silica adsorbs onto the surface of iron minerals and alters catalytic sites. At circumneutral pH values, goethite, amorphous iron oxide, hematite, iron-coated sand and montmorillonite that were pre-equilibrated with 0.05 – 1.5 mM SiO2 were significantly less reactive toward H2O2 decomposition than their original counterparts, with the H2O2 loss rates inversely proportional to the SiO2 concentration. In the goethite/H2O2 system, the overall •OH yield, defined as the percentage of decomposed H2O2 producing •OH, was almost halved in the presence of 1.5 mM SiO2. Dissolved SiO2 also slows the H2O2 decomposition on manganese(IV) oxide. The presence of dissolved SiO2 results in greater persistence of H2O2 in groundwater, lower H2O2 utilization efficiency and should be considered in the design of H2O2-based treatment systems. PMID:22129132

  8. Preparation and Cycling Performance of Iron or Iron Oxide Containing Amorphous Al-Li Alloys as Electrodes

    Directory of Open Access Journals (Sweden)

    Franziska Thoss

    2014-12-01

    Full Text Available Crystalline phase transitions cause volume changes, which entails a fast destroying of the electrode. Non-crystalline states may avoid this circumstance. Herein we present structural and electrochemical investigations of pre-lithiated, amorphous Al39Li43Fe13Si5-powders, to be used as electrode material for Li-ion batteries. Powders of master alloys with the compositions Al39Li43Fe13Si5 and Al39Li43Fe13Si5 + 5 mass-% FeO were prepared via ball milling and achieved amorphous/nanocrystalline states after 56 and 21.6 h, respectively. In contrast to their Li-free amorphous pendant Al78Fe13Si9, both powders showed specific capacities of about 400 and 700 Ah/kgAl, respectively, after the third cycle.

  9. Effect of deep cryogenic treatment and tempering on microstructure and mechanical behaviors of a wear-resistant austempered alloyed bainitic ductile iron

    Directory of Open Access Journals (Sweden)

    Chen Liqing

    2015-01-01

    Full Text Available In this paper, the effect of deep cryogenic treatment in combination with conven- tional heat treatment process was investigated on microstructure and mechanical behaviors of alloyed bainitic ductile iron. Three processing schedules were employed to treat this alloyed ductile iron including direct tempering treatment, tempering.+deep cryogenic treatment and deep cryogenic treatment.+tempering treatments. The microstructure and mechanical behavior, especially the wear resistance, have been evaluated after treated by these three schedules. The results show that martensite microstructure can be obviously refined and the precipitation of dispersed carbides is promoted by deep cryogenic treatment at .−196 ∘C for 3 h after tempered at 450 ∘C for 2 h. In this case, the alloyed bainitic ductile iron possesses rather high hardness and wear-resistance than those processed by other two schedules. The main wear mechanism of the austempered alloyed ductile iron with deep cryogenic treatment and tempering is micro-cutting wear in association with plastic deformation wear.

  10. Study of soft magnetic iron cobalt based alloys processed by powder injection molding

    International Nuclear Information System (INIS)

    Silva, Aline; Lozano, Jaime A.; Machado, Ricardo; Escobar, Jairo A.; Wendhausen, Paulo A.P.

    2008-01-01

    As a near net shape process, powder injection molding (PIM) opens new possibilities to process Fe-Co alloys for magnetic applications. Due to the fact that PIM does not involve plastic deformation of the material during processing, we envisioned the possibility of eliminating vanadium (V), which is generally added to Fe-Co alloys to improve the ductility in order to enable its further shaping by conventional processes such as forging and cold rolling. In our investigation we have found out two main futures related to the elimination of V, which lead to a cost-benefit gain in manufacturing small magnetic components where high-saturation induction is needed at low frequencies. Firstly, the elimination of V enables the achievement of much better magnetic properties when alloys are processed by PIM. Secondly, a lower sintering temperature can be used when the alloy is processed starting with elemental Fe and Co powders without the addition of V

  11. Templated synthesis of gold-iron alloy nanoparticles using pulsed laser deposition

    International Nuclear Information System (INIS)

    Chang, Won-Suk; Park, Jin-Won; Rawat, Vijay; Sands, Timothy; Lee, Gil U

    2006-01-01

    A means for synthesizing paramagnetic nanoparticles composed of an Au-Fe alloy is described using pulsed laser deposition (PLD) of the alloy into a mesoporous alumina membrane template. Nanoparticles 46 ± 13 nm in diameter and composed of a 17% Fe alloy have been created by depositing a 35% Fe alloy into a template with 65 nm diameter pores. These paramagnetic nanoparticles had a saturation magnetization of 11.5 emu g -1 at 2000 G, and their UV-visible extinction spectrum was dominated by strong absorption similar to that of Fe 3 O 4 nanoparticles. The surfaces of these nanoparticles were readily functionalized with a dense monolayer of DNA oligonucleotides that had a 5' thiol group. The Au-Fe nanoparticles appear to be well suited for biotechnological applications and single molecule measurements as they can be synthesized in a specific size range, are strongly paramagnetic, and may be easily functionalized with biological macromolecules

  12. Effect of cold working on the stress corrosion cracking resistance of nickel-chromium-iron alloys

    International Nuclear Information System (INIS)

    Yonezawa, T.; Onimura, K.

    1987-01-01

    In order to grasp the stress corrosion cracking resistance of cold worked nickel base alloys in PWR primary water, the effect of cold working on the stress corrosion cracking resistance of alloys 600, X-750 and 690, in high temperature water, have been studied. Stress corrosion cracking tests were conducted at 360 0 C (633K) in a simulated PWR primary water for about 12,000 hours (43.2Ms). From the test results, it is concluded that the stress corrosion cracking resistance in the cold worked Alloy 600 at the same applied stress level increases with an increase in cold working ratio, and the cold worked alloys of thermally treated 690 and X-750 have excellent stress corrosion cracking resistance. (Author)

  13. X-ray diffraction (XRD) characterization of microstrain in some iron and uranium alloys

    International Nuclear Information System (INIS)

    Kimmel, G.; Dayan, D.; Frank, G.A.; Landau, A.

    1996-01-01

    The high linear attenuation coefficient of steel, uranium and uranium based alloys is associated with the small penetration depth of X-rays with the usual wavelength used for diffraction. Nevertheless, by using the proper surface preparation technique, it is possible of obtaining surfaces with bulk properties (free of residual mechanical microstrain). Taking advantage of the feasibility to obtain well prepared surfaces, extensive work has been conducted in studying XRD line broadening effects from flat polycrystalline samples of steel, uranium and uranium alloys

  14. Microstructural and magnetic characterization of iron precipitation in Ni-Fe-Al alloys

    International Nuclear Information System (INIS)

    Duman, Nagehan; Mekhrabov, Amdulla O.; Akdeniz, M. Vedat

    2011-01-01

    The influence of annealing on the microstructural evolution and magnetic properties of Ni 50 Fe x Al 50-x alloys for x = 20, 25, and 30 has been investigated. Solidification microstructures of as-cast alloys reveal coarse grains of a single B2 type β-phase and typical off eutectic microstructure consisting of proeutectic B2 type β dendrites and interdendritic eutectic for x = 20 and x > 20 at.% Fe respectively. However, annealing at 1073 K results in the formation of FCC γ-phase particles along the grain boundaries as well as grain interior in x = 20 at.% Fe alloy. The volume fraction of interdentritic eutectic regions tend to decrease and their morphologies start to degenerate by forming FCC γ-phase for x > 20 at.% Fe alloys with increasing annealing temperatures. Increasing Fe content of alloys induce an enhancement in magnetization and a rise in the Curie transition temperature (T C ). Temperature scan magnetic measurements and transmission electron microscopy reveal that a transient rise in the magnetization at temperatures well above the T C of the alloys would be attributed to the precipitation of a nano-scale ferromagnetic BCC α-Fe phase. Retained magnetization above the Curie transition temperature of alloy matrix, together with enhanced room temperature saturation magnetization of alloys annealed at favorable temperatures support the presence of ferromagnetic precipitates. These nano-scale precipitates are shown to induce significant precipitation hardening of the β-phase in conjunction with enhanced room temperature saturation magnetization in particular when an annealing temperature of 673 K is used. - Research Highlights: → Evolution of microstructure and magnetic properties with varying Fe content. → Transient rise in magnetization via the formation of ferromagnetic phase. → Enhancements in saturation magnetization owing to precipitated ferromagnetic phase. → Nanoscale precipitation of ferromagnetic BCC α-Fe confirmed by TEM.

  15. Effect of manganese and chromium on microstructure and toughness of Fe-Cr-Mn alloys resulting from solid-solution treatment

    International Nuclear Information System (INIS)

    Okazaki, Yoshimitsu; Miyahara, Kazuya; Wade, Noboru; Hosoi, Yuzo

    1989-01-01

    This study is aimed at making clear the effect of Mn and Cr on the microstructure and toughness of an Fe-Cr-Mn alloy which is considered as one of the candidate alloys for reduced activation materials for the first wall application of the fusion reactor. The microstructures of Fe-12% Cr-(5∼30)% Mn(mass%) alloys after solution treatment at 1373 K for 3.6 ks are markedly varied with Mn contents; α'(martensite) + δ(ferrite) in 5% Mn alloy, α' + δ + ε(martensite) + γ(austenite) in the 10% Mn alloy, α' + ε + γ in 15% Mn alloy, ε + γ in the 20% Mn alloy, and ε + γ +δ in the 25% Mn alloy, and γ + δ in the 30% Mn alloy. It is to be noted that the δ phase increases with increasing Mn content when the Fe-12% Cr alloy contains more than 25% Mn, which suggests that Mn plays the role of a ferrite former. In Fe-15% Mn-Cr alloy, the δ phase is not observed in the range of Cr contents up to 12%, whereas it is markedly increased with the addition of 16% Cr. C, N and Ni are very helpful in forming the γ phase in these alloys as generally known in Fe-Cr-Ni alloys. The toughness evaluated by the Charpy impact test at 273 K and room temperature is very low in the 5% Mn alloy which consists of the α' and δ phases. It is, however, significantly improved by a small amount of the γ phase and increases with increase of γ phase stability. (author)

  16. APPLICATION OF SPHEROIDIZING «CHIPS»-MASTER ALLOY ON COPPER BASE CONTAINING NANOSCALE PARTICLES OF YTTRIUM OXIDE FOR HIGH-STRENGTH CAST IRON

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The peculiarity of the technology of obtaining high-strength cast iron is application in out-furnace treatment various inoculants containing magnesium. In practice of foundry production spheroidizing master alloys based on ferrosilicon (Fe-Si-Mg type and «heavy» alloying alloys on copper and nickel base are widespread. The urgent issue is to improve their efficiency by increasing the degree of magnesium assimilation, reduction of specific consumption of additives, and minimizing dust and gas emissions during the process of spheroidizing treatment of liquid iron. One method of solving this problem is the use of inoculants in a compact form in which the process of dissolution proceeds more efficiently. For example, rapidly quenched granules or «chip»-inoculants are interesting to apply.The aim of present work was to study the peculiarities of production and application of «Chips»-inoculants on copper and magnesium base with additions of yttrium oxide. The principle of mechatronics was used, including the briquetting inoculants’ components after their mixing with the subsequent high-speed mechanical impact and obtaining plates with a thickness of 1–2 mm.Spheroidizing treatment of molten metal has been produced by ladle method using «Chips»-inoculants in the amount of 0.8%. Secondary graphitization inoculation was not performed. Studies have shown that when the spheroidizing treatment of ductile iron was performed with inoculants developed, the process of interaction of magnesium with the liquid melt runs steadily without significant pyroeffect and emissions of metal outside of the ladle.This generates a structure of spheroidal graphite of regular shape (SGf5. The presence in the inoculant of yttrium oxide has a positive impact on the spheroidal graphite counts and the tendency of high-strength cast iron to form «white» cast iron structure. Mechanical properties of the obtained alloy correspond to high-strength cast iron HSCI60.

  17. Development of weldable, corrosion-resistant iron-aluminide (FeAl) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    A boron-microalloyed FeAl alloy (Fe-36Al-0.2Mo-0.05Zr-0.13C, at.%, with 100-400 appm B) with improved weldability and mechanical properties was developed in FY 1994. A new scale-up and industry technology development phase for this work began in FY 1995, pursuing two parallel paths. One path was developing monolithic FeAl component and application technology, and the other was developing coating/cladding technology for alloy steels, stainless steels and other Fe-Cr-Ni alloys. In FY 1995, it was found that cast FeAl alloys had good strength at 700-750{degrees}C, and some (2.5%) ductility in air at room-temperature. Hot-extruded FeAl with refined grain size was found to have ductility and to also have good impact-toughness at room-temperature. Further, it was discovered that powder-metallurgy (P/M) FeAl, consolidated by direct hot-extrusion at 950-1000{degrees}C to have an ultra fine-grained microstructure, had the highest ductility, strength and impact-toughness ever seen in such intermetallic alloys.

  18. Performance of the electrical generator cell by the ferrous alloys of printed circuit board scrap and Iron Metal 1020

    Science.gov (United States)

    Sahan, Y.; Sudarsono, S.; Silviana, E.; Chairul; Wisrayetti

    2018-04-01

    Galvani cell is one of thealternative energy. This cell can be used as an electric resources. In this research, the generator cell was designed and builds to generate the electric. The generator cell consisted of the iron metal 1020 were used as anode, the ferrous alloys of printed circuit board scrapwas then used as chatode, and NaCl solution as an electrolyte. The aim of this research is to estimate the performance of this generator cell by using variation of NaCl concentration (i.e. 1%, 3%, 5%, 7%, and 9%) with the electrodes pair ( 1 and 8 pairs). The performance of the cell was measured with a multi tester equipment and a LED bulb (5-watt 3Volt). The Results shown that the generator cell can produce the electric power of 3.679 Volt maximally by using NaCl 9% and 8 electrode pairs applied for this condition.

  19. Effect of increased manganese addition and mould type on the ...

    Indian Academy of Sciences (India)

    The wear resistance of high chromium iron is well recorded. However, the same is not the case as regards the use of manganese at higher percentages in high chromium irons and its influence on wear behaviour. Hence, this work highlights the slurry wear characteristics of chromium (□ ◻ 16–19%) iron following the ...

  20. Study of the quenching and subsequent return to room temperature of uranium-chromium, uranium-iron, and uranium-molybdenum alloys containing only small amounts of the alloying element

    International Nuclear Information System (INIS)

    Delaplace, J.

    1960-09-01

    By means of an apparatus which makes possible thermal pre-treatments in vacuo, quenching carried out in a high purity argon atmosphere, and simultaneous recording of time temperature cooling and thermal contraction curves, the author has examined the transformations which occur in uranium-chromium, uranium-iron and uranium-molybdenum alloys during their quenching and subsequent return to room temperature. For uranium-chromium and uranium-iron alloys, the temperature at which the γ → β transformation starts varies very little with the rate of cooling. For uranium-molybdenum alloys containing 2,8 atom per cent of Mo, this temperature is lowered by 120 deg. C for a cooling rate of 500 deg. C/mn. The temperature at which the β → α transformation starts is lowered by 170 deg. C for a cooling rate of 500 deg. C/mn in the case of uranium-chromium alloy containing 0,37 atom per cent of Cr. The temperature is little affected in the case of uranium-iron alloys. The addition of chromium or iron makes it possible to conserve the form β at ordinary temperatures after quenching from the β and γ regions. The β phase is particularly unstable and changes into needles of the α form even at room temperatures according to an autocatalytic transformation law similar to the austenitic-martensitic transformation law in the case of iron. The β phase obtained by quenching from the β phase region is more stable than that obtained by quenching from the γ region. Chromium is a more effective stabiliser of the β phase than is iron. Unfortunately it causes serious surface cracking. The β → α transformation in uranium-chromium alloys has been followed at room temperature by means of micro-cinematography. The author has not observed the direct γ → α transformation in uranium-molybdenum alloys containing 2,8 per cent of molybdenum even for cooling rates of up to 2000 deg. C/s. He has however observed the formation of several martensitic structures. (author) [fr

  1. Activation analyses for different fusion structural alloys

    International Nuclear Information System (INIS)

    Attaya, H.; Smith, D.

    1991-01-01

    The leading candidate structural materials, viz., the vanadium alloys, the nickel or the manganese stabilized austenitic steels, and the ferritic steels, are analysed in terms of their induced activation in the TPSS fusion power reactor. The TPSS reactor has 1950 MW fusion power and inboard and outboard average neutron wall loading of 3.75 and 5.35 MW/m 2 respectively. The results shows that, after one year of continuous operation, the vanadium alloys have the least radioactivity at reactor shutdown. The maximum difference between the induced radioactivity in the vanadium alloys and in the other iron-based alloys occurs at about 10 years after reactor shutdown. At this time, the total reactor radioactivity, using the vanadium alloys, is about two orders of magnitude less than the total reactor radioactivity utilizing any other alloy. The difference is even larger in the first wall, the FW-vanadium activation is 3 orders of magnitude less than other alloys' FW activation. 2 refs., 7 figs

  2. Gastroprotective Properties of Manganese Chloride on Acetic Acid

    African Journals Online (AJOL)

    Dr Olaleye

    Drugs with multiple mechanisms of protective action may be effective in minimizing ... that Manganese had dose and treatment duration dependent effect on healing of ulcerated stomach. .... The stomach was bathed with normal saline ..... Arnaud, J., and Favier, A. (1995): "Copper, iron, manganese ... Experimental Toxic.

  3. The properties and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.; Bojinov, M.; Betova, I.; Maekelae, K.; Saario, T. [VTT Manufacturing Technology, Espoo (Finland)

    1999-01-01

    The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry. This work was undertaken in order to collect and evaluate the present views on the structure and behaviour of oxide films formed on iron- and nickel-based materials in aqueous environments. This survey should serve to recognise the areas in which more understanding and research effort is needed. The review begins with a discussion on the bulk oxides of iron, nickel and chromium, as well as their mixed oxides. In addition to bulk oxides, the structure and properties of oxide films forming on pure iron, nickel and chromium and on iron- and nickel-based engineering alloys are considered. General approaches to model the structure and growth of oxide films on metals are discussed in detail. The specific features of the oxide structures, properties and growth at high temperatures are presented with special focus on the relevance of existing models. Finally, the role of oxide films in localised corrosion, oxide breakdown pitting. Stress corrosion cracking and related phenomena is considered. The films formed on the surfaces of iron- and nickel-based alloys in high-temperature aqueous environments generally comprise two layers, i.e. the so-called duplex structure. The inner part is normally enriched in chromium and has a more compact structure, while the outer part is enriched in iron and has a cracked or porous structure. The information collected clearly indicates the effect of the chemical environment on the properties of oxide films growing on metal surfaces

  4. The properties and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments

    International Nuclear Information System (INIS)

    Laitinen, T.; Bojinov, M.; Betova, I.; Maekelae, K.; Saario, T.

    1999-01-01

    The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry. This work was undertaken in order to collect and evaluate the present views on the structure and behaviour of oxide films formed on iron- and nickel-based materials in aqueous environments. This survey should serve to recognise the areas in which more understanding and research effort is needed. The review begins with a discussion on the bulk oxides of iron, nickel and chromium, as well as their mixed oxides. In addition to bulk oxides, the structure and properties of oxide films forming on pure iron, nickel and chromium and on iron- and nickel-based engineering alloys are considered. General approaches to model the structure and growth of oxide films on metals are discussed in detail. The specific features of the oxide structures, properties and growth at high temperatures are presented with special focus on the relevance of existing models. Finally, the role of oxide films in localised corrosion, oxide breakdown pitting. Stress corrosion cracking and related phenomena is considered. The films formed on the surfaces of iron- and nickel-based alloys in high-temperature aqueous environments generally comprise two layers, i.e. the so-called duplex structure. The inner part is normally enriched in chromium and has a more compact structure, while the outer part is enriched in iron and has a cracked or porous structure. The information collected clearly indicates the effect of the chemical environment on the properties of oxide films growing on metal surfaces

  5. The Properties Of And Transport Phenomena In Oxide Films On Iron, Nickel, Chromium And Their Alloys In Aqueous Environments

    International Nuclear Information System (INIS)

    Saario, T.; Laitinen, T.; Maekelae, K.; Bojinov, M.; Betova, I.

    1998-07-01

    The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry. This work was undertaken in order to collect and evaluate the present views on the structure and behaviour of oxide films formed on iron- and nickel-based materials in aqueous environments. This survey should serve to recognise the areas in which more understanding and research effort is needed. The review begins with a discussion on the bulk oxides of iron, nickel and chromium, as well as their mixed oxides. In addition to bulk oxides, the structure and properties of oxide films forming on pure iron, nickel and chromium and on iron- and nickel-based engineering alloys are considered. General approaches to model the structure and growth of oxide films on metals are discussed in detail. The specific features of the oxide structures, properties and growth at high temperatures are presented with special focus on the relevance of existing models. Finally, the role of oxide films in localised corrosion, oxide breakdown, pitting, stress corrosion cracking and related phenomena is considered. The films formed on the surfaces of iron- and nickel-based alloys in high-temperature aqueous environments generally comprise two layers, i.e. the so-called duplex structure. The inner part is normally enriched in chromium and has a more dense structure, while the outer part is enriched in iron and has a cracked or porous structure. The information collected clearly indicates the effect of the chemical environment on the properties of oxide films growing on metal surfaces

  6. Control of nitrogen concentration in liquid lithium by iron-titanium alloy

    International Nuclear Information System (INIS)

    Hirakane, Shinji; Yoneoka, Toshiaki; Tanaka, Satoru

    2006-01-01

    Reducing the nitrogen concentration in liquid lithium is one of the most important steps in creating a liquid lithium blanket system. In this study, in order to verify the nitrogen gettering performance of Fe-Ti alloy, the variation in the nitrogen concentration in liquid lithium, into which Fe-10 at.% Ti or Fe-5 at.% Ti getter was immersed, was examined. The results confirmed a gettering performance of Fe-Ti alloy comparable to that of V-Ti alloy, although the effects were not durable in either the Fe-Ti or the V-Ti alloy. After the immersion test, the existing states of nitrogen absorbed in the gettering material were analyzed by means of XRD, XMA and XPS. TiN and some nitrogen dissolved in α-Fe without forming TiN were observed. It was indicated that nitrogen gettering is prevented not only by the surface nitrides, but also by the internal diffusion barriers originating from the absorbed nitrogen

  7. PROTECTORS FOR PROOFING OF IRON-CARBON-ALLOYS FROM CORROSIVE EFFECT

    Directory of Open Access Journals (Sweden)

    A. A. Pivovarchyk

    2017-01-01

    Full Text Available The article presents the results of practical testing of the developed compositions of protectors for proofing of low-carbon alloys used in the automotive industry and made from melting stocks of secondary aluminum raw materials. The results of the study of the effectiveness of the proofing of the developed protectors are presented.

  8. Influence of 'third' elements and structure on the results of spectral analysis of high alloyed steels and cast iron with glow discharge

    International Nuclear Information System (INIS)

    Buravlev, Yu.M.; Zamarajev, V.P.; Chernyavskaya, N.V.

    1989-01-01

    The experimental technique consists in estimation of mutual arrangement of the calibration curves obtained using standard reference materials of low-alloyed and high-alloyed (high-chrome, stainless, high-speed) steels as well as of the curves for carbon steels and cast iron differing in their structure. ARL-31000 and Polyvac E-1000 quantometers with U=1300 V, I=0.12 A and argon pressure ∼1 kPa are used. The influence of third elements is shown in shift and slope changes of the curves for abovementioned high-alloyed steels in comparison to ones for low-alloyed steels accepted as basic. The influence magnitude runs up to 10-30 relative percents and more in the case of analysis of carbon, phosphorus, sulfur, silicon and other elements and depends on the type of the element and on the alloy composition. It is shown that the contribution of structure factor caused by different alloy thermal treatment makes up 10 to 20 relative percents. The experiments showed that the increase of influence of these factors caused by their imposing as well as the weakening of this influence caused by their counteraction is possible. When analyzed alloys differ in their composition and manufacturing technology it is necessary to take into consideration the influence of these effects. (author)

  9. Magnetic Mineralogy of Troilite-Inclusions and their Fe-Ni Host Alloys in IAB Iron Meteorites

    Science.gov (United States)

    Kontny, A. M.; Kramar, U.; Luecke, W.

    2011-12-01

    Iron-nickel meteorites often contain isolated, mostly rounded troilite nodules enclosed in a bulk of Fe-Ni alloy. As sulfur has a low solubility in metal, it is excluded from the crystallization of metal during cooling. Therefore troilite nodules are interpreted to be trapped droplets of residual sulfur-enriched melts. Microscopic examinations of the interface (mm-range) between troilite inclusions and Fe-Ni alloy yield clear mineralogical differences compared to the troilite inclusion. Such rims around troilite nodules seem to occur exclusively in Fe-Ni meteorites with slow cooling rates, and therefore might provide interesting clues on segregation, fractional crystallization and reequilibration processes between the Fe-Ni alloy and the sulfide phases. These interfaces however are also highly sensitive to terrestrial weathering. We present microscopic observations in combination with temperature-dependent magnetic susceptibility (k-T curves) in order to identify the magnetic mineralogy of the Morasko (Poland) and Coahuila (Mexico) meteorites, which both geochemically belong to the non-magmatic IAB or IIICD group. In the k-T curves both, rim and troilite nodule are characterized by Curie temperatures (TC) that can be related to magnetite, daubreelite (FeCr2O4), Fe-hydroxide and sometimes cohenite. Therefore the interface seems to be geochemically more similar to the troilite nodule than the Fe-Ni alloy. Optical microscopy in combination with the ferrofluid method revealed complex microstructures of intergrown magnetic (TC = 780-785 °C) and non-magnetic phases in the Fe-Ni alloy, which differ in their Ni-concentration. Towards the rim of the troilite nodule the concentration of magnetic cohenite ((Fe,Ni)3C) and especially schreibersite ((Fe,Ni)3P), which are both intergrown with the metal, increases. Cohenite is easily identified microscopically by a very characteristic stripe-like magnetic domain structure and it shows a TC at about 200 °C. The carbon-rich, dark

  10. Enhanced magnetoelectric effects in composite of piezoelectric ceramics, rare-earth iron alloys, and shape-optimized nanocrystalline alloys.

    Science.gov (United States)

    Zhang, Jitao; Li, Ping; Wen, Yumei; He, Wei; Yang, Aichao; Lu, Caijiang

    2014-03-01

    An enhancement for magnetoelectric (ME) effects is studied in a three-phase ME architecture consisting of two magnetostrictive Terfenol-D (Tb(0.3)Dy(0.7)Fe(1.92)) plates, a piezoelectric PZT (Pb(Zr,Ti)O3) plate, and a pair of shape-optimized FeCuNbSiB nanocrystalline alloys. By modifying the conventional shape of the magnetic flux concentrator, the shape-optimized flux concentrator has an improved effective permeability (μ(eff)) due to the shape-induced demagnetizing effect at its end surface. The flux concentrator concentrates and amplifies the external magnetic flux into Terfenol-D plate by means of changing its internal flux concentrating manner. Consequently, more flux lines can be uniformly concentrated into Terfenol-D plates. The effective piezomagnetic coefficients (d(33m)) of Terfenol-D plate and the ME voltage coefficients (α(ME)) can be further improved under a lower magnetic bias field. The dynamic magneto-elastic properties and the effective magnetic induction of Terfenol-D are taken into account to derive the enhanced effective ME voltage coefficients (α(ME,eff)), the consistency of experimental results and theoretical analyses verifies this enhancement. The experimental results demonstrate that the maximum d(33m) in our proposed architecture achieves 22.48 nm/A under a bias of 114 Oe. The maximum α(ME) in the bias magnetic range 0-900 Oe reaches 84.73 mV/Oe under the low frequency of 1 kHz, and 2.996 V/Oe under the resonance frequency of 102.3 kHz, respectively. It exhibits a 1.43 times larger piezomagnetic coefficient and a 1.87 times higher ME voltage coefficient under a smaller magnetic bias of 82 Oe than those of a conventional Terfenol-D/PZT/Terfenol-D composite. These shape-induced magnetoelectric behaviors provide the possibility of using this ME architecture in ultra-sensitive magnetic sensors.

  11. Thermal Coefficient of Linear Expansion Modified by Dendritic Segregation in Nickel-Iron Alloys

    Science.gov (United States)

    Ogorodnikova, O. M.; Maksimova, E. V.

    2018-05-01

    The paper presents investigations of thermal properties of Fe-Ni and Fe-Ni-Co casting alloys affected by the heterogeneous distribution of their chemical elements. It is shown that nickel dendritic segregation has a negative effect on properties of studied invars. A mathematical model is proposed to explore the influence of nickel dendritic segregation on the thermal coefficient of linear expansion (TCLE) of the alloy. A computer simulation of TCLE of Fe-Ni-Co superinvars is performed with regard to a heterogeneous distribution of their chemical elements over the whole volume. The ProLigSol computer software application is developed for processing the data array and results of computer simulation.

  12. Short-range clustering and decomposition in copper-nickel and copper-nickel-iron alloys

    International Nuclear Information System (INIS)

    Aalders, T.J.A.

    1982-07-01

    The thermodynamic equilibrium state of short-range clustering and the kinetics of short-range clustering and decomposition has been studied for a number of CuNi(Fe)-alloys by means of neutron scattering. The validity of the theories, which are usually applied to describe spinodal decomposition, nucleation and growth, coarsening etc., was investigated. It was shown that for the investigated substances the conventional theory of spinodal decomposition is valid for the relaxation of short-range clustering only for the case that the initial and final states do not differ too much. The dynamical scaling procedure described by Lebowitz et al. did not lead to a time-independent scaled function F(x) for the relaxation of short-range clustering, for the early stages of decomposition and for the case that an alloy, which was already decomposed at the quench temperature T 1 , was annealed at a temperature T 2 (T 1 ). For the later stages of decomposition, however, the scaling procedure was indeed successful. The coarsening of the alloys could, except for the later stages, be described by the Lifshitz-Slyozov theory. (Auth.)

  13. Generation and Characterization of Anisotropic Microstructures in Rare Earth-Iron-Boron Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Oster, Nathaniel [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    The goal of this work is to investigate methods in which anisotropy could be induced in fine-grained alloys. We have identified two general processing routes to creating a fine, textured microstructure: form an amorphous precursor and devitrify in a manner that induces texture or form the fine, textured microstructure upon cooling directly from the liquid state. Since it is possible to form significant amounts of amorphous material in RE-Fe-B alloys, texture could be induced through biasing the orientationof the crystallites upon crystallization of the amorphous material. One method of creating this bias is to form glassy material and apply uniaxial pressure during crystallization. Experiments on this are presented. All of the work presented here utilizes melt-spinning, either to create precursor material, or to achieve a desired final microstructure. To obtain greater control of the system to process these materials, a study was done on the effects of heating the wheel and modifying the wheel’s surface finish on glass formation and phase selection. The second general approach—creating the desired microstructure directly from the liquid—can be done through directional rapid solidification. In particular, alloys melt-spun at low tangential wheel speeds often display directional columnar growth through a portion of the ribbon. By refining and stabilizing the columnar growth, a highly textured fine microstructure is achieved. The effects of adding a segregating element (Ag) on the columnar growth are characterized and presented.

  14. Semiconductor properties and protective role of passive films of iron base alloys

    International Nuclear Information System (INIS)

    Fujimoto, Shinji; Tsuchiya, Hiroaki

    2007-01-01

    Semiconductor properties of passive films formed on the Fe-18Cr alloy in a borate buffer solution (pH = 8.4) and 0.1 M H 2 SO 4 solution were examined using a photoelectrochemical spectroscopy and an electrochemical impedance spectroscopy. Photo current reveals two photo action spectra that derived from outer hydroxide and inner oxide layers. A typical n-type semiconductor behaviour is observed by both photo current and impedance for the passive films formed in the borate buffer solution. On the other hand, a negative photo current generated, the absolute value of which decreased as applied potential increased in the sulfuric acid solution. This indicates that the passive film behaves as a p-type semiconductor. However, Mott-Schottky plot revealed the typical n-type semiconductor property. It is concluded that the passive film on the Fe-18Cr alloy formed in the borate buffer solution is composed of both n-type outer hydroxide and inner oxide layers. On the other hand, the passive film of the Fe-18Cr alloy in the sulphuric acid consists of p-type oxide and n-type hydroxide layers. The behaviour of passive film growth and corrosion was discussed in terms of the electronic structure in the passive film

  15. A study on the behavior of boron in iron-base alloys by neutron induced autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin Sung; Rhee, Chang Kyu; Cho, Hae Dong; Han, Chang Hee; Lee, Chang Hee; Jung, Jung Hwan; Kim, Yi Kyung; Lee, Yong Bok

    2001-02-01

    Boron is widely utilized in steel or alloy making to improve certain properties. However, due to its lightness boron is difficult to detect or characterize its behavior even through TEM/EDS or EELS techniques. Although many companies recognize the beneficial effects of boron, the role or mechanism of the boron is not yet clearly understood. Therefore it is required to develop the autoradiography technique to elucidate the boron behavior in alloys. As the only institute operating research reactor in the country, it would be the responsibility of the institute to develop the technique and provide it to the industries. Quantitative analyses of boron in type 316 L stainless steel by neutron induced autoradiography was attempted in this study. Nine experimental reference alloys with different amount of boron were prepared and reliable chemical composition data were obtained. Autoradiographs of reference materials with three different neutron fluences ( 1.9 10{sup 13}, 1.9 10{sup 14} and 1.9 10{sup 15}/cm{sup 2} ) were obtained and a trial calibration curve of boron content vs. track density was acquired.

  16. Evolution of the gas atmosphere during filing the sand moulds with iron alloys

    Directory of Open Access Journals (Sweden)

    J. Mocek

    2009-10-01

    Full Text Available Evolution of atmosphere of the mould cavity when pouring the cast iron has been analyzed. It was find that in dry sand mold the cavity is filled by air throughout the casting time. In green sand the air is removed by the water vapor the hydrogen or carbon oxides formed in contact with the liquid metal. The theoretical results have been confirmed experimentally.

  17. Atomic-scale simulation study of some bulk and interfacial properties of iron aluminium ordered alloys

    International Nuclear Information System (INIS)

    Besson, Remy

    1997-01-01

    A semi-empirical potential was designed for B 2 and DO 3 iron aluminides and used to study point defects and grain boundaries in these compounds. At low temperature, departure from B 2 stoichiometry is accommodated with antisite defects; when T increases, iron vacancies appear and defects have a trend to form clusters, the structure of which is very sensitive to this departure. Our calculations, relying on T = 0 K formation energies, predict the nature of major defects, but lead to underestimated quantitative results, which may point out the essential role of atomic vibrations. In the stoichiometric B 2 compound, the diffusion of both species is induced by four-jump cycles involving iron vacancies. Although the agreement between our calculated activation energies and other experiments is good, the calculated diffusion coefficients are below the experimental ones. Here again, this discrepancy may be put down to the overlooking of phonon contributions. The second application concerns the atomic structures of the [001] (310) symmetric tilt grain boundary in the B 2 and DO 3 compounds. At low temperature, in the stoichiometric B 2 compound, we obtain an iron-rich single stable structure (pseudo-symmetric), whose structure is strongly influenced by the bulk composition (with intergranular segregation of the major element). In the stoichiometric DO 3 compound, many energetically equivalent structures exist, all being systematically aluminium-rich. The study of the B 2 grain boundary structure at high temperature shows a phase transition favouring a symmetric structure. Its high excess energy at low temperature emphasizes the influence of atomic vibrations in the interfacial properties of B 2 Fe-Al compounds. (author) [fr

  18. Martensitic Transformations and Mechanical and Corrosion Properties of Fe-Mn-Si Alloys for Biodegradable Medical Implants

    Science.gov (United States)

    Drevet, Richard; Zhukova, Yulia; Malikova, Polina; Dubinskiy, Sergey; Korotitskiy, Andrey; Pustov, Yury; Prokoshkin, Sergey

    2018-03-01

    The Fe-Mn-Si alloys are promising materials for biodegradable metallic implants for temporary healing process in the human body. In this study, three different compositions are considered (Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si, all in wt pct). The phase composition analysis by XRD reveals ɛ-martensite, α-martensite, and γ-austenite in various proportions depending on the manganese amount. The DSC study shows that the starting temperature of the martensitic transformation ( M s) of the alloys decreases when the manganese content increases (416 K, 401 K, and 323 K (143 °C, 128 °C, and 50 °C) for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively). Moreover, mechanical compression tests indicate that these alloys have a much lower Young's modulus ( E) than pure iron (220 GPa), i.e., 145, 133, and 118 GPa for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively. The corrosion behavior of the alloys is studied in Hank's solution at 310 K (37 °C) using electrochemical experiments and weight loss measurements. The corrosion kinetics of the Fe-Mn-Si increases with the manganese content (0.48, 0.59, and 0.80 mm/year for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively). The alloy with the highest manganese content shows the most promising properties for biomedical applications as a biodegradable and biomechanically compatible implant material.

  19. Backfill barriers: the use of engineered barriers based on geologic materials to assure isolation of radioactive wastes in a repository. [Nickel-iron alloys

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A.; Cook, N.G.W.

    1981-06-01

    A preliminary assessment is made to show that canisters fabricated of nickel-iron alloys, and surrounded by a suitable backfill, may produce an engineered barrier where the canister material is thermodynamically stable with respect to its environment. As similar conditions exist in nature, the performance of such systems as barriers to isolate radionuclides can be predicted over very long periods, of the order of 10/sup 6/ years.

  20. Fe-based bulk amorphous alloys with iron contents as high as 82 at%

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jin-Feng; Liu, Xue; Zhao, Shao-Fan; Ding, Hong-Yu [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Yao, Ke-Fu, E-mail: kfyao@tsinghua.edu.cn [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-07-15

    Fe-based bulk amorphous alloys (BAAs) with high Fe contents are advantageous due to their high saturation magnetization and low cost. However, preparing Fe-based BAAs with Fe contents higher than 80 at% is difficult due to their poor glass forming abilities (GFA). In this study, an Fe{sub 81}P{sub 8.5}C{sub 5.5}B{sub 2}Si{sub 3} BAA with a diameter of 1 mm and a saturation magnetization of 1.56 T was successfully prepared using the fluxing and copper mold casting methods. In addition, by introducing a small amount of elemental Mo to the alloy, an Fe{sub 82}Mo{sub 1}P{sub 6.5}C{sub 5.5}B{sub 2}Si{sub 3} BAA rod with a diameter of 1 mm, a high saturation magnetization of 1.59 T, a high yield stress of 3265 MPa, and a clear plasticity of 1.3% was prepared in the same way. The cost effectiveness and good magnetic properties of these newly-developed Fe-based BAAs with Fe contents as high as 82 at% would be advantageous and promising for industrial applications. - Highlights: • Novel Fe-based BAA with no other metallic element except 81 at% Fe was prepared. • Fe-based bulk amorphous alloy (BAA) with the highest Fe content (82%) was prepared. • Very high saturation magnetization of 1.59 T has been achieved. • A new thought for designing Fe-based BAA with high Fe content was provided.

  1. Spectroscopic characterization of manganese minerals.

    Science.gov (United States)

    Lakshmi Reddy, S; Padma Suvarna, K; Udayabhaska Reddy, G; Endo, Tamio; Frost, R L

    2014-01-03

    Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Transient liquid phase bonding of titanium-, iron- and nickel-based alloys

    Science.gov (United States)

    Rahman, A. H. M. Esfakur

    The operating temperature of land-based gas turbines and jet engines are ever-increasing to increase the efficiency, decrease the emissions and minimize the cost. Within the engines, complex-shaped parts experience extreme temperature, fatigue and corrosion conditions. Ti-based, Ni-based and Fe-based alloys are commonly used in gas turbines and jet engines depending on the temperatures of different sections. Although those alloys have superior mechanical, high temperature and corrosion properties, severe operating conditions cause fast degradation and failure of the components. Repair of these components could reduce lifecycle costs. Unfortunately, conventional fusion welding is not very attractive, because Ti reacts very easily with oxygen and nitrogen at high temperatures, Ni-based superalloys show heat affected zone (HAZ) cracking, and stainless steels show intergranular corrosion and knife-line attack. On the other hand, transient liquid phase (TLP) bonding method has been considered as preferred joining method for those types of alloys. During the initial phase of the current work commercially pure Ti, Fe and Ni were diffusion bonded using commercially available interlayer materials. Commercially pure Ti (Ti-grade 2) has been diffusion bonded using silver and copper interlayers and without any interlayer. With a silver (Ag) interlayer, different intermetallics (AgTi, AgTi2) appeared in the joint centerline microstructure. While with a Cu interlayer eutectic mixtures and Ti-Cu solid solutions appeared in the joint centerline. The maximum tensile strengths achieved were 160 MPa, 502 MPa, and 382 MPa when Ag, Cu and no interlayers were used, respectively. Commercially pure Fe (cp-Fe) was diffusion bonded using Cu (25 m) and Au-12Ge eutectic interlayer (100 microm). Cu diffused predominantly along austenite grain boundaries in all bonding conditions. Residual interlayers appeared at lower bonding temperature and time, however, voids were observed in the joint

  3. Comparison of high temperature, high frequency core loss and dynamic B-H loops of two 50 Ni-Fe crystalline alloys and an iron-based amorphous alloy

    International Nuclear Information System (INIS)

    Wieserman, W.R.; Schwarze, G.E.; Niedra, J.M.

    1994-01-01

    The availability of experimental data that characterizes the performance of soft magnetic materials for the combined conditions of high temperature and high frequency is almost non-existent. An experimental investigation was conducted over the temperature range of 23 to 300 C and frequency range of 1 to 50 kHz to determine the effects of temperature and frequency on the core loss and dynamic B-H loops of three different soft magnetic materials; an oriented-grain 50Ni-50Fe alloy, a nonoriented-grain 50Ni-50Fe alloy, and an iron-based amorphous material (Metglas 2605SC). A comparison of these materials show that the nonoriented-grain 50Ni-50Fe alloy tends to have either the lowest or next lowest core loss for all temperatures and frequencies investigated

  4. Optimizing Wear Resistance and Impact Toughness in High Chromium Iron Mo-Ni Alloy

    Science.gov (United States)

    Singh, K. K.; Verma, R. S.; Murty, G. M. D.

    2009-06-01

    An alloy with carbon and chromium in the range of 2.0 to 2.5% and 20 to 25%, respectively, with the addition of Mo and Ni in the range of 1.0 to 1.5% each when heat-treated at a quenching temperature of 1010 °C and tempering temperature of 550 °C produces a hardness in the range of 54 to 56 HRC and a microstructure that consists of discontinuous bands of high volume (35-40%) of wear resistant primary (eutectic) carbides in a tempered martensitic matrix with uniformly dispersed secondary precipitates. This alloy has been found to possess adequate impact toughness (5-6 J/cm2) with a wear resistance of the order of 3-4 times superior to Mn steel and 1.25 times superior to martensitic stainless steel with a reduction in cost-to-life ratio by a factor of 1.25 in both the cases.

  5. Strain hardening of aluminium alloy 3004 in the deep drawing and ironing processes

    International Nuclear Information System (INIS)

    Courbon, J.; Duval, J.L.

    1993-01-01

    The evolution of material hardening resulting from the canmaking operations on aluminium beverage cans has been investigated. Tensile tests in cup walls revealed that deep drawing induced softening in the hoop direction and hardening in the meridian direction. This anisotropy is retained in the ironing operation. Changes in strain path on a heavily cold-rolled material probably cause such a complex behaviour. To determine hardening laws for deep drawing, simple shear tests were thus performed because of the strain path similarity. They allowed to determine hardening laws over larger strains than tension could reach and revealed a saturation of stress. Altogether they proved adapted to the understanding of deep drawing. (orig.)

  6. Mass-selected iron-cobalt alloy clusters. Correlation of magnetic and structural properties; Massenselektierte Eisen-Kobalt-Legierungscluster. Korrelation magnetischer und struktureller Eigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, Furkan

    2008-10-13

    In this work, I present results concerning structural and magnetic properties of massselected iron-cobalt alloy clusters with diameters between 5 and 15 nm. I have studied the structure of FeCo alloy clusters with high resolution transmission electron microscopy (HRTEM) and scanning tunneling microscopy (STM). I have also investigated the crystalline structure of pure iron and pure cobalt clusters with HRTEM to ensure a reliable determination of the lattice parameter for the alloy clusters. The FeCo nanoparticles have a truncated dodecahedral shape with a CsCl-structure. The clusters were produced with a continuously working arc cluster ion source and subsequently mass-selected with an electrostatic quadrupole deflector. The composition of the alloy clusters was checked with energy dispersive x-ray spectroscopy (EDX). The lateral size distribution was investigated by TEM and the height of the deposited FeCo clusters on the (110) surface of tungsten was determined by STM. Comparing the results I have observed that the supported clusters were flattened due to the high surface energy of W(110). The decrease in height of the mass-selected supported clusters amounts to about 1 nm. Furthermore, element specific magnetic studies performed by means of X-ray magnetic circular dichroism (XMCD) have shown that magnetic moments of Fe{sub 50}Co{sub 50} alloy clusters are in good agreement with the theoretically expected values in the bulk. I have also examined the behavior of the alloy clusters at elevated temperatures. The clusters exhibit an anisotropic melting on the W(110) surface. (orig.)

  7. Contribution to the study of the electrodeposition of iron-nickel alloys; Contribution a l'etude du depot electrolytique des alliages fer-nickel

    Energy Technology Data Exchange (ETDEWEB)

    Valignat, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-12-01

    Using a coulometric technique based upon the anodic intentiostatic dissolution, we studied the potentiostatic, deposition of nickel, iron and nickel iron alloys. We have shown that the minimum of the curve I = f (t) (deposition current versus time) is probably due to the transitory blocking of the surface by hydrogen and that the syn-crystallisation of nickel and iron is responsible for the anomalous co-deposition of these two elements. (author) [French] En employant une methode coulometrique par dissolution anodique intensipstatique, nous avons etudie le depot potentiostatique du nickel, du fer et des alliages fer-nickel. Nous avons pu montrer que le minimum de la courbe I = f (t) enregistree au cours du depot est du probablement au blocage momentane de la surface par l'hydrogene et que la syncristallisation du fer et du nickel est responsable de l'anomalie du depot simultane de ces deux elements. (auteur)

  8. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.

    Science.gov (United States)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-03

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm(2), and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p(+-)n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  9. Effect of vanadium neighbors on the hyperfine properties of iron-vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Yousif, A.; Gismelseed, A.; Al Rawas, A.; Widatallah, H.; Bouziane, K.; Al-Omari, I. [College of Science, Sultan Qaboos University, Physics Department (Oman)

    2008-06-15

    The electronic and magnetic structures of Fe-V alloys are calculated using the discrete-variational and full-potential linearized-augmented-plane wave methods. The derived hyperfine properties at Fe sites are studied against the number of Fe atoms in the neighbouring shells. As expected the magnetic hyperfine field depends strongly on the number of Fe atoms in the first and second shells of neighbours while its dependence on the variation of atoms in the third shell is weak. The calculated distribution of the magnetic hyperfine fields at the Fe sites, are compared to the experimental data of Krause et al. (Phys Rev B 61:6196-6204, 2000). The contact charge densities and the magnetic moments are also calculated. It was found that the contact charge density increases with increasing V contents and this leads to negative isomer shift on addition of V.

  10. Effect of carbon and silicon on nitrogen solubility in liquid chromium and iron-chromium alloys

    International Nuclear Information System (INIS)

    Khyakkinen, V.I.; Bezobrazov, S.V.

    1986-01-01

    The study is aimed at specifying the role of carbon and silicon in high-chromium melts nitridation processes. It is shown that in high-chromium melts of the Cr-Fe-C system the nitrogen solubility is reduced with the growth of carbon content and in the chromium concentration range of 70-100% at 1873 K and P N 2 =0.1 MPa it is described by the lg[%N] Cr-Fe-C =lg[%N] cr-fe -0.098[%C] equation. While decreasing the temperature the nitrogen solubility in alloys is increased. Silicon essentially decreases the nitrogen solubility in liquid chromium. For the 0-10% silicon concentration range the relation between the equilibrium content of nitrogen and silicon at 1873 K and P N 2 =0.1 MPa is described by the straight line equation [%N] Cr-Si =6.1-0.338 [%Si

  11. Heat Treatment of Iron-Carbon Alloys in a Magnetic Field (Phase 2)

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-11-01

    Thermomagnetic processing was shown to shift the phase transformation temperatures and therefore microstructural evolution in the high performance engine valve spring 9254 steel alloy by applying a high magnetic field during cooling. These effects would be anticipated to improve performance such as high cycle fatigue as demonstrated in prior projects. Thermomagnetic processing of gears and crank shafts was constrained by the size of the prototype equipment currently available at ORNL. However, the commercial procurement viability of production scale 9-Tesla, 16-inch diameter bore thermomagnetic processing equipment for truck idler gears up to ~11-inch diameter and potential crank shaft applications was shown, as multiple superconducting magnet manufacturing companies (in conjunction with an induction heat treating company, AjaxTOCCO Magnethermic) offered cryogen-free or cryocooler equipment designs to Cummins.

  12. Magneto x-ray study of a gadolinium-iron amorphous alloy

    International Nuclear Information System (INIS)

    Keller, E.N.

    1985-01-01

    This work reports the measurement of the magnetic x-ray absorption of an amorphous Gd-Fe ferrimagnetic thin film. The Gd to Fe concentration in the sample was 1:4. The magnetic x-ray effect is the x-ray analog of magneto-optic absorption effects. Magneto x-ray effects arise when a solid has different indices of refraction for right and left circularly polarized x-rays. The difference in absorption of left and right circularly polarized x-rays is called the magneto x-ray absorption. This absorption is proportional to the net spin of the final state density of states. At the L3 edge, the main x-ray transition is from initial Gd(2p) core states to final Gd(5d) unoccupied states. Since the 5d states have a net spin polarization in ferromagnetic Gd, this experiment hoped to directly observe how that polarization changes for Gd in the alloy. The magneto x-ray absorption at the Gd L3 edge will be proportional to the sign and amount of the net spin polarization of the 5d electrons. The magnetic x-ray absorption coefficient was found to be at least 0.0005 smaller than the linear absorption coefficient at the Gd white line energy. This was measured for the amorphous alloy at room temperature. Lock-in techniques were used to obtain the small limit to the absorption. A simple model for the size of the magnetic x-ray absorption coefficient in Gd suggests that the Gd(5d) net spin polarization is less than 0.01 Bohr magnetons per atom

  13. Phase transformation and magnetic anisotropy of an iron-palladium ferromagnetic shape-memory alloy

    International Nuclear Information System (INIS)

    Cui, J.; Shield, T.W.; James, R.D.

    2004-01-01

    Martensitic phase transformations in an Fe 7 Pd 3 alloy were studied using various experimental techniques: visual observation, differential scanning calorimeter (DSC) measurements and X-ray diffraction. Magnetic measurements on this alloy were made using a vibrating sample magnetometer (VSM) and a Susceptibility Kappa bridge. The VSM measurements were made with the sample in a compression fixture to bias the martensite phase to a single variant. Both X-ray and DSC measurements show that the FCC-FCT transformation is a weak first-order thermoelastic transition. The average lattice parameters are a=3.822±0.001 A and c=3.630±0.001 A for the FCT martensite, and a 0 =3.756±0.001 A for the FCC austenite. The latent heat of the FCC-FCT transformation is 10.79±0.01 J/cm 3 . A Susceptibility Kappa bridge measurement determined the Curie temperature to be 450 deg. C. The saturation magnetization from VSM data is m s =1220±10 emu/cm 3 at -20 deg. C for the martensite and m s =1080±10 emu/cm 3 at 60 deg. C for the austenite. The easy axes of a single variant of FCT martensite are the [1 0 0] and [0 1 0] directions (the a-axes of the FCT lattice) and the [0 0 1] direction (FCT c-axis) is the hard direction. The cubic magnetic anisotropy constant K 1 is -5±2x10 3 erg/cm 3 for the austenite at 60 deg. C, and the tetragonal anisotropy constant K 1 +K 2 is 3.41 ± 0.02 x 10 5 erg/cm 3 for the martensite at a temperature of -20 deg. C and under 8 MPa of compressive stress in the [0 0 1] direction

  14. Josephinite. A terrestrial alloy with radiogenic xenon-129 and the noble gas imprint of iron meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Downing, R G; Hennecke, E W; Manuel, O K [Missouri Univ., Rolla (USA). Dept. of Chemistry

    1977-12-01

    Analyses of noble gases released by stepwise heating of Josephinite reveal two radiogenic components, radiogenic /sup 129/Xe asymptotically equals 1 x 10/sup -12/ ccSTP/g and radiogenic /sup 40/Ar asymptotically equals 1 x 10/sup -6/ cc STP/g, and the following components of trapped noble gases: He with /sup 3/He//sup 4/He asymptotically equals 4 x 10/sup -5/, Ne with /sup 20/Ne//sup 22/Ne=10.5, Ar with /sup 40/Ar//sup 36/Ar=3 x 10/sup 2/, and Kr and Xe with isotopic compositions similar to those observed in iron meteorites. The excess of /sup 40/Ar and literature values of K in bulk Josephinite yield and apparent K-Ar age of asymptotically equals 4.6 x 10/sup 9/ years.

  15. A study of point defects created by electron irradiation of dilute iron-carbon alloys

    International Nuclear Information System (INIS)

    Leveque, J.L.

    1969-10-01

    Resistivity and magnetic after effect (m.a.e.) measurements are used to study the influence of carbon atoms on the annealing process of point defects created by electron irradiation (3 MeV) at low temperature (20 deg. K). The presence of the carbon atoms has a strong influence on the recovery sub-stage I E and stage III. For the former, the carbon impurity traps the freely migrating iron interstitial. For the latter the effect is interpreted as being due to formation during annealing, of a carbon vacancy pair. A pronounced m.a.e. band is attributed to the reorientation of this carbon vacancy complex. All these results are coherent with the interpretation of a low temperature migrating free interstitial. (author) [fr

  16. Formation of coatings from a liquid phase on the surface of iron-base alloys

    Directory of Open Access Journals (Sweden)

    A. Tatarek

    2008-12-01

    Full Text Available The study discloses the present state of the art regarding the technology and investigations of the phenomena that take place during the formation and growth of aluminum and zinc coatings hot-dip formed on iron products. In its cognitive aspect, the study offers an in-depth analysis of the partial processes that proceed in metal bath at the solid body – liquid metal interface. It is expected that the present study will help in a more detailed description of the respective phenomena and in full explanation of the mechanism of the coating growth, taking as an example the growth of aluminum coatings. The obtained results can serve as a background for some general conclusions regarding the thickness evolution process in other hot-dip coatings.

  17. Corrosion-electrochemical behaviour and mechanical properties ofaluminium alloy-321, alloyed by barium

    International Nuclear Information System (INIS)

    Ganiev, I.; Mukhiddinov, G.N.; Kargapolova, T.V.; Mirsaidov, U.

    1995-01-01

    The purpose of present work is studying of influence of barium additionson electrochemical corrosion of casting aluminium-copper alloy Al-321,containing as base alloying components copper, chromium, manganese, titanium,zirconium, cadmium

  18. Corrosion study of iron-cobalt alloys for MRI-based propulsion embedded in untethered microdevices operating in the vascular network.

    Science.gov (United States)

    Pouponneau, Pierre; Savadogo, Oumarou; Napporn, Teko; Yahia, L'hocine; Martel, Sylvain

    2010-04-01

    Our group have shown in an experiment performed in the carotid artery of a living swine that magnetic gradients generated by a clinical magnetic resonance imaging (MRI) system could propel and navigate untethered medical microdevices and micro-nanorobots in the human vasculature. The main problem with these devices is that the metal necessary for magnetic propulsion may corrode and induce cytotoxic effects. The challenge, then, is to find an alloy with low corrosion yet providing an adequate magnetization level for propulsion in often stringent physiological conditions. Because of their high magnetization, we studied the corrosion behavior of two iron-cobalt alloys, Permendur (49% Fe, 49% Co, 2% V) and Vacoflux 17 (81% Fe, 17% Co, 2% Cr), in physiological solution by potentiodynamic polarization assay, surface analysis, and corrosion electrolyte analysis. Both alloys exhibited low corrosion parameters such as a corrosion potential (E(corr)) of -0.57 V/SCE and E(corr) of -0.42 V/SCE for Vacoflux 17. The surface of Permendur samples was homogenously degraded. Vacoflux 17 surface was impaired by cracks and crevices. Both alloys had a stoichiometric dissolution in the electrolyte, and they released enough cobalt to induce cytotoxic effects. This study concluded that Fe-Co alloys could be used preferably in medical microdevices if they were coated so as not to come in contact with physiological solutions.

  19. Effects of iron-reducing bacteria and nitrate-reducing bacteria on the transformations of iron corrosion products, magnetite and siderite, formed at the surface of non-alloy steel

    International Nuclear Information System (INIS)

    Etique, Marjorie

    2014-01-01

    Radioactive waste is one of the major problems facing the nuclear industry. To circumvent this issue France plans to store vitrified high-level nuclear waste in a stainless steel container, placed into a non-alloy steel overpack, at a depth of 500 m in an argillaceous formation. The main iron corrosion products formed at the surface of the non-alloy steel are siderite (Fe II CO 3 ) and magnetite (Fe II Fe III 2 O 4 ). These compounds are formed in the anoxic conditions present in the nuclear waste repository and play a protective role against corrosion as a passive layer. This work aims to investigate the activity of nitrate-reducing bacteria (NRB, Klebsiella mobilis) and iron-reducing bacteria (IRB, Shewanella putrefaciens) during the transformation of siderite and magnetite, especially those involved in anoxic iron biogeochemical cycle. Klebsiella mobilis and Shewanella putrefaciens were first incubated with siderite or magnetite suspensions (high surface specific area) in order to exacerbate the microbial iron transformation, subsequently incubated with a magnetite/siderite film synthesized by anodic polarization at applied current density. The transformation of siderite and magnetite by direct or indirect microbial processes led to the formation of carbonated green rust (Fe II 4 Fe III 2 (OH) 12 CO 3 ). As a transient phase shared by several bacterial reactions involving Fe II and Fe III , this compound is the cornerstone of the anoxic iron biogeochemical cycle. The novelty of this thesis is the consideration of bacterial metabolisms of NRB and IRB often overlooked in bio-corrosion processes. (author) [fr

  20. Effect of replacement of vanadium by iron on the electrochemical behaviour of titanium alloys in simulated physiological media

    Directory of Open Access Journals (Sweden)

    Mareci, D.

    2009-02-01

    Full Text Available The electrochemical behaviour of Ti6Al4V, Ti6Al3.5Fe and Ti5Al2.5Fe alloys has been evaluated in Ringer’s solution at 25 °C. The effect of the substitution of vanadium in Ti6Al4V alloy has been specifically addressed. The evaluation of the corrosion resistance was carried out through the analysis of the open circuit potential variation with time, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS tests. Very low current densities were obtained (order of nA/cm2 from the polarization curves and EIS, indicating a typical passive behaviour for all investigated alloys. The EIS results exhibited relative capacitive behaviour (large corrosion resistance with phase angle close to –80° and relative high impedance values (order of 105 Ω•cm2 at low and medium frequencies, which are indicative of the formation of a highly stable film on these alloys in Ringer’s solution. In conclusion, the electrochemical behaviour of Ti6Al4V is not affected by the substitution of vanadium with iron.

    El comportamiento electroquímico de las aleaciones Ti6Al4V, Ti6Al3.5Fe y Ti5Al2.5Fe fue evaluado en una disolución Ringer a 25 °C. Se ha estudiado especialmente el efecto de la sustitución del vanadio en la aleación Ti6Al4V. La evaluación de la resistencia a la corrosión se ha llevado a cabo a través del análisis de la variación del potencial de un circuito abierto con el tiempo, las curvas de polarización potenciodinámicas y los ensayos de espectroscopía de impedancia electroquímica (EIS. Se han obtenido densidades de corriente muy bajas (del orden de nA/cm2 en las curvas de polarización y EIS, indicando un comportamiento pasivo típico para todas las aleaciones investigadas. Los resultados de la EIS mostraron un comportamiento capacitivo relativo (gran resistencia a la corrosión con ángulos de fase próximos a –80° y valores de impedancia relativamente altos (del orden de

  1. Preparation of hard magnetic materials based on nitrogenated rare-earth iron alloys; Preparacao de materiais magneticamente duros a base de ligas de terra rara - ferro nitrogenadas

    Energy Technology Data Exchange (ETDEWEB)

    Guilherme, Eneida da Graca

    1999-07-01

    Nd Fe{sub 11}Ti, Nd Fe{sub 10.5} Mo{sub 1.5} and Nd Fe{sub 10.75} Mo{sub 1.25} alloys were synthesized by reduction-diffusion calciothermic process (RDC) from neodymium chloride (NdCl{sub 3}), iron, titanium, molybdenum and reduction agent (metallic calcium). The effect of process variables, like temperature, time, excess amount of NdCl{sub 3}, heating rate, and composition variation of the Nd Fe{sub 12-x}Mo{sub x} (1 {>=} x {>=} 2). Mother alloys in which 1:12 phase is major were nitrogenated by gas-solid reaction with N{sub 2} and by chemical reaction with sodium zide (Na N{sub 3}). In addition, the influence of reducing particle size of the powdered mother alloys in the nitrogenation step with Na N{sub 3} were studied. As prepared and interstitially modified Nd Fe{sub 11} Ti, Nd Fe{sub 10.5} Mo{sub 1.5} and Nd Fe{sub 10.75} Mo{sub 1.25} alloys with nitrogen , were characterized by X-ray diffraction, Moessbauer spectroscopy, thermomagnetic, SEM and EDS. Nitrogenation by gas-solid reaction with N{sub 2} is found to be not promising, since resulted Curie temperatures (Tc) were lower than literature values. However, nitrogenation by chemical reaction with Na N{sub 3} was efficient with higher or same Tc than previous reported results. The average increases on Tc and volumetric expansion were 200 deg C and 4%, respectively. Milling of the mother alloys before nitrogenation at 330 deg C is preferred because reaction kinetics is enhanced. Nevertheless, at 450 deg C, a competition between the interstitially modified compound formation (alloy + N) and alloy dissociation has occurred, resulting in a Fe-{alpha} phase increase. (author)

  2. Manufacturing of Dysprosium-Iron Alloys by Electrolysis in Fluoride-Based Electrolytes: Oxide Solubility Determinations

    Science.gov (United States)

    Martinez, Ana Maria; Støre, Anne; Osen, Karen Sende

    2018-04-01

    Electrolytic production of light rare earth elements and alloys takes place in a fluoride-based electrolyte using rare earth oxides as raw material. The optimization of this method, mainly in terms of the energy efficiency and environmental impact control, is rather challenging. Anode effects, evolution of fluorine-containing compounds, and side cathode reactions could largely be minimized by a good control of the amount of rare earth oxide species dissolved in the fluoride-based electrolyte and their dissolution rate. The oxide content of the fluoride melts REF3-LiF (RE = Nd, Dy) at different compositions and temperatures were experimentally determined by carbothermal analysis of melt samples. The highest solubility values of oxide species, added as Dy2O3 and Dy2(CO3)3, were obtained to be of ca. 3 wt pct (expressed as Dy2O3) in the case of the equimolar DyF3-LiF melt at 1323 K (1050 °C). The oxide saturation values increased with the amount of REF3 present in the molten bath and the working temperature.

  3. The Influence of Hot-Rolled Temperature on Plasma Nitriding Behavior of Iron-Based Alloys

    Science.gov (United States)

    El-Hossary, F. M.; Khalil, S. M.; Lotfy, Kh.; Kassem, M. A.

    2009-07-01

    Experiments were performed with an aim of studying the effect of hot-rolled temperature (600 and 900°C) on radio frequency (rf) plasma nitriding of Fe93Ni4Zr3 alloy. Nitriding was carried out for 10 min in a nitrogen atmosphere at a base pressure of 10-2 mbarr. Different continuous plasma processing powers of 300-550 W in steps 50 W or less were applied. Nitrided hot-rolled specimens were characterized by optical microscopy (OM), X-ray diffraction (XRD) and microhardness measurements. The results reveal that the surface of hot-rolled rf plasma nitrided specimens at 600°C is characterized with a fine microstructure as a result of the high nitrogen solubility and diffusivity. Moreover, the hot-rolled treated samples at 600°C exhibit higher microhardness value than the associated values of hot-rolled treated samples at 900°C. The enhancement of microhardness is due to precipitation and predominance of new phases ( γ and ɛ phases). Mainly, this conclusion has been attributed to the high defect densities and small grain sizes of the samples hot-rolled at 600°C. Generally, the refinement of grain size plays a dramatic role in improvement of mechanical properties of tested samples.

  4. The Escherichia coli small protein MntS and exporter MntP optimize the intracellular concentration of manganese.

    Directory of Open Access Journals (Sweden)

    Julia E Martin

    2015-03-01

    Full Text Available Escherichia coli does not routinely import manganese, but it will do so when iron is unavailable, so that manganese can substitute for iron as an enzyme cofactor. When intracellular manganese levels are low, the cell induces the MntH manganese importer plus MntS, a small protein of unknown function; when manganese levels are high, the cell induces the MntP manganese exporter and reduces expression of MntH and MntS. The role of MntS has not been clear. Previous work showed that forced MntS synthesis under manganese-rich conditions caused bacteriostasis. Here we find that when manganese is scarce, MntS helps manganese to activate a variety of enzymes. Its overproduction under manganese-rich conditions caused manganese to accumulate to very high levels inside the cell; simultaneously, iron levels dropped precipitously, apparently because manganese-bound Fur blocked the production of iron importers. Under these conditions, heme synthesis stopped, ultimately depleting cytochrome oxidase activity and causing the failure of aerobic metabolism. Protoporphyrin IX accumulated, indicating that the combination of excess manganese and iron deficiency had stalled ferrochelatase. The same chain of events occurred when mutants lacking MntP, the manganese exporter, were exposed to manganese. Genetic analysis suggested the possibility that MntS exerts this effect by inhibiting MntP. We discuss a model wherein during transitions between low- and high-manganese environments E. coli uses MntP to compensate for MntH overactivity, and MntS to compensate for MntP overactivity.

  5. Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA), E 706(ID)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This practice describes a standard procedure for characterizing neutron irradiations of iron (and low alloy steels) in terms of the exposure index displacements per atom (dpa) for iron. 1.2 Although the general procedures of this practice apply to any material for which a displacement cross section d(E) is known (see Practice E 521), this practice is written specifically for iron. 1.3 It is assumed that the displacement cross section for iron is an adequate approximation for calculating displacements in steels that are mostly iron (95 to 100 %) in radiation fields for which secondary damage processes are not important. 1.4 Procedures analogous to this one can be formulated for calculating dpa in charged particle irradiations. (See Practice E 521.) 1.5 The application of this practice requires knowledge of the total neutron fluence and flux spectrum. Refer to Practice E 521 for determining these quantities. 1.6 The correlation of radiation effects data is beyond the scope of this practice. This stand...

  6. Effects of silicon, copper and iron on static and dynamic properties of alloy 206 (aluminum-copper) in semi-solids produced by the SEED process

    Science.gov (United States)

    Lemieux, Alain

    The advantages of producing metal parts by rheocasting are generally recognised for common foundry alloys of Al-Si. However, other more performing alloys in terms of mechanical properties could have a great interest in specialized applications in the automotive industry, while remaining competitive in the forming. Indeed, the growing demand for more competitive products requires the development of new alloys better suited to semi-solid processes. Among others, Al-Cu alloys of the 2XX series are known for their superior mechanical strength. However, in the past, 2XX alloys were never candidates for pressure die casting. The main reason is their propensity to hot tearing. Semi-solid processes provide better conditions for molding with the rheological behavior of dough and molding temperatures lower reducing this type of defect. In the initial phase, this research has studied factors that reduce hot tearing susceptibility of castings produced by semi-solid SEED of alloy 206. Subsequently, a comparative study on the tensile properties and fatigue was performed on four variants of the alloy 206. The results of tensile strength and fatigue were compared with the specifications for applications in the automotive industry and also to other competing processes and alloys. During this study, several metallurgical aspects were analyzed. The following main points have been validated: i) the main effects of compositional variations of silicon, iron and copper alloy Al-Cu (206) on the mechanical properties, and ii) certain relationships between the mechanism of hot cracking and the solidification rate in semi-solid. Parts produced from the semi-solid paste coming from the SEED process combined with modified 206 alloys have been successfully molded and achieved superior mechanical properties than the requirements of the automotive industry. The fatigue properties of the two best modified 206 alloys were higher than those of A357 alloy castings and are close to those of the

  7. Determination of low alloying element concentrations in cast iron by laser induced breakdown spectroscopy based on TEA CO2 laser system

    Directory of Open Access Journals (Sweden)

    Savović Jelena J.

    2017-01-01

    Full Text Available The analytical capability of laser-produced plasma for the analysis of low alloying elements in cast iron samples has been investigated. The plasma was induced by irradiation of a sample in air at atmospheric pressure using an infrared CO2 laser. Emission spectra were recorded by time-integrated spatially- resolved measurement technique. A set of ten cast iron samples in a powder or particulate form were provided by BAM (Bundesanstalt für Material Forschung und Prüfung, Deutschland, seven of which were used for calibration, and three were treated as unknowns. Linear calibration curves were obtained for copper, chromium, and nickel, with correlation coefficients above 0.99. Precision and accuracy of the LIBS method was evaluated and compared to those obtained by the inductively coupled plasma (ICP analysis of the same samples. Detection limits for Cu, Cr and Ni were close to those reported in the literature for other comparable iron-based alloys obtained using different LIBS systems. Analytical figures of merit of the studied LIBS system may be considered as satisfying, especially in the light of other advantages of the method, like cost effective and fast analysis with no sample preparation, and with a possibility for real-time on-site analysis. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 172019

  8. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria.

    Science.gov (United States)

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-11-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.

  9. Use of indexed sensitivity factors in the analysis of nickel and iron based alloys: study of the decalibration of sheathed Chromel/Alumel thermocouples

    International Nuclear Information System (INIS)

    Christie, W.H.

    1978-01-01

    Sheathed Chromel versus Alumel thermocouples decalibrate when exposed to temperatures in excess of 1100 0 C. Thermocouples sheathed in Inconel-600 and type 304 stainless steel were studied in this work. Quantified SIMS data showed that the observed decalibrations were due to significant alterations that took place in the Chromel and Alumel thermoelements. The amount of alteration was different for each thermocouple and was influenced by the particular sheath material used in the thermocouple construction. Relative sensitivity factors, indexed by a matrix ion species ratio, were used to quantify SIMS data for three nickel-based alloys, Chromel, Alumel, and Inconel-600, and an iron-based alloy, type 304 stainless steel. Oxygen pressure >2 x 10 -6 torr in the sputtering region gave enhanced sensitivity and superior quantitative results as compared to data obtained at instrumental residual pressure

  10. Corrosion resisting properties of 90/10 copper-nickel-iron alloy with particular reference to offshore oil and gas applications

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, P T

    1979-01-01

    The use of a copper-nickel-iron alloy for seawater pipeline systems and various other applications on offshore oil and gas platforms is now proving attractive, according to the UK's Yorkshire Imperial Metals Ltd. The alloy has already proved a useful and reliable material in many applications: It has given good results in seawater-cooled condensers and heat exchangers and seawater piping systems, in power stations, ships, desalination plant, and refrigeration service. Its antifouling and corrosion-resistant properties are valuable in these applications. The main limitations that have to be observed in its use are (1) the design, construction, and operation of systems within prescribed velocity and turbulence limits, to avoid the occurrence of impingement attack, and (2) problems that may arise because of badly polluted seawater.

  11. Investigations on chloride-induced high temperature corrosion of iron-, nickel-, cobalt-base alloys by scanning electron microscopy and energy dispersive X-ray microspot analysis

    International Nuclear Information System (INIS)

    Ross, W.; Umland, F.

    1984-01-01

    The direct oxidation at 900 0 C in air and the corrosion of alloys in air after short exposure to chloride have been compared under identical conditions. Chloride destroys the original oxide layers by recristallisation and modifies the following scale growing in such a manner that no firmly sticking layers can be rebuilt. After a chloride induction therefore all other following corrosions will be enhanced. Experiments in a closed system, a so called transport furnace, showed that the chloride also acts as a gas phase carrier transporting firstly the oxide layer, under reducing conditions metals, too, as volatile chloro metal gas complexes in this case from hot to cold region of the furnace. Cobalt base alloys are less attacked than iron or nickel base alloys. As chloride is not found implicitly on the treated surface the identification of the chloride induced corrosion is difficult. However the scanning electron microscopy combined with quantitative energy dispersive X-ray analysis has been proved as an appropriate method for early detection. As the phenomena depend on the type of alloy, respectively, an illustration and interpretation catalogue is necessary. (orig.) [de

  12. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance; Desenvolvimento de uma liga de ferro fundido branco alto cromo com niobio, tratada termicamente, para resistencia ao desgaste abrasivo

    Energy Technology Data Exchange (ETDEWEB)

    Farah, Alessandro Fraga

    1997-07-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  13. Effect of temperature during ion sputtering on the surface segregation rate of antimony in an iron-antimony alloy at higher temperatures

    International Nuclear Information System (INIS)

    Oku, M.; Hirokawa, K.; Kimura, H.; Suzuki, S.

    1986-01-01

    The surface segregation of antimony in an iron-0.23 at% antimony alloy was studied by XPS. The segregation rate in the temperature range between 800 and 900 K depends on the temperature during sputtering with argon ion of kinetic energy of 1 keV. The sputtering at room temperature or 473 K gives higher values of the segregation rate than those at 673 K. Both cases give the activation energy of 170 kJmol -1 for the surface segregation rate. The segregation of antimony is not observed after the sample is heated at 1000 K. (author)

  14. Arsenic removal by manganese greensand filters

    Energy Technology Data Exchange (ETDEWEB)

    Phommavong, T. [Saskatchewan Environment, Regina (Canada); Viraraghavan, T. [Univ. of Regina, Saskatchewan (Canada). Faculty of Engineering

    1994-12-31

    Some of the small communities in Saskatchewan are expected to have difficulty complying with the new maximum acceptable concentration (MAC) of 25 {micro}g/L for arsenic. A test column was set up in the laboratory to study the removal of arsenic from the potable water using oxidation with KMnO{sub 4}, followed by manganese greensand filtration. Tests were run using water from the tap having a background arsenic concentration of <0.5 {micro}g/L and iron concentration in the range of 0.02 to 0.77 mg/L. The test water was spiked with arsenic and iron. Results showed that 61 % to 98% of arsenic can be removed from the potable water by oxidation with KMnO{sub 4} followed by manganese greensand filtration.

  15. Relation between feeding mechanisms and solidification mode in 380 aluminium alloy with different iron contents; Relacion entre los mecanismos de alimentacion y el modo de solidificacion en una aleacion de aluminio 380 con distintos contenidos de hierro

    Energy Technology Data Exchange (ETDEWEB)

    Tovio, D. O.; Gonzalez, A.C.; Mugica, G. W.; Cuyas, J. C.

    2003-07-01

    In the present work the effect of iron (0.15, 0.42 and 0.86%) content in feeding mechanisms for 380 aluminium alloy has been studied. The feeding capacity has been evaluated by a device that produces a barrier removable to allowing the movement of the inter dendritic liquid. The results show the flow of different quantity of liquid, it depends of the temperature of operating the device and of the iron content. For minimum and maximum iron content, the inter dendritic and bursts feeding mechanisms are fundamentally involved, for 0.42% of iron the feeding mechanisms was the inter dendritic. The authors establish this behavior by the solidification mode of alloy, which promotes the presence of particles of Si or plates of b-Al{sub 3}FeDi phase, in the inter dendritic channels and produce the different feeding mechanisms. (Author) 15 refs.

  16. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  17. Influence of the thermal history of a particle during atomization on the morphology of carbides in a hypereutectic iron based alloy

    International Nuclear Information System (INIS)

    Kusý, M.; Behúlová, M.; Grgač, P.

    2012-01-01

    Highlights: ► Identification of solidification microstructures in RS powder from iron based alloy. ► Microstructures affected and nonaffected during the post-recalescence period. ► Thermokinetic newtonian model of rapid solidification of a droplet in gas atomization. ► Droplet thermal history and conditions for the microstructure development. ► Parameters influencing development of different solidification microstructures. - Abstract: Basic principles and consequences of the rapid solidification processing of melts have been successfully exploited in several progressive technologies of material production. In the paper, the solidification microstructures developed in the hypereutectic iron based alloy with the chemical composition of 3% C–3% Cr–12% V (wt.%) prepared by nitrogen gas atomization are presented and analysed. Several main types of solidification microstructures were identified in the rapidly solidified powder particles. According to the morphological features of carbide phases and computed thermal history of rapidly solidified particles, the microstructures were divided into two groups – microstructures morphologically non-affected during the post-recalescence period of solidification, and microstructures with morphological transitions occurring during the quasi-isothermal period of structure development. Based on the thermokinetic newtonian model of rapid solidification of a spherical droplet in the process of atomization, the thermal history of droplets with diameter from 20 μm to 400 μm rapidly solidified from different nucleation temperatures was studied. The thermo-physical conditions necessary for the development of variable microstructures in single rapidly solidified powder particles are predicted and discussed. The nucleation temperature, recalescence temperature and duration of quasi-isothermal plateau are supposed to be the most important parameters influencing the microstructure development in the rapidly solidified

  18. Study on the effect of post-annealing on the microstructural evolutions and mechanical properties of rolled CGPed Aluminum-Manganese-Silicon alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jandaghi, Mohammad Reza, E-mail: mrj.sharif86@gmail.com [Young Researchers and Elites Club, Saveh Branch, Islamic Azad University, Saveh (Iran, Islamic Republic of); Pouraliakbar, Hesam [Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2017-01-02

    Sheet specimens of Al-Mn-Si alloy were severe plastically deformed (SPDed) through constrained groove pressing (CGP). SPDing by the strain of 2.32, samples were ultimately undergone cold rolling and post-annealing, respectively. According to the optical microscopy observations, rolling changed the semi-elongated and wavy morphology achieved by CGP into lamellar structure. This was also promoted the formation of some shear and deformation bands within processed material matrix due to the geometrical effect of applied deformation path. Evolution of intermetallic particles were characterized using field emission scanning electron microscope (FE-SEM) equipped with energy dispersive spectrometer (EDS). Dual-strained sheets were finally annealed at 150, 250 and 350 °C for 1 h. Mechanical examinations including tension and hardness were performed at room temperature. Results alluded to the fact that samples were exhibited thermal stability up to around 250 °C since rolling reduction increment diminished this critical temperature to about 150 °C. Rolling of CGPed sheet by the strain of 1.27 enhanced the ultimate tensile strength and Vickers hardness by 53.62% and 16.53%, respectively, while the elongation to failure decreased by 1.84%. Eventually, the maximum elongation of 34% and toughness of 33.3 J m{sup −3} were traced on the mentioned specimen by post-annealing at 350 °C. - Highlights: • Further straining through cold-rolling was imposed to two-pass CGPed sheets. • Post-annealing effect at 150, 250 and 350 °C was studied for Al-Mn-Si specimens. • Evolutions of microstructure and intermetallic particles were characterized. • Mechanical properties of different rolled CGPed samples were examined.

  19. Attenuation capability of low activation-modified high manganese austenitic stainless steel for fusion reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Eissa, M.M. [Steel Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan (Egypt); El-kameesy, S.U.; El-Fiki, S.A. [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Ghali, S.N. [Steel Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan (Egypt); El Shazly, R.M. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt); Saeed, Aly, E-mail: aly_8h@yahoo.com [Nuclear Power station Department, Faculty of Engineering, Egyptian-Russian University, Cairo (Egypt)

    2016-11-15

    Highlights: • Improvement stainless steel alloys to be used in fusion reactors. • Structural, mechanical, attenuation properties of investigated alloys were studied. • Good agreement between experimental and calculated results has been achieved. • The developed alloys could be considered as candidate materials for fusion reactors. - Abstract: Low nickel-high manganese austenitic stainless steel alloys, SSMn9Ni and SSMn10Ni, were developed to use as a shielding material in fusion reactor system. A standard austenitic stainless steel SS316L was prepared and studied as a reference sample. The microstructure properties of the present stainless steel alloys were investigated using Schaeffler diagram, optical microscopy, and X-ray diffraction pattern. Mainly, an austenite phase was observed for the prepared stainless steel alloys. Additionally, a small ferrite phase was observed in SS316L and SSMn10Ni samples. The mechanical properties of the prepared alloys were studied using Vickers hardness and tensile tests at room temperature. The studied manganese stainless steel alloys showed higher hardness, yield strength, and ultimate tensile strength than SS316L. On the other hand, the manganese stainless steel elongation had relatively lower values than the standard SS316L. The removal cross section for both slow and total slow (primary and those slowed down in sample) neutrons were carried out using {sup 241}Am-Be neutron source. Gamma ray attenuation parameters were carried out for different gamma ray energy lines which emitted from {sup 60}Co and {sup 232}Th radioactive sources. The developed manganese stainless steel alloys had a higher total slow removal cross section than SS316L. While the slow neutron and gamma rays were nearly the same for all studied stainless steel alloys. From the obtained results, the developed manganese stainless steel alloys could be considered as candidate materials for fusion reactor system with low activation based on the short life

  20. Swelling behavior of manganese-bearing AISI 216 steel

    International Nuclear Information System (INIS)

    Gelles, D.S.; Garner, F.A.

    1984-01-01

    The inclusion of 8.5 wt % manganese in AISI 216 does not appear to alter the swelling behavior from that found to be typical of austenitic alloys with comparable levels of other austentite-stabilizing elements. The swelling in AISI 216 in EBR-II is quite insensitive to irradiation temperature in the range 400-650 0 C. Microscopy reveals that this may arise from the low level of precipitation that occurs in the alloy