WorldWideScience

Sample records for iron iii hydroxide

  1. Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers

    DEFF Research Database (Denmark)

    Huang, Li‐Zhi; Ayala‐Luis, Karina B.; Fang, Liping;

    2013-01-01

    A planar trioctahedral iron(II)–iron(III) hydroxide (green rust, GR) intercalated with dodecanoate (GRC12) has been oxidized by dioxygen to produce the corresponding planar iron(III) (hydr)oxide. The formulae of GRC12 and the final iron(III) product (oxGRC12) were determined to be FeII2.00FeIII1...

  2. A XAFS study of plain and composite iron(III) and chromium(III) hydroxides.

    Science.gov (United States)

    Papassiopi, N; Pinakidou, F; Katsikini, M; Antipas, G S E; Christou, C; Xenidis, A; Paloura, E C

    2014-09-01

    Reduction of hexavalent Cr(VI) to the trivalent state is the common strategy for remediation of Cr(VI) contaminated waters and soils. In the presence of Fe the resulting compounds are usually mixed Fe(III)-Cr(III) phases, while, under iron-free conditions, reduction leads to formation of plain Cr(III) hydroxides. Environmental stability of these compounds depends on their structure and is important to understand how different precipitation conditions affect the local atomic order of resulting compounds and thus their long term stability. In current study, typical Cr(VI) environmental remediation products, i.e. plain and mixed Fe(III)-Cr(III) hydroxides, were synthesized by hydrolysis and redox reactions and their structure was studied by X ray diffraction and X ray absorption fine structure techniques. Plain Cr(III) hydroxide was found to correspond to the molecular formula Cr(OH)3·3H2O and was identified as crystalline in XRD. However, the same compound when examined by EXAFS did not exhibit any clear local order in the range of EXAFS detectable distances, i.e. between 0 and 5Å. Namely, EXAFS spectroscopy detected only contribution from the first nearest neighboring (Cr-O) shell, suggesting that CrO6 octahedra interconnection is loose, in accordance with the suggested anti-bayerite structure of this compound. Mixed Fe(III)-Cr(III) systems resembled 2-line ferrihydrite irrespective of the synthesis route. Analysis of Fe-K-EXAFS and Cr-K-EXAFS spectra indicated that FeO6 octahedra are bonded by sharing both edges and corners, while CrO6 octahedra seem to prefer edge sharing linkage. EXAFS data also suggest that Fe-Cr hydroxide produced by hydrolysis presents a better arrangement of CrO6 octahedra compared to the redox product.

  3. Pharmacokinetics of iron(III)-hydroxide sucrose complex after a single intravenous dose in healthy volunteers.

    Science.gov (United States)

    Danielson, B G; Salmonson, T; Derendorf, H; Geisser, P

    1996-06-01

    The pharmacokinetics of iron were investigated after intravenous administration to 12 healthy volunteers of iron(III)-hydroxide sucrose complex (Venofer) as a single i.v. dose containing 100 mg Fe. The average predose concentration was 35.7 +/- 12.5 mumol/l. There was no statistically significant difference between the serum iron level before injection (0 h) and the level at 24 h after the injection. The compartment model used includes a Michaelis-Menten term and is in excellent agreement with the observed exchange of iron to transferrin and with the daily iron turnover by transferrin. The intravenously injected iron(III)-hydroxide sucrose complex led rapidly to high serum iron levels. Maximum measured levels averaged 538 mumol/l (30.0 mg/l) at 10 min after the injection. The terminal half-life of the injected iron was calculated to be 5.3 h. Mean total area under the curve (AUC) was 1491 mumol/l h, the mean residence time (MRT) was 5.5 h. The total body clearance was 20.5 ml/min. The volume of distribution of the central compartment (Vc) was 3.21, hence close to the volume of the serum; the volume of distribution at steady state (Vdss) was 7.31; and the volume of distribution during elimination (Vdarea) was 9.21. The calculated amount of iron transported by transferrin was 31.0 +/- 6.6 mg Fe/ 24h. In summary, the data show that the injected iron(III)-hydroxide sucrose complex is quickly cleared from the serum with a terminal half-life of approximately 5-6 h. Renal elimination of iron contributed very little to the overall elimination (in average sucrose averaged about 68 +/- 10% and 75 +/- 11% of the administered dose after 4 h and 24 h, respectively.

  4. Glycine buffered synthesis of layered iron(II)-iron(III) hydroxides (green rusts)

    DEFF Research Database (Denmark)

    Yin, Weizhao; Huang, Lizhi; Pedersen, Emil Bjerglund;

    2016-01-01

    Layered Fe(II)-Fe(III) hydroxides (green rusts, GRs) are efficient reducing agents against oxidizing contaminants such as chromate, nitrate, selenite, and nitroaromatic compounds and chlorinated solvents. In this study, we adopted a buffered precipitation approach where glycine (GLY) was used in ...

  5. Aluminium substitution in iron(II III)-layered double hydroxides: Formation and cationic order

    Science.gov (United States)

    Ruby, Christian; Abdelmoula, Mustapha; Aissa, Rabha; Medjahdi, Ghouti; Brunelli, Michela; François, Michel

    2008-09-01

    The formation and the modifications of the structural properties of an aluminium-substituted iron(II-III)-layered double hydroxide (LDH) of formula Fe4IIFe(2-6y)IIIAl6yIII (OH) 12 SO 4, 8H 2O are followed by pH titration curves, Mössbauer spectroscopy and high-resolution X-ray powder diffraction using synchrotron radiation. Rietveld refinements allow to build a structural model for hydroxysulphate green rust, GR(SO 42-), i.e. y=0, in which a bilayer of sulphate anions points to the Fe 3+ species. A cationic order is proposed to occur in both GR(SO 42-) and aluminium-substituted hydroxysulphate green rust when yhydroxides. Adsorption of more soluble Al III species onto the initially formed ferric oxyhydroxide may be responsible for this slowdown of crystal growth. Therefore, the insertion of low aluminium amount ( y˜0.01) could be an interesting way for increasing the surface reactivity of iron(II-III) LDH that maintains constant the quantity of the reactive Fe II species of the material.

  6. Reductive dehalogenation by layered iron(II)-iron(III) hydroxides and related iron(II) containing solids

    DEFF Research Database (Denmark)

    Yin, Weizhao

    In the present PhD project, novel synthesis and modifications of layered Fe(II)-Fe(III) hydroxides (green rusts, GRs) were investigated with focus on improved dehalogenation of carbon tetrachloride by using modified green rusts and/or altered reaction conditions. The Ph.D. project has comprised: 1...

  7. Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz.

    Science.gov (United States)

    Neil, Chelsea W; Lee, Byeongdu; Jun, Young-Shin

    2014-10-21

    Iron(III) (hydr)oxides play an important role in the geochemical cycling of contaminants in natural and engineered aquatic systems. The ability of iron(III) (hydr)oxides to immobilize contaminants can be related to whether the precipitates form heterogeneously (e.g., at mineral surfaces) or homogeneously in solution. Utilizing grazing incidence small-angle X-ray scattering (GISAXS), we studied heterogeneous iron(III) (hydr)oxide nucleation and growth on quartz substrates for systems containing arsenate and phosphate anions. For the iron(III) only system, the radius of gyration (Rg) of heterogeneously formed precipitates grew from 1.5 to 2.5 (± 1.0) nm within 1 h. For the system containing 10(-5) M arsenate, Rg grew from 3.6 to 6.1 (± 0.5) nm, and for the system containing 10(-5) M phosphate, Rg grew from 2.0 to 4.0 (± 0.2) nm. While the systems containing these oxyanions had more growth, the system containing only iron(III) had the most nucleation events on substrates. Ex situ analyses of homogeneously and heterogeneously formed precipitates indicated that precipitates in the arsenate system had the highest water content and that oxyanions may bridge iron(III) hydroxide polymeric embryos to form a structure similar to ferric arsenate or ferric phosphate. These new findings are important because differences in nucleation and growth rates and particle sizes will impact the number of available reactive sites and the reactivity of newly formed particles toward aqueous contaminants.

  8. Prebiotic Oxidative Polymerization of 2,3 Dimercaptopropanol on the Surface of Iron(III) Hydroxide Oxide

    Science.gov (United States)

    Weber, Arthur L.

    1994-01-01

    The oxidation of 2,3-Dimercapto-1-propanol by ferric ions on the surface of iron (III) hydroxide oxide yielded polydisulfide polymers. This polymerization occured readily at low dithiol concentration under mild aqueous conditions. Polydisulfide polymers up to the 15-mer were synthesized from 1 mM dithiol in 5 ml water reacted with iron (III) hydroxide oxide (20 mg, 160 micro mole Fe) for 3 days under anaerobic conditions at 40 C and pH 4. About 91% of the dithiol was converted to short soluble oligomers and 9% to insoluble larger oligomers that were isolated with the mineral phase. Reactions at higher dithiol concentrations with the same ratio of dithiol to mineral gave a higher yield of the larger insoluble oligomers. The relationship of these results to prebiotic polymer synthesis will be discussed.

  9. Prebiotic Polymerization: Oxidative Polymerization of 2,3 Dimercapto-1- Propanol on the Surface of Iron(III) Hydroxide Oxide

    Science.gov (United States)

    Weber, Arthur L.

    1995-01-01

    The oxidation of 2,3-dimercapto-1-propanol by ferric ions on the surface of iron(III) hydroxide oxide (Fe(OH)O) yielded polydisulfide oligomers. This polymerization occurred readily at low dithiol concentration under mild aqueous conditions. Polydisulfide polymers up to the 15-mer were synthesized from 1 mM dithiol in 5 ml water reacted with iron(III) hydroxide oxide (20 mg, 160 micromole Fe) for 3 days under anaerobic conditions at 40 C and pH 4. About 91% of the dithiol was converted to short soluble oligomers and 9% to insoluble larger oligomers that were isolated with the FE(OH)O phase. Reactions carried out at the same ratio of dithiol to FE(OH)O but at higher dithiol concentrations gave higher yields of the larger insoluble oligomers. The relationship of these results to prebiotic polymer synthesis is discussed.

  10. Prebiotic polymerization: Oxidative polymerization of 2, 3-dimercapto-1-propanol on the surface of iron(III) hydroxide oxide

    Science.gov (United States)

    Weber, Arthur L.

    1995-01-01

    The oxidation of 2, 3-dimercapto-1-propanol by ferric ions on the surface of iron(III) hydroxide oxide (Fe(OH)O) yielded polydisulfide oligomers. This polymerization occurred readily at low dithiol concentration under mild aqueous conditions. Polydisulfide polymers up to the 15-mer were synthesized from 1 mM dithiol in 5 ml water reacted with iron(III) hydroxide oxide (20 mg, 160 micromole Fe) for 3 days under anaerobic conditions at 40 C and pH 4. About 91% of the dithiol was converted to short soluble oligomers and 9% to insoluble larger oligomers that were isolated with the Fe(OH)O phase. Reactions carried out at the same ratio of dithiol to Fe(OH)O but at higher dithiol concentrations gave higher yields of the larger insoluble oligomers. The relationship of these results to prebiotic polymer synthesis is discussed.

  11. Surface Hydrophilicity and Functional Group-Driven Iron(III) Hydroxide Nucleation on Organic-Coated Substrates in Aqueous Environments

    Science.gov (United States)

    Ray, J.; Lee, B.; Baltrusaitis, J.; Jun, Y.

    2012-12-01

    Homogeneous and heterogeneous iron hydroxide nanoparticle nucleation can occur continuously in both natural and complex aqueous systems. Iron oxide nanoparticles can act as sinks and/or carriers for heavy metal contaminants; therefore, it is important to develop a better understanding of factors affecting their formation. Organic coatings are ubiquitous in aqueous environments where they can exist on mineral surfaces (e.g., biofilm), as nanoparticle surface coatings (e.g., natural organic matter), or be introduced as coagulants in water treatment systems. These surface coatings could influence the formation of iron oxide nanoparticles and thus, the mobility of aqueous contaminants. Therefore, to better understand the fate and transport of contaminants in complex aqueous environments, we need more accurate information about mechanisms governing heterogeneous and homogeneous nucleation and growth of iron(III) hydroxide nanoparticles in the presence of organic surface coatings. In this work, we used a unique measurement technique allowing for simultaneous small-angle X-ray scattering (SAXS) and grazing incidence (GISAXS) analysis to monitor nanoparticle nucleation in solution and at substrate surfaces. Clean quartz, and polyaspartate- and alginate-coated substrates were chosen as model substrates to represent mineral coatings, engineered organic coatings and natural organic coatings. Polyaspartate was determined to be the most negatively charged substrate and quartz to be the least negatively charged substrate; however, after 2 h of reaction, the total nanoparticle volume calculations—determined from GISAXS—indicate that precipitation of positively-charged iron(III) hydroxide nanoparticles is 10 times higher on the quartz substrate than on the polyaspartate substrate. This implies that electrostatics do not govern iron(III) hydroxide nucleation. Furthermore, homogeneous nucleation approximately 250 μm above the substrate surface was highest in the presence of the

  12. A Theoretical Study on a Reaction of Iron(III) Hydroxide with Boron Trichloride by Ab Initio Calculation

    CERN Document Server

    Ichikawa, Kazuhide; Fukushima, Akinori; Ishihara, Yoshio; Isaki, Ryuichiro; Takeguchi, Toshio; Tachibana, Akitomo; 10.1016/j.theochem.2009.08.026

    2009-01-01

    We investigate a reaction of boron trichloride (BCl3) with iron(III) hydroxide (Fe(OH)3) by ab initio quantum chemical calculation as a simple model for a reaction of iron impurities in BCl3 gas. We also examine a reaction with water. We find that compounds such as Fe(Cl)(OBCl2)2(OHBCl2) and Fe(Cl)2(OBCl2)(OHBCl2) are formed while producing HCl and reaction paths to them are revealed. We also analyze the stabilization mechanism of these paths using newly-developed interaction energy density derived from electronic stress tensor in the framework of the Regional DFT (Density Functional Theory) and Rigged QED (Quantum ElectroDynamics).

  13. Acrylic acid-allylpolyethoxy carboxylate copolymer dispersant for calcium carbonate and iron(III) hydroxide scales in cooling water systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guangqing; Huang, Jingyi; Zhou, Yuming; Yao, Qingzhao; Ling, Lei; Zhang, Peixin; Fu, Change [Southeast Univ., Nanjing (China). School of Chemistry and Chemical Engineering; Wu, Wendao; Sun, Wei; Hu, Zhengjun [Jianghai Chemical Co., Ltd., Changzhou (China)

    2012-05-15

    A novel environmentally friendly type of calcium carbonate and iron(III) scale inhibitor (ALn) was synthesized. The anti-scale property of the Acrylic acid-allylpolyethoxy carboxylate copolymer (AA-APELn or ALn) towards CaCO{sub 3} and iron(III) in the artificial cooling water was studied through static scale inhibition tests. The observation shows that both calcium carbonate and iron(III) inhibition increase with increasing the degree of polymerization of ALn from 5 to 15, and the dosage of ALn plays an important role on calcium carbonate and iron(III)-inhibition. The effect on formation of CaCO{sub 3} was investigated with a combination of scanning electronic microscopy (SEM), Transmission electron microscopy (TEM), X-ray powder diffraction (XRD) analysis and Fourier transform infrared spectrometer, respectively. The results showed that the ALn copolymer not only influences calcium carbonate crystal morphology and crystal size but also the crystallinity. The crystallization of CaCO{sub 3} in the absence of inhibitor was rhombohedral calcite crystal, whereas a mixture of calcite with vaterite crystals was found in the presence of the ALn copolymer. Inhibition mechanism is proposed that the interactions between calcium or iron ions and polyethylene glycol (PEG) are the fundamental impetus to restrain the formation of the scale in cooling water systems. (orig.)

  14. Biogenic uraninite precipitation and its reoxidation by iron(III) (hydr)oxides: A reaction modeling approach

    Science.gov (United States)

    Spycher, Nicolas F.; Issarangkun, Montarat; Stewart, Brandy D.; Sevinç Şengör, S.; Belding, Eileen; Ginn, Tim R.; Peyton, Brent M.; Sani, Rajesh K.

    2011-08-01

    One option for immobilizing uranium present in subsurface contaminated groundwater is in situ bioremediation, whereby dissimilatory metal-reducing bacteria and/or sulfate-reducing bacteria are stimulated to catalyze the reduction of soluble U(VI) and precipitate it as uraninite (UO 2). This is typically accomplished by amending groundwater with an organic electron donor. It has been shown, however, that once the electron donor is entirely consumed, Fe(III) (hydr)oxides can reoxidize biogenically produced UO 2, thus potentially impeding cleanup efforts. On the basis of published experiments showing that such reoxidation takes place even under highly reducing conditions (e.g., sulfate-reducing conditions), thermodynamic and kinetic constraints affecting this reoxidation are examined using multicomponent biogeochemical simulations, with particular focus on the role of sulfide and Fe(II) in solution. The solubility of UO 2 and Fe(III) (hydr)oxides are presented, and the effect of nanoscale particle size on stability is discussed. Thermodynamically, sulfide is preferentially oxidized by Fe(III) (hydr)oxides, compared to biogenic UO 2, and for this reason the relative rates of sulfide and UO 2 oxidation play a key role on whether or not UO 2 reoxidizes. The amount of Fe(II) in solution is another important factor, with the precipitation of Fe(II) minerals lowering the Fe +2 activity in solution and increasing the potential for both sulfide and UO 2 reoxidation. The greater (and unintuitive) UO 2 reoxidation by hematite compared to ferrihydrite previously reported in some experiments can be explained by the exhaustion of this mineral from reaction with sulfide. Simulations also confirm previous studies suggesting that carbonate produced by the degradation of organic electron donors used for bioreduction may significantly increase the potential for UO 2 reoxidation through formation of uranyl carbonate aqueous complexes.

  15. O uso intravenoso de sacarato de hidróxido de ferro III em pacientes com anemia ferropriva Evaluation of the efficacy of intravenous iron III-hydroxide saccharate for treating adult patients with iron deficiency anemia

    Directory of Open Access Journals (Sweden)

    Rodolfo Delfini Cançado

    2005-12-01

    Full Text Available OBJETIVO: Avaliar a eficácia do uso intravenoso de sacarato de hidróxido de ferro III no tratamento de pacientes adultos com anemia ferropriva que não obtiveram resposta satisfatória à terapia com ferro oral. MÉTODOS: No período de janeiro de 2003 a janeiro de 2004, estudamos 25 pacientes com anemia ferropriva que apresentaram intolerância e/ou resposta inadequada ao tratamento com ferro por via oral e/ou valor de hemoglobina OBJECTIVE: To evaluate the efficacy of intravenous iron III-hydroxide saccharate for treating adult patients with iron deficiency anemia lacking satisfactory response to oral iron therapy. METHODS: Between January 2003 and January 2004, 25 patients with iron deficiency anemia who presented intolerance or inadequate response to iron oral therapy, or hemoglobin level < 7 g/dl were studied. The main laboratory tests performed were: complete blood cell count, reticulocyte count, serum iron, total iron-binding capacity, serum ferritin. Patients received a weekly dose of 200 mg of iron diluted in 250 mL of 0.9% sodium chloride solution administered intravenously for 30 minutes. Treatment continued until a hemoglobin level = 12 g/dL for women and = 13 g/dL for men were obtained or until full administration of the total dose of parenteral iron recommended for each patient. RESULTS: Edian age of the patients studied was 45 years (ages ranging from 31 to 70. Nineteen out of 25 patients (76% were women. The most common cause of iron deficiency anemia was abnormal uterine bleeding observed in 68% of the female patients (13 out of 19 and partial gastrectomy observed in 67% of the male patients (4 out of 6. Seventeen (68% patients were included in this study because they did not respond to oral iron therapy, 24% (6 out of 25 showed intolerance to oral iron and 8% (2 out of 25 presented hemoglobin level < 7 g/dl. Correction of anemia was obtained in 12 out of 19 female patients (63% and in 5 out of 6 male patients (83%. The mean

  16. Kinetic analysis of 52Fe-labelled iron(III) hydroxide-sucrose complex following bolus administration using positron emission tomography.

    Science.gov (United States)

    Beshara, S; Lundqvist, H; Sundin, J; Lubberink, M; Tolmachev, V; Valind, S; Antoni, G; Långström, B; Danielson, B G

    1999-02-01

    Kinetic analysis of a single intravenous injection of 100 mg iron(III) hydroxide-sucrose complex (Venofer) mixed with 52Fe(III) hydroxide-sucrose as a tracer was followed for 3-6 h in four generally anaesthetized, artificially ventilated minipigs using positron emission tomography (PET). The amount of injected radioactivity ranged from 30 to 200 MBq. Blood radioactivity, measured by PET in the left ventricle of the heart, displayed a fast clearance phase followed by a slow one. In the liver and bone marrow a fast radioactivity uptake occurred during the first 30 min, followed by a slower steady increase. In the liver a slight decrease in radioactivity uptake was noted by the end of the study. A kinetic analysis using a three-compartment (namely blood pool, reversible and irreversible tissue pools) model showed a fairly high distribution volume in the liver as compared with the bone marrow. In conclusion, the pharmacokinetics of the injected complex was clearly visualized with the PET technique. The organs of particular interest, namely the heart (for blood kinetics), liver and bone marrow could all be viewed by a single setting of a PET tomograph with an axial field of view of 10 cm. The half-life (T1/2) of 52Fe (8.3 h) enables a detailed kinetic study up to 24 h. A novel method was introduced to verify the actual 52Fe contribution to the PET images by removing the interfering radioactive daughter 52mMn positron emissions. The kinetic data fitted the three-compartment model, from which rate constants could be obtained for iron transfer from the blood to a pool of iron in bone marrow or liver to which it was bound during the study period. In addition, there was a reversible tissue pool of iron, which in the liver slowly equilibrated with the blood, to give a net efflux from the liver some hours after i.v. administration. The liver uptake showed a relatively long distribution phase, whereas the injected iron was immediately incorporated into the bone marrow. Various

  17. Selective oxidation catalysts obtained by immobilization of iron(III) porphyrins on thiosalicylic acid-modified Mg-Al layered double hydroxides.

    Science.gov (United States)

    de Freitas Castro, Kelly Aparecida Dias; Wypych, Fernando; Antonangelo, Ariana; Mantovani, Karen Mary; Bail, Alesandro; Ucoski, Geani Maria; Ciuffi, Kátia Jorge; Cintra, Thais Elita; Nakagaki, Shirley

    2016-09-15

    Nitrate-intercalated Mg-Al layered double hydroxides (LDHs) were synthesized and exfoliated in formamide. Reaction of the single layer suspension with thiosalicylic acid under different conditions afforded two types of solids: LDHA1, in which the outer surface was modified with the anion thiosalicylate, and LDHA2, which contained the anion thiosalicylate intercalated between the LDH layers. LDHA1 and LDHA2 were used as supports to immobilize neutral (FeP1 and FeP2) and anionic (FeP3) iron(III) porphyrins. For comparison purposes, the iron(III) porphyrins (FePs) were also immobilized on LDH intercalated with nitrate anions obtained by the co-precipitation method. Chemical modification of LDH facilitated immobilization of the FePs through interaction of the functionalizing groups in LDH with the peripheral substituents on the porphyrin ring. The resulting FePx-LDHAy solids were characterized by X-ray diffraction (powder) and UV-Vis and EPR spectroscopies and were investigated as catalysts in the oxidation of cyclooctene and cyclohexane. The immobilized neutral FePs and their homogeneous counterparts gave similar product yields in the oxidation of cyclooctene, suggesting that immobilization of the FePs on the thiosalicylate-modified LDHs only supported the catalyst species without interfering in the catalytic outcome. On the other hand, in the oxidation of cyclohexane, the thiosalicylate anions on the outer surface of LDHA1 or intercalated between the LDHA2 layers influenced the catalytic activity of FePx-LDHAy, leading to different efficiency and selectivity results. FeP1-LDHA2 performed the best (29.6% alcohol yield) due to changes in the polarity of the surface of the support and the presence of FeP1. Interestingly, FeP1 also performed better in solution as compared to the other FePs. Finally, it was possible to recycle FeP1-LDHA2 at least three times.

  18. Pharmacokinetics and red cell utilization of iron(III) hydroxide-sucrose complex in anaemic patients: a study using positron emission tomography.

    Science.gov (United States)

    Beshara, S; Lundqvist, H; Sundin, J; Lubberink, M; Tolmachev, V; Valind, S; Antoni, G; Långström, B; Danielson, B G

    1999-02-01

    The pharmacokinetics of a single intravenous injection of 100 mg iron hydroxide-sucrose complex labelled with a tracer in the form of 52Fe/59Fe was followed in six anaemic patients for a period ranging from 6 to 8 3 h using positron emission tomography (PET). Red cell utilization of the labelled iron was followed for 4 weeks. PET data showed radioactive uptake by the liver, spleen and bone marrow. The uptake by the macrophage-rich spleen demonstrated the reticuloendothelial uptake of this iron preparation, with subsequent effective release of that iron for marrow utilization. Red cell utilization, followed for 4 weeks, ranged from 59% to 97%. The bone marrow influx rate constant was independent of blood iron concentration, indicating non-saturation of the transport system in bone marrow. This implied that higher doses of the iron complex can probably be used in the same setting. A higher influx rate into the marrow compared with the liver seemed to be consistent with higher red cell utilization. This would indicate that early distribution of the injected iron complex may predict the long-term utilization.

  19. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides.

    Science.gov (United States)

    Papassiopi, N; Vaxevanidou, K; Christou, C; Karagianni, E; Antipas, G S E

    2014-01-15

    Chromium is a common contaminant of soils and aquifers and constitutes a major environmental problem. In nature, chromium usually exists in the form of two oxidation states, trivalent, Cr(III), which is relatively innocuous for biota and for the aquatic environment, and hexavalent, Cr(VI) which is toxic, carcinogenic and very soluble. Accordingly, the majority of wastewater and groundwater treatment technologies, include a stage where Cr(VI) is reduced to Cr(III), in order to remove chromium from the aqueous phase and bind the element in the form of environmentally stable solid compounds. In the absence of iron the final product is typically of the form Cr(OH)3·xH2O whereas in the presence of iron the precipitate is a mixed Fe(1-x)Crx(OH)3 phase. In this study, we report on the synthesis, characterisation and stability of mixed (Fex,Cr1-x)(OH)3 hydroxides as compared to the stability of Cr(OH)3. We established that the plain Cr(III) hydroxide, abiding to the approximate molecular formula Cr(OH)3·3H2O, was crystalline, highly soluble, i.e. unstable, with a tendency to transform into the stable amorphous hydroxide Cr(OH)3(am) phase. Mixed Fe0.75Cr0.25(OH)3 hydroxides were found to be of the ferrihydrite structure, Fe(OH)3, and we correlated their solubility to that of a solid solution formed by plain ferrihydrite and the amorphous Cr(III) hydroxide. Both our experimental results and thermodynamic calculations indicated that mixed Fe(III)-Cr(III) hydroxides are more effective enhancers of groundwater quality, in comparison to the plain amorphous or crystalline Cr(III) hydroxides, the latter found to have a solubility typically higher than 50μg/l (maximum EU permitted Cr level in drinking water), while the amorphous Cr(OH)3(am) phase was within the drinking water threshold in the range 5.7hydroxides studied were of extended stability in the 4.8

  20. Synthesis of linear alkylbenzene sulphonate intercalated iron(II) iron(III) hydroxide sulphate (green rust) and adsorption of carbon tetrachloride

    DEFF Research Database (Denmark)

    Ayala Luis, Karina Barbara; Kaldor, D.K.; Bender Koch, Christian;

    2007-01-01

    Green rusts, GRs, can act as both sorbents and reductants towards selected pollutants. Organo-GRs are expected to combine these properties with a high affinity for hydrophobic substances. A novel organo-GR, GRLAS, was synthesized by incorporating a mixture of linear alkylbenzenesulphonates (LAS......) into the interlayer space of synthetic sulphate green rust, GR . Mössbauer analysis of GRLAS indicates that the structure of the organo-GR is very similar to SO4 that of the initial GR with regard to the FeII/FeIII ratio and local coordination of Fe atoms. X-ray SO4 diffraction demonstrates that the GRLAS formed...

  1. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Papassiopi, N.; Vaxevanidou, K.; Christou, C.; Karagianni, E.; Antipas, G.S.E., E-mail: gantipas@metal.ntua.gr

    2014-01-15

    Highlights: • Fe(III)–Cr(III) hydroxides enhance groundwater quality better than pure Cr(III) compounds. • Crystalline Cr(OH){sub 3}·3H{sub 2}O was unstable, with a solubility higher than 50 μg/l. • Amorphous Cr(OH){sub 3}(am) was stable with a solubility lower than 50 μg/l in the range 5.7 < pH < 11. • For mixed Fe{sub 0.75}Cr{sub 0.25}(OH){sub 3}, the stability region was extended to 4.8 < pH < 13.5. -- Abstract: Chromium is a common contaminant of soils and aquifers and constitutes a major environmental problem. In nature, chromium usually exists in the form of two oxidation states, trivalent, Cr(III), which is relatively innocuous for biota and for the aquatic environment, and hexavalent, Cr(VI) which is toxic, carcinogenic and very soluble. Accordingly, the majority of wastewater and groundwater treatment technologies, include a stage where Cr(VI) is reduced to Cr(III), in order to remove chromium from the aqueous phase and bind the element in the form of environmentally stable solid compounds. In the absence of iron the final product is typically of the form Cr(OH){sub 3}·xH{sub 2}O whereas in the presence of iron the precipitate is a mixed Fe{sub (1−x)}Cr{sub x}(OH){sub 3} phase. In this study, we report on the synthesis, characterisation and stability of mixed (Fe{sub x},Cr{sub 1−x})(OH){sub 3} hydroxides as compared to the stability of Cr(OH){sub 3}. We established that the plain Cr(III) hydroxide, abiding to the approximate molecular formula Cr(OH){sub 3}·3H{sub 2}O, was crystalline, highly soluble, i.e. unstable, with a tendency to transform into the stable amorphous hydroxide Cr(OH){sub 3}(am) phase. Mixed Fe{sub 0.75}Cr{sub 0.25}(OH){sub 3} hydroxides were found to be of the ferrihydrite structure, Fe(OH){sub 3}, and we correlated their solubility to that of a solid solution formed by plain ferrihydrite and the amorphous Cr(III) hydroxide. Both our experimental results and thermodynamic calculations indicated that mixed Fe(III)–Cr(III

  2. Selective extraction by dissolvable (nitriloacetic acid-nickel)-layered double hydroxide coupled with reaction with potassium thiocyanate for sensitive detection of iron(III).

    Science.gov (United States)

    Tang, Sheng; Chang, Yuepeng; Shen, Wei; Lee, Hian Kee

    2016-07-01

    A highly selective method has been proposed for the determination of iron cation (Fe(3+)). (Nitriloacetic acid-nickel)-layered double hydroxide ((NTA-Ni)-LDH) was successfully synthesized and used as dissolvable sorbent in dispersive solid-phase extraction to pre-concentrate and separate Fe(3+) from aqueous phase. Since Fe(3+) has a larger formation constant with NTA compared to Ni(2+), subsequently ion exchange occurred when (NTA-Ni)-LDH was added to the sample solution. The resultant (NTA-Fe)-LDH sol was isolated and transferred in an acidic medium containing potassium thiocyanate (KSCN). Since (NTA-Fe)-LDH could be dissolved in acidic conditions, Fe(3+)was released and reacted with SCN(-) to form an Fe-SCN complex. The resulting product was measured by ultraviolet-visible spectrometry for quantitative detection of Fe(3+). Extraction factors, including sample pH, reaction pH, extraction temperature, extraction time, reaction time and concentration of KSCN were optimized. This method achieved a low limit of detection of 15.2nM and a good linear range from 0.05 to 50μM (r(2)=0.9937). A nearly 18-fold enhancement of signal intensity was achieved after selective extraction. The optimized conditions were validated by applying the method to determine Fe(3+) in seawater samples.

  3. Avaliação da eficácia do uso intravenoso de sacarato de hidróxido de ferro III no tratamento de pacientes adultos com anemia ferropriva Evaluation of the efficacy of intravenous iron III-hydroxide saccharate for treating adult patients with iron deficiency anemia

    Directory of Open Access Journals (Sweden)

    Rodolfo D. Cançado

    2007-06-01

    Full Text Available O objetivo desse estudo foi avaliar a eficácia do uso intravenoso de sacarato de hidróxido de ferro III no tratamento de pacientes adultos com anemia ferropriva. No período de janeiro de 2003 a dezembro de 2005, estudamos cinqüenta pacientes com anemia ferropriva que apresentaram intolerância e/ou resposta inadequada ao tratamento com ferro por via oral e/ou valor de hemoglobina inferior a 7,0 g/dL. Os principais exames laboratoriais realizados foram: hemograma completo, contagem de reticulócitos, ferro sérico, capacidade total de ligação de ferro e ferritina sérica. Os pacientes receberam uma dose semanal de 200 mg de sacarato de hidróxido de ferro III diluído em 250 mL de soro fisiológico a 0,9%, administrado por via intravenosa em trinta minutos. O tratamento foi realizado até a obtenção do valor de hemoglobina igual ou maior que 12,0 g/dL para mulheres e 13,0 g/dL para homens, ou até a administração da dose total de ferro parenteral recomendada para cada paciente. A idade mediana dos cinqüenta pacientes estudados foi de 45 anos, variando entre 28 e 76 anos; quarenta (80,0% eram do sexo feminino. A causa mais comum de anemia ferropriva no sexo feminino foi sangramento uterino anormal observado em 25/40 pacientes (62,5% e, no sexo masculino, gastrectomia parcial em 7/10 (70,0%. Vinte e quatro (48,0% pacientes foram incluídos nesse estudo por falta de resposta à terapia com ferro oral, 22 (44,0% por intolerância ao ferro oral e quatro (8,0% por hemoglobina The objective of this study was to evaluate the efficacy of intravenous iron III-hydroxide saccharate to treat adult patients with iron deficiency anemia. Between January 2003 and December 2005 we studied 50 patients with iron deficiency anemia who presented intolerance or inadequate response to oral iron therapy, or hemoglobin level < 7 g/dL. The main laboratory tests performed were: complete blood cell count, reticulocyte count, serum iron, total iron-binding capacity

  4. Atomistic Simulations of Uranium Incorporation into Iron (Hydr)Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kerisit, Sebastien N.; Felmy, Andrew R.; Ilton, Eugene S.

    2011-04-29

    Atomistic simulations were carried out to characterize the coordination environments of U incorporated in three Fe-(hydr)oxide minerals: goethite, magnetite, and hematite. The simulations provided information on U-O and U-Fe distances, coordination numbers, and lattice distortion for U incorporated in different sites (e.g., unoccupied versus occupied sites, octahedral versus tetrahedral) as a function of the oxidation state of U and charge compensation mechanisms (i.e., deprotonation, vacancy formation, or reduction of Fe(III) to Fe(II)). For goethite, deprotonation of first shell hydroxyls enables substitution of U for Fe(III) with a minimal amount of lattice distortion, whereas substitution in unoccupied octahedral sites induced appreciable distortion to 7-fold coordination regardless of U oxidation states and charge compensation mechanisms. Importantly, U-Fe distances of ~3.6 Å were associated with structural incorporation of U and cannot be considered diagnostic of simple adsorption to goethite surfaces. For magnetite, the octahedral site accommodates U(V) or U(VI) with little lattice distortion. U substituted for Fe(III) in hematite maintained octahedral coordination in most cases. In general, comparison of the simulations with available experimental data provides further evidence for the structural incorporation of U in iron (hydr)oxide minerals.

  5. Arsenic adsorption by iron-aluminium hydroxide coated onto macroporous supports: Insights from X-ray absorption spectroscopy and comparison with granular ferric hydroxides.

    Science.gov (United States)

    Suresh Kumar, Prashanth; Flores, Roxana Quiroga; Sjöstedt, Carin; Önnby, Linda

    2016-01-25

    This paper evaluates the arsenic adsorption characteristics of a macroporous polymer coated with coprecipitated iron-aluminium hydroxides (MHCMP). The MHCMP adsorbent-composite fits best with a pseudo-second order model for As(III) and a pseudo-first order kinetic model for As(V). The MHCMP shows a maximum adsorption capacity of 82.3 and 49.6 mg As/g adsorbent for As(III) and As(V) ions respectively, and adsorption followed the Langmuir model. Extended X-ray absorption fine structure showed that binding of As(III) ions were confirmed to take place on the iron hydroxides coated on the MHCMP, whereas for As(V) ions the binding specificity could not be attributed to one particular metal hydroxide. As(III) formed a bidentate mononuclear complex with Fe sites, whereas As(V) indicated on a bidentate binuclear complex with Al sites or monodentate with Fe sites on the adsorbent. The column experiments were run in a well water spiked with a low concentration of As(III) (100 μg/L) and a commercially available adsorbent (GEH(®)102) based on granular iron-hydroxide was used for comparison. It was found that the MHCMP was able to treat 7 times more volume of well water as compared to GEH(®)102, maintaining the threshold concentration of less than 10 μg As/L, indicating that the MHCMP is a superior adsorbent.

  6. Fe(III) hydroxide nucleation and growth on quartz in the presence of Cu(II), Pb(II), and Cr(III): metal hydrolysis and adsorption.

    Science.gov (United States)

    Dai, Chong; Hu, Yandi

    2015-01-06

    Fe(III) hydroxide nanoparticles are an essential carrier for aqueous heavy metals. Particularly, iron hydroxide precipitation on mineral surfaces can immobilize aqueous heavy metals. Here, we used grazing-incidence small-angle X-ray scattering (GISAXS) to quantify nucleation and growth of iron hydroxide on quartz in 0.1 mM Fe(NO3)3 solution in the presence of Na(+), Cu(2+), Pb(2+), or Cr(3+) at pH = 3.7 ± 0.1. In 30 min, the average radii of gyration (R(g)) of particles on quartz grew from around 2 to 6 nm in the presence of Na(+) and Cu(2+). Interestingly, the particle sizes remained 3.3 ± 0.3 nm in the presence of Pb(2+), and few particles formed in the presence of Cr(3+). Quartz crystal microbalance dissipation (QCM-D) measurements showed that only Cr(3+) adsorbed onto quartz, while Cu(2+) and Pb(2+) did not. Cr(3+) adsorption changed the surface charge of quartz from negative to positive, thus inhibiting the precipitation of positively charged iron hydroxide on quartz. Masses and compositions of the precipitates were also quantified. This study provided new insights on interactions among quartz, iron hydroxide, and metal ions. Such information is helpful not only for environmental remediation but also for the doping design of iron oxide catalysts.

  7. Microbial mediated iron redox cycling in Fe (hydr)oxides for nitrite removal.

    Science.gov (United States)

    Lu, Yongsheng; Xu, Lu; Shu, Weikang; Zhou, Jizhi; Chen, Xueping; Xu, Yunfeng; Qian, Guangren

    2017-01-01

    Nitrite, at an environmentally relevant concentration, was significantly reduced with iron (hydr)oxides mediated by Shewanella oneidensis MR-1. The average nitrite removal rates of 1.28±0.08 and 0.65±0.02(mgL(-1))h(-1) were achieved with ferrihydrite and magnetite, respectively. The results showed that nitrite removal was able to undergo multiple redox cycles with iron (hydr)oxides mediated by Shewanella oneidensis MR-1. During the bioreduction of the following cycles, biogenic Fe(II) was subsequently chemically oxidized to Fe(III), which is associated with nitrite reduction. There was 11.18±1.26mgL(-1) of NH4(+)-N generated in the process of redox cycling of ferrihydrite. Additionally, results obtained by using X-ray diffraction showed that ferrihydrite and magnetite remained mainly stable in the system. This study indicated that redox cycling of Fe in iron (hydr)oxides was a potential process associated with NO2(-)-N removal from solution, and reduced most nitrite abiotically to gaseous nitrogen species.

  8. Arsenic transformation and adsorption by iron hydroxide/manganese dioxide doped straw activated carbon

    Science.gov (United States)

    Xiong, Ying; Tong, Qiang; Shan, Weijun; Xing, Zhiqiang; Wang, Yuejiao; Wen, Siqi; Lou, Zhenning

    2017-09-01

    Iron hydroxide/manganese dioxide doped straw activated carbon was synthesized for As(III) adsorption. The Fe-Mn-SAc adsorbent has two advantages, on the one hand, the straw active carbon has a large surface area (1360.99 m2 g-1) for FeOOH and MnO2 deposition, on the other hand, the manganese dioxide has oxidative property as a redox potential of (MnO2 + H+)/Mn2+, which could convert As(III) into As(V). Combined with the arsenic species after reacting with Fe-Mn-SAc, the As(III) transformation and adsorption mechanism was discussed. H2AsO4-oxidized from As(III) reacts with the Fe-Mn-SAc by electrostatic interaction, and unoxidized As(III) as H3AsO3 reacts with SAc and/or iron oxide surface by chelation effect. The adsorption was well-described by Langmuir isotherms model, and the adsorption capacity of As(III) was 75.82 mg g-1 at pH 3. Therefore, considering the straw as waste biomass material, the biosorbent (Fe-Mn-SAc) is promising to be exploited for applications in the treatment of industrial wastewaters containing a certain ratio of arsenic and germanium.

  9. Adsorption Mechanisms of Trivalent Gold onto Iron Oxy-Hydroxides: From the Molecular Scale to the Model

    Science.gov (United States)

    Cancès, Benjamin; Benedetti, Marc; Farges, François; Brown, Gordon E.

    2007-02-01

    Gold is a highly valuable metal that can concentrate in iron-rich exogenetic horizons such as laterites. An improved knowledge of the retention mechanisms of gold onto highly reactive soil components such as iron oxy-hydroxides is therefore needed to better understand and predict the geochemical behavior of this element. In this study, we use EXAFS information and titration experiments to provide a realistic thermochemical description of the sorption of trivalent gold onto iron oxy-hydroxides. Analysis of Au LIII-edge XAFS spectra shows that aqueous Au(III) adsorbs from chloride solutions onto goethite surfaces as inner-sphere square-planar complexes (Au(III)(OH,Cl)4), with dominantly OH ligands at pH > 6 and mixed OH/Cl ligands at lower pH values. In combination with these spectroscopic results, Reverse Monte Carlo simulations were used to constraint the possible sorption sites on the surface of goethite. Based on this structural information, we calculated sorption isotherms of Au(III) on Fe oxy-hydroxides surfaces, using the CD-MUSIC (Charge Distribution — MUlti SIte Complexation) model. The various Au(III)-sorbed species were identified as a function of pH, and the results of these EXAFS+CD-MUSIC models are compared with titration experiments. The overall good agreement between the predicted and measured structural models shows the potential of this combined approach to better model sorption processes of transition elements onto highly reactive solid surfaces such as goethite and ferrihydrite.

  10. Rapid collection of iron hydroxide for determination of Th isotopes in seawater.

    Science.gov (United States)

    Okubo, Ayako; Obata, Hajime; Magara, Masaaki; Kimura, Takaumi; Ogawa, Hiroshi

    2013-12-04

    This work introduces a novel method of recovery of iron hydroxide using a DIAION CR-20 chelating resin column to determine Th isotopes in seawater with a sector field (SF) inductively coupled plasma mass spectrometer (ICP-MS). Thorium isotopes in seawater were co-precipitated with iron hydroxide, and this precipitate was sent to chelating resin column. Ferric ions in the iron hydroxide were bonded to functional groups of the chelating resin directly, resulting in a pH increase of the effluent by release of hydroxide ion from the iron hydroxide. The co-precipitated thorium isotopes were quantitatively collected within the column, which indicated that thorium was retained on the iron hydroxide remaining on the chelating column. The chelating column quantitatively collected (232)Th with iron hydroxide in seawater at flow rates of 20-25 mL min(-1). Based on this flow rate, a 5 L sample was processed within 3-4 h. The >20 h aging of iron hydroxide tends to reduce the recovery of (232)Th. The rapid collection method was successfully applied to the determination of (230)Th and (232)Th in open-ocean seawater samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Study on the modulating effect of polysaccharide upon the mineralization of iron hydroxide

    Institute of Scientific and Technical Information of China (English)

    HUANG Jiangbo; SUN Zhenya

    2008-01-01

    To investigate the modulating effect of polysaccharide upon the mineralization of iron hydroxide, a series of simulative biomineralization experiments using dextran and chitosan as organic substrates were conducted in this paper. The results showed that iron hydroxide gel nucleated and grew in polysaccharide molecules, with the self-assemble effect of dextran or chitosan, the nanometer-sized akaganeite was formed. The shape, size and crystal structural type of iron oxyhydroxide formed from iron hydroxide gel depend on the type of polysaccharide and its concentrations.

  12. Oxygen isotope indicators of selenate reaction with Fe(II) and Fe(III) hydroxides.

    Science.gov (United States)

    Schellenger, Alexandra E P; Larese-Casanova, Philip

    2013-06-18

    Selenate (SeO(4)(2-)) reduction to elemental selenium is an important Se immobilization process in subsurface environments that could be mediated by Fe(II)-rich minerals or selenate-respiring microorganisms. We report the kinetic isotope effects for (18)O within selenate during abiotic reactions with iron-bearing hydroxides within laboratory experiments. Selenate was reduced to Se(0) by a green rust (chloride interlayer type) and ferrous hydroxide, the two known environmentally relevant mineral reductants for selenate. Reaction kinetics are described by a rapid, low-fractionating uptake step caused by diffusive exchange between selenate and chloride followed by a slower, high-fractionating reduction step caused by electron transfer from structural Fe(II). The dual-phase kinetics cannot be described with the traditional Rayleigh fractionation model; however, well after the initial uptake step, the extent of selenate reaction is well correlated with δ(18)O values in accordance with the Rayleigh model. Selenate-(18)O enrichment (εO) was nearly identical for reaction with chloride green rust (22.7 ± 2.2‰) and ferrous hydroxide (22.1 ± 1.1‰) which suggests a common reduction mechanism by structural Fe(II). The minor enrichment due to anion exchange alone (1.4 ± 0.2‰) was confirmed using iowaite, a nonredox active Mg(II)-Fe(III) layered double hydroxide. Our εO results may contribute to Se isotope forensics to identify selenate reduction within field sites and to possibly distinguish between abiotic and biotic reduction processes.

  13. Adsorption characteristics of U(VI) on Fe(III)Cr(III) (oxy)hydroxides synthesized at different temperatures.

    Science.gov (United States)

    Ahn, Hyangsig; Jo, Ho Young; Lee, Young Jae; Kim, Geon-Young

    2016-07-01

    In this study, the adsorption behavior of U(VI) on (oxy)hydroxides synthesized at different temperatures (25 and 75 °C) was investigated. Four (oxy)hydroxides were synthesized by drying slurries of Fe(III) and Fe(III)Cr(III) (oxy)hydroxide in a vacuum desiccator (25 °C) or in an oven (75 °C). Batch adsorption tests were conducted using the (oxy)hydroxides thus synthesized and groundwater containing uranium ions. In general, the U(VI) removal fraction significantly increased with increasing pH from 3 to 5, remained constant with increasing pH from 5 to 9, and decreased at pH greater than 9, regardless of the type of (oxy)hydroxides and solid-to-liquid ratio. The effect of pH on the U(VI) removal fraction was more significant at a low solid-to-liquid ratio. The oven-dried Fe(III) (oxy)hydroxide exhibited a U(VI) removal fraction lower than that of the vacuum-dried one, whereas the oven-dried Fe(III)Cr(III) (oxy)hydroxide exhibited a U(VI) removal fraction higher than that exhibited by the vacuum-dried one. X-ray photoelectron spectroscopy (XPS) analysis results indicated that the difference in the U(VI) removal fraction is attributed to the dissolution and precipitation of the Fe(III) (oxy)hydroxide during oven drying and dehydration of the Fe(III)Cr(III) (oxy)hydroxide during oven drying.

  14. Reactive transport modeling at uranium in situ recovery sites: uncertainties in uranium sorption on iron hydroxides

    Science.gov (United States)

    Johnson, Raymond H.; Tutu, Hlanganani; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian

    2013-01-01

    Geochemical changes that can occur down gradient from uranium in situ recovery (ISR) sites are important for various stakeholders to understand when evaluating potential effects on surrounding groundwater quality. If down gradient solid-phase material consists of sandstone with iron hydroxide coatings (no pyrite or organic carbon), sorption of uranium on iron hydroxides can control uranium mobility. Using one-dimensional reactive transport models with PHREEQC, two different geochemical databases, and various geochemical parameters, the uncertainties in uranium sorption on iron hydroxides are evaluated, because these oxidized zones create a greater risk for future uranium transport than fully reduced zones where uranium generally precipitates.

  15. Microbial Reduction of Al-Substituted Fe(III) (Hydr)oxides: Redefining the Reducing Capacity of Fe Phases in Natural Soils

    Science.gov (United States)

    Ekstrom, E. B.; Hansel, C. M.

    2008-12-01

    Aluminum, one of the most abundant elements in soils and sediments, is also commonly found co- precipitated with Fe in natural Fe (III) (hydr)oxides. Although significant progress has been made elucidating the rates and solid-phase products of Fe(III) reduction by dissimilatory iron-reducing bacteria (DIRB) grown on pure, synthetic iron (hydr)oxides, relatively little is known about the impact of Al co-precipitation within Fe(III) (hydr)oxides on growth and bacterial Fe reduction by DIRB. Two previous studies investigating bacterial Fe reduction of Al-containing goethite minerals found contrasting results. To better understand the role of Al-substitution in controlling the rate, extent, and products of bacterial Fe(III) reduction, we have performed Fe(III) reduction experiments with the model DIRB, Shewanella putrefaciens CN32 grown on synthetic ferrihydrite, lepidocrocite, and goethite containing between 0 and 13 mole % Al. These experiments reveal that the impact of Al varies among Fe(III) (hydr)oxide minerals. Increasing Al-substitution in ferrihydrite results in a decrease of bacterial growth and Fe(III) reduction, while increasing Al content within lepidocrocite causes increased bacterial growth and Fe(III) reduction. For goethite, no change in Fe(III) reduction or growth is observed when growth on goethite containing increasing Al-substitution. Given the prevalence of Al-substitution in natural Fe(III) (hydr)oxides, our results bring into question the conventional assumptions about Fe(III) oxide bioavailability and suggest a more prominent role of natural lepidocrocite phases in impacting DIRB activity in soils and sediments.

  16. β,β-Isomer of Open-Wells–Dawson Polyoxometalate Containing a Tetra-Iron(III Hydroxide Cluster: [{Fe4(H2O(OH5}(β,β-Si2W18O66]9−

    Directory of Open Access Journals (Sweden)

    Satoshi Matsunaga

    2016-05-01

    Full Text Available The β,β-isomer of open-Wells–Dawson polyoxometalate (POM containing a tetra-iron(III cluster, K9[{Fe4(H2O(OH5}(β,β-Si2W18O66]·17H2O (potassium salt of β,β-Fe4-open, was synthesized by reacting Na9H[A-β-SiW9O34]·23H2O with FeCl3·6H2O at pH 3, and characterized by X-ray crystallography, FTIR, elemental analysis, TG/DTA, UV–Vis, and cyclic voltammetry. X-ray crystallography revealed that the {Fe3+4(H2O(OH5}7+ cluster was included in the open pocket of the β,β-type open-Wells–Dawson polyanion [β,β-Si2W18O66]16− formed by the fusion of two trilacunary β-Keggin POMs, [A-β-SiW9O34]10−, via two W–O–W bonds. The β,β-open-Wells–Dawson polyanion corresponds to an open structure of the standard γ-Wells–Dawson POM. β,β-Fe4-open is the first example of the compound containing a geometrical isomer of α,α-open-Wells–Dawson structural POM.

  17. Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Application

    Science.gov (United States)

    Zhang, Xinyu; An, Li; Yin, Jie; Xi, Pinxian; Zheng, Zhiping; Du, Yaping

    2017-01-01

    Rational design of high efficient and low cost electrocatalysts for oxygen evolution reaction (OER) plays an important role in water splitting. Herein, a general gelatin-assisted wet chemistry method is employed to fabricate well-defined iron oxy-hydroxides and transitional metal doped iron oxy-hydroxides nanomaterials, which show good catalytic performances for OER. Specifically, the Co-doped iron oxy-hydroxides (Co0.54Fe0.46OOH) show the excellent electrocatalytic performance for OER with an onset potential of 1.52 V, tafel slope of 47 mV/dec and outstanding stability. The ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the pure iron oxy-hydroxide (FeOOH) catalysts, originate from the branch structure of Co0.54Fe0.46OOH on its surface so as to provide many active edge sites, enhanced mass/charge transport capability, easy release oxygen gas bubbles, and strong structural stability, which are advantageous for OER. Meanwhile, Co-doping in FeOOH nanostructures constitutes a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal−air batteries, regenerative fuel cells, and other important clean energy devices. This work may provide a new insight into constructing the promising water oxidation catalysts for practical clean energy application. PMID:28272443

  18. Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Application.

    Science.gov (United States)

    Zhang, Xinyu; An, Li; Yin, Jie; Xi, Pinxian; Zheng, Zhiping; Du, Yaping

    2017-03-08

    Rational design of high efficient and low cost electrocatalysts for oxygen evolution reaction (OER) plays an important role in water splitting. Herein, a general gelatin-assisted wet chemistry method is employed to fabricate well-defined iron oxy-hydroxides and transitional metal doped iron oxy-hydroxides nanomaterials, which show good catalytic performances for OER. Specifically, the Co-doped iron oxy-hydroxides (Co0.54Fe0.46OOH) show the excellent electrocatalytic performance for OER with an onset potential of 1.52 V, tafel slope of 47 mV/dec and outstanding stability. The ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the pure iron oxy-hydroxide (FeOOH) catalysts, originate from the branch structure of Co0.54Fe0.46OOH on its surface so as to provide many active edge sites, enhanced mass/charge transport capability, easy release oxygen gas bubbles, and strong structural stability, which are advantageous for OER. Meanwhile, Co-doping in FeOOH nanostructures constitutes a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices. This work may provide a new insight into constructing the promising water oxidation catalysts for practical clean energy application.

  19. Iron (III) Matrix Effects on Mineralization and Immobilization of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Cynthia-May S. Gong; Tyler A. Sullens; Kenneth R. Czerwinski

    2006-01-01

    Abstract - A number of models for the Yucca Mountain Project nuclear waste repository use studies of actinide sorption onto well-defined iron hydroxide materials. In the case of a waste containment leak, however, a complex interaction between dissolved waste forms and failed containment vessel components can lead to immediate precipitation of migratory iron and uranyl in the silicate rich near-field environment. Use of the Fe(III) and UO22+ complexing agent acetohydroxamic acid (AHA) as a colorimetric agent for visible spectrophotometry is well-known. Using the second derivative of these spectra a distinct shift in iron complexation in the presence of silicate is seen that is not seen with uranyl or alone. Silica also decreases the ability of uranyl and ferric solutions to absorb hydroxide, hastening precipitation. These ferric silicate precipitates are highly amorphous and soluble. Precipitates formed in the presence of uranyl below ~1 mol% exhibit lower solubility than precipitates from up to 50 mol % and of uranyl silicates alone.

  20. Adsorption Mechanisms of Trivalent Gold onto Iron Oxy-Hydroxides: From the Molecular Scale to the Model

    Energy Technology Data Exchange (ETDEWEB)

    Cances, Benjamin; /Marne La Vallee U.; Benedetti, Marc; /unknown; Farges, Francois; /Museum Natl. Hist. Natur., Paris /Stanford U., Geo. Environ. Sci.; Brown, Gordon E.., Jr.; /Stanford U., Geo. Environ. Sci. /SLAC, SSRL

    2006-12-13

    Gold is a highly valuable metal that can concentrate in iron-rich exogenetic horizons such as laterites. An improved knowledge of the retention mechanisms of gold onto highly reactive soil components such as iron oxyhydroxides is therefore needed to better understand and predict the geochemical behavior of this element. In this study, we use EXAFS information and titration experiments to provide a realistic thermochemical description of the sorption of trivalent gold onto iron oxy-hydroxides. Analysis of Au L{sub III}-edge XAFS spectra shows that aqueous Au(III) adsorbs from chloride solutions onto goethite surfaces as inner-sphere square-planar complexes (Au(III)(OH,Cl){sub 4}), with dominantly OH ligands at pH > 6 and mixed OH/Cl ligands at lower pH values. In combination with these spectroscopic results, Reverse Monte Carlo simulations were used to constraint the possible sorption sites on the surface of goethite. Based on this structural information, we calculated sorption isotherms of Au(III) on Fe oxy-hydroxides surfaces, using the CD-MUSIC (Charge Distribution--Multi Site Complexation) model. The various Au(III)-sorbed species were identified as a function of pH, and the results of these EXAFS+CD-MUSIC models are compared with titration experiments. The overall good agreement between the predicted and measured structural models shows the potential of this combined approach to better model sorption processes of transition elements onto highly reactive solid surfaces such as goethite and ferrihydrite.

  1. Electroosmotic dewatering of chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge

    DEFF Research Database (Denmark)

    Hansen, H.K.; Christensen, Iben Vernegren; Ottosen, Lisbeth M.

    2003-01-01

    Electroosmotic dewatering has been tested in laboratory cells on four different porous materials: chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge from enzyme production. In all cases it was possible to remove water when passing electric DC current through the material. Casagra......Electroosmotic dewatering has been tested in laboratory cells on four different porous materials: chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge from enzyme production. In all cases it was possible to remove water when passing electric DC current through the material....... Casagrande's coefficients were determined for the four materials at different water contents. The experiments in this work showed that chalk could be dewatered from 40% to 79% DM (dry matter), fly ash from 75 to 82% DM, iron hydroxide sludge from 2.7 to 19% DM and biomass from 3 to 33% DM by electroosmosis...

  2. Capillary electrophoresis method for speciation of iron (II) and iron (III) in pharmaceuticals by dual precapillary complexation.

    Science.gov (United States)

    Gotti, Roberto; Fiori, Jessica; Liverani, Lino; Spelta, Franco

    2015-07-20

    Pharmaceutical iron sucrose is an iron (III) replacement for the treatment of iron deficiency anemia in patients with chronic kidney disease. The drug product (injection) is a colloidal solution of ferric hydroxide in complex with sucrose, containing 20 mg/mL elemental iron; according to United States pharmacopoeia (USP), the limit of iron (II) is 0.4% w/v. A selective CE method for the simultaneous determination of iron (III) and its potential impurity iron (II), was developed by applying a dual precapillary complexation. In particular, 1,10-phenanthroline and 1,2-diaminocyclohexanetetraacetic acid were used for complexation of iron (II) and iron (III), respectively. Sample preparation was optimized to achieve mineralization of pharmaceuticals using HCl 6 M, by avoiding perturbation of the oxidation status of both iron species. Simple CZE conditions, involving a 60 mM (pH 9.3) tetraborate buffer at the constant voltage of 25 KV and 25°C, allowed fast separation of iron (II) and iron (III) complexes that were detected at 265 nm. Sensitivity for iron (II) determination was found to be 4.80 μM (LOQ) corresponding to 0.15% w/w with respect to the total iron test level. The method was validated by following International Conference on Harmonization guidelines for specificity, linearity, precision, accuracy, and robustness and it was applied to real pharmaceutical samples. The obtained results suggested that the method can be a useful alternative to the official USP and British pharmacopoeia polarographic method.

  3. Contrasting effects of Al substitution on microbial reduction of Fe(III) (hydr)oxides

    Science.gov (United States)

    Ekstrom, Eileen B.; Learman, Deric R.; Madden, Andrew S.; Hansel, Colleen M.

    2010-12-01

    Aluminum, one of the most abundant elements in soils and sediments, is commonly found co-precipitated with Fe in natural Fe(III) (hydr)oxides; yet, little is known about how Al substitution impacts bacterial Fe(III) reduction. Accordingly, we investigated the reduction of Al substituted (0-13 mol% Al) goethite, lepidocrocite, and ferrihydrite by the model dissimilatory Fe(III)-reducing bacterium (DIRB), Shewanella putrefaciens CN32. Here we reveal that the impact of Al on microbial reduction varies with Fe(III) (hydr)oxide type. No significant difference in Fe(III) reduction was observed for either goethite or lepidocrocite as a function of Al substitution. In contrast, Fe(III) reduction rates significantly decreased with increasing Al substitution of ferrihydrite, with reduction rates of 13% Al-ferrihydrite more than 50% lower than pure ferrihydrite. Although Al substitution changed the minerals' surface area, particle size, structural disorder, and abiotic dissolution rates, we did not observe a direct correlation between any of these physiochemical properties and the trends in bacterial Fe(III) reduction. Based on projected Al-dependent Fe(III) reduction rates, reduction rates of ferrihydrite fall below those of lepidocrocite and goethite at substitution levels equal to or greater than 18 mol% Al. Given the prevalence of Al substitution in natural Fe(III) (hydr)oxides, our results bring into question the conventional assumptions about Fe (hydr)oxide bioavailability and suggest a more prominent role of natural lepidocrocite and goethite phases in impacting DIRB activity in soils and sediments.

  4. Molecular dynamic simulations of iron (II) hydroxide in high temperature and supercritical water

    Science.gov (United States)

    Meng, Yuanliang

    In this study, the iron (II) hydroxide -- water system has been investigated at high temperatures by using molecular dynamics (MD) simulations. The simulation results reveal that at infinite dilution both Fe2+ cation and OH- anion have 6 water molecules within their first hydration shell and both types of ionic species experience a dramatic increase in their diffusion coefficients at near and supercritical conditions. The process of iron (II) hydroxide cluster formation has been simulated. The nano-clusters of larger sizes formed in supercritical water tend to be in an amorphous state. After having been quenched by an inert gas bath, iron (II) hydroxide nano-clusters with various structures have been produced. The geometries and associated binding energies of these species are given in detail. The vibrational spectra of iron (II) hydroxide clusters are also derived and compared with the spectrum of a bulk solid. The obtained results have a practical value for the analysis of potential corrosion products in supercritical water-cooled reactor (SCWR) which is employed in the new generation nuclear power plant design (GEN IV). This work also illustrates the process of hydrothermal synthesis of oxide nano-particles.

  5. Colloidal iron(III) pyrophosphate particles

    NARCIS (Netherlands)

    Rossi, L.; Velikov, K. P.; Philipse, A.P.

    2014-01-01

    Ferric pyrophosphate is a widely used material in the area of mineral fortification but its synthesis and properties in colloidal form are largely unknown. In this article, we report on the synthesis and characterisation of colloidal iron(III) pyrophosphate particles with potential for application a

  6. Synthesis of supramolecular iron (III) complexes by cluster aggregation

    Science.gov (United States)

    Seddon, Elisa Joy

    2000-12-01

    Biologically, iron is a ubiquitous and versatile metal, found in the active sites of proteins responsible for both oxygen and electron transport. Multinuclear iron-oxo proteins are either dinuclear, or contain many iron atoms; the [Fe2O] unit occurs in hemerythrin (Hr), ribonucleotide reductase, purple acid phosphatase (POP) and methane monooxygenase (MMO), whereas ferritin (Ft) can store up to 4500 iron atoms. Iron storage and transport are essential for protecting biological organisms from free iron, since free Fe(II) ions, will react with dioxygen to form destructive organic radicals, and free Fe(III) ions form insoluble iron hydroxide aggregates under physiological conditions. The tendency of iron to form molecular aggregates in systems containing water or alcohol, together with the fact that each iron atom possesses a large number of unpaired electrons (5 for high-spin FeIII) often results in products possessing large spin ground states (S). The current record-holder for iron is a Fe19 complex, with at least 33 unpaired electrons in the ground state (S = 33/2). Hence, iron is also important in the rapidly developing field of molecular magnetic materials. For these two reasons, the preparation of iron clusters with new topologies and properties has become a major goal of many synthetic inorganic groups, including our own. In this thesis work, synthetic and spectroscopic methods of inorganic coordination chemistry were used to achieve two different goals: firstly, to synthesize dinuclear iron complexes with the use of tetradentate ligands in order to study the magnetic interactions between the two metal centers; and secondly, to identify reactions and characterize the products whereby pre-formed iron oxide clusters undergo aggregation reactions to produce higher nuclearity products. The tetradentate ligands investigated were a bis-(beta-diketone) ligand L and a bis-bpy ligand L'. The reactions involving L and Fe(III) reagents produced complexes with a triple

  7. Layered double hydroxide stability. 2. Formation of Cr(III)-containing layered double hydroxides directly from solution

    Science.gov (United States)

    Boclair, J. W.; Braterman, P. S.; Jiang, J.; Lou, S.; Yarberry, F.

    1999-01-01

    Solutions containing divalent metal [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+] chlorides and CrCl3 6H2O were titrated with NaOH to yield, for M(II) = Zn, Co, and Ni, hydrotalcite-like layered double hydroxides (LDHs), [[M(II)]1-z[Cr(III)]z(OH)2][Cl]z yH2O, in a single step, without intermediate formation of chromium hydroxide. Analysis of the resultant titration curves yields solubility constants for these compounds. These are in the order Zn < Ni approximately Co, with a clear preference for formation of the phase with z = 1/3. With Mg2+ as chloride, titration gives a mixture of Cr(OH)3 and Mg(OH)2, but the metal sulfates give Mg2Cr(OH)6 1/2(SO4) by a two-step process. Titrimetric and spectroscopic evidence suggests short-range cation order in the one-step LDH systems.

  8. A novel and easy chemical-clock synthesis of nanocrystalline iron-cobalt bearing layered double hydroxides.

    Science.gov (United States)

    Hadi, Jebril; Grangeon, Sylvain; Warmont, Fabienne; Seron, Alain; Greneche, Jean-Marc

    2014-11-15

    A novel synthesis of cobalt-iron layered double hydroxide (LDH) with interlayer chlorides was investigated. The method consists in mixing concentrated solutions of hexaamminecobalt(III) trichloride with ferrous chloride at room temperature and in anoxic conditions. Four initial Fe/Co atomic ratios have been tried out (0.12, 0.6, 1.2 and 1.8). Neither heating nor addition of alkali was employed for adjusting the pH and precipitating the metal hydroxides. Still, each mixture led to the spontaneous precipitation of a LDH-rich solid having a crystal-chemistry that depended on the initial solution Fe/Co. These LDHs phases were carefully characterized by mean of X-ray diffraction, (57)Fe Mössbauer spectrometry, transmission electron microscopy and chemical analysis (total dissolution and phenanthroline method). Solution Eh and pH were also monitored during the synthesis. Increasing initial Fe/Co ratio impacted the dynamic of the observed stepwise reaction and the composition of the resulting product. Once the two solutions are mixed, a spontaneous and abrupt color change occurs after an induction time which depends on the starting Fe/Co ratio. This makes the overall process acting as a chemical clock. This spontaneous generation of CoFe-LDH arises from the interplay between redox chemistries of iron and cobalt-ammonium complexes.

  9. Microbial Reducibility of Fe(III Phases Associated with the Genesis of Iron Ore Caves in the Iron Quadrangle, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Ceth W. Parker

    2013-11-01

    Full Text Available The iron mining regions of Brazil contain thousands of “iron ore caves” (IOCs that form within Fe(III-rich deposits. The mechanisms by which these IOCs form remain unclear, but the reductive dissolution of Fe(III (hydroxides by Fe(III reducing bacteria (FeRB could provide a microbiological mechanism for their formation. We evaluated the susceptibility of Fe(III deposits associated with these caves to reduction by the FeRB Shewanella oneidensis MR-1 to test this hypothesis. Canga, an Fe(III-rich duricrust, contained poorly crystalline Fe(III phases that were more susceptible to reduction than the Fe(III (predominantly hematite associated with banded iron formation (BIF, iron ore, and mine spoil. In all cases, the addition of a humic acid analogue enhanced Fe(III reduction, presumably by shuttling electrons from S. oneidensis to Fe(III phases. The particle size and quartz-Si content of the solids appeared to exert control on the rate and extent of Fe(III reduction by S. oneidensis, with more bioreduction of Fe(III associated with solid phases containing more quartz. Our results provide evidence that IOCs may be formed by the activities of Fe(III reducing bacteria (FeRB, and the rate of this formation is dependent on the physicochemical and mineralogical characteristics of the Fe(III phases of the surrounding rock.

  10. Trivalent Actinide Uptake by Iron (Hydr)oxides.

    Science.gov (United States)

    Finck, Nicolas; Nedel, Sorin; Dideriksen, Knud; Schlegel, Michel L

    2016-10-04

    The retention of Am(III) by coprecipitation with or adsorption onto preformed magnetite was investigated by X-ray diffraction (XRD), solution chemistry, and X-ray absorption spectroscopy (XAS). In the coprecipitation experiment, XAS data indicated the presence of seven O atoms at 2.44(1) Å, and can be explained by an Am incorporation at Fe structural sites at the magnetite surface. Next-nearest Fe were detected at distances suggesting that Am and Fe polyhedra share corners in geometries ranging from bent to close to linear Am-O-Fe bonds. After aging for two years, the coordination number and the distance to the first O shell significantly decreased, and atomic shells were detected at higher distances. These data suggest a structural reorganization and an increase in structural order around sorbed Am. Upon contact with preformed Fe3O4, Am(III) forms surface complexes with cosorbed Fe at the surface of magnetite, a possible consequence of the high concentration of dissolved Fe. In a separate experiment, chloride green rust (GR) was synthesized in the presence of Am(III), and subsequently converted to Fe(OH)2(s) intermixed with magnetite. XAS data indicated that the actinide is successively located first at octahedral brucite-like sites in the GR precursor, then in Fe(OH)2(s), an environment markedly distinct from that of Am(III) in Fe3O4. The findings indicate that the magnetite formation pathway dictates the magnitude of Am(III) incorporation within this solid.

  11. Iron(III)-chelating resins. X. Iron detoxification of human plasma with iron(III)-chelating resins

    NARCIS (Netherlands)

    Feng, M.; Feng, M.H.; van der Does, L.; Bantjes, A.; Bantjes, A.

    1994-01-01

    Iron detoxification of human blood plasma was studied with resins containing desferrioxamine B (DFO) or 3-hydroxy-2-methyl-4(1H)-pyridinone (HMP) as iron(III)-chelating groups. The behaviour of four resins was investigated: DFO-Sepharose, HMP-Sepharose and crosslinked copolymers of

  12. Iron (III) chloride doping of CVD graphene.

    Science.gov (United States)

    Song, Yi; Fang, Wenjing; Hsu, Allen L; Kong, Jing

    2014-10-03

    Chemical doping has been shown as an effective method of reducing the sheet resistance of graphene. We present the results of our investigations into doping large area chemical vapor deposition graphene using Iron (III) Chloride (FeCl(3)). It is shown that evaporating FeCl(3) can increase the carrier concentration of monolayer graphene to greater than 10(14) cm(-2) and achieve resistances as low as 72 Ω sq(-1). We also evaluate other important properties of the doped graphene such as surface cleanliness, air stability, and solvent stability. Furthermore, we compare FeCl(3) to three other common dopants: Gold (III) Chloride (AuCl(3)), Nitric Acid (HNO(3)), and TFSA ((CF(3)SO(2))(2)NH). We show that compared to these dopants, FeCl(3) can not only achieve better sheet resistance but also has other key advantages including better solvent stability.

  13. Removal of arsenate and 17alpha-ethinyl estradiol (EE2) by iron (hydr)oxide modified activated carbon fibers.

    Science.gov (United States)

    Hristovski, Kiril D; Nguyen, Hanhphuc; Westerhoff, Paul K

    2009-03-01

    Activated carbon fibers (ACF) were modified with iron (hydr)oxide and studied to determine their suitability to remove arsenate and 17alpha -ethinyl estradiol (EE2) from water. Two synthesis methods, one involving aqueous KMnO(4) pretreatment followed by Fe(II) treatment, and the other involving reaction with Fe(III) in an organic solvent followed by NaOH treatment, were used to produce modified ACF media containing 5.9% and 8.4% iron by dry weight, respectively. Scanning electron microscopy (SEM) and Electron dispersion X-ray (EDX) techniques indicated slightly higher iron content near the outer edges of the fibers. Pseudo-equilibrium batch test experimental data at pH = 7.0 +/- 0.1 in 5 mM NaHCO(3) buffered ultrapure water containing approximately 100 micro g(As)/L and approximately 500 micro gEE2/L were fitted with the Freundlich isotherm model (q = K x C(E)(1/n)). The adsorption capacity parameters (K) were approximately 2586 (micro gAs/gFe)(L/micro gAs)(1/n) and approximately 425 (micro gAs/gFe)(L/micro gAs)(1/n)), respectively, for the KMnO(4)/Fe(II) and Fe(III)/NaOH treated media. The KMnO(4)/Fe(II) media exhibited a lower adsorption capacity at 99% EE2 removal than did the Fe(III)/NaOH treated media (1.3 mgEE2/g -dry -media vs. 1.8 mgEE2/g -dry -media). The arsenate adsorption intensity parameters (1/n) for both modified ACF media were < 0.29, implying very favorable adsorption, which suggests that this type of media may be suitable for single point -of -use applications in which arsenic and organic co-contaminants require simultaneous removal and the depth of the packed bed is the key factor.

  14. Caco-2 cell acquisition of dietary iron(III invokes a nanoparticulate endocytic pathway.

    Directory of Open Access Journals (Sweden)

    Dora I A Pereira

    Full Text Available Dietary non-heme iron contains ferrous [Fe(II] and ferric [Fe(III] iron fractions and the latter should hydrolyze, forming Fe(III oxo-hydroxide particles, on passing from the acidic stomach to less acidic duodenum. Using conditions to mimic the in vivo hydrolytic environment we confirmed the formation of nanodisperse fine ferrihydrite-like particles. Synthetic analogues of these (~ 10 nm hydrodynamic diameter were readily adherent to the cell membrane of differentiated Caco-2 cells and internalization was visualized using transmission electron microscopy. Moreover, Caco-2 exposure to these nanoparticles led to ferritin formation (i.e., iron utilization by the cells, which, unlike for soluble forms of iron, was reduced (p=0.02 by inhibition of clathrin-mediated endocytosis. Simulated lysosomal digestion indicated that the nanoparticles are readily dissolved under mildly acidic conditions with the lysosomal ligand, citrate. This was confirmed in cell culture as monensin inhibited Caco-2 utilization of iron from this source in a dose dependent fashion (p<0.05 whilet soluble iron was again unaffected. Our findings reveal the possibility of an endocytic pathway for acquisition of dietary Fe(III by the small intestinal epithelium, which would complement the established DMT-1 pathway for soluble Fe(II.

  15. Aging of iron (hydr)oxides by heat treatment and effects on heavy metal binding

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Starckpoole, M. M.; Frenkel, A. I.

    2000-01-01

    Amorphous iron (hydr)oxides are used to remove heavy metals from wastewater and in the treatment of air pollution control residues generated in waste incineration. In this study, iron oxides containing heavy metals (e.g., Pb, Hg, Cr, and Cd) were treated at 50, 600, and 900 °C to simulate...... oxides were transformed to hematite, which had a greater thermodynamic stability but less surface area than the initial products. Heat treatment also caused some volatilization of heavy metals (most notably, Hg). Leaching with water at pH 9 (L/S 10, 24 h) and weak acid extraction showed that heat...... of iron oxides may be advantageous to improve the thermodynamic stability of the product but that thermal treatment at both 600 and 900 °C significantly reduced the binding capacity for heavy metals....

  16. Ruthenium redox equilibria: 1. Thermodynamic stability of Ru(III and Ru(IV hydroxides

    Directory of Open Access Journals (Sweden)

    Igor Povar

    2016-04-01

    Full Text Available On the basis of the selected thermodynamic data for Ru(III and Ru(IV compounds in addition to original thermodynamic and graphical approach used in this paper, the thermodynamic stability areas of sparingly soluble hydroxides as well as the repartition of their soluble and insoluble chemical species towards the solution pH and initial concentrations of ruthenium in heterogeneous mixture solid phase–saturated solution have been investigated. By means of the ΔG–pH diagrams, the areas of thermodynamic stability of Ru(III and Ru(IV hydroxides have been established for a number of analytical concentrations in heterogeneous mixtures. The diagrams of heterogeneous and homogeneous chemical equilibria have been used for graphical representation of complex equilibria in aqueous solutions containing Ru(III and Ru(IV. The obtained results, based on the thermodynamic analysis and graphic design of the calculated data in the form of the diagrams of heterogeneous chemical equilibria, are in good agre­ement with the available experimental data.

  17. 21 CFR 522.1182 - Iron injection.

    Science.gov (United States)

    2010-04-01

    ... equivalent of: (1) 100 milligrams (mg) of elemental iron derived from: (i) Ferric hydroxide; (ii) Ferric oxide; or (iii) Elemental iron. (2) 200 mg of elemental iron derived from ferric hydroxide. (b) Sponsors... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iron injection. 522.1182 Section 522.1182 Food...

  18. Ruthenium redox equilibria 1. Thermodynamic stability of Ru(III) and Ru(IV) hydroxides

    OpenAIRE

    Igor Povar; Oxana Spinu

    2016-01-01

    On the basis of the selected thermodynamic data for Ru(III) and Ru(IV) compounds in addition to original thermodynamic and graphical approach used in this paper, the thermodynamic stability areas of sparingly soluble hydroxides as well as the repartition of their soluble and insoluble chemical species towards the solution pH and initial concentrations of ruthenium in heterogeneous mixture solid phase–saturated solution have been investigated. By means of the ΔG–pH diagrams, the areas of therm...

  19. Moessbauer study of iron(II) and iron(III) complexes of some nitrogen-, oxygen- and sulphur donor ligands, reduction of iron(III) by the mercaptide group

    Energy Technology Data Exchange (ETDEWEB)

    Sawhney, G.L.; Baijal, J.S. (Delhi Univ. (India). Dept. of Physics and Astrophysics); Chandra, S. (Zakir Hussain College, Ajmeri Gate, Delhi (India). Dept. of Chemistry); Pandeya, K.B. (Delhi Univ. (India). Dept. of Chemistry)

    1981-01-01

    Complex formation reactions of iron(II) and iron(III) with semicarbazones and thiosemicarbazones of pyruvic acid and phenyl pyruvic acid have been studied by magnetic measurements and Moessbauer spectroscopy. With iron(II), all the ligands form hexa-coordinated octahedral complexes of the type Fe(ligand-H/sub 2/). With iron(III) semicarbazones, complexes of the composition (Fe(ligand-H)/sub 2/)(OH) are formed. Thiosemicarbazones first reduce iron(III) to iron(II) and then form iron(II) complexes of the type Fe(ligand-H)/sub 2/.

  20. Determinação de ferro (III em produtos farmacêuticos por titulação fotométrica = Determination of iron (III in pharmaceutical products by photometric titration

    Directory of Open Access Journals (Sweden)

    Airton Vicente Pereira

    2011-01-01

    Full Text Available Este trabalho descreve a montagem de um sistema de titulacao fotometrica simples e de baixo custo para a determinacao de ferro (III em produtos farmaceuticos. O sistema de titulacao fotometrica foi construido utilizando-se a bomba peristaltica de um espectrofotometro convencional. O procedimento e baseado na titulacao de ferro (III com EDTA e acido salicilico como indicador. A absorcao do complexo ferro (III-acido salicilico foi monitorada espectrofotometricamente em 525 nm. O limite de quantificacao foi de 5 ƒÝg de ferro (III. O procedimento de titulacao fotometrica foi aplicado para a determinacao de ferro (III em amostras contendo sulfato ferroso e hidroxido ferrico polimaltosado. O procedimento mostrou sensibilidade, reprodutibilidade e precisao para a utilizacao em analise rotineira de ferro (III em produtos farmaceuticos.This paper describes a simple, precise and low-cost photometrictitration method for iron (III determination in pharmaceutical preparations. The photometric titration system was constructed using the peristaltic pump of a conventional spectrophotometer. The method is based on titration of iron (III with EDTA using salicylic acid as indicator. The absorption of the iron (III-salicylic acid complex wasmonitored spectrophotometrically at 525 nm. The limit of quantification was 5 ƒÝg of iron (III. The photometric titration procedure was applied for the determination of iron (III in samples of ferrous sulfate and ferric hydroxide polymaltose complex. The procedure showed sensibility, reproducibility and accuracy for use as a method for the routine analysis of iron (III in pharmaceutical formulations.

  1. Microbial removal of uranyl by sulfate reducing bacteria in the presence of Fe (III) (hydr)oxides.

    Science.gov (United States)

    Zhengji, Yi

    2010-09-01

    Microbiological reduction of uranyl by sulfate reducing bacteria (SRB) has been proposed as a promising method for removal of radionuclide from groundwater. In this study, we examined the effect of two naturally occurring Fe(III) (hydr)oxides, hematite and goethite, on the bioreduction of U(VI) by a mixed culture of SRB via laboratory batch experiments. The biogenic precipitate from U(VI) bioreduction was determined using X-ray absorption near edge structure (XANES) analysis, showing a typical feature of uraninite (UO(2)). In the presence of either hematite or goethite-containing Fe(III) ranging from 10 to 30 mM, the reduction of U(VI) was retarded by both minerals and the retardatory effect was enhanced with increasing amount of Fe(III) (hydr)oxide. When exposed to a mixture of hematite and goethite with the total Fe(III) kept constant at 20 mM, the retardatory effect on U(VI) reduction by the minerals were directly correlated with the fraction of hematite present. A slow increase in U(VI) concentration was also found in all Fe(III) (hydr)oxide treatments after 10-13 days, accompanied by the release of Fe(II) into the solution. The presence of Fe(III) (hydr)oxide can cause the eventual incomplete bioreduction of U(VI). However, it was not the case for the control without minerals. When mixing biogenic uraninite with hematite or goethite without SRB, Fe(II) was also detected in the solution. These findings suggest that the U(VI) remobilization after 1013 days may be due to reoxidation of the uraninite by the solid-phase Fe(III) (hydr)oxide. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Influence of chelating agents on biogenic uraninite reoxidation by Fe(III) (Hydr)oxides.

    Science.gov (United States)

    Stewart, Brandy D; Girardot, Crystal; Spycher, Nicolas; Sani, Rajesh K; Peyton, Brent M

    2013-01-02

    Microbially mediated reduction of soluble U(VI) to U(IV) with subsequent precipitation of uraninite, UO(2(S)), has been proposed as a method for limiting uranium (U) migration. However, microbially reduced UO(2) may be susceptible to reoxidation by environmental factors, with Fe(III) (hydr)oxides playing a significant role. Little is known about the role that organic compounds such as Fe(III) chelators play in the stability of reduced U. Here, we investigate the impact of citrate, DFB, EDTA, and NTA on biogenic UO(2) reoxidation with ferrihydrite, goethite, and hematite. Experiments were conducted in anaerobic batch systems in PIPES buffer (10 mM, pH 7) with bicarbonate for approximately 80 days. Results showed EDTA accelerated UO(2) reoxidation the most at an initial rate of 9.5 μM day(-1) with ferrihydrite, 8.6 μM day(-1) with goethite, and 8.8 μM day(-1) with hematite. NTA accelerated UO(2) reoxidation with ferrihydrite at a rate of 4.8 μM day(-1); rates were less with goethite and hematite (0.66 and 0.71 μM day(-1), respectively). Citrate increased UO(2) reoxidation with ferrihydrite at a rate of 1.8 μM day(-1), but did not increase the extent of reaction with goethite or hematite, with no reoxidation in this case. In all cases, bicarbonate increased the rate and extent of UO(2) reoxidation with ferrihydrite in the presence and absence of chelators. The highest rate of UO(2) reoxidation occurred when the chelator promoted both UO(2) and Fe(III) (hydr)oxide dissolution as demonstrated with EDTA. When UO(2) dissolution did not occur, UO(2) reoxidation likely proceeded through an aqueous Fe(III) intermediate with lower reoxidation rates observed. Reaction modeling suggests that strong Fe(II) chelators promote reoxidation whereas strong Fe(III) chelators impede it. These results indicate that chelators found in U contaminated sites may play a significant role in mobilizing U, potentially affecting bioremediation efforts.

  3. Potentiometric and ³¹P NMR studies on inositol phosphates and their interaction with iron(III) ions.

    Science.gov (United States)

    Sala, Martin; Makuc, Damjan; Kolar, Jana; Plavec, Janez; Pihlar, Boris

    2011-03-01

    Potentiometric, conductometric and ³¹P NMR titrations have been applied to study interactions between myo-inositol hexakisphosphate (phytic acid), (±)-myo-inositol 1,2,3,5-tetrakisphosphate and (±)-myo-inositol 1,2,3-trisphosphate with iron(III) ions. Potentiometric and conductometric titrations of myo-inositol phosphates show that addition of iron increases acidity and consumption of hydroxide titrant. By increasing the Fe(III)/InsP(6) ratio (from 0.5 to 4) 3 mol of protons are released per 2 mol of iron(III). At first, phytates coordinate iron octahedrally between P2 and P1,3. The second coordination site represents P5 and neighbouring P4,6 phosphate groups. Complexation is accompanied with the deprotonation of P1,3 and P4,6 phosphate oxygens. At higher concentration of iron(III) intermolecular P-O-Fe-O-P bonds trigger formation of a polymeric network and precipitation of the amorphous Fe(III)-InsP(6) aggregates. (31)P NMR titration data complement the above results and display the largest chemical shift changes at pD values between 5 and 10 in agreement with strong interactions between iron and myo-inositol phosphates. The differences in T(1) relaxation times of phosphorous atoms have shown that phosphate groups at positions 1, 2 and 3 are complexated with iron(III). The interactions between iron(III) ions and inositol phosphates depend significantly on the metal to ligand ratio and an attempt to coordinate more than two irons per InsP(6) molecule results in an unstable heterogeneous system.

  4. Determination of Ultra-trace Amounts of Arsenic(III) by Flow Injection Hydride Generation Atomic Absorption Spectrometry with On-line Preconcentration by Coprecipitation with Lanthanum Hydroxide or Hafnium Hydroxide

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Sloth, Jens Jørgen; Hansen, Elo Harald

    1996-01-01

    (III) is more effectively collected by lanthanum hydroxide than by hafnium hydroxide, the sensitivity achieved by the former being ca. 25% better. With optimal experimental conditions and with a sample consumption of 6.7 ml per assay, an enrichment factor of 32 was obtained at a sample frequency of 33 samples...

  5. Bioavailability of adsorbed and coprecipitated Cu, Ni, Pb, and Cd on iron and iron/aluminum hydroxide to Phragmites australis.

    Science.gov (United States)

    Wang, He; Jia, Yongfeng

    2017-01-01

    The bioavailability of heavy metals strongly depends on their speciation in the environment. Adsorption (ADS) and coprecipitation (CPT) on amorphous metal hydroxides are important processes, controlling the fates of heavy metals in an aqueous environment. This work studied the bioavailability of Cu, Cd, Ni, and Pb adsorbed on and/or coprecipitated with amorphous iron and iron/aluminum mixed hydroxides to the wetland plant Phragmites australis. After a 13-day treatment, there was an apparent uptake of the heavy metals by the plant, and the amount of metal bioaccumulation was measurably different for different association forms (ADS vs. CPT). The bioaccumulation of Cd associated with Fe0.5Al0.5(OH)3 was greater than that with Fe(OH)3; the adsorbed metals were found to be more bioavailable than the coprecipitated forms for most of the treatments while the aging treatment significantly reduced the bioaccumulation of ADS metals. In the single metal treatment, root metal concentrations in the Fe(OH)3 ADS system followed the order Ni (68 mg kg(-1)) > Cu (32 mg kg(-1)) > Cd (28 mg kg(-1)) > Pb (9 mg kg(-1)), while the CPT system followed the order of Cu (30 mg kg(-1)) > Ni (22 mg kg(-1)) > Pb (9 mg kg(-1)) > Cd (7 mg kg(-1)). The order of metal accumulation in a combined metal treatment was similar to that for single metal treatments, but observed Ni concentration declines by 22 and 71 % and Cu and Cd concentrations increase by 30 and 50 % (for CPT and ADS treatments, respectively), while Pb concentrations increased by 30~50 % in both of them. When treated with low-molecular-weight organic acids (LMWOAs), metal desorption, indicative of metal oxide bonding strength and metal bioavailability, was consistent with metal accumulation in the plant.

  6. Efficiency of Iron-Based Oxy-Hydroxides in Removing Antimony from Groundwater to Levels below the Drinking Water Regulation Limits

    Directory of Open Access Journals (Sweden)

    Konstantinos Simeonidis

    2017-02-01

    Full Text Available This study evaluates the efficiency of iron-based oxy-hydroxides to remove antimony from groundwater to meet the requirements of drinking water regulations. Results obtained by batch adsorption experiments indicated that the qualified iron oxy-hydroxide (FeOOH, synthesized at pH 4 for maintaining a high positive charge density (2.5 mmol OH−/g achieved a residual concentration of Sb(III below the EU drinking water regulation limit of 5 μg/L by providing an adsorption capacity of 3.1 mg/g. This is more than twice greater compared either to similar commercial FeOOHs (GFH, Bayoxide or to tetravalent manganese feroxyhyte (Fe-MnOOH adsorbents. In contrast, all tested adsorbents failed to achieve a residual concentration below 5 μg/L for Sb(V. The higher efficiency of the qualified FeOOH was confirmed by rapid small-scale column tests, since an adsorption capacity of 3 mg Sb(III/g was determined at a breakthrough concentration of 5 μg/L. However, it completely failed to achieve Sb(V concentrations below 5 μg/L even at the beginning of the column experiments. The results of leaching tests classified the spent qualified FeOOH to inert wastes. Considering the rapid kinetics of this process (i.e., 85% of total removal was performed within 10 min, the developed qualified adsorbent may be promoted as a prospective material for point-of-use Sb(III removal from water in vulnerable communities, since the adsorbent’s cost was estimated to be close to 30 ± 3.4 €/103 m3 for every 10 μg Sb(III/L removed.

  7. A computational study of ligand binding affinities in iron(III) porphine and protoporphyrin IX complexes.

    Science.gov (United States)

    Durrant, Marcus C

    2014-07-01

    The search for novel anti-malarial drugs that can disrupt biomineralization of ferriprotoporphyrin IX to haemozoin requires an understanding of the fundamental chemistry of the porphyrin's iron(iii) centre at the water-lipid interface. Towards this end, the binding affinities for a diverse set of 31 small ligands with iron(iii) porphine have been calculated using density functional theory, in the gas phase and also with implicit solvent corrections for both water and n-octanol. In addition, the binding of hydroxide, chloride, acetate, methylamine and water to ferriprotoporphyrin IX has been studied, and very similar trends are observed for the smaller and larger models. Anionic ligands generally give stronger binding than neutral ones; the strongest binding is observed for RO(-) and OH(-) ligands, whilst acetate binds relatively weakly among the anions studied. Electron-rich nitrogen donors tend to bind more strongly than electron-deficient ones, and the weakest binding is found for neutral O and S donors such as oxazole and thiophene. In all cases, ligand binding is stronger in n-octanol than in water, and the differences in binding energies for the two solvents are greater for ionic ligands than for neutrals. Finally, dimerization of ferriprotoporphyrin IX by means of iron(iii)-carboxylate bond formation has been modelled. The results are discussed in terms of haemozoin crystal growth and its disruption by known anti-malarial drugs.

  8. Adsorption and transformation of selected human-used macrolide antibacterial agents with iron(III) and manganese(IV) oxides

    Energy Technology Data Exchange (ETDEWEB)

    Feitosa-Felizzola, Juliana [Laboratoire Chimie Provence, Aix-Marseille Universites-CNRS (UMR 6264), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France); Hanna, Khalil [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement, CNRS-Universite Henri Poincare-Nancy 1 (UMR 7564), 405 rue de Vandoeuvre, 54600 Villers-les-Nancy (France); Chiron, Serge [Laboratoire Chimie Provence, Aix-Marseille Universites-CNRS (UMR 6264), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)], E-mail: serge.chiron@univ-provence.fr

    2009-04-15

    The adsorption/transformation of two members (clarithromycin and roxithromycin) of the macrolide (ML) antibacterial agents on the surface of three environmental subsurface sorbents (clay, iron(III) and manganese(IV) oxy-hydroxides) was investigated. The adsorption fitted well to the Freundlich model with a high sorption capacity. Adsorption probably occurred through a surface complexation mechanism and was accompanied by slow degradation of the selected MLs. Transformation proceeded through two parallel pathways: a major pathway was the hydrolysis of the cladinose sugar, and to a lesser extent the hydrolysis of the lactone ring. A minor pathway was the N-dealkylation of the amino sugar. This study indicates that Fe(III) and Mn(IV) oxy-hydroxides in aquatic sediments may play an important role in the natural attenuation of MLs. Such an attenuation route yields a range of intermediates that might retain some of their biological activity. - Iron(III) and manganese(IV) oxy-hydroxides in aquatic sediments may play an important role in the natural attenuation of macrolide antibacterial agents.

  9. Composition and structure of an iron-bearing, layered double hydroxide (LDH) - Green rust sodium sulphate

    DEFF Research Database (Denmark)

    Christiansen, B. C.; Balic-Zunic, T.; Petit, P. O.

    2009-01-01

    Mixed-valent Fe(II),Fe(III)-layered hydroxide, known as green rust, was synthesized from slightly basic, sodium sulphate solutions in an oxygen-free glove box. Solution conditions were monitored with pH and Eh electrodes and optimized to ensure a pure sulphate green-rust phase. The solid...... with Fe(II) and Fe(III) in an ordered distribution. The interlayers contain sulphate, water and sodium in an arrangement characteristic for the nikischerite group. The crystal structure is highly disordered by slacking faults. The composition, formula and crystallographic parameters are: NaFe(II)(6)Fe......(III)(3)(SO4)(2)(OH)(18)center dot 12H(2)O, space group P-3, a = 9.528(6) angstrom, c = 10.968(8) angstrom and Z = 1. Green rust sodium sulphate, GR(Na,SO4) crystallizes in thin, hexagonal plates. Particles range from less than 50 nm to 2 mu m in diameter and are 40 nm thick or less. The material is redox...

  10. Transformation of hydroxycarbonate green rust into crystalline iron (hydr)oxides: Influences of reaction conditions and underlying mechanisms

    NARCIS (Netherlands)

    Wang, Xiaoming; Liu, Fan; Tan, W.; Feng, Xionghan; Koopal, L.K.

    2013-01-01

    Green rusts (GRs) are found as intermediate products between FeII hydroxides and FeIII oxyhydroxides in various anoxic environments. The transformation of hydroxycarbonate green rust GR1(CO32-) by air oxidation at different conditions and the underlying mechanisms were investigated using X-ray diffr

  11. Reactive iron(III) in sediments: Chemical versus microbial extractions

    Science.gov (United States)

    Hyacinthe, C.; Bonneville, S.; Van Cappellen, P.

    2006-08-01

    The availability of particulate Fe(III) to iron reducing microbial communities in sediments and soils is generally inferred indirectly by performing chemical extractions. In this study, the bioavailability of mineral-bound Fe(III) in intertidal sediments of a eutrophic estuary is assessed directly by measuring the kinetics and extent of Fe(III) utilization by the iron reducing microorganism Shewanella putrefaciens, in the presence of excess electron donor. Microbial Fe(III) reduction is compared to chemical dissolution of iron from the same sediments in buffered ascorbate-citrate solution (pH 7.5), ascorbic acid (pH 2), and 1 M HCl. The results confirm that ascorbate at near-neutral pH selectively reduces the reactive Fe(III) pool, while the acid extractants mobilize additional Fe(II) and less reactive Fe(III) mineral phases. Furthermore, the maximum concentrations of Fe(III) reducible by S. putrefaciens correlate linearly with the iron concentrations extracted by buffered ascorbate-citrate solution, but not with those of the acid extractions. However, on average, only 65% of the Fe(III) reduced in buffered ascorbate-citrate solution can be utilized by S. putrefaciens, probably due to physical inaccessibility of the remaining fraction of reactive Fe(III) to the cells. While the microbial and abiotic reaction kinetics further indicate that reduction by ascorbate at near-neutral pH most closely resembles microbial reduction of the sediment Fe(III) pool by S. putrefaciens, the results also highlight fundamental differences between chemical reductive dissolution and microbial utilization of mineral-bound ferric iron.

  12. Homogeneous, heterogeneous and biological oxidation of iron(II) in rapid sand filtration

    NARCIS (Netherlands)

    Beek, van C.G.E.M.; Hiemstra, T.; Hofs, B.; Nederlof, M.M.; Paassen, van J.A.M.; Reijnen, G.K.

    2012-01-01

    Homogeneous, heterogeneous and biological oxidation may precipitate iron(II) as iron(III) hydroxides. In this paper we evaluate the conditions under which each of these processes is dominant in rapid sand filtration (RSF). It is demonstrated that in the presence of iron(III) hydroxide precipitates

  13. Homogeneous, heterogeneous and biological oxidation of iron(II) in rapid sand filtration

    NARCIS (Netherlands)

    Beek, van C.G.E.M.; Hiemstra, T.; Hofs, B.; Nederlof, M.M.; Paassen, van J.A.M.; Reijnen, G.K.

    2012-01-01

    Homogeneous, heterogeneous and biological oxidation may precipitate iron(II) as iron(III) hydroxides. In this paper we evaluate the conditions under which each of these processes is dominant in rapid sand filtration (RSF). It is demonstrated that in the presence of iron(III) hydroxide precipitates h

  14. Iron(III) spin crossover compounds

    NARCIS (Netherlands)

    van Koningsbruggen, PJ; Maeda, Y; Oshio, H

    2004-01-01

    In this chapter, selected results obtained so far on Fe(III) spin crossover compounds are summarized and discussed. Fe(III) spin transition materials of ligands containing chalcogen donor atoms are considered with emphasis on those of N,N-disubstituted-dithiocarbamates, N,N-disubstituted-XY-carbamat

  15. Mechanochemical synthesis and intercalation of Ca(II)Fe(III)-layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Ferencz, Zs.; Szabados, M.; Varga, G.; Csendes, Z. [Department of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged H-6720 (Hungary); Materials and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, Szeged H-6720 (Hungary); Kukovecz, Á. [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720 (Hungary); MTA-SZTE “Lendület” Porous Nanocomposites Research Group, Rerrich Béla tér 1, Szeged H-6720 (Hungary); Kónya, Z. [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720 (Hungary); MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, Szeged H-6720 (Hungary); Carlson, S. [MAX IV Laboratory, Ole Römers väg 1, Lund SE-223 63 (Sweden); Sipos, P. [Materials and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, Szeged H-6720 (Hungary); Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged H-6720 (Hungary); and others

    2016-01-15

    A mechanochemical method (grinding the components without added water – dry grinding, followed by further grinding in the presence of minute amount of water or NaOH solution – wet grinding) was used in this work for the preparation and intercalation of CaFe-layered double hydroxides (LDHs). Both the pristine LDHs and the amino acid anion (cystinate and tyrosinate) intercalated varieties were prepared by the two-step grinding procedure in a mixer mill. By systematically changing the conditions of the preparation method, a set of parameters could be determined, which led to the formation of close to phase-pure LDH. The optimisation procedure was also applied for the intercalation processes of the amino acid anions. The resulting materials were structurally characterised by a range of methods (X-ray diffractometry, scanning electron microscopy, energy dispersive analysis, thermogravimetry, X-ray absorption and infra-red spectroscopies). It was proven that this simple mechanochemical procedure was able to produce complex organic–inorganic nanocomposites: LDHs intercalated with amino acid anions. - Graphical abstract: Amino acid anion-Ca(II)Fe(III)-LDHs were successfully prepared by a two-step milling procedure. - Highlights: • Synthesis of pristine and amino acid intercalated CaFe-LDHs by two-step milling. • Identifying the optimum synthesis and intercalation parameters. • Characterisation of the samples with a range of instrumental methods.

  16. Diversity of Planctomycetes in iron-hydroxide deposits from the Arctic Mid Ocean Ridge (AMOR) and description of Bythopirellula goksoyri gen. nov., sp. nov., a novel Planctomycete from deep sea iron-hydroxide deposits.

    Science.gov (United States)

    Storesund, Julia E; Øvreås, Lise

    2013-10-01

    Planctomycetes form a deep branching and distinct phylum of the domain Bacteria, and represent a fascinating group due to their unusual features such as intracellular compartmentalization and lack of peptidoglycan in their cell walls. The phylum Planctomycetes was described already in 1924, but still the diversity of this phylum represents an enigma and unexploited resource. In this study the diversity of the phylum Planctomycetes in low temperature iron-hydroxide deposits at the Mohns Ridge, a part of the Arctic Mid Ocean Ridge (AMOR), was characterised by descriptive analysis of 16S rRNA gene sequences in combination with isolation of planctomycetes strains. The 16S rRNA gene sequences were affiliated with three order within the phylum Planctomycetes namely the (i)Planctomycetales, (ii) "Candidatus Brocadiales" and (iii) Phycisphaerae in addition to sequences affiliating to hitherto unknown Planctomycetes. The majority of the sequences were affiliated with the CCM11a group (Phycisphaerae), and with the Pir4 group (Planctomycetaceae). Two strains from the order Planctomycetales were isolated. One strain (Plm2) showed high similarity to the previously isolated Planctomyces maris (99 % 16S rRNA sequence identity). The other strain (Pr1d) belonged to the Pir4 group, and showed highest identity with Rhodopirellula baltica (86 %), Blastopirellula marina (86 %) and Pirellula staleyi (85 %). Based on its physiological and biochemical properties, strain Pr1d(T) is considered to represent a new genus of the order Planctomycetales. We propose to classify the novel planctomycete in a new genus and species, Bythoypirellula goksoyri gen. nov., sp. nov., the type strain being Pr1d(T).

  17. Lipid peroxidation, antioxidant enzymes and glutathione levels in human erythrocytes exposed to colloidal iron hydroxide in vitro

    Directory of Open Access Journals (Sweden)

    Ferreira A.L.A.

    1999-01-01

    Full Text Available The free form of the iron ion is one of the strongest oxidizing agents in the cellular environment. The effect of iron at different concentrations (0, 1, 5, 10, 50, and 100 µM Fe3+ on the normal human red blood cell (RBC antioxidant system was evaluated in vitro by measuring total (GSH and oxidized (GSSG glutathione levels, and superoxide dismutase (SOD, catalase, glutathione peroxidase (GSH-Px and reductase (GSH-Rd activities. Membrane lipid peroxidation was assessed by measuring thiobarbituric acid reactive substance (TBARS. The RBC were incubated with colloidal iron hydroxide and phosphate-buffered saline, pH 7.45, at 37oC, for 60 min. For each assay, the results for the control group were: a GSH = 3.52 ± 0.27 µM/g Hb; b GSSG = 0.17 ± 0.03 µM/g Hb; c GSH-Px = 19.60 ± 1.96 IU/g Hb; d GSH-Rd = 3.13 ± 0.17 IU/g Hb; e catalase = 394.9 ± 22.8 IU/g Hb; f SOD = 5981 ± 375 IU/g Hb. The addition of 1 to 100 µM Fe3+ had no effect on the parameters analyzed. No change in TBARS levels was detected at any of the iron concentrations studied. Oxidative stress, measured by GSH kinetics over time, occurs when the RBC are incubated with colloidal iron hydroxide at concentrations higher than 10 µM of Fe3+. Overall, these results show that the intact human RBC is prone to oxidative stress when exposed to Fe3+ and that the RBC has a potent antioxidant system that can minimize the potential damage caused by acute exposure to a colloidal iron hydroxide in vitro.

  18. Complexation Effect on Redox Potential of Iron(III)-Iron(II) Couple: A Simple Potentiometric Experiment

    Science.gov (United States)

    Rizvi, Masood Ahmad; Syed, Raashid Maqsood; Khan, Badruddin

    2011-01-01

    A titration curve with multiple inflection points results when a mixture of two or more reducing agents with sufficiently different reduction potentials are titrated. In this experiment iron(II) complexes are combined into a mixture of reducing agents and are oxidized to the corresponding iron(III) complexes. As all of the complexes involve the…

  19. Precipitation of iron (III) using magnesium oxide in fluidized bed; Precipitacion de hierro (III) utilizando oxido de magnesio en lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Esteban-Bocardo, P. A.; Ferreira-Rocha, S. D.

    2006-07-01

    A process for iron (III) removal by hydroxide precipitation from and acid synthetic inorganic effluent using magnesium oxide as an alternative precipitant agent in a fluidized bed was developed. An acid synthetic inorganic effluent containing 100 and 200 mg/l of ferric ions (pH=1.0) was continuously fed up to the acrylic column (30 cm high and 2 cm diameter) during 180 minutes. Magnesium oxide pulp (3% v/v) was injected at the beginning of the experiment in order to allow the iron hydroxides precipitation. The concentration and pH profiles agreed in their curves, while the pH profile rose,the concentration profile decreased and a high percentage of iron removal (higher to 99%) was reached. Extremely low iron concentrations have been reached, thus permitting to attend to the environmental standard of 10.0 mg/l for discharge of effluent containing ferric ions established by the law DN 10/86 of COPAM (Conselho de Politica Ambiental do Estado de Minas Gerais-Brazil). (Author)

  20. Study of Ascorbic Acid as Iron(III Reducing Agent for Spectrophotometric Iron Speciation

    Directory of Open Access Journals (Sweden)

    Antesar Elmagirbi

    2012-10-01

    Full Text Available The study of ascorbic acid as a reducing agent for iron(III has been investigated in order to obtain an alternative carcinogenic reducing agent, hydroxylamine, used in spectrophotometric standard method based on the formation of a red-orange complex of Fe(II-o-phenanthroline. The study was optimised with regards to ascorbic acid concentration as well as pH solution. The results showed that ascorbic acid showed maximum capacity as reducing agent of iron(III under concentration of 4.46.10-4 M and pH solution of 1-4.Under these conditions, ascorbic acid reduced iron(III proportionally and performed similarly to that of hydroxylamine.  The method gave result to linear calibration over the range of 0.2-2 mg/L withhigh accuracy of 97 % and relative standard deviation of less than 2 %. This method was successfully applied to assay iron speciation in water samples.

  1. Iron (III oxide fabrication from natural clay with reference to phase transformation γ- → α-Fe2O3

    Directory of Open Access Journals (Sweden)

    Šaponjić Aleksandra

    2017-01-01

    Full Text Available Amorphous iron (III oxide was obtained from clay, using ammonium hydroxide as a precipitating agent. Influence of freeze drying under vacuum, as a drying method, on particle size, chemical composition, and crystallinity of obtained iron (III oxide powder was investigated. After freeze drying, precipitate was annealed in air at 500°C and 900°C. X-ray diffraction, particle size analysis, scanning electron microscopy, energy dispersive spectrometry, Fourier transform infrared spectroscopy, thermogravimetric and differential thermal analysis were used to characterize obtained iron (III oxide powder. All of three powders obtained by freeze drying and annealing, have low crystallinity and particles with irregular layered shape. Narrow particle size distribution was given by an average diameter value of around 50 μm for all observed powders. Iron-bearing materials like α-Fe2O3 and γ- Fe2O3 are obtained. Differential thermal analysis curve of obtained samples showed endothermic reaction at 620°C which could be ascribed to phase transition from cubic form γ- → α- Fe2O3. Thermal transformations of iron (III oxide, obtained from clay as a natural source, is suitable to explore in the framework of materials chemistry, and opens the possibility to synthesize materials based on Fe2O3 with specific magnetic behavior. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III-45012, Grant no. OI-172045, Grant no. III-45015, Grant no. OI-176010, Grant no. OI-172056 and Grant no. III-45007

  2. The origin, composition, and reactivity of dissolved iron(III) complexes in coastal organic- and iron-rich sediments

    Science.gov (United States)

    Beckler, Jordon S.; Jones, Morris E.; Taillefert, Martial

    2015-03-01

    The redox chemistry and speciation of Fe in both solid and dissolved phases were characterized in the organic- and Fe-rich sediments of the Satilla River estuary in South-East Georgia (USA) on a series of four cruises between July 2007 and January 2008. Results indicate that dissolved Fe is present in relatively high concentration in the overlying waters at the freshwater end of the estuary and flocculates along the river as the salinity increases downstream. Soluble organic-Fe(III) complexes comprise the majority of dissolved Fe (Shewanella putrefaciens strain 200, increased production of soluble organic-Fe(III) complexes, and addition of reactive Fe(III) hydroxides accelerated the non-reductive dissolution of Fe(III) (oxy)hydroxides irrespective of the presence of exogenous FeRB. These findings suggest soluble organic-Fe(III) complexes in suboxic pore waters may be produced both as intermediates during the dissimilatory reduction of Fe(III) (oxy)hydroxides by Fe(III)-reducing microorganisms and during the oxidation of organic-Fe(II) complexes by Fe(III) (oxy)hydroxides. These soluble organic-Fe(III) complexes are stable in pore waters and may flux from the sediments to the continental shelf.

  3. Iron(III)-siderophore coordination chemistry: Reactivity of marine siderophores.

    Science.gov (United States)

    Butler, Alison; Theisen, Roslyn M

    2010-02-01

    Two remarkable features of many siderophores produced by oceanic bacteria are the prevalence of an α-hydroxy-carboxylic acid functionality either in the form of the amino acid β-hydroxy aspartic acid or in the form of citric acid, as well as the predominance of amphiphilic siderophores. This review will provide an overview of the photoreactivity that takes place when siderophores containing β-hydroxy aspartic acid and citric acid are coordinated to iron(III). This photoreactivity raises questions about the role of this photochemistry in microbial iron acquisition as well as upper-ocean iron cycling. The self-assembly of amphiphilic siderophores and the coordination-induced phase-change of the micelle-to-vesicle transformation will also be reviewed. The distinctive photosensitive and self-assembly properties of marine siderophores hint at possibly new microbial iron acquisition mechanisms.

  4. Linkage of iron elution and dissolved oxygen consumption with removal of organic pollutants by nanoscale zero-valent iron: Effects of pH on iron dissolution and formation of iron oxide/hydroxide layer.

    Science.gov (United States)

    Fujioka, Nanae; Suzuki, Moe; Kurosu, Shunji; Kawase, Yoshinori

    2016-02-01

    The iron elution and dissolved oxygen (DO) consumption in organic pollutant removal by nanoscale zero-valent iron (nZVI) was examined in the range of solution pH from 3.0 to 9.0. Their behaviors were linked with the removal of organic pollutant through the dissolution of iron and the formation of iron oxide/hydroxide layer affected strongly by solution pH and DO. As an example of organic pollutants, azo-dye Orange II was chosen in this study. The chemical composition analyses before and after reaction confirmed the corrosion of nZVI into ions, the formation of iron oxide/hydroxide layer on nZVI surface and the adsorption of the pollutant and its intermediates. The complete decolorization of Orange II with nZVI was accomplished very quickly. On the other hand, the total organic carbon (TOC) removal was considerably slow and the maximum TOC removal was around 40% obtained at pH 9.0. The reductive cleavage of azo-bond by emitted electrons more readily took place as compared with the cleavage of aromatic rings of Orange II leading to the degradation to smaller molecules and subsequently the mineralization. A reaction kinetic model based on the Langmuir-Hinshelwood/Eley-Rideal approach was developed to elucidate mechanisms for organic pollutant removal controlled by the formation of iron oxide/hydroxide layer, the progress of which could be characterized by considering the dynamic concentration changes in Fe(2+) and DO. The dynamic profiles of Orange II removal linked with Fe(2+) and DO could be reasonably simulated in the range of pH from 3.0 to 9.0.

  5. Ovicidal and insect sterilizing activity of some iron (III) and cobalt (III) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, M.; Datta, S.; Koner, D.; Bhattacharya, P.K.; Gangopadhya, A.; Dey, K.

    1985-01-01

    Ovicidal and insect sterilizing activity of some newly synthesized cobalt (III) and iron (III) complexes were examined on the early fifth instar nymphs of Dysdercus Koenigii. Initial mortality after treatment was negligible and maximum number of adults emerged without any morphogenic defects. Several adults in each treatment were paired and their reproductive potential up to two consecutive generations was studied. Some significant results have been obtained as a result of this study.

  6. Adsorption studies of iron(III) on chitin

    Indian Academy of Sciences (India)

    G Karthikeyan; N Muthulakshmi Andal; K Anbalagan

    2005-11-01

    Adsorption of ferric ions by chitin was studied by the batch equilibration method. The influence of particle size and dosage of the adsorbant, contact time, initial concentration of the adsorbate and temperature were experimentally verified. The effect of anions like chloride, nitrate and sulphate and also of cations like zinc, chromium and copper on the adsorption of iron(III) was determined. The time dependence of fraction of adsorption, , at varying particle sizes and doses of chitin and the intraparticle diffusion rate constants, , of the adsorption process were calculated. Thermodynamic and equilibrium parameters of the reaction were determined to understand the sorption behaviour of chitin. The results revealed that the adsorption of iron(III) by chitin is spontaneous, endothermic and favourable.

  7. Transgenic petunia with the iron(III-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    Directory of Open Access Journals (Sweden)

    Yoshiko Murata

    Full Text Available Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III to iron(II and the uptake of iron(II by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III. Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems

  8. Setting an upper limit on the myoglobin iron(IV)hydroxide pK(a): insight into axial ligand tuning in heme protein catalysis.

    Science.gov (United States)

    Yosca, Timothy H; Behan, Rachel K; Krest, Courtney M; Onderko, Elizabeth L; Langston, Matthew C; Green, Michael T

    2014-06-25

    To provide insight into the iron(IV)hydroxide pK(a) of histidine ligated heme proteins, we have probed the active site of myoglobin compound II over the pH range of 3.9-9.5, using EXAFS, Mössbauer, and resonance Raman spectroscopies. We find no indication of ferryl protonation over this pH range, allowing us to set an upper limit of 2.7 on the iron(IV)hydroxide pK(a) in myoglobin. Together with the recent determination of an iron(IV)hydroxide pK(a) ∼ 12 in the thiolate-ligated heme enzyme cytochrome P450, this result provides insight into Nature's ability to tune catalytic function through its choice of axial ligand.

  9. Synthesis and applications of nano-structured iron oxides/hydroxides

    African Journals Online (AJOL)

    ... for their applications as catalytic materials, wastewater treatment adsorbents, ... This review outlines the work being carried out on synthesis of iron oxides in ... iron oxides, synthesis, catalysts, magnetic properties, biomedical application

  10. Synthesis, crystal structure and magnetism of iron(III) and manganese(III) dipicolinates with pyridinemethanols

    Science.gov (United States)

    Uhrecký, Róbert; Pavlik, Ján; Růžičková, Zdeňka; Dlháň, Ľubor; Koman, Marian; Boča, Roman; Moncoľ, Ján

    2014-11-01

    Four ionic iron(III) and manganese(III) dipicolinato complexes of the formula (2-pymeH) [FeIII(dipic)2]ṡ[FeIII(H2O)2Cl(dipic)]ṡ2H2O, (3-pymeH)[MnIII(dipic)2]ṡ1.5H2O, (4-pymeH)[FeIII(dipic)2]ṡ2H2O and (4-pymeH)[MnIII(dipic)2]ṡ2H2O, where H2dipic = pyridine-2,6-dicarboxylic acid, 2-pyme = 2-pyridinemethanol, 3-pyme = 3-pyridinemethanol, 4-pyme = 4-pyridinemethanol, have been prepared and characterized by the single-crystal X-ray structure analysis, infrared spectroscopy and magnetic measurements. The magnetic data were fitted to a zero-field splitting model revealing a slight magnetic anisotropy for Mn(III) systems. The molecular field correction was consistently formulated and included in the analysis for both, magnetic susceptibility and magnetization data.

  11. Preparation and characterization of a novel Astragalus membranaceus polysaccharide-iron (III) complex.

    Science.gov (United States)

    Lu, Qi; Xu, Lei; Meng, Yongbin; Liu, Ying; Li, Jian; Zu, Yuangang; Zhu, Minghua

    2016-12-01

    Astragalus membranaceus polysaccharide-iron (III) complex (APS-iron) was synthesized and characterized. Based on single factor and response surface optimization experiments of APS-iron (III) complex synthesis, the optimum conditions of APS-iron (III) complex were obtained as follows: the reaction temperature 89.46°C, pH 8.16, reaction time 46.04min and ratio of catalyst to APS 0.75, respectively. The reaction temperature was the most significant factor, followed by pH, reaction time and the ratio of catalyst to APS in the four reaction parameters. The highest iron content (19.32%) of APS-iron (III) complex was obtained at the optimum conditions, which was characterized by fourier transform infrared (FTIR), scanning electron microscopy (SEM), antioxidant activities of the APS-iron (III) complex and iron release of APS-iron (III) complex in vitro assay. The results indicated the APS-iron (III) complex had good bioavailability and antioxidant activities in vitro assays. So, it was potential for APS-iron (III) complex as a candidate for iron supplements.

  12. Reaction of tris(bipyridine)ruthenium(III) with hydroxide and its application in a solar energy storage system.

    Science.gov (United States)

    Creutz, C; Sutin, N

    1975-08-01

    Irradiation of Ru(bipy)(3) (2+) (bipy = 2,2'-bipyridine) with light below 560 nm results in the formation of a charge-transfer excited state potentially capable of reducing water to dihydrogen with concomitant production of Ru(bipy)(3) (3+). The latter may be reduced by hydroxide [Formula: see text] to form dioxygen and regenerate the starting complex. The use of these reactions in a cell designed to bring about the photochemical decomposition of water is proposed.The stoichiometry, kinetics, and mechanism of the Ru(bipy)(3) (3+)-hydroxide reaction have been investigated by conventional and stopped-flow spectrophotometry. The dioxygen yield is a sharp function of pH, attaining its maximum value (about 80%) at pH 9. At low pH (3 and 4.8) the production of ruthenium(II) is first order with k(obsd) = (1.41 +/- 0.04) x 10(-4) sec(-1) (25 degrees , ionic strength mu = 1.00 M with sodium sulfate). In the intermediate pH range (7.9-10.0) complex kinetics are observed. In the hydroxide range 0.01-0.50 M, ruthenium(II) production is predominantly first order with k(obsd) = k(a)[OH(-)] + k(b)[OH(-)](2) sec(-1); k(a) = 148 M(-1) sec(-1) and k(b) = 138 M(-2) sec(-1) (25 degrees , mu = 1.00 M, sodium sulfate). For the k(a) term, the activation parameters are DeltaH(double dagger) = 15.3 +/- 1.0 kcal mol(-1) and DeltaS(double dagger) = 7 +/- 3 cal deg(-1) mol(-1) (1 cal = 4.184 J). An intermediate species (lambda(max) 800 nm) forms at the same rate as ruthenium(II) in this hydroxide range. It disappears with k(obsd) = 1.2 + 1.1 x 10(2) [OH(-)] sec(-1) at 25 degrees . Similarly absorbing (lambda(max) 750 to 800 nm) species are generated by the addition of hydroxyl radical to M(bipy)(3) (2+/3+) [M = Fe(II), Os(II), Ru(II), Cr(III), Ru(III)] in pulse radiolysis experiments. The kinetics above pH 7 are described in terms of rate-determining nucleophilic attack by hydroxide on the bound bipyridine ring. The hydroxide adduct so generated is tentatively identified with that observed in

  13. Adsorption of Sb(III) and Sb(V) on Freshly Prepared Ferric Hydroxide (FeOxHy).

    Science.gov (United States)

    He, Zan; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2015-02-01

    This study prepared fresh ferric hydroxide (in-situ FeOxHy) by the enhanced hydrolysis of Fe(3+) ions, and investigates its adsorptive behaviors toward Sb(III) and Sb(V) through laboratory and pilot-scale studies. A contact time of 120-min was enough to achieve adsorption equilibrium for Sb(III) and Sb(V) on the in-situ FeOxHy, and the Elovich model was best to describe the adsorption kinetics of Sb(III) and Sb(V). The Freundlich model was better than Langmuir model to describe the adsorption of Sb(III) and Sb(V) on the in-situ FeOxHy, and the maximum adsorption capacity of Sb(III) and Sb(V) was determined to be 12.77 and 10.21 mmol/g the in-situ FeOxHy as Fe, respectively. Adsorption of Sb(V) decreased whereas that of Sb(III) increased with elevated pH over pH 3-10, owing to the different electrical properties of Sb(III) and Sb(V). Adsorption of Sb(III) and Sb(V) was slightly affected by ionic strength, and thus indicated the formation of inner sphere complexes between Sb and the adsorbent. Sulfate and carbonate showed little effect on the adsorption of Sb(III) and Sb(V). Phosphate significantly inhibited the adsorption of Sb(V), whereas slightly effected that of Sb(III) due to its similar chemical structure to Sb(V). Pilot-scale continuous experiment indicated the feasibility of using in-situ FeOxHy to remove Sb(V), and equilibrium adsorption capacity at the equilibrium Sb(V) concentration of 10 μg/L was determined to be 0.11, 0.07, 0.07, 0.11, and 0.12 mg/g the in-situ FeOxHy as Fe at equilibrium pH of 7.5-7.7, 6.9-7.0, 6.3-6.6, 5.9-6.4, and 5.2-5.9, respectively.

  14. Bis(ethylenediamine-κ2N,N′(nitrato-κ2O,O′cobalt(III hydroxide nitrate

    Directory of Open Access Journals (Sweden)

    Ji-Bo Zhang

    2009-09-01

    Full Text Available The Co ion in the title salt, [Co(NO3(H2NCH2CH2NH22](OH(NO3, has oxidation state + III and is coordinated by four N atoms from two ethylenediamine molecules and two O atoms from a nitrate anion in a distorted octahedral geometry. The charge of the complex cation is balanced by a hydroxide anion and a nitrate anion. The cations and anions are connected by N—H...O and O—H...O hydrogen bonds, resulting in a three-dimensional supramolecular framework. There are two independent ion pairs with similar configurations in the unit cell. Both uncoordinated nitrate counter-anions are disordered.

  15. Chemical reactive features of novel amino acids intercalated layered double hydroxides in As(III) and As(V) adsorption.

    Science.gov (United States)

    Shen, Liang; Jiang, Xiuli; Chen, Zheng; Fu, Dun; Li, Qingbiao; Ouyang, Tong; Wang, Yuanpeng

    2017-06-01

    Layered double hydroxides (LDHs) intercalated with amino acids such as methionine (Met) were synthesized as new adsorbents to remediate arsenic-polluted water. This Zn2Al-Met-LDHs, identified with the formula of Zn0.7Al0.3(OH)2(Met)0.3·0.32H2O, has good thermal stability. Adsorption experiments with Zn2Al-Met-LDHs showed that the residual arsenic in solution could be reduced below the regulation limit, and this adsorption process fitted Langmuir isotherm and the pseudo-second-order kinetics well. A remarkably high removal efficiency and the maximum adsorption capacity for As(III) were achieved, 96.7% and 94.1 mg/g, respectively, at 298 K. The desorption efficiency of As(III) from the arsenic-saturated Zn2Al-Met-LDHs (<8.7%), far less than that of As(V), promises a specific and reliable uptake of As(III) in sorts of solutions. More importantly, a complete and in-depth spectra analysis through FTIR, XPS and NMR was conducted to explain the excellent performance of Zn2Al-Met-LDHs in arsenic removal. Herein, two special chemical reactions were proposed as the dominant mechanisms, i.e., hydrogen bonding between the carboxyl group of the host Met and the hydroxyl group of As(III) or As(V), and the formation of a chelate ring between the guest As(III) and the S, N bidentate ligands of the intercalated Met in the LDHs.

  16. Preparation of Sulphur-containing Aromatic Amines by Reduction of the Corresponding Aromatic Nitro Compounds with Hydrazine Hydrate over Iron Oxide Hydroxide Catalyst

    Institute of Scientific and Technical Information of China (English)

    Qi Xun SHI; Rong Wen LU; Zhu Xia ZHANG; De Feng ZHAO

    2006-01-01

    Sulphur-containing aromatic nitro compounds were rapidly reduced to the corresponding amines in high yields by employing hydrazine hydrate as a hydrogen donor in the presence of iron oxide hydroxide catalyst. It was worth noting that the catalyst exhibited extremely high activity. The reduction could be completed within 20-50 min and the yields were up to 97-99 %.

  17. Iron and aluminum hydroxide nanoparticles in the environment: from nano-scale to the field processes

    Science.gov (United States)

    Bazilevskaya, Ekaterina

    The objective of this doctoral research was to increase scientific understanding of the behavior of Fe and Al hydroxide nanoparticles in soils. These particles are of great environmental importance due to their ability to retain and transport nutrients and contaminants. Three studies were undertaken at different scales, which are documented in three manuscripts included in this dissertation. The first study examined the rate constants for goethite (alpha-FeOOH) crystallization from nano-particulate Fe hydroxide suspensions in the absence (0% Al) and presence (2% Al) of aluminum. One of the merits of this study was the application of a multivariate curve resolution analysis (MCR) of infrared spectra to environmentally important mixed Fe-Al hydroxide colloids in order to quantify goethite content in poorly-crystalline mixtures. Obtained rate constants were found to be equal to (7.64+/-0.67)x10-7 s-1 for 0% Al and (4.5+/-0.21) x10-7 s-1 for 2% Al hydroxides. Dissolution-precipitation mechanism was dominant in the process of goethite transformation to ferrihydrite. Further growth of goethite crystals took place either by aggregation mechanism to form polycrystalline agglomerates or alternatively by Oswald ripening to form large single crystals. The presence of aqueous Al species "poisoned" goethite's surface by disrupting the formation of hydrogen bonds thus increasing the number of non-stoichiometric hydroxyls. The second study addressed changes of mineral composition in mixed Fe-Al hydroxide nanoparticles as a function of Al-substitution and reaction time. It was found that low Al concentrations (2-8 mol. %) lead to formation of moderately crystalline Al-goethite upon ageing, while at medium Al concentrations (10-20%) colloidal suspensions remained stable for the duration of the whole experiment (54 days), goethite formation was completely retarded, and less crystalline intermediate structure were formed. At 25% Al substitution, gibbsite Al(OH)3 microcrystalline

  18. Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity: study of Fe(II) oxidation--precipitation parameters.

    Science.gov (United States)

    Tresintsi, Sofia; Simeonidis, Konstantinos; Vourlias, George; Stavropoulos, George; Mitrakas, Manassis

    2012-10-15

    Various iron oxy-hydroxides were synthesized in a continuous flow kilogram-scale production reactor through the precipitation of FeSO(4) and FeCl(2) in the pH range 3-12 under intense oxidative conditions to serve as arsenic adsorbents. The selection of the optimum adsorbent and the corresponding conditions of the synthesis was based not only on its maximum As(III) and As(V) adsorption capacity but also on its potential efficiency to achieve the arsenic health regulation limit in NSF challenge water. As a result, the adsorbent prepared at pH 4, which consists of schwertmannite, was selected because it exhibited the highest adsorption capacity of 13 μg As(V)/mg, while maintaining a residual arsenic concentration of 10 μg/L at an equilibrium pH 7. The high surface charge and the activation of an ion-exchange mechanism between SO(4)(2-) adsorbed in the Stern layer and arsenate ions were found to significantly contribute to the increased adsorption capacity. Adsorption capacity values observed in rapid scale column experiments illustrate the improved efficiency of the qualified adsorbent compared to the common commercial arsenic adsorbents.

  19. Mononuclear Nonheme Iron(III)-Iodosylarene and High-Valent Iron-Oxo Complexes in Olefin Epoxidation Reactions.

    Science.gov (United States)

    Wang, Bin; Lee, Yong-Min; Seo, Mi Sook; Nam, Wonwoo

    2015-09-28

    High-spin iron(III)-iodosylarene complexes are highly reactive in the epoxidation of olefins, in which epoxides are formed as the major products with high stereospecificity and enantioselectivity. The reactivity of the iron(III)-iodosylarene intermediates is much greater than that of the corresponding iron(IV)-oxo complex in these reactions. The iron(III)-iodosylarene species-not high-valent iron(IV)-oxo and iron(V)-oxo species-are also shown to be the active oxidants in catalytic olefin epoxidation reactions. The present results are discussed in light of the long-standing controversy on the one oxidant versus multiple oxidants hypothesis in oxidation reactions.

  20. Structure and reactivity of a mononuclear non-haem iron(III)–peroxo complex

    OpenAIRE

    Cho, Jaeheung; Jeon, Sujin; Wilson, Samuel A.; Liu, Lei V.; Kang, Eun A; Braymer, Joseph J.; Lim, Mi Hee; Hedman, Britt; Hodgson, Keith O.; Valentine, Joan Selverstone; Solomon, Edward I.; Nam, Wonwoo

    2011-01-01

    Oxygen-containing mononuclear iron species—iron(III)–peroxo, iron(III)–hydroperoxo and iron(IV)–oxo—are key intermediates in the catalytic activation of dioxygen by iron-containing metalloenzymes1–7. It has been difficult to generate synthetic analogues of these three active iron–oxygen species in identical host complexes, which is necessary to elucidate changes to the structure of the iron centre during catalysis and the factors that control their chemical reactivities with substrates. Here ...

  1. Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III salts as precursors

    Directory of Open Access Journals (Sweden)

    Mutasim I. Khalil

    2015-03-01

    Full Text Available An innovative quantitative synthetic method for preparing magnetite nanoparticles was achieved by co-precipitation in aqueous solution using only one single iron(III salt as a precursor. A 2 Fe(III:1 Fe(II mole ratio was first attained in solution by reducing iron(III using KI solution, followed by filtering the iodine formed and hydrolyzing the filtrate by 25% ammonium hydroxide solution at pH 9–11. A high selectivity and atom economy percents were achieved indicating that the method is environmentally benign and green. The as-synthesized nanoparticles were characterized by fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, field emission transmission electron microscopy (FETEM, selected area electron diffraction (SAED, and 57Fe Mössbauer spectroscopy. Magnetite nanocrystals (d: 7.84 ± 0.05 nm and nanorods (d: 6.3 ± 0.2 nm; l: 46.2 ± 0.9 formation was evident.

  2. Iron(III) species formed during iron(II) oxidation and iron-core formation in bacterioferritin of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, C. [Sheffield Univ. (United Kingdom). Dep. of Physics; Treffry, A. [Sheffield Univ. (United Kingdom). Dep. of Molecular Biology and Biotechnology; Mackey, J.; Williams, J.M. [Sheffield Univ. (United Kingdom). Dep. of Physics; Andrews, S.C.; Guest, J.R.; Harrison, P.M. [Sheffield Univ. (United Kingdom). Dep. of Molecular Biology and Biotechnology

    1996-02-01

    This paper describes a preliminary investigation of the mechanisms of Fe(II) oxidation and storage of Fe(III) in the bacterioferritin of Escherichia coli (EcBFR). Using Moessbauer spectroscopy to examine the initial oxidation of iron by EcBFR it is confirmed that this ferritin exhibits ferroxidase activity and is shown that dimeric and monomeric iron species are produced as intermediates. The characteristics of ferroxidase activity in EcBFR is compare d with those of human H-chain ferritin (HuHF) and discuss the different Moessbauer parameters of their dimeric iron with reference to the structures of their di-metal sites. In addition, it is presented preliminary findings suggesting that after an initial {sup b}urst{sup ,} the rate of oxidation is greatly reduced, possibly due to blockage of the ferroxidase centre by bound iron. A new component, not found in HuHF and probably representing a small cluster of Fe(III) atoms, is reported.

  3. Mechanochemical synthesis and intercalation of Ca(II)Fe(III)-layered double hydroxides

    Science.gov (United States)

    Ferencz, Zs.; Szabados, M.; Varga, G.; Csendes, Z.; Kukovecz, Á.; Kónya, Z.; Carlson, S.; Sipos, P.; Pálinkó, I.

    2016-01-01

    A mechanochemical method (grinding the components without added water - dry grinding, followed by further grinding in the presence of minute amount of water or NaOH solution - wet grinding) was used in this work for the preparation and intercalation of CaFe-layered double hydroxides (LDHs). Both the pristine LDHs and the amino acid anion (cystinate and tyrosinate) intercalated varieties were prepared by the two-step grinding procedure in a mixer mill. By systematically changing the conditions of the preparation method, a set of parameters could be determined, which led to the formation of close to phase-pure LDH. The optimisation procedure was also applied for the intercalation processes of the amino acid anions. The resulting materials were structurally characterised by a range of methods (X-ray diffractometry, scanning electron microscopy, energy dispersive analysis, thermogravimetry, X-ray absorption and infra-red spectroscopies). It was proven that this simple mechanochemical procedure was able to produce complex organic-inorganic nanocomposites: LDHs intercalated with amino acid anions.

  4. In vitro studies on interactions of iron salts and complexes with food-stuffs and medicaments.

    Science.gov (United States)

    Geisser, P

    1990-07-01

    It has been shown in the present study that food components such as phytic acid, oxalic acid, tannin, sodium alginate, choline and choline salts, vitamins A, D3 and E, soy oil and soy flour, do not undergo any interactions with iron(III)-hydroxide polymaltose complex (Ferrum Hausmann). Phytic acid, oxalic acid, tannin and sodium alginate, however, react with iron(II) or iron(III)-salts at pH values of 3.0, 5.5 and 8.0, giving rise to iron complexes. Trimethylamine-N-oxide, which is present in fish meal, reacts with iron(II)-sulphate to produce iron(III) reaction products; it does not react with iron(III)-hydroxide polymaltose complex. Special soybean flours show no irreversible adsorption or precipitation with iron(III)-hydroxyide polymaltose complex over the pH range 3.0-8.0, in contrast to iron(II)-sulphate. Antacids containing aluminium hydroxide, talc, ion exchange resins or other unabsorbable, insoluble components absorb iron(III)-hydroxide polymaltose complex in the pH range 3.0-8.0 in a reversible manner, while the strong adsorption or precipitation observed with iron(II)-sulphate at pH 8.0 is irreversible. No interaction was observed between the steroid hormones studied and iron(II)-sulphate or iron(III)-hydroxide polymaltose complex. On the basis of the measured compatibilities, iron(III)-hydroxide polymaltose complex can be administered orally simultaneously with many other drugs, without prejudicing the absorption of iron or of the other drug as is often seen with iron(II) and iron(III) salts.

  5. Synthesis and characterization of a new Inonotus obliquus polysaccharide-iron(III) complex.

    Science.gov (United States)

    Wang, Jia; Chen, Haixia; Wang, Yanwei; Xing, Lisha

    2015-04-01

    A new Inonotus obliquus polysaccharide-iron(III) complex (IOPS-iron) was synthesized and characterized. The preparation conditions of IOPS-iron(III) were optimized and the physicochemical properties were characterized by physicochemical methods, scanning electron microscopy (SEM), electron paramagnetic resonance (EPR) spectroscopy, fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy, respectively. The highest iron content of IOPS-iron(III) complex (19.40%) was obtained at the conditions: the ratio of IOPS and FeCl3 • 6H2O was 3:5 (w/w), the pH value of alkali solution was 10, the reaction temperature was 30 °C and the reaction time was 6h. The iron(III) was shown to be bound through the binding sites of the polysaccharide IOPS and it could form spatially separated iron centers on the polysaccharide backbone. IOPS-iron(III) complex was found to have good digestive availability and antioxidant activities in the in vitro assays, which suggested the IOPS-iron(III) complex might be used as a new iron supplement candidate.

  6. Measuring marine iron(III) complexes by CLE-AdSV

    NARCIS (Netherlands)

    Town, R.M.; Leeuwen, van H.P.

    2005-01-01

    Iron(iii) speciation data, as determined by competitive ligand exchange?adsorptive stripping voltammetry (CLE-AdSV), is reconsidered in the light of the kinetic features of the measurement. The very large stability constants reported for iron(iii) in marine ecosystems are shown to be possibly due to

  7. Aggregate-scale heterogeneity in iron (hydr)oxide reductive transformations

    Energy Technology Data Exchange (ETDEWEB)

    Tufano, K.J.; Benner, S.G.; Mayer, K.U.; Marcus, M.A.; Nico, P.S.; Fendorf, S.

    2009-06-15

    There is growing awareness of the complexity of potential reaction pathways and the associated solid-phase transformations during the reduction of Fe (hydr)oxides, especially ferrihydrite. An important observation in static and advective-dominated systems is that microbially produced Fe(II) accelerates Ostwald ripening of ferrihydrite, thus promoting the formation of thermodynamically more stable ferric phases (lepidocrocite and goethite) and, at higher Fe(II) surface loadings, the precipitation of magnetite; high Fe(II) levels can also lead to green rust formation, and with high carbonate levels siderite may also be formed. This study expands this emerging conceptual model to a diffusion-dominated system that mimics an idealized micropore of a ferrihydrite-coated soil aggregate undergoing reduction. Using a novel diffusion cell, coupled with micro-x-ray fluorescence and absorption spectroscopies, we determined that diffusion-controlled gradients in Fe{sup 2+}{sub (aq)} result in a complex array of spatially distributed secondary mineral phases. At the diffusive pore entrance, where Fe{sup 2+} concentrations are highest, green rust and magnetite are the dominant secondary Fe (hydr)oxides (30 mol% Fe each). At intermediate distances from the inlet, green rust is not observed and the proportion of magnetite decreases from approximately 30 to <10%. Across this same transect, the proportion of goethite increases from undetectable up to >50%. At greater distances from the advective-diffusive boundary, goethite is the dominant phase, comprising between 40 and 95% of the Fe. In the presence of magnetite, lepidocrocite forms as a transient-intermediate phase during ferrihydrite-to-goethite conversion; in the absence of magnetite, conversion to goethite is more limited. These experimental observations, coupled with results of reactive transport modeling, confirm the conceptual model and illustrate the potential importance of diffusion-generated concentration gradients in

  8. Iron(III)-doped, silica nanoshells: a biodegradable form of silica.

    Science.gov (United States)

    Pohaku Mitchell, Kristina K; Liberman, Alexander; Kummel, Andrew C; Trogler, William C

    2012-08-29

    Silica nanoparticles are being investigated for a number of medical applications; however, their use in vivo has been questioned because of the potential for bioaccumulation. To obviate this problem, silica nanoshells were tested for enhanced biodegradability by doping iron(III) into the nanoshells. Exposure of the doped silica to small molecule chelators and mammalian serum was explored to test whether the removal of iron(III) from the silica nanoshell structure would facilitate its degradation. Iron chelators, such as EDTA, desferrioxamine, and deferiprone, were found to cause the nanoshells to degrade on the removal of iron(III) within several days at 80 °C. When the iron(III)-doped, silica nanoshells were submerged in fetal bovine and human serums at physiological temperature, they also degrade via removal of the iron by serum proteins, such as transferrin, over a period of several weeks.

  9. Enriched iron(III-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy

    Directory of Open Access Journals (Sweden)

    Christopher J. Lentini

    2012-12-01

    Full Text Available Iron (Fe oxides exist in a spectrum of structures in the environment, with ferrihydrite widely considered the most bioavailable phase. Yet, ferrihydrite is unstable and rapidly transforms to more crystalline Fe(III oxides (e.g., goethite, hematite, which are poorly reduced by model dissimilatory Fe(III-reducing microorganisms. This begs the question, what processes and microbial groups are responsible for reduction of crystalline Fe(III oxides within sedimentary environments? Further, how do changes in Fe mineralogy shape oxide-hosted microbial populations? To address these questions, we conducted a large-scale cultivation effort using various Fe(III oxides (ferrihydrite, goethite, hematite and carbon substrates (glucose, lactate, acetate along a dilution gradient to enrich for microbial populations capable of reducing Fe oxides spanning a wide range of crystallinities and reduction potentials. While carbon source was the most important variable shaping community composition within Fe(III-reducing enrichments, both Fe oxide type and sediment dilution also had a substantial influence. For instance, with acetate as the carbon source, only ferrihydrite enrichments displayed a significant amount of Fe(III reduction and the well known dissimilatory metal reducer Geobacter sp. was the dominant organism enriched. In contrast, when glucose and lactate were provided, all three Fe oxides were reduced and reduction coincided with the presence of fermentative (e.g. Enterobacter spp. and sulfate-reducing bacteria (e.g. Desulfovibrio spp.. Thus, changes in Fe oxide structure and resource availability may shift Fe(III-reducing communities between dominantly metal-respiring to fermenting and/or sulfate-reducing organisms which are capable of reducing more recalcitrant Fe phases. These findings highlight the need for further targeted investigations into the composition and activity of speciation-directed metal-reducing populations within natural environments.

  10. Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption.

    Science.gov (United States)

    Chou, Wei-Lung; Wang, Chih-Ta; Huang, Kai-Yu

    2009-08-15

    The aim of this study is to investigate the effects of operating parameters on the specific energy consumption and removal efficiency of synthetic wastewater containing indium (III) ions by electrocoagulation in batch mode using an iron electrode. Several parameters, including different electrode pairs, supporting electrolytes, initial concentration, pH variation, and applied voltage, were investigated. In addition, the effects of applied voltage, supporting electrolyte, and initial concentration on indium (III) ion removal efficiency and specific energy consumption were investigated under the optimum balance of reasonable removal efficiency and relative low energy consumption. Experiment results indicate that a Fe/Al electrode pair is the most efficient choice of the four electrode pairs in terms of energy consumption. The optimum supporting electrolyte concentration, initial concentration, and applied voltage were found to be 100 mg/l NaCl, 20 mg/l, and 20V, respectively. A higher pH at higher applied voltage (20 or 30V) enhanced the precipitation of indium (III) ion as insoluble indium hydroxide, which improved the removal efficiency. Results from the indium (III) ion removal kinetics show that the kinetics data fit the pseudo second-order kinetic model well. Finally, the composition of the sludge produced was characterized with energy dispersion spectra (EDS).

  11. Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou0388@hotmail.com [Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha-Lu, Taichung 433, Taiwan (China); Wang, Chih-Ta [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan Hsien 717, Taiwan (China); Huang, Kai-Yu [Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha-Lu, Taichung 433, Taiwan (China)

    2009-08-15

    The aim of this study is to investigate the effects of operating parameters on the specific energy consumption and removal efficiency of synthetic wastewater containing indium (III) ions by electrocoagulation in batch mode using an iron electrode. Several parameters, including different electrode pairs, supporting electrolytes, initial concentration, pH variation, and applied voltage, were investigated. In addition, the effects of applied voltage, supporting electrolyte, and initial concentration on indium (III) ion removal efficiency and specific energy consumption were investigated under the optimum balance of reasonable removal efficiency and relative low energy consumption. Experiment results indicate that a Fe/Al electrode pair is the most efficient choice of the four electrode pairs in terms of energy consumption. The optimum supporting electrolyte concentration, initial concentration, and applied voltage were found to be 100 mg/l NaCl, 20 mg/l, and 20 V, respectively. A higher pH at higher applied voltage (20 or 30 V) enhanced the precipitation of indium (III) ion as insoluble indium hydroxide, which improved the removal efficiency. Results from the indium (III) ion removal kinetics show that the kinetics data fit the pseudo second-order kinetic model well. Finally, the composition of the sludge produced was characterized with energy dispersion spectra (EDS).

  12. Friction and wear of iron and nickel in sodium hydroxide solutions

    Science.gov (United States)

    Rengstorff, G. P.; Miyoshi, K.; Buckley, D. H.

    1983-01-01

    A loaded spherical aluminum oxider rider was made to slide, while in various solutions, on a flat iron or nickel surface reciprocate a distance of 1 cm. Time of experiments was 1 hr during which the rider passed over the center section of the track 540 times. Coeficients of friction were measured throughout the experiments. Wear was measured by scanning the track with a profilometer. Analysis of some of the wear tracks included use of the SEM (scanning electron microscope) and XPS (X-ray photoelectron spectroscopy). Investigated were the effect of various concentrations of NaOH and of water. On iron, increasing NaOH concentration above 0.01 N caused the friction and wear to decrease. This decrease is accompanied by a decrease in surface concentration of ferric oxide (Fe2O3) while more complex iron-oxygen compounds, not clearly identified, also form. At low concentrations of NaOH, such as 0.01 N, where the friction is high, the wear track is badly torn up and the surface is broken. At high concentration, such as 10 N, where the friction is low, the wear track is smooth. The general conclusion is that NaOH forms a protective, low friction film on iron which is destroyed by wear at low concentrations but remains intact at high conentrations of NaOH. Nickel behaves differently than iron in that only a little NaOH gives a low coefficient of friction and a surface which, although roughened in the wear track, remains intact. Previously announced in STAR as N83-10171

  13. Soft chemical control of superconductivity in lithium iron selenide hydroxides Li(1-x)Fe(x)(OH)Fe(1-y)Se.

    Science.gov (United States)

    Sun, Hualei; Woodruff, Daniel N; Cassidy, Simon J; Allcroft, Genevieve M; Sedlmaier, Stefan J; Thompson, Amber L; Bingham, Paul A; Forder, Susan D; Cartenet, Simon; Mary, Nicolas; Ramos, Silvia; Foronda, Francesca R; Williams, Benjamin H; Li, Xiaodong; Blundell, Stephen J; Clarke, Simon J

    2015-02-16

    Hydrothermal synthesis is described of layered lithium iron selenide hydroxides Li(1-x)Fe(x)(OH)Fe(1-y)Se (x ∼ 0.2; 0.02 iron site vacancy concentrations in the iron selenide layers. This iron vacancy concentration is revealed as the only significant compositional variable and as the key parameter controlling the crystal structure and the electronic properties. Single crystal X-ray diffraction, neutron powder diffraction, and X-ray absorption spectroscopy measurements are used to demonstrate that superconductivity at temperatures as high as 40 K is observed in the hydrothermally synthesized samples when the iron vacancy concentration is low (y iron oxidation state is reduced slightly below +2, while samples with a higher vacancy concentration and a correspondingly higher iron oxidation state are not superconducting. The importance of combining a low iron oxidation state with a low vacancy concentration in the iron selenide layers is emphasized by the demonstration that reductive postsynthetic lithiation of the samples turns on superconductivity with critical temperatures exceeding 40 K by displacing iron atoms from the Li(1-x)Fe(x)(OH) reservoir layer to fill vacancies in the selenide layer.

  14. Localization and Solubilization of the Iron(III) Reductase of Geobacter sulfurreducens

    OpenAIRE

    1998-01-01

    The iron(III) reductase activity of Geobacter sulfurreducens was determined with the electron donor NADH and the artificial electron donor horse heart cytochrome c. The highest reduction rates were obtained with Fe(III) complexed by nitrilotriacetic acid as an electron acceptor. Fractionation experiments indicated that no iron(III) reductase activity was present in the cytoplasm, that approximately one-third was found in the periplasmic fraction, and that two-thirds were associated with the m...

  15. Iron oxide and hydroxide precipitation from ferrous solutions and its relevance to Martian surface mineralogy

    Science.gov (United States)

    Posey-Dowty, J.; Moskowitz, B.; Crerar, D.; Hargraves, R.; Tanenbaum, L.

    1986-01-01

    Experiments were performed to examine if the ubiquitousness of a weak magnetic component in all Martian surface fines tested with the Viking Landers can be attributed to ferric iron precipitation in aqueous solution under oxidizing conditions at neutral pH. Ferrous solutions were mixed in deionized water and various minerals were added to separate liquid samples. The iron-bearing additives included hematite, goethite, magnetite, maghemite, lepidocrocite and potassium bromide blank at varying concentrations. IR spectroscopic scans were made to identify any precipitates resulting from bubbling oxygen throughout the solutions; the magnetic properties of the precipitates were also examined. The data indicated that the lepidocrocite may have been preferentially precipitated, then aged to maghemite. The process would account for the presumed thin residue of maghemite on the present Martian surface, long after abundant liquid water on the Martian surface vanished.

  16. Synthesis of Zn–Fe layered double hydroxides via an oxidation process and structural analysis of products

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Kazuya, E-mail: kazuya.morimoto@aist.go.jp [Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567 (Japan); Tamura, Kenji [Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Anraku, Sohtaro [Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Sato, Tsutomu [Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Suzuki, Masaya [Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567 (Japan); Yamada, Hirohisa [Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2015-08-15

    The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. The product derived from the synthesis employing Fe(II) was found to transition to a Zn–Fe(III) layered double hydroxides phase following oxidation process. In contrast, the product obtained with Fe(III) did not contain a layered double hydroxides phase, but rather consisted of simonkolleite and hydrous ferric oxide. It was determined that the valency of the Fe reagent used in the initial synthesis affected the generation of the layered double hydroxides phase. Fe(II) species have ionic radii and electronegativities similar to those of Zn, and therefore are more likely to form trioctahedral hydroxide layers with Zn species. - Graphical abstract: The synthesis of Zn–Fe(III) layered double hydroxides was attempted, employing different pathways using either Fe(II) or Fe(III) species together with Zn as the initial reagents. - Highlights: • Iron valency affected the generation of Zn–Fe layered double hydroxides. • Zn–Fe layered double hydroxides were successfully synthesized using Fe(II). • Fe(II) species were likely to form trioctahedral hydroxide layers with Zn species.

  17. Controls of interactions between iron hydroxide colloid and water on REE fractionations in surface waters: Experimen-tal study on pH-controlling mechanism

    Institute of Scientific and Technical Information of China (English)

    刘丛强; 吴佳红; 于文辉

    2002-01-01

    The influence of pH on the partitioning behavior of REE at the water/particulate interface has been studied experimentally. At the beginning of colloid formation the adsorption of REE on iron hydroxide colloids is dominant, followed by REE desorption. Finally adsorption and desorption tend to reach equilibration. The capability of iron hydroxide colloids to adsorb the HREE is greater than that to adsorb the LREE. With increasing pH, LREE/HREE fractionations will take place between iron hydroxide colloids and water, leading to the reduction of their partition coefficient ratio (DLREE/DHREE). The DREE distribution patterns show Y anomalies (DY/DHo <1), with obvious REE tetrad effects appearing under low pH conditions. Experimental results have shown that there do exist REE tetrad effects in nature. In addition to pH, the chemical type of surface water and ion intensity are also the important factors controlling REE tetrad effects and leading to fractionations between particulate-adsorbed REE and dissolved REE.

  18. N-butylamine functionalized graphene oxide for detection of iron(III) by photoluminescence quenching.

    Science.gov (United States)

    Gholami, Javad; Manteghian, Mehrdad; Badiei, Alireza; Ueda, Hiroshi; Javanbakht, Mehran

    2016-02-01

    An N-butylamine functionalized graphene oxide nanolayer was synthesized and characterized by ultraviolet (UV)-visible spectrometry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Detection of iron(III) based on photoluminescence spectroscopy was investigated. The N-butylamine functionalized graphene oxide was shown to specifically interact with iron (III), compared with other cationic trace elements including potassium (I), sodium (I), calcium (II), chromium (III), zinc (II), cobalt (II), copper (II), magnesium (II), manganese (II), and molybdenum (VI). The quenching effect of iron (III) on the luminescence emission of N-butylamine functionalized graphene oxide layer was used to detect iron (III). The limit of detection (2.8 × 10(-6)  M) and limit of quantitation (2.9 × 10(-5)  M) were obtained under optimal conditions.

  19. Iron (III)-silica interactions in aqueous solution: insights from X.-ray absorption fine structure spectroscopy

    Science.gov (United States)

    Pokrovski, Gleb S.; Schott, Jacques; Farges, François; Hazemann, Jean-Louis

    2003-10-01

    The influence of aqueous silica on the hydrolysis of iron(III) nitrate and chloride salts in dilute aqueous solutions ( mFe ˜ 0.01 mol/kg) was studied at ambient temperature using X-ray absorption fine structure (XAFS) spectroscopy at the Fe K-edge. Results show that in Si-free iron nitrate and chloride solutions at acid pH (pH hydroxide complexes form via Fe-(O/OH)-Fe bonds. In these polymers, the first atomic shell of iron represents a distorted octahedron with six O/OH groups and Fe-O distances ranging from 1.92 to 2.07 Å. The Fe octahedra are linked together by their edges (Fe-Fe distance 2.92-3.12 Å) and corners (Fe-Fe distance ˜3.47 ± 0.03 Å). The Fe-Fe coordination numbers ( Nedge = 1-2; Ncorner = 0.5-0.7) are consistent with the dominant presence of iron dimers, trimers and tetramers at pH 2.5 to 2.9, and of higher-polymerized species at pH > 3. At pH > 2.5 in the presence of aqueous silica, important changes in Fe(III) hydrolysis are detected. In 0.05- m Si solutions (pH ˜ 2.7-3.0), the corner linkages between Fe octahedra in the polymeric complexes disappear, and the Fe-Fe distances corresponding to the edge linkages slightly increase (Fe-Fe edge ˜ 3.12-3.14 Å). The presence of 1 to 2 silicons at 3.18 ± 0.03 Å is detected in the second atomic shell around iron. At basic pH (˜12.7), similar structural changes are observed for the iron second shell. The Fe-Si and Fe-Fe distances and coordination numbers derived in this study are consistent with (1) Fe-Si complex stoichiometries Fe 2Si 1-2 and Fe 3Si 2-3 at pH silicon tetrahedra linked to two neighboring Fe octahedra via corners. At higher Si concentration (0.16 m, polymerized silica solution) and pH ˜ 3, the signal of the Fe second shell vanishes indicating the destruction of the Fe-Fe bonds and the formation of different Fe-Si linkages. Moreover, ˜20 mol.% of Fe is found to be tetrahedrally coordinated with oxygens in the first coordination shell ( RFe-O = 1.84 Å). This new finding implies

  20. Detection of iron(III)-binding ligands originating from marine phytoplankton using cathodic stripping voltammetry.

    Science.gov (United States)

    Hasegawa, Hiroshi; Maki, Teruya; Asano, Kohnosuke; Ueda, Kentaro; Ueda, Kazumasa

    2004-01-01

    The sample preparation and analytical methodology are described for detecting biologically produced iron(III)-binding ligands in laboratory cultures of coastal marine phytoplankton. The iron(III)-binding ligands from the culture media were purified by passage through a column packing with a hydrophobic absorbent. The concentrations and stability constants of the ligands were determined by adsorptive cathodic stripping voltammetry with competitive ligand equilibration. The analytical results of the cultivated cultures suggest that eukaryotic phytoplankton would produce iron(III)-binding ligands in analogy with other microorganisms.

  1. INFLUENCE OF HEAVY METALS HYDROXIDES ON WATER DISSOCIATION IN BIPOLAR MEMBRANE

    Directory of Open Access Journals (Sweden)

    Sheldeshov N. V.

    2015-12-01

    Full Text Available The results of study of bipolar membrane – analogue of MB-2, modified with chemically introduced chromium (III, iron (III and nickel (II hydroxides by the method of frequency spectrum of electrochemical impedance, by infrared spectroscopy and scanning electron microscopy in combination with X-ray spectrum analysis are presented. It is shown, that sequential treatment of cation-exchanger, contained in cationexchange membrane, with metal salt solution and alkali solution does not result in formation of complex compounds of these metals with ionic groups of ion exchanger. It was found that in these conditions the presence of heavy metals in the phase of cationexchanger confirmed by X-ray analysis, however, crystals of hydroxides of heavy metals are not detected in the size range of 1000 nm to 20 nm. These heavy metal compounds are thermally unstable and their catalytic activity in the reaction of dissociation of water molecules decreases with increasing temperature during heat treatment. The introduction of low-soluble hydroxides of d-metals (chromium (III, iron (III, nickel(II by chemical method can significantly improve the electrochemical characteristics of a bipolar membrane. The most effective catalysts in water dissociation reaction are the hydroxides of chromium (III and iron (III and, as a consequence, membranes with these hydroxides have a lower value of overpotential compared with original membrane at the same current density

  2. Structural characterization of iron oxide/hydroxide nanoparticles in nine different parenteral drugs for the treatment of iron deficiency anaemia by electron diffraction (ED) and X-ray powder diffraction (XRPD).

    Science.gov (United States)

    Fütterer, S; Andrusenko, I; Kolb, U; Hofmeister, W; Langguth, P

    2013-12-01

    Drug products containing iron oxide and hydroxide nanoparticles (INPs) are important for the treatment of iron deficiency anaemia. Pharmaceuticals prepared by the complexation of different kinds of INPs and carbohydrates have different physicochemical and biopharmaceutic characteristics. The increasing number of parenteral non-biological complex drugs (NBCD) containing iron requires physicochemical methods for characterization and enabling of cross comparisons. In this context the structure and the level of crystallinity of the iron phases may be connected to the in vitro and in vivo dissolution rates, which etiologically determine the therapeutic and toxic effects. X-ray powder diffraction (XRPD) and electron diffraction (ED) methods were used in order to investigate the nine different parenteral iron formulations Ferumoxytol (Feraheme(®)), sodium ferric gluconate sucrose (Ferrlecit(®)), iron sucrose (Venofer(®)), low molecular weight iron dextran (CosmoFer(®)), low molecular weight iron dextran (Infed(®)), high molecular weight iron dextran (Ironate(®)), high molecular weight iron dextran (Dexferrum(®)), iron carboxymaltose (Ferinject(®)) and iron isomaltoside 1000 (Monofer(®)). The iron phase in CosmoFer(®), Ferinject(®), Monofer(®), Infed(®), Ironate(®) and Dexferrum(®) was identified as Akaganéite/Akaganéite-like (β-FeOOH), with low amounts of chloride. By combining results of both methods the iron oxide in Feraheme(®) was identified as Magnetite (Fe3O4) with spinel-like structure. Ferrlecit(®) and Venofer(®) were difficult to analyze due to the low degree of crystallinity, but the iron phase seems to fit Lepidocrocite/Lepidocrocite-like (γ-FeOOH) or an amorphous kind of structure. The structural information on the type of iron oxide or hydroxide together with the particle size allows predicting the stability of the different complexes including their labile iron content. The combination of ED and XRPD methods is a very helpful approach

  3. Determinação de ferro (III em produtos farmacêuticos por titulação fotométrica - doi: 10.4025/actascihealthsci.v33i1.8034 Determination of iron (III in pharmaceutical products by photometric titration - doi: 10.4025/actascihealthsci.v33i1.8034

    Directory of Open Access Journals (Sweden)

    Flávio Luís Beltrame

    2011-05-01

    Full Text Available Este trabalho descreve a montagem de um sistema de titulação fotométrica simples e de baixo custo para a determinação de ferro (III em produtos farmacêuticos. O sistema de titulação fotométrica foi construído utilizando-se a bomba peristáltica de um espectrofotômetro convencional. O procedimento é baseado na titulação de ferro (III com EDTA e ácido salicílico como indicador. A absorção do complexo ferro (III-ácido salicílico foi monitorada espectrofotometricamente em 525 nm. O limite de quantificação foi de 5 µg de ferro (III. O procedimento de titulação fotométrica foi aplicado para a determinação de ferro (III em amostras contendo sulfato ferroso e hidróxido férrico polimaltosado. O procedimento mostrou sensibilidade, reprodutibilidade e precisão para a utilização em análise rotineira de ferro (III em produtos farmacêuticos.This paper describes a simple, precise and low-cost photometric titration method for iron (III determination in pharmaceutical preparations. The photometric titration system was constructed using the peristaltic pump of a conventional spectrophotometer. The method is based on titration of iron (III with EDTA using salicylic acid as indicator. The absorption of the iron (III-salicylic acid complex was monitored spectrophotometrically at 525 nm. The limit of quantification was 5 µg of iron (III. The photometric titration procedure was applied for the determination of iron (III in samples of ferrous sulfate and ferric hydroxide polymaltose complex. The procedure showed sensibility, reproducibility and accuracy for use as a method for the routine analysis of iron (III in pharmaceutical formulations.

  4. Iron (III) aquacomplexes as catalysts for pesticides mineralisation by sunlight irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Catastini, C.; Mailhot, G.; Malato, S.; Sarakha, M.

    2002-07-01

    The experimental results of the photo catalytic degradation of the pesticide asulam (4-amino-benzosulfonyl-methylcarbamate) in aqueous solutions using iron (III) aquacomplexes as photo inducer and sunlight as irradiation source are reported. The experiments were conducted in a compound parabolic collector reactor (CPC) of Plataforma solar de Almeria. In the early stages of the irradiation, the degradation is clearly due to the photo redox process involving the most photoactive species of iron (III) (Fe(OH)''2+). The degradation was also shown to proceed when iron (II) was used as a photo inducer in aerated aqueous solutions. In both cases, the complete degradation of the substrate to CO{sub 2} in aerated aqueous solutions needed exposition to solar light of about 13-14 hours. A catalytic process involving iron (III), iron (II), oxygen and light is proposed. (Author) 24 refs.

  5. Spectrophotometric Determination of Iron(III) after Separation by Adsorption of its Pyrrolidinedithiocarbamate on Nephthalene

    OpenAIRE

    Masatada Satake; Singh, H. B.

    1982-01-01

    A method for the spectrophotometric determination of trace amounts of iron(III) after adsorption of its pyrrolidindeithiocarbamate on naphthalene is presented. Iron(III) forms a water-insoluble chelate with ammonium pyrrolidinedithiocarbamate in the pH range 2.9-6.6. This chelate is quantitatively adsorbed onto mycrocrystalline naphthalene at room temperature. The effects of variablesm, such as pH, amount of reagent and napthalene, digestion and shaking time, and diverse ions, have been exami...

  6. Conformational Diversity in (Octaethylporphinato) (trichloroacetato)iron(III) Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, B.; Ma, J.; Neal, T.J.; Scheidt, W.R.; Schulz, C.E.; Shelnutt, J.A.

    1998-10-19

    Treatment of [Fe(OEP)]20 with trichloroacetic acid results in ruffled formation of (octaethylporphinato trichloroacetato)iron(HI). Various crystalline solvates can be isolated, depending on the crystallization solvent. Initial crystallization with CHC13/hexanes resulted in the isolation of an unsolvated form. [Fe(OEP)(02C2C13 )]. This form contains distinct porphyrin core conformations at the same site: one is domed and the other is ruffled. Crystal data for [Fe(OEP)(02C2C13 )]: Q = 14.734(4) .4. b = 13.674(1) .\\. c = 17..541 [,.5] .~. 3 = 90.67(1)0, V = 35-!5.8(14) .\\3. monoclinic. space group R1/ n. Z = 4. Subsequent crystallization with CHC13/hexanes resulted in a new crystalline form, [Fe(OEP)(OzC2C13 )~.- CHC13; the porphyrin core is slightly ruffled. Crystal data for [Fe(OEP)(OoC2C13 )]. CHC13: a =12.323(1) .~, 6 = 13.062(3) .\\. C = 14.327(2) .$, Q = 89.32(1)", .3 = 113.36(2)0. :~ = 105.26(1)'. V = `2031.3(6) .\\3. triclinic. space group Pi. Z = 2. Crystallization with CH2C12/hexanes resulted in the isolation of yet another form, [Fe(OEP) (02 C2C13)]. H02C2C13. which contains two independent molecules in the unit cell: molecule is slightly saddled and molecule B is modestly ruffled. Crystal data for [Fe(OEP)(02ClC13 )]. H02C2C13: a = 13.148(3) .\\, b = 13.45.5(3) A, c = Q3.761(5) -& ~ = 90.72(3)", ~ = 91. ~4(3)". -y = 92.36(3)0, V = 4198.5(15) .\\3, triclinic.space group PI, Z = 4. .+11 conformations form dimers in the solid state. Temperature-dependent manometic susceptibility measurements showed that [Fe(OEP)(02C2C13)] .CHC13 contains a high-spin iron(III) center; the data for {Fe(OEP)(02C2C13 )l.H02C2C13 are understood in terms of an admixed intermediate-spin state (S = 3/2, 5/2) and are readily fit to a faltempo model with a ground state multiplet containing about 78% S = 5/2 character and 22% S = 3/2 character. The structural data for [Fe(OEP)(02C2C13 )]. CHC13 are consistent with the observed high-spin state, while data for ~Fe(OEP) (02 C2C13

  7. Effect of calcium on adsorptive removal of As(III) and As(V) by iron oxide-based adsorbents

    KAUST Repository

    Uwamariya, V.

    2014-06-25

    The effects of calcium on the equilibrium adsorption capacity of As(III) and As(V) onto iron oxide-coated sand (IOCS) and granular ferric hydroxide (GFH) were investigated through batch experiments, rapid small-scale column tests (RSSCT) and kinetics modelling. Batch experiments showed that at calcium concentrations≤20 mg/L, high As(III) and As(V) removal efficiencies by IOCS and GFH are achieved at pH 6. An increase of the calcium concentration to 40 and 80 mg/L reversed this trend, giving higher removal efficiencies at higher pH (8). The adsorption capacities of IOCS and GFH at an equilibrium arsenic concentration of 10 g/L were found to be between 2.0 and 3.1 mg/g for synthetic water without calcium and between 2.8 and 5.3 mg/g when 80 mg/L of calcium was present at the studied pH values. After 10 hours of filter run in RSSCT, approximately 1000 empty bed volumes, the ratios of C/Co for As(V) were 26% and 18% for calcium-free model water; and only 1% and 0.2% after addition of 80 mg/L of Ca for filter columns with IOCS and GFH, respectively. The adsorption of As(III) and As(V) onto GFH follows a second-order reaction, with and without addition of calcium. The adsorption of As(III) and As(V) onto IOCS follows a first-order reaction without calcium addition, and moves to the second-reaction-order kinetics when calcium is added. Based on the intraparticle diffusion model, the main controlling mechanism for As(III) adsorption is intraparticle diffusion, while surface diffusion contributes greatly to the adsorption of As(V).

  8. An ethylene glycol intercalated monometallic layered double hydroxide based on iron as an efficient bifunctional catalyst.

    Science.gov (United States)

    Nagarajan, Rajamani; Gupta, Pankaj; Singh, Poonam; Chakraborty, Pinki

    2016-11-01

    Given the fact that the literature describing the intercalation of organic molecules in monometallic LDH systems is scarce, the present investigation is aimed at the generation of ethylene glycol intercalated Fe(II)-Fe(III) LDH with the objective of enhancing the surface area for further catalytic applications of industrially important and environmentally harmful organics. The solvothermal reaction of FeCl3 with urea in an ethylene glycol medium yielded a brown colored powder which was characterized employing a wide range of analytical techniques including high resolution powder X-ray diffraction (PXRD), scanning electron microscopy, thermal analysis, X-ray photo electron spectroscopy (XPS), elemental (C, H, N and S) analysis, UV-visible, photoluminescence spectroscopy measurements, BET surface area and pore-size analysis. The observed reflections in the PXRD pattern were indexed in a rhombohedral symmetry with a = 3.175 and c = 31.9 Å. Combining the results from the Fe 2p core level analysis and anion contents from elemental and thermogravimetric analysis, a formula of Fe(2+)1.06 Fe(3+)0.94 (O2C2H4) (OH)4 was deduced for the sample. The intercalation of EG in the interlayer was confirmed from FTIR and Raman spectroscopy measurements. The d-d transitions of the Fe(3+)-ion and the charge transfer transition of the Fe(ii)-Fe(iii) lattice were evident in the UV-visible spectrum. Blue indigoid emission bands arising from the transitions present in the Fe(3+)-ion were noticed in the photoluminescence spectrum. The measured BET surface area and pore diameter of the sample were 144 m(2) g(-1) and 12.5 nm, respectively. Almost instant decolourisation of the Xylenol Orange (XO) dye occurred in the presence of H2O2 and the LDH sample as catalyst. Similar observations were encountered for Methyl Orange (MO) and Methylene Blue (MB) dyes. All these reactions followed pseudo first-order kinetics. The industrially important reductive conversion of nitro aromatics was catalyzed

  9. In-situ precipitation and flocculation of iron hydroxides. A novel alternative to gel treatments

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, I.; Lakatos-Szabo, J. [Miskolch Univ. (Hungary). Research Inst. of Applied Chemistry; Kosztin, B.; Palasthy, Gy. [Hungarian Oil and Gas Company, Szolnok (Hungary)

    2002-01-01

    Development of a new well treatment method was stimulated by recognizing that some inorganic compounds, particularly Fe(III) compounds, can be transformed into gel-like precipitate by in-situ hydrolysis which is then immobilized by flocculation or spontaneous aging. These blocking materials have excellent stability under field conditions, but in case of technological failure the gel phase can easily be broken up into mobile sols. Further, the novel method is characterized by outstanding placement selectivity; self-controlling chemical mechanism and injectivity problems may not arise even in low permeable porous systems. During a field tests, extending over four years, 10 oil producing and 7 water injection wells were treated. The well responses were different: ration of the technical success was about 60%, while 40% of treatment was definitely profitable. In special reservoir blocks the injectors were simultaneously treated with the oil producing wells. The primary aim of these projects was to enhance the effect of profile correction around the producers and to improve the frontal displacement mechanism. The novel method proved to be compatible with the reservoir system and technical failure was not encountered during the past five years. The positive results contributed significantly to a recent decision of the operator that, parallel with other profile correction and water shut-off (e.g. polymer/silicate) techniques, application of the novel method will be extended to other reservoirs of the Algyo field, Hungary. (orig.)

  10. Reply to Comments on Measuring marine iron(III) complexes by CLE-AdSV

    NARCIS (Netherlands)

    Town, R.M.; Leeuwen, van H.P.

    2005-01-01

    The interpretation of CLE-AdSV based iron(iii) speciation data for marine waters has been called into question in light of the kinetic features of the measurement. The implications of the re-think may have consequences for understanding iron biogeochemistry and its impact on ecosystem functioning.

  11. Formation of colloidal dispersions from supersaturated iron(III) nitrate solutions. III. Development of goethite at room temperature

    NARCIS (Netherlands)

    Bruyn, P.L. de; Woude, J.H.A. van der; Pieters, J.

    1984-01-01

    The development of colloidal goethite from partially neutralized iron(III) nitrate solutions has been investigated by high resolution electronmicroscopy and ultracentrifuge analysis. Monocrystalline rod-like particles characterized by (001) faces and very flat (010) and (120) faces are observed to f

  12. Dioxygen activation by a non-heme iron(II) complex: formation of an iron(IV)-oxo complex via C-H activation by a putative iron(III)-superoxo species.

    Science.gov (United States)

    Lee, Yong-Min; Hong, Seungwoo; Morimoto, Yuma; Shin, Woonsup; Fukuzumi, Shunichi; Nam, Wonwoo

    2010-08-11

    Iron(III)-superoxo intermediates are believed to play key roles in oxygenation reactions by non-heme iron enzymes. We now report that a non-heme iron(II) complex activates O(2) and generates its corresponding iron(IV)-oxo complex in the presence of substrates with weak C-H bonds (e.g., olefins and alkylaromatic compounds). We propose that a putative iron(III)-superoxo intermediate initiates the O(2)-activation chemistry by abstracting a H atom from the substrate, with subsequent generation of a high-valent iron(IV)-oxo intermediate from the resulting iron(III)-hydroperoxo species.

  13. Identification and spectroscopic characterization of nonheme iron(III) hypochlorite intermediates

    OpenAIRE

    Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G.; Padamati, Sandeep K; Gómez Martín, Laura; Hage, Ronald; Costas Salgueiro, Miquel; Browne, Wesley R.; de Visser, Sam P.

    2015-01-01

    FeIII-hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme FeIII-hypohalite intermediates of possible relevance to iron halogenases. We show that FeIII-OCl polypyridy...

  14. Unusual clotting dynamics of plasma supplemented with iron(III).

    Science.gov (United States)

    Jankun, Jerzy; Landeta, Philip; Pretorius, Etheresia; Skrzypczak-Jankun, Ewa; Lipinski, Bogusław

    2014-02-01

    Iron salts are used in the treatment of iron deficiency anemia. Diabetic patients are frequently anemic and treatment includes administration of iron. Anemic patients on hemodialysis are at an increased risk of thromboembolic coronary events associated with the formation of dense fibrin clots resistant to fibrinolysis. Moreover, in chronic kidney disease patients, high labile plasma iron levels associated with iron supplementation are involved in complications found in dialyzed patients such as myocardial infarction. The aim of the present study was to investigate whether iron treatment is involved in the formation of the fibrin clots. Clotting of citrated plasma supplemented with Fe(3+) was investigated by thromboelastometry and electron microscopy. The results revealed that iron modifies coagulation in a complex manner. FeCl(3) stock solution underwent gradual chemical modification during storage and altered the coagulation profile over 29 days, suggesting that Fe(3+) interacts with both proteins of the coagulation cascade as well as the hydrolytic Fe(3+) species. Iron extends clotting of plasma by interacting with proteins of the coagulation cascade. Fe(3+) and/or its hydrolytic species interact with fibrinogen and/or fibrin changing their morphology and properties. In general FeCl(3) weakens the fibrin clot while at the same time precipitating plasma proteins immediately after application. Fe(3+) or its derivatives induced the formation of insoluble coagulums in non-enzymatic reactions including albumin and transferrin. Iron plays a role in coagulation and can precipitate plasma proteins. The formation of coagulums resistant to lysis in non‑enzymatic reactions can increase the risk of thrombosis, and extending clotting of plasma can prolong bleeding.

  15. Isolation of microorganisms involved in reduction of crystalline iron(III oxides in natural environments

    Directory of Open Access Journals (Sweden)

    Tomoyuki eHori

    2015-05-01

    Full Text Available Reduction of crystalline Fe(III oxides is one of the most important electron sinks for organic compound oxidation in natural environments. Yet a limited number of isolates makes it difficult to understand physiology and ecological impact of the microorganisms involved. Here, two-staged cultivation was implemented to selectively enrich and isolate crystalline iron(III reducers in soils and sediments. Firstly, iron reducers were enriched and other untargeted eutrophs were depleted by two-year successive culture on a crystalline ferric iron oxide (i.e., goethite, lepidocrocite, hematite, or magnetite as electron acceptor. Fifty-eight out of 136 incubation conditions allowed the continued existence of microorganisms as confirmed by PCR amplification. High-throughput Illumina sequencing based on 16S rRNA genes revealed that the enrichment cultures on each of the ferric iron oxides contained bacteria belonging to the Deltaproteobacteria (mainly Geobacteraceae, followed by Firmicutes and Chloroflexi, which also comprised most of the operational taxonomic units (OTUs identified. The Venn diagrams indicated that the core OTUs enriched with all of the iron oxides were dominant in the Geobacteraceae. Secondly, 38 enrichment cultures including novel microorganisms were transferred to soluble-iron(III media in order to stimulate proliferation of the enriched iron reducers. Through extinction dilution-culture and single colony isolation, six strains within the Deltaproteobacteria were finally obtained; five strains belonged to the genus Geobacter and one strain to Pelobacter. These isolates had 94.8–98.1% sequence similarities of 16S rRNA genes to cultured relatives. All the isolates were able to grow on acetate and ferric iron but their physiological characteristics differed considerably in terms of growth rate. The results demonstrate the successful enrichment and isolation of novel iron(III reducers that were able to thrive by reducing highly

  16. 5-Fluorouracil intercalated iron oxide@layered double hydroxide core-shell nano-composites with isotropic and anisotropic architectures for shape-selective drug delivery applications.

    Science.gov (United States)

    Tuncelli, Gülsevde; Ay, Ahmet Nedim; Zümreoglu-Karan, Birgül

    2015-10-01

    We report the synthesis, characterization and in vitro release behavior of anti-cancer drug carrying iron oxide@layered double hydroxide core-shell nanocomposites with sizes ranging from 40 to 300 nm, good drug loading capacities and soft ferromagnetic properties. HRTEM analyses verified that nearly spherical isotropic carriers were obtained by coating spherical magnetite particles while anisotropic carriers were obtained by coating spindle-shaped hematite particles. They both displayed a fluctuating in vitro release profile with a higher release percentage for the anisotropic carrier.

  17. Experimental study of germanium adsorption on goethite and germanium coprecipitation with iron hydroxide: X-ray absorption fine structure and macroscopic characterization

    Science.gov (United States)

    Pokrovsky, O. S.; Pokrovski, G. S.; Schott, J.; Galy, A.

    2006-07-01

    Adsorption of germanium on goethite was studied at 25 °C in batch reactors as a function of pH (1-12), germanium concentration in solution (10 -7 to 0.002 M) and solid/solution ratio (1.8-17 g/L). The maximal surface site density determined via Ge adsorption experiments at pH from 6 to 10 is equal to 2.5 ± 0.1 μmol/m 2. The percentage of adsorbed Ge increases with pH at pH Model (SCM) which implies a constant capacitance of the electric double layer and postulates the presence of two Ge complexes, >FeO-Ge(OH)30 and >FeO-GeO(OH)2-, at the goethite-solution interface. Coprecipitation of Ge with iron oxy(hydr)oxides formed during Fe(II) oxidation by atmospheric oxygen or by Fe(III) hydrolysis in neutral solutions led to high Ge incorporations in solid with maximal Ge/Fe molar ratio close to 0.5. The molar Ge/Fe ratio in precipitated solid is proportional to that in the initial solution according to the equation (Ge/Fe) solid = k × (Ge/Fe) solution with 0.7 ⩽ k ⩽ 1.0. The structure of adsorbed and coprecipitated Ge complexes was further characterized using XAFS spectroscopy. In agreement with previous data on oxyanions adsorption on goethite, bi-dentate bi-nuclear surface complexes composed of tetrahedrally coordinated Ge attached to the corners of two adjacent Fe octahedra represent the dominant contribution to the EXAFS signal. Coprecipitated samples with Ge/Fe molar ratios >0.1, and samples not aged in solution (hydroxide at Ge/Fe molar ratio ⩽0.0001. These conditions are likely to be met in many superficial aquatic environments at the contact of anoxic groundwaters with surficial oxygenated solutions. Adsorption and coprecipitation of Ge with solid Fe oxy(hydr)oxides and organo-mineral colloids and its consequence for Ge/Si fractionation and Ge geochemical cycle are discussed.

  18. Photo-induced spin transition of Iron(III) compounds with pi-pi intermolecular interactions.

    Science.gov (United States)

    Hayami, Shinya; Hiki, Kenji; Kawahara, Takayoshi; Maeda, Yonezo; Urakami, Daisuke; Inoue, Katsuya; Ohama, Mitsuo; Kawata, Satoshi; Sato, Osamu

    2009-01-01

    Iron(III) spin-crossover compounds [Fe(pap)(2)]ClO(4) (1), [Fe(pap)(2)]BF(4) (2), [Fe(pap)(2)]PF(6) (3), [Fe(qsal)(2)]NCS (4), and [Fe(qsal)(2)]NCSe (5) (Hpap=2-(2-pyridylmethyleneamino)phenol and Hqsal=2-[(8-quinolinylimino)methyl]phenol) were prepared and their spin-transition properties investigated by magnetic susceptibility and Mössbauer spectroscopy measurements. The iron(III) compounds exhibited spin transition with thermal hysteresis. Single crystals of the iron(III) compounds were obtained as suitable solvent adducts for X-ray analysis, and structures in high-spin (HS) and low-spin (LS) states were revealed. Light-induced excited-spin-state trapping (LIESST) effects of the iron(III) compounds were induced by light irradiation at 532 nm for 1-3 and at 800 nm for 4 and 5. The activation energy E(a) and the low-temperature tunneling rate k(HL)(T-->0) of iron(III) LIESST compound 1 were estimated to be 1079 cm(-1) and 2.4x10(-8) s(-1), respectively, by HS-->LS relaxation experiments. The Huang-Rhys factor S of 1 was also estimated to be 50, which was similar to that expected for iron(II) complexes. It is thought that the slow relaxation in iron(III) systems is achieved by the large structural distortion between HS and LS states. Introduction of strong intermolecular interactions, such as pi-pi stacking, can also play an important role in the relaxation behavior, because it can enhance the structural distortion of the LIESST complex.

  19. Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate.

    Science.gov (United States)

    Song, Jia; Jia, Shao-Yi; Yu, Bo; Wu, Song-Hai; Han, Xu

    2015-08-30

    Abiotic oxidation of Fe(II) is a common pathway in the formation of Fe (hydr)oxides under natural conditions, however, little is known regarding the presence of arsenate on this process. In hence, the effect of arsenate on the precipitation of Fe (hydr)oxides during the oxidation of Fe(II) is investigated. Formation of arsenic-containing Fe (hydr)oxides is constrained by pH and molar ratios of As:Fe during the oxidation Fe(II). At pH 6.0, arsenate inhibits the formation of lepidocrocite and goethite, while favors the formation of ferric arsenate with the increasing As:Fe ratio. At pH 7.0, arsenate promotes the formation of hollow-structured Fe (hydr)oxides containing arsenate, as the As:Fe ratio reaches 0.07. Arsenate effectively inhibits the formation of magnetite at pH 8.0 even at As:Fe ratio of 0.01, while favors the formation of lepidocrocite and green rust, which can be latterly degenerated and replaced by ferric arsenate with the increasing As:Fe ratio. This study indicates that arsenate and low pH value favor the slow growth of dense-structured Fe (hydr)oxides like spherical ferric arsenate. With the rapid oxidation rate of Fe(II) at high pH, ferric (hydr)oxides prefer to precipitate in the formation of loose-structured Fe (hydr)oxides like lepidocrocite and green rust. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Age Strengthening of Gray Cast Iron Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Von L. Richards; Wayne Nicola

    2003-06-26

    The primary objective of this research is to identify the age strengthening mechanism in gray and ductile cast iron, and to quantify the parameters that control it. It is also to contribute to a new predictive model for gray and ductile iron strength and hardness. This work shows that age strengthening occurs on a sigmoidal-logarithmic scale in gray and ductile cast irons, to a statistically significant extent. This is similar to Avrami-Johnson-Mehl kinetics for phase transformations in metals. It occurs in both cupola-melted iron and induction melted iron. However, it does not happen in all compositions. We have developed some understanding of the process. Data suggests that nitrogen and nitride-forming trace elements have a significant role in the process, but that is yet not fully characterized. Also, the time dependence of the bulk hardness and strength increase, the nano-scale precipitation evidence from neutron scattering, differential scanning calorimetry results and matrix micro-hardness increase in ferrite all indicate that age strengthening occurs by a precipitation or pre-precipitate cluster formation mechanism.

  1. Hydroxide-bridged five-coordinate Dy(III) single-molecule magnet exhibiting the record thermal relaxation barrier of magnetization among lanthanide-only dimers.

    Science.gov (United States)

    Xiong, Jin; Ding, Hai-Yan; Meng, Yin-Shan; Gao, Chen; Zhang, Xue-Jing; Meng, Zhao-Sha; Zhang, Yi-Quan; Shi, Wei; Wang, Bing-Wu; Gao, Song

    2017-02-01

    A hydroxide-bridged centrosymmetric Dy(III) dimer with each Dy(III) being five-coordinated has been synthesized using bulky hindered phenolate ligands. Magnetic studies revealed that this compound exhibits a slow magnetic relaxation of a single-ion origin together with a step-like magnetic hysteresis of the magnetic coupled cluster. The thermal relaxation barrier of magnetization is 721 K in the absence of a static magnetic field, while the intramolecular magnetic interaction is very large among reported 4f-only dimers. CASSCF calculations with a larger active space were performed to understand the electronic structure of the compound. The thermal relaxation regime and the quantum tunneling regime are well separated, representing a good model to study the relaxation mechanism of SMMs with intramolecular Dy-Dy magnetic interactions.

  2. Magnesium Hydroxide

    Science.gov (United States)

    Magnesium hydroxide is used on a short-term basis to treat constipation.This medication is sometimes prescribed ... Magnesium hydroxide come as a tablet and liquid to take by mouth. It usually is taken as ...

  3. Spectroscopic studies on gallic acid and its azo derivatives and their iron(III) complexes.

    Science.gov (United States)

    Masoud, Mamdouh S; Ali, Alaa E; Haggag, Sawsan S; Nasr, Nessma M

    2014-01-01

    Azo gallic derivatives and their iron(III) complexes were synthesized and characterized. The stereochemistry and the mode of bonding of the complexes were achieved based on elemental analysis, UV-Vis and IR. The thermal behaviors of the complexes were studied. The effect of pH on the electronic absorption spectra of gallic acid and its azo derivatives are discussed. Different spectroscopic methods (molar ratio, straight line method, continuous variation, slope ratio and successive method) are applied for determination of stoichiometry and pK values for the complex formation of gallic acid with iron(III) in aqueous media. Iron(III) complexes of gallic acid is formed with different ratio: 1:1, 1:2, 1:3 and 1:4 (M:L).

  4. Complex Formation Between Iron(III) and Isonicotinohydroxamic ...

    African Journals Online (AJOL)

    acer

    Nigerian Journal of Basic and Applied Science (2009), 17(2): 181-188 ... ABSTRACT: Complex of Fe(III) with isonicotinohydroxamic acid (INHA) has been .... Matrix rank analysis using nine solution ..... computation of stability constants from ...

  5. Fe(II) sorption on pyrophyllite: Effect of structural Fe(III) (impurity) in pyrophyllite on nature of layered double hydroxide (LDH) secondary mineral formation

    Energy Technology Data Exchange (ETDEWEB)

    Starcher, Autumn N.; Li, Wei; Kukkadapu, Ravi K.; Elzinga, Evert J.; Sparks, Donald L.

    2016-11-01

    Fe(II)-Al(III)-LDH (layered double hydroxide) phases have been shown to form from reactions of aqueous Fe(II) with Fe-free Al-bearing minerals (phyllosilicate/clays and Al-oxides). To our knowledge, the effect of small amounts of structural Fe(III) impurities in “neutral” clays on such reactions, however, were not studied. In this study to understand the role of structural Fe(III) impurity in clays, laboratory batch studies with pyrophyllite (10 g/L), an Al-bearing phyllosilicate, containing small amounts of structural Fe(III) impurities and 0.8 mM and 3 mM Fe(II) (both natural and enriched in 57Fe) were carried out at pH 7.5 under anaerobic conditions (4% H2 – 96% N2 atmosphere). Samples were taken up to 4 weeks for analysis by Fe-X-ray absorption spectroscopy and 57Fe Mössbauer spectroscopy. In addition to the precipitation of Fe(II)-Al(III)-LDH phases as observed in earlier studies with pure minerals (no Fe(III) impurities in the minerals), the analyses indicated formation of small amounts of Fe(III) containing solid(s), most probably hybrid a Fe(II)-Al(III)/Fe(III)-LDH phase. The mechanism of Fe(II) oxidation was not apparent but most likely was due to interfacial electron transfer from the sorbed Fe(II) to the structural Fe(III) and/or surface-sorption-induced electron-transfer from the sorbed Fe(II) to the clay lattice. Increase in the Fe(II)/Al ratio of the LDH with reaction time further indicated the complex nature of the samples. This research provides evidence for the formation of both Fe(II)-Al(III)-LDH and Fe(II)-Fe(III)/Al(III)-LDH-like phases during reactions of Fe(II) in systems that mimic the natural environments. Better understanding Fe phase formation in complex laboratory studies will improve models of natural redox systems.

  6. Rhizosphere iron (III) deposition and reduction in a Juncus effusus L.-dominated wetland

    Science.gov (United States)

    Weiss, J.V.; Emerson, D.; Megonigal, J.P.

    2005-01-01

    Iron (III) plaque forms on the roots of wetland plants from the reaction of Fe(II) with O2 released by roots. Recent laboratory studies have shown that Fe plaque is more rapidly reduced than non-rhizosphere Fe(III) oxides. The goals of the current study were to determine in situ rates of: (i) Fe(III) reduction of root plaque and soil Fe(III) oxides, (ii) root Fe(III) deposition, and (iii) root and soil organic matter decomposition. Iron (III) reduction was investigated using a novel buried-bag technique in which roots and soil were buried in heat-sealed membrane bags (Versapor 200 membrane, pore size = 0.2 ??m) in late fall following plant senescence. Bags were retrieved at monthly intervals for 1 yr to assess changes in total C and Fe mass, Fe mineralogy, Fe(II)/Fe(III) ratio, and the abundances of Fe(II)-oxidizing bacteria (FeOB) and Fe(III)-reducing bacteria (FeRB). The soil C and Fe pools did not change significantly throughout the year, but root C and total root Fe mass decreased by 40 and 70%, respectively. When total Fe losses were adjusted for changes in the ratio of Fe(II)/Fe(III), over 95% of the Fe(III) in the plaque was reduced during the 12-mo study, at a peak rate of 0.6 mg Fe(III) g dry weight-1 d-1 (gdw-1 d-1). These estimates exceed the crude estimate of Fe(III) accumulation [0.3 mg Fe(III) g dry weight-1 d-1] on bare-root plants that were transplanted into the wetland for a growing season. We concluded that root plaque has the potential to be reduced as rapidly as it is deposited under field conditions. ?? Soil Science Society of America.

  7. Complexation, Stability and Stoichiometry of Iron (III with Salbutamol

    Directory of Open Access Journals (Sweden)

    *N. Fatima

    2012-06-01

    Full Text Available Asthma is a wide speared disease all over the world. In this disease breathing is not smooth due to contraction of bronchitis. Ventolin is an effective drug for this purpose and is widely used. Its active ingredient is Salbutamol Sulphate, which is bronchodilator. Due to oxygen and nitrogen donor sites of Salbutamol (Fig I, it has been assumed that it may interact with metals present in the biological system, and therefore disturb the metals metabolism and imbalance the equilibrium. On the other hand two third of the body’s iron is found in hemoglobin which is an oxygen storage protein. Therefore may iron is chelated by the Salbutamol ion in the stomach. The chelation of iron by salbutamol, stability of the complex and Stoichiometry at acidic pH of the said complex is investigated implied Spectrophotometric technique. Salbutamol formed highly colored complex with iron having maximum absorbance at 550nm. A 1:3 complex formation in buffered and non buffered solutions at 30°C was found using mole ratio and slope ratio methods. Molar extinction coefficients were determined by calibration curve method and was found very high in non buffered solution comparative to buffered solutions. Stability constant of ML1 is found 6.3635, ML2 is 11.919 and ML3 is 16.858 in non buffered solution. Closer ln values were found in buffer of pH 3.0 and 3.5.

  8. Solubility and dissimilatory reduction kinetics of iron(III) oxyhydroxides: A linear free energy relationship

    Science.gov (United States)

    Bonneville, Steeve; Behrends, Thilo; Van Cappellen, Philippe

    2009-09-01

    Rates of reduction of Fe(III) oxyhydroxides by the bacterium Shewanella putrefaciens were measured as a function of the bacterial density and the Fe(III) substrate concentration. The results show that an earlier reported positive correlation between the solubility products ( ∗K so) and the maximum cell-specific reduction rates ( vmax) of predominantly poorly crystalline Fe(III) oxyhydroxides also applies to insoluble and crystalline Fe(III) oxyhydroxides. The mineral solubilities were measured by a dialysis bag technique under acidic conditions (pH 1 up to 2.5) at 25 °C. Initial iron reduction rates by S. putrefaciens were determined in the presence of excess lactate as electron donor. In all cases, the microbial reduction rate exhibited saturation behavior with respect to the Fe(III) oxyhydroxide concentration. On a double logarithmic scale, the maximum rates vmax and the solubility products defined a single linear free energy relationship (LFER) for all the Fe(III) oxyhydroxides considered. The solubility provided a better predictor of vmax than the specific surface area of the mineral phase. A rate limitation by the electron transfer between an iron reductase and a Fe(III) center, or by the subsequent desorption of Fe 2+ from the iron oxide mineral surface, are both consistent with the observed LFER.

  9. Effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper in synthesized Fe(III) minerals and Fe-rich soils.

    Science.gov (United States)

    Hu, Chaohua; Zhang, Youchi; Zhang, Lei; Luo, Wensui

    2014-04-01

    The effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper were investigated in a high concentration of sulfate with synthesized Fe(III) minerals and red earth soils rich in amorphous Fe (hydr)oxides. Batch microcosm experiments showed that red earth soil inoculated with subsurface sediments had a faster Fe(III) bioreduction rate than pure amorphous Fe(III) minerals and resulted in quicker immobilization of Cu in the aqueous fraction. Coinciding with the decrease of aqueous Cu, SO4(2-) in the inoculated red earth soil decreased acutely after incubation. The shift in the microbial community composite in the inoculated soil was analyzed through denaturing gradient gel electrophoresis. Results revealed the potential cooperative effect of microbial Fe(III) reduction and sulfate reduction on copper immobilization. After exposure to air for 144 h, more than 50% of the immobilized Cu was remobilized from the anaerobic matrices; aqueous sulfate increased significantly. Sequential extraction analysis demonstrated that the organic matter/sulfide-bound Cu increased by 52% after anaerobic incubation relative to the abiotic treatment but decreased by 32% after oxidation, indicating the generation and oxidation of Cu-sulfide coprecipitates in the inoculated red earth soil. These findings suggest that the immobilization of copper could be enhanced by mediating microbial Fe(III) reduction with sulfate reduction under anaerobic conditions. The findings have an important implication for bioremediation in Cucontaminated and Fe-rich soils, especially in acid-mine-drainage-affected sites.

  10. The life cycle of iron Fe(III) oxide: impact of fungi and bacteria

    Science.gov (United States)

    Bonneville, Steeve

    2014-05-01

    Iron oxides are ubiquitous reactive constituents of soils, sediments and aquifers. They exhibit vast surface areas which bind a large array of trace metals, nutrients and organic molecules hence controlling their mobility/reactivity in the subsurface. In this context, understanding the "life cycle" of iron oxide in soils is paramount to many biogeochemical processes. Soils environments are notorious for their extreme heterogeneity and variability of chemical, physical conditions and biological agents at play. Here, we present studies investigating the role of two biological agents driving iron oxide dynamics in soils, root-associated fungi (mycorrhiza) and bacteria. Mycorrhiza filaments (hypha) grow preferentially around, and on the surface of nutrient-rich minerals, making mineral-fungi contact zones, hot-spots of chemical alteration in soils. However, because of the microscopic nature of hyphae (only ~ 5 µm wide for up to 1 mm long) and their tendency to strongly adhere to mineral surface, in situ observations of this interfacial micro-environment are scarce. In a microcosm, ectomycorrhiza (Paxillus involutus) was grown symbiotically with a pine tree (Pinus sylvestris) in the presence of freshly-cleaved biotite under humid, yet undersaturated, conditions typical of soils. Using spatially-resolved ion milling technique (FIB), transmission electron microscopy and spectroscopy (TEM/STEM-EDS), synchrotron based X-ray microscopy (STXM), we were able to quantify the speciation of Fe at the biotite-hypha interface. The results shows that substantial oxidation of biotite structural-Fe(II) into Fe(III) subdomains occurs at the contact zone between mycorrhiza and biotite. Once formed, iron(III) oxides can reductively dissolve under suboxic conditions via several abiotic and microbial pathways. In particular, they serve as terminal electron acceptors for the oxidation of organic matter by iron reducing bacteria. We aimed here to understand the role of Fe(III) mineral

  11. 氢氧化铁对水中砷的吸附作用研究%Study on Adsorption of Arsenic from Water on Iron Hydroxide

    Institute of Scientific and Technical Information of China (English)

    李杰; 李金成; 李伟; 李鹏

    2011-01-01

    采用氢氧化铁做吸附剂,研究其对水体中As(Ⅲ)的吸附作用,探讨了pH、离子强度、干扰离子对As(Ⅲ)吸附的影响并对其吸附动力学进行了研究.结果表明:氢氧化铁能够在较宽的pH范围(pH为4.1~8.5)有效吸附As(Ⅲ),其吸附等温线能够用Langmuir吸附模型很好地描述,最大静态吸附容量为9.09mg/g,吸附动力学符合Lagergren二级动力学方程;磷酸根、硅酸根、碳酸根等阴离子对As(Ⅲ)吸附有不同程度抑制作用,其余共存阴离子对As(Ⅲ)的吸附影响不大.同时对氢氧化铁吸附As(Ⅲ)的机理进行了探讨,得出氢氧化铁对As(Ⅲ)的吸附可能是静电非专性吸附及配位络合专性吸附共同作用的结果.%Ferric hydroxide is used as adsorbent to study its adsorption of As(Ⅲ) in this paper.The effect and adsorption kinetics of pH,ionic strength and interfering ions are also investigated.The results show that iron hydroxide can effectively adsorb As(Ⅲ) in a wide range of pH from 4.1 to 8.5.Meanwhile,the adsorption isotherm can be well described by the Langmuir adsorption model and the maximum static adsorption capacity is 9.09 mg/g.Adsorption kinetics fits Lagergren second order kinetics equation.Phosphate,silicate,carbonate and other anions inhibit As(Ⅲ) from being adsorbed in various degrees and other coexisting anions have a very little effective on As(Ⅲ) being adsorbed.At the same time,the mechanism of the adsorption of As(Ⅲ) by ferric hydroxide is discussed and the adsorption of As by iron hydroxide may be the result of the interaction between the electrostatic non-specific adsorption and specific adsorption complexation.

  12. On the formation of iron(III) oxides via oxidation of iron(II)

    Energy Technology Data Exchange (ETDEWEB)

    Bongiovanni, R.; Pelizzetti, E. [Torino Univ. (Italy). Dipt. di Chimica Analitica; Borgarello, E. [Eniricerche SpA, Milan (Italy); Meisel, D. [Argonne National Lab., IL (United States)

    1994-09-01

    Formation of iron oxides in aqueous salt solutions is reviewed. The discussion is focused on the oxidation of iron(II) and the following hydrolysis process that leads to the formation of a solid phase from homogeneous solutions. Results from our own studies on the kinetics of the oxidation reactions and the ensuing growth processes are presented.

  13. Selenium sorption and isotope fractionation: Iron(III) oxides versus iron(II) sulfides

    NARCIS (Netherlands)

    Mitchell, K.; Couture, R.-M.; Johnson, T.M.; Mason, P.R.D.; Van Cappellen, P.

    2013-01-01

    Sorption and reduction are important processes influencing the environmental mobility and cycling of Se. In this study, we determined the rates of reaction and isotopic fractionations of Se(IV) and Se(VI) during sorption to iron oxides (2-line ferrihydrite, hematite and goethite) and iron sulfides (

  14. Arene activation by a nonheme iron(III)-hydroperoxo complex: pathways leading to phenol and ketone products.

    Science.gov (United States)

    Faponle, Abayomi S; Banse, Frédéric; de Visser, Sam P

    2016-07-01

    Iron(III)-hydroperoxo complexes are found in various nonheme iron enzymes as catalytic cycle intermediates; however, little is known on their catalytic properties. The recent work of Banse and co-workers on a biomimetic nonheme iron(III)-hydroperoxo complex provided evidence of its involvement in reactivity with arenes. This contrasts the behavior of heme iron(III)-hydroperoxo complexes that are known to be sluggish oxidants. To gain insight into the reaction mechanism of the biomimetic iron(III)-hydroperoxo complex with arenes, we performed a computational (density functional theory) study. The calculations show that iron(III)-hydroperoxo reacts with substrates via low free energies of activation that should be accessible at room temperature. Moreover, a dominant ketone reaction product is observed as primary products rather than the thermodynamically more stable phenols. These product distributions are analyzed and the calculations show that charge interaction between the iron(III)-hydroxo group and the substrate in the intermediate state pushes the transferring proton to the meta-carbon atom of the substrate and guides the selectivity of ketone formation. These studies show that the relative ratio of ketone versus phenol as primary products can be affected by external interactions of the oxidant with the substrate. Moreover, iron(III)-hydroperoxo complexes are shown to selectively give ketone products, whereas iron(IV)-oxo complexes will react with arenes to form phenols instead.

  15. Efficacy and safety of oral iron(III) polymaltose complex versus ferrous sulfate in pregnant women with iron-deficiency anemia: a multicenter, randomized, controlled study.

    Science.gov (United States)

    Ortiz, Ricardo; Toblli, Jorge Eduardo; Romero, Juan Diego; Monterrosa, Beatriz; Frer, Cristina; Macagno, Eugenia; Breymann, Christian

    2011-11-01

    To evaluate the efficacy and safety of iron(III) polymaltose complex (Maltofer(®)) versus ferrous sulfate in iron-deficient pregnant women using recommended doses. An exploratory, open-label, randomized, controlled, multicenter study was undertaken in 80 pregnant women with iron-deficiency anemia (hemoglobin ≤ 10.5 g/dL, serum ferritin ≤ 15 ng/mL and mean corpuscular volume ferrous sulfate (each 100 mg iron twice daily) for 90 days. The primary endpoint, change in hemoglobin from baseline to days 60 and 90, did not differ significantly between treatment groups. The mean (SD) change to day 90 was 2.16 (0.67) g/dL in the iron(III) polymaltose complex group and 1.93 (0.97) g/dL in the ferrous sulfate group (n.s). Mean serum ferritin at day 90 was 179 (38) ng/mL and 157 (34) ng/mL with iron(III) polymaltose complex and ferrous sulfate, respectively (p = 0.014). Adverse events were significantly less frequent in the iron(III) polymaltose group, occurring in 12/41 (29.3%) patients, than in the ferrous sulfate group (22/39 [56.4%]) (p = 0.015). Oral iron(III) polymaltose complex offers at least equivalent efficacy and a superior safety profile compared to ferrous sulfate for the treatment of iron-deficiency anemia during pregnancy.

  16. Electromagnet Gripping in Iron Foundry Automation Part III: Practice

    Directory of Open Access Journals (Sweden)

    Rhythm Suren Wadhwa

    2012-07-01

    Full Text Available Flexibility can be defined as the ability to respond efficiently to the changing demands of the customer and is different in SMEs (Small-to-Medium manufacturing Enterprises than the traditional OEMs (Original Equipment Manufacturers. Costs involved in implementing manufacturing flexibility to meet customer demand are more important in the SMEs, especially those that are labor intensive for example foundries. Manufacturing systems with a high degree of flexibility can be rapidly changed to cover a wide range of production requirements. In this paper, we present a methodology enabling part handling flexibility, which has been incorporated in an iron foundry SME framework.

  17. Electrocatalytic detection of dopamine at single-walled carbon nanotubes–iron (III) oxide nanoparticles platform

    CSIR Research Space (South Africa)

    Adekunle, AS

    2010-06-01

    Full Text Available Electrochemical sensors using edge-plane pyrolytic graphite electrode (EPPGEs) modified with singlewall carbon nanotubes–iron (III) oxide (SWCNT/Fe2O3) nanoparticles for the sensitive detection of dopamine (DA) are described for the first time...

  18. Aquifer Thermal Energy Storage as an ecosystem service for Brussels, Belgium: investigating iron (hydr)oxide precipitation with reactive transport modeling

    Science.gov (United States)

    Anibas, Christian; Possemiers, Mathias; Huysmans, Marijke

    2016-04-01

    In an evolving energy system it is important that urbanized areas contribute to their own energy demands. To reduce greenhouse gas emissions sustainable energy systems with a high efficiency are required, e.g. using urban aquifers as an ecosystem service. Here the potential of seasonal aquifer thermal energy storage and recovery (ATES) for the Brussels-Capital Region, Belgium is investigated. An important shallow geologic formation in the Brussels Capital Region is the Brussels Sand formation, a 20-60 m thick phreatic aquifer. The Brussels Sand Formation is known for its potential for ATES systems, but also for its varying redox and hydraulic conditions. Important limiting factors for ATES systems in the Brussels Sand Formation therefore are the hydraulic conductivity and the geochemical composition of the groundwater. Near the redox boundary iron hydroxide precipitation can negatively influence ATES well performance due to clogging. The interactions between physical processes (e.g. particle transport and clogging in the wider proximity of the ATES well) and chemical processes (e.g. influence of the operation temperatures on precipitation processes) during ATES operation are complex but not well understood. Therefore we constructed numerical groundwater flow models in MODFLOW to estimate maximum pumping and injection rates of different hydraulic conditions and competing water uses in the Brussels Sand Formation. In further steps the thermal potential for ATES was quantified using MT3DMS and the reactive transport model PHT3D was applied to assess the effects of operating ATES systems near the redox boundary. Results show that initial mixing plays an important role in the development of iron(hydr)oxide precipitation around the ATES wells, with the highest concentrations around the cold wells. This behavior is enhanced by the temperature effect; temperature differences of ΔT≈10°C already influence the iron (hydr)oxide concentration. The initial injection into the

  19. Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iron(III-reducing enrichment culture

    Directory of Open Access Journals (Sweden)

    Shiling eZheng

    2015-09-01

    Full Text Available Methanosaeta harundinacea and Methanosarcina barkeri, known as classic acetoclastic methanogens, are capable of directly accepting electrons from Geobacter metallireducens for the reduction of carbon dioxide to methane, having been revealed as direct interspecies electron transfer (DIET in the laboratory co-cultures. However, whether their co-occurrences are ubiquitous in the iron (III-reducing environments and the other species of acetoclastic methanogens such as Methanosarcina mazei are capable of DIET are still unknown. Instead of initiating the co-cultures with pure cultures, two-step cultivation was employed to selectively enrich iron (III-reducing microorganisms in a coastal gold mining river, Jiehe River, with rich iron content in the sediments. First, iron (III reducers including Geobacteraceae were successfully enriched by 3-months successive culture on amorphous Fe(III oxides as electron acceptor and acetate as electron donor. High-throughput Illumina sequencing, terminal restriction fragment length polymorphism (T-RFLP and clone library analysis based on 16S rRNA genes revealed that the enrichment cultures actively contained the bacteria belong to Geobacteraceae and Bacilli, exclusively dominated by the archaea belong to Methanosarcinaceae. Second, the enrichment cultures including methanogens and Geobacteraceae were transferred with ethanol as alternative electron donor. Remarkably, aggregates were successively formed in the enrichments after three transfers. The results revealed by RNA-based analysis demonstrate that the co-occurrence of Methanosarcina mazei and Geobacteraceae in an iron (III-reducing enrichment culture. Furthermore, the aggregates, as close physical contact, formed in the enrichment culture, indicate that DIET could be a possible option for interspecies electron transfer in the aggregates.

  20. Nanocrystalline Axially Bridged Iron Phthalocyanine Polymeric Conductor: (μ-Thiocyanato(phthalocyaninatoiron(III

    Directory of Open Access Journals (Sweden)

    Eiza Shimizu

    2016-01-01

    Full Text Available Skewered Iron(III phthalocyanine conducting polymer can be constructed with the utilization of axial thiocyanato ligands ((μ-thiocyanato(phthalocyaninatoiron(III; (FeIII(Pc(SCNn thereby creating additional avenues for electron transport through a linear SCN bridge, apart from the intermolecular π-π orbital overlap between the Pc molecules. In this paper, we report on the conversion of bulk FeIII(Pc(SCNn polymeric organic conductor into crystalline nanostructures through horizontal vapor phase growth process. The needle-like nanostructures are deemed to provide more ordered and, thus, more π-π interactive interskewer FeIII(Pc(SCNn polymer orientation, resulting in a twofold increase of its electrical conductivity per materials density unit.

  1. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    KAUST Repository

    Chassé, Alexander W.

    2015-08-18

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  2. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces.

    Science.gov (United States)

    Chassé, Alexander W; Ohno, Tsutomu; Higgins, Steven R; Amirbahman, Aria; Yildirim, Nadir; Parr, Thomas B

    2015-08-18

    The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  3. Photochemistry of organic iron(III) complexing ligands in oceanic systems.

    Science.gov (United States)

    Barbeau, Katherine

    2006-01-01

    Iron is a limiting nutrient for primary production in marine systems, and photochemical processes play a significant role in the upper ocean biogeochemical cycling of this key element. In recent years, progress has been made toward understanding the role of biologically produced organic ligands in controlling the speciation and photochemical redox cycling of iron in ocean surface waters. Most (>99%) of the dissolved iron in seawater is now known to be associated with strong organic ligands. New data concerning the structure and photochemical reactivity of strong Fe(III) binding ligands (siderophores) produced by pelagic marine bacteria suggest that direct photolysis via ligand-to-metal charge transfer reactions may be an important mechanism for the production of reduced, biologically available iron (Fe[II]) in surface waters. Questions remain, however, about the importance of these processes relative to secondary photochemical reactions with photochemically produced radical species, such as superoxide (O2-). The mechanism of superoxide-mediated reduction of Fe(III) in the presence of strong Fe(III) organic ligands is also open to debate. This review highlights recent findings, including both model ligand studies and experimentallobservational studies of the natural seawater ligand pool.

  4. Iron(III)-catalysed carbonyl-olefin metathesis

    Science.gov (United States)

    Ludwig, Jacob R.; Zimmerman, Paul M.; Gianino, Joseph B.; Schindler, Corinna S.

    2016-05-01

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis.

  5. Iron(III)-catalysed carbonyl-olefin metathesis.

    Science.gov (United States)

    Ludwig, Jacob R; Zimmerman, Paul M; Gianino, Joseph B; Schindler, Corinna S

    2016-04-27

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis.

  6. The Porphyromonas gingivalis HmuY haemophore binds gallium(iii), zinc(ii), cobalt(iii), manganese(iii), nickel(ii), and copper(ii) protoporphyrin IX but in a manner different to iron(iii) protoporphyrin IX.

    Science.gov (United States)

    Wójtowicz, Halina; Bielecki, Marcin; Wojaczyński, Jacek; Olczak, Mariusz; Smalley, John W; Olczak, Teresa

    2013-04-01

    Porphyromonas gingivalis, a major etiological agent of chronic periodontitis, acquires haem from host haemoproteins through a haem transporter HmuR and a haemophore HmuY. The aim of this study was to analyse the binding specificity of HmuY towards non-iron metalloporphyrins which may be employed as antimicrobials to treat periodontitis. HmuY binds gallium(iii), zinc(ii), cobalt(iii), manganese(iii), nickel(ii), and copper(ii) protoporphyrin IX but in a manner different to iron(iii) protoporphyrin IX which uses His(134) and His(166) as axial ligands. The metal ions in Ga(iii)PPIX and Zn(ii)PPIX can accept only His(166) as an axial ligand, whereas nickel(ii) and copper(ii) interact exclusively with His(134). Two forms of pentacoordinate manganese(iii) are present in the Mn(iii)PPIX-HmuY complex since the metal accepts either His(134) or His(166) as a single axial ligand. The cobalt ion is hexacoordinate in the Co(iii)PPIX-HmuY complex and binds His(134) and His(166) as axial ligands; however, some differences in their environments exist. Despite different coordination modes of the central metal ion, gallium(iii), zinc(ii), cobalt(iii), and manganese(iii) protoporphyrin IX bound to the HmuY haemophore cannot be displaced by excess haem. All of the metalloporphyrins examined bind to a P. gingivalis wild-type strain with higher ability compared to a mutant strain lacking a functional hmuY gene, thus corroborating binding of non-iron metalloporphyrins to purified HmuY protein. Our results further clarify the basis of metalloporphyrin acquisition by P. gingivalis and add to understanding of the interactions with porphyrin derivatives which exhibit antimicrobial activity against P. gingivalis.

  7. Dissociation and Dioxygen Formation in Hydroxide Solutions of Tris (2,2- bipyridyl) Iron (III) and Tris (1,10-phenanthroline) Iron (III)

    DEFF Research Database (Denmark)

    Nord, G.; Pedersen, B.; Bjergbakke, Erling

    1983-01-01

    The fast redox reactions of the title Fe(II1) complexes in basic solutions give the Fe(I1) complexes and coordinated ligand N-oxide as primary products. Further reactions by parallel paths include dissociation to give the free ligand N-oxide and catalysis by hydroxy Fe(II1) complexes leading...

  8. Crystal structure of hydrazine iron(III) phosphate, the first transition metal phosphate containing hydrazine.

    Science.gov (United States)

    David, Renald

    2015-12-01

    The title compound, poly[(μ2-hydrazine)(μ4-phosphato)iron(III)], [Fe(PO4)(N2H4)] n , was prepared under hydro-thermal conditions. Its asymmetric unit contains one Fe(III) atom located on an inversion centre, one P atom located on a twofold rotation axis, and two O, one N and two H atoms located on general positions. The Fe(III) atom is bound to four O atoms of symmetry-related PO4 tetra-hedra and to two N atoms of two symmetry-related hydrazine ligands, resulting in a slightly distorted FeO4N2 octa-hedron. The crystal structure consists of a three-dimensional hydrazine/iron phoshate framework whereby each PO4 tetra-hedron bridges four Fe(III) atoms and each hydrazine ligand bridges two Fe(III) atoms. The H atoms of the hydrazine ligands are also involved in moderate N-H⋯O hydrogen bonding with phosphate O atoms. The crystal structure is isotypic with the sulfates [Co(SO4)(N2H4)] and [Mn(SO4)(N2H4)].

  9. Selected methods for dissolved iron (II, III) and dissolved sulfide (-II) determinations in geothermal waters

    Science.gov (United States)

    Vivit, D.V.; Jenne, E.A.

    1985-01-01

    Dissolved sulfide (-II) and dissolved iron (II, III) were determined in geothermal well water samples collected at Cerro Prieto, Mexico. Most samples consisted of liquid and gas (two phases) at the instant of collection; and a subset of samples, referred to as ' flashed ' samples, consisted of pressurized steam samples which were allowed to condense. Sulfide was determined by sulfide specific ion electrode; Fe(II) and Fe(III) plus Fe(II) were determined spectrophotometrically. The precision and accuracy of the methods were evaluated for these high-silica waters with replicate analyses, spike recoveries, and an alternate method. Direct current (d.c.) argon plasma emission spectrometry was the alternate method used for Fe(III)-plus-Fe(II) analyses. Mean dissolved iron concentrations ranged from 20.2 to 834 micrograms/L (ug/L) as Fe(II) and 26.8 to 904 ug/L as Fe(III) plus Fe(II). Mean sulfide concentrations ranged from about 0.01 to 5.3 mg/L (S-II) Generally, higher S(-II) values and larger Fe(II)/Fe(III) ratios were found in the two-phase samples. These findings suggest that the ' flashed ' samples are at a less reduced state than the two-phase samples. (Author 's abstract)

  10. The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons.

    Science.gov (United States)

    Cooper, Anne Marie; Hristovski, Kiril D; Möller, Teresia; Westerhoff, Paul; Sylvester, Paul

    2010-11-15

    This study investigates the impact of the type of virgin granular activated carbon (GAC) media used to synthesize iron (hydr)oxide nanoparticle-impregnated granular activated carbon (Fe-GAC) on its properties and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Two Fe-GAC media were synthesized via a permanganate/ferrous ion synthesis method using bituminous and lignite-based virgin GAC. Data obtained from an array of characterization techniques (pore size distribution, surface charge, etc.) in correlation with batch equilibrium tests, and continuous flow modeling suggested that GAC type and pore size distribution control the iron (nanoparticle) contents, Fe-GAC synthesis mechanisms, and contaminant removal performances. Pore surface diffusion model calculations predicted that lignite Fe-GAC could remove ∼6.3 L g(-1) dry media and ∼4 L g(-1) dry media of water contaminated with 30 μg L(-1) TCE and arsenic, respectively. In contrast, the bituminous Fe-GAC could remove only ∼0.2 L/g dry media for TCE and ∼2.8 L/g dry media for As of the same contaminated water. The results show that arsenic removal capability is increased while TCE removal is decreased as a result of Fe nanoparticle impregnation. This tradeoff is related to several factors, of which changes in surface properties and pore size distributions appeared to be the most dominant.

  11. The Pharmacokinetics and Pharmacodynamics of Iron Preparations

    Directory of Open Access Journals (Sweden)

    Susanna Burckhardt

    2011-01-01

    Full Text Available Standard approaches are not appropriate when assessing pharmacokinetics of iron supplements due to the ubiquity of endogenous iron, its compartmentalized sites of action, and the complexity of the iron metabolism. The primary site of action of iron is the erythrocyte, and, in contrast to conventional drugs, no drug-receptor interaction takes place. Notably, the process of erythropoiesis, i.e., formation of new erythrocytes, takes 3−4 weeks. Accordingly, serum iron concentration and area under the curve (AUC are clinically irrelevant for assessing iron utilization. Iron can be administered intravenously in the form of polynuclear iron(III-hydroxide complexes with carbohydrate ligands or orally as iron(II (ferrous salts or iron(III (ferric complexes. Several approaches have been employed to study the pharmacodynamics of iron after oral administration. Quantification of iron uptake from radiolabeled preparations by the whole body or the erythrocytes is optimal, but alternatively total iron transfer can be calculated based on known elimination rates and the intrinsic reactivity of individual preparations. Degradation kinetics, and thus the safety, of parenteral iron preparations are directly related to the molecular weight and the stability of the complex. High oral iron doses or rapid release of iron from intravenous iron preparations can saturate the iron transport system, resulting in oxidative stress with adverse clinical and subclinical consequences. Appropriate pharmacokinetics and pharmacodynamics analyses will greatly assist our understanding of the likely contribution of novel preparations to the management of anemia.

  12. The pharmacokinetics and pharmacodynamics of iron preparations.

    Science.gov (United States)

    Geisser, Peter; Burckhardt, Susanna

    2011-01-04

    Standard approaches are not appropriate when assessing pharmacokinetics of iron supplements due to the ubiquity of endogenous iron, its compartmentalized sites of action, and the complexity of the iron metabolism. The primary site of action of iron is the erythrocyte, and, in contrast to conventional drugs, no drug-receptor interaction takes place. Notably, the process of erythropoiesis, i.e., formation of new erythrocytes, takes 3-4 weeks. Accordingly, serum iron concentration and area under the curve (AUC) are clinically irrelevant for assessing iron utilization. Iron can be administered intravenously in the form of polynuclear iron(III)-hydroxide complexes with carbohydrate ligands or orally as iron(II) (ferrous) salts or iron(III) (ferric) complexes. Several approaches have been employed to study the pharmacodynamics of iron after oral administration. Quantification of iron uptake from radiolabeled preparations by the whole body or the erythrocytes is optimal, but alternatively total iron transfer can be calculated based on known elimination rates and the intrinsic reactivity of individual preparations. Degradation kinetics, and thus the safety, of parenteral iron preparations are directly related to the molecular weight and the stability of the complex. High oral iron doses or rapid release of iron from intravenous iron preparations can saturate the iron transport system, resulting in oxidative stress with adverse clinical and subclinical consequences. Appropriate pharmacokinetics and pharmacodynamics analyses will greatly assist our understanding of the likely contribution of novel preparations to the management of anemia.

  13. The Most Iron-deficient Stars as the Polluted Population III Stars

    Science.gov (United States)

    Komiya, Yutaka; Suda, Takuma; Fujimoto, Masayuki Y.

    2015-08-01

    We investigate the origin of the most iron-poor stars including SMSS J031300.36-670839.3 with [{Fe}/{{H}}]\\lt -7.52. We compute the change of surface metallicity of stars with the of interstellar matter (ISM) after their birth using the chemical evolution model within the framework of the hierarchical galaxy formation. The predicted metallicity distribution function agrees very well with that observed from extremely metal-poor stars. In particular, the lowest metallicity tail is well reproduced by the Population III stars whose surfaces are polluted with metals through ISM accretion. This suggests that the origin of iron group elements is explained by ISM accretion for the stars with [{Fe}/{{H}}]≲ -5. The present results give new insights into the nature of the most metal-poor stars and the search for Population III stars with pristine abundances.

  14. Spin States of Iron(III) in Highly Saddled Dodecaphenylporphyrin Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ohya, T., E-mail: ohyat@pharm.teikyo-u.ac.jp; Takeda, J.; Sato, M. [Teikyo University, Laboratory of Biophysics, Faculty of Pharmaceutical Sciences (Japan)

    2004-12-15

    Iron(III) complexes of highly saddled dodecaphenylporphyrin, Fe(DPP)X (X=Cl, Br or I) have been prepared and characterized by Moessbauer, UV-Vis and magnetic measurements. The Moessbauer spectra, recorded at temperatures from 5 to 300 K, contain two components A and B. Component A is attributed to iron(III) in a spin-admixed (S=3/2, 5/2) state. The UV-Vis spectra of solution samples of these complexes exhibit broad and red-shifted absorption bands. The effective magnetic moments derived from the molar magnetic susceptibilities measured by modified Gouy method at 298 K for X=Cl, Br and I are 5.52, 5.10 and 4.28 {mu}{sub B}, respectively.

  15. The most iron-deficient stars as the polluted population III stars

    CERN Document Server

    Komiya, Yutaka; Fujimoto, Masayuki Y

    2015-01-01

    We investigate the origin of the most iron-poor stars including SMSS J031300.36-670839.3 with [Fe/H] < -7.52. We compute the change of surface metallicity of stars with the accretion of interstellar matter (ISM) after their birth using the chemical evolution model within the framework of the hierarchical galaxy formation. The predicted metallicity distribution function agrees very well with that observed from extremely metal-poor stars. In particular, the lowest metallicity tail is well reproduced by the Population III stars whose surfaces are polluted with metals through ISM accretion. This suggests that the origin of iron group elements is explained by ISM accretion for the stars with [Fe/H]$\\lesssim -5$. The present results give new insights into the nature of the most metal-poor stars and the search for Population III stars with pristine abundances.

  16. Oxalate complexation with aluminum(III) and iron(III) at moderately elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Tait, C.D.; Janecky, D.R.; Clark, D.L. [Los Alamos National Lab., NM (United States); Bennett, P.C. [Texas Univ., Austin, TX (United States). Dept. of Geological Sciences

    1992-05-01

    To add to our understanding of the weathering of rocks in organic rich environments such as sedimentary brines and oil field waters, we have examined the temperature dependent complexation of aluminum with oxalate. Raman vibrational studies show that even the association constant for the highly charged Al(ox){sub 3}{sup 3{minus}} unexpectedly increases with moderate temperature increases to 80{degrees}C. To evaluate the potential importance of these Al-oxalate species in complex natural systems, temperature dependent competition experiments Fe(III) and Al(III) for oxalate have been initiated. Similar to aluminum, ferric oxalates show increases in association constants at higher temperatures. In competition experiments, the first association constant for Fe(ox){sup +} increases faster than that for Al(ox){sup +} to 90{degrees}C.

  17. Iron(III) complexes of certain tetradentate phenolate ligands as functional models for catechol dioxygenases

    Indian Academy of Sciences (India)

    Mallayan Palaniandavar; Marappan Velusamy; Ramasamy Mayilmurugan

    2006-11-01

    Catechol 1,2-dioxygenase (CTD) and protocatechuate 3,4-dioxygenase (PCD) are bacterial non-heme iron enzymes, which catalyse the oxidative cleavage of catechols to cis, cis-muconic acids with the incorporation of molecular oxygen via a mechanism involving a high-spin ferric centre. The iron(III) complexes of tripodal phenolate ligands containing N3O and N2O2 donor sets represent the metal binding region of the iron proteins. In our laboratory iron(III) complexes of mono- and bisphenolate ligands have been studied successfully as structural and functional models for the intradiol-cleaving catechol dioxygenase enzymes. The single crystal X-ray crystal structures of four of the complexes have been determined. One of the bis-phenolato complexes contains a FeN2O2Cl chromophore with a novel trigonal bipyramidal coordination geometry. The Fe-O-C bond angle of 136.1° observed for one of the iron(III) complex of a monophenolate ligand is very similar to that in the enzymes. The importance of the nearby sterically demanding coordinated -NMe2 group has been established and implies similar stereochemical constraints from the other ligated amino acid moieties in the 3,4-PCD enzymes, the enzyme activity of which is traced to the difference in the equatorial and axial Fe-O(tyrosinate) bonds (Fe-O-C, 133, 148°). The nature of heterocyclic rings of the ligands and the methyl substituents on them regulate the electronic spectral features, FeIII/FeII redox potentials and catechol cleavage activity of the complexes. Upon interacting with catecholate anions, two catecholate to iron(III) charge transfer bands appear and the low energy band is similar to that of catechol dioxygenase-substrate complex. Four of the complexes catalyze the oxidative cleavage of H2DBC by molecular oxygen to yield intradiol cleavage products. Remarkably, the more basic N-methylimidazole ring in one of the complexes facilitates the rate-determining productreleasing phase of the catalytic reaction. The present

  18. INVESTIGATION OF THE TRANSFORMATION OF URANIUM UNDER IRON-REDUCING CONDITIONS: REDUCTION OF UVI BY BIOGENIC FEII/FEIII HYDROXIDE (GREEN RUST)

    Energy Technology Data Exchange (ETDEWEB)

    O' Loughlin, Edward J.; Scherer, Michelle M.; Kemner, Kenneth M.

    2006-12-31

    The recent identification of green rusts (GRs) as products of the reduction of FeIII oxyhydroxides by dissimilatory iron-reducing bacteria, coupled with the ability of synthetic (GR) to reduce UVI species to insoluble UO2, suggests that biogenic green rusts (BioGRs) may play an important role in the speciation (and thus mobility) of U in FeIII-reducing environments. The objective of our research was to examine the potential for BioGR to affect the speciation of U under FeIII-reducing conditions. To meet this objective, we designed and executed a hypothesis-driven experimental program to identify key factors leading to the formation of BioGRs as products of dissimilatory FeIII reduction, to determine the key factors controlling the reduction of UVI to UIV by GRs, and to identify the resulting U-bearing mineral phases. The results of this research significantly increase our understanding of the coupling of biotic and abiotic processes with respect to the speciation of U in iron-reducing environments. In particular, the reduction of UVI to UIV by BioGR with the subsequent formation of U-bearing mineral phases may be effective for immobilizing U in suboxic subsurface environments. This information has direct applications to contaminant transport modeling and bioremediation engineering for natural or enhanced in situ remediation of subsurface contamination.

  19. Molecular dynamics simulation of iron(III) and its hydrolysis products in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Rustad, J.R.; Hay, B.P. (Pacific Northwest Laboratory, MSIN K6-82, Richland, Washington 99352 (United States)); Halley, J.W. (School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States))

    1995-01-01

    A simple potential model is described which allows molecular dynamics simulations to be performed for ferric iron ions in dissociating aqueous solutions. The model was parametrized by fitting the polarizable dissociating water model of Halley [ital et] [ital al]. [J. Chem. Phys. [bold 98], 4110 (1993)] to a single water molecule--ferric iron ion potential energy surface taken from the work of Curtiss [ital et] [ital al]. [J. Chem. Phys. [bold 86], 2319 (1987)]. The model gives very good results for the structure of the solvated hexaaqua iron(III) complex; the proper coordination number of 6 was obtained when the Fe--O interaction was fit directly to the [ital ab] [ital initio] calculations without further modification. The model produces adequate results for the first hydrolysis constant, but breaks down for the second hydrolysis constant, which is overestimated by 18 kcal/mol.

  20. Iron(III)–siderophore coordination chemistry: Reactivity of marine siderophores

    OpenAIRE

    Butler, Alison; Theisen, Roslyn M.

    2010-01-01

    Two remarkable features of many siderophores produced by oceanic bacteria are the prevalence of an α-hydroxy-carboxylic acid functionality either in the form of the amino acid β-hydroxy aspartic acid or in the form of citric acid, as well as the predominance of amphiphilic siderophores. This review will provide an overview of the photoreactivity that takes place when siderophores containing β-hydroxy aspartic acid and citric acid are coordinated to iron(III). This photoreactivity raises quest...

  1. Synthesis and spectroscopic studies of iron (III) complex with a quinolone family member (pipemidic acid)

    Science.gov (United States)

    Skrzypek, D.; Szymanska, B.; Kovala-Demertzi, Dimitra; Wiecek, Joanna; Talik, E.; Demertzis, Mavroudis A.

    2006-12-01

    The interaction of iron (III) with pipemidic acid, Hpipem, afforded the complex [Fe (pipem) (HO)2 (H2O)]2. The new complex has been characterised by elemental analyses, infra-red, EPR and XPS spectroscopies. The monoanion, pipem, exhibits O, O ligation through the carbonyl and carboxylato oxygen atoms. Six coordinate dimer distorted octahedral configuration has been proposed for [Fe (pipem) (HO)2 (H2O)]2.

  2. Ion-Selective Electrode for the Determination of Iron(III in Vitamin Formulations

    Directory of Open Access Journals (Sweden)

    Teixeira Marcos Fernando de S.

    1998-01-01

    Full Text Available A coated graphite-epoxy ion-selective electrode for iron(III, based on the ion-pair formed between [Fe(citrate2]3- and the tricaprylylmethylammonium cation (Aliquat 336 in a poly(vinylchloride (PVC matrix has been constructed. A thin membrane film of this ion-pair, dibutylphthalate (DBPh in PVC was deposited directly onto a Perspex® tube, which contained a graphite-epoxy conductor substrate. The coating solution was prepared by dissolving 30% (w/w of PVC in 10 mL of tetrahydrofuran following addition of 65% (w/w DBPh and 5% (w/w of the ionic pair. The effect of pH, citrate concentration and some cations on the electrode response has been investigated. The E(mV vs. log [Fe(citrate2]3- electrode response was linear for iron(III concentration from 1.0 x 10-3 mol/L to 1.0 x 10-1 mol/L in 1.0 mol/L citrate medium, with a slope of 19.3 ± 0.5 mV/decade and a useful lifetime of at least six months (more than 800 determinations for each polymeric membrane used. The detection limit was 7.5 x 10-4 mol/L and the relative standard deviation was less than 3% for a solution containing 5.0 x 10-3 mol/L of iron(III (n = 10. The application of this electrode for iron(III determination in samples of vitamin formulations is described. The results obtained with this procedure are in close agreement with those obtained using AA spectrophotometry (r = 0.9999.

  3. Hydrothermal synthesis, structure and characterization of new NASICON related potassium iron (III) pyrophosphate

    Indian Academy of Sciences (India)

    G S Gopalakrishna; B H Doreswamy; M J Mahesh; M Mahendra; M A Sridhar; J Shashidhara Prasad; K G Ashamanjari

    2005-02-01

    A new potassium iron (III) pyrophosphate was synthesized by hydrothermal technique and characterized by X-ray studies. The compound crystallizes in a monoclinic space group, 21/, with cell parameters, = 7.365(2) Å, = 10.017(2) Å, = 8.214(1) Å, = 106.50(1)° and = 4. The structure has tunnel-type cavities and are congenial for ion transportation through them. The compound exhibits moderate thermal stability.

  4. Acid mine water neutralisation with ammonium hydroxide and ...

    African Journals Online (AJOL)

    2013-05-30

    May 30, 2013 ... Keywords: acid mine water, ammonium hydroxide, barium hydroxide, sulphate removal ... oxygen becomes oxidised to soluble iron and sulphuric acid, .... The effects of the following parameters on the Fe (II) oxidation.

  5. Electrochemical synthesis of nickel-iron layered double hydroxide: application as a novel modified electrode in electrocatalytic reduction of metronidazole.

    Science.gov (United States)

    Nejati, Kamellia; Asadpour-Zeynali, Karim

    2014-02-01

    A new and simple approach based on the electrochemical method was used for preparation of reproducible nanostructure thin film of Ni/Fe-layered double hydroxides (Ni/Fe-LDH) on the glassy carbon electrode (GCE). The electrochemical behavior of the Ni/Fe-LDH deposited on GCE electrode is studied. Study of the scanning electron microscopy shows the formation of a nanostructure thin film on the glassy carbon electrode. Electrochemical experiments show that Ni/Fe-LDH modified glassy carbon electrode exhibits excellent electrocatalytic reduction activity with Metronidazole. The method was successfully applied for the analysis of Metronidazole in tablets. The results were favorably compared to those obtained by the reported BP method.

  6. Faint Population III supernovae as the origin of the most iron-poor stars

    CERN Document Server

    Ishigaki, Miho N; Kobayashi, Chiaki; Nomoto, Ken'ichi

    2014-01-01

    The most iron-deficient stars in the Milky Way provide important observational constraints on the nature of astrophysical objects that have enriched the primordial gas with heavy elements from which these stars were formed. Among them, the recently discovered iron-deficient star SMSS J031300.36-670839.3 shows a remarkable chemical composition with non-detection of iron ([Fe/H]$<-7.1$) and large enhancement of carbon and magnesium relative to calcium. We investigate the supernova yields of metal-free (Population III) stars to interpret the observed abundance pattern for this star. We report that the high [C/Ca] and [C/Mg] ratios and upper limits determined for other elemental abundances are well reproduced with the yields of core-collapse supernovae (that have normal kinetic energies of explosion $E$ of $E_{51}=E/10^{51}$erg$=1$) or hypernovae ($E_{51}\\geq 10$) of the Population III 25$M_{\\odot}$ or 40$M_{\\odot}$ stars. The best-fit model assumes that the explosion of the Population III progenitor undergoes...

  7. Photolysis of Iron (III) carboxylate complexes relevant for tropospheric aqueous particles and cloud droplets

    Science.gov (United States)

    Herrmann, H.; Weller, C.; Bräuer, P.; Tilgner, A.

    2012-12-01

    Absorption spectra and Fe(II) quantum yields of iron(III) coordination complexes with oxalate, malonate, succinate, glutarate, tartronate, tartrate, gluconate, glyoxalate and pyruvate were experimentally determined. Measured quantum yields of malonate, glutarate and gluconate complexes are in the range of 0.02 tartrate, pyruvate, glyoxylate and tartronate complexes show values between 0.12 tartrate and, surprisingly, in the case of succinate complexes a higher quantum yield was observed at 351 nm under increased oxygen concentrations in solution. In the case of oxalate, a dependence of the quantum yield on the initial concentration of iron(III) oxalato complexes was observed. A kinetic simulation of the reaction system after the photolysis was performed for oxalate, succinate, glyoxalate and tartrate complexes to characterize the influence of secondary thermal reactions on the quantum yield. A tropospheric chemistry simulation with the multiphase chemistry mechanism CAPRAM involving the photolysis of the studied complexes and subsequent reactions of the resulting species shows that the contribution of the iron complex photochemistry to the formation of oxidants such as the hydroperoxyl radical and its anion, the hydroxyl radical and H2O2 is low in comparison to other sources. However, it is shown that Fe(III) complex photolysis represents a major sink for some ligands in addition to the oxidation via free radicals.

  8. Silicon isotope fractionation during microbial reduction of Fe(III)-Si gels under Archean seawater conditions and implications for iron formation genesis

    Science.gov (United States)

    Reddy, Thiruchelvi R.; Zheng, Xin-Yuan; Roden, Eric E.; Beard, Brian L.; Johnson, Clark M.

    2016-10-01

    Microbial dissimilatory iron reduction (DIR) is a deeply rooted metabolism in the Bacteria and Archaea. In the Archean and Proterozoic, the most likely electron acceptor for DIR in marine environments was Fe(III)-Si gels. It has been recently suggested that the Fe and Si cycles were coupled through sorption of aqueous Si to iron oxides/hydroxides, and through release of Si during DIR. Evidence for the close association of the Fe and Si cycles comes from banded iron formations (BIFs), which consist of alternating bands of Fe-bearing minerals and quartz (chert). Although there has been extensive study of the stable Fe isotope fractionations produced by DIR of Fe(III)-Si gels, as well as studies of stable Fe isotope fractionations in analogous abiologic systems, no studies to date have investigated stable Si isotope fractionations produced by DIR. In this study, the stable Si isotope fractionations produced by microbial reduction of Fe(III)-Si gels were investigated in simulated artificial Archean seawater (AAS), using the marine iron-reducing bacterium Desulfuromonas acetoxidans. Microbial reduction produced very large 30Si/28Si isotope fractionations between the solid and aqueous phase at ˜23 °C, where Δ30Sisolid-aqueous isotope fractionations of -3.35 ± 0.16‰ and -3.46 ± 0.09‰ were produced in two replicate experiments at 32% Fe(III) reduction (solid-phase Fe(II)/FeTotal = 0.32). This isotopic fractionation was substantially greater than that observed in two abiologic controls that had solid-phase Fe(II)/FeTotal = 0.02-0.03, which produced Δ30Sisolid-aqueous isotope fractionations of -2.83 ± 0.24‰ and -2.65 ± 0.28‰. In a companion study, the equilibrium Δ30Sisolid-aqueous isotope fractionation was determined to be -2.3‰ for solid-phase Fe(II)/FeTotal = 0. Collectively, these results highlight the importance of Fe(II) in Fe-Si gels in producing large changes in Si isotope fractionations. These results suggest that DIR should produce highly

  9. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.

    Science.gov (United States)

    Jang, Min; Hwang, Jung Sung; Choi, Sang Il

    2007-01-01

    Sequential washing techniques using single or dual agents [sodium hydroxide (NaOH) and hydrochloric acid (HCl) solutions] were applied to arsenic-contaminated soils in an abandoned iron-ore mine area. We investigated the best remediation strategies to maximize arsenic removal efficiency for both soils and arsenic-containing washing solution through conducting a series of batch experiments. Based on the results of a sequential extraction procedure, most arsenic prevails in Fe-As precipitates or coprecipitates, and iron exists mostly in the crystalline forms of iron oxide. Soil washing by use of a single agent was not effective in remediating arsenic-contaminated soils because arsenic extractions determined by the Korean standard test (KST) methods for washed soils were not lower than 6mg kg(-1) in all experimental conditions. The results of X-ray diffraction (XRD) indicated that iron-ore fines produced mobile colloids through coagulation and flocculation in water contacting the soils, containing dissolved arsenic and fine particles of ferric arsenate-coprecipitated silicate. The first washing step using 0.2M HCl was mostly effective in increasing the cationic hydrolysis of amorphous ferrihydrite, inducing high removal of arsenic. Thus, the removal step of arsenic-containing flocs can lower arsenic extractions (KST methods) of washed soils. Among several washing trials, alternative sequential washing using 0.2M HCl followed by 1M HCl (second step) and 1M NaOH solution (third step) showed reliable and lower values of arsenic extractions (KST methods) of washed soils. This washing method can satisfy the arsenic regulation of washed soil for reuse or safe disposal application. The kinetic data of washing tests revealed that dissolved arsenic was easily readsorbed into remaining soils at a low pH. This result might have occurred due to dominant species of positively charged crystalline iron oxides characterized through the sequential extraction procedure. However

  10. Liquid-Liquid Extraction-Chromogenic Systems Containing Iron(III, 4-Nitrocatechol and Tetrazolium Salts

    Directory of Open Access Journals (Sweden)

    Galya K. Toncheva

    2015-03-01

    Full Text Available Complex formation and liquid-liquid extraction were studied in systems containing iron(III, 4-nitrocatechol (4NC,tetrazolium salt (TZS, water and organic solvent. Three different TZS were used: 3-(4,5-dimethyl-2-thiazol-2,5-diphenyl-2H-tetrazolium bromide (MTT, 3-(2-naphtyl-2,5-diphenyl-2H-tetrazolium chloride (Tetrazolium violet, TV and 2-(4-iodophenyl-3-(4-nitrophenyl-5-phenyl-2H-tetrazolium chloride (INT.The cations of the first two TZSs (TZ+: MTT+ and TV+ form intensively colored (molar absorptivity of 4.6´104 L mol–1 cm–1 and 4.4´104 L mol–1 cm–1, respectively chloroform extractable ion-associates with the FeIII-4NC anionic chelate. These ternary complexes can be represented with the following general formula: (TZ+3[FeIII(4NC3]3−.

  11. Influence of Ionic Liquids on an Iron(III) Catalyzed Three-Component Coupling/Hydroarylation/Dehydrogenation Tandem Reaction.

    Science.gov (United States)

    Muntzeck, Maren; Wilhelm, René

    2016-06-01

    A three-component oxidative dehydrogenation tandem reaction via the coupling and hydroarylation of benzaldehyde, aniline and phenylacetylene to a quinoline derivate was catalyzed by an iron-containing ionic liquid. The reaction was air mediated and could be performed under neat conditions. The iron(III) of the ionic liquid was the oxidizing species.

  12. Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate.

    Science.gov (United States)

    Xu, Dongwei; He, Yan-Bing; Chu, Xiaodong; Ding, Zhaojun; Li, Baohua; He, Jianfu; Du, Hongda; Qin, Xianying; Kang, Feiyu

    2015-03-01

    Lithium iron phosphate/carbon (LiFePO4 /C) microspheres with high rate and cycling performance are synthesized from iron phosphate/polyacrylic acid (FePO4 /PAA) nanoparticles. Iron(III) acrylate is used as a precursor for both the iron and carbon sources. FePO4 nanoparticles are first produced by a coprecipitation reaction. The byproduct, acrylic acid ions, is polymerized in situ to form a uniform PAA layer on the surface of the FePO4 nanoparticles. The as-prepared LiFePO4 /C microspheres are composed of primary nanoparticles with sizes of 40-50 nm. The nanoparticles are fully coated with a thin, uniform carbon layer derived from the decomposition of the PAA layer. The uniform carbon-coating layer cooperates with interstitial and boundary carbon derived from sucrose successfully to construct an excellent interconnecting conductive network in the microspheres. As a result of the unique structure, the as-prepared LiFePO4 /C microspheres display both high electronic and ionic conductivities, which contribute to their high rate performance (162.9 mAh g(-1) at 0.1C and 126.1 mAh g(-1) at 5C) and excellent cycling stability (97.1% of capacity retention after 500 cycles at 5C/5C).

  13. Insight of an easy topochemical oxidative reaction in obtaining high performance electrochemical capacitor based on CoIICoIII monometallic cobalt Layered Double Hydroxide

    Science.gov (United States)

    Vialat, Pierre; Rabu, Pierre; Mousty, Christine; Leroux, Fabrice

    2015-10-01

    A series of monometallic Layered Double Hydroxides (LDH) using electroactive cation, i.e. divalent or trivalent cobalt, was prepared by Topochemical Oxidation Reaction (TOR) under O2 atmosphere at 40 °C from pristine β-Co(OH)2 platelets. The oxidation state of the ill-defined layered materials was evaluated by coupling thermal measurements and chemical titration (iodometry). Their characterization by ancillary techniques was completed by the study of their magnetic behavior. The obtained magnetic moments suggest the presence of structural local deformation around the CoII ions, unhomogeneous charge distribution yielding to clustering effects cannot be discarded. Their pseudo-faradic properties as supercapacitor in KOH solution was thoroughly investigated by using Cyclic Voltammetry (CV), Galvanostatic Cycling with Potential Limitation (GCPL) and Electrochemical Impedance Spectroscopy (EIS) techniques. As a function of the oxygen treatment, the relative amount of CoII/CoIII was found to range into 5.3 and 13.3, which is unusually high when compared to classical LDH charge distribution. Pseudocapacitance as high as 1540 F g-1 was obtained underlining a high percentage of CoII, ≈40%, involved in electrochemical process. This high percentage is tentatively explained by an extended outer-active electrochemical surface which demonstrates that TOR is a quick and easy process to get a high pseudocapacitive performance.

  14. Self-Supported Nickel Iron Layered Double Hydroxide-Nickel Selenide Electrocatalyst for Superior Water Splitting Activity.

    Science.gov (United States)

    Dutta, Soumen; Indra, Arindam; Feng, Yi; Song, Taeseup; Paik, Ungyu

    2017-09-19

    The design of efficient, low-cost, and stable electrocatalyst systems toward energy conversion is highly demanding for their practical use. Large scale electrolytic water splitting is considered as a promising strategy for clean and sustainable energy production. Herein, we report a self-supported NiFe layered double hydroxide (LDH)-NiSe electrocatalyst by stepwise surface-redox-etching of Ni foam (NF) through a hydrothermal process. The as-prepared NiFe LDH-NiSe/NF catalyst exhibits far better performance in alkaline water oxidation, proton reduction, and overall water splitting compared to NiSex/NF or NiFe LDH/NF. Only 240 mV overpotential is required to obtain a water oxidation current density of 100 mA cm(-2), whereas the same for the hydrogen evolution reaction is 276 mV in 1.0 M KOH. The synergistic effect from NiSe and NiFe LDH leads to the evolution of a highly efficient catalyst system for water splitting by achieving 10 mA cm(-2) current density at only 1.53 V in a two-electrode alkaline electrolyzer. In addition, the designed electrode produces stable performance for a long time even at higher current density to demonstrate its robustness and prospective as a real-life energy conversion system.

  15. Fe(II)–Al(III) layered double hydroxides prepared by ultrasound-assisted co-precipitation method for the reduction of bromate

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yu [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yang, Qi, E-mail: yangqi@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Luo, Kun; Wu, Xiuqiong [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Li, Xiaoming, E-mail: xmli@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Liu, Yang [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Urban and Rural Garbage Disposal Technology Research Center, Hunan Province, Changsha 410082 (China); Tang, Wangwang; Zeng, Guangming; Peng, Bo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2013-04-15

    Highlights: ► Fe(II)–Al(III) LDHs were synthesized by ultrasound-assisted co-precipitation method. ► The Fe–Al (30 min) exhibited highly reduction reactivity on bromate. ► Pseudo-first-order model described the experimental data well. ► The mechanisms of bromate removal were proposed. -- Abstract: Bromate is recognized as an oxyhalide disinfection byproduct in drinking water. In this paper, Fe(II)–Al(III) layered double hydroxides (Fe–Al LDHs) prepared by the ultrasound-assisted co-precipitation method were used for the reduction of bromate in solution. The Fe–Al LDHs particles were characterized by X-ray diffractometer, scanning electron microscopy and thermogravimetry–differential scanning calorimetry. It was found that ultrasound irradiation assistance promoted the formation of the hydrotalcite-like phase and then improved the removal efficiency of bromate. In addition, the effects of solid-to-solution ratio, contact time, initial bromate concentration, initial pH, coexisting anions on the bromate removal were investigated. The results showed the bromate with an initial concentration of 1.56 μmol/L could be completely removed from solution by Fe–Al LDHs within 120 min. When the initial bromate concentration was 7.81 μmol/L, the Fe–Al LDHs with irradiation time of 30 min exhibited the optimum removal efficiency and the bromate removal capacity (q{sub e}) was 6.80 μmol/g. In addition, the appearance of sulfate and production of bromide were observed simultaneously in this process, which suggested that ion-exchange between sulfate and bromate, and the reduction of bromate to bromide by Fe{sup 2+} were the main mechanisms responsible for the bromate removal by Fe–Al LDHs.

  16. Scientific Opinion on the safety assessment of the active substances, sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulphate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water, for use as active system in food contact materials

    OpenAIRE

    2014-01-01

    This scientific opinion of EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety assessment of the active substances sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulfate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water, used in mixture which is packed into sachets for absorbing oxygen/carbon dioxide emitting from/into the headspace surrounding packed food. All substances of this formulation have been e...

  17. Intrinsic acidity of aluminum, chromium (III) and iron (III) μ 3-hydroxo functional groups from ab initio electronic structure calculations

    Science.gov (United States)

    Rustad, James R.; Dixon, David A.; Felmy, Andrew R.

    2000-05-01

    Density functional calculations are performed on M 3(OH) 7(H 2O) 62+ and M 3O(OH) 6(H 2O) 6+ clusters for MAl, Cr(III), and Fe(III), allowing determination of the relative acidities of the μ 3-hydroxo and aquo functional groups. Contrary to previous predictions and rationalizations, Fe 3OH and Al 3OH groups have nearly the same intrinsic acidity, while Cr 3OH groups are significantly more acidic. The gas-phase acidity of the Fe 3OH site is in good agreement with the value predicted by the molecular mechanics model previously used to estimate the relative acidities of surface sites on iron oxides. [ J. R. Rustad et al. (1996)Geochim. Cosmochim. Acta 60, 1563]. Acidities of aquo functional groups were also computed for Al and Cr. The AlOH 2 site is more acidic than the Al 3OH site, whereas the Cr 3OH site is more acidic than the CrOH 2 site. These findings predict that the surface charging behavior of chromium oxides/oxyhydroxides should be distinguishable from their Fe, Al counterparts. The calculations also provide insight into why the lepidocrocite/boehmite polymorph is not observed for CrOOH.

  18. Iron(III) protoporphyrin IX complexes of the antimalarial Cinchona alkaloids quinine and quinidine.

    Science.gov (United States)

    de Villiers, Katherine A; Gildenhuys, Johandie; le Roex, Tanya

    2012-04-20

    The antimalarial properties of the Cinchona alkaloids quinine and quinidine have been known for decades. Surprisingly, 9-epiquinine and 9-epiquinidine are almost inactive. A lack of definitive structural information has precluded a clear understanding of the relationship between molecular structure and biological activity. In the current study, we have determined by single crystal X-ray diffraction the structures of the complexes formed between quinine and quinidine and iron(III) protoporphyrin IX (Fe(III)PPIX). Coordination of the alkaloid to the Fe(III) center is a key feature of both complexes, and further stability is provided by an intramolecular hydrogen bond formed between a propionate side chain of Fe(III)PPIX and the protonated quinuclidine nitrogen atom of either alkaloid. These interactions are believed to be responsible for inhibiting the incorporation of Fe(III)PPIX into crystalline hemozoin during its in vivo detoxification. It is also possible to rationalize the greater activity of quinidine compared to that of quinine.

  19. Crystal structure of hydrazine iron(III phosphate, the first transition metal phosphate containing hydrazine

    Directory of Open Access Journals (Sweden)

    Renald David

    2015-12-01

    Full Text Available The title compound, poly[(μ2-hydrazine(μ4-phosphatoiron(III], [Fe(PO4(N2H4]n, was prepared under hydrothermal conditions. Its asymmetric unit contains one FeIII atom located on an inversion centre, one P atom located on a twofold rotation axis, and two O, one N and two H atoms located on general positions. The FeIII atom is bound to four O atoms of symmetry-related PO4 tetrahedra and to two N atoms of two symmetry-related hydrazine ligands, resulting in a slightly distorted FeO4N2 octahedron. The crystal structure consists of a three-dimensional hydrazine/iron phoshate framework whereby each PO4 tetrahedron bridges four FeIII atoms and each hydrazine ligand bridges two FeIII atoms. The H atoms of the hydrazine ligands are also involved in moderate N—H...O hydrogen bonding with phosphate O atoms. The crystal structure is isotypic with the sulfates [Co(SO4(N2H4] and [Mn(SO4(N2H4].

  20. The enhancement effect of pre-reduction using zero-valent iron on the solidification of chromite ore processing residue by blast furnace slag and calcium hydroxide.

    Science.gov (United States)

    Li, Jinchunzi; Chen, Zhonglin; Shen, Jimin; Wang, Binyuan; Fan, Leitao

    2015-09-01

    A bench scale study was performed to assess the effectiveness of the solidification of chromite ore processing residue (COPR) by blast furnace slag and calcium hydroxide, and investigate the enhancement effect of pre-reduction using zero-valent iron (ZVI) on the solidification treatment. The degree of Cr immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as the solid waste-extraction procedure for leaching toxicity-sulfuric acid & nitric acid method (Chinese standard HJ/T299-2007). Strength tests and semi-dynamic leaching tests were implemented to investigate the potential for reusing the final treatment product as a readily available construction material. The experimental results showed that the performance of pre-reduction/solidification (S/S) was superior to that of solidification alone. After pre-reduction, all of the S/S treated COPR samples met the TCLP limit for total Cr (5 mg L(-1)), whereas the samples with a COPR content below 40% met the pollution control limit of bricks and building block products (Chinese standard HJ/T 301-2007) produced with COPR for total Cr (0.3 mg L(-1)). At the same time, all of the S/S treated specimens tested were suitable for utilization at certain levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effect of pH and Calcium on the Adsorptive Removal of Cadmium and Copper by Iron Oxide–Coated Sand and Granular Ferric Hydroxide

    KAUST Repository

    Uwamariya, V.

    2015-08-17

    Iron oxide-coated sand (IOCS) and granular ferric hydroxide (GFH) were used to study the effect of Ca2+ and pH on the adsorptive removal of Cu2+ and Cd2+ from groundwater using batch adsorption experiments and kinetic modeling. It was observed that Cu2+ and Cd2+ were not stable in synthetic waters. The extent of precipitation increased with increasing pH. Removal of Cu2+ and Cd2+ was achieved through both precipitation and adsorption, with IOCS showing higher adsorption efficiency. Increase of pH (from 6 to 8) resulted in a higher overall removal efficiency of both Cu2+ and Cd2+, with precipitation as predominant removal mechanisms at higher pH values, especially for Cu2+. An increase in Ca2+ concentration increased the precipitation of Cu2+ [as Cu2(OH)2CO3 and Cu3(OH)2(CO3)2] and Cd2+ [as Cd(OH)2 and CdCO3]. In addition, Ca2+ competes with Cu2+ and Cd2+ for surface adsorption sites on IOCS and GFH, and reduces their adsorption capacity. The kinetic modeling revealed that the adsorption of Cd2+ onto IOCS is a complex process, with limited contribution of chemisorption that increases in the presence of Ca2+. © 2015 American Society of Civil Engineers.

  2. Simultaneous determinations of zirconium, hafnium, yttrium and lanthanides in seawater according to a co-precipitation technique onto iron-hydroxide.

    Science.gov (United States)

    Raso, Maria; Censi, Paolo; Saiano, Filippo

    2013-11-15

    Very low concentrations (pg mL(-1) or sub-pg mL(-1) level) along with the high salinity are the main problems in determining trace metal contents in seawater. This problem is mainly considered for investigations of naturally occurring YLOID (Y and Lanthanides) and Zr and Hf in order to provide precise and accurate results. The inductively coupled plasma mass spectrometry (ICP-MS), both in high and low resolution, offers many advantages including simultaneous analyses of all elements and their quantitative determination with detection limits of the order of pg mL(-1). However in the analysis of YLOID in seawater, a better determination needs an efficient combination of ICP-MS measurement with a pre-concentration technique. To perform an ultra-trace analysis in seawater, we have validated an analytical procedure involving an improved modified co-precipitation on iron hydroxides to ensure the simultaneous quantitative recovery of YLOID, Zr and Hf contents with measurement by a quadrupole ICP-MS. The validity of the method was assessed through a series of co-precipitation experiments and estimation of several quality control parameters for method validation, namely working range and its linearity, detection limit, quantification limit, precision and spike recoveries, and the methodological blank choice, are introduced, evaluated and discussed. Analysis of NASS-6, is the first report on the latest seawater reference material for YLOID, hafnium and zirconium. © 2013 Elsevier B.V. All rights reserved.

  3. 人工合成铁、铝矿对As(V)吸附的研究%Study on arsenate adsorption by synthetic iron and aluminum oxides/hydroxides

    Institute of Scientific and Technical Information of China (English)

    吴萍萍; 曾希柏

    2011-01-01

    Batch experiments were used to investigate arsenate adsorption by synthetic iron and aluminum oxides/hydroxides.The effects of adsorption time and pH on the adsorption behavior were also studied.The results showed that, As(V)adsorption by four iron and aluminum oxides/hydroxides increased with initial As(V) concentrations (0.1~100 mg/L), in which ferrihydrite showed a rising adsorption trend in the whole concentration range, with the adsorption amount of 22.56 mg/g at the initial As(V) of 100 mg/L.While the rapid increase in lower initial concentration and slow change in higher initial concentrations for the adsorption capacities of goethite, gibbsite, and hematite were obtained.When the initial As(V)reached 100mg/L, the least adsorption capacity of 4.75mg/g was received for hematite.Furthermore, the Freundlich equation fitted the data better than the Langmuir equation.The adsorption capacity of ferrihydrite is the highest, followed by goethite and gibbsite, and hematite shows lower adsorption capacity.With the increase of adsorption time, As(V) adsorption amount of four synthetic iron and aluminum oxides/hydroxides increased gradually, especially for ferrihydrite, reaching 96.3% of adsorption equilibrium in 10 minutes.The adsorption amount of goethite and gibbsite reached 97.4% and 97.2% of the equilibrium at 48h, respectively, while hematite required 96 hours to reach the equilibrium.Except ferrihydrite, four equations fitted the kinetic data better, especially the two-constant equation.The effect of pH on As(V) adsorption was associated to As(V) initial concentrations.In lower initial concentrations, adsorption of four synthetic iron and aluminum oxides/hydroxides decreased only under extremely alkaline conditions (pH>10), and when the initial concentrations were higher, adsorption amount dropped sharply with pH increasing.%采用批实验方法研究了人工合成铁、铝矿物对As(V)的吸附,考察吸附时间及溶液pH值对As(V)吸附的影

  4. Anaerobic biodegradation of polycyclic aromatic hydrocarbons with amendment of iron(III) in mangrove sediment slurry.

    Science.gov (United States)

    Li, Chun-Hua; Wong, Yuk-Shan; Tam, Nora Fung-Yee

    2010-11-01

    Mangrove sediment, influenced by tidal cycles, switches between low-oxygen and non-oxygen conditions, and iron is abundant in it. Polycyclic aromatic hydrocarbon (PAH) contamination often occurs in mangrove wetlands. In the present paper, the effects of iron [Fe(III)] amendment on the biodegradation of four mixed PAHs, namely fluorene (Fl), phenanthrene (Phe), fluoranthene (Flua) and pyrene (Pyr), in mangrove sediment slurries, with and without the inoculation of the enriched PAH-degrading bacterial consortia, under low-oxygen (2 + or - 0.3% O(2)) and non-oxygen (0% O(2)) conditions were investigated. Under both oxygen conditions and for all four PAHs, the highest PAHs biodegradation was observed in the groups with the inoculation of the enriched PAH-degrading consortia, while the groups without the inoculum and without Fe(III) amendment had the lowest biodegradation. However, the amendment of Fe(III) did not show any significant improvement on the biodegradation of all the four mixed PAHs.

  5. Iron-Mediated Homogeneous ICAR ATRP of Methyl Methacrylate under ppm Level Organometallic Catalyst Iron(III Acetylacetonate

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2016-01-01

    Full Text Available Atom Transfer Radical Polymerization (ATRP is an important polymerization process in polymer synthesis. However, a typical ATRP system has some drawbacks. For example, it needs a large amount of transition metal catalyst, and it is difficult or expensive to remove the metal catalyst residue in products. In order to reduce the amount of catalyst and considering good biocompatibility and low toxicity of the iron catalyst, in this work, we developed a homogeneous polymerization system of initiators for continuous activator regeneration ATRP (ICAR ATRP with just a ppm level of iron catalyst. Herein, we used oil-soluble iron (III acetylacetonate (Fe(acac3 as the organometallic catalyst, 1,1′-azobis (cyclohexanecarbonitrile (ACHN with longer half-life period as the thermal initiator, ethyl 2-bromophenylacetate (EBPA as the initiator, triphenylphosphine (PPh3 as the ligand, toluene as the solvent and methyl methacrylate (MMA as the model monomer. The factors related with the polymerization system, such as concentration of Fe(acac3 and ACHN and polymerization kinetics, were investigated in detail at 90 °C. It was found that a polymer with an acceptable molecular weight distribution (Mw/Mn = 1.43 at 45.9% of monomer conversion could be obtained even with 1 ppm of Fe(acac3, making it needless to remove the residual metal in the resultant polymers, which makes such an ICAR ATRP process much more industrially attractive. The “living” features of this polymerization system were further confirmed by chain-extension experiment.

  6. Repeptization by dissolution in a colloidal system of iron(III) pyrophosphate.

    Science.gov (United States)

    van Leeuwen, Y Mikal; Velikov, Krassimir P; Kegel, Willem K

    2012-12-04

    Repeptization (redispersion) from an aggregated state is usually only possible in charge-stabilized colloidal systems if the system is either coagulated in the secondary minimum of the interaction potential or if the system cannot settle completely into the primary minimum. In this work, we analyze the zeta potential, conductivity, and long-term stability of colloidal systems of iron(III) pyrophosphate and surprisingly find that the system seems to defy conventional wisdom as it can be repeptized from its coagulated state regardless of aging time and background ions. Moreover, after having been stored for up to a month in 2 M NaCl, dialysis of iron pyrophosphate will yield a colloidal dispersion that is actually stable for a longer period of time than a fresh system with background electrolyte removed.

  7. Efficacy, Tolerability, and Acceptability of Iron Hydroxide Polymaltose Complex versus Ferrous Sulfate: A Randomized Trial in Pediatric Patients with Iron Deficiency Anemia

    Science.gov (United States)

    Yasa, Beril; Agaoglu, Leyla; Unuvar, Emin

    2011-01-01

    Iron polymaltose complex (IPC) offers similar efficacy with superior tolerability to ferrous sulfate in adults, but randomized trials in children are rare. In a prospective, open-label, 4-month study, 103 children aged >6 months with iron deficiency anemia (IDA) were randomized to IPC once daily or ferrous sulfate twice daily, (both 5 mg iron/kg/day). Mean increases in Hb to months 1 and 4 with IPC were 1.2 ± 0.9 g/dL and 2.3 ± 1.3 g/dL, respectively, (both P = 0.001 versus baseline) and 1.8 ± 1.7 g/dL and 3.0 ± 2.3 g/dL with ferrous sulfate (both P = 0.001 versus baseline) (n.s. between groups). Gastrointestinal adverse events occurred in 26.9% and 50.9% of IPC and ferrous sulfate patients, respectively (P = 0.012). Mean acceptability score at month 4 was superior with IPC versus ferrous sulfate (1.63 ± 0.56 versus 2.14 ± 0.75, P = 0.001). Efficacy was comparable with IPC and ferrous sulfate over a four-month period in children with IDA, but IPC was associated with fewer gastrointestinal adverse events and better treatment acceptability. PMID:22121379

  8. Efficacy, Tolerability, and Acceptability of Iron Hydroxide Polymaltose Complex versus Ferrous Sulfate: A Randomized Trial in Pediatric Patients with Iron Deficiency Anemia

    Directory of Open Access Journals (Sweden)

    Beril Yasa

    2011-01-01

    Full Text Available Iron polymaltose complex (IPC offers similar efficacy with superior tolerability to ferrous sulfate in adults, but randomized trials in children are rare. In a prospective, open-label, 4-month study, 103 children aged >6 months with iron deficiency anemia (IDA were randomized to IPC once daily or ferrous sulfate twice daily, (both 5 mg iron/kg/day. Mean increases in Hb to months 1 and 4 with IPC were 1.2±0.9 g/dL and 2.3±1.3 g/dL, respectively, (both P=0.001 versus baseline and 1.8±1.7 g/dL and 3.0±2.3 g/dL with ferrous sulfate (both P=0.001 versus baseline (n.s. between groups. Gastrointestinal adverse events occurred in 26.9% and 50.9% of IPC and ferrous sulfate patients, respectively (P=0.012. Mean acceptability score at month 4 was superior with IPC versus ferrous sulfate (1.63±0.56 versus 2.14±0.75, P=0.001. Efficacy was comparable with IPC and ferrous sulfate over a four-month period in children with IDA, but IPC was associated with fewer gastrointestinal adverse events and better treatment acceptability.

  9. A magnetic iron(III) switch with controlled and adjustable thermal response for solution processing.

    Science.gov (United States)

    Gandolfi, Claudio; Morgan, Grace G; Albrecht, Martin

    2012-04-01

    Spin crossover requires cooperative behavior of the metal centers in order to become useful for devices. While cooperativity is barely predictable in solids, we show here that solution processing and the covalent introduction of molecular recognition sites allows the spin crossover of iron(III) sal(2)trien complexes to be rationally tuned. A simple correlation between the number of molecular recognition sites and the spin crossover temperature enabled the fabrication of materials that are magnetically bistable at room temperature. The predictable behavior relies on combining function (spin switching) and structure (supramolecular assembly) through covalent interactions in a single molecular building block.

  10. Liquid-Liquid Extraction-Chromogenic Systems Containing Iron(III), 4-Nitrocatechol and Tetrazolium Salts

    OpenAIRE

    Galya K. Toncheva; Teodora S. Stefanova; Gavazov, Kiril B.

    2015-01-01

    Complex formation and liquid-liquid extraction were studied in systems containing iron(III), 4-nitrocatechol (4NC),tetrazolium salt (TZS), water and organic solvent. Three different TZS were used: 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide (MTT), 3-(2-naphtyl)-2,5-diphenyl-2H-tetrazolium chloride (Tetrazolium violet, TV) and 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride (INT).The cations of the first two TZSs (TZ+: MTT+ and TV+) form intensively color...

  11. Bis[N-(2-pyridylcarbonylpyridine-2-carboximidato]iron(III perchlorate methanol solvate

    Directory of Open Access Journals (Sweden)

    Dayu Wu

    2009-11-01

    Full Text Available In the title complex, [Fe(C12H8N3O22]ClO4·CH3OH, the iron(III ion is surrounded by two tridentate N-(2-pyridylcarbonylpyridine-2-carboximidate (bpca ligands and exhibits a distorted octahedral coordination by six bpca N atoms. A classical O—H...O hydrogen bond exists between the methanol solvent molecule and the perchlorate anion. Magnetic susceptibility measurements indicated the complex to be in the low-spin state in the temperature range 5–400 K.

  12. Effect of tris(3-hydroxy-4-pyridinonate) iron(III) complexes on iron uptake and storage in soybean (Glycine max L.).

    Science.gov (United States)

    Santos, Carla S; Carvalho, Susana M P; Leite, Andreia; Moniz, Tânia; Roriz, Mariana; Rangel, António O S S; Rangel, Maria; Vasconcelos, Marta W

    2016-09-01

    Iron deficiency chlorosis (IDC) is a serious environmental problem affecting the growth of several crops in the world. The application of synthetic Fe(III) chelates is still one of the most common measures to correct IDC and the search for more effective Fe chelates remains an important issue. Herein, we propose a tris(3-hydroxy-4-pyridinonate) iron(III) complex, Fe(mpp)3, as an IDC corrector. Different morphological, biochemical and molecular parameters were assessed as a first step towards understanding its mode of action, compared with that of the commercial fertilizer FeEDDHA. Plants treated with the pyridinone iron(III) complexes were significantly greener and had increased biomass. The total Fe content was measured using ICP-OES and plants treated with pyridinone complexes accumulated about 50% more Fe than those treated with the commercial chelate. In particular, plants supplied with compound Fe(mpp)3 were able to translocate iron from the roots to the shoots and did not elicit the expression of the Fe-stress related genes FRO2 and IRT1. These results suggest that 3,4-HPO iron(III) chelates could be a potential new class of plant fertilizing agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. A Simple Spectrofluorimetric Method Based on Quenching of a Nickel(II)-Phthalocyanine Complex to Determine Iron (III).

    Science.gov (United States)

    Çağlar, Yasemin; Saka, Ece Tuğba; Alp, Hakan; Kantekin, Halit; Ocak, Ümmühan; Ocak, Miraç

    2016-07-01

    A new nickel(II)-phthalocyanine complex (NiPc) was synthesized and used as a fluorescent ligand in determination of iron in real samples. The NiPc compound, when excited at 350 nm, decreases of emission with increases of the iron(III) concentration at 425 nm were used analytical response in a modified standard addition method. The method was validated by analyzing two certified reference materials (CRM-SA-C Sandy Soil C and Mixed Polish Herbs (INCT-MPH-2). Food and drug samples were digested in a closed microwave system using nitric acid and hydrogen peroxide. Therefore, all iron in the samples converted to iron(III) ion. These solutions were used directly in determination of iron(III) ion. No cleanup or enrichment of the solutions was required. The calibration graph was linear until 14.00 μg mL(-1). Detection limit and quantification limit were 1.29 μg mL(-1) and 3.88 μg mL(-1), respectively. The method provided accurate results for the majority of the food samples tested, including spanich, dill, mint, purslane, rocket, red lentils, dry beans and two iron medicinal tablets. Also, the high recovery (95.6 %) was obtained for a fortified stream water sample. The simple and cost-effective method is suitable for monitoring total iron concentration in foods and drug samples.

  14. Iron(III) Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions.

    Science.gov (United States)

    Rebelo, Susana L H; Silva, André M N; Medforth, Craig J; Freire, Cristina

    2016-04-12

    Iron(III) fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H₂TPFPP) and the corresponding iron complex [Fe(TPFPP)Cl], and the use of [Fe(TPFPP)Cl] as an oxidation catalyst in green conditions. The preparations of H₂TPFPP and [Fe(TPFPP)Cl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(III)porphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide) and green solvent (ethanol). Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed.

  15. Iron(III)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32.

    Science.gov (United States)

    Luan, Fubo; Liu, Yan; Griffin, Aron M; Gorski, Christopher A; Burgos, William D

    2015-02-03

    Iron-bearing clay minerals are ubiquitous in the environment, and the clay-Fe(II)/Fe(III) redox couple plays important roles in abiotic reduction of several classes of environmental contaminants. We investigated the role of Fe-bearing clay minerals on the bioreduction of nitrobenzene. In experiments with Shewanella putrefaciens CN32 and excess electron donor, we found that the Fe-bearing clay minerals montmorillonite SWy-2 and nontronite NAu-2 enhanced nitrobenzene bioreduction. On short time scales (<50 h), nitrobenzene reduction was primarily biologically driven, but at later time points, nitrobenzene reduction by biologically formed structural Fe(II) in the clay minerals became increasingly important. We found that chemically reduced (dithionite) iron-bearing clay minerals reduced nitrobenzene more rapidly than biologically reduced iron-bearing clay minerals despite the minerals having similar structural Fe(II) concentrations. We also found that chemically reduced NAu-2 reduced nitrobenzene faster as compared to chemically reduced SWy-2. The different reactivity of SWy-2 versus NAu-2 toward nitrobenzene was caused by different forms of structural clay-Fe(II) in the clay minerals and different reduction potentials (Eh) of the clay minerals. Because most contaminated aquifers become reduced via biological activity, the reactivity of biogenic clay-Fe(II) toward reducible contaminants is particularly important.

  16. Core-shell iron oxide-layered double hydroxide: High electrochemical sensing performance of H2O2 biomarker in live cancer cells with plasma therapeutics.

    Science.gov (United States)

    Asif, Muhammad; Liu, Hongwei; Aziz, Ayesha; Wang, Haitao; Wang, Zhengyun; Ajmal, Muhammad; Xiao, Fei; Liu, Hongfang

    2017-11-15

    In this work, we develop a new type of multifunctional core-shell nanomaterial by controllable integration of CuAl layered double hydroxides (LDHs) over the surface of iron oxides (Fe3O4) nanospheres (NSs) to fabricate (Fe3O4@CuAl NSs) hybrid material with interior tunability of LDH phase and explore its practical application in ultrasensitive detection of emerging biomarker, i.e., H2O2 as cancer diagnostic probe. In addition, atmospheric pressure plasmas (APPs) have also been used as potential therapeutic approach for cancer treatment. Due to the synergistic combination of p-type semiconductive channels of LDHs with multi-functional properties, unique morphology and abundant surface active sites, the Fe3O4@CuAl NSs modified electrode exhibited attractive electrocatalytic activity towards H2O2 reduction. Under the optimized conditions, the proposed biosensor demonstrated striking electrochemical sensing performances to H2O2 including linear range as broad as 8 orders of magnitude, low real detection limit of 1nM (S/N = 3), high sensitivity, good reproducibility and long-term stability. Arising from the superb efficiency, the electrochemical biosensor has been used for in vitro determination of H2O2 concentrations in human urine and serum samples prior to and following the intake of coffee, and real-time monitoring of H2O2 efflux from different cancer cell lines in normal state and after plasma treatment. We believe that this novel nano-platform of structurally integrated core-shell nanohybrid materials combined with APPs will enhance diagnostic as well as therapeutic window for cancer diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Inhibition of iron (III) minerals and acidification on the reductive dechlorination of trichloroethylene.

    Science.gov (United States)

    Paul, Laiby; Smolders, Erik

    2014-09-01

    Reductive dechlorination of chlorinated ethenes is inhibited by acidification and by the presence of Fe (III) as a competitive electron acceptor. Synergism between both factors on dechlorination is predicted as reductive dissolution of Fe (III) minerals is facilitated by acidification. This study was set-up to assess this synergism for two common aquifer Fe (III) minerals, goethite and ferrihydrite. Anaerobic microbial dechlorination of trichloroethylene (TCE) by KB-1 culture and formate as electron donor was investigated in anaerobic batch containers at different solution pH values (6.2-7.2) in sand coated with these Fe minerals and a sand only as control. In the absence of Fe, lowering substrate pH from 7.2 to 6.2 increased the time for 90% TCE degradation from 14±1d to 42±4d. At pH 7.2, goethite did not affect TCE degradation time while ferrihydrite increased the degradation time to 19±1d compared to the no Fe control. At pH 6.2, 90% degradation was at 78±1 (ferrihydrite) or 131±1d (goethite). Ferrous iron production in ferrihydrite treatment increased between pH 7.2 and 6.5 but decreased by further lowering pH to 6.2, likely due to reduced microbial activity. This study confirms that TCE is increasingly inhibited by the combined effect of acidification and bioavailable Fe (III), however no evidence was found for synergistic inhibition since Fe reduction did not increase as pH decreases. To the best of our knowledge, this is the first study where effect of pH and Fe (III) reduction on TCE was simultaneously tested. Acid Fe-rich aquifers need sufficient buffering and alkalinity to ensure swift degradation of chlorinated ethenes.

  18. Axial phenoxide coordination on di-iron(III) bisporphyrin: Insights from experimental and DFT studies

    Indian Academy of Sciences (India)

    Susovan Bhowmik; Debangsu Sil; Ranjan Patra; Sankar Prasad Rath

    2011-11-01

    Synthesis, structure and properties of new five-coordinate phenolate complexes of di-iron(III) bisporphyrin are reported here, in which phenol binds in 1-fashion as an axial ligand. The solid and solution EPR at 120K and 1H NMR spectral pattern in solution provide unequivocal evidence for the high spin (S = 5/2) nature of the complex. Mulliken spin density calculation using DFT demonstrates the positive spin densities at the meso carbons and negative spin densities at the methylene carbons and, as a result, the meso and methylene protons are shifted in the upfield and down field regions, respectively in the 1H NMR spectra of the molecule. Also, the ortho- and para-protons of the phenolate ligands are observed to be shifted in the upfield region while meta-protons are shifted downfield. The alternating shift pattern, which is the opposite sign of the chemical shifts for meta-versus ortho- and para-protons, was also explained due to negative and positive spin densities, respectively on the carbons and indicative of spin delocalization on the phenolate ligand. Thus, the calculated spin density maps accounted for the essential 1H NMR spectroscopic features that are observed here for the phenolate complexes of di-iron(III) bisporphyrin. The temperature dependence of the signals follows the Curie law which is indicative of single spin state throughout the temperature range of −40 to +40°C. The single crystal X-ray structure of the corresponding chloro derivative, trans 1,2-bis(chloroiron(III) octaethyl porphyrinyl)ethene, has also been reported here which authenticates the high-spin nature of the complex.

  19. Biotin-conjugated tumour-targeting photocytotoxic iron(III) complexes.

    Science.gov (United States)

    Saha, Sounik; Majumdar, Ritankar; Hussain, Akhtar; Dighe, Rajan R; Chakravarty, Akhil R

    2013-07-28

    Iron(III) complexes [FeL(B)] (1-4) of a tetradentate phenolate-based ligand (H3L) and biotin-conjugated dipyridophenazine bases (B), viz. 7-aminodipyrido [3,2-a:2',3'-c]-phenazine (dppza in 1), (N-dipyrido[3,2-a:2',3'-c]-phenazino)amidobiotin (dppzNB in 2), dipyrido [3,2-a:2',3'-c]-phenazine-11-carboxylic acid (dppzc in 3) and 2-((2-biotinamido)ethyl) amido-dipyrido[3,2-a:2',3'-c]-phenazine (dppzCB in 4) are prepared, characterized and their interaction with streptavidin and DNA and their photocytotoxicity and cellular uptake in various cells studied. The high-spin iron(III) complexes display Fe(III)/Fe(II) redox couple near -0.7 V versus saturated calomel electrode in dimethyl sulfoxide-0.1 M tetrabutylammonium perchlorate. The complexes show non-specific interaction with DNA as determined from the binding studies. Complexes with appended biotin moiety show similar binding to streptavidin as that of free biotin, suggesting biotin conjugation to dppz does not cause any loss in its binding affinity to streptavidin. The photocytotoxicity of the complexes is tested in HepG2, HeLa and HEK293 cell lines. Complex 2 shows higher photocytotoxicity in HepG2 cells than in HeLa or HEK293, forming reactive oxygen species. This effect is attributed to the presence of overexpressed sodium-dependent multi-vitamin transporters in HepG2 cells. Microscopic studies in HepG2 cells show internalization of the biotin complexes 2 and 4 essentially occurring by receptor-mediated endocytosis, which is similar to that of native biotin and biotin fluorescein isothiocyanate conjugate.

  20. STRUCTURE AND REDOX TRANSFORMATIONS OF IRON(III COMPLEXES WITH SOME BIOLOGICALLY IMPORTANT INDOLE-3-ALKANOIC ACIDS IN AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Krisztina Kovács

    2007-06-01

    Full Text Available Interactions of a series of indole-3-alkanoic acids (with n-alkanoic acid side-chains from C1 to C4 with iron(III in acidic aqueous solutions have been shown to comprise two parallel processes including complexation and redox transformations giving iron(II hexaaquo complexes. The structure and composition of the reaction products are discussed, as analysed using a combination of instrumental techniques including 57Fe Mössbauer, vibrational and HNMR spectroscopies.

  1. NO2-induced synthesis of nitrato-iron(III) porphyrin with diverse coordination mode and the formation of isoporphyrin

    Indian Academy of Sciences (India)

    Jagannath Bhuyan; Sabyasachi Sarkar

    2013-07-01

    Two nitrato-iron(III) porphyrinates [Fe(4-Me-TPP)(NO3)] 1 and [Fe(4-OMe-TPP)(NO3)] 2 are reported. Interestingly, [Fe(4-Me-TPP)(NO3)] 1 has nitrate ion coordinated as monodentate (by single oxygen atom), while [Fe(4-OMe-TPP)(NO3)] 2 has nitrate coordination through bidentate mode. Compound 1 was found serendipitously in the reaction of [Fe(4-Me-TPP)Cl] with nitrous acid, which was performed for the synthesis of nitro-iron(III) porphyrin, [Fe(4-Me-TPP)NO2]. The compound 2 was synthesized by passing NO2 gas through a solution of [Fe(4-OMe-TPP)]2O. Upon passing NO2 gas through a solution of a -oxo-dimer, [Fe(4-Me-TPP)]2O also produces 1. It is interesting that in more electron-rich porphyrin 2, binding of the nitrate in a symmetrical bidentate way while in less electron-rich porphyrin 1, binding of the anion is unidentate by a terminal oxygen atom. However, it is expected that the energy difference between the monodentate and bidentate coordination mode is very small and the interchange between these coordination is possible. Upon passing NO2 gas through a solution of -oxo-dimeric iron(III) porphyrin, the nitrato-iron(III) porphyrin forms first, that later gets oxidized to -cation radical to yield hydroxy-isoporphyrin in the presence of trace amount of water. These nitrato-iron(III) porphyrinates in moist air slowly converted back to their respective -oxo-dimeric iron(III) porphyrins.

  2. A Novel Sensor for Monitoring of Iron(III Ions Based on Porphyrins

    Directory of Open Access Journals (Sweden)

    Mayte Gil-Agusti

    2012-06-01

    Full Text Available Three A3B porphyrins with mixed carboxy-, phenoxy-, pyridyl- and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III. The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore. The performance characteristics (linear concentration range, slope and selectivity of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl-10,15,20-tris(4-phenoxyphenyl-porphyrin plasticized with bis(2-ethylhexylsebacate, in a linear range from 1 × 10−7–1 × 10−1 M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III in tap water samples.

  3. A novel sensor for monitoring of iron(III) ions based on porphyrins.

    Science.gov (United States)

    Vlascici, Dana; Fagadar-Cosma, Eugenia; Popa, Iuliana; Chiriac, Vlad; Gil-Agusti, Mayte

    2012-01-01

    Three A(3)B porphyrins with mixed carboxy-, phenoxy-, pyridyl-, and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10(-7)-1 × 10(-1) M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples.

  4. A Novel Sensor for Monitoring of Iron(III) Ions Based on Porphyrins

    Science.gov (United States)

    Vlascici, Dana; Fagadar-Cosma, Eugenia; Popa, Iuliana; Chiriac, Vlad; Gil-Agusti, Mayte

    2012-01-01

    Three A3B porphyrins with mixed carboxy-, phenoxy-, pyridyl-, and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10−7–1 × 10−1 M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples. PMID:22969395

  5. Biogenic Fe(III) minerals lower the efficiency of iron-mineral-based commercial filter systems for arsenic removal.

    Science.gov (United States)

    Kleinert, Susanne; Muehe, Eva M; Posth, Nicole R; Dippon, Urs; Daus, Birgit; Kappler, Andreas

    2011-09-01

    Millions of people worldwide are affected by As (arsenic) contaminated groundwater. Fe(III) (oxy)hydroxides sorb As efficiently and are therefore used in water purification filters. Commercial filters containing abiogenic Fe(III) (oxy)hydroxides (GEH) showed varying As removal, and it was unclear whether Fe(II)-oxidizing bacteria influenced filter efficiency. We found up to 10(7) Fe(II)-oxidizing bacteria/g dry-weight in GEH-filters and determined the performance of filter material in the presence and absence of Fe(II)-oxidizing bacteria. GEH-material sorbed 1.7 mmol As(V)/g Fe and was ~8 times more efficient than biogenic Fe(III) minerals that sorbed only 208.3 μmol As(V)/g Fe. This was also ~5 times more efficient than a 10:1-mixture of GEH-material and biogenic Fe(III) minerals that bound 322.6 μmol As(V)/g Fe. Coprecipitation of As(V) with biogenic Fe(III) minerals removed 343.0 μmol As(V)/g Fe, while As removal by coprecipitation with biogenic minerals in the presence of GEH-material was slightly less efficient as GEH-material only and yielded 1.5 mmol As(V)/g Fe. The present study thus suggests that the formation of biogenic Fe(III) minerals lowers rather than increases As removal efficiency of the filters probably due to the repulsion of the negatively charged arsenate by the negatively charged biogenic minerals. For this reason we recommend excluding microorganisms from filters (e.g., by activated carbon filters) to maintain their high As removal capacity.

  6. Kinetics and mechanism of oxidation of glycine by iron(III)-1,10-phenanthroline complex in perchloric acid medium

    Indian Academy of Sciences (India)

    T V N Partha Sarathi; A Kalyan Kumar; K Krishna Kishore; P Vani

    2005-07-01

    Kinetics and mechanism of oxidation of glycine by iron(III)-1,10-phenanthroline complex has been studied in perchloric acid medium. The reaction is first order with respect to iron(III) and glycine. An increase in (phenanthroline) increases the rate, while increase in [H+] decreases the rate. Hence it can be inferred that the reactive species of the substrate is the zwitterionic form and that of the oxidant is [Fe(phen)2(H2O)2]3+. The proposed mechanism leads to the rate law as elucidated.

  7. New extended magnetic systems based on oxalate and iron(III) ions.

    Science.gov (United States)

    Armentano, Donatella; Mastropietro, Teresa F; De Munno, Giovanni; Rossi, Patrizia; Lloret, Francesc; Julve, Miguel

    2008-05-01

    A series of oxalate-bridged iron(III) complexes have been synthesized by the reaction of FeCl 3 with oxalic acid (H 2ox) and XCl, where X is a substituted univalent ammonium or an alkaline cation. We have obtained basically two different types of compounds by varying the nature and the shape of the counterion, with the dimensionality of the resulting product being strongly influenced by the counterion. Three-dimensional (3D) networks of oxo- and oxalato-bridged iron(III) ions of the general formula {X 2[Fe 2O(ox) 2Cl 2]. pH 2O} n have been obtained for X = Li (+) ( 1), Na (+) ( 2), and K (+) ( 3) with p = 4 and X = MeNH 3 (+) ( 4), Me 2NH 2 (+) ( 5), and EtNH 3 (+) ( 6) with p = 2. Similar 3D hydroxo- and oxalato-bridged iron(III) networks of the formula {X[Fe 2(OH)(ox) 2Cl 2].2H 2O} n resulted for X = EtNH 3 (+) ( 7a) and PrNH 3 (+) ( 8). Compound 7a undergoes a solid-to-solid transformation, leading to a new species of the formula {(H 3O)(EtNH 3)[Fe 2O(ox) 2Cl 2].H 2O} n ( 7b). Chainlike compounds of the formula {X 2[Fe 2(ox) 2Cl 4]. pH 2O} n [X = Me 2NH 2 (+)( 9, p = 1), Me 3NH (+) ( 10, p = 2), and Me 4N (+) ( 11, p = 0)] have been obtained for the bulkier alkylammonium cations. Magnetic susceptibility measurements in the temperature range 1.9-295 K show the occurrence of weak ferromagnetic ordering due to spin canting in the 3D networks 1- 8, with the value of the critical temperature ( T c) varying with the cation in the range 26 K ( 2) to 70 K ( 8) without significant structural modifications. The last three one-dimensional compounds exhibit the typical behavior of antiferromagnetically coupled chains of interacting spin sextets [ J = -8.3 ( 9), -6.9 ( 10), and -8.4 ( 11) cm (-1) with H = - J summation operator i S i S i+1 ].

  8. Arsenic Removal from Water Using Various Adsorbents: Magnetic Ion Exchange Resins, Hydrous Ion Oxide Particles, Granular Ferric Hydroxide, Activated Alumina, Sulfur Modified Iron, and Iron Oxide-Coated Microsand

    KAUST Repository

    Sinha, Shahnawaz

    2011-09-30

    The equilibrium and kinetic adsorption of arsenic on six different adsorbents were investigated with one synthetic and four natural types (two surface and two ground) of water. The adsorbents tested included magnetic ion exchange resins (MIEX), hydrous ion oxide particles (HIOPs), granular ferric hydroxide (GFH), activated alumina (AA), sulfur modified iron (SMI), and iron oxide-coated mic - rosand (IOC-M), which have different physicochemical properties (shape, charge, surface area, size, and metal content). The results showed that adsorption equilibriums were achieved within a contact period of 20 min. The optimal doses of adsorbents determined for a given equilibrium concentration of C eq = 10 μg/L were 500 mg/L for AA and GFH, 520–1,300 mg/L for MIEX, 1,200 mg/L for HIOPs, 2,500 mg/L for SMI, and 7,500 mg/L for IOC-M at a contact time of 60 min. At these optimal doses, the rate constants of the adsorbents were 3.9, 2.6, 2.5, 1.9, 1.8, and 1.6 1/hr for HIOPs, AA, GFH, MIEX, SMI, and IOC-M, respectively. The presence of silicate significantly reduced the arsenic removal efficiency of HIOPs, AA, and GFH, presumably due to the decrease in chemical binding affinity of arsenic in the presence of silicate. Additional experiments with natural types of water showed that, with the exception of IOC-M, the adsorbents had lower adsorption capacities in ground water than with surface and deionized water, in which the adsorption capacities decreased by approximately 60–95 % .

  9. Scientific Opinion on the safety assessment of the active substances, sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulphate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water, for use as active system in food contact materials

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2014-02-01

    Full Text Available This scientific opinion of EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety assessment of the active substances sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulfate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water, used in mixture which is packed into sachets for absorbing oxygen/carbon dioxide emitting from/into the headspace surrounding packed food. All substances of this formulation have been evaluated and approved for use as additives in plastic food contact materials or as food additives. No migration of calcium, iron and sodium ions was detected. No volatile organic compounds other than carbon dioxide were detected at the limit of detection of 0.5 μg/l. The CEF Panel concluded that the use of the substances sodium erythorbate, sodium carbonate, sodium bicarbonate, iron sulfate, activated carbon, cellulose, calcium hydroxide, calcium chloride and water does not raise a safety concern when used in oxygen absorber/carbon dioxide emitter systems, in sachets that prevent the physical release of their contents into the food. The sachets are to be placed in the headspace of the packaging and as such may come into occasional contact with the food, e.g. during handling. The sachet should not come into direct contact with liquid foods or foods that have and external aqueous liquid phase on the surface (liquid or exudates.

  10. Carbohydrate-appended tumor targeting iron(III) complexes showing photocytotoxicity in red light.

    Science.gov (United States)

    Basu, Uttara; Khan, Imran; Hussain, Akhtar; Gole, Bappaditya; Kondaiah, Paturu; Chakravarty, Akhil R

    2014-02-17

    Glucose-appended photocytotoxic iron(III) complexes of a tridentate Schiff base phenolate ligand [Fe(bpyag)(L)](NO3) (1-3), where bpyag is N,N-bis(2-pyridylmethyl)-2-aminoethyl-β-D-glucopyranoside and H2L is 3-(2-hydroxyphenylimino)-1-phenylbutan-1-one (H2phap) in 1, 3-(2-hydroxyphenylimino)-9-anthrylbutan-1-one (H2anap) in 2, and 3-(2-hydroxyphenylimino)-1-pyrenylbutan-1-one (H2pyap) in 3, were synthesized and characterized. The complex [Fe(dpma)(anap)](NO3) (4), having bis-(2-pyridylmethyl)benzylamine (dpma), in which the glucose moiety of bpyag is substituted by a phenyl group, was used as a control, and the complex [Fe(dpma)(anap)](PF6) (4a) was structurally characterized by X-ray crystallography. The structure shows a FeN4O2 core in a distorted octahedral geometry. The high-spin iron(III) complexes with magnetic moment value of ∼5.9 μB showed a low-energy phenolate-to-Fe(III) charge-transfer (CT) absorption band as a shoulder near 500 nm with a tail extending to 700 nm and an irreversible Fe(III)-Fe(II) redox couple near -0.6 V versus saturated calomel electrode. The complexes are avid binders to calf thymus DNA and showed photocleavage of supercoiled pUC19 DNA in red (647 nm) and green (532 nm) light. Complexes 2 and 3 displayed significant photocytotoxicity in red light, with an IC50 value of ∼20 μM in HeLa and HaCaT cells, and no significant toxicity in dark. The cell death is via an apoptotic pathway, by generation of reactive oxygen species. Preferential internalization of the carbohydrate-appended complexes 2 and 3 was evidenced in HeLa cells as compared to the control complex 4. A 5-fold increase in the cellular uptake was observed for the active complexes in HeLa cells. The photophysical properties of the complexes are rationalized from the density functional theory calculations.

  11. Reaction of a sterically hindered iron(III porphyrin with peroxyacetic acid: degradation kinetics

    Directory of Open Access Journals (Sweden)

    P. PRAKASH

    2005-09-01

    Full Text Available A kinetic analysis of the reaction between peracetic acid (AcOOH, and tetrakis (pentafluorophenyl - 21H, 23H-porphine iron(III chloride, Fe(F20TPPCl, in acetonitrile showed that the peracetic acid oxidatively destroys Fe(F20TPPCl. This is in contrast to an assumption that the oxidative degradation of metalloporphyrins can be prevented by the introduction of electron-withdrawing substituents into the phenyl groups of the porphyrin ligand. A UV-visible spectroscopic study showed a degree of macro cycle destruction of the tetrapyrrole conjucation of the metalloporphyrin. The degradation takes place via oxoperferryl species. The first step of the reaction mechanism is the reversible formation of an adduct ’X’(k1/k-1 between Fe(F20TPPCl and peracetic acid, followed by an irreversible step (k2 for the formation of oxoperferryl species.

  12. Bis(cyano) Iron(III) Porphyrinates: What Is the Ground State?

    Science.gov (United States)

    Li, Jianfeng; Noll, Bruce C; Schulz, Charles E; Scheidt, W Robert

    2015-07-06

    The synthesis of six new bis(cyano) iron(III) porphyrinate derivatives is reported. The anionic porphyrin complexes utilized tetraphenylporphyrin, tetramesitylporphyrin, and tetratolylporphyrin as the porphyrin ligand. The potassium salts of Kryptofix-222 and 18-C-6 were used as the cations. These complexes have been characterized by X-ray structure analysis, solid-state Mössbauer spectroscopy, and EPR spectroscopy, both in frozen CH2Cl2 solution and in the microcrystalline state. These data show that these anionic complexes can exist in either the (dxz,dyz)(4)(dxy)(1) or the (dxy)(2)(dxz,dyz)(3) electronic configuration and some can clearly readily interconvert. This is a reflection that these two states can be very close in energy. In addition to the effects of varying the porphyrin ligand, subtle effects of the cyanide ligand environment in the solid state and in solution are sufficient to shift the balance between the two electronic states.

  13. Synthesis, Physicochemical Properties, and Antimicrobial Studies of Iron (III Complexes of Ciprofloxacin, Cloxacillin, and Amoxicillin

    Directory of Open Access Journals (Sweden)

    Fabian I. Eze

    2014-01-01

    Full Text Available Iron (III complexes of ciprofloxacin, amoxicillin, and cloxacillin were synthesized and their aqueous solubility profiles, relative stabilities, and antimicrobial properties were evaluated. The complexes showed improved aqueous solubility when compared to the corresponding ligands. Relative thermal and acid stabilities were determined spectrophotometrically and the results showed that the complexes have enhanced thermal and acid stabilities when compared to the pure ligands. Antimicrobial studies showed that the complexes have decreased activities against most of the tested microorganisms. Ciprofloxacin complex, however, showed almost the same activity as the corresponding ligand. Job’s method of continuous variation suggested 1 : 2 metals to ligand stoichiometry for ciprofloxacin complex but 1 : 1 for cloxacillin complex.

  14. Aquachloridobis[5-(2-pyridyl-1H-tetrazolato-κN1]iron(III

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2009-08-01

    Full Text Available The title compound, [Fe(C6H4N52Cl(H2O], was synthesized by hydrothermal reaction of FeCl3 with 2-(1H-tetrazol-5-ylpyridine. The iron(III metal centre exhibits a distorted octahedral coordination geometry provided by four N atoms from two bidentate organic ligands, one water O atom and one chloride anion. The pyridine and tetrazole rings are nearly coplanar [dihedral angles = 4.32 (15 and 5.04 (14°]. In the crystal structure, intermolecular O—H...N hydrogen bonds link the complex molecules into a two-dimensional network parallel to (100.

  15. Reconstruction of Extracellular Respiratory Pathways for Iron(III Reduction in Shewanella oneidensis strain MR-1

    Directory of Open Access Journals (Sweden)

    Dan eCoursolle

    2012-02-01

    Full Text Available Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA, an integral outer membrane β-barrel protein (MtrB and an outer membrane-anchored c-type cytochrome (MtrC. Together, these components facilitate transfer of electrons from the c-type cytochrome CymA in the cytoplasmic membrane to electron acceptors at and beyond the outer membrane. The genes encoding these core proteins have paralogs in the S. oneidensis genome (mtrB and mtrA each have four while mtrC has three and some of the paralogs of mtrC and mtrA are able to form functional Mtr complexes. We demonstrate that of the additional three mtrB paralogs found in the S. oneidensis genome, only MtrE can replace MtrB to form a functional respiratory pathway to soluble iron(III citrate. We also evaluate which mtrC / mtrA paralog pairs (a total of 12 combinations are able to form functional complexes with endogenous levels of mtrB paralog expression. Finally, we reconstruct all possible functional Mtr complexes and test them in a S. oneidensis mutant strain where all paralogs have been eliminated from the genome. We find that each combination tested with the exception of MtrA / MtrE / OmcA is able to reduce iron(III citrate at a level significantly above background. The results presented here have implications towards the evolution of anaerobic extracellular respiration in Shewanella and for future studies looking to increase the rates of substrate reduction for water treatment, bioremediation, or electricity production.

  16. Speciation of As(III)/As(V) in water samples by a magnetic solid phase extraction based on Fe₃O₄/Mg-Al layered double hydroxide nano-hybrid followed by chemiluminescence detection.

    Science.gov (United States)

    Abdolmohammad-Zadeh, Hossein; Talleb, Zeynab

    2014-10-01

    A novel magnetic solid phase extraction method was developed for the speciation of As(III)/As(V) in aqueous solutions utilizing Fe3O4-doped Mg-Al layered double hydroxide (LDH) as a nano-sorbent. The method is based on the separation and pre-concentration of As(V) by Fe3O4/Mg-Al LDH nano-hybrid prior to determination by a chemiluminescence (CL) technique. The CL route involves the oxidation of luminol by vanadomolybdoarsenate heteropoly acid in a basic media. Since the existing cations cannot be adsorbed by positively charged layers of the LDH and other potentially interferent anions had no considerable effect on the CL reaction, it provides a very selective and sensitive determination approach for As(V). The determination of total arsenic and hence indirectly As(III) involve the pre-oxidation of As(III) to As(V) by a mixture of hydrogen peroxide and potassium hydroxide. Several factors affecting the extraction and determination of the analyte were investigated and optimized. Under optimum conditions, the calibration graph was linear in the range of 5.0-5000 ng L(-1). The limit of detection and enrichment factor was 2.0 ng L(-1) and 80, respectively. The method was validated by the analysis of a standard reference material (NIST SRM 1643e), and successfully applied to the speciation of arsenic in several water samples with recoveries in the range of 93.3-106.7% for the spiked samples.

  17. Iron(III Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions

    Directory of Open Access Journals (Sweden)

    Susana L. H. Rebelo

    2016-04-01

    Full Text Available Iron(III fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H2TPFPP and the corresponding iron complex [Fe(TPFPPCl], and the use of [Fe(TPFPPCl] as an oxidation catalyst in green conditions. The preparations of H2TPFPP and [Fe(TPFPPCl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(IIIporphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide and green solvent (ethanol. Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed.

  18. Fibrous materials on polyhydroxybutyrate and ferric iron (III)-based porphyrins basis: physical-chemical and antibacterial properties

    Science.gov (United States)

    Olkhov, A.; Lobanov, A.; Staroverova, O.; Tyubaeva, P.; Zykova, A.; Pantyukhov, P.; Popov, A.; Iordanskii, A.

    2017-02-01

    Ferric iron (III)-based complexes with porphyrins are the homogenous catalysts of auto-oxidation of several biogenic substances. The most perspective carrier for functional low-molecular substances is the polymer fibers with nano-dimensional parameters. Application of natural polymers, poly-(3-hydroxybutyrate) or polylactic acid for instance, makes possible to develop fiber and matrice systems to solve ecological problem in biomedicine The aim of the article is to obtain fibrous material on poly-(3-hydroxybutyrate) and ferric iron (III)-based porphyrins basis and to examine its physical-chemical and antibacterial properties. The work is focused on possibility to apply such material to biomedical purposes. Microphotographs of obtained material showed that addition of 1% wt. ferric iron (III)-based porphyrins to PHB led to increased average diameter and disappeared spindly structures in comparison with initial PHB. Biological tests of nonwoven fabrics showed that fibers, containing ferric iron (III)-based tetraphenylporphyrins, were active in relation to bacterial test-cultures. It was found that materials on polymer and metal complexes with porphyrins basis can be applied to production of decontamination equipment in relation to pathogenic and opportunistic microorganisms.

  19. Understanding the role of multiheme cytochromes in iron(III) reduction and arsenic mobilization by Shewanella sp. ANA-3

    Science.gov (United States)

    Reyes, C.; Duenas, R.; Saltikov, C.

    2006-12-01

    The reduction of Fe (III) to Fe (II) and of arsenate (As (V)) to arsenite (As (III)) by Fe (III) reducing and As (V) respiring prokaryotes such as the bacterium Shewanella sp. ANA-3 may contribute to arsenic mobilization in aquifers contaminated with arsenic, specifically in places such as Bangladesh. Under oxic conditions As (V) predominates and is often adsorbed onto mineral surfaces such as amorphous ferrihydrite. However, under anoxic conditions As (III) predominates, sorbs to fewer minerals, and has a greater hydrologic mobility compared to As (V). The genetic mechanism underlying arsenic release from subsurface material most likely involves a combination of respiratory gene clusters (e.g. mtr/omc and arr). In this study, we are investigating the genetic pathways underlying arsenic mobilization. We have generated various mutations in the mtr/omc gene cluster, which encodes several outermembrane decaheme c-type cytochromes. Deletions in one mtr/omc gene did not eliminate iron reduction. However, strains carrying multiple gene deletions were greatly impaired in iron reduction abilities. Work is currently underway to generate combinations of iron reduction and arsenate reduction single and double mutants that will be used to investigate microbial mobilization of arsenic in flow-through columns containing As (V)-HFO coated sand. This work will address the importance of arsenate reduction and iron reduction in the mobilization of arsenic.

  20. The cation as a tool to get spin-canted three-dimensional ironIII networks.

    Science.gov (United States)

    Armentano, Donatella; De Munno, Giovanni; Mastropietro, Teresa F; Proserpio, Davide M; Julve, Miguel; Lloret, Francesc

    2004-08-23

    Alkyl-substituted ammonium cations (X) allow the preparation of a series of spin-canted oxo- and oxalato-bridged three-dimensional iron(III) networks, exhibiting magnetic ordering at T(c) values ranging from 40 to 56 K. The value of T(c) varies with the cation despite the lack of significant structural modifications.

  1. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates

    NARCIS (Netherlands)

    Delaire, Caroline; van Genuchten, Case M.; Amrose, Susan E.; Gadgil, Ashok J.

    2016-01-01

    Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment o

  2. Electronic Modulation of the SOMO-HOMO Energy Gap in Iron(III) Complexes towards Unimolecular Current Rectification.

    Science.gov (United States)

    Wickramasinghe, Lanka D; Mazumder, Shivnath; Kpogo, Kenneth K; Staples, Richard J; Schlegel, H Bernhard; Verani, Cláudio N

    2016-07-25

    Amphiphilic five-coordinate iron(III) complexes with {N2 O2 Cl} and {N2 O3 } coordination spheres are studied to elucidate the roles of electronic structure on the mechanisms for current rectification. The presence of an apical chlorido or phenolato ligand plays a crucial role, and the [Fe(III) {N2 O2 Cl}] species supports an asymmetric mechanism while its [Fe(III) {N2 O3 }] counterpart seems to allow for unimolecular mechanism. The effects of electron-donating and electron-withdrawing substituents in the ligand frameworks are also considered.

  3. Enhanced E/Z Isomerization of (All-E)-lycopene by Employing Iron(III) Chloride as a Catalyst.

    Science.gov (United States)

    Honda, Masaki; Kawana, Takahiro; Takehara, Munenori; Inoue, Yoshinori

    2015-07-01

    Catalytic isomerization of (all-E)-lycopene to Z-isomers using iron(III) chloride was investigated and optimized under various conditions of solvents, concentrations of iron(III) chloride, and reaction temperatures. The total contents of Z-isomers converted were higher in the order of CH2 Cl2 (78.4%) > benzene (61.4%) > acetone (51.5%) > ethyl acetate (50.8%) at 20 °C for 3 h using 1.0 × 10(-3) mg/mL iron(III) chloride for 0.1 mg/mL (all-E)-lycopene. However, the decomposition of lycopene was markedly accelerated in CH2 Cl2 : the remaining lycopene after the reaction for 3 h and 12 h was only 79.4% and 47.5%, respectively. As the concentration of catalyst increased in acetone, the Z-isomerization ratio of lycopene increased to more than 80%, followed by rapid degradation of lycopene to undetectable levels using >4.0 × 10(-3) mg/mL iron(III) chloride with the above concentration of (all-E)-lycopene. Finally, greater isomerization (79.9%) was attained at 60 °C in acetone for 3 h in the presence of 1.0 × 10(-3) mg/mL iron(III) chloride, largely without decomposition of lycopene (remaining ratio of total amount of lycopene isomers after the reaction, 96.5%). As iron(III) chloride has found general use as a food additive for iron fortification and acetone is also widely used in the food field, this method can be applied to the food and beverage processing industry. The dietary intake of lycopene, a natural red pigment found in brightly colored vegetables and fruits such as tomatoes and watermelons, has been reported to lower the risk of some diseases, including cancer. Lycopene molecules occur naturally in a long and “straight” shape, but on the other hand lycopene molecules with “bent” forms are highly absorbed by living cells, and showed good antioxidant activity. This study has demonstrated the efficient production of the “bent” lycopene using ionic iron as an accelerator, which is often contained in nutritional supplements. © 2015 Institute of Food

  4. X-ray Absorption Spectroscopic Studies of High-Spin Nonheme (Alkylperoxo)iron(III) Intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Shan,X.; Rohde, J.; Koehntop, K.; Zhou, Y.; Bukowski, M.; Costas, M.; Fujisawa, K.; Que, Jr., L.

    2007-01-01

    The reactions of iron(II) complexes [Fe(Tpt-Bu,i-Pr)(OH)] (1a, Tpt-Bu,i-Pr = hydrotris(3-tert-butyl-5-isopropyl-1-pyrazolyl)borate), [Fe(6-Me2BPMCN)(OTf)2] (1b, 6-Me2BPMCN = N,N'-bis((2-methylpyridin-6-yl)methyl)-N,N'-dimethyl-trans-1,2-diaminocyclohexane), and [Fe(L8Py2)(OTf)](OTf) (1c, L8Py2 = 1,5-bis(pyridin-2-ylmethyl)-1,5-diazacyclooctane) with tert-BuOOH give rise to high-spin FeIII-OOR complexes. X-ray absorption spectra (XAS) of these high-spin species show characteristic features, distinct from those of low-spin Fe-OOR complexes. These include (1) an intense 1s {yields} 3d preedge feature, with an area around 20 units, (2) an edge energy, ranging from 7122 to 7126 eV, that is affected by the coordination environment, and (3) a 1.86-1.96 Angstroms Fe-OOR bond, compared to the 1.78 Angstroms Fe-OOR bond in low-spin complexes. These unique features likely arise from a flexible first coordination sphere in those complexes. The difference in Fe-OOR bond length may rationalize differences in reactivity between low-spin and high-spin FeIII-OOR species.

  5. Selection of Chelated Fe (III)/Fe (II) Catalytic Oxidation Agents for Desulfurization Based on Iron Complexation Method

    Institute of Scientific and Technical Information of China (English)

    Luo Ying; Liu Youzhi; Qi Guisheng; Guo Huidong; Zhu Zhengfeng

    2014-01-01

    Optimization of factors inlfuencing the experiments on reactions involving 8 different chelating agents and sol-uble Fe (III)/Fe (II) salts was carried out to yield chelated iron complexes. A combination of optimized inlfuencing factors has resulted in a Fe chelating capacity of the iron-based desulfurization solution to be equal to 6.83-13.56 g/L at a redox potential of 0.185-0.3. The desulfurization performance of Fe (III)/Fe (II) chelating agents was investigated on a simulated sulfur-containing industrial gas composed of H2S and N2 in a cross-lfow rotating packed bed. Test results have revealed that the proposed iron-based desulfurization solution showed a sulfur removal efifciency of over 99%along with a Fe chelating capacity exceeding 1.35 g/L. This desulfurization technology which has practical application prospect is currently in the phase of commercial scale-up study.

  6. Synthesis, structural and magnetic characterisation of iron(II/III), cobalt(II) and copper(II) cluster complexes of the polytopic ligand: N-(2-pyridyl)-3-carboxypropanamide.

    Science.gov (United States)

    Russell, Mark E; Hawes, Chris S; Ferguson, Alan; Polson, Matthew I J; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S; Kruger, Paul E

    2013-10-07

    Herein we describe the synthesis, structural and magnetic characterisation of three transition metal cluster complexes that feature the polytopic ligand N-(2-pyridyl)-3-carboxypropanamide (H2L): [Fe3(III)Fe2(II)(HL)6(O)(H2O)3][ClO4]5·3MeCN·4H2O, 1, [Co8(HL)8(O)(OH)4(MeOH)3(H2O)]-[ClO4]3·5MeOH·2H2O, 2, and [Cu6(L(ox))4(MeOH)(H2O)3]·MeOH, 3. Complex 1 is a mixed valence penta-nuclear iron cluster containing the archetypal {Fe3(III)O} triangular basic carboxylate cluster at its core, with two Fe(II) ions above and below the core coordinated to three bidentate pyridyl-amide groups. The structure of the octanuclear Co(II) complex, 2, is based upon a central Co4 square with the remaining four Co(II) centres at the 'wing-tips' of the complex. The cluster core is replete with bridging oxide, hydroxide and carboxylate groups. Cluster 3 contains an oxidised derivative of the ligand, L(ox), generated in situ through hydroxylation of an α-carbon atom. This hexanuclear cluster has a 'barrel-like' core and contains Cu(II) ions in both square planar and square-based pyramidal geometries. Bridging between Cu(II) centres is furnished by alkoxide and carboxylate groups. Magnetic studies on 1-3 reveals dominant antiferro-magnetic interactions for 1 and 2, leading to small non-zero spin ground states, while 3 shows ferro-magnetic exchange between the Cu(II) centres to give an S = 3 spin ground state.

  7. Mechanism of oxidation of L-methionine by iron(III)-1,10-phenanthroline complex - A kinetic study

    Indian Academy of Sciences (India)

    P Vani; K Krishna Kishore; R Rambabu; L S A Dikshitulu

    2001-08-01

    Kinetics and mechanism of oxidation of L-methionine by iron(III)-1, 10-phenanthroline complex have been studied in perchloric acid medium. The reaction is first order each in iron(III) and methionine. Increase in [phenanthroline] increases the rate while increase in [HClO4] decreases it. While the reactive species of the substrate is the zwitterionic form, that of the oxidant is [Fe(phen)2(H2O)2]3+. The proposed mechanism leads to the rate law $$\\dfrac{d[Fe(phen)^{2+}_3]}{dt} = \\dfrac{k_2 K_4 K_3 K^2_2 [Fe^{III}] [\\text{phen}^2] [\\text{Met}]}{(1+K_1 [H^+]) ([H^+]^2 + K_4 K_3 K^2_2[\\text{phen}]^2)}.$$

  8. Layered double hydroxide stability. 1. Relative stabilities of layered double hydroxides and their simple counterparts

    Science.gov (United States)

    Boclair, J. W.; Braterman, P. S.

    1999-01-01

    Solutions containing di- and trivalent metal chlorides [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+; M(III) = Al3+, Fe3+] were titrated with NaOH to yield hydrotalcite-like layered double hydroxides (LDH), [[M(II)]1-x[M(III)]x(OH)2][Cl]x yH2O, by way of M(III) hydroxide/hydrous oxide intermediates. Analysis of the resultant titration curves yields nominal solubility constants for the LDH. The corresponding LDH stabilities are in the order Mg hydroxides/hydrous oxides is discussed.

  9. Impact of two iron(III) chelators on the iron, cadmium, lead and nickel accumulation in poplar grown under heavy metal stress in hydroponics.

    Science.gov (United States)

    Mihucz, Victor G; Csog, Árpád; Fodor, Ferenc; Tatár, Enikő; Szoboszlai, Norbert; Silaghi-Dumitrescu, Luminiţa; Záray, Gyula

    2012-04-15

    Poplar (Populus jacquemontiana var. glauca cv. Kopeczkii) was grown in hydroponics containing 10 μM Cd(II), Ni(II) or Pb(II), and Fe as Fe(III) EDTA or Fe(III) citrate in identical concentrations. The present study was designed to compare the accumulation and distribution of Fe, Cd, Ni and Pb within the different plant compartments. Generally, Fe and heavy-metal accumulation were higher by factor 2-7 and 1.6-3.3, respectively, when Fe(III) citrate was used. Iron transport towards the shoot depended on the Fe(III) chelate and, generally, on the heavy metal used. Lead was accumulated only in the root. The amounts of Fe and heavy metals accumulated by poplar were very similar to those of cucumber grown in an identical way, indicating strong Fe uptake regulation of these two Strategy I plants: a cultivar and a woody plant. The Strategy I Fe uptake mechanism (i.e. reducing Fe(III) followed by Fe(II) uptake), together with the Fe(III) chelate form in the nutrient solution had significant effects on Fe and heavy metal uptake. Poplar appears to show phytoremediation potential for Cd and Ni, as their transport towards the shoot was characterized by 51-54% and 26-48% depending on the Fe(III) supply in the nutrient solution. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. A Phase III, randomized, open-label trial of ferumoxytol compared with iron sucrose for the treatment of iron deficiency anemia in patients with a history of unsatisfactory oral iron therapy.

    Science.gov (United States)

    Hetzel, David; Strauss, William; Bernard, Kristine; Li, Zhu; Urboniene, Audrone; Allen, Lee F

    2014-06-01

    Iron deficiency anemia (IDA) is the most common form of anemia worldwide. Although oral iron is used as first-line treatment, many patients are unresponsive to or cannot take oral iron. This Phase III, open-label, non-inferiority study compared the efficacy and safety of ferumoxytol, a rapid, injectable intravenous (IV) iron product with low immunological reactivity and minimal detectable free iron, with IV iron sucrose in adults with IDA of any cause. Patients (N = 605) were randomized 2:1 to receive ferumoxytol (n = 406, two doses of 510 mg 5 ± 3 days apart) or iron sucrose (n = 199, five doses of 200 mg on five nonconsecutive days over 14 days) and followed for 5 weeks. Ferumoxytol demonstrated noninferiority to iron sucrose at the primary endpoint, the proportion of patients achieving a hemoglobin increase of ≥2 g dL(-1) at any time from Baseline to Week 5 (ferumoxytol, 84.0% [n = 406] vs. iron sucrose, 81.4% [n = 199]), with a noninferiority margin of 15%. Ferumoxytol was superior to iron sucrose (2.7 g dL(-1) vs. 2.4 g dL(-1) ) in the mean change in hemoglobin from Baseline to Week 5 (the alternative preplanned primary endpoint) with P = 0.0124. Transferrin saturation, quality-of-life measures, and safety outcomes were similar between the two treatment groups. Overall, ferumoxytol demonstrated comparable safety and efficacy to iron sucrose, suggesting that ferumoxytol may be a useful treatment option for patients with IDA in whom oral iron was unsatisfactory or could not be used.

  11. Novel Low Spin Mixed Ligand Thiohydrazide Complexes of Iron(III: Synthesis, Spectral Characterization, Molecular Modeling, and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Dolan Sengupta

    2014-01-01

    Full Text Available Mixed ligand complexes of Fe(III with aromatic thiohydrazides of general composition [Fe(acac(L2] have been synthesized and characterized (acac-acetylacetonate, L = bidentate uninegative aromatic thiohydrazide ligand, for example, thiobenzhydrazide, 2-hydroxythiobenzhydrazide, furan-2-thiohydrazide, and thiophen-2-thiohydrazide. The magnetic susceptibility data and the EPR spectra of these complexes suggested the formation of rhombically distorted low spin iron center (d5 in octahedral environment, which was also supported by the UV-vis spectral data of the complexes. Biological studies of these complexes also indicated that the iron-thiohydrazido complexes have superior antibacterial properties compared to the corresponding ligands.

  12. X-Ray Absorption Spectroscopic Studies of High-Spin Nonheme (Alkylperoxo)Iron(III) Intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Shan, X.; Rohde, J.-U.; Koehntop, K.D.; Zhou, Y.; Bukowski, M.R.; Costas, M.; Fujisawa, K.; Que, L.; Jr.

    2009-06-04

    The reactions of iron(II) complexes [Fe(Tp{sup t-Bu,i-Pr})(OH)] (1a, Tp{sup t-Bu,i-Pr} = hydrotris(3-tert-butyl-5-isopropyl-1-pyrazolyl)borate), [Fe(6-Me{sub 2}BPMCN)(OTf){sub 2}] (1b, 6-Me{sub 2}BPMCN = N,N'-bis((2-methylpyridin-6-yl)methyl)-N,N'-dimethyl-trans-1,2-diaminocyclohexane), and [Fe(L{sup 8}Py{sub 2})(OTf)](OTf) (1c, L{sup 8}Py{sub 2} = 1,5-bis(pyridin-2-ylmethyl)-1,5-diazacyclooctane) with tert-BuOOH give rise to high-spin Fe{sup III}-OOR complexes. X-ray absorption spectra (XAS) of these high-spin species show characteristic features, distinct from those of low-spin Fe-OOR complexes (Rohde, J.-U.; et al. J. Am. Chem. Soc. 2004, 126, 16750--16761). These include (1) an intense 1s {yields} 3d preedge feature, with an area around 20 units, (2) an edge energy, ranging from 7122 to 7126 eV, that is affected by the coordination environment, and (3) a 1.86--1.96 {angstrom} Fe-OOR bond, compared to the 1.78 {angstrom} Fe-OOR bond in low-spin complexes. These unique features likely arise from a flexible first coordination sphere in those complexes. The difference in Fe-OOR bond length may rationalize differences in reactivity between low-spin and high-spin Fe{sup III}-OOR species.

  13. Sistemos “Sunkiųjų metalų jonai - geležies (III) oksidas/hidroksidas“ cheminė analizė ir sorbcijos procesų tyrimas

    OpenAIRE

    Zubrytė, Edita

    2016-01-01

    Sistemos “Sunkiųjų metalų jonai - geležies (III) oksidas/hidroksidas“ cheminė analizė ir sorbcijos procesų tyrimas Chemical Analysis of the System „Heavy Metal Ions – an Iron (III) Oxide/Hydroxide and Investigation of the Sorption Processes

  14. Reduction of ethylenediaminetetraacetic acid iron(III) by Klebsiella sp. FD-3 immobilized on iron(II, III) oxide poly (styrene-glycidyl methacrylate) magnetic porous microspheres: effects of inorganic compounds and kinetic study of effective diffusion in porous media.

    Science.gov (United States)

    Zhou, Zuo-Ming; Wang, Xiao-Yan; Lin, Tian-Ming; Jing, Guo-Hua

    2014-11-01

    Fe3O4 poly (styrene-glycidyl methacrylate) magnetic porous microspheres (MPPMs) were introduced to immobilize Klebsiella sp. FD-3, an iron-reducing bacterium applied to reduce Fe(III)EDTA. The effects of potential inhibitors (S(2-), SO3(2-), NO3(-), NO2(-) and Fe(II)EDTA-NO) on Fe(III)EDTA reduction were investigated. S(2-) reacted with Fe(III)EDTA as an electron-shuttling compound and enhanced the reduction. But Fe(III)EDTA reduction was inhibited by SO3(2-) and Fe(II)EDTA-NO due to their toxic to microorganisms. Low concentrations of NO3(-) and NO2(-) accelerated Fe(III)EDTA reduction, but high concentrations inhibited the reduction, whether by free or immobilized FD-3. The immobilized FD-3 performed better than freely-suspended style. The substrate mass transfer and diffusion kinetics in the porous microspheres were calculated. The value of Thiele modulus and effectiveness factors showed that the intraparticle diffusion was fairly small and neglected in this carrier. Fe(III)EDTA reduction fitted first-order model at low Fe(III)EDTA concentration, and changed to zero-order model at high concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A new Organopalladium compound containing four Iron (III) Porphyrins for the selective oxidation of alkanes/alkenes by t-BuOOH

    Indian Academy of Sciences (India)

    Manoj Kumar Singh; Debkumar Bandyopadhyay

    2016-03-01

    Two iron(III) tetraphenyl porphyrin catalytic units are connected by an azo-link to form the dimeric compound A. The compound A was then reacted with Pd2+ to make a tetrameric iron(III) porphyrin complex B with all four iron(III) catalytic sites open to the substrates and reactants. Both the compounds were characterized spectroscopically and the results of homogeneous oxidation of some alkanes and alkenes with t-BuOOH in presence of catalytic quantities of A and B have indicated remarkable improvement in selectivity and efficiency of A over the monomeric catalyst and B over A.

  16. Stabilization through precipitation in a system of colloidal iron(III) pyrophosphate salts.

    Science.gov (United States)

    van Leeuwen, Y Mikal; Velikov, Krassimir P; Kegel, Willem K

    2012-09-01

    The ionic strength of a solution decreases during the precipitation of an insoluble salt, which can cause an initially unstable colloidal system to stabilize during its formation. We show this effect in the precipitation and aging of colloidal iron(III) pyrophosphate, where we observe two distinct stages in the aggregation process. The first stage is the formation of nanoparticles that immediately aggregate into clusters with sizes on the order of 200 nm. In the second stage these clusters slowly grow in size but remain in dispersion for days, even months for dialyzed systems. Eventually these clusters become macroscopically large and sediment out of dispersion. Noting the clear instability of the nanoparticles, it is interesting to find two stages in their aggregation even without the use of additives such as surface active molecules. This is explained by accounting for the rapid decrease of ionic strength during precipitation, rendering the nanoparticles relatively stable when precipitation is complete. Calculating the interaction potentials for this scenario we find good agreement with the experimental observations. These results indicate that coupling of ionic strength to aggregation state can be significant and should be taken into account when considering colloidal stability of insoluble salts.

  17. A new chromogenic agent for iron(III): Synthesis, structure and spectroscopic studies

    Indian Academy of Sciences (India)

    Chandrama Basu; Santanu Chowdhury; Helen Stoeckli-Evans; Soma Mukherjee

    2010-03-01

    A heterocyclic hydrazone ligand, diacetyl monoxime-2-pyridyl hydrazone, HL, 1, was investigated as a new chromogenic agent for selective detection of Fe3+. The ligand 1, undergoes 1 : 2 complexation with Fe3+ and Ni2+ to form complexes [FeIII(HL)2]Cl3, 1a and [NiII(HL)2]Cl2, 1b respectively. The iron(III) complex 1a gives a characteristic absorption peak at 487 nm with distinct reddish-pink colouration. The change in colour can easily be distinguished from other metal complexes by the naked eye. No obvious interference was observed in presence of other metal ions (Na+, K+, Ca2+, Mg2+, Al3+, Mn2+, Ni2+, Cu2+, Zn2+, Co2+, Pb2+, Hg2+, Cd2+). The bands appearing in the UV region (200-340 nm) are characteristics of the ligand, HL, 1. In the complexes [FeIII(HL)2]Cl3, 1a, and [NiII(HL)2]Cl2, 1b, these ligand centered bands are accompanied by multiple bands extending into the visible region (350-500 nm). The association constants (ass, UV-Vis) were found to be (6.4865 ± 0.004) × 105 for the complex 1a and (1.1960 ± 0.002) × 105 for the complex 1b at 298 K determined by the UV-Vis spectroscopy. On excitation at 285 nm, the ligand HL, 1 strongly emits at 364 nm due to an intraligand1( - *) transition. The complexes are luminescent (ex 285 nm, em 365 nm) with /0 0.75 for 1a and 0.81 for 1b. In both the cases, the 1 : 2 binding is confirmed by Job’s method. Molecular structure of the complex 1b has been determined by single crystal X-ray diffraction studies. Here, two crystallographically distinct but metrically very similar molecules making an enantiomeric pair constitute the asymmetric unit in which both metal atoms are tris chelated in meridional geometry.

  18. Manganese-incorporated iron(III) oxide-graphene magnetic nanocomposite: synthesis, characterization, and application for the arsenic(III)-sorption from aqueous solution

    Science.gov (United States)

    Nandi, Debabrata; Gupta, Kaushik; Ghosh, Arup Kumar; De, Amitabha; Banerjee, Sangam; Ghosh, Uday Chand

    2012-12-01

    High specific surface area of graphene (GR) has gained special scientific attention in developing magnetic GR nanocomposite aiming to apply for the remediation of diverse environmental problems like point-of-use water purification and simultaneous separation of contaminants applying low external magnetic field (water. Fabrication of magnetic manganese-incorporated iron(III) oxide (Mn x 2+Fe2- x 3+O4 2-) (IMBO)-GR nanocomposite is reported by exfoliating the GR layers. Latest microscopic, spectroscopic, powder X-ray diffraction, BET surface area, and superconducting quantum interference device characterizations showed that the material is a magnetic nanocomposite with high specific surface area (280 m2 g-1) and pore volume (0.3362 cm3 g-1). Use of this composite for the immobilization of carcinogenic As(III) from water at 300 K and pH 7.0 showed that the nanocomposite has higher binding efficiency with As(III) than the IMBO owing to its high specific surface area. The composite showed almost complete (>99.9 %) As(III) removal (≤10 μg L-1) from water. External magnetic field of 0.3 T efficiently separated the water dispersed composite (0.01 g/10 mL) at room temperature (300 K). Thus, this composite is a promising material which can be used effectively as a potent As(III) immobilizer from the contaminated groundwater (>10 μg L-1) to improve drinking water quality.

  19. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  20. Iron

    Science.gov (United States)

    ... of iron stored in the body become low, iron deficiency anemia sets in. Red blood cells become smaller and ... from the lungs throughout the body. Symptoms of iron deficiency anemia include tiredness and lack of energy, GI upset, ...

  1. Reverse osmosis membrane composition, structure and performance modification by bisulphite, iron(III), bromide and chlorite exposure.

    Science.gov (United States)

    Ferrer, O; Gibert, O; Cortina, J L

    2016-10-15

    Reverse osmosis (RO) membrane exposure to bisulphite, chlorite, bromide and iron(III) was assessed in terms of membrane composition, structure and performance. Membrane composition was determined by Rutherford backscattering spectrometry (RBS) and membrane performance was assessed by water and chloride permeation, using a modified version of the solution-diffusion model. Iron(III) dosage in presence of bisulphite led to an autooxidation of the latter, probably generating free radicals which damaged the membrane. It comprised a significant raise in chloride passage (chloride permeation coefficient increased 5.3-5.1 fold compared to the virgin membrane under the conditions studied) rapidly. No major differences in terms of water permeability and membrane composition were observed. Nevertheless, an increase in the size of the network pores, and a raise in the fraction of aggregate pores of the polyamide (PA) layer were identified, but no amide bond cleavage was observed. These structural changes were therefore, in accordance with the transport properties observed.

  2. Reaction mechanism for the highly efficient catalytic decomposition of peroxynitrite by the amphipolar iron(III) corrole 1-Fe.

    Science.gov (United States)

    Avidan-Shlomovich, Shlomit; Gross, Zeev

    2015-07-21

    The amphipolar iron(III) corrole 1-Fe is one of the most efficient catalysts for the decomposition of peroxynitrite, the toxin involved in numerous diseases. This research focused on the mechanism of that reaction at physiological pH, where peroxynitrite is in equilibrium with its much more reactive conjugated acid, by focusing on the elementary steps involved in the catalytic cycle. Kinetic investigations uncovered the formation of a reaction intermediate in a process that is complete within a few milliseconds (k1 ∼ 3 × 10(7) M(-1) s(-1) at 5 °C, about 7 orders of magnitude larger than the first order rate constant for the non-catalyzed process). Multiple evidence points towards iron-catalyzed homolytic O-O bond cleavage to form nitrogen dioxide and hydroxo- or oxo-iron(iv) corrole. The iron(iv) intermediate was found to decay via multiple pathways that proceed at similar rates (k2 about 10(6) M(-1) s(-1)): reaction with nitrogen dioxide to form nitrate, nitration of the corrole macrocyclic, and dimerization to binuclear iron(iv) corrole. Catalysis in the presence of substrates affects the decay of the iron intermediate by either oxidative nitration (phenolic substrates) or reduction (ascorbate). A large enough excess of ascorbate accelerates the catalytic decomposition of PN by 1-Fe by orders of magnitude, prevents other decay routes of the iron intermediate, and eliminates nitration products as well. This suggests that the beneficial effect of the iron corrole under the reducing conditions present in most biological media might be even larger than in the purely chemical system. The acquired mechanistic insight is of prime importance for the design of optimally acting catalysts for the fast and safe decomposition of reactive oxygen and nitrogen species.

  3. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

    Science.gov (United States)

    Sand, Wolfgang; Gehrke, Tilman

    2006-01-01

    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed.

  4. SYNTHESIS, CRYSTAL AND MOLECULAR-STRUCTURES, UV-VIS SPECTROSCOPY AND ELECTROCHEMICAL PROPERTIES OF 2 IRON(III) PHENOLATE COMPLEXES

    NARCIS (Netherlands)

    LUBBEN, M; MEETSMA, A; VANBOLHUIS, F; FERINGA, BL; HAGE, R

    1994-01-01

    The synthesis and molecular structures of two iron(III) phenolate complexes [(L(1))FeCl] (1) and [(L(2))(2)Fe][BPh(4)] (2) are described, where L(1)H(2) is 2,3-dimethyl-2,3-bis(3-tert-butylsalicylideneamino) butane and L(2)H is 2-(2-pyridyl)-1-salicylideneaminoethane. The complexes have been charact

  5. Investigation of iron(III) reduction and trace metal interferences in the determination of dissolved iron in seawater using flow injection with luminol chemiluminescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Ussher, Simon J. [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Milne, Angela [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Department of Oceanography, Florida State University, Tallahassee, FL 32306-4320 (United States); Landing, William M. [Department of Oceanography, Florida State University, Tallahassee, FL 32306-4320 (United States); Attiq-ur-Rehman, Kakar [Department of Chemistry, University of Balochistan, Quetta (Pakistan); Seguret, Marie J.M.; Holland, Toby [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Achterberg, Eric P. [National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH (United Kingdom); Nabi, Abdul [Department of Chemistry, University of Balochistan, Quetta (Pakistan); Worsfold, Paul J., E-mail: pworsfold@plymouth.ac.uk [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-10-12

    A detailed investigation into the performance of two flow injection-chemiluminescence (FI-CL) manifolds (with and without a preconcentration column) for the determination of sub-nanomolar dissolved iron (Fe(II) + Fe(III)), following the reduction of Fe(III) by sulphite, in seawater is described. Kinetic experiments were conducted to examine the efficiency of reduction of inorganic Fe(III) with sulphite under different conditions and a rigorous study of the potential interference caused by other transition metals present in seawater was conducted. Using 100 {mu}M concentrations of sulphite a reduction time of 4 h was sufficient to quantitatively reduce Fe(III) in seawater. Under optimal conditions, cobalt(II) and vanadium(IV)/(III) were the major positive interferences and strategies for their removal are reported. Specifically, cobalt(II) was masked by the addition of dimethylglyoxime to the luminol solution and vanadium(IV) was removed by passing the sample through an 8-hydroxyquinoline column in a low pH carrier stream. Manganese(II) also interfered by suppression of the CL response but this was not significant at typical open ocean concentrations.

  6. Novel chiral three-dimensional iron(III) compound exhibiting magnetic ordering at T(c) = 40 K.

    Science.gov (United States)

    Armentano, Donatella; De Munno, Giovanni; Lloret, Francesc; Palii, Andrei V; Julve, Miguel

    2002-04-22

    The preparation and crystal structure determination of the iron(III) compound of formula [(NH(4))(2)[Fe(2)O(ox)(2)Cl(2)].2H(2)O](n) (1) (ox = oxalate dianion) are reported here. Complex 1 crystallizes in the orthorhombic system, space group Fdd2, with a = 14.956(7) A, b = 23.671(9) A, c = 9.026(4) A, and Z = 8. The structure of complex 1 consists of the chiral anionic three-dimensional network [Fe(2)O(ox)(2)Cl(2)](2-) where the iron(III) ions are connected by single oxo and bisbidentate oxalato groups. The metal-metal separations through these bridging ligands are 3.384(2) and 5.496(2) A, respectively. Ammonium cations and crystallization water molecules are located in the helical pseudohexagonal tunnels defined by iron atoms. The longest iron-iron distance in the pseudohexagonal tunnel is 15.778(2) A whereas the shortest one is 8.734(2) A. The iron atoms are hexacoordinated: a terminal chloro ligand and five oxygen atoms, that of the oxo group and four from two cis coordinated oxalate ligands, build a distorted octahedral environment around the metal atom. The Fe-O(oxo) bond distance [1.825(2) A] is significantly shorter than the Fe(III)-O(ox) [average value 2.103(4) A] and Fe(III)-Cl bond distances [2.314(2) A]. Magnetic susceptibility measurements of 1 in the temperature range 2.0-300 K reveal the occurrence of a susceptibility maximum at 195 K and a transition toward a magnetically ordered state in the lower temperature region with T(c) = 40 K. The strong antiferromagnetic coupling through the oxo bridge (J = -46.4 cm(-1), the Hamiltonian being H = -JS(A).S(B)) accounts for the susceptibility maximum whereas a weak spin canting of approximately 0.3 degrees due to the antisymmetric magnetic exchange within the chiral three-dimensional network is responsible for the magnetic ordering. The values of coercive field (H(c)) and remnant magnetization (M(r)) obtained from the hysteresis loop of 1 at 5 K are 4000 G and 0.016 micro(B).

  7. Metal Reduction and Iron Biomineralization by a Psychrotolerant Fe(III)-Reducing Bacterium, Shewanella sp. Strain PV-4

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Yul; Gao, Haichun; Vali, Hojatollah; Kennedy, David W.; Yang, Zamin; Gao, Weimin; Dohnalkova, Alice; Stapleton, Raymond D.; Moon, Ji-Won; Phelps, T. J.; Fredrickson, Jim K.; Zhou, Jizhong

    2006-05-01

    A marine psychrotolerant, dissimilatory Fe(III)-reducing bacterium, Shewanella sp. strain PV-4, from the microbial mat at a hydrothermal vent of Loihi Seamount in the Pacific Ocean has been further characterized, with emphases on metal reduction and iron biomineralization. The strain is able to reduce metals such as Fe(III), Co(III), Cr(VI), Mn(IV), and U(VI) as electron acceptors while using lactate, formate, pyruvate, or hydrogen as an electron donor. Growth during iron reduction occurred over the pH range of 7.0 to 8.9, a sodium chloride range of 0.05 to 5%, and a temperature range of 0 to 37°C, with an optimum growth temperature of 18°C. Unlike mesophilic dissimilatory Fe(III)-reducing bacteria, which produce mostly superparamagnetic magnetite (<35 nm), this psychrotolerant bacterium produces well-formed single-domain magnetite (>35 nm) at temperatures from 18 to 37°C. The genome size of this strain is about 4.5 Mb. Strain PV-4 is sensitive to a variety of commonly used antibiotics except ampicillin and can acquire exogenous DNA (plasmid pCM157) through conjugation.

  8. Metal Reduction and Iron Biomineralization by a Psychrotolerant Fe(III)-Reducing Bacterium, Shewanella sp. Strain PV-4

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Yul; Gao, Haichun; Vali, Hojatollah; Kennedy, David W.; Yang, Zamin; Gao, Weimin; Dohnalkova, Alice; Stapleton, Raymond D.; Moon, Ji-Won; Phelps, Tommy J.; Fredrickson, Jim K.; Zhou, Jizhong

    2006-09-01

    A marine psychrotolerant, dissimilatory Fe(III)-reducing bacterium, Shewanella sp. strain PV-4, from the microbial mat at a hydrothermal vent of Loihi Seamount in the Pacific Ocean has been further characterized, with emphases on metal reduction and iron biomineralization. The strain is able to reduce metals such as Fe(III), Co(III), Cr(VI), Mn(IV), and U(VI) as electron acceptors while using lactate, formate, pyruvate, or hydrogen as an electron donor. Growth during iron reduction occurred over the pH range of 7.0 to 8.9, a sodium chloride range of 0.05 to 5%, and a temperature range of 0 to 37 C, with an optimum growth temperature of 18 C. Unlike mesophilic dissimilatory Fe(III)-reducing bacteria, which produce mostly superparamagnetic magnetite (<35 nm), this psychrotolerant bacterium produces well-formed single-domain magnetite (>35 nm) at temperatures from 18 to 37 C. The genome size of this strain is about 4.5 Mb. Strain PV-4 is sensitive to a variety of commonly used antibiotics except ampicillin and can acquire exogenous DNA (plasmid pCM157) through conjugation.

  9. Ultrasmall Superparamagnetic Iron Oxide Nanoparticles with Europium(III) DO3A as a Bimodal Imaging Probe.

    Science.gov (United States)

    Carron, Sophie; Bloemen, Maarten; Vander Elst, Luce; Laurent, Sophie; Verbiest, Thierry; Parac-Vogt, Tatjana N

    2016-03-18

    A new prototype consisting of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles decorated with europium(III) ions encapsulated in a DO3A organic scaffold was designed as a platform for further development of bimodal contrast agents for MRI and optical imaging. The USPIO nanoparticles act as negative MRI contrast agents, whereas the europium(III) ion is a luminophore that is suitable for use in optical imaging detection. The functionalized USPIO nanoparticles were characterized by TEM, DLS, XRD, FTIR, and TXRF analysis, and a full investigation of the relaxometric and optical properties was conducted. The typical luminescence emission of europium(III) was observed and the main red emission wavelength was found at 614 nm. The relaxometric study of these ultrasmall nanoparticles showed r2 values of 114.8 mM(-1) Fes(-1) at 60 MHz, which is nearly double the r2 relaxivity of Sinerem(®).

  10. Mössbauer study of a tetrakis (pentafluorophenyl porphyrin iron (III chloride in comparison with the fluorine unsubstituted analogue

    Directory of Open Access Journals (Sweden)

    Kaczmarzyk Tomasz

    2015-03-01

    Full Text Available Mössbauer investigations, in association with density functional theory (DFT calculations, have been conducted for the molecular and electronic structures of iron (III [tetrakis (pentafluorophenyl] porphyrin chloride [(F20TPPFe:Cl], as a Fe(III-tetraphenylporphyrin complex containing chloride axial ligand and substituted hydrogen atoms by fluorine ones in the four phenyl rings, in comparison with its fluorine unsubstituted analogue [(TPPFe:Cl]. It was found that the parameters of Mössbauer spectra of both complexes are close to one another, and correspond to the high-spin state of Fe(III ions, but they show the different temperature dependence and the quadrupole doublets in Mössbauer spectra show different asymmetry at low temperatures. Results of DFT calculations are analyzed in the light of catalytic activity of the halogenated complex.

  11. Evaluating the Effectiveness of Various Methods of Iron Deficiency Prevention in Infants

    Directory of Open Access Journals (Sweden)

    N.А. Bielykh

    2015-03-01

    Full Text Available Objective: to evaluate the effectiveness of various methods of iron deficiency prevention in infants. Materials and Methods. Within 30-cluster regional epidemiological study on the prevalence of iodine and iron deficiency in children, we have analyzed the results of screening for anemia in 948 children, carried out questioning of mothers, determined the concentration of iron in breast milk. The effectiveness of preventive measures was assessed by indicators of iron supplementation of the body in 96 children depending on the existing method of iron prophylaxis. Results of the Study. It was found that the use by mother during lactation of iron-containing vitamin-mineral complexes had no effect on the iron content in breast milk. It is proved that administration of iron (III hydroxide polymaltose complex 1 mg/kg/day for 2 months is the most effective way to prevent iron deficiency in children who are exclusively breastfed.

  12. Synthesis, structures and magnetic properties of a series of polynuclear copper(II)-lanthanide(III) complexes assembled with carboxylate and hydroxide ligands

    Institute of Scientific and Technical Information of China (English)

    CHEN, Xiao-Ming; YANG, Yang-Yi

    2000-01-01

    Heteromnetallic copper(I)-lanthanide(Ⅲ) complexes have been made with a variety of exclusively O-donor ligands in cluding betaines (zwitterionic carboxylates) and chloroac etate, which are dinuclear CuLn, tetranuclear Cu2Ln2, pen tanuclear Cu3Ln2, and octadecanuclear Cu12 Ln3 complexes. Tne results show that subtle changes in both the carboxylates and acidity of the reaction solution can cause drastic changoes in the structures of the products. Magnetic studies exhibit that shieldirng of the Ln3+ 4f electrons by the outer shell electrons is very effective to preclude significant coutpling interaction be tween the Ln3+ 4f electrons and Cu2+ 3d electrons in either a mono-atomic hydroxide-bridged, or a carboxylate-bridged system.

  13. Natural clinoptilolite exchanged with iron: characterization and catalytic activity in nitrogen monoxide reduction

    Directory of Open Access Journals (Sweden)

    Daria Tito-Ferro

    2016-12-01

    Full Text Available The aim of this work was to characterize the natural clinoptilolite from Tasajeras deposit, Cuba, modified by hydrothermal ion-exchange with solutions of iron (II sulfate and iron (III nitrate in acid medium. Besides this, its catalytic activity to reduce nitrogen monoxide with carbon monoxide/propene in the presence of oxygen was evaluated. The characterization was performed by Mössbauer and UV-Vis diffuse reflectance spectroscopies and adsorption measurements. The obtained results lead to conclude that in exchanged samples, incorporated divalent and trivalent irons are found in octahedral coordination. Both irons should be mainly in cationic extra-framework positions inside clinoptilolite channels as charge compensating cations, and also as iron oxy-hydroxides resulting from limited hydrolysis of these cations. The iron (III exchanged samples has a larger amount of iron oxy-hydroxides agglomerates. The iron (II exchanged samples have additionally iron (II sulfate adsorbed. The catalytic activity in the nitrogen monoxide reduction is higher in the exchanged zeolites than starting. Among all samples, those exchanged of iron (II has the higher catalytic activity. This lead to outline that, main catalytically active centers are associated with divalent iron.

  14. Selection of Chelated Fe (III)/Fe (II) Catalytic Oxidation Agents for Desulfurization Based on Iron Complexation Method

    Institute of Scientific and Technical Information of China (English)

    Luo Ying; Liu Youzhi; Qi Guisheng; Guo Huidong; Zhu Zhengfeng

    2014-01-01

    Optimization of factors inlfuencing the experiments on reactions involving 8 different chelating agents and sol-uble Fe (III)/Fe (II) salts was carried out to yield chelated iron complexes. A combination of optimized inlfuencing factors has resulted in a Fe chelating capacity of the iron-based desulfurization solution to be equal to 6.83—13.56 g/L at a redox potential of 0.185—0.3. The desulfurization performance of Fe (III)/Fe (II) chelating agents was investigated on a simulated sulfur-containing industrial gas composed of H2S and N2 in a cross-lfow rotating packed bed. Test results have revealed that the proposed iron-based desulfurization solution showed a sulfur removal efifciency of over 99%along with a Fe chelating capacity exceeding 1.35 g/L. This desulfurization technology which has practical application prospect is currently in the phase of commercial scale-up study.

  15. GLASSES CONTAINING IRON (II III) OXIDES FOR IMMOBILIZATION OF RADIOACTIVE TECHNETIUM

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HEO J; XU K; CHOI JK; HRMA PR; UM W

    2011-11-07

    Technetium-99 (Tc-99) has posed serious environmental threats as US Department of Energy's high-level waste. This work reports the vitrification of Re, as surrogate for Tc-99, by iron-borosilicate and iron-phosphate glasses, respectively. Iron-phosphate glasses can dissolve Re as high as {approx} 1.2 wt. %, which can become candidate waste forms for Tc-99 disposal, while borosilicate glasses can retain less than 0.1 wt. % of Re due to high melting temperature and long melting duration. Vitrification of Re as Tc-99's mimic was investigated using iron-borosilicate and iron-phosphate glasses. The retention of Re in borosilicate glasses was less than 0.1 wt. % and more than 99 wt. % of Re were volatilized due to high melting temperature and long melting duration. Because the retention of Re in iron-phosphate glasses is as high as 1.2 wt. % and the volatilization is reduced down to {approx}50 wt. %, iron-phosphate glasses can be one of the glass waste form candidates for Tc (or Re) disposal. The investigations of chemical durability and leaching test of iron-phosphate glasses containing Re are now underway to test the performance of the waste form.

  16. Functional Significance of Iron Deficiency. Annual Nutrition Workshop Series, Volume III.

    Science.gov (United States)

    Enwonwu, Cyril O., Ed.

    Iron deficiency anemia impairs cognitive performance, physical capacity, and thermoregulation. Recent evidence suggests that these functional impairments are also evident in subclinical nonanemic iron deficiency. Very little is known about the relevance of the latter to the health of blacks, who have been shown to have the highest prevalence of…

  17. Thermodynamic analysis of growth of iron oxide films by MOCVD using tris(-butyl-3-oxo-butanoato)iron(III) as precursor

    Indian Academy of Sciences (India)

    Sukanya Dhar; K Shalini; S A Shivashankar

    2008-10-01

    Thermodynamic calculations, using the criterion of minimization of total Gibbs free energy of the system, have been carried out for the metalorganic chemical vapour deposition (MOCVD) process involving the -ketoesterate complex of iron [tris(-butyl-3-oxo-butanoato)iron(III) or Fe(tbob)3] and molecular oxygen. The calculations predict, under different CVD conditions such as temperature and pressure, the deposition of carbon-free pure Fe3O4, mixtures of different proportions of Fe3O4 and Fe2O3, and pure Fe2O3. The regimes of these thermodynamic CVD parameters required for the deposition of these pure and mixed phases have been depicted in a `CVD phase stability diagram’. In attempts at verification of the thermodynamic calculations, it has been found by XRD and SEM analysis that, under different conditions, MOCVD results in the deposition of films comprising pure and mixed phases of iron oxide, with no carbonaceous impurities. This is consistent with the calculations.

  18. Sorption of samarium in iron (II) and (III) phosphates in aqueous systems; Sorcion de samario en fosfatos de hierro (II) y (III) en sistemas acuosos

    Energy Technology Data Exchange (ETDEWEB)

    Diaz F, J.C

    2006-07-01

    The radioactive residues that are stored in the radioactive confinements its need to stay isolated of the environment while the radioactivity levels be noxious. An important mechanism by which the radioactive residues can to reach the environment, it is the migration of these through the underground water. That it makes necessary the investigation of reactive materials that interacting with those radionuclides and that its are able to remove them from the watery resources. The synthesis and characterization of materials that can be useful in Environmental Chemistry are very important because its characteristics are exposed and its behavior in chemical phenomena as the sorption watery medium is necessary to use it in the environmental protection. In this work it was carried out the sorption study of the samarium III ion in the iron (II) and (III) phosphate; obtaining the sorption isotherms in function of pH, of the phosphate mass and of the concentration of the samarium ion using UV-visible spectroscopy to determine the removal percentage. The developed experiments show that as much the ferrous phosphate as the ferric phosphate present a great affinity by the samarium III, for what it use like reactive material in contention walls can be very viable because it sorption capacity has overcome 90% to pH values similar to those of the underground and also mentioning that the form to obtain these materials is very economic and simple. (Author)

  19. Biodegradation of pharmaceuticals and endocrine disruptors with oxygen, nitrate, manganese (IV), iron (III) and sulfate as electron acceptors

    Science.gov (United States)

    Schmidt, Natalie; Page, Declan; Tiehm, Andreas

    2017-08-01

    Biodegradation of pharmaceuticals and endocrine disrupting compounds was examined in long term batch experiments for a period of two and a half years to obtain more insight into the effects of redox conditions. A mix including lipid lowering agents (e.g. clofibric acid, gemfibrozil), analgesics (e.g. diclofenac, naproxen), beta blockers (e.g. atenolol, propranolol), X-ray contrast media (e.g. diatrizoic acid, iomeprol) as well as the antiepileptic carbamazepine and endocrine disruptors (e.g. bisphenol A, 17α-ethinylestradiol) was analyzed in batch tests in the presence of oxygen, nitrate, manganese (IV), iron (III), and sulfate. Out of the 23 selected substances, 14 showed a degradation of > 50% of their initial concentrations under aerobic conditions. The beta blockers propranolol and atenolol and the analgesics pentoxifylline and naproxen showed a removal of > 50% under anaerobic conditions. In particular naproxen proved to be degradable with oxygen and under most anaerobic conditions, i.e. with manganese (IV), iron (III), or sulfate. The natural estrogens estriol, estrone and 17β-estradiol showed complete biodegradation under aerobic and nitrate-reducing conditions, with a temporary increase of estrone during transformation of estriol and 17β-estradiol. Transformation of 17β-estradiol under Fe(III)-reducing conditions resulted in an increase of estriol as well. Concentrations of clofibric acid, carbamazepine, iopamidol and diatrizoic acid, known for their recalcitrance in the environment, remained unchanged.

  20. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic......, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present...... and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...

  1. Limits on Pop III star formation with the most iron-poor stars

    CERN Document Server

    de Bennassuti, M; Schneider, R; Valiante, R

    2016-01-01

    We study the impact of star-forming mini-haloes, and the Initial Mass Function (IMF) of Population III (Pop III) stars, on the Galactic halo Metallicity Distribution Function (MDF) and on the properties of C-enhanced and C-normal stars at [Fe/H]50% level by PISNe are thus extremely rare, corresponding to $\\approx$ 0.25% of the total stellar population at [Fe/H]<-2, which is consistent with recent observations. The low-Fe tail of the MDF strongly depends on the Pop III IMF shape and mass range. Given the current statistics, we find that a flat Pop III IMF model with $m_{\\rm popIII}$=[10-300] $M_\\odot$ is disfavoured by observations. We present testable predictions for Pop III stars extending down to lower masses, with $m_{\\rm popIII}$=[0.1-300] $M_\\odot$.

  2. Chelating agent free solid phase extraction (CAF-SPE) method for separation and/or preconcentration of iron(III) ions

    OpenAIRE

    for, Chelating agent free solid phase extract

    2014-01-01

    This paper presents a chelating agent free solid phase extraction (CAF-SPE) method for the separation and/or preconcentration of trace iron(III) ions. This method is based on the sorption of Fe(III) ions without using any chelating agent onto Amberlyst 36 resin. A good relative standard deviation (3%), high recovery (>95%), high enrichment factor (100), and low detection limit (0.32 m g L-1) were obtained. The adsorption capacity of resin was 117 mg g-1 for iron(III). The me...

  3. Economically attractive route for the preparation of high quality magnetic nanoparticles by the thermal decomposition of iron(III) acetylacetonate

    Science.gov (United States)

    Effenberger, Fernando B.; Couto, Ricardo A.; Kiyohara, Pedro K.; Machado, Giovanna; Masunaga, Sueli H.; Jardim, Renato F.; Rossi, Liane M.

    2017-03-01

    The thermal decomposition (TD) methods are among the most successful in obtaining magnetic nanoparticles with a high degree of control of size and narrow particle size distribution. Here we investigated the TD of iron(III) acetylacetonate in the presence of oleic acid, oleylamine, and a series of alcohols in order to disclose their role and also investigate economically attractive alternatives for the synthesis of iron oxide nanoparticles without compromising their size and shape control. We have found that some affordable and reasonably less priced alcohols, such as 1,2-octanediol and cyclohexanol, may replace the commonly used and expensive 1,2-hexadecanediol, providing an economically attractive route for the synthesis of high quality magnetic nanoparticles. The relative cost for the preparation of Fe3O4 NPs is reduced to only 21% and 9% of the original cost when using 1,2-octanediol and cyclohexanol, respectively.

  4. Photochemistry of iron(III)-carboxylato complexes in aqueous atmospheric particles

    Science.gov (United States)

    Weller, Christian; Herrmann, Hartmut

    2010-05-01

    Iron is always present in the atmosphere in concentrations from ~10-9 M (clouds, rain) up to ~10-3 M (fog, particles). Sources are mainly mineral dust emissions. Iron complexes are very good absorbers in the UV-VIS actinic region and therefore photo-chemically reactive. Iron complex photolysis leads to radical production and can initiate radical chain reactions, which is related to the oxidizing capacity of the atmosphere. These radical chain reactions are involved in the decomposition and transformation of a variety of chemical compounds in cloud droplets and deliquescent particles. Additionally, the photochemical reaction itself can be a degradation pathway for organic compounds with the ability to bind iron. Iron-complexes of atmospherically relevant coordination compounds like oxalate, malonate, succinate, glutarate, tartronate, gluconate, pyruvate and glyoxalate have been investigated in laboratory experiments. Iron speciation depends on the iron-ligand ratio and the pH. The most suitable experimental conditions were calculated with a speciation program (Visual Minteq). The solutions were prepared accordingly and transferred to a 1 cm quartz cuvette and flash-photolyzed with an excimer laser at wavelengths 308 or 351 nm. Photochemically produced Fe2+ has been measured by spectrometry at 510 nm as Fe(phenantroline)32+. Fe2+ overall effective quantum yields have been calculated with the concentration of photochemically produced Fe2+ and the measured energy of the excimer laser pulse. The laser pulse energy was measured with a pyroelectric sensor. For some iron-carboxylate systems the experimental parameters like the oxygen content of the solution, the initial iron concentration and the incident laser energy were systematically altered to observe an effect on the overall quantum yield. The dependence of some quantum yields on these parameters allows in some cases an interpretation of the underlying photochemical reaction mechanism. Quantum yields of malonate

  5. Effect of Iron Fe (II and Fe (III in a Binary System Evaluated Bioluminescent Method

    Directory of Open Access Journals (Sweden)

    Elena Sorokina

    2013-01-01

    Full Text Available The effect of iron ions Fe2+ and Fe3+ on the bioluminescent recombinant strain of Escherichia coli in a single-component and binary system. Found that for the bacteria E. coli Fe3+ ions are more toxic than Fe2+. Under the combined effect of iron toxicity increases, the percentage of luminescence quenching increases, but the value is much less than the sum of the indicator for the Fe2+ and Fe3+. The biological effect of insertion of iron is not proportional to their content in the mixture.

  6. Limits on Population III star formation with the most iron-poor stars

    Science.gov (United States)

    de Bennassuti, M.; Salvadori, S.; Schneider, R.; Valiante, R.; Omukai, K.

    2017-02-01

    We study the impact of star-forming minihaloes, and the initial mass function (IMF) of Population III (Pop III) stars, on the Galactic halo metallicity distribution function (MDF) and on the properties of C-enhanced and C-normal stars at [Fe/H] sampling of the Pop III IMF. We find that only when star-forming minihaloes are included the low-Fe tail of the MDF is correctly reproduced, showing a plateau that is built up by C-enhanced metal-poor stars imprinted by primordial faint supernovae. The incomplete sampling of the Pop III IMF in inefficiently star-forming minihaloes (50 per cent level by PISNe are thus extremely rare, corresponding to ≈0.25 per cent of the total stellar population at [Fe/H] < -2, which is consistent with recent observations. The low-Fe tail of the MDF strongly depends on the Pop III IMF shape and mass range. Given the current statistics, we find that a flat Pop III IMF model with mPopIII = [10-300] M⊙ is disfavoured by observations. We present testable predictions for Pop III stars extending down to lower masses, with mPopIII = [0.1-300] M⊙.

  7. Machinable, Thin-Walled, Gray and Ductile Iron Casting Production, Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Charles Bates; Hanjun Li; Robin Griffin

    2003-12-08

    This report presents the results of research conducted to determine the effects of normal and abnormal processing and compositional variations on machinability (tool wear rate) of gray and ductile iron. The procedures developed allow precise tool wear measurements to be made and interpreted in terms of microstructures and compositions. Accurate data allows the most efficient ways for improving machinability to be determined without sacrificing properties of the irons.

  8. Nano-scale investigation of the association of microbial nitrogen residues with iron (hydr)oxides in a forest soil O-horizon

    Science.gov (United States)

    Keiluweit, Marco; Bougoure, Jeremy J.; Zeglin, Lydia H.; Myrold, David D.; Weber, Peter K.; Pett-Ridge, Jennifer; Kleber, Markus; Nico, Peter S.

    2012-10-01

    Amino sugars in fungal cell walls (such as chitin) represent an important source of nitrogen (N) in many forest soil ecosystems. Despite the importance of this material in soil nitrogen cycling, comparatively little is known about abiotic and biotic controls on and the timescale of its turnover. Part of the reason for this lack of information is the inaccessibility of these materials to classic bulk extraction methods. To address this issue, we used advanced visualization tools to examine transformation pathways of chitin-rich fungal cell wall residues as they interact with microorganisms, soil organic matter and mineral surfaces. Our goal was to document initial micro-scale dynamics of the incorporation of 13C- and 15N-labeled chitin into fungi-dominated microenvironments in O-horizons of old-growth forest soils. At the end of a 3-week incubation experiment, high-resolution secondary ion mass spectrometry imaging of hyphae-associated soil microstructures revealed a preferential association of 15N with Fe-rich particles. Synchrotron-based scanning transmission X-ray spectromicroscopy (STXM/NEXAFS) of the same samples showed that thin organic coatings on these soil microstructures are enriched in aliphatic C and amide N on Fe (hydr)oxides, suggesting a concentration of microbial lipids and proteins on these surfaces. A possible explanation for the results of our micro-scale investigation of chemical and spatial patterns is that amide N from chitinous fungal cell walls was assimilated by hyphae-associated bacteria, resynthesized into proteinaceous amide N, and subsequently concentrated onto Fe (hydr)oxide surfaces. If confirmed in other soil ecosystems, such rapid association of microbial N with hydroxylated Fe oxide surfaces may have important implications for mechanistic models of microbial cycling of C and N.

  9. Photochemistry of iron(III)-carboxylato complexes in aqueous atmospheric particles - Laboratory experiments and modeling studies

    Science.gov (United States)

    Weller, C.; Tilgner, A.; Herrmann, H.

    2010-12-01

    Iron is always present in the atmosphere in concentrations from ~10-9 M (clouds, rain) up to ~10-3 M (fog, particles). Sources are mainly mineral dust emissions. Iron complexes are very good absorbers in the UV-VIS actinic region and therefore photo-chemically reactive. Iron complex photolysis leads to radical production and can initiate radical chain reactions, which is related to the oxidizing capacity of the atmosphere. These radical chain reactions are involved in the decomposition and transformation of a variety of chemical compounds in cloud droplets and deliquescent particles. Additionally, the photochemical reaction itself can be a degradation pathway for organic compounds with the ability to bind iron. Iron-complexes of atmospherically relevant coordination compounds like oxalate, malonate, succinate, glutarate, tartronate, gluconate, pyruvate and glyoxalate have been investigated in laboratory experiments. Iron speciation depends on the iron-ligand ratio and the pH. The most suitable experimental conditions were calculated with a speciation program (Visual Minteq). The solutions were prepared accordingly and transferred to a 1 cm quartz cuvette and flash-photolyzed with an excimer laser at wavelengths 308 or 351 nm. Photochemically produced Fe2+ has been measured by spectrometry at 510 nm as Fe(phenantroline)32+. Fe2+ overall effective quantum yields have been calculated with the concentration of photochemically produced Fe2+ and the measured energy of the excimer laser pulse. The laser pulse energy was measured with a pyroelectric sensor. For some iron-carboxylate systems the experimental parameters like the oxygen content of the solution, the initial Iron concentration and the incident laser energy were systematically altered to observe an effect on the overall quantum yield. The dependence of some quantum yields on these parameters allows in some cases an interpretation of the underlying photochemical reaction mechanism. Quantum yields of malonate

  10. Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize.

    Science.gov (United States)

    Ding, Hong; Duan, Lihong; Wu, Huilan; Yang, Rongxin; Ling, Hongqing; Li, Wen-Xue; Zhang, Fusuo

    2009-07-01

    Iron deficiency-induced chlorosis in peanut during anthesis was alleviated when peanut was intercropped with maize in field and pot experiments. Iron acquisition of graminaceous plants is characterized by the synthesis and secretion of the iron-chelating phytosiderophores. Compared to the roots of monocropped maize, the roots of maize intercropped with peanut always secreted higher amounts of phytosiderophores during peanut anthesis. For non-graminaceous plants, reduction of ferric to ferrous iron on the root surface is the rate-limiting step for mobilizing iron from soil. The full-length cDNA, AhFRO1, which is encoding an Fe(III)-chelate reductase, was isolated from peanut. AhFRO1 expression in yeast conferred Fe(III)-chelate reductase activity to the cells. Consistent with its function in iron uptake, AhFRO1 was determined to be a membrane protein by transient expression analysis. AhFRO1 mRNA accumulated under iron deficiency conditions. During pre-anthesis, the Fe(III)-chelate reductase activity and the transcript levels of AhFRO1 were similar in monocropped and intercropped peanut. When the iron deficiency-induced chlorosis developed in the monocropped peanuts, both the Fe(III)-chelate reductase activity of peanut and the transcript levels of AhFRO1 were higher in intercropped than in monocropped peanuts, which is consistent with the secretion of phytosiderophores by maize roots. We conclude that AhFRO1 in peanut and phytosiderophores from maize co-operate to improve the iron nutrition of peanut when intercropped with maize.

  11. Enantiopure tetranuclear iron(III) complexes using chiral reduced Schiff base ligands: synthesis, structure, spectroscopy, magnetic properties, and DFT studies.

    Science.gov (United States)

    Singh, Reena; Banerjee, Atanu; Colacio, Enrique; Rajak, Kajal Krishna

    2009-06-01

    Four new tetranuclear iron(III) complexes of formula [{Fe(L)(2)}(3)Fe], 1-4, have been prepared by reacting [Fe(ClO(4))(3)].6H(2)O with H(2)L in methanol. Here, L(2-) is the deprotonated form of N-(2-hyrdoxybenzyl)-l-valinol (H(2)L(1)), N-(2-hyrdoxybenzyl)-l-leucinol (H(2)L(2)), N-(5-chloro-2-hyrdoxybenzyl)-l-leucinol (H(2)L(3)), and N-(2-hyrdoxybenzyl)-l-phenylalaninol (H(2)L(4)). The complexes are prepared in an enantiomeric pure form. The complexes have been characterized with the help of IR, UV-vis, circular dichroism (CD), (1)H, and elemental analyses. The complex [{Fe(L(2))(2)}(3)Fe].CH(3)OH.2H(2)O, 2.CH(3)OH.2H(2)O, crystallizes in enantiomeric pure form containing a propeller-like Fe(4)O(6) core. (1)H and CD spectral studies of the four species are consistent with the structural similarities of the complexes in solution. Variable-temperature magnetic susceptibility of one case shows an intramolecular antiferromagnetic coupling between the Fe(III) ions. Magnetic measurements are in accord with the S = 5 ground state and suggest single molecular magnet behavior. The magnetic exchange coupling constant between the iron centers within the molecule is interpreted using broken-symmetry density functional theory calculation.

  12. Iron (III Ion Sensor Based on the Seedless Grown ZnO Nanorods in 3 Dimensions Using Nickel Foam Substrate

    Directory of Open Access Journals (Sweden)

    Mazhar Ali Abbasi

    2013-01-01

    Full Text Available In the present work, the seedless, highly aligned and vertical ZnO nanorods in 3 dimensions (3D were grown on the nickel foam substrate. The seedless grown ZnO nanorods were characterised by field emission scanning electron microscopy (FESEM, high resolution transmission electron microscopy (HRTEM, and X-ray diffraction (XRD techniques. The characterised seedless ZnO nanorods in 3D on nickel foam were highly dense, perpendicular to substrate, grown along the (002 crystal plane, and also composed of single crystal. In addition to this, these seedless ZnO nanorods were functionalized with trans-dinitro-dibenzo-18-6 crown ether, a selective iron (III ion ionophore, along with other components of membrane composition such as polyvinyl chloride (PVC, 2-nitopentylphenyl ether as plasticizer (NPPE, and tetrabutyl ammonium tetraphenylborate (TBATPB as conductivity increaser. The sensor electrode has shown high linearity with a wide range of detection of iron (III ion concentrations from 0.005 mM to 100 mM. The low limit of detection of the proposed ion selective electrode was found to be 0.001 mM. The proposed sensor also described high storage stability, selectivity, reproducibility, and repeatability and a quick response time of less than 10 s.

  13. Phosphate inhibits in vitro Fe3+ loading into transferrin by forming a soluble Fe(III)-phosphate complex: a potential non-transferrin bound iron species.

    Science.gov (United States)

    Hilton, Robert J; Seare, Matthew C; Andros, N David; Kenealey, Zachary; Orozco, Catalina Matias; Webb, Michael; Watt, Richard K

    2012-05-01

    In chronic kidney diseases, NTBI can occur even when total iron levels in serum are low and transferrin is not saturated. We postulated that elevated serum phosphate concentrations, present in CKD patients, might disrupt Fe(3+) loading into apo-transferrin by forming Fe(III)-phosphate species. We report that phosphate competes with apo-transferrin for Fe(3+) by forming a soluble Fe(III)-phosphate complex. Once formed, the Fe(III)-phosphate complex is not a substrate for donating Fe(3+) to apo-transferrin. Phosphate (1-10mM) does not chelate Fe(III) from diferric transferrin under the conditions examined. Complexed forms of Fe(3+), such as iron nitrilotriacetic acid (Fe(3+)-NTA), and Fe(III)-citrate are not susceptible to this phosphate complexation reaction and efficiently deliver Fe(3+) to apo-transferrin in the presence of phosphate. This reaction suggests that citrate might play an important role in protecting against Fe(III), phosphate interactions in vivo. In contrast to the reactions of Fe(3+) and phosphate, the addition of Fe(2+) to a solution of apo-transferrin and phosphate lead to rapid oxidation and deposition of Fe(3+) into apo-transferrin. These in vitro data suggest that, in principle, elevated phosphate concentrations can influence the ability of apo-transferrin to bind iron, depending on the oxidation state of the iron.

  14. The Acute Effect of Humic Acid on Iron Accumulation in Rats.

    Science.gov (United States)

    Cagin, Yasir Furkan; Sahin, N; Polat, A; Erdogan, M A; Atayan, Y; Eyol, E; Bilgic, Y; Seckin, Y; Colak, C

    2016-05-01

    Free iron leads to the formation of pro-oxidant reactive oxygen species (ROS). Humic acids (HAs) enhance permeability of cellular wall and act as a chelator through electron transferring. This study was designed to test chelator effect of HA on iron as well as its anti-oxidant effect against the iron-induced hepatotoxicity and cardiotoxicity. The rats used were randomly divided into four groups (n = 8/group): group I (the control group); group II (the HA group), humic acid (562 mg/kg) was given over 10 days by oral gavage; group III (the iron group), iron III hydroxide polymaltose (250 mg/kg) was given over 10 days by intraperitoneal route; and group IV (the HA plus iron group), received the iron (similar to group II) plus humic acid (similar to those in groups II and III) group. Blood and two tissue samples both from liver and heart were obtained for biochemical and histopathological evaluations. Iron deposition, the iron-induced hepatotoxicity, and cardiotoxicity were demonstrated by histopathological and biochemical manner. However, no significant differences were observed in the serum biochemical values and the histopathological results among the iron and the HA plus iron groups in the liver tissue but not in the heart tissue. The protective effects of humic acid against iron-induced cardiotoxicity were shown but not against hepatotoxicity in our study.

  15. Microbial removal of Fe(III) impurities from clay using dissimilatory iron reducers.

    Science.gov (United States)

    Lee, E Y; Cho, K S; Ryu, H W; Chang, Y K

    1999-01-01

    Fe(III) impurities, which detract refractoriness and whiteness from porcelain and pottery, could be biologically removed from low-quality clay by indigenous dissimilatory Fe(III)-reducing microorganisms. Insoluble Fe(III) in clay particles was leached out as soluble Fe(II), and the Fe(III) reduction reaction was coupled to the oxidation of sugars such as glucose, maltose and sucrose. A maximum removal of 44-45% was obtained when the relative amount of sugar was 5% (w/w; sugar/clay). By the microbial treatment, the whiteness of the clay was increased from 63.20 to 79.64, whereas the redness was clearly decreased from 13.47 to 3.55.

  16. The reduction of chromate ions by Fe(II layered hydroxides

    Directory of Open Access Journals (Sweden)

    S. Loyaux-Lawniczak

    1999-01-01

    Full Text Available The reduction of chromate ions by Fe(OH2 and the iron (II-iron (III hydroxysulphate green rust, GR(SO42-, was studied to evaluate whether such synthetic layered hydroxides and the corresponding natural green rust mineral could be involved in the natural attenuation of contaminated environments. The resulting Cr (III bearing phases, which would govern the subsequent behaviour of chromium, were clearly characterised. Both compounds proved to be very reactive and oxidised instantaneously while chromate ions were reduced to Cr (III as evidenced by X-ray photoelectron spectroscopy. Mass balance (ICP-AES demonstrated that the Fe/Cr ratio inside the solid end product was equal to the initial Fe/Cr ratio. The solid phases, analysed by X-ray diffraction, Raman and Mossbauer spectroscopies were identified as Cr-substituted poorly crystallised iron (III oxyhydroxides in both cases, more precisely δ-FeOOH when starting with Fe(OH2 and ferrihydrite when starting with GR(SO42-.

  17. The ferroxidase center is essential for ferritin iron loading in the presence of phosphate and minimizes side reactions that form Fe(III)-phosphate colloids.

    Science.gov (United States)

    Hilton, Robert J; David Andros, N; Watt, Richard K

    2012-04-01

    Ferritin iron loading was studied in the presence of physiological serum phosphate concentrations (1 mM), elevated serum concentrations (2-5 mM), and intracellular phosphate concentrations (10 mM). Experiments compared iron loading into homopolymers of H and L ferritin with horse spleen ferritin. Prior to studying the reactions with ferritin, a series of control reactions were performed to study the solution chemistry of Fe(2+) and phosphate. In the absence of ferritin, phosphate catalyzed Fe(2+) oxidation and formed soluble polymeric Fe(III)-phosphate complexes. The Fe(III)-phosphate complexes were characterized by electron microscopy and atomic force microscopy, which revealed spherical nanoparticles with diameters of 10-20 nm. The soluble Fe(III)-phosphate complexes also formed as competing reactions during iron loading into ferritin. Elemental analysis on ferritin samples separated from the Fe(III)-phosphate complexes showed that as the phosphate concentration increased, the iron loading into horse ferritin decreased. The composition of the mineral that does form inside horse ferritin has a higher iron/phosphate ratio (~1:1) than ferritin purified from tissue (~10:1). Phosphate significantly inhibited iron loading into L ferritin, due to the lack of the ferroxidase center in this homopolymer. Spectrophotometric assays of iron loading into H ferritin showed identical iron loading curves in the presence of phosphate, indicating that the ferroxidase center of H ferritin efficiently competes with phosphate for the binding and oxidation of Fe(2+). Additional studies demonstrated that H ferritin ferroxidase activity could be used to oxidize Fe(2+) and facilitate the transfer of the Fe(3+) into apo transferrin in the presence of phosphate.

  18. UV-Visible Spectroscopy Detection of Iron(III) Ion on Modified Gold Nanoparticles With a Hydroxamic Acid

    Science.gov (United States)

    Karami, C.; Alizadeh, A.; Taher, M. A.; Hamidi, Z.; Bahrami, B.

    2016-09-01

    The present work describes the preparation of gold nanoparticles (AuNPs) functionalized with hydroxamic acid and the use of them in UV-visible spectroscopy detection of iron(III) ions. The prepared AuNPs were thoroughly characterized by using UV-visible spectroscopy, TEM, and 1H NMR techniques. The newly synthesized hydroxamic acid-AuNPs are brown in color due to the intense surface plasmon absorption band centered at 527 nm. In the presence of Fe(III), the surface plasmon absorption band is centered at 540 nm. However, the sensitivity of hydroxamic acid-AuNPs towards other metal ions such as Mg(II), Ca(II), Ag(I), Cu(II), Mn(II), Cr(II), Ni(II), Co(II),Fe(II), Hg(II), and Pb(II) can be negligible. This highly selective sensor allows a direct quantitative assay of Fe(III) with a UVvisible spectroscopy detection limited to 45.8 nM.

  19. Doxorubicin reduces the iron(III) complexes of the hydrolysis products of the antioxidant cardioprotective agent dexrazoxane (ICRF-187) and produces hydroxyl radicals.

    Science.gov (United States)

    Malisza, K L; Hasinoff, B B

    1995-02-01

    Dexrazoxane (ICRF-187) is very effective in protecting against doxorubicin-induced cardiotoxicity. Dexrazoxane likely acts though its metal ion binding hydrolysis product ADR-925 by reducing doxorubicin-promoted iron-based oxygen-free radical damage. In this study we show that doxorubicin and epirubicin (but not daunorubicin, idarubicin, or mitoxantrone) are able to reduce iron(III)-ADR-925 and under aerobic conditions are able to produce hydroxyl radicals that are detectable by EPR spin trapping. The ability of iron(III)-ADR-925 to produce hydroxyl radicals in the presence of anthraquinones is compared with that of other ferric chelates, including those of the one-ring open hydrolysis intermediates of dexrazoxane, the tetraacid derivative of ADR-925, EDTA, DTPA, and deferoxamine. The anthraquinones that lacked an alpha-ketol side chain (daunorubicin, idarubicin, and mitoxantrone) produced much less hydroxyl radical than those that did (doxorubicin and epirubicin). The model alpha-ketol, dihydroxyacetone, was also able to promote the formation of hydroxyl radicals in the presence of iron(III) chelates. Since dexrazoxane and doxorubicin are administered together, the possibility must be considered that anthracyclines with alpha-ketol side chains may be oxidized by iron(III)-ADR-925, thus changing their antitumor activity.

  20. Confounding Impacts of Iron Reduction on Arsenic Retention

    Energy Technology Data Exchange (ETDEWEB)

    Tufano, K.J.; Fendorf, S.

    2009-05-26

    A transition from oxidizing to reducing conditions has long been implicated to increase aqueous As concentrations, for which reductive dissolution of iron (hydr)oxides is commonly implicated as the primary culprit. Confounding our understanding of processes controlling As retention, however, is that reductive transformation of ferrihydrite has recently been shown to promote As retention rather than release. To resolve the role iron phases have in regulating arsenic concentrations, here we examine As desorption from ferrihydrite-coated sands presorbed with As(lll); experiments were performed at circumneutral pH under Fe-reducing conditions with the dissimilatory iron reducing bacterium Shewanella putrefaciens strain CN-32 over extended time periods. We reveal that with the initial phase of iron reduction, ferrihydrite undergoes transformation to secondary phases and increases As(lll) retention (relative to abiotic controls). However, with increased reaction time, cessation of the phase transitions and ensuing reductive dissolution result in prolonged release of As(III) to the aqueous phase. Our results suggest that As(lll) retention during iron reduction is temporally dependent on secondary precipitation of iron phases; during transformation to secondary phases, particularly magnetite, As(lll) retention is enhanced even relative to oxidized systems. However, conditions that retard secondary transformation (more stable iron oxides or limited iron reducing bacterial activity), or prolonged anaerobiosis, will lead to both the dissolution of ferric (hydr)oxides and release of As(lll) to the aqueous phase.

  1. X-ray absorption and emission spectroscopy of Cr(III) (hydr)oxides: analysis of the K-pre-edge region.

    Science.gov (United States)

    Frommer, Jakob; Nachtegaal, Maarten; Czekaj, Izabela; Weng, Tsu-Chien; Kretzschmar, Ruben

    2009-11-05

    Pre-edge spectral features below the main X-ray absorption K-edge of transition metals show a pronounced chemical sensitivity and are promising sources of structural information. Nevertheless, the use of pre-edge analysis in applied research is limited because of the lack of definite theoretical peak-assignments. The aim of this study was to determine the factors affecting the chromium K-pre-edge features in trivalent chromium-bearing oxides and oxyhydroxides. The selected phases varied in the degree of octahedral polymerization and the degree of iron-for-chromium substitution in the crystal structure. We investigated the pre-edge fine structure by means of high-energy-resolution fluorescence detected X-ray absorption spectroscopy and by 1s2p resonant X-ray emission spectroscopy. Multiplet theory and full multiple-scattering calculations were used to analyze the experimental data. We show that the chromium K-pre-edge contains localized and nonlocalized transitions. Contributions arising from nonlocalized metal-metal transitions are sensitive to the nearest metal type and to the linkage mode between neighboring metal octahedra. Analyzing these transitions opens up new opportunities for investigating the local coordination environment of chromium in poorly ordered solids of environmental relevance.

  2. Statement on the validity and robustness of information provided on irradiated iron oxides

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2014-07-01

    Full Text Available Following a Rapid Alert System for Food and Feed (RASFF notification concerning the use of an unauthorised irradiated colouring agent (brown iron oxide as coatings of food supplements, the European Commission asked EFSA to assess the scientific validity and robustness of three documents i two safety assessments from two pharmaceutical companies including information on the manufacturing process of iron oxides, and ii one safety assessment on gamma irradiated iron oxides in food supplements provided by a consultant. According to the supplier of iron oxides and hydroxides (E 172, the aim of the 60Co-gamma irradiation treatment was to eliminate microbiological contamination. Iron oxides and hydroxides (E 172 are authorised food additives in the EU. EFSA noted that the gamma irradiation of iron oxides (yellow, red, black and brown has not been previously evaluated by other Scientific Committees dealing with foodstuffs, pharmaceutical products or cosmetics and that the irradiation doses applied to iron oxides in this particular case are higher than the doses currently authorised in the EU for “other food and food ingredients”. EFSA also noted that some evidence is available in the literature demonstrating a reduction of iron(III to iron(II due to 60Co-gamma irradiation and, that the food additive black iron oxide, as authorised in the EU, contains iron in both (II and (III valence states. Therefore, an increase in the content of divalent iron would not be of safety concern per se. However, EFSA also notes that the information on irradiated iron oxides provided is very limited and insufficient to substantiate the claim that iron oxides are not expected to undergo any chemical transformation upon irradiation. In order to demonstrate the chemical stability of iron oxide during the 60Co-gamma irradiation treatment, EFSA recommends to carry out some further analyses.

  3. Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: divergent reactions in the presence of organic ligands.

    Science.gov (United States)

    Wang, Zhaohui; Bush, Richard T; Liu, Jianshe

    2013-11-01

    Iron-catalyzed oxidation of As(III) to As(V) can be highly effective for toxic arsenic removal via Fenton reaction and Fe(II) oxygenation. However, the contribution of ubiquitous organic ligands is poorly understood, despite its significant role in redox chemistry of arsenic in natural and engineered systems. In this work, selected naturally occurring organic ligands and synthetic ligands in co-oxidation of Fe(II) and As(III) were examined as a function of pH, Fe(II), H2O2, and radical scavengers (methanol and 2-propanol) concentration. As(III) was not measurably oxidised in the presence of excess ethylenediaminetetraacetic acid (EDTA) (i.e. Fe(II):EDTAorganic ligands did not necessarily result in the coupled As(III) oxidation. Organic ligands act as both iron speciation regulators and radicals scavengers. Further quenching experiments suggested both hydroxyl radicals and high-valent Fe species contributed to As(III) oxidation. The present findings are significant for the better understanding of aquatic redox chemistry of iron and arsenic in the environment and for optimization of iron-catalyzed arsenic remediation technology.

  4. Effectiveness of phosphate removal during anaerobic digestion of waste activated sludge by dosing iron(III).

    Science.gov (United States)

    Cheng, Xiang; Wang, Jue; Chen, Bing; Wang, Yu; Liu, Jiaqi; Liu, Lubo

    2017-05-15

    Phosphate-Fe(II) precipitation induced by Fe(III) reduction during the anaerobic digestion of excess activated sludge was investigated for the removal of phosphorus and its possible recovery. The experiments were conducted with three Fe(III) sources at 35 °C and 55 °C. The results show that ferrihydrite-Fe(III) was effectively reduced during the anaerobic sludge digestion by 63% and 96% under mesophilic and thermophilic conditions, respectively. Whereas FeCl3-Fe(III) was only mesophilically reducible and the reduction of hematite-Fe(III) was unnoticeable at either temperature. Efficient precipitation of vivianite was not observed although high saturation index values, e.g., >14 (activity reduction not considered), had been reached. This reveals the complexity of vivianite precipitation in anaerobic digestion systems; for example, Fe(II) complexation and organic interference could not be ignored. With ferrihydrite amendments at a Fe/TP of 1.5, methane production from sludge digestion was reduced by 35.1% at 35 °C, and was unaffected when the digestion temperature went up to 55 °C. But, acidic FeCl3 severely inhibited the methane production and consequently the sludge biomass degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Fighting Fenton Chemistry: A Highly Active Iron(III) Tetracarbene Complex in Epoxidation Catalysis.

    Science.gov (United States)

    Kück, Jens W; Anneser, Markus R; Hofmann, Benjamin; Pöthig, Alexander; Cokoja, Mirza; Kühn, Fritz E

    2015-12-07

    Organometallic Fe complexes with exceptionally high activities in homogeneous epoxidation catalysis are reported. The compounds display Fe(II) and Fe(III) oxidation states and bear a tetracarbene ligand. The more active catalyst exhibits activities up to 183 000 turnovers per hour at room temperature and turnover numbers of up to 4300 at -30 °C. For the Fe(III) complex, a decreased Fenton-type reactivity is observed compared with Fe(II) catalysts reported previously as indicated by a substantially lower H2 O2 decomposition and higher (initial) turnover frequencies. The dependence of the catalyst performance on the catalyst loading, substrate, water addition, and the oxidant is investigated. Under all applied conditions, the advantageous nature of the use of the Fe(III) complex is evident.

  6. Tris[2-(propyliminomethylphenolato-κ2N,O]iron(III

    Directory of Open Access Journals (Sweden)

    Binbin Kong

    2008-07-01

    Full Text Available The title compound, [Fe(C10H12NO3], is isostructural with its CoIII-containing analogue. The FeIII cation is chelated by three Schiff base ligands via three N and three O atoms, and exhibits a slightly distorted octahedral geometry. The longest Fe—O and Fe—N bonds lie trans to each other and may be regarded as axial bonds, while the equatorial plane contains two mutually trans O and two trans N atoms.

  7. Role of citrate and phosphate anions in the mechanism of iron(III) sequestration by ferric binding protein: kinetic studies of the formation of the holoprotein of wild-type FbpA and its engineered mutants.

    Science.gov (United States)

    Weaver, Katherine D; Gabricević, Mario; Anderson, Damon S; Adhikari, Pratima; Mietzner, Timothy A; Crumbliss, Alvin L

    2010-07-27

    Ferric binding protein A (FbpA) plays a central role in the iron acquisition processes of pathogenic Neisseria gonorrheae, Neisseria meningitidis, and Haemophilus influenzae. FbpA functions as an iron shuttle within the periplasmic space of these Gram-negative human pathogens. Iron is picked up by FbpA at the periplasmic aspect of the outer membrane with concomitant acquisition of a synergistic anion. Here we report the kinetics and mechanisms involved with loading of iron(III) into iron-free FbpA using iron(III) citrate as an iron source in the presence of excess citrate or phosphate (physiologically available anions) at pH 6.5. In the presence of excess phosphate, iron(III) citrate loads into apo-FbpA in three kinetically distinguishable steps, while in the presence of excess citrate, only two steps are discernible. A stable intermediate containing iron(III) citrate-bound FbpA is observed in each case. The observation of an additional kinetic step and moderate increase in apparent rate constants suggests an active role for phosphate in the iron insertion process. To further elucidate a mechanism for iron loading, we report on the sequestration kinetics of iron(III) citrate in the presence of phosphate with binding site mutant apo-FbpAs, H9E, E57D, E57Q, Q58A, Y195F, and Y196H. Tyrosine mutations drastically alter the kinetics and hamper iron sequestration ability. H9E, E57D, and E57Q have near native iron sequestration behavior; however, iron binding rates are altered, enabling assignment of sequential side chain interactions. Additionally, this investigation elaborates on the function of FbpA as a carrier for iron chelates as well as "naked" or free iron as originally proposed.

  8. Adaptive organic nanoparticles of a teflon-coated iron (III) porphyrin catalytically activate dioxygen for cyclohexene oxidation.

    Science.gov (United States)

    Aggarwal, Amit; Singh, Sunaina; Samson, Jacopo; Drain, Charles Michael

    2012-07-26

    Self-organized organic nanoparticles (ONP) are adaptive to the environmental reaction conditions. ONP of fluorous alkyl iron(III) porphyrin catalytically oxidize cyclohexene to the allylic oxidation products. In contrast, the solvated metalloporphyrin yields both allylic oxidation and epoxidation products. The ONP system facilitates a greener reaction because about 89% reaction medium is water, molecular oxygen is used in place of synthetic oxidants, and the ambient reaction conditions used require less energy. The enhanced catalytic activity of these ONP is unexpected because the metalloporphyrins in the nanoaggregates are in the close proximity and the TON should diminish by self-oxidative degradation. The fluorous alkyl chain stabilizes the ONP toward self-oxidative degradation.

  9. Innovative neutron shielding materials composed of natural rubber-styrene butadiene rubber blends, boron oxide and iron(III) oxide

    Science.gov (United States)

    Jumpee, C.; Wongsawaeng, D.

    2015-05-01

    Optimized flexible and lightweight neutron shielding materials were designed using the Monte Carlo N-Particle (MCNP) code. Thicknesses of 10 mm and 100 mm were tested for neutron shielding performances. Simulation results indicated that the 10 mm shielding material of natural rubber (NR) and styrene butadiene rubber (SBR) blend (1:1) with 60 part per hundred rubber (phr) boron oxide (B2O3) and 100 mm shielding material with four alternating layers of NR with 100 phr iron (III) oxide (Fe2O3) and of NR and SBR blend (1:1) with 10 phr B2O3 were most suitable for thermal neutron shielding and all-energy neutron shielding, respectively. Experimental results verified the shielding efficiency of these optimal designs and ease of fabrication.

  10. Mixed doping of polyaniline with iron(III) chloride in the presence of hexafluoroacetylacetone: chemical and structural consequences

    Energy Technology Data Exchange (ETDEWEB)

    Bienkowski, Krzysztof [Warsaw University of Technology, Faculty of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw (Poland); Lab. de Physique des Metaux Synthetiques, UMR CEA/CNRS/Universite Joseph Fourier 5819, SI3M/DRFMC CEA Grenoble, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Kulszewicz-Bajer, Irena [Warsaw University of Technology, Faculty of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw (Poland); Genoud, Francoise [Lab. de Physique des Metaux Synthetiques, UMR CEA/CNRS/Universite Joseph Fourier 5819, SI3M/DRFMC CEA Grenoble, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France)]. E-mail: fgenoud@cea.fr; Oddou, Jean-Louis [Laboratoire de Physicochimie des Metaux en Biologie, UMR CEA/CNRS/Universite Joseph Fourier 5155, Departement Reponse et Dynamique Cellulaires, CEA/Grenoble, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Pron, Adam [Lab. de Physique des Metaux Synthetiques, UMR CEA/CNRS/Universite Joseph Fourier 5819, SI3M/DRFMC CEA Grenoble, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2005-07-15

    Sequential doping of polyaniline base in the oxidation state of emeraldine (abbreviated as PANI) first with iron(III) chloride and then treated with hexafluoroacetylacetone (HFAA) is described. The results obtained by using a combination of spectroscopic techniques (UV-vis-NIR, mass spectroscopy, Moessbauer effect spectroscopy, EPR) unequivocally show that complete Lewis acid-type complexation of PANI with FeCl{sub 3} occurs only in the solid state, i.e. after removal of the solvent. In the solution an equilibrium is established between PANI complexed with FeCl{sub 3} and FeCl{sub 3} complexed with nitromethane. The addition of HFAA to the solution, being in equilibrium, transforms Lewis acid doped PANI into mixed doped polymer, which upon casting and solvent removal gives a solid material of a general formula: PANI(FeCl{sub 3}){sub x}(HCl){sub y}(HFAA){sub z}. In this compound FeCl{sub 3} is complexed with amine nitrogens, imine nitrogens are protonated with HCl. HFAA, dispersed in the polymer matrix, serves as a plasticizer. The determined chemical constitution is a direct consequence of the reaction of HFAA with FeCl{sub 3} complexed on PANI imine sites to give HCl and iron(III) hexafluoroacetylacetonate. The former protonates the imine sites whereas the latter is removed from the system by extended pumping as proved by mass spectroscopy. Moessbauer spectra unequivocally show that FeCl{sub 3} complexed on amine sites remains intact. Films of PANI(FeCl{sub 3}){sub x}(HCl){sub y}(HFAA){sub z} show room temperature conductivity of ca. 3 x 10{sup -3} S cm{sup -1} and improved mechanical properties as compared with PANI complexed solely with FeCl{sub 3} due to HFAA plasticizing effects.

  11. Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (III) acetylacetonate in tri(ethylene glycol)

    Science.gov (United States)

    Maity, Dipak; Kale, S. N.; Kaul-Ghanekar, Ruchika; Xue, Jun-Min; Ding, Jun

    2009-10-01

    In this paper, water-soluble magnetite nanoparticles have been directly synthesized by thermal decomposition of iron (III) acetylacetonate, Fe(acac) 3 in tri(ethyleneglycol). Size and morphology of the nanoparticles are determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements while the crystal structure is identified using X-ray diffraction (XRD). Surface charge and surface coating of the nanoparticles are recognized using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectra (XPS) and zeta potential measurements. Magnetic properties are determined using vibrating sample magnetometer (VSM) and superconducting quantum interference device (SQUID) measurements. The results show that as-prepared magnetite nanoparticles are relatively monodisperse, single crystalline and superparamagnetic in nature with the blocking temperature at around 100 K. The magnetite nanoparticles are found to be highly soluble in water due to steric and electrostatic interactions between the particles arising by the surface adsorbed tri(ethyleneglycol) molecules and associated positive charges, respectively. Cytotoxicity studies on human cervical (SiHa), mouse melanoma (B16F10) and mouse primary fibroblast cells demonstrate that up to a dose of 80 μg/ml, the magnetic nanoparticles are nontoxic to the cells. Specific absorption rate (SAR) value has been calculated to be 885 and 539 W/gm for samples with the iron concentration of 1 and 0.5 mg/ml, respectively. The high SAR value upon exposure to 20 MHz radiofrequency signifies the applicability of as-prepared magnetite nanoparticles for a feasible magnetic hyperthermia treatment.

  12. Spectral variations in rocks and soils containing ferric iron hydroxide and(or) sulfate minerals as seen by AVIRIS and laboratory spectroscopy

    Science.gov (United States)

    Rockwell, Barnaby W.

    2004-01-01

    Analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data covering the Big Rock Candy Mountain area of the Marysvale volcanic field, west-central Utah, identified abundant rocks and soils bearing jarosite, goethite, and chlorite associated with volcanic rocks altered to propylitic grade during the Miocene (2321 Ma). Propylitically-altered rocks rich in pyrite associated with the relict feeder zones of convecting, shallow hydrothermal systems are currently undergoing supergene oxidation to natrojarosite, kaolinite, and gypsum. Goethite coatings are forming at the expense of jarosite where most pyrite has been consumed through oxidation in alluvium derived from pyrite-bearing zones. Spectral variations in the goethite-bearing rocks that resemble variations found in reference library samples of goethites of varying grain size were observed in the AVIRIS data. Rocks outside of the feeder zones have relatively low pyrite content and are characterized by chlorite, epidote, and calcite, with local copper-bearing quartz-calcite veins. Iron-bearing minerals in these rocks are weathering directly to goethite. Laboratory spectral analyses were applied to samples of iron-bearing rock outcrops and alluvium collected from the area to determine the accuracy of the AVIRIS-based mineral identification. The accuracy of the iron mineral identification results obtained by analysis of the AVIRIS data was confirmed. In general, the AVIRIS analysis results were accurate in identifying medium-grained goethite, coarse-grained goethite, medium- to coarse-grained goethite with trace jarosite, and mixtures of goethite and jarosite. However, rock fragments from alluvial areas identified as thin coatings of goethite with the AVIRIS data were found to consist mainly of medium- to coarse-grained goethite based on spectral characteristics in the visible and near-infrared. To determine if goethite abundance contributed to the spectral variations observed in goethite-bearing rocks

  13. Moessbauer effect study of iron(III)-inidazolidine nitroxyl-free radical ligand complex

    Energy Technology Data Exchange (ETDEWEB)

    Mulaba, A. [Technikon Witwatersrand, Metallurgy Department (South Africa); Kiremire, E. [University of the Witwatersrand, Chemistry Department (South Africa); Pollak, H. [University of the Witwatersrand, Physics Department (South Africa); Boeyens, J. [University of the Witwatersrand, Chemistry Department (South Africa)

    1999-09-15

    A new complex, [Fe(acac)L{sub 2}], bearing inidazolidine nitroxyl-free radical ligand (L{sup -}) was recently synthesised for biological studies. It proved to be biologically active against African sleeping sickness, plasmodium falciparum (malaria), leishmaniasis and chaga disease causative agents. Three ESR well resolved peaks indicated the presence of a free (unpaired) and chemically active electron in the complex. The structural complex ferric iron was found at the centre of two electric gradient whose the biggest is suggested to be initiated by the unpaired charge. No distinction between different cis isomers could be made.

  14. The Effect of Temperature and Ionic Strength on the Oxidation of Iodide by Iron(III) : A Clock Reaction Kinetic Study

    NARCIS (Netherlands)

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2012-01-01

    A laboratory exercise has recently been reported in which the students use the initial rates method based on the clock reaction approach to deduce the rate law and propose a reaction mechanism for the oxidation of iodide by iron(III) ions. The same approach is used in the exercise proposed herein; t

  15. Iron(III) porphyrin-catalysed oxidation reactions by -chloroperbenzoic acid: Nature of reactive intermediates

    Indian Academy of Sciences (India)

    A Agarwala; V Bagchi; D Bandyopadhyay

    2005-03-01

    The reaction of -chloroperbenzoic (-CPBA) acid with meso-tetrakis (pentafluorophenyl) porphynatoiron(III) chloride (F20TPPFe(III)Cl) has been studied in dichloromethane and acetonitrile medium at 25 ± 1° C. The reactive intermediates formed in this reaction have been quantitatively trapped by 2,4,6-tri -butylphenol (TTBP) in both the solvents. It has been observed that the kinetic plots of the formation of TTBP$^{\\bullet}$ radical in dichloromethane are all multiexponential, supporting the formation of more than one reactive intermediate in this solvent. In acetonitrile solvent the formation of TTBP$^{\\bullet}$ radical was however observed to be distinctly single exponential. Different kinds of reactive intermediates are proposed in these two solvents.

  16. TOPoS: III. An ultra iron-poor multiple CEMP system

    CERN Document Server

    Caffau, E; Spite, M; Spite, F; Monaco, L; Sbordone, L; Francois, P; Gallagher, A J; Plez, B; Zaggia, S; Ludwig, H -G; Cayrel, R; Koch, A; Steffen, M; Salvadori, S; Klessen, R; Glover, S; Christlieb, N

    2016-01-01

    One of the primary objectives of the TOPoS survey is to search for the most metal-poor stars. Our search has led to the discovery of one of the most iron-poor objects known, SDSS\\,J092912.32+023817.0. This object is a multiple system, in which two components are clearly detected in the spectrum. We have analysed 16 high-resolution spectra obtained using the UVES spectrograph at the ESO 8.2m VLT telescope to measure radial velocities and determine the chemical composition of the system. Cross correlation of the spectra with a synthetic template yields a double-peaked cross-correlation function (CCF) for eight spectra, and in one case there is evidence for the presence of a third peak. Chemical analysis of the spectrum obtained by averaging all the spectra for which the CCF showed a single peak found that the iron abundance is [Fe/H]=-4.97. The system is also carbon enhanced with [C/Fe]=+3.91 (A(C)=7.44). From the permitted oxygen triplet we determined an upper limit for oxygen of [O/Fe]1.3. We are also able to...

  17. UTILIZATION OF BENTONITE AS AN ADSPRPENT MATERIAL IN THE REMOVAL OF IRON (III

    Directory of Open Access Journals (Sweden)

    Ehssan M. N.

    2012-10-01

    Full Text Available In this study an Egyptian Bentonite clay has been used for the adsorption of iron salts from aqueous solutions over a concentration range of 50–100 mg/l, shaking time of 5–120 min, stirring rate from 50-200 r.p.m, adsorbent dosage from 0.1to 0.5 g, pH range(3-7, and temperature range from 25 C to 80 C. The experiments were carried out for the analysis of adsorption equilibrium capacities using a batch equilibrium technique. The process of uptake follows both the Langmuir and Freundlich isotherm models and also the second-orderkinetics. The maximum removal of iron (100% was observed with initial concentration of 40 mg/l and 0.5 g of bentonite, speed rate of 200 r.p.m. with 30 min time of contact and temperature of 25C. The paper also discusses the thermodynamic parameters of the adsorption (the Gibbs free energy, entropy, and enthalpy.

  18. Synthesis of Minerals with Iron Oxide and Hydroxide Contents as a Sorption Medium to Remove Arsenic from Water for Human Consumption.

    Science.gov (United States)

    Garrido-Hoyos, Sofia; Romero-Velazquez, Lourdes

    2016-01-01

    Arsenic has been classified as a toxic and carcinogenic chemical element. It therefore presents a serious environmental problem in different regions of the country and the world. In the present work, two adsorbent media were developed and evaluated to remove arsenic from water in the Pájaro Verde mine shaft, Huautla, Tlaquiltenango, Morelos. The media were synthesized and characterized, obtaining a surface area of 43.04 m²·g(-1) for the goethite and 2.44 m²·g(-1) for silica sand coated with Fe(III). To conduct the sorption kinetics and isotherms, a 2³ factorial design was performed for each medium in order to obtain the optimal conditions for the factors of arsenic concentration, pH and mass of the adsorbent. The best results were obtained for goethite, with a removal efficiency of 98.61% (C₀ of As(V) 0.360 mg·L(-1)), and an effluent concentration of 0.005 mg·L(-1), a value that complies with the modified Official Mexican Standard NOM-127-SSA1-1994 [1] and WHO guidelines (2004) [2]. The kinetic equation that best fit the experimental data was the pseudo-second-order, resulting in the highest values for the constants for synthetic goethite, with a rate constant sorption of 4.019·g·mg(-1)·min(-1). With respect to the sorption isotherms, both media were fitted to the Langmuir-II linear model with a sorption capacity (qm) of 0.4822 mg·g(-1) for goethite and 0.2494 mg·g(-1) for silica sand coated with Fe(III).

  19. Study of the thermodynamics of chromium(III) and chromium(VI) binding to iron(II/III)oxide or magnetite or ferrite and magnanese(II) iron (III) oxide or jacobsite or manganese ferrite nanoparticles.

    Science.gov (United States)

    Luther, Steven; Brogfeld, Nathan; Kim, Jisoo; Parsons, J G

    2013-06-15

    Removal of chromium(III) or (VI) from aqueous solution was achieved using Fe3O4, and MnFe2O4 nanomaterials. The nanomaterials were synthesized using a precipitation method and characterized using XRD. The size of the nanomaterials was determined to be 22.4±0.9 nm (Fe3O4) and 15.5±0.5 nm (MnFe2O4). The optimal binding pH for chromium(III) and chromium(VI) were pH 6 and pH 3. Isotherm studies were performed, under light and dark conditions, to determine the capacity of the nanomaterials. The capacities for the light studies with MnFe2O4 and Fe3O4 were determined to be 7.189 and 10.63 mg/g, respectively, for chromium(III). The capacities for the light studies with MnFe2O4 and Fe3O4 were 3.21 and 3.46 mg/g, respectively, for chromium(VI). Under dark reaction conditions the binding of chromium(III) to the MnFe2O4 and Fe3O4 nanomaterials were 5.74 and 15.9 mg/g, respectively. The binding capacity for the binding of chromium(VI) to MnFe2O4 and Fe3O4 under dark reaction conditions were 3.87 and 8.54 mg/g, respectively. The thermodynamics for the reactions showed negative ΔG values, and positive ΔH values. The ΔS values were positive for the binding of chromium(III) and for chromium(VI) binding under dark reaction conditions. The ΔS values for chromium(VI) binding under the light reaction conditions were determined to be negative.

  20. Single sheet metal oxides and hydroxides

    DEFF Research Database (Denmark)

    Huang, Lizhi

    the possibility to gain precise control of the structure, composition, morphology, and property of desired nanostructures. In the present Ph.D. project, examples to produce 2D nanosheets with novel functionalities are presented. This comprises: (1) Synthesis of LDHs with a new structure and composition. (2......) Delamination of the LDHs structure (oxGRC12) with the formation of single sheet iron (hydr)oxide (SSI). (3) Assembly of the new 2D nanosheets layer by layer to achieve desired functionalities....

  1. 4-Nitrocatecholato iron(III) complexes of 2-aminomethyl pyridine-based bis(phenol) amine as structural models for catechol-bound 3,4-PCD

    Science.gov (United States)

    Safaei, Elham; Heidari, Sima; Wojtczak, Andrzej; Cotič, Patricia; Kozakiewicz, Anna

    2016-02-01

    Two nitrocatecholato(HNC) iron(III) complexes, [FeLAMPX(H-NC)]. NEt3, of the tetradendate ligand (2-aminomethylpyridine)bis(2-pyridylmethyl)amine (H2LAMPX) were synthesized and structurally characterized. These structural models for catechol-bound 3,4-PCD were characterized by IR, UV-vis, elemental analysis and magnetic measurements. X-ray crystallography studies revealed that in both complexes the iron(III) centers are distorted octahedral and coordinated by two phenolate oxygen's, two amine nitrogen's of the ligand and mono anionic nitrocatecholate group (HNC). The variable-temperature magnetic susceptibility studies revealed paramagnetic properties of the reported complexes. The effective magnetic moments for the complexes lie between 5.3 and 5.4 BM correspond to the reported values for high spin Fe(III) center. The ligand-centered oxidation and metal-centered reduction of complexes was studies using cyclic voltammetry (CV) technique.

  2. Bis[2-(8-quinolyliminomethylphenolato-κ3N,N′,O]iron(III azide

    Directory of Open Access Journals (Sweden)

    Yoshihiro Kojima

    2010-02-01

    Full Text Available The title compound, [Fe(C16H11N2O2]N3, consists of a [Fe(qsal2]+ cation [Hqsal = N-(8-quinolylsalicylaldimine] and an azide anion. The FeIII ion, lying on a twofold rotation axis, is coordinated by four N atoms and two O atoms from two tridentate qsal ligands in an octahedral geometry. The molecules are connected into a three-dimensional network by intermolecular C—H...N and C—H...O interactions. π–π interactions [interplanar distance = 3.58 (1 Å] between the quinoline rings of adjacent molecules further stabilize the crystal structure.

  3. Shewanella oneidensis MR-1-Induced Fe(III) Reduction Facilitates Roxarsone Transformation

    OpenAIRE

    2016-01-01

    Although microbial activity and associated iron (oxy)hydroxides are known in general to affect the environmental dynamics of 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone), the mechanistic understanding of the underlying biophysico-chemical processes remains unclear due to limited experimental information. We studied how Shewanella oneidensis MR-1 –a widely distributed metal-reducing bacterium, in the presence of dissolved Fe(III), affects roxarsone transformations and biogeochemical cyclin...

  4. Spectrophotometric Determination of Chromium(III and Iron(III by used of 2-((E-(1H-Benzo[D]Imidazol2-YlDiazenyl-5-((E-Benzylideneimino Phenol;(BIADPI as Organic Reagent

    Directory of Open Access Journals (Sweden)

    Khalid J. Al-Adilee

    2016-09-01

    Full Text Available The azo reagent 2-((E-(1H-benzo[d]imidazol2-yldiazenyl-5-((E-benzyl ideneiminophenol(BIADPI was prepared and examined by using element analysis(C.H.N.,UV-Vis., Mass spectrum, 1H-NMR spectrum and infrared spectra. A sensitive and selective spectrophotometric method is proposed for the rapid determination of iron (III and chromium(III using (BIADPI , as spectrophotometer reagent. The reaction between this reagent with chromium(III and iron (III is instantaneous at (586,536 nm (λmax and pH=(7.5,4 to form perpul complexes having a mole ratio 1 : 2 (metal : ligand for Cr (III and Fe(III the absorbance remains stable for over 24 hours. Beer's law is obeyed in the rang of (1-14 μg.ml-1 and (1-21 μg.ml-1with molar absorptivity (Є = (7.768x105 , 9.3575x105 L.mol-1.cm-1 and a detection limit of (0.275-0.14 μg.ml-1 obtained respectively. The precision and accuracy were obtained to be R.S.D%=(0.9-0.467%,Re%=(99.1-98.2-% and Erel%= (-1.8 - 0.9%.The method is successfully employed for the determination of iron(III in Pharmaceutical preparations(Anemiadrugs.The most important interferences were due to Ni(II, Zn(II, Co(II, Cd(II, Cu(IIand Hg(II and suitable masking agents were used.

  5. Magnetite Nanoparticles Prepared by Thermal Decarboxylation and Decomposition of Iron Hydroxide Alkylsulfonyl Acetate%烷基羧甲砜基氢氧化铁热脱羧和热分解法制备纳米氧化铁

    Institute of Scientific and Technical Information of China (English)

    钟乃良; 王乐刚; 徐艳玲; 申凯华

    2009-01-01

    十六烷基羧甲砜基氢氧化铁和丁基羧甲砜基氢氧化铁通过热脱羧方法,合成了纳米氧化铁颗粒.采用X射线衍射、红外光谱及透射电镜等手段对纳米氧化铁的合成过程和结构特征进行了表征.制备的纳米氧化铁具有8~18nm的晶粒尺寸.羧甲砜基的热脱羧过程使得表面活性剂从纳米颗粒表面去除相对容易,特别是丁基羧甲砜基化合物.十六烷基羧甲砜基氢氧化铁制备纳米氧化铁颗粒存在脱羧有机分子还原Fe3+过程,而丁基羧甲砜基氢氧化铁通过热脱羧分解的方式合成纳米氧化铁颗粒.%Magnetite nanoparticles were prepared by thermal decomposition of iron hydroxide cetylsulfonyl acetate and butylsulfonyl acetate under the protection of nitrogen. The morphology, crystallinity and oxidation state of Fe were studied using TEM, XRD and FTIR. The results reveal that magnetite nanoparticles are 8-18 nm in diameter, and the thermal decarboxylation of carboxymethylsulfonyl in both precursors makes the removal of organic compounds easy, especially in the one with short carbon chain. The final nanoparticles are formed in two different ways, where C16 samples magnetite is derived from the reduction of Fe3 + by organic fractions, whereas the nanoparticles of ferric oxides are derived in C4 product from the thermal decomposition.

  6. Synthesis, characterization, crystal structure and electrochemical studies of ionic iron(III) dipicolinato complex

    Science.gov (United States)

    Ghasemi, Fatemeh; Ghasemi, Khaled; Rezvani, Ali Reza; Rosli, Mohd Mustaqim; Razak, Ibrahim Abdul

    2017-09-01

    The new complex (NH4)[Fe(dipic)2] (1) (dipicH2 = 2,6-pyridinedicarboxylic acid), was synthesized and characterized by elemental analysis, FTIR and UV-Vis spectroscopy and single crystal X-ray method. The crystal system is tetragonal with space group I41/a. The FeIII ion and the N atom of the ammonium cation are located on a crystallographic fourfold rotoinversion axis (4 bar). The Nsbnd H⋯O and Csbnd H⋯O intermolecular hydrogen bonding and π⋯π stacking interactions play an important role in the formation of a 3-dimensional anion-cation network and stabilization of the crystal structure. The redox behavior of the complex was also investigated by cyclic voltammetry.

  7. Iron(III) Chloride mediated reduction of Bis(1-isoquinolylcarbonyl)amide to an Amide

    Indian Academy of Sciences (India)

    Rojalin Sahu; Papuli Chaliha; Vadivelu Manivannan

    2016-01-01

    In methanol, FeCl3 reacted readily with L1H (L1H = bis(1-isoquinolylcarbonyl)amide) and afforded a complex having the formula [Fe(L2)Cl2] (1) {L2− = -((1-isoquinolyl)(methoxy)methyl)isoquinoline-1-carboxamide ion}. This reaction involves reduction of one of the two carbonyl groups present in L1H to (methoxy)methyl group. A plausible mechanism for the conversion of L1H to L2− has been proposed. Determination of molecular structure of 1 confirmed this conversion. Fe(III) ion is surrounded by three nitrogen atoms of the ligand and two chloride ions, imparting a rare distorted trigonal bipyramidal N3Cl2 coordination environment.

  8. Phase-transformation-induced twinning of an iron(III) calix[4]pyrrolidine complex.

    Science.gov (United States)

    Journot, Guillaume; Neier, Reinhard; Stoeckli-Evans, Helen

    2014-07-01

    The title compound, tetrachlorido-1κCl;2κ(3)Cl-(2,2,7,7,12,12,17,17-octamethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1(3,6).1(8,11).1(13,16)]tetracosane-1κ(4)N,N',N'',N''')-μ2-oxido-diiron(III), [Fe2Cl4O(C28H52N4)], undergoes a slow phase transformation at ca 173 K from monoclinic space group P2(1)/n, denoted form (I), to the maximal non-isomorphic subgroup, triclinic space group P1, denoted form (II), which is accompanied by nonmerohedral twinning [twin fractions of 0.693 (4) and 0.307 (4)]. The transformation was found to be reversible, as on raising the temperature the crystal reverted to monoclinic form (I). In the asymmetric unit of form (I), Z' = 1, while in form (II), Z' = 2, with a very small reduction (ca 1.8%) in the unit-cell volume. The two independent molecules (A and B) in form (II) are related by a pseudo-twofold screw axis along the b axis. The molecular overlay of molecule A on molecule B has an r.m.s. deviation of 0.353 Å, with the largest distance between two equivalent atoms being 1.202 Å. The reaction of calix[4]pyrrolidine, the fully reduced form of meso-octamethylporphyrinogen, with FeCl3 gave a red-brown solid that was recrystallized from ethanol in air, resulting in the formation of the title compound. In both forms, (I) and (II), the Fe(III) atoms are coordinated to the macrocyclic ligand and have distorted octahedral FeN4OCl coordination spheres. These Fe(III) atoms lie out of the mean plane of the four N atoms, displaced towards the O atom of the [OFeCl3] unit by 0.2265 (5) Å in form (I), and by 0.2210 (14) and 0.2089 (14) Å, respectively, in the two independent molecules (A and B) of form (II). The geometry of the [OFeCl3] units are similar, with each Fe(III) atom having a tetrahedral coordination sphere. The NH H atoms are directed below the planes of the macrocycles and are hydrogen bonded to the coordinated Cl(-) ions. There are also intramolecular C-H···Cl hydrogen bonds present in both (I) and (II

  9. A new iron(III) complex of glycine derivative of amine-chloro substituted phenol ligand: Synthesis, characterization and catechol dioxygenase activity

    Science.gov (United States)

    Saberikia, Iraj; Safaei, Elham; Kowsari, Mohammad Hossein; Lee, Yong-Ill; Cotic, Patricia; Bruno, Giuseppe; Rudbari, Hadi Amiri

    2012-12-01

    A new iron(III) complex of the glycine derivative of amine-chloro substituted phenol ligand (H3LGDC) has been prepared and characterized by IR, 1H NMR, UV-Vis spectroscopic techniques, cyclic voltammetry, ESI-MS and magnetic susceptibility studies. X-ray analysis reveals that in iron complex of FeLGDC the iron(III) center has a distorted trigonal bipyramidal coordination sphere and is surrounded by an amine nitrogen, a carboxylate, a water and two phenolate oxygen atoms. The DFT calculations with the UB3LYP/6-311++G** level optimized structure of the complex are in good agreement with experimental X-ray structural data. The variable-temperature magnetic susceptibility indicates that FeLGDC is the paramagnetic high spin iron(III) complex. It has been shown that electrochemical oxidation of this complex is ligand-centered due to the oxidation of phenolate to the phenoxyl radicals. This enzyme mimic utilized molecular oxygen in carrying out the oxidative cleavage of catechols with complete conversion at room temperature.

  10. As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley).

    Science.gov (United States)

    Jiménez-Cedillo, M J; Olguín, M T; Fall, C; Colin-Cruz, A

    2013-03-15

    The sorption of As(III) and As(V) from aqueous solutions onto iron-modified Petroselinum crispum (PCFe) and iron-modified carbonaceous material from the pyrolysis of P. crispum (PCTTFe) was investigated. The modified sorbents were characterized with scanning electron microscopy. The sorbent elemental composition was determined with energy-dispersive X-ray spectroscopy (EDS). The principal functional groups from the sorbents were determined with FT-IR. The specific surfaces and points of zero charge (pzc) of the materials were also determined. As(III) and As(V) sorption onto the modified sorbents were performed in a batch system. After the sorption process, the As content in the liquid and solid phases was determined with atomic absorption and neutron activation analyses, respectively. After the arsenic sorption processes, the desorption of Fe from PCFe and PCTTFe was verified with atomic absorption spectrometry. The morphology of PC changed after iron modification. The specific area and pzc differed significantly between the iron-modified non-pyrolyzed and pyrolyzed P. crispum. The kinetics of the arsenite and arsenate sorption processes were described with a pseudo-second-order model. The Langmuir-Freundlich model provided the isotherms with the best fit. Less than 0.02% of the Fe was desorbed from the PCFe and PCTTFe after the As(III) and As(V) sorption processes.

  11. Speciation of iron (II) and (III) by using solvent extraction and flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Mehmet [Department of Chemistry, Science and Arts Faculty, Firat University, Elazig (Turkey)]. E-mail: myaman@firat.edu.tr; Kaya, Gokce [Department of Chemistry, Science and Arts Faculty, Firat University, Elazig (Turkey)

    2005-05-17

    A method for speciation, preconcentration and separation of Fe{sup 2+} and Fe{sup 3+} in different matrices was developed using solvent extraction and flame atomic absorption spectrometry. PAN as complexing reagent for Fe{sup 2+} and chloroform as organic solvent were used. The complex of Fe{sup 2+}-PAN was extracted into chloroform phase in the pH range of 0.75-4.0 and Fe{sup 3+} remains in water phase in the pH range 0.75-1.25. The optimum conditions for maximum recovery of Fe{sup 2+} and minimum recovery of Fe{sup 3+} were determined as pH = 1, the stirring time of 20 min, the PAN amount of 0.5 mg and chloroform volume of 8 mL. The developed method was applied to the determination of Fe{sup 2+} and Fe{sup 3+} in tea infusion, fruit juice, cola and pekmez. It is seen that there is high bioavailable iron (Fe{sup 2+}) in pekmez. The developed method is sensitive, simple and need the shorter time in comparison with other similar studies.

  12. 高产铁载体假单胞菌的筛选及其对铁氧化物的利用%Screening of Pseudomonas Strains Producing High-yield Siderophore and Its Utilization of Iron Hydroxides

    Institute of Scientific and Technical Information of China (English)

    朱慧明; 张彦; 杨洪江

    2015-01-01

    The aim of this study is to isolate the microorganisms producing high-yield siderophore, investigate antimicrobial activity of siderophore against pathogenic bacteria, and study the effect of siderophore on the utilization of insoluble poorly crystalline iron hydroxides (PICH). CAS method was used for isolating microorganisms producing high-yield siderophore. Agar diffusion method and growth inhibition assay were used to test antimicrobial activities of siderophore. Sequence alignment of 16S rRNA gene was used for strain identification. Bacterial growth was measured to investigate the utilization of insoluble PCIH by siderophore. Totally, 172 siderophore-producing strains were isolated from soil samples, including 13 potentially strong siderophore producers(PSSP). The analysis of antimicrobial activities of siderophore showed that only the supernatant of Z158 culture had a pronounced inhibiting effect on the growth of Staphylococcus aureus, Micrococcus luteus, Proteus vulgaris, and Vibrio parahemolyticus, and the inhibition efficiency was 51.3%, 50.2%, 37.1%, and 28.0%, respectively. Homology analysis of 16S rRNA gene sequence identified strain Z158 as Pseudomonas aeruginosa. Moreover, with insoluble PICH as sole iron source, the biomass of Z158 increased by 46.1%at 24 h after incubation. In conclusion, the siderophore secreted by P. aeruginosa Z158 could inhibit the growth of pathogenic bacteria and acquire iron element from insoluble PCIH.%筛选高产铁载体的微生物,研究铁载体的抑菌作用和对不溶性未定型铁氧化物(poorly crystalline iron hydroxides, PCIH)的利用。CAS法筛选高产铁载体菌株,采用琼脂扩散法和生长抑制测定铁载体的抑菌作用,利用16S rRNA基因序列比对鉴定分离菌株,并根据分离菌株的生长情况,确定铁载体对不溶性PCIH的利用。从土壤样品中共筛选到172株产铁载体的菌株,高产铁载体菌株13株,其中仅有菌株Z158

  13. Rat liver mitochondrial dysfunction by addition of copper(II) or iron(III) ions.

    Science.gov (United States)

    Saporito-Magriñá, Christian; Musacco-Sebio, Rosario; Acosta, Juan M; Bajicoff, Sofía; Paredes-Fleitas, Paola; Boveris, Alberto; Repetto, Marisa G

    2017-01-01

    Increased copper (Cu) and iron (Fe) levels in liver and brain are associated to oxidative stress and damage with increased phospholipid oxidation process. The aim of this work was to assess the toxic effects of Cu(2+) and Fe(3+) addition to rat liver mitochondria by determining mitochondrial respiration in states 3 (active respiration) and 4 (resting respiration), and phospholipid peroxidation. Both, Cu(2+) and Fe(3+) produced decreases in O2 consumption in a concentration-dependent manner in active state 3: both ions by 42% with malate-glutamate as complex I substrate (concentration for half maximal response (C50) 60μM Cu(2+) and 1.25mM Fe(3+)), and with succinate as complex II substrate: 64-69% with C50 of 50μM Cu(2+) and with C50 of 1.25mM of Fe(3+). Respiratory control decreased with Cu(2+) (C50 50μM) and Fe(3+) (C50 1.25-1-75mM) with both substrates. Cu(2+) produced a 2-fold increase and Fe(3+) a 5-fold increase of thiobarbituric acid-reactive substances (TBARS) content from 25μM Cu(2+) (C50 40μM) and from 100μM Fe(3+) (C50 1.75mM). Supplementations with Cu(2+) and Fe(3+) ions induce mitochondrial dysfunction with phospholipid peroxidation in rat liver mitochondria. Although is proved that a Fenton/Haber Weiss mechanism of oxidative damage occurs in metal-ion induced mitochondrial toxicity, slightly different responses to the metal ions suggest some differences in the mechanism of intracellular toxicity. The decreased rates of mitochondrial respiration and the alteration of mitochondrial function by phospholipid and protein oxidations lead to mitochondrial dysfunction, cellular dyshomeostasis and cell death.

  14. Iron speciation in soft-water lakes and soils as determined by EXAFS spectroscopy and geochemical modelling

    Science.gov (United States)

    Sjöstedt, Carin; Persson, Ingmar; Hesterberg, Dean; Kleja, Dan Berggren; Borg, Hans; Gustafsson, Jon Petter

    2013-03-01

    Complexation of iron by organic matter can potentially compete with toxic metals for binding sites. Iron(III) forms both monomeric and di/trimeric complexes with fulvic and humic acids, but the nature and extent of complexation with natural organic matter samples from soft-water lakes has not been extensively studied. The aim of this study was to determine the coordination of iron in complexes with organic matter in two soft-water lakes and in the surrounding Oe soil horizons. Iron K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy was performed on particles and large colloids (>0.45 μm) collected by in-line pre-filtration, and on smaller colloids isolated both on an AGMP-1 anion-exchange column and by concentration using 1000 Da ultrafiltration. The results showed that iron(III) was mainly present in monomeric complexes with organic matter, both in the lake water smaller colloids and in the soil samples. Evidence for iron(III) (hydr)oxides was found for the lake particles, in the ultrafiltration retentates, and in some of the soils. Overall, the results suggest that complexation of iron(III) to organic matter prevents hydrolysis into polymeric forms. Strong complexation of iron(III) would lead to competition with other metals for organic-matter binding sites.

  15. Effect of γ- irradiation on structural, optical and electrical properties of thermally evaporated iron (III) chloride tetraphenylporphyrin thin films

    Science.gov (United States)

    El-Nahass, M. M.; Zayed, H. A.; Elgarhy, E. E.; Hassanien, A. M.

    2017-10-01

    Influence of γ-irradiation on structural, optical and electrical properties of thermally evaporated iron (III) chloride tetraphenylporphyrin (FeTPPCl) thin films have been reported. The structural features are investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The optical constants of as-deposited and γ-irradiated FeTPPCl thin films have been determined in the wavelength range 200-2500 nm using spectrophotometric measurements at nearly normal incidence of light. The calculated values of the absorption coefficient,α, are used to estimate the type of transitions for as-deposited and γ-irradiated FeTPPCl thin films. The real part of the refractive index in the transparent region is discussed by using a single-oscillator and Drude models. According to Miller's rule, the single oscillator model is used to deduce the third-order nonlinear susceptibility, χ(3). The temperature dependence of DC electrical conductivity, σDC, confirms the semiconducting behaviour of FeTPPCl thin films. A free band type in the higher temperature region and hopping type in the low-temperature region have been used to explain the DC conduction mechanisms of FeTPPCl thin films.

  16. Molecular-level spectroscopic investigations of the complexation and photodegradation of catechol to/by iron(III)

    Science.gov (United States)

    Al-Abadleh, Hind; Tofan-Lazar, Julia; Situm, Arthur; Slikboer, Samantha

    2014-05-01

    Surface water plays a crucial role in facilitating or inhibiting surface reactions in atmospheric aerosols. Little is known about the role of surface water in the complexation of organic molecules to transition metals in multicomponent aerosol systems. We will show results from real time diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments for the in situ complexation of catechol to Fe(III) and its photosensitized degradation under dry and humid conditions. Catechol was chosen as a simple model for humic-like substances (HULIS) in aerosols and aged polyaromatic hydrocarbons (PAH). It has also been detected in secondary organic aerosols (SOA) formed from the reaction of hydroxyl radicals with benzene. Given the importance of the iron content in aerosols and its biogeochemistry, our studies were conducted using FeCl3. For comparison, these surface-sensitive studies were complemented with bulk aqueous ATR-FTIR, UV-vis, and HPLC measurements for structural, quantitative and qualitative information about complexes in the bulk, and potential degradation products. The implications of our studies on understanding interfacial and condensed phase chemistry relevant to multicomponent aerosols, water thin islands on buildings, and ocean surfaces containing transition metals will be discussed.

  17. Microbial inhibition by pharmaceutical antibiotics in different soils--dose-response relations determined with the iron(III) reduction test.

    Science.gov (United States)

    Thiele-Bruhn, Sören

    2005-04-01

    Soil contamination from pharmaceuticals is an emerging problem, though quantitative data on their microbial effects are lacking. Thus, nine pharmaceutical antibiotics were tested for their effects on the microbial iron(III) reduction in six different topsoils. Complete dose-response curves were obtained and best-fit by sigmoidal Logit, Weibull, Box-Cox Logit, and Box-Cox Weibull equations (r2 0.73-1.00). The derived effective doses (ED [micromol/kg soil]) for the different antibiotics increased in the order (average ED50 in parentheses) chlortetracycline (53) fenbendazole at doses up to 5,800 and 3,300 micromol/kg, respectively. Due to a strong soil adsorption, especially of the tetracyclines, the corresponding effective concentrations in the soil solution (EC50), derived from sorption experiments, were considerably smaller and ranged from 0.004 micromol/L (chlortetracycline) to 120 micromol/L (sulfapyridine). The effects of the antibiotics were governed by soil sorptive properties, especially the concentration of soil organic matter. The microbial inhibition was influenced indirectly by the soil pH, which affects the ionization status of the amphoteric antibiotics.

  18. Spintronic detection of interfacial magnetic switching in a paramagnetic thin film of tris(8-hydroxyquinoline)iron(III)

    Science.gov (United States)

    Sun, Dali; Kareis, Christopher M.; van Schooten, Kipp J.; Jiang, Wei; Siegel, Gene; Kavand, Marzieh; Davidson, Royce A.; Shum, William W.; Zhang, Chuang; Liu, Haoliang; Tiwari, Ashutosh; Boehme, Christoph; Liu, Feng; Stephens, Peter W.; Miller, Joel S.; Vardeny, Z. Valy

    2017-02-01

    Organic semiconductors find increasing importance in spin transport devices due to the modulation and control of their properties through chemical synthetic versatility. The organic materials have been used as interlayers between two ferromagnet (FM) electrodes in organic spin valves, as well as for magnetic spin manipulation of metal-organic complexes at the molecular level. In the latter, the substrate-induced magnetic switching in a paramagnetic molecule has been evoked extensively but studied by delicate surface spectroscopies. Here we present evidence of the substantial magnetic switching in a thin film of the paramagnetic molecule, tris(8-hydroxyquinoline)iron(III) (Fe q3 ) deposited on a FM substrate, using the magnetoresistance response of electrical spin-injection in an organic spin valve structure, as well as the inverse-spin-Hall effect induced by state-of-art pulsed microwave spin-pumping. We show that interfacial spin control at the molecular level may lead to a macroscopic organic spin transport device, thus bridging the gap between organic spintronics and molecular spintronics.

  19. The ground states of iron(III) porphines: Role of entropy–enthalpy compensation, Fermi correlation, dispersion, and zero-point energies

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2011-01-01

    Porphyrins are much studied due to their biochemical relevance and many applications. The density functional TPSSh has previously accurately described the energy of close-lying electronic states of transition metal systems such as porphyrins. However, a recent study questioned this conclusion based...... on calculations of five iron(III) porphines. Here, we compute the geometries of 80 different electronic configurations and the free energies of the most stable configurations with the functionals TPSSh, TPSS, and B3LYP. Zero-point energies and entropy favor high-spin by ~4kJ/mol and 0–10kJ/mol, respectively. When...... these effects are included, and all electronic configurations are evaluated, TPSSh correctly predicts the spin of all the four difficult phenylporphine cases and is within the lower bound of uncertainty of any known theoretical method for the fifth, iron(III) chloroporphine. Dispersion computed with DFT-D3...

  20. Intermolecular proton transfer in solid phase: a rare example of crystal-to-crystal transformation from hydroxo- to oxo-bridged iron(III) molecule-based magnet.

    Science.gov (United States)

    Armentano, Donatella; De Munno, Giovanni; Mastropietro, Teresa F; Julve, Miguel; Lloret, Francesc

    2005-08-10

    Intermolecular proton transfer in solid phase from the hydroxo bridge to a water molecule occurs in a new mu-hydroxo iron(III) compound of formula {EtNH3[Fe2(ox)2Cl2(mu-OH)].2H2O}n leading to a still crystalline compound in which the mu-oxo bridge replaces the mu-hydroxo one. Both three-dimensional compounds exhibit magnetic ordering at Tc ca. 70 K due to a spin canting.

  1. Alkoxide coordination of iron(III) protoporphyrin IX by antimalarial quinoline methanols: a key interaction observed in the solid-state and solution.

    Science.gov (United States)

    Gildenhuys, Johandie; Sammy, Chandre J; Müller, Ronel; Streltsov, Victor A; le Roex, Tanya; Kuter, David; de Villiers, Katherine A

    2015-10-14

    The quinoline methanol antimalarial drug mefloquine is a structural analogue of the Cinchona alkaloids, quinine and quinidine. We have elucidated the single crystal X-ray diffraction structure of the complexes formed between racemic erythro mefloquine and ferriprotoporphyrin IX (Fe(iii)PPIX) and show that alkoxide coordination is a key interaction in the solid-state. Mass spectrometry confirms the existence of coordination complexes of quinine, quinidine and mefloquine to Fe(iii)PPIX in acetonitrile. The length of the iron(iii)-O bond in the quinine and quinidine complexes as determined by Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy unequivocally confirms that coordination of the quinoline methanol compounds to Fe(iii)PPIX occurs in non-aqueous aprotic solution via their benzylic alkoxide functional group. UV-visible spectrophotometric titrations of the low-spin bis-pyridyl-Fe(iii)PPIX complex with each of the quinoline methanol compounds results in the displacement of a single pyridine molecule and subsequent formation of a six-coordinate pyridine-Fe(iii)PPIX-drug complex. We propose that formation of the drug-Fe(iii)PPIX coordination complexes is favoured in a non-aqueous environment, such as that found in lipid bodies or membranes in the malaria parasite, and that their existence may contribute to the mechanism of haemozoin inhibition or other toxicity effects that lead ultimately to parasite death. In either case, coordination is a key interaction to be considered in the design of novel antimalarial drug candidates.

  2. Adsorption of iron(III), cobalt(II), and nickel(II) on activated carbon derived from Xanthoceras Sorbifolia Bunge hull: mechanisms, kinetics and influencing parameters.

    Science.gov (United States)

    Zhang, Xiaotao; Hao, Yinan; Wang, Ximing; Chen, Zhangjing

    2017-04-01

    Xanthoceras Sorbifolia Bunge hull activated carbon (XSA) was prepared and characterized by Brunauer-Emmett-Teller analysis, scanning electron microscopy and energy dispersive X-ray (EDX) spectroscopy. The ability of XSA as an adsorbent was investigated for the removal of the iron group ions Fe(III), Co(II), and Ni(II) from aqueous solution. Optimum adsorption parameters were determined based on the initial concentrations of the iron group ions, pH, adsorption temperature, and adsorption time in adsorption studies. The maximum monolayer adsorption capacities were 241.13 mg/g for Fe(III), 126.05 mg/g for Co(II), and 187.96 mg/g for Ni(II), respectively. Adsorption kinetics and isotherms showed that the adsorption process best fitted the nonlinear pseudo-second-order and Langmuir models, and the affinity of the ions for XSA decreased as follows: Fe(III) > Ni(II) > Co(II). Regeneration studies indicated that XSA could be used after several consecutive adsorption/desorption cycles using HNO3. Fourier transform infrared and EDX spectra revealed the chemical adsorption value of XSA as an adsorbent for removing iron group ions from aqueous solutions.

  3. From dihydrated iron(III) phosphate to monohydrated ammonium-iron(II) phosphate: Solvothermal reaction mediated by acetone-urea mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso, Belen F., E-mail: mbafernandez@uniovi.es [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain); Trobajo, Camino [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo-CINN, Julian Claveria 8, 33006 Oviedo (Spain); Pique, Carmen [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain); Garcia, Jose R. [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo-CINN, Julian Claveria 8, 33006 Oviedo (Spain); Blanco, Jesus A. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain)

    2012-12-15

    By reaction between synthetic phosphosiderite FePO{sub 4}{center_dot}2H{sub 2}O, urea (NH{sub 2}){sub 2}CO, and acetone (CH{sub 3}){sub 2}CO, we report a novel solvothermal synthesis of polycrystalline NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O. The preparation of other two individual phases, NH{sub 4}Fe{sub 2}(OH)(PO{sub 4}){sub 2}{center_dot}2H{sub 2}O and NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2}, is also described. The obtained product is a function of the reaction time and the N/P molar ratio in the reagent mixture, and the existence of structural memory in the dissolution-precipitation processes is discussed. Below 25 K, NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O behaves magnetically in a complex way, because both ferromagnetic and antiferromagnetic signals are superimposed, suggesting the existence of a canting of iron(II) magnetic moments. - Graphical abstract: Solvothermal synthesis of polycrystalline NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O is presented. The preparation of other two individual phases, NH{sub 4}Fe{sub 2}(OH)(PO{sub 4}){sub 2}{center_dot}2H{sub 2}O and NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2} as a function of the N/P molar ratio in the reagent mixture and the reaction time, is also described. Highlights: Black-Right-Pointing-Pointer Solvothermal synthesis of NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O from an Fe(III) phosphate: reduction process. Black-Right-Pointing-Pointer Formation of two intermediate metastable phases: phase diagram. Black-Right-Pointing-Pointer Thermal decomposition in two steps: mass loss of both water and ammonia. Black-Right-Pointing-Pointer Magnetic behaviour: AF+constant spontaneous magnetization.

  4. Rapid photooxidation of Sb(III) in the presence of different Fe(III) species

    Science.gov (United States)

    Kong, Linghao; He, Mengchang; Hu, Xingyun

    2016-05-01

    The toxicity and mobility of antimony (Sb) are strongly influenced by the redox processes associated with Sb. Dissolved iron (Fe) is widely distributed in the environment as different species and plays a significant role in Sb speciation. However, the mechanisms of Sb(III) oxidation in the presence of Fe have remained unclear because of the complexity of Fe and Sb speciation. In this study, the mechanisms of Sb(III) photooxidation in the presence of different Fe species were investigated systematically. The photooxidation of Sb(III) occurred over a wide pH range, from 1 to 10. Oxygen was not a predominant or crucial factor in the Sb(III) oxidation process. The mechanism of Sb(III) photooxidation varied depending on the Fe(III) species. In acidic solution (pH 1-3), dichloro radicals (radCl2-) and hydroxyl radicals (radOH) generated by the photocatalysis of FeCl2+ and FeOH2+ were the main oxidants for Sb(III) oxidation. Fe(III) gradually transformed into the colloid ferric hydroxide (CFH) and ferrihydrite in circumneutral and alkaline solutions (pH 4-10). Photooxidation of Sb(III) occurred through electron transfer from Sb(III) to Fe(III) along with the reduction of Fe(III) to Fe(II) through a ligand-to-metal charge-transfer (LMCT) process. The photocatalysis of different Fe(III) species may play an important role in the geochemical cycle of Sb(III) in surface soil and aquatic environments.

  5. Wastewater engineering applications of BioIronTech process based on the biogeochemical cycle of iron bioreduction and (biooxidation

    Directory of Open Access Journals (Sweden)

    Volodymyr Ivanov

    2014-12-01

    Full Text Available Bioreduction of Fe(III and biooxidation of Fe(II can be used in wastewater engineering as an innovative biotechnology BioIronTech, which is protected for commercial applications by US patent 7393452 and Singapore patent 106658 “Compositions and methods for the treatment of wastewater and other waste”. The BioIronTech process comprises the following steps: 1 anoxic bacterial reduction of Fe(III, for example in iron ore powder; 2 surface renovation of iron ore particles due to the formation of dissolved Fe2+ ions; 3 precipitation of insoluble ferrous salts of inorganic anions (phosphate or organic anions (phenols and organic acids; 4 (biooxidation of ferrous compunds with the formation of negatively, positively, or neutrally charged ferric hydroxides, which are good adsorbents of many pollutants; 5 disposal or thermal regeration of ferric (hydroxide. Different organic substances can be used as electron donors in bioreduction of Fe(III. Ferrous ions and fresh ferrous or ferric hydroxides that are produced after iron bioreduction and (biooxidation adsorb and precipitate diferent negatively charged molecules, for example chlorinated compounds of sucralose production wastewater or other halogenated organics, as well as phenols, organic acids, phosphate, and sulphide. Reject water (return liquor from the stage of sewage sludge dewatering on municipal wastewater treatment plants represents from 10 to 50% of phosphorus load when being recycled to the aeration tank. BioIronTech process can remove/recover more than 90% of phosphorous from this reject water thus replacing the conventional process of phosphate precipitation by ferric/ferrous salts, which are 20–100 times more expensive than iron ore, which is used in BioIronTech process. BioIronTech process can remarkably improve the aerobic and anaerobic treatments of municipal and industrial wastewaters, especially anaerobic digestion of lipid- and sulphate-containing food-processing wastewater. It

  6. A double-blind, randomized, and active-controlled phase III study of Herbiron drink in the treatment of iron-deficiency anemia in premenopausal females in Taiwan

    Directory of Open Access Journals (Sweden)

    Ching-Tzu Lee

    2016-06-01

    Full Text Available Background: About 468 million non-pregnant women are estimated to suffer from iron-deficiency anemia (IDA worldwide. The highest prevalence of IDA occurs in the Taiwanese population. Objective: To evaluate the effectiveness of Herbiron to increase iron absorption in women with IDA. Design: Phase III double-blind, randomized, active-controlled, and parallel comparative study enrolled 124 patients with IDA and consisted of a 2-week run-in period, randomization, 12 weeks of supplementation, and 4 weeks of follow-up. The treatment group received Herbiron drink 50 mL p.o., b.i.d., before meals (daily iron intake: 21 mg/day plus placebo tablets. The control group received a ferrous sulfate tablet, t.i.d., plus placebo 50-mL drink before meals (daily iron intake: 195 mg/day. Results: Both treatments significantly improved hemoglobin and all secondary efficacy endpoints. Most IDA patients treated with Herbiron or ferrous sulfate finished the study in the normal range. Ferrous sulfate treatment induced a rapid rate of hemoglobin synthesis, which plateaued by week 8, whereas Herbiron treatment increased the rate of hemoglobin synthesis more slowly, likely due to its nine-fold lower iron content. Gastrointestinal adverse events (diarrhea, abdominal pain, dyspepsia, and nausea but not infectious adverse events were significantly more common in the ferrous sulfate group (n=11, 18.3% than those in the Herbiron group (n=1, 1.6% (p=0.004. Conclusion: Twelve weeks of Herbiron treatment delivering 21mg of iron or ferrous sulfate treatment delivering 195 mg of iron induced normal hemoglobin levels in 62 or 91% of non-pregnant women with IDA in Taiwan, respectively, suggesting dose-dependent and bioavailability effects.

  7. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.

    Science.gov (United States)

    Mejia, Jacqueline; Roden, Eric E; Ginder-Vogel, Matthew

    2016-04-05

    Oscillations between reducing and oxidizing conditions are observed at the interface of anaerobic/oxic and anaerobic/anoxic environments, and are often stimulated by an alternating flux of electron donors (e.g., organic carbon) and electron acceptors (e.g., O2 and NO3(-)). In iron (Fe) rich soils and sediments, these oscillations may stimulate the growth of both Fe-reducing bacteria (FeRB) and Fe-oxidizing bacteria (FeOB), and their metabolism may induce cycling between Fe(II) and Fe(III), promoting the transformation of Fe (hydr)oxide minerals. Here, we examine the mineralogical evolution of lepidocrocite and ferrihydrite, and the adaptation of a natural microbial community to alternating Fe-reducing (anaerobic with addition of glucose) and Fe-oxidizing (with addition of nitrate or air) conditions. The growth of FeRB (e.g., Geobacter) is stimulated under anaerobic conditions in the presence of glucose. However, the abundance of these organisms depends on the availability of Fe(III) (hydr)oxides. Redox cycling with nitrate results in decreased Fe(II) oxidation thereby decreasing the availability of Fe(III) for FeRB. Additionally, magnetite is detected as the main product of both lepidocrocite and ferrihydrite reduction. In contrast, introduction of air results in increased Fe(II) oxidation, increasing the availability of Fe(III) and the abundance of Geobacter. In the lepidocrocite reactors, Fe(II) oxidation by dissolved O2 promotes the formation of ferrihydrite and lepidocrocite, whereas in the ferrihydrite reactors we observe a decrease in magnetite stoichiometry (e.g., oxidation). Understanding Fe (hydr)oxide transformation under environmentally relevant redox cycling conditions provides insight into nutrient availability and transport, contaminant mobility, and microbial metabolism in soils and sediments.

  8. SYNTHESIS, CRYSTAL STRUCTURE, SPECTROSCOPY PROPERTIES AND POTENTIAL ANTIMICROBIAL POTENTIALITIES OF A NEW SYNTHETIC COMPOUND: AMINO- CHLOROPYRIDINIUM DIAQUA DIOXALATO IRON(III

    Directory of Open Access Journals (Sweden)

    Jawher Abdelhak

    2014-12-01

    Full Text Available We report herein the synthesis and the physicochemical characterization of a new mixed-ligand iron(III complex of formula (C5H6ClN2[Fe(C2O42(H2O2].2H2O. This compound has been prepared by slow evaporation at room temperature and characterized by single crystal X-ray diffraction. It has been characterized by IR and UV-VIS spectra and thermal analysis (TG and DTA. In this compound, the iron ion has a slightly distorted square bipyramidal environment, coordinated by two chelating oxalate ion and two water molecules. Structural cohesion is established essentially by π-π interactions between the rings of pyridine groups and intermolecular hydrogen bonds connecting the ionic entities and uncoordinated water molecules. In vitro antimicrobial activities of the amino- chloropyridinium diaqua dioxalato iron (III against pathogenic fungi, yeast and bacteria were studied in this work. On the whole, our new compound has high antibacterial activities against Pseudomonas aeruginosa, Staphylococcus aureus and Listeria innocua. The amino- chloropyridinium diaqua dioxalato iron (III used at 200µg m-1, can reduce Candida albicans survival of about 45.45%, and destruct hyphe mycelial of Trichophyton rubrum. High lysozyme activities were expressed especially against Listeria innocua with 17 times more than Staphylococcus aureus. The minimal inhibitory concentrations (MIC are ranging from 16 µg ml-1 for bacteria to 256 µg ml-1 for yeast and IC50 values varying from 1.44 to 10.45 µg ml-1 for bacteria and 45.8 for yeast.

  9. The diversity and abundance of As(III) oxidizers on root iron plaque is critical for arsenic bioavailability to rice.

    Science.gov (United States)

    Hu, Min; Li, Fangbai; Liu, Chuanping; Wu, Weijian

    2015-09-01

    Iron plaque is a strong adsorbent on rice roots, acting as a barrier to prevent metal uptake by rice. However, the role of root iron plaque microbes in governing metal redox cycling and metal bioavailability is unknown. In this study, the microbial community structure on the iron plaque of rice roots from an arsenic-contaminated paddy soil was explored using high-throughput next-generation sequencing. The microbial composition and diversity of the root iron plaque were significantly different from those of the bulk and rhizosphere soils. Using the aoxB gene as an identifying marker, we determined that the arsenite-oxidizing microbiota on the iron plaque was dominated by Acidovorax and Hydrogenophaga-affiliated bacteria. More importantly, the abundance of arsenite-oxidizing bacteria (AsOB) on the root iron plaque was significantly negatively correlated with the arsenic concentration in the rice root, straw and grain, indicating that the microbes on the iron plaque, particularly the AsOB, were actively catalyzing arsenic transformation and greatly influencing metal uptake by rice. This exploratory research represents a preliminary examination of the microbial community structure of the root iron plaque formed under arsenic pollution and emphasizes the importance of the root iron plaque environment in arsenic biogeochemical cycling compared with the soil-rhizosphere biotope.

  10. A hydrogen-bond facilitated cycle for oxygen reduction by an acid- and base-compatible iron platform.

    Science.gov (United States)

    Soo, Han Sen; Komor, Alexis C; Iavarone, Anthony T; Chang, Christopher J

    2009-11-02

    We report a hydrogen-bond functionalized N4Py ligand platform (N,N-bis(2-R-6-pyridylmethyl)-N-bis(2-pyridyl)methylamine; R = neopentyl-NH, N4Py(2NpNH), 9; R = phenyl-NH, N4Py(2PhNH), 10) and the ability of its iron(II)-triflate [N4Py(2R)Fe(II)(OTf)][OTf] complexes (R = NpNH, 11; R = PhNH, 12) to activate and reduce dioxygen in a synthetic cycle by coupled proton and electron transfer. A pair of iron(III)-hydroxide [N4Py(2R)Fe(III)(OH)][OTf](2) complexes (R = NpNH, 13; R = PhNH, 14) are isolated and structurally and spectroscopically characterized after exposure of the iron(II)-triflate precursors to 1 atm of O(2) at ambient temperature. The stability of this system to acids and bases allows regeneration of the labile iron(II)-triflate starting materials by sequential electron and proton transfer with cobaltocene and triflic acid, respectively, or through direct proton-coupled reduction with ascorbic acid. In the stepwise process, reduction of the iron(III)-hydroxide complexes with cobaltocene gives structurally homologous iron(II)-hydroxide [N4Py(2R)Fe(II)(OH)][OTf] congeners (R = NpNH, 15; R = PhNH, 16) that can be prepared independently from 11 and 12 with 20% aq. NaOH. Additions of triflic acid to complexes 15 and 16 furnish the starting compounds 11 and 12, respectively, to complete the synthetic cycle. The combined data establish a synthetic cycle for O(2) reduction by an iron platform that manages proton and electron transfer through its first and second coordination spheres.

  11. Co–Fe Prussian Blue Analogue Intercalated into Diamagnetic Mg–Al Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Cuijuan Zhang

    2016-04-01

    Full Text Available A heterostructure of diamagnetic magnesium‒aluminium layered double hydroxides (Mg‒Al LDHs and photomag‐ netic cobalt‒iron Prussian Blue analogue (Co‒Fe PBA was designed, synthesized and then designated as LDH‒PB. The cyanide-bridged Co‒Fe PBA was two-dimensionally intercalated into the Mg‒Al LDH template by the stepwise anion exchange method. LDH‒PB showed ferrimagnetic properties with in-plane antiferromagnetic exchange interactions, as well as small photo-induced magnetization by visible light illumination due to the low dimensional structures and the characteristic photo-induced electronic states of the mixed valence of FeIII(low spin, S = 1/2‒CN‒ CoII(high spin, S = 3/2‒NC‒FeII (low spin, S = 0.

  12. Coumarin-Based Fluorescent Probes for Dual Recognition of Copper(II and Iron(III Ions and Their Application in Bio-Imaging

    Directory of Open Access Journals (Sweden)

    Olimpo García-Beltrán

    2014-01-01

    Full Text Available Two new coumarin-based “turn-off” fluorescent probes, (E-3-((3,4-dihydroxybenzylideneamino-7-hydroxy-2H-chromen-2-one (BS1 and (E-3-((2,4-dihydroxybenzylideneamino-7-hydroxy-2H-chromen-2-one (BS2, were synthesized and their detection of copper(II and iron(III ions was studied. Results show that both compounds are highly selective for Cu2+ and Fe3+ ions over other metal ions. However, BS2 is detected directly, while detection of BS1 involves a hydrolysis reaction to regenerate 3-amino-7-hydroxycoumarin (3 and 3,4-dihydroxybenzaldehyde, of which 3 is able to react with copper(II or iron(III ions. The interaction between the tested compounds and copper or iron ions is associated with a large fluorescence decrease, showing detection limits of ca. 10−5 M. Preliminary studies employing epifluorescence microscopy demonstrate that Cu2+ and Fe3+ ions can be imaged in human neuroblastoma SH-SY5Y cells treated with the tested probes.

  13. Iron(III and copper(II complexes bearing 8-quinolinol with amino-acids mixed ligands: Synthesis, characterization and antibacterial investigation

    Directory of Open Access Journals (Sweden)

    Saliu A. Amolegbe

    2015-09-01

    Full Text Available Four d-orbital metal complexes with mixed ligands derived from 8-hydroxyquinoline (HQ and amino acids (AA: l-alanine and methionine have been synthesized through a mild reflux in alkaline solution and characterized by elemental analyses, infrared, electronic transition, and temperature dependant magnetic susceptibility. The IR spectroscopy revealed that iron and copper ions coordinated through carbonyl (CO, hydroxyl group (OH of the amino acids, N-pyridine ring of hydroxyquinoline. The elemental analysis measurement with other obtained data suggested an octahedral geometry for the iron(III complexes and tetrahedral geometry for the copper(II complexes. From the molar magnetic susceptibility measurement, the iron(III system (S = 5/2 d5 (non-degenerate 6A1 with χmT = 0.38 cm3 Kmol−1 showed an antiferromagnetic while Cu2+ ions system (S = ½ (2T2g has χmT = 4.77 cm3 Kmol−1 described as paramagnetic behaviour. In vitro antimicrobial investigations of the metal complexes against standard bacteria species gave significant inhibition with, copper complex showing highest inhibitions against Pseudomonas aeruginosa (ATCC27853 of 43 mm at 10 μg/ml signalling its potential as pharmaceutical or chemotherapeutic agents.

  14. Coumarin-based fluorescent probes for dual recognition of copper(II) and iron(III) ions and their application in bio-imaging.

    Science.gov (United States)

    García-Beltrán, Olimpo; Cassels, Bruce K; Pérez, Claudio; Mena, Natalia; Núñez, Marco T; Martínez, Natalia P; Pavez, Paulina; Aliaga, Margarita E

    2014-01-13

    Two new coumarin-based "turn-off" fluorescent probes, (E)-3-((3,4-dihydroxybenzylidene)amino)-7-hydroxy-2H-chromen-2-one (BS1) and (E)-3-((2,4-dihydroxybenzylidene)amino)-7-hydroxy-2H-chromen-2-one (BS2), were synthesized and their detection of copper(II) and iron(III) ions was studied. Results show that both compounds are highly selective for Cu²⁺ and Fe³⁺ ions over other metal ions. However, BS2 is detected directly, while detection of BS1 involves a hydrolysis reaction to regenerate 3-amino-7-hydroxycoumarin (3) and 3,4-dihydroxybenzaldehyde, of which 3 is able to react with copper(II) or iron(III) ions. The interaction between the tested compounds and copper or iron ions is associated with a large fluorescence decrease, showing detection limits of ca. 10⁻⁵ M. Preliminary studies employing epifluorescence microscopy demonstrate that Cu²⁺ and Fe³⁺ ions can be imaged in human neuroblastoma SH-SY5Y cells treated with the tested probes.

  15. Solution behavior of iron(III-N,N'-ethylene-bis-(salicylideneiminato-chloride in aqueous methanol at 298.15, 303.15 and 313.15K

    Directory of Open Access Journals (Sweden)

    Brahman Dhiraj

    2014-01-01

    Full Text Available In this study partial molar volumes (φV0 and viscosity B-coefficients of iron(III-N, N'-ethylene-bis(salicylideneiminato-chloride, abbreviated as FeIII(salenCl, in different aqueous methanol solutions were determined from solution density and viscosity measurements at temperatures 298.15, 303.15, and 313.15 K under ambient pressure. Apparent molar volumes (φV and densities (ρ were used to calculate the apparent molar expansibilities (φE, the partial molar expansibilities (φE0 and the temperature dependence of the partial molar expansibilities (φE0 at constant pressure, (δφE0/δTP of FeIII(salenCl solutions to reveal the nature of different interactions in the ternary solutions. The transition state theory was applied to analyze the viscosity B-coefficients on the basis of the activation parameters of viscous flow. The overall results indicated strong solute-solvent interactions between FeIII(salenCl and the solvent molecules, preferentially with water molecules and that FeIII(salenCl acts as a net structure promoter in the ternary solutions. UV-VIS absorption spectra of the ternary solutions also stand in support of the results obtained.

  16. Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine.

    Science.gov (United States)

    Zou, Jing; Ma, Jun; Chen, Liwei; Li, Xuchun; Guan, Yinghong; Xie, Pengchao; Pan, Chao

    2013-10-15

    The reaction between ferrous iron (Fe(II)) with peroxymonosulfate (PMS) generates reactive oxidants capable of degrading refractory organic contaminants. However, the slow transformation from ferric iron (Fe(III)) back to Fe(II) limits its widespread application. Here, we added hydroxylamine (HA), a common reducing agent, into Fe(II)/PMS process to accelerate the transformation from Fe(III) to Fe(II). With benzoic acid (BA) as probe compound, the addition of HA into Fe(II)/PMS process accelerated the degradation of BA rapidly in the pH range of 2.0-6.0 by accelerating the key reactions, including the redox cycle of Fe(III)/Fe(II) and the generation of reactive oxidants. Both sulfate radicals and hydroxyl radicals were considered as the primary reactive oxidants for the degradation of BA in HA/Fe(II)/PMS process with the experiments of electron spin resonance and alcohols quenching. Moreover, HA was gradually degraded to N2, N2O, NO2 (−), and NO3 (−), while the environmentally friendly gas of N2 was considered as its major end product in the process. The present study might provide a promising idea based on Fe(II)/PMS process for the rapid degradation of refractory organic contaminants in water treatment.

  17. Caloranaerobacter ferrireducens sp. nov., an anaerobic, thermophilic, iron (III)-reducing bacterium isolated from deep-sea hydrothermal sulfide deposits.

    Science.gov (United States)

    Zeng, Xiang; Zhang, Zhao; Li, Xi; Jebbar, Mohamed; Alain, Karine; Shao, Zongze

    2015-06-01

    A thermophilic, anaerobic, iron-reducing bacterium (strain DY22619T) was isolated from a sulfide sample collected from an East Pacific Ocean hydrothermal field at a depth of 2901 m. Cells were Gram-stain-negative, motile rods (2-10 µm in length, 0.5 µm in width) with multiple peritrichous flagella. The strain grew at 40-70 °C inclusive (optimum 60 °C), at pH 4.5-8.5 inclusive (optimum pH 7.0) and with sea salts concentrations of 1-10 % (w/v) (optimum 3 % sea salts) and NaCl concentrations of 1.5-5.0 % (w/v) (optimum 2.5 % NaCl). Under optimal growth conditions, the generation time was around 55 min. The isolate was an obligate chemoorganoheterotroph, utilizing complex organic compounds, amino acids, carbohydrates and organic acids including peptone, tryptone, beef extract, yeast extract, alanine, glutamate, methionine, threonine, fructose, mannose, galactose, glucose, palatinose, rhamnose, turanose, gentiobiose, xylose, sorbose, pyruvate, tartaric acid, α-ketobutyric acid, α-ketovaleric acid, galacturonic acid and glucosaminic acid. Strain DY22619T was strictly anaerobic and facultatively dependent on various forms of Fe(III) as an electron acceptor: insoluble forms and soluble forms. It did not reduce sulfite, sulfate, thiosulfate or nitrate. The genomic DNA G+C content was 29.0 mol%. Phylogenetic 16S rRNA gene sequence analyses revealed that the closest relative of strain DY22619T was Caloranaerobacter azorensis MV1087T, sharing 97.41 % 16S rRNA gene sequence similarity. On the basis of physiological distinctness and phylogenetic distance, the isolate is considered to represent a novel species of the genus Caloranaerobacter, for which the name Caloranaerobacterhttp://dx.doi.org/10.1601/nm.4081ferrireducens sp. nov. is proposed. The type strain is DY22619T ( = JCM 19467T = DSM 27799T = MCCC1A06455T).

  18. Polyaspartic acid facilitates oxolation within iron(iii) oxide pre-nucleation clusters and drives the formation of organic-inorganic composites

    Science.gov (United States)

    Scheck, J.; Drechsler, M.; Ma, X.; Stöckl, M. T.; Konsek, J.; Schwaderer, J. B.; Stadler, S. M.; De Yoreo, J. J.; Gebauer, D.

    2016-12-01

    The interplay between polymers and inorganic minerals during the formation of solids is crucial for biomineralization and bio-inspired materials, and advanced material properties can be achieved with organic-inorganic composites. By studying the reaction mechanisms, basic questions on organic-inorganic interactions and their role during material formation can be answered, enabling more target-oriented strategies in future synthetic approaches. Here, we present a comprehensive study on the hydrolysis of iron(iii) in the presence of polyaspartic acid. For the basic investigation of the formation mechanism, a titration assay was used, complemented by microscopic techniques. The polymer is shown to promote precipitation in partly hydrolyzed reaction solutions at the very early stages of the reaction by facilitating iron(iii) hydrolysis. In unhydrolyzed solutions, no significant interactions between the polymer and the inorganic solutes can be observed. We demonstrate that the hydrolysis promotion by the polymer can be understood by facilitating oxolation in olation iron(iii) pre-nucleation clusters. We propose that the adsorption of olation pre-nucleation clusters on the polymer chains and the resulting loss in dynamics and increased proximity of the reactants is the key to this effect. The resulting composite material obtained from the hydrolysis in the presence of the polymer was investigated with additional analytical techniques, namely, scanning and transmission electron microscopies, light microscopy, atomic force microscopy, zeta potential measurements, dynamic light scattering, and thermogravimetric analyses. It consists of elastic, polydisperse nanospheres, ca. 50-200 nm in diameter, and aggregates thereof, exhibiting a high polymer and water content.

  19. Mechanochemical effect in the iron(III) spin crossover complex [Fe(3-MeO-salenEt2]PF6 as studied by heat capacity calorimetry.

    Science.gov (United States)

    Sorai, Michio; Burriel, Ramón; Westrum, Edgar F; Hendrickson, David N

    2008-04-10

    Magnetic and thermal properties of the iron(III) spin crossover complex [Fe(3MeO-salenEt)(2)]PF(6) are very sensitive to mechanochemical perturbations. Heat capacities for unperturbed and differently perturbed samples were precisely determined by adiabatic calorimetry at temperatures in the 10-300 K range. The unperturbed compound shows a cooperative spin crossover transition at 162.31 K, presenting a hysteresis of 2.8 K. The anomalous enthalpy and entropy contents of the transition were evaluated to be Delta(trs)H = 5.94 kJ mol(-1) and Delta(trs)S = 36.7 J K(-1) mol(-1), respectively. By mechanochemical treatments, (1) the phase transition temperature was lowered by 1.14 K, (2) the enthalpy and entropy gains at the phase transition due to the spin crossover phenomenon were diminished to Delta(trs)H = 4.94 kJ mol(-1) and Delta(trs)S = 31.1 J K(-1) mol(-1), and (3) the lattice heat capacities were larger than those of the unperturbed sample over the whole temperature range. In spite of different mechanical perturbations (grinding with a mortar and pestle and grinding in a ball-mill), two sets of heat capacity measurements provided basically the same results. The mechanochemical perturbation exerts its effect more strongly on the low-spin state than on the high-spin state. It shows a substantial increase of the number of iron(III) ions in the high-spin state below the transition temperature. The heat capacities of the diamagnetic cobalt(III) analogue [Co(3MeO-salenEt)(2)]PF(6) also were measured. The lattice heat capacity of the iron compounds has been estimated from either the measurements on the cobalt complex using a corresponding states law or the effective frequency distribution method. These estimations have been used for the evaluation of the transition anomaly.

  20. Oxidation of dibenzothiophene as a model substrate for the removal of organic sulphur from fossil fuels by iron(III ions generated from pyrite by Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    VLADIMIR P. BESKOSKI

    2007-06-01

    Full Text Available Within this paper a new idea for the removal of organically bonded sulphur from fossil fuels is discussed. Dibenzothiophene (DBT was used as a model compound of organicmolecules containing sulphur. This form of (biodesulphurization was performed by an indirect mechanism in which iron(III ions generated from pyrite by Acidithiobacillus ferrooxidans performed the abiotic oxidation. The obtained reaction products, dibenzothiopene sulfoxide and dibenzothiophene sulfone, are more soluble in water than the basic substrate and the obtained results confirmed the basic hypothesis and give the posibility of continuing the experiments related to application of this (biodesulphurization process.

  1. Reductive reactivity of iron(III oxides in the east china sea sediments: characterization by selective extraction and kinetic dissolution.

    Directory of Open Access Journals (Sweden)

    Liang-Jin Chen

    Full Text Available Reactive Fe(III oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite. Also the reactivity of Fe(III oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m 0 (theoretical initial amount of ascorbate-reducible Fe(III oxides, k' (rate constant and γ (heterogeneity of reactivity, enable a quantitative characterization of Fe(III oxide reactivity in a standardized way. Amorphous Fe(III oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m 0, k' and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m 0 at pH 3.0 with the dithionite-extractable Fe(III suggests that the m 0 may represent Fe(III oxide assemblages spanning amorphous and crystalline Fe(III oxides. Maximum microbially available Fe(III predicted by the m 0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III phases.

  2. Iron Isotope Fractionations Reveal a Finite Bioavailable Fe Pool for Structural Fe(III) Reduction in Nontronite.

    Science.gov (United States)

    Shi, Bingjie; Liu, Kai; Wu, Lingling; Li, Weiqiang; Smeaton, Christina M; Beard, Brian L; Johnson, Clark M; Roden, Eric E; Van Cappellen, Philippe

    2016-08-16

    We report on stable Fe isotope fractionation during microbial and chemical reduction of structural Fe(III) in nontronite NAu-1. (56)Fe/(54)Fe fractionation factors between aqueous Fe(II) and structural Fe(III) ranged from -1.2 to +0.8‰. Microbial (Shewanella oneidensis and Geobacter sulfurreducens) and chemical (dithionite) reduction experiments revealed a two-stage process. Stage 1 was characterized by rapid reduction of a finite Fe(III) pool along the edges of the clay particles, accompanied by a limited release to solution of Fe(II), which partially adsorbed onto basal planes. Stable Fe isotope compositions revealed that electron transfer and atom exchange (ETAE) occurred between edge-bound Fe(II) and octahedral (structural) Fe(III) within the clay lattice, as well as between aqueous Fe(II) and structural Fe(III) via a transient sorbed phase. The isotopic fractionation factors decreased with increasing extent of reduction as a result of the depletion of the finite bioavailable Fe(III) pool. During stage 2, microbial reduction was inhibited while chemical reduction continued. However, further ETAE between aqueous Fe(II) and structural Fe(III) was not observed. Our results imply that the pool of bioavailable Fe(III) is restricted to structural Fe sites located near the edges of the clay particles. Blockage of ETAE distinguishes Fe(III) reduction of layered clay minerals from that of Fe oxyhydroxides, where accumulation of structural Fe(II) is much more limited.

  3. Cloud point extraction of iron(III) and vanadium(V) using 8-quinolinol derivatives and Triton X-100 and determination of 10(-7)moldm(-3) level iron(III) in riverine water reference by a graphite furnace atomic absorption spectroscopy.

    Science.gov (United States)

    Ohashi, Akira; Ito, Hiromi; Kanai, Chikako; Imura, Hisanori; Ohashi, Kousaburo

    2005-01-30

    The cloud point extraction behavior of iron(III) and vanadium(V) using 8-quinolinol derivatives (HA) such as 8-quinolinol (HQ), 2-methyl-8-quinolinol (HMQ), 5-butyloxymethyl-8-quinolinol (HO(4)Q), 5-hexyloxymethyl-8-quinolinol (HO(6)Q), and 2-methyl-5-octyloxymethyl-8-quinolinol (HMO(8)Q) and Triton X-100 solution was investigated. Iron(III) was extracted with HA and 4% (v/v) Triton X-100 in the pH range of 1.70-5.44. Above pH 4.0, more than 95% of iron(III) was extracted with HQ, HMQ, and HMO(8)Q. Vanadium(V) was also extracted with HA and 4% (v/v) Triton X-100 in the pH range of 2.07-5.00, and the extractability increased in the following order of HMQ atomic absorption spectroscopy. When 1.25 x 10(-3)M HMQ and 1% (v/v) Triton X-100 were used, the found values showed a good agreement with the certified ones within the 2% of the R.S.D. Moreover, the effect of an alkyl group on the solubility of 5-alkyloxymethyl-8-quinolinol and 2-methyl-5-alkyloxymethyl-8-quinolinol in 4% (v/v) Triton X-100 at 25 degrees C was also investigated.

  4. Nickel hydroxide modified electrodes for urea determination

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available Nickel hydroxide films were prepared by electrodeposition from a solution Ni(NO32 0,05 mol L ?¹ on ITO electrodes (Tin oxide doped with Indium on PET-like plastic film, applying a current of - 0,1 A cm ?² during different time intervals between 1800 and 7200 s. The electrochemical behavior of the nickel hydroxide electrode was investigated through a cyclic voltammogram, in NaOH 1,0 mol L ?¹, where it was observed two peaks in the profile in 0,410 and 0,280 V, corresponding to redox couple Ni(II/Ni(III. A sensor for urea presenting a satisfactory answer can be obtained when, after the deposit of the film of Ni(OH2 on the electrode of nickel, it is immersed in a solution of NaOH 1,0 mol L ?¹ and applying a potential of + 0,435 V, where the maximum of the anodic current occurs in the cyclic voltammogram. Analyzing the results it can be observed that, for a range of analite concentration between 5 to 50 m mol L ?¹, the behavior is linear and the sensibility found was of 20,3 mA cm?² (mol L?¹?¹, presenting reproducibility confirming the nickel hydroxide electrodes utilization for the determination of urea.

  5. New route to the mixed valence semiquinone-catecholate based mononuclear FeIII and catecholate based dinuclear MnIII complexes: first experimental evidence of valence tautomerism in an iron complex.

    Science.gov (United States)

    Shaikh, Nizamuddin; Goswami, Sanchita; Panja, Anangamohan; Wang, Xin-Yi; Gao, Song; Butcher, Ray J; Banerjee, Pradyot

    2004-09-20

    The semiquinone-catecholate based mixed valence complex, [FeIII(bispicen)(Cl4Cat)(Cl4SQ)] x DMF (1), and catecholate based (H2bispictn)[Mn2III(Cl4Cat)4(DMF)2] (2) (bispicen = N,N'-bis(2-pyridylmethyl)-1,2-ethanediamine, bispictn = N,N'-bis(2-pyridylmethyl)-1,3-propanediamine, Cl4Cat = tetrachlorocatecholate dianion, and Cl4SQ = tetrachlorosemiquinone radical anion) were synthesized directly utilizing a facile route. Both the complexes have been characterized by single crystal X-ray diffraction study. The electronic structures have been elucidated by UV-vis-NIR absorption spectroscopy, cyclic voltammetry, EPR, and magnetic properties. The structural as well as spectroscopic features support the mixed valence tetrachlorosemiquinone-tetrachlorocatecholate charge distribution in 1. The ligand based mixed valence state was further confirmed by the presence of an intervalence charge transfer (IVCT) band in the 1900 nm region both in solution and in the solid. The intramolecular electron transfer, a phenomenon known as valence tautomerism (VT), has been followed by electronic absorption spectroscopy. For 1, the isomeric form [FeIII(bispicen)(Cl4Cat)(Cl4SQ)] is favored at low temperature, while at an elevated temperature, the [FeII(bispicen)(Cl4SQ)2] redox isomer dominates. Infrared as well as UV-vis-NIR spectral characterization for 2 suggest that the MnIII(Cat)2- moiety is admixed with its mixed valence semiquinone-catecholate isomer MnII(SQ)(Cat)-, and the electronic absorption spectrum is dominated by the mixed charged species. The origin of the intervalence charge transfer band in the 1900 nm range is associated with the mixed valence form, MnII(Cl4Cat)(Cl4SQ)-. The observation of VT in complex 1 is the first example where a mixed valence semiquinone-catecholate iron(III) complex undergoes intramolecular electron transfer similar to manganese and cobalt complexes.

  6. Novel synthesis of layered double hydroxides (LDHs) from zinc hydroxide

    Science.gov (United States)

    Meng, Zilin; Zhang, Yihe; Zhang, Qian; Chen, Xue; Liu, Leipeng; Komarneni, Sridhar; Lv, Fengzhu

    2017-02-01

    The most common synthesis methods for layered double hydroxides (LDHs) are co-precipitation and reconstruction, which can have some limitations for application. Here, we report a novel synthesis method for LDHs. We use zinc hydroxide as the precursor to synthesize LDHs phase through a simple transformation process of zinc hydroxide phase. For this transformation process, aluminum can enter into zinc hydroxide and replace zinc quickly to transform it into LDH by creating positive charges in the zinc hydroxide solid phase. The mechanism of LDH formation was through Al3+ reaction first with zinc hydroxide followed by recrystallization of the original structure of zinc hydroxide. Thus, the new process of LDH formation involves a reaction of Al to substitute for Zn and recrystallization leading to LDH and the final pH influences the crystallization of LDHs by this process. In addition, Cr3+ was employed as a trivalent cation for LDH formation to react with zinc hydroxide, which also led to LDH structure.

  7. Removal of As(III) and As(V) using iron-rich sludge produced from coal mine drainage treatment plant.

    Science.gov (United States)

    Yang, Jung-Seok; Kim, Young-Soo; Park, Sang-Min; Baek, Kitae

    2014-09-01

    To test the feasibility of the reuse of iron-rich sludge (IRS) produced from a coal mine drainage treatment plant for removing As(III) and As(V) from aqueous solutions, we investigated various parameters, such as contact time, pH, initial As concentration, and competing ions, based on the IRS characterization. The IRS consisted of goethite and calcite, and had large surface area and small particles. According to energy dispersive X-ray spectroscopy mapping results, As was mainly removed by adsorption onto iron oxides. The adsorption kinetic studies showed that nearly 70 % adsorption of As was achieved within 1 h, and the pseudo-second-order model well explained As sorption on the IRS. The adsorption isotherm results agreed with the Freundlich isotherm model, and the maximum adsorption capacities for As(III) and As(V) were 66.9 and 21.5 mg/g, respectively, at 293 K. In addition, the adsorption showed the endothermic character. At high pH or in the presence of phosphate, the adsorption of As was decreased. When the desorption experiment was conducted to reuse the IRS, 85 % As was desorbed with 1.0 N NaOH. In the column experiment, adsorbed As in real acid mine drainage was 43 % of the maximum adsorbed amount of As in the batch test. These results suggested that the IRS is an effective adsorbent for As and can be effectively applied for the removal of As in water and wastewater.

  8. Evidence of iron (III) reduction in γ-Fe2O3 nanoparticles due to meso-2,3-dimercaptosuccinic acid functionalization

    Science.gov (United States)

    Nunes, Eloiza S.; Lima, Emilia C. D.; Soler, Maria A. G.; Silva, Fabio R. L.; Azevedo, Ricardo B.; Morais, Paulo C.

    2014-03-01

    In this study we report on the meso-2,3-dimercaptosuccinic acid (DMSA) surface functionalization of nanosized maghemite particles which were obtained from oxidation of freshly-precipitated magnetite nanoparticles. Stable magnetic sols were produced while using [DMSA]/[Fe] in a wide range (2 to 90%) of values for the surface functionalization protocol. We found experimental evidence of Fe (III) reduction down to Fe (II) in the whole range of [DMSA]/[Fe] values employed, though presenting differences for lower and higher values of DMSA/Fe molar ratio. At lower (up to 10%) [DMSA]/[Fe] values the DMSA-functionalized iron oxide core remains essentially maghemite while the reduced Fe (II) ions move out to the bulk solution as soluble species. In contrast, at higher (20% and above) [DMSA]/[Fe] values the DMSA-functionalized iron oxide core holds the reduced Fe (II) on its crystal structure. The thiol group oxidation, via disulfide bridge formation, plays a key role in the Fe (III) reduction to Fe (II) during the surface functionalization process. We hypothesize that at higher [DMSA]/[Fe] values (20% and above) intermolecular disulfide bridge formation dominates, leading to the onset of a network at the nanoparticle’s surface, thus preventing the surface reduced Fe (II) ions moving out into the bulk solution. Experimental evidence based on visual inspection and different techniques (UV-vis-IR spectroscopy, chemical analysis, x-ray diffraction, and Raman spectroscopy) are present to support the model picture herein introduced.

  9. Synthesis and size control of iron(II) hexacyanochromate(III) nanoparticles and the effect of particle size on linkage isomerism.

    Science.gov (United States)

    Dumont, Matthieu F; Risset, Olivia N; Knowles, Elisabeth S; Yamamoto, Takashi; Pajerowski, Daniel M; Meisel, Mark W; Talham, Daniel R

    2013-04-15

    The controlled synthesis of monodisperse nanoparticles of the cubic Prussian blue analogue iron(II) hexacyanochromate(III) is reported along with a kinetic study, using cyanide stretching frequencies, showing the variations of the activation energy (E(a)) of the linkage isomerism as a function of the particle size. Highly reproducible, cubic-shaped iron(II) hexacyanochromate(III) nanocrystals, with sizes ranging from 2 to 50 nm, are synthesized using a microemulsion technique, whereas a bulk synthesis yields nonuniform less monodisperse particles with sizes greater than 100 nm. Monitoring the cyanide stretching frequency with FTIR spectroscopy shows that the rate of isomerization is faster for smaller particles. Moreover, a kinetic analysis at different temperatures (255 K ≤ T ≤ 321 K) gives insight into the evolution of E(a) with the particle size. Finally, time-dependent powder X-ray diffraction and net magnetization confirm the FTIR observations. The data are interpreted within the concept of a simple two-component model with different activation energies for structures near the surface of the solid and within the bulk.

  10. Coupling of Carbon Dioxide with Epoxides Efficiently Catalyzed by Thioether-Triphenolate Bimetallic Iron(III) Complexes: Catalyst Structure-Reactivity Relationship and Mechanistic DFT Study

    KAUST Repository

    Della Monica, Francesco

    2016-08-25

    A series of dinuclear iron(III)I complexes supported by thioether-triphenolate ligands have been prepared to attain highly Lewis acidic catalysts. In combination with tetrabutylammonium bromide (TBAB) they are highly active catalysts in the synthesis of cyclic organic carbonates through the coupling of carbon dioxide to epoxides with the highest initial turnover frequencies reported to date for the conversion of propylene oxide to propylene carbonate for iron-based catalysts (5200h-1; 120°C, 2MPa, 1h). In particular, these complexes are shown to be highly selective catalysts for the coupling of carbon dioxide to internal oxiranes affording the corresponding cyclic carbonates in good yield and with retention of the initial stereochemical configuration. A density functional theory (DFT) investigation provides a rational for the relative high activity found for these Fe(III) complexes, showing the fundamental role of the hemilabile sulfur atom in the ligand skeleton to promote reactivity. Notably, in spite of the dinuclear nature of the catalyst precursor only one metal center is involved in the catalytic cycle. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Utilization of subsurface microbial electrochemical systems to elucidate the mechanisms of competition between methanogenesis and microbial iron(III)/humic acid reduction in Arctic peat soils

    Science.gov (United States)

    Friedman, E. S.; Miller, K.; Lipson, D.; Angenent, L. T.

    2012-12-01

    High-latitude peat soils are a major carbon reservoir, and there is growing concern that previously dormant carbon from this reservoir could be released to the atmosphere as a result of continued climate change. Microbial processes, such as methanogenesis and carbon dioxide production via iron(III) or humic acid reduction, are at the heart of the carbon cycle in Arctic peat soils [1]. A deeper understanding of the factors governing microbial dominance in these soils is crucial for predicting the effects of continued climate change. In previous years, we have demonstrated the viability of a potentiostatically-controlled subsurface microbial electrochemical system-based biosensor that measures microbial respiration via exocellular electron transfer [2]. This system utilizes a graphite working electrode poised at 0.1 V NHE to mimic ferric iron and humic acid compounds. Microbes that would normally utilize these compounds as electron acceptors donate electrons to the electrode instead. The resulting current is a measure of microbial respiration with the electrode and is recorded with respect to time. Here, we examine the mechanistic relationship between methanogenesis and iron(III)- or humic acid-reduction by using these same microbial-three electrode systems to provide an inexhaustible source of alternate electron acceptor to microbes in these soils. Chamber-based carbon dioxide and methane fluxes were measured from soil collars with and without microbial three-electrode systems over a period of four weeks. In addition, in some collars we simulated increased fermentation by applying acetate treatments to understand possible effects of continued climate change on microbial processes in these carbon-rich soils. The results from this work aim to increase our fundamental understanding of competition between electron acceptors, and will provide valuable data for climate modeling scenarios. 1. Lipson, D.A., et al., Reduction of iron (III) and humic substances plays a major

  12. Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments

    Science.gov (United States)

    Sun, W.; Sierra-Alvarez, R.; Milner, L.; Oremland, R.; Field, J.A.

    2009-01-01

    The objective of this study was to explore a bioremediation strategy based on injecting NO3- to support the anoxic oxidation of ferrous iron (Fe(II)) and arsenite (As(III)) in the subsurface as a means to immobilize As in the form of arsenate (As(V)) adsorbed onto biogenic ferric (Fe(III)) (hydr)oxides. Continuous flows and filled columns were used to simulate a natural anaerobic groundwater and sediment system with co-occurring As(III) and Fe(II) in the presence (column SF1) or absence (column SF2) of nitrate, respectively. During operation for 250 days, the average influent arsenic concentration of 567 ??g L-1 was reduced to 10.6 (??9.6) ??g L-1 in the effluent of column SF1. The cumulative removal of Fe(II) and As(III) in SF1 was 6.5 to 10-fold higher than that in SF2. Extraction and measurement of the mass of iron and arsenic immobilized on the sand packing of the columns were close to the iron and arsenic removed from the aqueous phase during column operation. The dominant speciation of the immobilized iron and arsenic was Fe(III) and As(V) in SF1, compared with Fe(II) and As(III) in SF2. The speciation was confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicate that microbial oxidation of As(III) and Fe(II) linked to denitrification resulted in the enhanced immobilization of aqueous arsenic in anaerobic environments by forming Fe(III) (hydr)oxide coated sands with adsorbed As(V). ?? 2009 American Chemical Society.

  13. Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron(III)-doped TiO2 nanopowders under UV and visible light irradiation.

    Science.gov (United States)

    Wang, X H; Li, J-G; Kamiyama, H; Moriyoshi, Y; Ishigaki, T

    2006-04-06

    Well-crystallized iron(III)-doped TiO2 nanopowders with controlled Fe3+ doping concentration and uniform dopant distribution, have been synthesized with plasma oxidative pyrolysis. The photocatalytic reactivity of the synthesized TiO2 nanopowders with a mean particle size of 50-70 nm was quantified in terms of the degradation rates of methyl orange (MO) in aqueous TiO2 suspension under UV (mainly 365 and 316 nm) and visible light irradiation (mainly 405 and 436 nm). The photodecomposition of MO over TiO2 nanopowders followed a distinct two-stage pseudo first order kinetics. Interestingly, the photocatalytic reactivity depends not only on the iron doping concentration but also on the wavelength of the irradiating light. Under UV irradiation, nominally undoped TiO2 had much higher reactivity than Fe3+ -doped TiO2, suggesting that Fe3+ doping (> 0.05 at. %) in TiO2 with a mean particle size of approximately 60 nm was detrimental to the photocatalytic decomposition of methyl orange. Whereas, under visible light irradiation, the Fe3+ -doped TiO2 with an intermediate iron doping concentration of approximately 1 at. % had the highest photocatalytic reactivity due to the narrowing of band gap so that it could effectively absorb the light with longer wavelength. A strategy for improving the photocatalytic reactivity of Fe3+ -doped TiO2 used in the visible light region is also proposed.

  14. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution

    Science.gov (United States)

    Prasad, Kumar Suranjit; Gandhi, Pooja; Selvaraj, Kaliaperumal

    2014-10-01

    The present study reports a new approach to synthesise nano iron particles using leaf extract of Mint (Mentha spicata L.) plant. The synthesised GnIPs were subjected to detailed adsorption studies for removal of arsenite and arsenate from aqueous solution of defined concentration. Iron nanoparticles synthesised using leaf extract showed UV-vis absorption peaks at 360 and 430 nm. TEM result showed the formation of polydispersed nanoparticles of size ranging from 20 to 45 nm. Nanoparticles were found to have core-shell structure. The planer reflection of selected area electron diffraction (SAED) and XRD analysis suggested that iron particles were crystalline and belonged to fcc (face centred cubic) type. Energy-dispersive X-ray analysis (EDAX) shows that Fe was an integral component of synthesised nanoparticles. The content of Fe in nanoparticles was found to be 40%, in addition to other elements like C (16%), O (19%) and Cl (23%). FT-IR study suggested that functional groups like sbnd NH, sbnd Cdbnd O, sbnd Cdbnd N and sbnd Cdbnd C were involved in particle formation. The removal efficiency of GnIP-chitosan composite for As(III) and As(V) was found to be 98.79 and 99.65%. Regeneration of adsorbent suggested that synthesised green GnIP may work as an effective tool for removal of arsenic from contaminated water.

  15. Synthesis and biological activity of acetates of copper (II and iron (III for the control of Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Jéssica V. Nardeli

    2012-06-01

    Full Text Available This work aimed to the synthesis of basic acetates of Cu (II and Fe(III against larvae of Aedes aegypti and Gram negative and Gram positive. The transition metal ions Cu (II and Fe (III have bactericidal activity and are toxic to Aedes aegypti larvae in the eggs and larval stages of initial, precludes the eggs hatch and slow reproductive cycle of the insect. The theme investigates the importance of carboxyl groups in complex formation, transport and cellular internalization of the toxic ions. It is known that the bactericide or insecticide activity is due to metal ions and Cu (IIor Fe (III.

  16. Iron(III)-Mediated Oxidative Degradation on the Benzylic Carbon of Drug Molecules in the Absence of Initiating Peroxides.

    Science.gov (United States)

    Nanda, Kausik K; Blincoe, William D; Allain, Leonardo R; Wuelfing, W Peter; Harmon, Paul A

    2017-05-01

    Metal ions play an important role in oxidative drug degradation. One of the most ubiquitous metal ion impurities in excipients and buffers is Fe(III). In the field of oxidative drug degradation chemistry, the role of Fe(III) has been primarily discussed in terms of its effect in reaction with trace hydroperoxide impurities. However, the role of Fe(III) acting as a direct oxidant of drug molecules, which could operate in the absence of any hydroperoxide impurities, is less common. This work focuses on Fe(III)-induced oxidation of some aromatic drug molecules/drug fragments containing benzylic C-H bonds in the absence of initiating peroxides. Alcohol and ketone degradates are formed at the benzylic carbon atom. The formation of a π-stabilized cation radical is postulated as the key intermediate for the downstream oxidation. Implications are briefly discussed. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Oxidative Debromination and Degradation of Tetrabromo-bisphenol A by a Functionalized Silica-Supported Iron(III-tetrakis(p-sulfonatophenylporphyrin Catalyst

    Directory of Open Access Journals (Sweden)

    Masami Fukushima

    2013-05-01

    Full Text Available Tetrabromobisphenol A (TBBPA, a commonly used brominated flame retardant, also functions as an endocrine disruptor. Thus, the degradation of TBBPA has attracted considerable interest among the scientific community. Iron(III-porphyrin complexes are generally regarded as “green” catalysts and have been reported to catalyze the efficient degradation and dehalogenation of halogenated phenols in environmental wastewaters. However, they are quickly deactivated due to self-degradation in the presence of an oxygen donor, such as KHSO5. In the present study, an iron(III-tetrakis (p-sulfonatophenyl-porphyrin (FeTPPS was immobilized on imidazole-modified silica (FeTPPS/IPS via coordination of the Fe(III with the nitrogen atom in imidazole to suppress self-degradation and thus enhance the catalyst reusability. The oxidative degradation and debromination of TBBPA and the influence of humic acid (HA, a major component in leachates, on the oxidation of TBBPA was investigated. More than 95% of the TBBPA was degraded in the pH range from 3 to 8 in the absence of HA, while the optimal pH for the reaction was at pH 8 in the presence of HA. Although the rate of degradation was decreased in the presence of HA, over 95% of the TBBPA was degraded within 12 h in the presence of 28 mg-C L−1 of HA. At pH 8, the FeTPPS/IPS catalyst could be reused up to 10 times without any detectable loss of activity for TBBPA for degradation and debromination, even in the presence of HA.

  18. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kumar Suranjit, E-mail: suranjit@gmail.com [Department of Environmental Studies, Faculty of Science, The M. S. University of Baroda, Vadodara, 390002, Gujarat (India); Gandhi, Pooja, E-mail: poojagandhi.3090@gmail.com [Department of Environmental Sciences, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), New Vallabh Vidyanagar, Anand, Gujarat, 388121 (India); Selvaraj, Kaliaperumal, E-mail: k.selvaraj@ncl.res.in [Nano and Computational Materials Lab, Catalysis Division, National Chemical Laboratory, Council of Scientific and Industrial Research, Pune, 411008 (India)

    2014-10-30

    Graphical abstract: - Highlights: • Colloidal GnIP synthesised using extract of Mint leaves were entrapped in chitosan beads. • GnIP loaded beads were employed for removal of As ions, showed excellent removal efficiency. • Iron and chitosan are cost effective materials hence can be a good adsorbent for removal of arsenic. - Abstract: The present study reports a new approach to synthesise nano iron particles using leaf extract of Mint (Mentha spicata L.) plant. The synthesised GnIPs were subjected to detailed adsorption studies for removal of arsenite and arsenate from aqueous solution of defined concentration. Iron nanoparticles synthesised using leaf extract showed UV–vis absorption peaks at 360 and 430 nm. TEM result showed the formation of polydispersed nanoparticles of size ranging from 20 to 45 nm. Nanoparticles were found to have core–shell structure. The planer reflection of selected area electron diffraction (SAED) and XRD analysis suggested that iron particles were crystalline and belonged to fcc (face centred cubic) type. Energy-dispersive X-ray analysis (EDAX) shows that Fe was an integral component of synthesised nanoparticles. The content of Fe in nanoparticles was found to be 40%, in addition to other elements like C (16%), O (19%) and Cl (23%). FT-IR study suggested that functional groups like -NH, -C=O, -C=N and -C=C were involved in particle formation. The removal efficiency of GnIP-chitosan composite for As(III) and As(V) was found to be 98.79 and 99.65%. Regeneration of adsorbent suggested that synthesised green GnIP may work as an effective tool for removal of arsenic from contaminated water.

  19. The dioxygenation rate in lipoxygenase catalysis is determined by the amount of iron (III) lipoxygenase in solution

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Schilstra, M.J.; Veldink, G.A.

    1994-01-01

    The dioxygenation rate in reactions catalyzed by lipoxygenase- 1 from soybeans has been measured as a function of the enzyme present in the Fe(II1) form with rapid kinetic techniques. The experiments were carried out at pH 10, 25 'C. The product concentration and the fraction of iron(II1)

  20. The nanosphere iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these 'Mars-soil analogs' were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxyl mineral such as 'green rust', or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable meaghemite (gamma-Fe203) by mild heat treatment and then to nanophase hematite (aplha-Fe203) by extensive heat treatment. Their chemical reactivity offers a plausible mechanism for the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxide and silicate phase surfaces. The mode of formation of these (nanophase) iron oxides on Mars is still unknown.

  1. Controls on Arsenic Retention in Surface and Subsurface Environments: Resolving the Impact of Iron Reduction

    Science.gov (United States)

    Tufano, K.; Fendorf, S.

    2007-12-01

    A transition from oxidizing to reducing conditions has long been implicated in increasing aqueous As concentrations. Confounding processes controlling the release of As, reductive transformation of ferrihydrite, a common Fe(III) (hydr)oxide, has recently been shown to promote As retention rather than release. Elucidating the processes controlling As desorption and subsequent migration in surface and subsurface environments and how environmental factors (for example, availability of labile carbon and duration/extent of flooding) affect these processes will allow predictions to be made regarding long-term stability of As in soil and sediment. In turn, this can aid in evaluating the likelihood of having measurable As in groundwater. To better resolve these processes, here we examine As desorption from ferrihydrite-coated sands pre-sorbed with As(III) at circumneutral pH under Fe-reducing conditions with the dissimilatory iron reducing bacterium (DIRB) Shewanella putrefaciens strain CN- 32. We reveal that upon iron reduction, transformation of As-bearing ferrihydrite results in As(III) retention. However, over time there is a shift from reductive transformation to reductive dissolution of the As-bearing Fe phase(s) coupled with prolonged release of As to the aqueous phase. Our results suggest that arsenic retention may increase or decrease depending on the type of iron oxide, secondary iron transformations, and duration of reducing conditions. Immediately following a transition to anaerobic conditions there is potential for As retention on newly formed ferric/ferrous (hydr)oxide phases; however prolonged reduction will result in both the dissolution of ferric/ferrous (hydr)oxides and release of aqueous arsenic.

  2. 层间水分子含量对铜铁水滑石超分子作用力的影响%Influence of Interlayer Water Content on Supermolecular Interaction of Copper-Iron Layered Double Hydroxides

    Institute of Scientific and Technical Information of China (English)

    施炜; 胡军; 倪哲明; 李远; 刘娇

    2012-01-01

    A periodic interaction model was proposed for the copper-iron layered double hydroxides, CusFe-LDHs-yHzO (y=0-2). Based on density functional theory, the geometry of Cu3Fe-LDHs-yH2O was optimized using the CASTEP program. The distribution of NOi and H3O in the interlayer and the supermolecular interaction between host and guest was investigated by analyzing the geometric parameters, hydrogen-bonding, charge populations and stepwise hydration energy. Results indicated that when NO3 and H;O were inserted into the layers of the Cu3Fe-LDHs, there was a strong supramolecular interaction between the host layer and the guest, including hydrogen-bonding and electrostatic interaction. Hydrogen-bonding was superior to the electrostatic interaction in the hydration process. The strength of hydrogen bonding was ordered as Layer-Anion (L-A) > Anion-Water (A-W) > Layer-Water (L-W) > Water -Water (W-W). In Cu3Fe-LDHs-yH;O, the interlayer distance decreased slightly and then increased significantly with an increase in the number of interlayer water molecules. The Cu - O octahedral forms were stretched gradually because of the increased Jahn - Teller effect of Cu2'. The absolute value of the hydration energy decreased gradually with an increase in the number of water molecules. This suggested that the hydration of CujFe-LDHs reached a saturation state. The geometry of Cu3Fe-LDHs-1H2O is close to hexagonal where the metal distortion of the layer is weakest and the stability is strongest; the interlayer distance agrees the experimental value, therefore CujFe-LDHs-IH2O is a stable configuration.%构建铜铁水滑石[Cu3Fe-LDHs-yH2O(y=0-2)]周期性计算模型,采用密度泛函理论(DFT),选取CASTEP程序模块,对体系进行几何全优化.从结构参数、氢键、Mulliken电荷布居、逐级水合能等角度研究了层间NO3-和H2O的分布形态及其与水滑石(LDHs)层板的超分子作用,探究了水分子数目对体系姜-泰勒效应的影响.结果表明:Cu3Fe

  3. A Fiber Optic Sensor for Determination of 2,4-Dichlorophenol Based on Oxygen Oxidation Catalyzed by Iron(III) Tetrasulfophthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yilin; Huang, Jun; Zhang, Cong; Li, Kun; Ding, Liyun [Wuhan Univ. of Technology, Wuhan (China); Li, Dapeng [Xuchang Univ., Henan (China)

    2013-11-15

    A new fiber optical sensor was developed for the determination of 2,4-dichlorophenol (DCP). The sensor was based on DCP oxidation by oxygen with the catalysis of iron(III) tetrasulfophthalocyanine (Fe(III)PcTs). The optical oxygen sensing film with Ru(bpy){sub 3}Cl{sub 2} as the fluorescence indicator was used to determine the consumption of oxygen in solution. A lock-in amplifier was used for detecting the lifetime of the oxygen sensing film by measuring the phase delay change of the sensor head. The different variables affecting the sensor performance were evaluated and optimized. Under the optimal conditions (i. e. pH 6.0, 25 .deg. C, Fe(III)PcTs concentration of 0.62 mg/mL), the linear detection range and response time of the sensor are 1.0 Χ 10{sup -6}-9.0 Χ 10{sup -6} mol/L and 250 s, respectively. The sensor displays high selectivity, good repeatability and stability, and can be used as an effective tool in analyzing DCP concentration in practical samples.

  4. Mononuclear non-heme iron(III) complexes of linear and tripodal tridentate ligands as functional models for catechol dioxygenases: Effect of -alkyl substitution on regioselectivity and reaction rate

    Indian Academy of Sciences (India)

    Mallayan Palaniandavar; Kusalendiran Visvaganesan

    2011-03-01

    Catechol dioxygenases are responsible for the last step in the biodegradation of aromatic molecules in the environment. The iron(II) active site in the extradiol-cleaving enzymes cleaves the C-C bond adjacent to the hydroxyl group, while the iron(III) active site in the intradiol-cleaving enzymes cleaves the C-C bond in between two hydroxyl groups. A series of mononuclear iron(III) complexes of the type [Fe(L)Cl3], where L is the linear -alkyl substituted bis(pyrid-2-ylmethyl)amine, -alkyl substituted -(pyrid-2-ylmethyl)ethylenediamine, linear tridentate 3N ligands containing imidazolyl moieties and tripodal ligands containing pyrazolyl moieties have been isolated and studied as structural and functional models for catechol dioxygenase enzymes. All the complexes catalyse the cleavage of catechols using molecular oxygen to afford both intra- and extradiol cleavage products. The rate of oxygenation depends on the solvent and the Lewis acidity of iron(III) center as modified by the sterically demanding -alkyl groups. Also, our studies reveal that stereo-electronic factors like the Lewis acidity of the iron(III) center and the steric demand of ligands, as regulated by the -alkyl substituents, determine the regioselectivity and the rate of dioxygenation. In sharp contrast to all these complexes, the pyrazole-containing tripodal ligand complexes yield mainly the oxidized product benzoquinone.

  5. Oxidative leaching of chromium from layered double hydroxides: Mechanistic studies

    Indian Academy of Sciences (India)

    A V Radha; P Vishnu Kamath

    2004-08-01

    The layered double hydroxide (LDH) of Zn with Cr on treatment with a hypochlorite solution releases chromate ions as a result of oxidative leaching by a dissolution–reprecipitation mechanism. The residue is found to be -Zn(OH)2. The LDH of Mg with Cr on the other hand is resistant to oxidative leaching. In contrast, a X-ray amorphous gel of the coprecipitated hydroxides of Mg and Cr yields chromate ions. These results suggest that the oxidation potential of Cr(III) in LDHs is determined by the nature of the divalent ion and the crystallinity of the phase while being unaffected by the nature of the intercalated anions.

  6. Effects of salinity and humic acid on the sorption of Hg on Fe and Mn hydroxides.

    Science.gov (United States)

    Liang, Peng; Li, Yi-Chun; Zhang, Chan; Wu, Sheng-Chun; Cui, Hao-Jie; Yu, Shen; Wong, Ming H

    2013-01-15

    The objective of this study was to investigate the influence of humic acid (HA) and salinity on adsorption of Hg on the amorphous and crystalline of iron and manganese hydroxides. The results show that the adsorption of Hg(2+) on Fe and Mn hydroxides was inhibited in marine system due to the formation of stable, nonsorbing aqueous HgCl(2) complexes in solution. Moreover, Cl(-) inhibited the Hg(2+) adsorption more severely on amorphous than crystalline hydroxides. The addition of HA inhibited Hg(2+) adsorption on Fe and Mn hydroxides in freshwater system might be attributed to the competition between Hg(2+) and HA on adsorption to Fe and Mn hydroxides. In contrast, the addition of HA promoted Hg(2+) adsorption on Fe and Mn hydroxides in the marine system, which might be due to the addition of humic acid resulted in the reaction between Cl(-) and HA, and therefore the reducing of Cl(-) promoted more Hg(2+) on Fe and Mn hydroxides. In addition, the influence of HA on Hg(2+) adsorption on Fe and Mn hydroxides are more visible for crystalline than amorphous hydroxides.

  7. Estudio de las Propiedades Anticorrosivas del Benzoato de Hierro (III en Pinturas Base Solvente Study of Anticorrosive Properties of the Iron (III Benzoate in Solvent Based Paints

    Directory of Open Access Journals (Sweden)

    Guillermo Blustein

    2006-01-01

    Full Text Available La acción inhibidora del benzoato de hierro en electrodos de acero SAE 1010 en contacto con una suspensión acuosa fue estudiada mediante ensayos electroquímicos. Paralelamente, la eficiencia anticorrosiva de este producto incorporado a cubiertas orgánicas base solvente fue evaluada mediante ensayos de envejecimiento acelerado (cámara de niebla salina y de humedad. La evolución del comportamiento protector de la cubierta aplicada sobre paneles de acero pintados e inmersos en una solución 0.5M de NaClO4 fue periódicamente monitoreada por espectroscopía de impedancia electroquímica. Los resultados obtenidos indican que las pinturas formuladas con benzoato férrico presentan una capacidad anticorrosiva comparable a las formuladas con fosfato de cinc.This study investigated the inhibitory action of iron benzoate on SAE 1010 steel electrodes in aqueous suspensions using electrochemical assays. The anticorrosive efficiency of this product added to organic solvent-based coatings was also evaluated by means of accelerated weathering tests (salt spray cabinet and humidity chamber. The evolution of the protective behavior of the coating applied on steel panels and immersed in 0.5M NaClO4 solution was periodically checked by electrochemical impedance spectroscopy. The results obtained showed that paints formulated with ferric benzoate provide anticorrosive protection similar to those formulated with zinc phosphate.

  8. Mechanisms in Ruthenium(II) photochemistry and Iron(III) catalyzed oxidations : Photochemical, Electrochemical and Spectroscopic studies

    NARCIS (Netherlands)

    Unjaroen, Duenpen

    2017-01-01

    In this thesis, photochemical, electrochemical and spectroscopic studies of Ru(II), Fe(II), and Fe(III) complexes are described. The overall goal in this studies was to understanding process that occur during oxidation catalysis and photo irradiation and especially the changes in the structure that

  9. Spectroscopic investigation on kinetics, thermodynamics and mechanism for electron transfer reaction of iron(III) complex with sulphur centered radical in stimulated biological system.

    Science.gov (United States)

    Deepalakshmi, S; Sivalingam, A; Kannadasan, T; Subramaniam, P; Sivakumar, P; Brahadeesh, S T

    2014-04-24

    Electron transfer reactions of biological organic sulphides with several metal ions to generate sulphide radical cations are a great concern in biochemical process. To understand the mechanism, a stimulated biological system having model compounds, iron(III)-bipyridyl complex with thio-diglycolic acid (TDGA) was investigated. Spectroscopic study reveals the kinetics and thermodynamics of the reaction in aqueous perchloric acid medium. The reaction follows first and fractional order of 0.412 with respect to [Fe(bpy)3](3+) and TDGA, respectively. The oxidation is insensitive to variation in [H(+)] but slightly decreases with increase in ionic strength ([I]). Addition of acrylamide, a radical scavenger has no effect on the rate of the reaction. The high negative value of ΔS(#) (-74.3±1.09 J K(-1) mol(-1)) indicates the complex formed has a definite orientation higher than the reactants. Based on the above results, a suitable reaction mechanism for this reaction is proposed.

  10. Selective Iron(III ion uptake using CuO-TiO2 nanostructure by inductively coupled plasma-optical emission spectrometry

    Directory of Open Access Journals (Sweden)

    Rahman Mohammed M

    2012-12-01

    Full Text Available Abstract Background CuO-TiO2 nanosheets (NSs, a kind of nanomaterials is one of the most attracting class of transition doped semiconductor materials due to its interesting and important optical, electrical, and structural properties and has many technical applications, such as in metal ions detection, photocatalysis, Chemi-sensors, bio-sensors, solar cells and so on. In this paper the synthesis of CuO-TiO2 nanosheets by the wet-chemically technique is reported. Methods CuO-TiO2 NSs were prepared by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS, powder X-ray diffraction (XRD, and field-emission scanning electron microscopy (FE-SEM etc. Results The structural and optical evaluation of synthesized NSs were measured by XRD pattern, Fourier transform infrared (FT-IR and UV–vis spectroscopy, respectively which confirmed that the obtained NSs are well-crystalline CuO-TiO2 and possessing good optical properties. The morphological analysis of CuO-TiO2 NSs was executed by FE-SEM, which confirmed that the doped products were sheet-shaped and growth in large quantity. Here, the analytical efficiency of the NSs was applied for a selective adsorption of iron(III ion prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES. The selectivity of NSs towards various metal ions, including Au(III, Cd(II, Co(II, Cr(III, Fe(III, Pd(II, and Zn(II was analyzed. Conclusions Based on the selectivity study, it was confirmed that the selectivity of doped NSs phase was the most towards Fe(III ion. The static adsorption capacity for Fe(III was calculated to be 110.06 mgg−1. Results from adsorption isotherm also verified that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of CuO-TiO2 NSs adsorption sites.

  11. The ground states of iron(III) porphines: role of entropy-enthalpy compensation, Fermi correlation, dispersion, and zero-point energies.

    Science.gov (United States)

    Kepp, Kasper P

    2011-10-01

    Porphyrins are much studied due to their biochemical relevance and many applications. The density functional TPSSh has previously accurately described the energy of close-lying electronic states of transition metal systems such as porphyrins. However, a recent study questioned this conclusion based on calculations of five iron(III) porphines. Here, we compute the geometries of 80 different electronic configurations and the free energies of the most stable configurations with the functionals TPSSh, TPSS, and B3LYP. Zero-point energies and entropy favor high-spin by ~4kJ/mol and 0-10kJ/mol, respectively. When these effects are included, and all electronic configurations are evaluated, TPSSh correctly predicts the spin of all the four difficult phenylporphine cases and is within the lower bound of uncertainty of any known theoretical method for the fifth, iron(III) chloroporphine. Dispersion computed with DFT-D3 favors low-spin by 3-53kJ/mol (TPSSh) or 4-15kJ/mol (B3LYP) due to the attractive r(-6) term and the shorter distances in low-spin. The very large and diverse corrections from TPSS and TPSSh seem less consistent with the similarity of the systems than when calculated from B3LYP. If the functional-specific corrections are used, B3LYP and TPSSh are of equal accuracy, and TPSS is much worse, whereas if the physically reasonable B3LYP-computed dispersion effect is used for all functionals, TPSSh is accurate for all systems. B3LYP is significantly more accurate when dispersion is added, confirming previous results.

  12. The nanophase iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron oxide/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these "Mars-soil analogs" were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging, specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The clay acted as an effective matrix, both chemically and sterically, preventing the major part of the synthesized iron oxides from ripening, i.e., growing and developing larger crystals. The precipitated iron oxides appear as isodiametric or slightly elongated particles in the size range 1-10 nm, having large specific surface area. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxy mineral such as "green rust," or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable maghemite (gamma-Fe2O3) by mild heat treatment and then to nanophase hematite (alpha-Fe2O3) by extensive heat treatment. After mild heating, the iron-enriched clay became slightly magnetic, to the extent that it adheres to a hand-held magnet, as was observed with Mars soil. The chemical reactivity of the iron-enriched clays strongly resembles, and offers a plausible mechanism

  13. Intravenous iron supplementation may protect against acute mountain sickness: a randomized, double-blinded, placebo-controlled trial.

    Science.gov (United States)

    Talbot, Nick P; Smith, Thomas G; Privat, Catherine; Nickol, Annabel H; Rivera-Ch, Maria; León-Velarde, Fabiola; Dorrington, Keith L; Robbins, Peter A

    2011-01-01

    Acute mountain sickness (AMS) is a common and disabling condition that occurs in healthy individuals ascending to high altitude. Based on the ability of iron to influence cellular oxygen sensing pathways, we hypothesized that iron supplementation would protect against AMS. To examine this hypothesis, 24 healthy sea-level residents were randomized to receive either intravenous iron(III)-hydroxide sucrose (200 mg) or saline placebo, before ascending rapidly to Cerro de Pasco, Peru (4340 m). The Lake Louise scoring system was used to assess incidence and severity of AMS at sea level and on the first full day at altitude. No significant difference in absolute AMS score was detected between the two groups either at baseline or at high altitude. However, the mean increase in AMS score was 65% smaller in the iron group than in the saline group (pvolunteers.

  14. Environmental application of millimetre-scale sponge iron (s-Fe{sup 0}) particles (III): The effect of surface silver

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); South China Subcenter of State Environmental Dioxin Monitoring Center, Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Yu, Yunjiang, E-mail: yuyunjiang@scies.org [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Wang, Xiaoyan [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Zhang, Sukun [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Liu, Runlong [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Fu, Jianping; Han, Jinglei; Fang, Jiande [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2015-12-15

    Highlights: • Direct reductive deposition reaction achieves surfaced decoration of s-Fe{sup 0} particles. • Ag{sup 0}-s-Fe{sup 0} displays similar removal efficiency of PCP as compared to bimetal of nZVI. • Ag{sup 0}-s-Fe{sup 0} can be utilized under mild reaction condition compared to bimetal of nZVI. • The catalytic mechanism over Ag{sup 0}-s-Fe{sup 0} under US condition is elucidated. - Abstract: To enhance the dechlorination reactivity of millimetric sponge iron (s-Fe{sup 0}), a facile one-pot method was used to decorate s-Fe{sup 0} with Ag{sup +} ions under ambient conditions. The results recorded by X-ray diffraction patterns, X-ray photoelectron spectra and high-resolution transmission electron microscopy demonstrated that the growth of Ag{sup 0} was dominated primarily by (1 1 1) plane with a mean length of ∼20 nm. The roles of Ag{sup 0} loading, catalyst dosage, particle size, initial pH and contaminant concentration were assessed during the removal of pentachlorophenol (PCP). Catalyst recyclability was also studied. The results revealed that 3–5 mm s-Fe{sup 0} particles with 5 wt% Ag{sup 0} loading exhibited the best performance with a dose of 3.0 g per 60 mL PCP solution. In addition, the dechlorination of PCP followed two-step, pseudo-first-order reaction kinetics, and Ag{sup 0}-s-Fe{sup 0} was advantageous compared with bimetals of nanoscale zero-valent iron, iron power and iron flakes. The dechlorination mechanism of PCP over Ag{sup 0}-s-Fe{sup 0} was attributed to the surface Ag{sup 0} decoration, which catalyzed the formation of reactive hydrogen atoms for indirect reaction, and the direct electron transfer via Fe–Ag{sup 0} galvanic cells for direct reaction. This suggests that Ag-based bimetals of s-Fe{sup 0} have great potential in the pretreatment of organic halogen compounds in aqueous solution.

  15. The citotoxicity of calcium hydroxide intracanal dressing by MTT assay

    Directory of Open Access Journals (Sweden)

    Nanik Zubaidah

    2007-12-01

    Full Text Available Calcium hydroxide had been used as the intracanal dressing in endodontic treatment due to its high alkaline and high antimicrobial capacity. It also be able to dissolve the necrotic tissue, prevent the root resorbtion and regenerate a new hard tissue. The aim of this study is to identify the concentration of calcium hydroxide that has the lowest citotoxicity. There are 5 groups, each group had 8 samples with different concentration of calcium hydroxide. Group I: 50%, Group II: 55%, Group III: 60%, Group IV: 65% and Group V: 70%. The citotoxicity test by using enzymatic assay of MTT [3-(4.5- dimethylthiazol-2yl ]-2.5 diphenyl tetrazolium bromide, against fibroblast cell (BHK-21. The result of susceptibility test was showed by the citotoxicity detection of the survive cell of fibroblast that was measured spectrophotometrically using 595 nm beam. The data was analyzed using One-Way ANOVA test with significant difference α = 0.05 and subsequently LSD test. The result showed that in concentration 50%, 55%, 60%, 65%, and 70% calcium hydroxide had low toxicity, but calcium hydroxide 60%, had the lowest toxicity.

  16. Comportamento do ácido fítico na presença de Fe(II e Fe(III Behaviour of phytic acid in the presence of iron(II and iron(III

    Directory of Open Access Journals (Sweden)

    Hanna Raquel Quirrenbach

    2009-03-01

    Full Text Available O ácido fítico, dependendo do valor de pH, apresenta alto potencial quelante, complexando íons metálicos, inibindo, assim, a produção de espécies reativas de oxigênio, responsáveis pela destruição oxidativa em sistemas biológicos. Esse potencial quelante tem fundamentado diversos estudos aplicados à ação antioxidante em produtos alimentícios. O objetivo deste trabalho foi estudar o grau de interação do ácido fítico com os íons metálicos Fe(II e Fe(III, de importância biológica, em condições próximas às fisiológicas, e a estabilidade destes complexos. Titulações potenciométricas foram conduzidas para determinar as constantes de formação dos complexos ácido fítico-Fe(II e ácido fítico-Fe(III em solução aquosa, atmosfera inerte, força iônica 0,100 mol.L-1 de cloreto de potássio e à temperatura de 36 ± 0,1 ºC. Estudos espectroscópicos na região do UV-Vis foram realizados para acompanhar a formação dos complexos em solução. Os complexos ácido fítico-Fe(II e ácido fítico-Fe(III foram sintetizados e caracterizados por espectroscopia de absorção na região do infravermelho e por estudos termoanalíticos. Os resultados do conjunto de técnicas utilizadas evidenciaram, tanto em solução como no estado sólido, a presença dos íons metálicos coordenados ao ácido fítico.Depending on the pH value, phytic acid presents high chelating potential bonding metallic ions thus inhibiting the production of reactivated oxygen species, which are responsible for the oxidative destruction in biological systems. Such chelating potential has been the basis of several studies on the antioxidant action in food products. The objective of this work was to study the degree of interaction of the phytic acid with the metallic ions Fe(II and Fe(III, of biological importance, in near-physiological conditions and the stability of these complexes. Potentiometric titrations were applied to determine the constants of

  17. After-Effects of the Cobalt-57-Iron-57 Electron-Capture Reaction in Hexacyanocobaltate (III) Complexes

    DEFF Research Database (Denmark)

    Fenger, Jørgen Folkvard; Siekierska, K.E.; Olsen, J.

    1973-01-01

    Isomorphous hexacyanocobaltate(III) complexes with the bivalent metal cations Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ have been labelled with 57Co and used as Mössbauer sources. Whilst the spectrum of the complex Fe3[57Co(CN)6]2 can be resolved into a single line corresponding to the ion Fe II...... (CN)6 4– and a doublet, those of all the other sources result in two doublets, of which one corresponds to the ion Fe III (CN)6 3–. The extra doublet in these spectra shows that the 57Co–57Fe electron-capture reaction gives rise to the formation of a new 57Fe labelled species, tentatively identified...

  18. Iron(III) complexes of tripodal tetradentate 4N ligands as functional models for catechol dioxygenases: the electronic vs. steric effect on extradiol cleavage.

    Science.gov (United States)

    Balamurugan, Mani; Vadivelu, Prabha; Palaniandavar, Mallayan

    2014-10-21

    A few mononuclear iron(iii) complexes of the type [Fe(L)Cl2]Cl , where L is a tetradentate tripodal 4N ligand such as N,N-dimethyl-N',N'-bis(pyrid-2-ylmethyl)ethane-1,2-diamine (), N,N-diethyl-N',N'-bis(pyrid-2-ylmethyl)ethane-1,2-diamine (), N,N-dimethyl-N',N'-bis-(6-methylpyrid-2-ylmethyl)ethane-1,2-diamine (), N,N-dimethyl-N'-(pyrid-2-ylmethyl)-N'-(1-methyl-1H-imidazol-2-ylmethyl)ethane-1,2-diamine (), N,N-dimethyl-N',N'-bis(1-methyl-1H-imidazol-2-ylmethyl)ethane-1,2-diamine () and N,N-dimethyl-N',N'-bis(quinolin-2-ylmethyl)ethane-1,2-diamine (), have been isolated and characterized by CHN analysis, UV-Visible spectroscopy and electrochemical methods. The complex cation [Fe(H)Cl3](+) possesses a distorted octahedral geometry in which iron is coordinated by the monoprotonated 4N ligand in a tridentate fashion and the remaining three sites of the octahedron are occupied by chloride ions. The DFT optimized octahedral geometries of , and contain iron(iii) with a high-spin (S = 5/2) ground state. The catecholate adducts [Fe(L)(DBC)](+), where H2DBC is 3,5-di-tert-butylcatechol, of all the complexes have been generated in situ in acetonitrile solution and their spectral and redox properties and dioxygenase activities have been studied. The DFT optimized geometries of the catecholate adducts [Fe()(DBC)](+), [Fe()(DBC)](+) and [Fe()(DBC)](+) have also been generated to illustrate the ability of the complexes to cleave H2DBC in the presence of molecular oxygen to afford varying amounts of intra- (I) and extradiol (E) cleavage products. The extradiol to intradiol product selectivity (E/I, 0.1-2.0) depends upon the asymmetry in bidentate coordination of catecholate, as determined by the stereoelectronic properties of the ligand donor functionalities. While the higher E/I value obtained for [Fe()(DBC)](+) is on account of the steric hindrance of the quinolyl moiety to coordination the lower value observed for [Fe()(DBC)](+) and [Fe()(DBC)](+) is on account of the electron

  19. Chemical and electrochemical behavior of the Cr(III)/Cr(II) half-cell in the iron-chromium redox energy storage system

    Science.gov (United States)

    Johnson, D. A.; Reid, M. A.

    1985-01-01

    The Cr(III) complexes present in the acidified chromium solutions used in the iron-chromium redox energy storage system have been isolated and identified as Cr(H2O)6(3+) and Cr(H2O)5Cl(2+) by ion-exchange chromatography and visible spectrophotometry. The cell reactions during charge-discharge cycles have been followed by means of visible spectrophotometry. The spectral bands were resolved into component peaks and concentrations of the Cr(III) species calculated using Beer's law. During the charge mode, Cr(H2O)5Cl(2+) is reduced to Cr(H2O)5Cl(+), and during the discharge mode Cr(H2O)5Cl(+) is oxidized back to Cr(H2O)5Cl(2+). Electrode potential measurements also support this interpretation. Hysteresis effects in the charge-discharge curves can be explained by the slow attainment of equilibrium between Cr(H2O)6(3+) and Cr(H2O)5Cl(2+).

  20. Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)-peroxo complexes.

    Science.gov (United States)

    Bang, Suhee; Lee, Yong-Min; Hong, Seungwoo; Cho, Kyung-Bin; Nishida, Yusuke; Seo, Mi Sook; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2014-10-01

    Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)-peroxo complexes that bind redox-inactive metal ions, (TMC)Fe(III)-(μ,η(2):η(2)-O2)-M(n+) (M(n+) = Sr(2+), Ca(2+), Zn(2+), Lu(3+), Y(3+) and Sc(3+); TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca(2+) and Sr(2+) complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities of complexes formed with stronger Lewis acidities were found to be markedly different. Complexes that contain Ca(2+) or Sr(2+) ions were oxidized by an electron acceptor to release O2, whereas the release of O2 did not occur for complexes that bind stronger Lewis acids. We discuss these results in the light of the functional role of the Ca(2+) ion in the oxidation of water to dioxygen by the oxygen-evolving complex.

  1. Iron(III) accumulations in inland saline waterways, Hunter Valley, Australia: Mineralogy, micromorphology and pore-water geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Isaacson, Lloyd S., E-mail: lisaac11@scu.edu.au [Southern Cross GeoSciences, Southern Cross University, Lismore, NSW 2480 (Australia); Burton, Edward D.; Bush, Richard T. [Southern Cross GeoSciences, Southern Cross University, Lismore, NSW 2480 (Australia); Mitchell, David R.G. [Australian Nuclear Science and Technology Organisation, Institute of Materials and Engineering Science, Menai, NSW 2234 (Australia); Electron Microscope Unit, University of Sydney, NSW 2006 (Australia); Johnston, Scott G. [Southern Cross GeoSciences, Southern Cross University, Lismore, NSW 2480 (Australia); Macdonald, Bennett C.T. [The Fenner School for Environment and Society, Australian National University, Canberra 0200 (Australia); Sullivan, Leigh A. [Southern Cross GeoSciences, Southern Cross University, Lismore, NSW 2480 (Australia); White, Ian [The Fenner School for Environment and Society, Australian National University, Canberra 0200 (Australia)

    2009-10-15

    Discharge of Fe(II)-rich groundwaters into surface-waters results in the accumulation of Fe(III)-minerals in salinized sand-bed waterways of the Hunter Valley, Australia. The objective of this study was to characterise the mineralogy, micromorphology and pore-water geochemistry of these Fe(III) accumulations. Pore-waters had a circumneutral pH (6.2-7.2), were sub-oxic to oxic (Eh 59-453 mV), and had dissolved Fe(II) concentrations up to 81.6 mg L{sup -1}. X-ray diffraction (XRD) on natural and acid-ammonium-oxalate (AAO) extracted samples indicated a dominance of 2-line ferrihydrite in most samples, with lesser amounts of goethite, lepidocrocite, quartz, and alumino-silicate clays. The majority of Fe in the samples was bound in the AAO extractable fraction (Fe{sup Ox}) relative to the Na-dithionite extractable fraction (Fe{sup Di}), with generally high Fe{sup Ox}:Fe{sup Di} ratios (0.52-0.92). The presence of nano-crystalline 2-line ferrihydrite (Fe{sub 5}HO{sub 3}.4H{sub 2}O) with lesser amounts of goethite ({alpha}-FeOOH) was confirmed by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM) coupled with selected area electron diffraction (SAED). In addition, it was found that lepidocrocite ({gamma}-FeOOH), which occurred as nanoparticles as little as {approx}5 lattice spacings thick perpendicular to the (0 2 0) lattice plane, was also present in the studied Fe(III) deposits. Overall, the results highlight the complex variability in the crystallinity and particle-size of Fe(III)-minerals which form via oxidation of Fe(II)-rich groundwaters in sand-bed streams. This variability may be attributed to: (1) divergent precipitation conditions influencing the Fe(II) oxidation rate and the associated supply and hydrolysis of the Fe(III) ion, (2) the effect of interfering compounds, and (3) the influence of bacteria, especially Leptothrix ochracea.

  2. Tetranuclear iron(III) complexes of an octadentate pyridine-carboxylate ligand and their catalytic activity in alkane oxidation by hydrogen peroxide.

    Science.gov (United States)

    Gutkina, Elena A; Trukhan, Vladimir M; Pierpont, Cortlandt G; Mkoyan, Shaen; Strelets, Vladimir V; Nordlander, Ebbe; Shteinman, Albert A

    2006-01-21

    Reaction of the octadentate ligand 2,6-bis{3-[N,N-di(2-pyridylmethyl)amino]propoxy}benzoic acid (LH) with Fe(ClO4)3 leads to the formation of the tetranuclear complexes [Fe4(mu-O)2(LH)2(ClCH2-CO2)4](ClO4)4 (1), [{Fe2(mu-O)L(R-CO2)}2](ClO4)4 (2 R = C6H5-, 3 R = CH3-, 4, R = ClCH2-). The crystal structures of complexes 1 and 2 reveal that they consist of two Fe(III)2(mu-O)(mu-RCO2)2 cores that are linked via the two LH/L ligands to give a "dimer of dimers" structure. Complex assumes a helical shape, with protonated carboxylic acid moieties of the two ligands forming a hydrogen-bonded pair at the center of the cation. In complexes 2, 3 and 4, central carboxylates of the two ligands bridge the iron ions in each of the two Fe2O units, with an interdimer iron-iron separation of approximately 10 A and an intradimer separation of approximately 3.1 A. The second carboxylate bridge within the Fe2O units is defined by exogenous benzoate (2), acetate (3) or chloroacetate (4) ligands. The aqua complex [{Fe2(mu-O)L(H2O)2}2](ClO4)6 (5) is proposed to have a similar structure, but with the exogenous bridging carboxylates replaced by two terminal water ligands. These complexes exhibit electronic and Mössbauer spectral features that are similar to those of (mu-oxo)diiron(III) proteins as well as other related (mu-oxo)bis(mu-carboxylato)diiron(III) complexes. This similarity shows that these properties are not significantly affected by the nature of the bridging exogenous carboxylate, and that the octadentate framework ligand is essential in stabilizing the "dimer of dimers" structure. This structural feature remains in highly diluted solution (10(-5) M) as evidenced by electrospray ionization mass-spectroscopy (ES MS). Cyclic voltammetric studies of complexes 2 and 5 showed two irreversible two-electron reductions, indicating that the two Fe2O units of the tetranuclear complexes behave as distinct redox entities. Complexes 2, 3 and, especially, the aqua complex 5 are active alkane

  3. Magnetite as a precursor for green rust through the hydrogenotrophic activity of the iron-reducing bacteria Shewanella putrefaciens.

    Science.gov (United States)

    Etique, M; Jorand, F P A; Ruby, C

    2016-05-01

    Magnetite (Fe(II) Fe(III) 2 O4 ) is often considered as a stable end product of the bioreduction of Fe(III) minerals (e.g., ferrihydrite, lepidocrocite, hematite) or of the biological oxidation of Fe(II) compounds (e.g., siderite), with green rust (GR) as a mixed Fe(II) -Fe(III) hydroxide intermediate. Until now, the biotic transformation of magnetite to GR has not been evidenced. In this study, we investigated the capability of an iron-reducing bacterium, Shewanella putrefaciens, to reduce magnetite at circumneutral pH in the presence of dihydrogen as sole inorganic electron donor. During incubation, GR and/or siderite (Fe(II) CO3 ) formation occurred as secondary iron minerals, resulting from the precipitation of Fe(II) species produced via the bacterial reduction of Fe(III) species present in magnetite. Taking into account the exact nature of the secondary iron minerals and the electron donor source is necessary to understand the exergonic character of the biotic transformation of magnetite to GR, which had been considered to date as thermodynamically unfavorable at circumneutral pH. This finding reinforces the hypothesis that GR would be the cornerstone of the microbial transformations of iron-bearing minerals in the anoxic biogeochemical cycle of iron and opens up new possibilities for the interpretation of the evolution of Earth's history and for the understanding of biocorrosion processes in the field of applied science. © 2015 John Wiley & Sons Ltd.

  4. Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions.

    Science.gov (United States)

    Zhang, Gaosheng; Ren, Zongming; Zhang, Xiwang; Chen, Jing

    2013-08-01

    To obtain a highly efficient and low-cost adsorbent for arsenic removal from water, a novel nanostructured Fe-Cu binary oxide was synthesized via a facile co-precipitation method. Various techniques including BET surface area measurement, powder XRD, SEM, and XPS were used to characterize the synthetic Fe-Cu binary oxide. It showed that the oxide was poorly crystalline, 2-line ferrihydrite-like and was aggregated with many nanosized particles. Laboratory experiments were performed to investigate adsorption kinetics, adsorption isotherms, pH adsorption edge and regeneration of spent adsorbent. The results indicated that the Fe-Cu binary oxide with a Cu: Fe molar ratio of 1:2 had excellent performance in removing both As(V) and As(III) from water, and the maximal adsorption capacities for As(V) and As(III) were 82.7 and 122.3 mg/g at pH 7.0, respectively. The values are favorable, compared to those reported in the literature using other adsorbents. The coexisting sulfate and carbonate had no significant effect on arsenic removal. However, the presence of phosphate obviously inhibited the arsenic removal, especially at high concentrations. Moreover, the Fe-Cu binary oxide could be readily regenerated using NaOH solution and be repeatedly used. The Fe-Cu binary oxide could be a promising adsorbent for both As(V) and As(III) removal because of its excellent performance, facile and low-cost synthesis process, and easy regeneration.

  5. Size-dependent magnetic properties of iron oxide nanoparticles

    Science.gov (United States)

    Patsula, Vitalii; Moskvin, Maksym; Dutz, Silvio; Horák, Daniel

    2016-01-01

    Uniform iron oxide nanoparticles in the size range from 10 to 24 nm and polydisperse 14 nm iron oxide particles were prepared by thermal decomposition of Fe(III) carboxylates in the presence of oleic acid and co-precipitation of Fe(II) and Fe(III) chlorides by ammonium hydroxide followed by oxidation, respectively. While the first method produced hydrophobic oleic acid coated particles, the second one formed hydrophilic, but uncoated, nanoparticles. To make the iron oxide particles water dispersible and colloidally stable, their surface was modified with poly(ethylene glycol) and sucrose, respectively. Size and size distribution of the nanoparticles was determined by transmission electron microscopy, dynamic light scattering and X-ray diffraction. Surface of the PEG-functionalized and sucrose-modified iron oxide particles was characterized by Fourier transform infrared (FT-IR) and Raman spectroscopy and thermogravimetric analysis (TGA). Magnetic properties were measured by means of vibration sample magnetometry and specific absorption rate in alternating magnetic fields was determined calorimetrically. It was found, that larger ferrimagnetic particles showed higher heating performance than smaller superparamagnetic ones. In the transition range between superparamagnetism and ferrimagnetism, samples with a broader size distribution provided higher heating power than narrow size distributed particles of comparable mean size. Here presented particles showed promising properties for a possible application in magnetic hyperthermia.

  6. Evidence for the aquatic binding of arsenate by natural organic matter-suspended Fe(III)

    Science.gov (United States)

    Ritter, K.; Aiken, G.R.; Ranville, J.F.; Bauer, M. E.; Macalady, D.L.

    2006-01-01

    Dialysis experiments with arsenate and three different NOM samples amended with Fe(III) showed evidence confirming the formation of aquatic arsenate-Fe(III)-NOM associations. A linear relationship was observed between the amount of complexed arsenate and the Fe(III) content of the NOM. The dialysis results were consistent with complex formation through ferric iron cations acting as bridges between the negatively charged arsenate and NOM functional groups and/or a more colloidal association, in which the arsenate is bound by suspended Fe(III)-NOM colloids. Sequential filtration experiments confirmed that a significant proportion of the iron present at all Fe/C ratios used in the dialysis experiments was colloidal in nature. These colloids may include larger NOM species that are coagulated by the presence of chelated Fe(III) and/or NOM-stabilized ferric (oxy)hydroxide colloids, and thus, the solution-phase arsenate-Fe(III)-NOM associations are at least partially colloidal in nature. ?? 2006 American Chemical Society.

  7. Spectroscopic studies on two mono nuclear iron (III) complexes derived from a schiff base and an azodye

    Energy Technology Data Exchange (ETDEWEB)

    Mini, S., E-mail: sadasivan.v@gmail.com; Sadasivan, V., E-mail: sadasivan.v@gmail.com [University College, M G Road, Palayam, Thiruvananthapuram 695 034 Kerala (India); Meena, S. S., E-mail: ssingh@barc.gov.in; Bhatt, Pramod, E-mail: ssingh@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-10-15

    Two new mono nuclear Fe(III) complexes of an azodye (ANSN) and a Schiff base (FAHP) are reported. The azodye is prepared by coupling diazotized 1-amino-2-naphthol-4-sulphonicacid with 2-naphthol and the Schiff base is prepared by condensing 2-amino-3-hydroxy pyridine with furfural. The complexes were synthesized by the reaction of FeCl{sub 3}Ðœ‡2H{sub 2}O with respective ligands. They were characterized on the basis of elemental analysis and spectral studies like IR, NMR, Electronic and M.ssbauer. Magnetic susceptibility and Molar conductance of complexes at room temperature were studied. Based on the spectroscopic evidences and other analytical data the complexes are formulated as[Fe(ANSN)Cl(H{sub 2}O){sub 2}] and [Fe(FAHP)Cl{sub 2}(H{sub 2}O){sub 2}].

  8. Tris(3-chloro-pentane-2,4-dionato-κ(2)O,O')iron(III).

    Science.gov (United States)

    Perdih, Franc

    2012-06-01

    In the title compound, [Fe(C(5)H(6)ClO(2))(3)], the Fe(III) cation is situated on a twofold rotation axis and is coordinated by six O atoms from three 3-chloro-pentane-2,4-dionate ligands in a slightly distorted octa-hedral environment. Fe-O bond lengths are in the range 1.9818 (18)-1.9957 (18) Å. The trans O-Fe-O angles are 169.06 (13) and 171.54 (8)°, whereas the corresponding cis angles are in the range 84.81 (10)-100.68 (12)°. In the crystal, mol-ecules are linked via C-H⋯Cl inter-actions.

  9. XAFS investigation of the interactions of uranium (VI) with secondary mineralization products from the bioreduction of iron (III) oxides.

    Energy Technology Data Exchange (ETDEWEB)

    O' Loughlin, E. J.; Kelly, S. D.; Kemner, K. M. (Biosciences Division); ( MSD); ( PSC-USR)

    2010-01-01

    Biogenic Fe{sup II} phases (magnetite, green rust, siderite, vivianite, etc.) provide a reservoir of reducing capacity in many subsurface environments that may contribute to the reduction of contaminants such as U{sup VI}. We have examined the uptake and reduction of U{sup VI} in the presence of biogenic green rust (BioGR), magnetite (BioMAG), and siderite (BioSID) formed during the reduction of Fe{sup III} oxides by Shewanella putrefaciens CN32. Within 48 h, total solution-phase U{sup VI} concentrations decreased from 500{mu}M to 1.5{mu}M, 392{mu}M, and 472{mu}M in the U-BioGR, U-BioMAG, and U-BioSID systems, respectively. Analysis of the samples by U L{sub III} extended X-ray absorption fine structure spectroscopy (EXAFS) indicated that despite a stoichiometric excess of Fe{sup II}, no more than 6% of U{sup VI} was reduced to U{sup IV} in the U-BioSID system, and no more than 22% of U{sup VI} was reduced in the U-BioMAG system. For comparison, in the U-BioGR system, >99% of U{sup VI} was reduced to U{sup IV}. Uptake of U{sup VI} by BioGR and BioMAG was accompanied by formation of nanoparticulate uraninite. The U EXAFS data for the U-BioSID system were consistent with partial U{sup VI}/U{sup IV} substitution for Fe{sup II} in the surface layer of siderite particles and adsorption of U{sup IV}.

  10. LiFePO4 Nanostructures Fabricated from Iron(III) Phosphate (FePO4 x 2H2O) by Hydrothermal Method.

    Science.gov (United States)

    Saji, Viswanathan S; Song, Hyun-Kon

    2015-01-01

    Electrode materials having nanometer scale dimensions are expected to have property enhancements due to enhanced surface area and mass/charge transport kinetics. This is particularly relevant to intrinsically low electronically conductive materials such as lithium iron phosphate (LiFePO4), which is of recent research interest as a high performance intercalation electrode material for Li-ion batteries. Many of the reported works on LiFePO4 synthesis are unattractive either due to the high cost of raw materials or due to the complex synthesis technique. In this direction, synthesis of LiFePO4 directly from inexpensive FePO4 shows promise.The present study reports LiFePO4 nanostructures prepared from iron (III) phosphate (FePO4 x 2H2O) by precipitation-hydrothermal method. The sintered powder was characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Inductive coupled plasma-optical emission spectroscopy (ICP-OES), and Electron microscopy (SEM and TEM). Two synthesis methods, viz. bulk synthesis and anodized aluminum oxide (AAO) template-assisted synthesis are reported. By bulk synthesis, micro-sized particles having peculiar surface nanostructuring were formed at precipitation pH of 6.0 to 7.5 whereas typical nanosized LiFePO4 resulted at pH ≥ 8.0. An in-situ precipitation strategy inside the pores of AAO utilizing the spin coating was utilized for the AAO-template-assisted synthesis. The template with pores filled with the precipitate was subsequently subjected to hydrothermal process and high temperature sintering to fabricate compact rod-like structures.

  11. Scientific Opinion on the safety of the complexation product of sodium tartrate and iron(III chloride as a food additive

    Directory of Open Access Journals (Sweden)

    2015-01-01

    Full Text Available The complexation product of sodium tartrates and iron(III chloride (Fe mTA is proposed for use as an anti-caking agent, only in salt or its substitutes, with a maximum use level of 106 mg Fe mTA/kg salt. Fe mTA can be expected to dissociate into its constituent iron(III and tartrate components upon ingestion. Studies in rats demonstrated that up to 90 % of ingested DL-tartrate or tartaric acid were absorbed, studies in humans suggested that only 20 % of an ingested dose of tartaric acid were absorbed. There are no ADME (absorption, distribution, metabolism and excretion data for meso-tartrate. From a 90-day rat study, the lowest calculated BMDLs (Benchmark Dose Level for Fe mTA were: 75 mg/kg body weight (bw per day for males (BMDL05 for serum bile acids and 267 mg/kg bw per day for females (BMDL10 for goblet cells hyperplasia. Several in vitro studies showed that there is no safety concern for genotoxicity. No reprotoxicity and developmental toxicity was reported, however no study was specifically designed for teratogenicity. No long-term or carcinogenicity studies were available. The Panel concluded that the toxicity database was insufficient to establish an ADI (Acceptable Daily Intake and calculated MoS (Margin of Safety by comparing the highest intake of Fe mTA of 0.092 mg/kg bw per day for children at the 97.5 percentile with the lowest BMDLs. The resulting MoS were 815 and 2 900 for males and females, respectively. Owing to the conservative assumptions included in the exposure assessment, the Panel concluded that there is no safety concern for the single condition of use and use level of Fe mTA proposed. The Panel noted that this evaluation was based on a limited toxicity database, for a single use resulting in a very low exposure, and therefore concluded that any extension of use and/or use level of Fe mTA, would require a new risk assessment.

  12. Synthesis and spectroscopic studies on iron(III) complexes of 1-benzotriazol-1-yl-1-[(p-X-phenyl)hydrazono]propan-2-one.

    Science.gov (United States)

    El-Dissouky, Ali; Al-Awadi, Nouria A; Shauib, Nadia M; Abbas, Alaa B

    2007-07-01

    A new series of iron(III) complexes are synthesized from the reaction of the polyfunctional ligands 1-benzotriazol-1-yl-1-[p-X-phenyl]hydrazono]propan-2-one (X=H, Cl, NO(2), CH(3) or OCH(3) corresponding to HL(1),HL(2), HL(3), HL(4) or HL(5), respectively, with iron(III) chloride in the presence of LiOH by the conventional and microwave induced energy methods. The conventional method led to the formation of [FeL(3)].nH(2)O but the microwave induced energy gave [FeLCl(2)], n=1-3 and L is the anion of HL(1)-HL(5). The complexes are characterized by the elemental analysis, molar conductivity, magnetic and spectral (FT-IR, UV-vis and ESR) studies. The magnetic and spectral studies showed that [FeLCl(2)] are polymeric octahedral, [Fe(L(1))(3)].H(2)O is a low spin octahedral and (d(xz),d(yz))(4) (d(xy))(1) ground state, [FeL(3)].nH(2)O, L=anion of HL(4) or HL(5) and are octahedral with intermediate spin (S=32) with ground state (d(xy))(2)(d(xz),d(yz))(3) electronic configuration while for the anions of HL(2) and HL(3), they have (t(2g))(3)(e(g))(5) admixed with (d(xy))(2)(d(xz),d(yz))(3) configurations. From the ESR data, the contribution of the high spin (S=52) and low spin (S=32) to the quantum mechanical spin intermediate (QMS), and the crystal field parameters Delta and V are calculated and related to the electronic and steric effects of the ligands. The electronic spectral data confirm that obtained from the ESR, and the different ligand field parameters as well as the pi-->t(2g), t(2g)-->e(g), e(g)-->pi*, pi-->pi* transitions are estimated and compared with that experimentally obtained.

  13. Intravenous iron for the treatment of fatigue in nonanemic, premenopausal women with low serum ferritin concentration.

    Science.gov (United States)

    Krayenbuehl, Pierre-Alexandre; Battegay, Edouard; Breymann, Christian; Furrer, Joerg; Schulthess, Georg

    2011-09-22

    This is the first study to investigate the efficacy of intravenous iron in treating fatigue in nonanemic patients with low serum ferritin concentration. In a randomized, double-blinded, placebo-controlled study, 90 premenopausal women presenting with fatigue, serum ferritin ≤ 50 ng/mL, and hemoglobin ≥ 120 g/L were randomized to receive either 800 mg of intravenous iron (III)-hydroxide sucrose or intravenous placebo. Fatigue and serum iron status were assessed at baseline and after 6 and 12 weeks. Median fatigue at baseline was 4.5 (on a 0-10 scale). Fatigue decreased during the initial 6 weeks by 1.1 in the iron group compared with 0.7 in the placebo group (P = .07). Efficacy of iron was bound to depleted iron stores: In patients with baseline serum ferritin ≤ 15 ng/mL, fatigue decreased by 1.8 in the iron group compared with 0.4 in the placebo group (P = .005), and 82% of iron-treated compared with 47% of placebo-treated patients reported improved fatigue (P = .03). Drug-associated adverse events were observed in 21% of iron-treated patients and in 7% of placebo-treated patients (P = .05); none of these events was serious. Intravenous administration of iron improved fatigue in iron-deficient, nonanemic women with a good safety and tolerability profile. The efficacy of intravenous iron was bound to a serum ferritin concentration ≤ 15 ng/mL. This study was registered at the International Standard Randomized Controlled Trial Number Register (www.isrctn.org) as ISRCTN78430425.

  14. Application Of Bacterial Iron Reduction For The Removal Of Iron Impurities From Industrial Silica Sand And Kaolin

    Science.gov (United States)

    Zegeye, A.; Yahaya, S.; Fialips, C. I.; White, M.; Manning, D. A.; Gray, N.

    2008-12-01

    Biogeochemical evidence exists to support the potential importance of crystalline or amorphous Fe minerals as electron acceptor for Fe reducing bacteria in soils and subsurface sediments. This microbial metabolic activity can be exploited as alternative method in different industrial applications. For instance, the removal of ferric iron impurities from minerals for the glass and paper industries currently rely on physical and chemical treatments having substantial economical and environmental disadvantages. The ability to remove iron by other means, such as bacterial iron reduction, may reduce costs, allow lower grade material to be mined, and improve the efficiency of mineral processing. Kaolin clay and silica sand are used in a wide range of industrial applications, particularly in paper, ceramics and glass manufacturing. Depending on the geological conditions of deposition, they are often associated with iron (hydr)oxides that are either adsorbed to the mineral surfaces or admixed as separate iron bearing minerals. In this study, we have examined the Fe(III) removal efficiency from kaolin and silica sand by a series of iron- reducing bacteria from the Shewanella species (S. alga BrY, S. oneidensis MR-1, S. putrefaciens CN32 and S. putrefaciens ATCC 8071) in the presence of anthraquinone 2,6 disulfonate (AQDS). We have also investigated the effectiveness of a natural organic matter, extracted with the silica sand, as a substitute to AQDS for enhancing Fe(III) reduction kinetics. The microbial reduction of Fe(III) was achieved using batch cultures under non-growth conditions. The rate and the extent of Fe(III) reduction was monitored as a function of the initial Fe(III) content, Shewanella species and temperature. The bacterially- treated minerals were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) to observe any textural and mineralogical transformation. The whiteness and ISO brightness of the kaolin was also measured by

  15. Ultra-thin film composite mixed matrix membranes incorporating iron(iii)-dopamine nanoparticles for CO2 separation

    Science.gov (United States)

    Kim, Jinguk; Fu, Qiang; Scofield, Joel M. P.; Kentish, Sandra E.; Qiao, Greg G.

    2016-04-01

    Iron dopamine nanoparticles (FeDA NPs) are incorporated into a nanoscale thick polyethylene glycol (PEG) matrix for the first time, to form ultra-thin film composite mixed matrix membranes (UTFC-MMMs) via a recently developed continuous assembly of polymers (CAP) nanotechnology. The FeDA NPs are prepared by in situ nano-complexation between Fe3+ and DA and have a particle size that can be varied from 3 to 74 nanometers by adjusting the molar ratio of DA to Fe3+ ion. The cross-linked selective layer with sub 100 nanometer thickness is prepared by atom transfer radical polymerisation of a mixture of PEG macrocross-linkers and FeDA NPs on top of a highly permeable poly(dimethyl siloxane) (PDMS) prelayer, which is spin-coated onto a porous polyacrylonitrile (PAN) substrate. The incorporation of the FeDA NPs within the PEG-based selective layer is confirmed by XPS analysis. The UTFC-MMMs (thickness: ~45 nm) formed present excellent gas separation performance with a CO2 permeance of ~1200 GPU (1 GPU = 10-6 cm3 (STP) cm-2 s-1 cmHg-1) and an enhanced CO2/N2 selectivity of over 35, which is the best performance for UTFC membranes in the reported literature.Iron dopamine nanoparticles (FeDA NPs) are incorporated into a nanoscale thick polyethylene glycol (PEG) matrix for the first time, to form ultra-thin film composite mixed matrix membranes (UTFC-MMMs) via a recently developed continuous assembly of polymers (CAP) nanotechnology. The FeDA NPs are prepared by in situ nano-complexation between Fe3+ and DA and have a particle size that can be varied from 3 to 74 nanometers by adjusting the molar ratio of DA to Fe3+ ion. The cross-linked selective layer with sub 100 nanometer thickness is prepared by atom transfer radical polymerisation of a mixture of PEG macrocross-linkers and FeDA NPs on top of a highly permeable poly(dimethyl siloxane) (PDMS) prelayer, which is spin-coated onto a porous polyacrylonitrile (PAN) substrate. The incorporation of the FeDA NPs within the PEG

  16. Direct formation of thermally stabilized amorphous mesoporous Fe2O3/SiO2 nanocomposites by hydrolysis of aqueous iron III nitrate in sols of spherical silica particles.

    Science.gov (United States)

    Khalil, Kamal M S; Mahmoud, Hatem A; Ali, Tarek T

    2008-02-05

    Nanocomposite materials containing 10% and 20% iron oxide/silica, Fe2O3/SiO2 (w/w), were prepared by direct hydrolysis of aqueous iron III nitrate solution in sols of freshly prepared spherical silica particles (Stöber particles) present in their mother liquors. This was followed by aging, drying, calcination up to 600 degrees C through two different ramp rates, and then isothermal calcinations at 600 degrees C for 3 h. The calcined and the uncalcined (dried at 120 degrees C) composites were characterized by thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), N2 adsorption/desorption techniques, and scanning electron microscopy as required. XRD patterns of the calcined composites showed no line broadening at any d-spacing positions of iron oxide phases, thereby reflecting the amorphous nature of Fe2O3 in the composite. The calcined composites showed nitrogen adsorption isotherms characterizing type IV isotherms with high surface area. Moreover, surface area increased with the increasing of the iron oxide ratio and lowering of the calcination ramp rate. Results indicated that iron oxide particles were dispersed on the exterior of silica particles as isolated and/or aggregated nanoparticles. The formation of the title composite was discussed in terms of the hydrolysis and condensation mechanisms of the inorganic FeIII precursor in the silica sols. Thereby, fast nucleation and limited growth of hydrous iron oxide led to the formation of nanoparticles that spread interactively on the hydroxylated surface of spherical silica particles. Therefore, a nanostructured composite of amorphous nanoparticles of iron oxide (as a shell) spreading on the surface of silica particles (as a core) was formed. This morphology limited the aggregation of Fe2O3 nanoparticles, prevented silica particle coalescence at high temperatures, and enhanced thermal stability.

  17. Iron(III) oxidized nucleophilic coupling of catechol with o-tolidine/p-toluidine followed by 1,10-phenanthroline as new and sensitivity improved spectrophotometric methods for iron present in chemicals, pharmaceutical, edible green leaves, nuts and lake water samples

    Science.gov (United States)

    Shyla, B.; Bhaskar, C. Vijaya; Nagendrappa, G.

    2012-02-01

    A nucleophile formed from iron(III) oxidized catechol in 0.1 M hydrochloric acid couple with o-tolidine, system 1/p-toluidine, system 2 to produce dye product, λ max 520 nm. The system 1/2 obeys Beer's law in the range 0.08-8.0 μg ml -1 with molar absorptivity, Sandell sensitivity and regression coefficient values, 4.225 × 10 3/3.140 × 10 3 l mol -1 cm -1, 0.0132/0.0178 μg cm -2 and 0.9987/0.9981. Iron(II) formed from iron(III) in system 1/2 reacts with 1,10-phenanthroline, λ max 510 nm, will constitute sensitivity improved iron determinations with values 0.08-1.6 μg ml -1, 2.4136 × 10 4/2.2511 × 10 4 l mol -1 cm -1, 0.0023/0.0025 μg cm -2 and 0.9980/0.9997 corresponding to range, molar absorptivity, Sandell sensitivity and regression coefficient. The results of the systems for iron present in chemicals, pharmaceutical, edible green leaves, nuts and lake water samples are satisfactory since they are comparable with the results of iron determined separately from 1,10-phenanthroline method.

  18. Decreasing arsenic bioaccessibility/bioavailability in soils with iron amendments.

    Science.gov (United States)

    Subacz, Jonathan L; Barnett, Mark O; Jardine, Philip M; Stewart, Melanie A

    2007-07-15

    We investigated the use of various iron amendments (metallic Fe and soluble Fe(II)- and Fe(III)-halide salts) to reduce arsenic (As) bioaccessibility (as a surrogate for oral bioavailability) in contaminated soils. Soluble Fe(II)- and Fe(III)-salts were more effective than metallic Fe in reducing As bioaccessibility. Adding soluble Fe(III)-salts to soil reduces As bioaccessibility in two ways, by increasing the Fe(III) (hydr)oxide content and by lowering the soil pH. A detailed investigation into the effect of soil moisture when adding Fe(III) amendments indicated that the reaction can occur in situ if sufficient (>or=30% moisture) is added. If the amendments are added to the soil without moisture, a reduction in bioaccessibility will occur in the extraction fluid itself (i.e., an experimental artifact not reflecting a true in situ reduction in bioaccessibility). Adding Fe (III)-salts to nine As-contaminated soils at a Fe:As molar ratio of 100:1 reduced the average bioaccessibility in the soils by approximately a factor of two. Greater reductions in As bioaccessibility can be achieved by increasing the Fe:As molar ratio. These results suggest decreasing As bioaccessibility and bioavailability in soil by adding Fe amendments may be an effective strategy to remediate As-contaminated soils.

  19. Effects of ELF magnetic field in combination with Iron(III) chloride (FeCl3) on cellular growth and surface morphology of Escherichia coli (E. coli).

    Science.gov (United States)

    Esmekaya, Meric A; Acar, S Ipek; Kıran, Fadime; Canseven, Ayşe G; Osmanagaoglu, Ozlem; Seyhan, Nesrin

    2013-04-01

    This study investigated the effects of extremely low frequency (ELF) magnetic field with/without iron(III) chloride (FeCl3) on bacterial growth and morphology. The ELF exposures were carried out using a pair of Helmholtz coil-based ELF exposure system which was designed to generate 50 Hz sinusoidal magnetic field. The field was approximately uniform throughout the axis of the coil pair. The samples which were treated or non-treated with different concentrations FeCl3 were exposed to 50 Hz, 2 millitesla (mT) magnetic field for 24 h. ELF effect on viability was assessed in terms of viable colony counts (in colony-forming unit per milliliter) with the standard plate count technique. Scanning electron microscopy was used to investigate the magnetic field effect on surface morphology of Escherichia coli. No significant results were seen in terms of cell viability between ELF and sham-exposed bacterial strains. Similarly, FeCl3 treatment did not change cell viability of E. coli samples. However, we observed some morphological changes on E. coli cell surfaces. Pore formations and membrane destruction were seen on the surface of 24 h ELF field-exposed cells. We concluded that ELF magnetic field exposure at 2 mT does not affect cell viability; however, it may affect bacterial surface morphology.

  20. Spectrophotometric method for the determination of sorbic acid in various food samples with iron(III) and 2-thiobarbituric acid as reagents.

    Science.gov (United States)

    Lau, O W; Luk, S F; Lam, R K

    1989-02-01

    A simple, rapid and accurate spectrophotometric method has been developed for the determination of sorbic acid in various food samples based on the oxidation of sorbic acid by iron(III) at 100 degrees C to malonaldehyde, which then reacts with 2-thiobarbituric acid to form a reddish brown product. The optimum experimental conditions for colour development have been assessed. Absorbance measurements were made at 529 nm in the presence of 0.4% m/V citric acid. The calibration graph was linear for 0-6 micrograms ml-1 of sorbic acid with a slope of 0.131 A micrograms-1 ml. The recoveries of sorbic acid at concentrations of 164-557 micrograms ml-1 ranged from 96 to 103%. The relative standard deviations of ten replicate determinations of sorbic acid in a synthetic cream soda sample spiked with 573 micrograms ml-1 of sorbic acid and in an onion juice sample containing 82 micrograms ml-1 of sorbic acid were 1.6 and 1.9%, respectively. Interferences from several common food additives can be minimised by extracting sorbic acid with diethyl ether and then back-extracting the acid with sodium hydrogen carbonate. The method has been applied successfully to the determination of sorbic acid in a wide range of food samples including beverages, cake, cake mate, garlic bread sprinkle, onion juice, oyster flavoured sauce and grenadine syrup.

  1. Biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin.

    Science.gov (United States)

    Tuzen, Mustafa; Uluozlu, Ozgur Dogan; Usta, Canan; Soylak, Mustafa

    2007-01-09

    The biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin for preconcentration-separation of them have been investigated. The sorbed analytes on biosorbent were eluted by using 1 mol L(-1) HCl and analytes were determined by flame atomic absorption spectrometry. The influences of analytical parameters including amounts of pH, B. sphaericus, sample volume etc. on the quantitative recoveries of analytes were investigated. The effects of alkaline, earth alkaline ions and some metal ions on the retentions of the analytes on the biosorbent were also examined. Separation and preconcentration of Cu, Pb, Fe and Co ions from real samples was achieved quantitatively. The detection limits by 3 sigma for analyte ions were in the range of 0.20-0.75 microg L(-1) for aqueous samples and in the range of 2.5-9.4 ng g(-1) for solid samples. The validation of the procedure was performed by the analysis of the certified standard reference materials (NRCC-SLRS 4 Riverine Water, SRM 2711 Montana soil and GBW 07605 Tea). The presented method was applied to the determination of analyte ions in green tea, black tea, cultivated mushroom, boiled wheat, rice and soil samples with successfully results.

  2. Light-Induced Bistability in Iron(III) Spin-Transition Compounds of 5 X-Salicylaldehyde Thiosemicarbazone (X=H, Cl, Br).

    Science.gov (United States)

    Yemeli, Eddy W T; Blake, Graeme R; Douvalis, Alexios P; Bakas, Thomas; Alberda van Ekenstein, Gert O R; van Koningsbruggen, Petra J

    2010-10-19

    The iron(III) spin-crossover compounds [Fe(Hthsa)(thsa)]⋅H2 O (1), [Fe(Hth5Clsa)(th5Clsa)2 ]⋅H2 O (2), and [Fe(Hth5Brsa)(th5Brsa)2 ]⋅H2 O (3) (H2 thsa=salicylaldehyde thiosemicarbazone, H2 th5Clsa=5-chlorosalicylaldehyde thiosemicarbazone, and H2 th5Brsa=5-bromosalicylaldehyde thiosemicarbazone) have been synthesized and their spin-transition properties investigated by magnetic susceptibility, Mössbauer spectroscopy, and differential scanning calorimetry measurements. The three compounds exhibit an abrupt spin transition with a thermal hysteresis effect. The more polarizable the substituent on the salicylaldehyde moiety, the more complete is the transition at room temperature with an increased degree of cooperativity. The molecular structures of 1 and 2 in the high-spin state are revealed. The occurrence of the light-induced excited-spin-state trapping phenomenon appears to be dependent on the substituent incorporated into the 5-position of the salicylaldehyde subunit. Whereas the compounds with an electron-withdrawing group (-Br or -Cl) exhibit light-induced trapped excited high-spin states with great longevity of metastability, the halogen-free compound does not, even though strong intermolecular interactions (such as hydrogen-bonding networks and π stacking) operate in the system. For compound 2, the surface level of photoconversion is less than 35 %. In contrast, compound 3 displays full photoexcitation.

  3. Electron spin-lattice and spin-spin relaxation study of a trinuclear iron(III) complex and its relevance in quantum computing.

    Science.gov (United States)

    Mitrikas, George; Sanakis, Yiannis; Raptopoulou, Catherine P; Kordas, George; Papavassiliou, Georgios

    2008-02-01

    Electron spins of molecular magnets are promising candidates for large scale quantum information processing because they exhibit a large number of low-lying excited states. In this paper X-band pulse electron paramagnetic resonance spectroscopy is used to determine the intrinsic relaxation times T1 and T2 of a molecular magnet with an S = 1/2 ground state, namely the neutral trinuclear oxo-centered iron (III) complex, [Fe3(micro3-O)(O2CPh)5(salox)(EtOH)(EtOH)(H2O)]. The temperature dependence of the spin-lattice relaxation time T1 between 4.5 and 11 K shows that the Orbach relaxation process is dominant with the first excited state lying 57 cm(-1) above the ground state, whereas the phase memory time T(M) is of the order of 2.6 micros and exhibits a modest temperature dependence. These results together with previous magnetic measurements give further insight into the magnetic properties of the complex. The coherent manipulation of the electron spins is also examined by means of transient nutation experiments.

  4. Sequential extraction method for determination of Fe(II/III) and U(IV/VI) in suspensions of iron-bearing phyllosilicates and uranium.

    Science.gov (United States)

    Luan, Fubo; Burgos, William D

    2012-11-06

    Iron-bearing phyllosilicates strongly influence the redox state and mobility of uranium because of their limited hydraulic conductivity, high specific surface area, and redox reactivity. Standard extraction procedures cannot be accurately applied for the determination of clay-Fe(II/III) and U(IV/VI) in clay mineral-U suspensions such that advanced spectroscopic techniques are required. Instead, we developed and validated a sequential extraction method for determination of clay-Fe(II/III) and U(IV/VI) in clay-U suspensions. In our so-called "H(3)PO(4)-HF-H(2)SO(4) sequential extraction" method, H(3)PO(4)-H(2)SO(4) is used first to solubilize and remove U, and the remaining clay pellet is subject to HF-H(2)SO(4) digestion. Physical separation of U and clay eliminates valence cycling between U(IV/VI) and clay-Fe(II/III) that otherwise occurred in the extraction solutions and caused analytical discrepancies. We further developed an "automated anoxic KPA" method to measure soluble U(VI) and total U (calculate U(IV) by difference) and modified the conventional HF-H(2)SO(4) digestion method to eliminate a series of time-consuming weighing steps. We measured the kinetics of uraninite oxidation by nontronite using this sequential extraction method and anoxic KPA method and measured a stoichiometric ratio of 2.19 ± 0.05 mol clay-Fe(II) produced per mol U(VI) produced (theoretical value of 2.0). We found that we were able to recover 98.0-98.5% of the clay Fe and 98.1-98.5% of the U through the sequential extractions. Compared to the theoretical stoichiometric ratio of 2.0, the parallel extractions of 0.5 M HCl for clay-Fe(II) and 1 M NaHCO(3) for U(VI) leached two-times more Fe(II) than U(VI). The parallel extractions of HF-H(2)SO(4) for clay Fe(II) and 1 M NaHCO(3) for U(VI) leached six-times more Fe(II) than U(VI).

  5. A Ni-Fe Layered Double Hydroxide-Carbon Nanotube Complex for Water Oxidation

    CERN Document Server

    Gong, Ming; Wang, Hailiang; Liang, Yongye; Wu, Justin Zachary; Zhou, Jigang; Wang, Jian; Regier, Tom; Wei, Fei; Dai, Hongjie

    2013-01-01

    Highly active, durable and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions including water splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel iron layered double hydroxide nanoplates on mildly oxidized multi-walled carbon nanotubes. Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-layered double hydroxide. The nanoplates were covalently attached to a network of nanotubes, affording excellent electrical wiring to the nanoplates. The ultra-thin Ni-Fe layered double hydroxide nanoplates/carbon nanotube complex was found to exhibit unusually high electro-catalytic activity and stability for oxygen evolution and outperformed commercial precious metal Ir catalysts.

  6. Arsenite sequestration at the surface of nano-Fe(OH) 2, ferrous-carbonate hydroxide, and green-rust after bioreduction of arsenic-sorbed lepidocrocite by Shewanella putrefaciens

    Science.gov (United States)

    Ona-Nguema, Georges; Morin, Guillaume; Wang, Yuheng; Menguy, Nicolas; Juillot, Farid; Olivi, Luca; Aquilanti, Giuliana; Abdelmoula, Mustapha; Ruby, Christian; Bargar, John R.; Guyot, François; Calas, Georges; Brown, Gordon E., Jr.

    2009-03-01

    X-ray Absorption Fine Structure (XAFS) spectroscopy was used in combination with high resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), X-ray energy dispersive spectroscopy (XEDS), X-ray powder diffraction, and Mössbauer spectroscopy to obtain detailed information on arsenic and iron speciation in the products of anaerobic reduction of pure and As(V)- or As(III)-adsorbed lepidocrocite (γ-FeOOH) by Shewanella putrefaciens ATCC 12099. We found that this strain of S. putrefaciens is capable of using Fe(III) in lepidocrocite and As(V) in solution or adsorbed on lepidocrocite surfaces as electron acceptors. Bioreduction of lepidocrocite in the absence of arsenic resulted in the formation of hydroxycarbonate green rust 1 [Fe II4Fe III2(OH) 12CO 3: GR1(CO 3)], which completely converted into ferrous-carbonate hydroxide (Fe II2(OH) 2CO 3: FCH) over nine months. This study thus provides the first evidence of bacterial reduction of stoichiometric GR1(CO 3) into FCH. Bioreduction of As(III)-adsorbed lepidocrocite also led to the formation of GR1(CO 3) prior to formation of FCH, but the presence of As(III) slows down this transformation, leading to the co-occurrence of both phases after 22-month of aging. At the end of this experiment, As(III) was found to be adsorbed on the surfaces of GR1(CO 3) and FCH. After five months, bioreduction of As(V)-bearing lepidocrocite led directly to the formation of FCH in association with nanometer-sized particles of a minor As-rich Fe(OH) 2 phase, with no evidence for green rust formation. In this five-month experiment, As(V) was fully converted to As(III), which was dominantly sorbed at the surface of the Fe(OH) 2 nanoparticles as oligomers binding to the edges of Fe(OH) 6 octahedra at the edges of the octahedral layers of Fe(OH) 2. These multinuclear As(III) surface complexes are characterized by As-As pairs at a distance of 3.32 ± 0.02 Å and by As-Fe pairs at a distance of 3.50 ± 0.02

  7. 21 CFR 184.1428 - Magnesium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... hydration of reactive grades of magnesium oxide. (b) The ingredient meets the specifications of the Food... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium hydroxide. 184.1428 Section 184.1428 Food... Specific Substances Affirmed as GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide (Mg(OH)2,...

  8. Contribution to the knowledge of nickel hydroxide electrodes. 5. Analysis and electrochemical behavior of cadmium nickel hydroxides

    Science.gov (United States)

    Bode, H.; Dennstedt, W.

    1981-01-01

    Electrochemical experiments performed at sintered and bulk electrodes show that beta nickel hydroxide contains an electrochemically inactive proportion of cadmium hydroxide of up to 10%. The electrochemically ineffective cadmium hydroxide is homogeneously dissolved in beta nickel hydroxide.

  9. Desiccation tolerance of iron bacteria biofilms on Mars regolith simulants

    Science.gov (United States)

    Feyh, Nina; Szewzyk, Ulrich

    2010-05-01

    Iron oxidizing bacteria play an important role in the geological redox cycling of iron on earth. The redox change between Fe(II) and Fe(III) can be used for biological energy production [1]. Therefore iron oxidation in the iron rich martian soils may be or may have been microbially mediated. The microbial conversion of iron is considered to be an ancient form of metabolism [2], so it might have evolved on Mars as well. However, to exist in recent martian soils, bacteria must be able to endure dry and cold conditions. Neutrophilic iron oxidizers can be found in various iron rich aquatic environments, where they lead to the precipitation of insoluble ferric hydroxides. Some of these environments fall temporarily dry, what could have led to an adaptation to desiccation by bacteria, existing there. One strategy of iron bacteria to endure drought stress might be the formation of biofilms by excreting Extracellular Polymeric Substances (EPS). The deposition of iron hydroxides could enable them to endure dry conditions as well. For our experiments, neutrophilic iron oxidizing bacteria have been isolated from a creek in Bad Salzhausen/Hesse and temporarily drying out pools in Tierra del Fuego. Strains from aquatic environments in the national park "Unteres Odertal" and from water wells in Berlin/Brandenburg are included in the tests as well. In desiccation experiments, the capability of iron bacteria to tolerate dry conditions are investigated. The aim of our first experiment is the adaptation to dry conditions. Biofilms of 15 strains are grown on ceramic beads in liquid medium containing complexed Fe(II), established biofilms contain Fe(III) precipitates. The cultures are desiccated in a sterile airflow until the weight of the cultures remained constant. After a desiccation period of 9 h up to 7 d, the beads are transferred to fresh liquid medium. Adapted strains are used in further desiccation experiments, where biofilms are grown on two martian regolith simulants. These

  10. Determination of Nickel and Manganese Contaminants in Pharmaceutical Iron Supplements Using Energy Dispersive X-ray Fluorescence.

    Science.gov (United States)

    Cardoso, Pedro; Amaro, Pedro; Santos, José Paulo; de Assis, Joaquim T; Carvalho, Maria Luisa

    2017-03-01

    In this study, we investigate the capability of energy dispersive X-ray fluorescence (EDXF) spectrometry in a triaxial geometry apparatus as a fast and nondestructive determination method of both dominant and contaminant elements in pharmaceutical iron supplements. The following iron supplements brands with their respective active ingredients were analyzed: Neutrofer fólico (iron gylcinate), Anemifer (iron(II) sulfate monohydrate), Noripurum (iron(III)-hydroxide polymaltose complex), Sulferbel (iron(II) sulfate monohydrate), and Combiron Fólico (carbonyl iron). Although we observe a good agreement between the iron content obtained by the present method and that indicated in the supplement's prescribed dose, we observe contamination by manganese and nickel of up to 180 μg and 36 μg, respectively. These contents correspond to 7.2% and 14.4% of the permitted daily exposure of manganese and nickel, respectively, for an average adult individual as determined by the European Medicine Agency (EMEA). The method was successfully validated against the concentrations of several certified reference materials of biological light matrices with similar concentrations of contaminants. Moreover, we also validated our method by comparing the concentrations with those obtained with the inductively coupled plasma-atomic emission technique.

  11. Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron.

    Science.gov (United States)

    Liang, Liping; Yang, Wenjun; Guan, Xiaohong; Li, Jialing; Xu, Zijian; Wu, Jiang; Huang, Yuying; Zhang, Xiangzi

    2013-10-01

    The kinetics of Se(IV) removal by zero valent iron (ZVI) open to the air as a function of pH and the involved mechanisms were investigated in this study. The specific rate constants of Se(IV) removal by ZVI decreased from 92.87 to 6.87 L h(-1) m(-2) as pH increased from 4.0 to 7.0. The positive correlation between the removal rate of Se(IV) and the generation rate of Fe(II) and the depression of Se(IV) removal in the presence of 1,10-phenanthroline indicated that both ZVI and adsorbed Fe(II) on ZVI surface contributed to the reductive removal of Se(IV). The soft X-ray STXM measurement confirmed the adsorption of Fe(II) on the surface of ZVI and freshly formed ferric (hydr)oxides. Se(IV) was removed by adsorption followed by reduction to Se(0) on ZVI surface at pH 4.0-7.0, as revealed by XANES spectra. A core-shell structure was observed when ZVI reacted with Se(IV)-containing solution for 3 h at pH 6.0. Se(IV) was reduced to Se(0) and co-precipitated with the freshly formed Fe(III), forming the shell surrounding the iron core. After reaction for 24 h, the generated Se(0) was surrounded by multiple layers of Fe(III) oxides/hydroxides. SEM images and XRD patterns revealed that the corrosion products of ZVI at pH 6.0 transformed from amorphous iron hydroxides to lepidocrocite (γ-FeOOH) as reaction proceeded. The final corrosion products of ZVI contained both lepidocrocite and goethite at pH 5.0 while they were X-ray amorphous at pH 4.0 and 7.0.

  12. Comparison of the efficiency of titanium(IV) and iron(III) oxide nanoparticles as mediators in suppression of bacterial growth by radiation of a blue (405 nm) light-emitting diode

    Science.gov (United States)

    Petrov, P. O.; Tuchina, E. S.; Kulikova, M. V.; Kochubei, V. I.; Tuchin, V. V.

    2013-08-01

    The effect of blue (405 nm) radiation of a light-emitting diode in combination with titanium(IV) and iron(III) oxide nanoparticles on S. aureus 209 P, S. simulans, and D. hominis bacteria is studied. It is shown that, upon irradiation of bacteria by blue (405 nm) light, Fe2O3 nanoparticles have a stronger (by 5-30%) antibacterial effect than TiO2 nanoparticles.

  13. Colorimetric Determination of the Iron(III)-Thiocyanate Reaction Equilibrium Constant with Calibration and Equilibrium Solutions Prepared in a Cuvette by Sequential Additions of One Reagent to the Other

    Science.gov (United States)

    Nyasulu, Frazier; Barlag, Rebecca

    2011-01-01

    The well-known colorimetric determination of the equilibrium constant of the iron(III-thiocyanate complex is simplified by preparing solutions in a cuvette. For the calibration plot, 0.10 mL increments of 0.00100 M KSCN are added to 4.00 mL of 0.200 M Fe(NO[subscript 3])[subscript 3], and for the equilibrium solutions, 0.50 mL increments of…

  14. Efficiency of a new strategy involving a new class of natural hetero-ligand iron(III) chelates (Fe(III)-NHL) to improve fruit tree growth in alkaline/calcareous soils.

    Science.gov (United States)

    Fuentes, Marta; Ortuño, María F; Pérez-Sarmiento, Francisco; Bacaicoa, Eva; Baigorri, Roberto; Conejero, Wenceslao; Torrecillas, Arturo; García-Mina, José M

    2012-12-01

    Iron (Fe) chlorosis is a serious problem affecting the yield and quality of numerous crops and fruit trees cultivated in alkaline/calcareous soils. This paper describes the efficiency of a new class of natural hetero-ligand Fe(III) chelates (Fe-NHL) to provide available Fe for chlorotic lemon trees grown in alkaline/calcareous soils. These chelates involve the participation in the reaction system of a partially humified lignin-based natural polymer and citric acid. First results showed that Fe-NHL was adsorbed on the soil matrix while maintaining available Fe for plants in alkaline/calcareous solution. The effects of using three different sources as Fe fertilisers were also compared: two Fe-NHL formulations (NHL1, containing 100% of Fe as Fe-NHL, and NHL2, containing 80% of Fe as Fe-NHL and 20% of Fe as Fe-ethylenediamine-N,N'-bis-(o-hydroxyphenylacetic) acid (Fe-EDDHA)) and Fe-EDDHA. Both Fe-NHL formulations increased fruit yield without negative effects on fruit quality in comparison with Fe-EDDHA. In the absence of the Fe-starter fraction (NHL1), trees seemed to optimise Fe assimilation and translocation from Fe-NHL, directing it to those parts of the plant more involved in development. The field assays confirmed that Fe-NHL-based fertilisers are able to provide Fe to chlorotic trees, with results comparable to Fe-EDDHA. Besides, this would imply a more sustainable and less expensive remediation than synthetic chelates. Copyright © 2012 Society of Chemical Industry.

  15. Analysis of barium hydroxide and calcium hydroxide slurry carbonation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Patch, K.D.; Hart, R.P.; Schumacher, W.A.

    1980-05-01

    The removal of CO/sub 2/ from air was investigated by using a continuous-agitated-slurry carbonation reactor containing either barium hydroxide (Ba(OH)/sub 2/) or calcium hydroxide (Ca(OH)/sub 2/). Such a process would be applied to scrub /sup 14/CO/sub 2/ from stack gases at nuclear-fuel reprocessing plants. Decontamination factors were characterized for reactor conditions which could alter hydrodynamic behavior. An attempt was made to characterize reactor performance with models assuming both plug flow and various degrees of backmixing in the gas phase. The Ba(OH)/sub 2/ slurry enabled increased conversion, but apparently the process was controlled under some conditions by phenomena differing from those observed for carbonation by Ca(OH)/sub 2/. Overall reaction mechanisms are postulated.

  16. Importance of Fe(II)-Hydroxide Complexes For the In-Situ Bioremediation of ARD Sites

    Science.gov (United States)

    Bilgin, A.; Silverstein, J.; Nordstrom, D. K.

    2003-12-01

    Enhancing the growth of heterotrophic bacteria such as Acidiphilium cryptum that are indigenous to acid rock drainage (ARD) sources is a potential strategy for in-situ inhibition of pyrite oxidation and acid formation. When biodegradable organic carbon was supplied to A. cryptum, oxygen was consumed by rapidly growing heterotrophs, and bacterial iron reduction observed, accompanied by increasing solution pH. A. cryptum (ATCC 33463) cells were incubated in well-aerated liquid media containing Fe2(SO4)3 and glucose at varying initial pH values from 1.5 to 3.5. No more than 1% of the added ferric iron was detected as soluble Fe3+ for any of the media, indicating that the A. cryptum cells were able to reduce precipitated ferric iron. No organic carbon consumption or iron reduction was observed in flasks incubated at pH 1.5 indicating that A. cryptum may not be able to grow at this low pH. In reactors where the initial pH was 3.5, the pH increased to approximately 5.5 during the experiment accompanied by a 0.4 gl-1 decrease in Fe(III) species after aeration stopped. In reactors where the initial pH was 2.5, final pH values were inconsistent between replicate experiments: pH decreased to 2.3 in one experiment and increased to 2.8 in the second. Dissociation of Fe(OH)2+ complexes at pH values near 2.5 could have acted as a buffer, minimizing pH change during iron respiration. The existence of Fe(OH)2+ complexes was investigated using O-square wave voltametry, a pulse polarography technique which allows for identification of metal complexes and estimation of complex stability constants. The presence of ferric hydroxide complexes at pH near 2.5 was confirmed by pulse polarography. When the initial pH was 3.5, the base neutralizing capacity of the solution decreased due to the replacement of Fe(OH)2+ by Fe(OH)3 resulting in the pH increase of over 2 units.

  17. Thermal decomposition and reconstruction of CaFe-layered double hydroxide studied by X-ray diffractometry and 57Fe Mössbauer spectroscopy

    Science.gov (United States)

    Bugris, Valéria; Ádok-Sipiczki, Mónika; Anitics, Tamás; Kuzmann, Ernő; Homonnay, Zoltán; Kukovecz, Ákos; Kónya, Zoltán; Sipos, Pál; Pálinkó, István

    2015-06-01

    In spite of numerous investigations on the various processes of the thermal decomposition and rehydration of layered double hydroxides (LDHs) by a variety sophisticated experimental means, many details are still unexplored and some contradictions are still unresolved. In this work, our efforts were focussed on clarifying the composition, structure and properties of thermally decomposed metaphases originating from CaFe-LDH, heat treated in the 373-973 K temperature range. The structure reconstruction ability of mixed metal oxide phases obtained after heat treatments was also investigated, mainly concentrating on the changes in the microenvironment of Fe(III), in the presence of controlled amount of water vapour (i.e., at different relative humidities). All samples were characterised by X-ray diffractometry, and the iron-containing phases were studied by 57Fe Mössbauer spectroscopy.

  18. 21 CFR 172.370 - Iron-choline citrate complex.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Iron-choline citrate complex. 172.370 Section 172... CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline citrate complex made by reacting approximately equimolecular quantities of ferric hydroxide, choline,...

  19. Kinetics of sorption of oil products by hydroxide precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, N.A.; Dubrovskaya, G.E.; Berezyuk, V.G.; Pushkarev, V.V.

    1976-01-01

    Study of the kinetics of sorption of oils (palm and coriander oils, Genrex-26, Emulsol E-2(B)) under static conditions by aluminum and iron hydroxide precipitates (with FeSO/sub 4/, FeCl/sub 3/, and AlCl/sub 3/ as coagulants) showed that an increase of temperature to 40 to 50/sup 0/C raises the sorption rate substantially. The kinetic relations can be represented by equations for first-order reactions. The calculated rate constants and the values of the empirical activation energies are evidence of physical sorption with diffusion as the controlling step.

  20. Nitrate reduction by mixed iron(II-III) hydroxycarbonate green rust in the presence of phosphate anions: the key parameters influencing the ammonium selectivity.

    Science.gov (United States)

    Etique, Marjorie; Zegeye, Asfaw; Grégoire, Brian; Carteret, Cédric; Ruby, Christian

    2014-10-01

    The reduction of nitrate anions by a mixed Fe(II)-Fe(III) carbonated green rust (GR) in aqueous medium is studied as a function of the initial pH and the initial concentrations of iron, phosphate and nitrate. The influence of these parameters on the fraction of nitrate removed and the production of ammonium is investigated by the help of statistical experimental designs. The goal is to determine experimental conditions that maximize the fraction of NO3(-) removed and concomitantly minimize the production of NH4(+). Increasing the phosphate concentration relatively to the initial Fe(II) concentration inhibits the reduction of nitrate probably due to a surface saturation of the lateral sites of the GR crystals. The kinetics of the reaction is greatly enhanced by increasing the initial pH at 10.5, however it leads to a global increase of the NH4(+) production. A partial saturation of the surface sites by phosphate leads to a global decrease of selectivity of the reaction towards ammonium. The evolution of the ratio of the NH4(+) concentration to the Fe(II) concentration confirms that the NO3(-) species are only partially transformed into ammonium. Interestingly at an initial pH of 7.5, the selectivity of the reaction towards NH4(+) is often lower than ∼30%. The reduction of nitrate by carbonated GR differs from the behavior of other GRs incorporating Cl(-), F(-) and SO4(2-) anions that fully transform nitrate into ammonium. Finally, if GR is intended to be used during a passive water denitrification process, complementary dephosphatation and ammonium treatments should be considered.

  1. Synthesis, characterization, and spectroscopic investigation of new iron(III) and copper(II) complexes of a carboxylate rich ligand and their interaction with carbohydrates in aqueous solution.

    Science.gov (United States)

    Stewart, Christopher D; Arman, Hadi; Bawazir, Huda; Musie, Ghezai T

    2014-10-20

    New tetra-iron(III) (K4[1]·25H2O·(CH3)2CO and K3[2]·3H2O·(OH)) and di-copper(II) (Na3[3]·5H2O) complexes as carbohydrate binding models have been synthesized and fully characterized used several techniques including single crystal X-ray crystallography. Whereas K4[1]·25H2O·(CH3)2CO and Na3[3]·5H2O are completely water-soluble, K3[2]·3H2O·(OH) is less soluble in all common solvents including water. The binding of substrates, such as d-mannose, d-glucose, d-xylose, and xylitol with the water-soluble complexes in different reaction conditions were investigated. In aqueous alkaline media, complexes K4[1]·25H2O·(CH3)2CO and Na3[3]·5H2O showed coordination ability toward the applied substrates. Even in the presence of stoichiometric excess of the substrates, the complexes form only 1:1 (complex/substrate) molar ratio species in solution. Apparent binding constants, pKapp, values between the complexes and the substrates were determined and specific mode of substrate binding is proposed. The pKapp values showed that d-mannose coordinates strongest to K4[1]·25H2O·(CH3)2CO and Na3[3]·5H2O. Syntheses, characterizations and detailed substrate binding study using spectroscopic techniques and single crystal X-ray diffraction are reported.

  2. Iron(III-salophene: an organometallic compound with selective cytotoxic and anti-proliferative properties in platinum-resistant ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    Thilo S Lange

    Full Text Available BACKGROUND: In this pioneer study to the biological activity of organometallic compound Iron(III-salophene (Fe-SP the specific effects of Fe-SP on viability, morphology, proliferation, and cell-cycle progression on platinum-resistant ovarian cancer cell lines were investigated. METHODOLOGY/PRINCIPAL FINDINGS: Fe-SP displayed selective cytotoxicity against SKOV-3 and OVCAR-3 (ovarian epithelial adenocarcinoma cell lines at concentrations between 100 nM and 1 microM, while the viability of HeLa cells (epithelial cervix adenocarcinoma or primary lung or skin fibroblasts was not affected. SKOV-3 cells in contrast to fibroblasts after treatment with Fe-SP revealed apparent hallmarks of apoptosis including densely stained nuclear granular bodies within fragmented nuclei, highly condensed chromatin and chromatin fragmentation. Fe-SP treatment led to the activation of markers of the extrinsic (Caspase-8 and intrinsic (Caspase-9 pathway of apoptosis as well as of executioner Caspase-3 while PARP-1 was deactivated. Fe-SP exerted effects as an anti-proliferative agent with an IC(50 value of 300 nM and caused delayed progression of cells through S-phase phase of the cell cycle resulting in a complete S-phase arrest. When intra-peritoneally applied to rats Fe-SP did not show any systemic toxicity at concentrations that in preliminary trials were determined to be chemotherapeutic relevant doses in a rat ovarian cancer cell model. CONCLUSION/SIGNIFICANCE: The present report suggests that Fe-SP is a potent growth-suppressing agent in vitro for cell lines derived from ovarian cancer and a potential therapeutic drug to treat such tumors in vivo.

  3. Supermolecular layered dou- ble hydroxides

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Research progresses in the layered double hydroxides ·mH2O intercalated with metal coordinate ions or oxometalates in the last ten years are reviewed. These layered double hydroxides are mainly intercalated with polyoxometalate (POM) ions, a LiAl-LDH photochemical assembly containing TiO2 and CH3(CH2)12COO- anions, together with Zn(TPPC) (porphy-rin derivate) and macrocyclic ligand-containing porphyrin derivate anions. Emphasis is put on the synthesis methods for intercalation of the anions into the interlayer regions, the characterization techniques and structures for the layered compounds and the newest research progress in the fields such as catalysis. The review also forecasts the prospects of the field.

  4. Effect of Tetramethylammonium Hydroxide on Nucleation, Surface Modification and Growth of Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ângela L. Andrade

    2012-01-01

    Full Text Available Nanoparticles of magnetite (Fe3O4 were obtained by reacting ferric chloride with sodium sulphite, through the reduction-precipitation method. The effects of adding tetramethylammonium hydroxide (TMAOH during or after the precipitation of the iron oxide were studied in an attempt to obtain well-dispersed magnetite nanoparticles. Accordingly, the following experimental conditions were tested: (i precipitation in absence of TMAOH (sample Mt, (ii the same as (i after peptizing with TMAOH (Mt1, (iii TMAOH added to the reaction mixture during the precipitation of magnetite (Mt2. Analyses with transmission electron microscopy (TEM, X-ray diffraction, Mössbauer spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR, zeta potential, and magnetization measurements up to 2.5 T revealed that magnetite was normally formed also in the medium containing TMAOH. The degree of particles agglomeration was monitored with laser diffraction and technique and inspection of TEM images. The relative contributions of Néel and Brownian relaxations on the magnetic heat dissipation were studied by investigating the ability of suspensions of these magnetite nanoparticles to release heat in aqueous and in hydrogel media. Based on ATR-FTIR and zeta potential data, it is suggested that the surfaces of the synthesized magnetite particles treated with TMAOH become coated with (CH34N+ cations.

  5. Antimicrobial effect of calcium hydroxide as endo intracanal dressing on Streptococcus viridans

    Directory of Open Access Journals (Sweden)

    Nanik Zubaidah

    2008-03-01

    Full Text Available Calcium hydroxide had been used as the intra-canal dressing in endodontic treatment due to its high alkaline and antimicrobial capacity. It can also dissolve the necrotic tissue, prevent dental root resorbtion and regenerate a new hard tissue. The aim of this study was to determine the concentration of calcium hydroxide which had the highest antimicrobial effect on Streptococcus viridans. Samples were divided into 5 groups; each group consisted of 8 samples with different concentration of calcium hydroxide. Group I: 50%, group II: 55, Group III: 60%, Group IV: 65%, Group V: 70%. The antimicrobial testing was performed using diffusion method against Streptococcus viridans. The result of susceptibility test was showed by the inhibition zone diameter which measured with caliper (in millimeter. We analyzed the data using One-Way ANOVA test with significant difference 0.05 and subsequently LSD test. The study showed that calcium hydroxide with concentration 60% has the highest antimicrobial effect.

  6. Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments.

    Science.gov (United States)

    Cooper, D Craig; Picardal, Flynn F; Coby, Aaron J

    2006-03-15

    Microbial iron reduction is an important biogeochemical process that can affect metal geochemistry in sediments through direct and indirect mechanisms. With respectto Fe(III) (hydr)oxides bearing sorbed divalent metals, recent reports have indicated that (1) microbial reduction of goethite/ferrihydrite mixtures preferentially removes ferrihydrite, (2) this process can incorporate previously sorbed Zn(II) into an authigenic crystalline phase that is insoluble in 0.5 M HCl, (3) this new phase is probably goethite, and (4) the presence of nonreducible minerals can inhibit this transformation. This study demonstrates that a range of sorbed transition metals can be selectively sequestered into a 0.5 M HCl insoluble phase and that the process can be stimulated through sequential steps of microbial iron reduction and air oxidation. Microbial reduction experiments with divalent Cd, Co, Mn, Ni, Pb, and Zn indicate that all metals save Mn experienced some sequestration, with the degree of metal incorporation into the 0.5 M HCl insoluble phase correlating positively with crystalline ionic radius at coordination number = 6. Redox cycling experiments with Zn adsorbed to synthetic goethite/ferrihydrite or iron-bearing natural sediments indicate that redox cycling from iron reducing to iron oxidizing conditions sequesters more Zn within authigenic minerals than microbial iron reduction alone. In addition, the process is more effective in goethite/ferrihydrite mixtures than in iron-bearing natural sediments. Microbial reduction alone resulted in a -3x increase in 0.5 M HCl insoluble Zn and increased aqueous Zn (Zn-aq) in goethite/ferrihydrite, but did not significantly affect Zn speciation in natural sediments. Redox cycling enhanced the Zn sequestration by approximately 12% in both goethite/ferrihydrite and natural sediments and reduced Zn-aq to levels equal to the uninoculated control in goethite/ferrihydrite and less than the uninoculated control in natural sediments. These

  7. Synthesis and characterization of iron (II and III) phosphates by X-ray diffraction and Scanning Electron Microscopy of high vacuum; Sintesis y caracterizacion de fosfatos de hierro (II, III) por difraccion de rayos X y microscopia electronica de barrido de alto vacio

    Energy Technology Data Exchange (ETDEWEB)

    Diaz F, J.C.; Solis M, L.; Garcia R, G.; Romero G, E.T. [Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The XRD and Sem techniques for determining the mineralogical and structural composition of iron II and III phosphates have been used. The mineralogical and structural composition of the materials revealed that they are the ferrous phosphate and the ferric phosphate. The contribution of the synthesis and characterization of these phosphates is that they can be used as components in the geological barriers capable to avoiding the dispersion from the hazardous radioactive materials to the environment. (Author)

  8. Surface complexation sorption and ligand-promoted dissolution of enrofloxacin on aluminum hydroxide and iron hydroxide%恩诺沙星在含水氧化铝和含水氧化铁上的配位吸附及配位增溶效应

    Institute of Scientific and Technical Information of China (English)

    周敏; 王树伦; 陈俊辉; 陶钧; 陈慧; 杜新贞

    2012-01-01

    Batch equilibrium experiments were used to reveal enrofloxacin(ENR) adsorption on two different hydrous oxides:aluminum hydroxide(HAO) and iron hydroxide(HFO).The results showed that the adsorption isotherms of ENR on the two hydrous oxides were both well described by Langmuir model when KL(HFO) KL(HAO).The adsorption capacity(Qm) of enrofloxacin to HAO/HFO decreased with the increase of ion strength if NaCl concentrations were at a range between 0.01 mol · L-1 and 0.5 mol · L-1.However,the ion strengths in the solution had little effect on the adsorption at the low concentrations of enrofloxacin,which indicated that adsorption of enrofloxacin on the two different hydrous oxides was essentially based on ligand reaction.However,the adsorption efficiency apparently decreased in the strong acidic or alkaline environment.The coordination adsorption mainly occurred at pH 5~8 in the environment.It was found that the coordination point occurred at the C-3 carboxyl site,and the soluble complexes of 1:1 ENR:M(Metal ions) were formed in the solution,which was measured by UV spectrometry,ATR-FTIR difference spectrometry and atomic absorption spectrometry.Meanwhile,the formed complex between ENR and HAO/HFO could increase the solubility of ENR in aqueous solution.%采用批平衡试验方法,研究了恩诺沙星(ENR)在含水氧化铝(HAO)和含水氧化铁(HFO)上的吸附行为.结果表明,恩诺沙星在两类不同含水氧化物上的吸附可以用Langmuir等温方程描述,其中,吸附平衡常数KL(HFO)〉KL(HAO).当溶液中NaCl的浓度在0.01~0.50mol.L-1之间时,恩诺沙星的最大吸附量随着溶液离子强度的增大呈下降趋势,但吸附低浓度的恩诺沙星时,离子强度对吸附量的影响不大,表明此时两类含水氧化物对恩诺沙星的吸附均以配位反应为主.实验还发现,在较强的酸性或碱性环境中,恩诺沙星的吸附量都明显减小,配位

  9. Preparation of iron oxides and oxihydroxides

    Directory of Open Access Journals (Sweden)

    Iveta Štyriaková

    2006-12-01

    Full Text Available Iron oxides are common minerals that occur in the environment, either naturally or as a result of human activities.The most common Fe(III-hydroxides and -oxides include ferrihydrite (Fe5HO8 .4H2O that transforms to hematite (a-Fe2O3 and/or goethite (a-FeOOH.That depends on the solution composition, temperature and pH. Depending on the composition of the solid and solution, oxidation can transform the green rust (a product formed by a metal corrosion to lepidocrocite (γ -FeOOH or magnetite (Fe(IIFe(III 2O4 . Weathering can degrade magnetite to maghemite (γ –Fe2O3 and all of the Fe-oxides are subject to an attack and dissolution by organic acids and ligands that are formed during the breakdown of biological material. Iron oxides can be prepared by hydrolysis of acidic Fe3+ solutions or by controlled oxidation of Fe2+ solutions. Goethite, lepidocrocite and magnetite were prepared by oxidation of Fe2+ solutions under slightly different values of pH, Fe concentrations and rates of oxidation. Maghemite was prepared by a thermal transformation from synthetic lepidocrocite heated in a furnace at 250 °C for 2h. Hematite was prepared by forced hydrolysis of Fe3+ solution from a chlorine system (FeCl3 at the temperature close to 100 °C under strongly acidic conditions (pH 1-2. Main mineral phases were confirmed by the RTG diffraction and IR spectroscopy method. Iron oxides are excellent, renewable adsorbents, and often control free metals through adsorption reaction.

  10. Effect of pH on complex coacervate core micelles from Fe(III)-based coordination polymer.

    Science.gov (United States)

    Wang, Junyou; de Keizer, Arie; van Leeuwen, Herman P; Yan, Yun; Vergeldt, Frank; van As, Henk; Bomans, Paul H H; Sommerdijk, Nico A J M; Cohen Stuart, Martien A; van der Gucht, Jasper

    2011-12-20

    The effect of pH on iron-containing complex coacervate core micelles [Fe(III)-C3Ms] is investigated in this paper. The Fe(III)-C3Ms are formed by mixing cationic poly(N-methyl-2-vinylpyridinium iodide)-b-poly(ethylene oxide) [P2MVP(41)-b-PEO(205)] and anionic iron coordination polymers [Fe(III)-L(2)EO(4)] at stoichiometric charge ratio. Light scattering and Cryo-TEM have been performed to study the variations of hydrodynamic radius and core structure with changing pH. The hydrodynamic radius of Fe(III)-C3Ms is determined mainly by the corona and does not change very much in a broad pH range. However, Cryo-TEM pictures and magnetic relaxation measurements indicate that the structure of the micellar cores changes upon changing the pH, with a more crystalline, elongated shape and lower relaxivity at high pH. We attribute this to the formation of mixed iron complexes in the core, involving both the bis-ligand and hydroxide ions. These complexes are stabilized toward precipitation by the diblock copolymer.

  11. Iron-catalyzed photochemical transformation of benzoic acid in atmospheric liquids: Product identification and reaction mechanisms

    Science.gov (United States)

    Deng, Yiwei; Zhang, Kai; Chen, Hao; Wu, Taixing; Krzyaniak, Metthew; Wellons, Amina; Bolla, Dawn; Douglas, Kenneth; Zuo, Yuegang

    This study investigated iron-catalyzed photochemical oxidation of benzoic acid (BA), one of the major photodegradation products of petroleum hydrocarbons, under sunlight or monochromatic light irradiation in a wavelength range of 254-419 nm. The photochemical degradation of BA in the absence of iron (III) occurred at irradiation wavelengths below 300 nm. The photochemical transformation of BA in the presence Fe(III) was observed at both 254, 350, 419 nm and under solar irradiation. The half-life for the photodegradation of BA (100 μM) was 160±20 min in the presence of 20 μM Fe(III) at pH 3.20 on sunny August days at noon time. The degradation rate increased with increasing concentration of Fe(III). The reaction products were separated and identified using capillary electrophoresis (CE), gas chromatography/mass spectrometry (GC/MS) and UV-Visible spectrophotometry. The major reaction products were 2-hydroxybenzoic, 3-hydroxybenzoic and 4-hydroxybenzoic acids. Hydrogen peroxide (H 2O 2) and Fe(II) species were also formed during the photochemical reactions. The proposed reaction mechanisms include the photoexcitation of Fe(III) hydroxide complexes to form Fe(II) ions and hydroxyl radicals (OH rad ) that attack ortho, meta and para positions of BA to form corresponding monohydroxybenzoic acids and H 2O 2. The monohydroxybenzoic acids formed further react with hydroxyl and surperoxide radicals (HO 2- rad /O 2- rad ) to yield dihydroxybenzoic acids in atmospheric water droplets.

  12. Chromium extraction with organic solvents. Part 3. Application to the treatment of polymetallic industrial residues; Extraction de cromo con disolventes organicos. III parte. Aplicacion al tratamiento de residuos polimetalicos industriales

    Energy Technology Data Exchange (ETDEWEB)

    Juan, D. de; Meseguer, V.; Lozano, L. J. [Universidad de Murcia. (Spain)

    1998-12-31

    The use of Primene 81R as extraction agent of chromium present in solid wastes containing nickel, iron and copper has been studied. The waste was leached with a sulphuric acid solution up to pH3 and oxidation of Cr(III) to Cr(VI) with Caro acid was also studied. Because of the negative result of oxidation, the treatment was applied on Cr(III) directly. Extraction/scrubbing/stripping process was studied in the leach. The composition of organic phase used in the extraction step was 10% v/v Primene 81R, 10% iso decanol and kerosene. All the iron, 91% Cr, 10% Ni and large part of the copper contained in the initial leach solution are recovered in the organic phase. In the scrubbing stage (with a sulphuric acid solution at pH 1,4), all the copper and nickel and 30% Cr go to the washing liquor, while all the iron and 70% Cr remained in the organic phase. In the stripping stage (with a 2N NH{sub 4}OH or 2N NaOH solution) all the iron and chromium are recovered as a precipitate of highly absorbent hydroxides. After the treatment mentioned, 63% Cr and 100% Fe are recovered as a mixture of hydroxides, and 28% of the initial chromium, all the nickel and the copper are found in the washing liquor. (Author) 4 refs.

  13. Application of granular ferric hydroxides for removal elevated concentrations of arsenic from mine waters

    Science.gov (United States)

    Szlachta, Małgorzata; Włodarczyk, Paweł; Wójtowicz, Patryk

    2015-04-01

    Arsenic is naturally occurring element in the environment. Over three hundred minerals are known to contain some form of arsenic and among them arsenopyrite is the most common one. Arsenic-bearing minerals are frequently associated with ores containing mined metals such as copper, tin, nickel, lead, uranium, zinc, cobalt, platinum and gold. In the aquatic environment arsenic is typically present in inorganic forms, mainly in two oxidation states (+5, +3). As(III) is dominant in more reduced conditions, whereas As(V) is mostly present in an oxidizing environment. However, due to certain human activities the elevated arsenic levels in aquatic ecosystems are arising to a serious environmental problem. High arsenic concentrations found in surface and groundwaters, in some regions originate from mining activities and ore processing. Therefore, the major concern of mining industry is to maintain a good quality of effluents discharged in large volumes. This requires constant monitoring of effluents quality that guarantee the efficient protection of the receiving waters and reacting to possible negative impact of contamination on local communities. A number of proven technologies are available for arsenic removal from waters and wastewaters. In the presented work special attention is given to the adsorption method as a technically feasible, commonly applied and effective technique for the treatment of arsenic rich mine effluents. It is know that arsenic has a strong affinity towards iron rich materials. Thus, in this study the granular ferric hydroxides (CFH 12, provided by Kemira Oyj, Finland) was applied to remove As(III) and As(V) from aqueous solutions. The batch adsorption experiments were carried out to assess the efficiency of the tested Fe-based material under various operating parameters, including composition of treated water, solution pH and temperature. The results obtained from the fixed bed adsorption tests demonstrated the benefits of applying granular

  14. Mechanism of Arsenic Sequestration in High-Iron Sediments

    Science.gov (United States)

    Root, R. A.; Campbell, K. M.; Hering, J. G.; O'Day, P. A.

    2005-12-01

    Naturally occurring elevated concentrations of arsenic in the runoff of the eastern Sierra Nevada and feed waters of the Los Angeles Aqueduct are remediated by the Los Angeles Department of Power and Water (LADPW) up stream of the Haiwee Reservoir (Olancha, CA). To reduce total arsenic in drinking water supplies, the LADPW adds ferric chloride and a cationic polymer coagulant to the aqueduct. The treatment precipitates as an amorphous iron oxide, spectrally similar to 6-line ferrihydrite, that adsorbs and sequesters arsenic as arsenate. As the channeled flow enters North Haiwee Reservoir, the As(V)-enriched iron floc settles as sediments in the inlet channel. Buried As(V) is reduced to As(III) near the sediment-water interface (0-10cm), and only As(III) is observed at depths below the steep (1-2cm) near-surface redox gradient. Sediment samples from 30-cm push cores were collected from the edge of the reservoir along the inlet channel in tandem with in situ porewater measurements using an inert polyacrylamide gel probe sampler. Sediments were analyzed to characterize the redox gradient, host mineralogy, and variation in bulk elemental composition with depth. X-ray absorption spectroscopy (XAS) was used to determine the depth of the microbially driven redox boundary where As (V) is reduced to As (III) and to investigate the molecular bonding of arsenic adsorbed to iron hydroxide surfaces. Specific and characteristic iron and arsenic phases were isolated by sequential extraction; extracted and bulk concentrations were determined by ICP-MS. Splits of specific extraction steps were analyzed by synchrotron EXAFS and XRD to determine the identity of separated phases. The primary mineralogy of sediments along the inlet channel is detrital quartz, plagioclase feldspar, and phyllosilicates weathered from the Sierra Nevada granitic batholith. Notably, crystalline magnetite, hematite, and goethite, phases that would indicate transformation of hydrous iron phases to more stable

  15. Microbial reduction of iron ore

    Science.gov (United States)

    Hoffmann, Michael R.; Arnold, Robert G.; Stephanopoulos, Gregory

    1989-01-01

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  16. The influence of pH on iron speciation in podzol extracts: iron complexes with natural organic matter, and iron mineral nanoparticles.

    Science.gov (United States)

    Neubauer, Elisabeth; Schenkeveld, Walter D C; Plathe, Kelly L; Rentenberger, Christian; von der Kammer, Frank; Kraemer, Stephan M; Hofmann, Thilo

    2013-09-01

    The quantities of natural organic matter (NOM) and associated iron (Fe) in soil extracts are known to increase with increasing extractant pH. However, it was unclear how the extraction pH affects Fe speciation for particles below 30 nm. We used flow field-flow fractionation (FlowFFF) and transmission electron microscopy (TEM) to investigate the association of Fe and trace elements with NOM and nanoparticulate iron (oxy)hydroxides in podzol extracts. For extracts prepared at the native soil pH (~4), and within a 1-30 nm size range, Fe was associated with NOM. In extracts with a pH≥7 from the E and B soil horizons, Fe was associated with NOM as well as with iron (oxy)hydroxide nanoparticles with a size of approximately 10 nm. The iron (oxy)hydroxide nanoparticles may have either formed within the soil extracts in response to the increase in pH, or they were mobilized from the soil. Additionally, pH shift experiments showed that iron (oxy)hydroxides formed when the native soil pH (~4) was increased to 9 following the extraction. The iron (oxy)hydroxide nanoparticles aggregated if the pH was decreased from 9 to 4. The speciation of Fe also influenced trace element speciation: lead was partly associated with the iron (oxy)hydroxides (when present), while copper binding to NOM remained unaffected by the presence of iron (oxy)hydroxide nanoparticles. The results of this study are important for interpreting the representativeness of soil extracts prepared at a pH other than the native soil pH, and for understanding the changes in Fe speciation that occur along a pH gradient.

  17. Effect of Cr(VI) concentration on gas and particle production during iron oxidation in aqueous solutions containing Cl(-) ions.

    Science.gov (United States)

    Ahn, Hyangsig; Jo, Ho Young; Ryu, Ji-Hun; Koh, Yong-Kwon

    2017-02-01

    Zero-valent iron (ZVI) is commonly used as a medium in permeable reactive barriers (PRBs) because of its high reducing ability. The generation of H2 gas in PRBs, however, can decrease the permeability of PRBs and reduce the contact area between the PRB and contaminated groundwater. This study investigated the effect of the initial Cr(VI) concentration ([Cr(VI)init]) in aqueous solutions containing Cl(-) ions on the generation of H2 gas. ZVI chips were reacted in reactors with 0.5-M NaCl solutions with [Cr(VI)init] ranging between 51 and 303 mg/L. The initial pH was set at 3. The oxidation of ZVI chips by Cr(VI) in aqueous solutions containing Cl(-) ions produced H2 gas and particles (Fe(III)-Cr(III)(oxy)hydroxides). The Cr(VI) removal from aqueous solutions increased as the [Cr(VI)init] increased, as did H2 gas generation. The positive effect of [Cr(VI)init] on H2 gas generation might be due to an increase in the redox potential gradient as [Cr(VI)init] increases. This increased gradient would enhance H(+) ion penetration through the passive film (Fe(III)-Cr(III)(oxy)hydroxides), which formed on the ZVI surface, by diffusion from the solution to pits beneath the passive film.

  18. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation

    Science.gov (United States)

    Fan, Ke; Chen, Hong; Ji, Yongfei; Huang, Hui; Claesson, Per Martin; Daniel, Quentin; Philippe, Bertrand; Rensmo, Håkan; Li, Fusheng; Luo, Yi; Sun, Licheng

    2016-06-01

    Highly active and low-cost electrocatalysts for water oxidation are required due to the demands on sustainable solar fuels; however, developing highly efficient catalysts to meet industrial requirements remains a challenge. Herein, we report a monolayer of nickel-vanadium-layered double hydroxide that shows a current density of 27 mA cm-2 (57 mA cm-2 after ohmic-drop correction) at an overpotential of 350 mV for water oxidation. Such performance is comparable to those of the best-performing nickel-iron-layered double hydroxides for water oxidation in alkaline media. Mechanistic studies indicate that the nickel-vanadium-layered double hydroxides can provide high intrinsic catalytic activity, mainly due to enhanced conductivity, facile electron transfer and abundant active sites. This work may expand the scope of cost-effective electrocatalysts for water splitting.

  19. Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation

    Science.gov (United States)

    Fan, Ke; Chen, Hong; Ji, Yongfei; Huang, Hui; Claesson, Per Martin; Daniel, Quentin; Philippe, Bertrand; Rensmo, Håkan; Li, Fusheng; Luo, Yi; Sun, Licheng

    2016-01-01

    Highly active and low-cost electrocatalysts for water oxidation are required due to the demands on sustainable solar fuels; however, developing highly efficient catalysts to meet industrial requirements remains a challenge. Herein, we report a monolayer of nickel–vanadium-layered double hydroxide that shows a current density of 27 mA cm−2 (57 mA cm−2 after ohmic-drop correction) at an overpotential of 350 mV for water oxidation. Such performance is comparable to those of the best-performing nickel–iron-layered double hydroxides for water oxidation in alkaline media. Mechanistic studies indicate that the nickel–vanadium-layered double hydroxides can provide high intrinsic catalytic activity, mainly due to enhanced conductivity, facile electron transfer and abundant active sites. This work may expand the scope of cost-effective electrocatalysts for water splitting. PMID:27306541

  20. Pharmacokinetic Profile of Oral Magnesium Hydroxide

    DEFF Research Database (Denmark)

    Dolberg, Mette Konow Bøgebjerg; Nielsen, Lars Peter; Dahl, Ronald

    2016-01-01

    Despite the presumption of a beneficial effect of magnesium (Mg) supplementation on various diseases, little is known concerning the pharmacokinetics of Mg hydroxide. This study was designed to provide a pharmacokinetic profile of Mg hydroxide after a single oral dose. Ten healthy male adults...

  1. Mechanism of dissolution of different species of iron contained in kaolin Bycitrate-Bisulphite

    Directory of Open Access Journals (Sweden)

    Patricia N. Olvera Venegas

    2014-08-01

    Full Text Available The mechanism of dissolution of iron species contained in kaolinitic clay from the Guadalupe mine in Huayacocotla ejido El Carbonero, Veracruz, Mexico was investigated, using the synergistic effect of bisulfite as the reducing agent and citrate as complexing agent. The clay was dry screened, yielding particle sizes of -100 +250 mesh. Kaolin was characterized by X-ray diffraction (DRX and atomic absorption (AA, identifying magnetite, ilmenite and greigite as the prevalent iron phases. Dissolution experiments were carried out in solutions of 0.5 M of sodium thiosulfate, 0.9 M of citric acid, at 90 ° C and pH 3, controlling the latter parameter with sodium hydroxide. The reactions involved in the dissolution of the different iron species were proposed. Since the iron in magnetite and greigite is present as Fe(III, a reducing agent (bisulfite is required to liberate it from these phases, whereas in ilmenite, iron is present as Fe(II and is dissolved employing a complexing ligand.

  2. Neutral and anionic superhalogen hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Swierszcz, Iwona [Department of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Anusiewicz, Iwona, E-mail: iwonaa@chem.univ.gda.pl [Department of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)

    2011-05-26

    Graphical abstract: The energy profile for the Na(OH){sub 2}{sup -} anionic hydroxide formation according to the NaOH+OH{sup -}{yields}Na(OH){sub 2}{sup -} reaction. Display Omitted Highlights: {yields} The superhalogen hydroxides and their anions were studied at the CCSD(T)/6-311++G(3df,3pd) level. {yields} All anionic superhalogen hydroxides were found to be thermodynamically stable. {yields} The VDE values calculated for the M(OH){sub k+1}{sup -} anions exceed 4 eV in all cases. {yields} The largest VDEs were found for the Al(OH){sub 4}{sup -} (6.07 eV) and Ga(OH){sub 4}{sup -} (6.21 eV). - Abstract: The properties of superhalogen M(OH){sub k+1}{sup -} anions and their M(OH){sub k+1} neutral parents (where M = Li, Na, K, Be, Mg, Ca, B, Al, Ga) were investigated at the ab initio CCSD(T)/6-311++G(3df,3pd)//MP2/6-311++G(d,p) level of theory. All the M(OH){sub k+1}{sup -} anions and some of their M(OH){sub k+1} neutral parents (k is the maximal formal valence of M) were found to be thermodynamically stable against the fragmentations (OH, OH{sup -}, O{sub 2} or H{sub 2}O loss). The vertical electron detachment energies (VDE) of the M(OH){sub k+1}{sup -} anions were calculated with the OVGF method and using the 6-311++G(3df,3pd) basis sets. The VDE values calculated for the anions studied exceed 4 eV in all cases, whereas the largest values of the electron binding energies were found for the Al(OH){sub 4}{sup -} (6.07 eV) and Ga(OH){sub 4}{sup -} anions (6.21 eV). Finally, formation of most of the species considered was predicted to be spontaneous due to the lack of kinetic barriers for these processes and their thermodynamic favorability.

  3. Influence of Arsenic on the Reduction of Lepidocrocite and Hydroxycarbonate Green Rust 1 Into Ferrous-Carbonate Hydroxide by Shewanella putrefaciens

    Science.gov (United States)

    Ona-Nguema, G.; Morin, G.; Wang, Y.; Juillot, F.; Abdelmoula, M.; Ruby, C.; Guyot, F.; Calas, G.; Brown, G.

    2007-12-01

    Shewanella putrefaciens, an iron-respiring bacterium, is capable of reducing As(V) to As(III) when HAs(V)O42- is the sole electron acceptor, or when it is adsorbed on the surface of lepidocrocite (γ-FeOOH), a common well-crystallized hydromorphic soil mineral. Cultures in which lepidocrocite was used as the sole electron acceptor (i.e., pure lepidocrocite and As(III)-adsorbed lepidocrocite) led to the formation of biogenic hydroxycarbonate green rust 1 (GR1) prior to precipitation of ferrous-carbonate hydroxide (FCH). However, the presence of As(III) slowed down the biotransformation of hydroxycarbonate GR1 into FCH, leading to the co-occurrence of both phases after 22-month of aging. In contrast, when the electron acceptor was As(V)- bearing lepidocrocite, XRD analysis revealed FCH to be the dominant reaction product; no green rust formation was observed in this case. Arsenic K-edge XANES spectroscopy indicated that all As(V) (K-edge(max) = 11875.0eV) was reduced to As(III) (K-edge(max) = 11871.3eV), suggesting the presence of As(III) either on the surface of FCH, and/or in another ferrous-containing solid phase. Mössbauer analysis of the 22-month aged biogenic sample obtained from the bioreduction of As(III)-adsorbed lepidocrocite revealed the presence of FCH (80%) and GR (20%). In contrast, Mössbauer spectra of white biogenic solid phases resulting from the bioreduction of As(V)-adsorbed lepidocrocite and of pure lepidocrocite were characterized by ferrous iron doublets. These spectra indicate that the white biogenic sample without arsenic contains 100% Fe(II) assigned to FCH, while the white biogenic As(III)-Fe(II)-containing reaction products consists of 87% FCH and of 13% of another ferrous phase, probably an As(III)-Fe(II)-containing compound. These results show for the first time bacterial reduction of stoichiometric hydroxycarbonate green rust 1.

  4. Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling.

    Science.gov (United States)

    Babic, Michal; Horák, Daniel; Trchová, Miroslava; Jendelová, Pavla; Glogarová, Katerina; Lesný, Petr; Herynek, Vít; Hájek, Milan; Syková, Eva

    2008-03-01

    New surface-modified iron oxide nanoparticles were developed by precipitation of Fe(II) and Fe(III) salts with ammonium hydroxide and oxidation of the resulting magnetite with sodium hypochlorite, followed by the addition of poly( L-lysine) (PLL) solution. PLL of several molecular weights ranging from 146 ( L-lysine) to 579 000 was tested as a coating to boost the intracellular uptake of the nanoparticles. The nanoparticles were characterized by TEM, dynamic light scattering, FTIR, and ultrasonic spectrometry. TEM revealed that the particles were ca. 6 nm in diameter, while FTIR showed that their surfaces were well-coated with PLL. The interaction of PLL-modified iron oxide nanoparticles with DMEM culture medium was verified by UV-vis spectroscopy. Rat bone marrow stromal cells (rMSCs) and human mesenchymal stem cells (hMSC) were labeled with PLL-modified iron oxide nanoparticles or with Endorem (control). Optical microscopy and TEM confirmed the presence of PLL-modified iron oxide nanoparticles inside the cells. Cellular uptake was very high (more than 92%) for PLL-modified nanoparticles that were coated with PLL (molecular weight 388 00) at a concentration of 0.02 mg PLL per milliliter of colloid. The cellular uptake of PLL-modified iron oxide was facilitated by its interaction with the negatively charged cell surface and subsequent endosomolytic uptake. The relaxivity of rMSCs labeled with PLL-modified iron oxide and the amount of iron in the cells were determined. PLL-modified iron oxide-labeled rMSCs were imaged in vitro and in vivo after intracerebral grafting into the contralateral hemisphere of the adult rat brain. The implanted cells were visible on magnetic resonance (MR) images as a hypointense area at the injection site and in the lesion. In comparison with Endorem, nanoparticles modified with PLL of an optimum molecular weight demonstrated a higher efficiency of intracellular uptake by MSC cells.

  5. Alginate-Iron Speciation and Its Effect on In Vitro Cellular Iron Metabolism.

    Directory of Open Access Journals (Sweden)

    Richard D Horniblow

    Full Text Available Alginates are a class of biopolymers with known iron binding properties which are routinely used in the fabrication of iron-oxide nanoparticles. In addition, alginates have been implicated in influencing human iron absorption. However, the synthesis of iron oxide nanoparticles employs non-physiological pH conditions and whether nanoparticle formation in vivo is responsible for influencing cellular iron metabolism is unclear. Thus the aims of this study were to determine how alginate and iron interact at gastric-comparable pH conditions and how this influences iron metabolism. Employing a range of spectroscopic techniques under physiological conditions alginate-iron complexation was confirmed and, in conjunction with aberration corrected scanning transmission electron microscopy, nanoparticles were observed. The results infer a nucleation-type model of iron binding whereby alginate is templating the condensation of iron-hydroxide complexes to form iron oxide centred nanoparticles. The interaction of alginate and iron at a cellular level was found to decrease cellular iron acquisition by 37% (p < 0.05 and in combination with confocal microscopy the alginate inhibits cellular iron transport through extracellular iron chelation with the resulting complexes not internalised. These results infer alginate as being useful in the chelation of excess iron, especially in the context of inflammatory bowel disease and colorectal cancer where excess unabsorbed luminal iron is thought to be a driver of disease.

  6. Thermodynamics of Volatile Silicon Hydroxides Studied

    Science.gov (United States)

    Copland, Evan H.; Opila, Elizabeth J.; Jacobson, Nathan S.

    2001-01-01

    Silicon-based ceramics are promising candidate structural materials for heat engines. The long-term stability of these materials to environmental degradation is dependent on the formation and retention of a protective SiO2 layer. It is well known that SiO2 forms stable volatile hydroxides in the presence of water vapor at elevated temperatures. Combustion conditions, which characteristically are at high velocities, contain significant water vapor pressures, and high temperatures tend to promote continuous formation of these hydroxides with resulting material degradation. For the degradation of silicon-based ceramics to be predicted, accurate thermodynamic data on the formation of silicon hydroxides are needed.

  7. Properties of oxide-hydroxide sintered ceramics

    Science.gov (United States)

    Levkov, R. V.; Kulkov, S. N.

    2017-02-01

    In this paper the study of porous ceramics obtained from aluminum hydroxide with gibbsite modification is presented. It was shown that aluminum hydroxide may be used for pore formation and pore volume in the sintered ceramics can be controlled by varying the aluminum hydroxide concentration and sintering temperature. It was shown that compressive strength of alumina ceramics increases by 40 times with decreasing the pore volume from 65 to 15%. Based on these results one can conclude that the obtained structure is very close to inorganic bone matrix and can be used as promising material for bone implants production.

  8. Improved removal of arsenic from groundwater using pre-corroded steel and iron tailored granular activated carbon.

    Science.gov (United States)

    Zou, J; Cannon, F S; Chen, W; Dempsey, B A

    2010-01-01

    The authors have combined corrosion of steel fittings or perforated sheets with granular activated carbon (GAC) that had been pre-treated with Fe(III)-citrate, to produce an innovative and low-maintenance technique for removing arsenic from groundwater. Removal of arsenic was measured using two GAC column configurations: rapid small scale column tests (RSSCT's) and mini-column tests. Independent variables included pH, pre-corrosion procedure, and idling of the column (i.e. intentionally stopping flow for defined times in order to create reducing conditions). Use of corroded steel plus pre-treated GAC removed arsenic to below 10 microg/L for up to 248,000 bed volumes (BV) at pH 6, compared to 7,000 BVs for pre-treated GAC without pre-corroded steel. Performance was not as good at pH 6.5 or 7.5. Idling the system recovered the iron corrosion ability by reducing the passive Fe(III) layer on pre-corroded steel surface, as a result the BVs to arsenic breakthrough was doubled. But idling also caused brief periods of arsenic and iron release after restart, due to reductive dissolution of arsenic-containing ferric oxides. GAC was also effective as filtration media for removal of iron (hydr)oxide particles (and associated arsenic) that was released from the pre-corroded iron.

  9. Reduction of hypervalent iodine by coordination to iron(iii) and the crystal structures of PhIO and PhIO2

    DEFF Research Database (Denmark)

    Wegeberg, Christina; Frankær, Christian Grundahl; McKenzie, Christine J.

    2016-01-01

    The iodine L3-edge X-ray Absorption Near Edge Structure (XANES) of organic and inorganic iodine compounds with formal iodine oxidation states ranging from -1 to +7 shows edge energies spanning from 4560.8 eV to 4572.5 eV. These were used to calibrate the oxidation state of iodine in a unique iron...

  10. The use of Agrobacterium tumefacients immobilized on Amberlite XAD-4 as a new biosorbent for the column preconcentration of iron(III), cobalt(II), manganese(II) and chromium(III).

    Science.gov (United States)

    Baytak, Sıtkı; Türker, A Rehber

    2005-02-28

    A microorganism Agrobacterium tumefacients as an immobilized cell on a solid support was presented as a new biosorbent for the enrichment of Fe(III), Co(II), Mn(II) and Cr(III) prior to flame atomic absorption spectrometric analysis. Amberlite XAD-4 was used as a support material for column preconcentration. Various parameters such as pH, amount of adsorbent, eluent type and volume, flow rate of sample solution, volume of sample solution and matrix interference effect on the retention of the metal ions have been studied. The optimum pH for the sorption of above mentioned metal ions were about 6, 8, 8 and 6, respectively. The loading capacity of adsorbent for Co(II) and Mn(II) were found to be 29 and 22mumolg(-1), respectively. The recoveries of Fe(III), Co(II), Mn(II) and Cr(III), under the optimum conditions were found to be 99 +/- 3, 99 +/- 2, 98 +/- 3 and 98 +/- 3%, respectively, at the 95% confidence level. The limit of detection was 3.6, 3.0, 2.8 and 3.6ngml(-1) for Fe(III), Co(II), Mn(II) and Cr (III), respectively, by applying a preconcentration factor of 25. The proposed enrichment method was applied for metal ion determination from water samples, alloy samples, infant foods and certified samples such as whey powder (IAEA-155) and aluminum alloy (NBS SRM 85b). The analytes were determined with a relative error lower than 10% in all samples.

  11. Preservation of As(III) and As(V) in drinking water supply samples from across the United States using EDTA and acetic acid as a means of minimizing iron-arsenic coprecipitation.

    Science.gov (United States)

    Gallagher, Patricia A; Schwegel, Carol A; Parks, Amy; Gamble, Bryan M; Wymer, Larry; Creed, John T

    2004-05-15

    Seven different treatment/storage conditions were investigated for the preservation of the native As(III)/As(V) found in 10 drinking water supplies from across the United States. These 10 waters were chosen because they have different As(III)/As(V) distributions; six of these waters contained enough iron to produce an iron precipitate during shipment. The waters were treated and stored under specific conditions and analyzed periodically over a span of approximately 75 days. Linear least squares (LLS) was used to estimate the change in As(III) and As(V) over the study period. Point estimates for the first and last analyses days and 95% confidence bounds were calculated from the LLS. The difference in the point estimates for the first and last day were then evaluated with respect to drinking water treatment decision making. Three primary treatments were evaluated: EDTA/AcOH-treatment and AcOH treatment as well as no treatment. The effect of temperature was explored for all treatments, while the effect of aeration was evaluated for only the EDTA/AcOH treated samples. The nontreated samples experienced a 0-40% reduction in the native arsenic concentration due to the formation of Fe/As precipitates. The Fe/As precipitates were resolubilized and shown to contain elevated concentrations of As(V) relative to the native distribution. Once this Fe/As precipitate was removed from solution using a 0.45 and 0.2 microm filter, the resulting arsenic concentration (As(III) + As(V)) was relatively constant (the largest LLS slope was -1.4 x 10(-2) (ng As g water(-1)) day(-1)). The AcOH treatment eliminated the formation of the Fe/As precipitate observed in the nontreated samples. However, two of the AcOH water samples produced analytically significant changes in the As(III) concentration. The LLS slopes for these two waters were -5.7 x 10(-2) (ng As(III) g water(-1)) day(-1) and -1.0 x 10(-1) (ng As(III) g water(-1)) day(-1). This corresponds to a -4.3 ng/g and a -7.8 ng/g change in

  12. Removal of trace mercury(II) from aqueous solution by in situ formed Mn-Fe (hydr)oxides.

    Science.gov (United States)

    Lu, Xixin; Huangfu, Xiaoliu; Ma, Jun

    2014-09-15

    The efficiency and mechanism of trace mercury (Hg(II)) removal by in situ formed manganese-ferric (hydr)oxides (in situ Mn-Fe) were investigated by reacting KMnO4 with Fe(II) in simulated solutions and natural water. In the simulated solutions, the impact of coagulant dosage, pH, and temperature on mercury removal was studied. Experimental results showed that in situ Mn-Fe more effectively removed mercury compared with polyaluminum chloride (PAC) and iron(III) chloride (FeCl3), and that mercury existed in the form of uncharged species, namely Hg(OH)2, HgClOH(aq), and HgCl2(aq). Fourier transform infrared spectroscopy demonstrated that in situ Mn-Fe contained hydroxyl groups as the surface active sites, while X-ray photoelectron spectroscopy (XPS) measurements revealed that MnO2 or MnOOH and FeOOH were the dominant species in the precipitates. XPS analysis indicated that an Hg-Mn-Fe mixture was formed in the precipitates, suggesting that mercury was removed from solutions via transfer from the liquid phase to solid phase. These results indicated that the primary mercury removal mechanisms in in situ Mn-Fe were surface complexation and flocculation-precipitation processes. Satisfactory removal efficiency of mercury was also observed following in situ Mn-Fe in natural waters. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The relationship between dissolved humic acids and soluble iron in estuaries

    Science.gov (United States)

    Fox, L. E.

    1984-01-01

    Dissolved humic acid and soluble iron appear to be chemically unassociated in estuaries despite their coincident removal. This conclusion is supported by differences in the aggregation kinetics of soluble iron and dissolved humic acid, the inability of extracted humic acid to stabilize laboratory preparations of ferric hydroxide, and decreasing ratios of humic acid carbon to soluble iron along the axes of some estuaries.

  14. Nickel hydroxide precipitation from aqueous sulfate media

    Science.gov (United States)

    Sist, Cinziana; Demopoulos, George P.

    2003-08-01

    Hydrometallurgical processing of laterite ores constitutes a major industrial and R&D activity in extractive metallurgy. In some of the process flowsheets, nickel hydroxide precipitation is incorporated. For these operations, the optimization of nickel hydroxide precipitation is important to assure efficiency and product quality. The main objective of this investigation was to study and improve the precipitation characteristics of Ni(OH)2 in a sulfate system using supersaturation controlled precipitation.

  15. Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(III) reduction by an iron-reducing bacterium Clostridium beijerinckii Z

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yan [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China); He, Yan, E-mail: yhe2006@zju.edu.cn [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China); Feng, Xiaoli [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China); Liang, Luyi [Experiment Teaching Center for Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Xu, Jianming, E-mail: jmxu@zju.edu.cn [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China); Brookes, Philip C.; Wu, Jianjun [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058 (China)

    2014-03-01

    A novel Fe(III) reducing bacterium, Clostridium beijerinckii Z, was isolated from glucose amended paddy slurries, and shown to dechlorinate pentachlorophenol (PCP). Fifty percent of added PCP was removed by C. beijerinckii Z alone, which increased to 83% in the presence of both C. beijerinckii Z and ferrihydrite after 11 days of incubation. Without C. beijerinckii Z, the surface-bound Fe(II) also abiotically dechlorinated more than 40% of the added PCP. This indicated that the biotic dechlorination by C. beijerinckii Z is a dominant process causing PCP transformation through anaerobic dechlorination, and that the dechlorination rates can be accelerated by simultaneous reduction of Fe(III). A biochemical electron transfer coupling process between sorbed Fe(II) produced by C. beijerinckii Z and reductive dehalogenation is a possible mechanism. This finding increases our knowledge of the role of Fe(III) reducing genera of Clostridium in dechlorinating halogenated organic pollutants, such as PCP, in anaerobic paddy soils. - Highlights: • A novel Fe(III) reducing bacterium Clostridium beijerinckii Z was isolated and could dechlorinate pentachlorophenol. • Anaerobic transformation of PCP by C. beijerinckii Z could be accelerated by simultaneous reduction of Fe(III). • Biochemical electron transfer coupling between Fe redox cycling and reductive dechlorination was the mechanism involved. • The finding increases our knowledge of Clostridium sp. regarding their multiple functions for dechlorinating pollutants.

  16. Bacterial reduction and release of adsorbed arsenate on Fe(Ⅲ)-, Al-and coprecipitated Fe(Ⅲ)/Al-hydroxides

    Institute of Scientific and Technical Information of China (English)

    Xuexia Zhang; Yongfeng Jia; Shaofeng Wang; Rongrong Pan; Xudong Zhang

    2012-01-01

    Mobilization of arsenic under anaerobic conditions is of great concern in arsenic contaminated soils and sediments.Bacterial reduction of As(Ⅴ)and Fe(Ⅲ)influences the cycling and partitioning of arsenic between solid and aqueous phase.We investigated the impact of bacterially mediated reductions of Fe(Ⅲ)/A1 hydroxides-bound arsenic(Ⅴ)and iron(Ⅲ)oxides on arsenic release.Our results suggested that As(Ⅴ)reduction occurred prior to Fe(Ⅲ)reduction,and Fe(Ⅲ)reduction did not enhance the release of arsenic.Instead,Fe(Ⅲ)hydroxides retained their dissolved concentrations during the experimental process,even though the new iron mineral-magnetite formed.In contrast,the release of reduced As(Ⅲ)was promoted greatly when aluminum hydroxides was incorporated.Thus,the substitution of aluminum hydroxides may be responsible for the release of arsenic in the contaminated soils and sediments,since aluminum substitution of Fe(Ⅲ)hydroxides universally occurs under natural conditions.

  17. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Drochioiu, Gabi; Ion, Laura [Alexandru Ioan Cuza University of Iasi, 11 Carol I, Iasi 700506 (Romania); Murariu, Manuela; Habasescu, Laura [Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi 700487 (Romania)

    2014-10-06

    An elevation in the concentration of heavy metal ions in Alzheimer’s disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1–3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloid-β peptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals.

  18. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer's disease

    Science.gov (United States)

    Drochioiu, Gabi; Murariu, Manuela; Ion, Laura; Habasescu, Laura

    2014-10-01

    An elevation in the concentration of heavy metal ions in Alzheimer's disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1-3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloid-β peptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals.

  19. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    Directory of Open Access Journals (Sweden)

    Taku Tsuneishi

    2014-06-01

    Full Text Available Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as a hydroxide ion conductive electrolyte for all-solid-state Fe–air batteries. The cell performance of the Fe–air batteries was examined using a mixture of KOH–LDH and iron-oxide-supported carbon as the negative electrode.

  20. Synthesis, characterization and performance in arsenic removal of iron-doped activated carbons prepared by impregnation with Fe(III) and Fe(II).

    Science.gov (United States)

    Muñiz, G; Fierro, V; Celzard, A; Furdin, G; Gonzalez-Sánchez, G; Ballinas, M L

    2009-06-15

    Arsenic removal from natural well water from the state of Chihuahua (Mexico) is investigated by adsorption using a commercial activated carbon (AC). The latter is used as such, or after oxidation by several chemicals in aqueous solution: nitric acid, hydrogen peroxide, and ammonium persulphate. Raw and oxidised activated carbons are fully characterised (elementary analysis, surface chemistry, pore texture parameters, pH(ZC), and TEM observation). Adsorption of As is measured in the aforementioned water, containing ca. 300 ppb of arsenic: removal of As is poor with the raw AC, and only the most oxidised carbons exhibit higher performances. By contrast, iron-doped ACs are much more efficient for that purpose, though their As uptake strongly depends on their preparation conditions: a number of samples were synthesised by impregnation of raw and oxidised ACs with HCl aqueous solutions of either FeCl(3) or FeCl(2) at various concentrations and various pH. It is shown that iron(II) chloride is better for obtaining high iron contents in the resultant ACs (up to 8.34 wt.%), leading to high As uptake, close to 0.036 mg As/g C. In these conditions, 100% of the As initially present in the natural well water is removed, as soon as the Fe content of the adsorbent is higher than 2 wt.%.