WorldWideScience

Sample records for iron iii biliverdin

  1. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    Science.gov (United States)

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  2. The role of biliverdin reductase in colorectal cancer

    International Nuclear Information System (INIS)

    Bauer, M.

    2010-01-01

    In recent years, the effects of biliverdin and bilirubin have been studied extensively, and an inhibitory effect of bile pigments in cancer progression has been proposed. In this study we focused on the effects of biliverdin reductase, the enzyme that converts biliverdin to bilirubin, in colorectal cancer. For in vitro experiments we used a human colorectal carcinoma cell line and transfected it with an expression construct of shRNA specific for biliverdin reductase, to create cells with stable knock-down of enzyme expression. Cell proliferation was analyzed using the CASY model TT cell counting device. Western blot protein analysis was performed to study intracellular signaling cascades. Samples of human colorectal cancer were analyzed using immunohistochemistry. We were able to confirm the antiproliferative effects of bile pigments on cancer cells in vitro. However, this effect was attenuated in biliverdin reductase knock down cells. ERK and Akt activation seen under biliverdin and bilirubin treatment was also reduced in biliverdin reductase deficient cells. Immunohistochemical analysis of tumor samples from patients with colorectal cancer showed elevated biliverdin reductase levels. High enzyme expression was associated with lower overall and disease free patient survival. We conclude that BVR is required for bile pigment mediated effects regarding cancer cell proliferation and modulation of intracellular signaling cascades. The role of BVR overexpression in vivo and its exact influence on cancer progression and patient survival need to be further investigated. (author) [de

  3. Direct antioxidant properties of bilirubin andbiliverdin. Is there a role for biliverdin reductase?

    Directory of Open Access Journals (Sweden)

    Thomas eJansen

    2012-03-01

    Full Text Available Reactive oxygen species (ROS and signaling events are involved in the pathogenesis of endothelial dysfunction and represent a major contribution to vascular regulation. Molecular signaling is highly dependent on reactive oxygen species. But depending on the amount of ROS production it might have toxic or protective effects. Despite a large number of negative outcomes in large clinical trials (e.g. HOPE, HOPE-TOO, antioxidant molecules and agents are important players to influence the critical balance between production and elimination of RONS. However, chronic systemic antioxidant therapy lacks clinical efficacy, probably by interfering with important physiological redox signaling pathways. Therefore, it may be a much more promising attempt to induce intrinsic antioxidant pathways in order to increase the antioxidants not systemically but at the place of oxidative stress and complications. Among others, heme oxygenase (HO has been shown to be important for attenuating the overall production of ROS in a broad range of disease states through its ability to degrade heme and to produce carbon monoxide (CO, biliverdin/bilirubin, and the release of free iron with subsequent ferritin induction. With the present review we would like to highlight the important antioxidant role of the heme oxygenase system and especially discuss the contribution of the biliverdin, bilirubin and biliverdin reductase to these beneficial effects. The bilierdin reductase was reported to confer an antioxidant redox amplification cycle by which low, physiological bilirubin concentrations confer potent antioxidant protection via recycling of biliverdin from oxidized bilirubin by the biliverdin reductase, linking this sink for oxidants to the NADPH pool. To date the existence and role of this antioxidant redox cycle is still under debate and we present and discuss the pros and cons as well as our own findings on this topic.

  4. Sorption of trace amounts of gallium (III) on iron (III) oxide

    International Nuclear Information System (INIS)

    Music, S.; Gessner, M.; Wolf, R.H.H.

    1979-01-01

    The sorption of trace amounts of gallium(III) on iron(III) oxide has been studied as a function of pH. Optimum conditions have been found for the preconcentration of traces of gallium(III) by iron(III) oxide. The influence of surface active substances and of complexing agents on the sorption of trace amounts of gallium(III) on iron(III) oxide has been also studied. (orig.) [de

  5. Sorption of trace amounts of gallium (III) on iron (III) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Music, S; Gessner, M; Wolf, R H.H. [Institut Rudjer Boskovic, Zagreb (Yugoslavia)

    1979-01-01

    The sorption of trace amounts of gallium(III) on iron(III) oxide has been studied as a function of pH. Optimum conditions have been found for the preconcentration of traces of gallium(III) by iron(III) oxide. The influence of surface active substances and of complexing agents on the sorption of trace amounts of gallium(III) on iron(III) oxide has been also studied.

  6. Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers

    DEFF Research Database (Denmark)

    Huang, Li‐Zhi; Ayala‐Luis, Karina B.; Fang, Liping

    2013-01-01

    hydroxide planar layer were preserved during the oxidation, as shown by FTIR spectroscopy. The high positive charge in the hydroxide layer produced by the oxidation of iron(II) to iron(III) is partially compensated by the deprotonation of hydroxy groups, as shown by X‐ray photoelectron spectroscopy...... between the alkyl chains of the intercalated dodecanoate anions play a crucial role in stabilizing the structure and hindering the collapse of the iron(II)–iron(III) (hydr)oxide structure during oxidation. This is the first report describing the formation of a stable planar layered octahedral iron......(III) (hydr)oxide. oxGRC12 shows promise as a sorbent and host for hydrophobic reagents, and as a possible source of single planar layers of iron(III) (hydr)oxide....

  7. Sorption of small amounts of europium(III) on iron(III) hydroxide and oxide

    International Nuclear Information System (INIS)

    Music, S.; Gessner, M.; Wolf, R.H.H.

    1979-01-01

    The sorption of small amounts of europium(III) on iron(III) hydroxide and oxide has been studied as a function of pH. The mechanism of sorption is discussed. Optimum conditions have been found for the preconcentration of small or trace amounts of europium(III) by iron(III) hydroxide and oxide. The influence of complexing agents (EDTA, oxalate, tartrate and 5-sulfosalicylic acid) on the sorption of small amounts of europium(III) on iron(III) oxide has also been studied. (author)

  8. Interactions between Biliverdin, Oxidative Damage, and Spleen Morphology after Simulated Aggressive Encounters in Veiled Chameleons.

    Directory of Open Access Journals (Sweden)

    Michael W Butler

    Full Text Available Stressors frequently increase oxidative damage--unless organisms simultaneously mount effective antioxidant responses. One putative mitigative mechanism is the use of biliverdin, an antioxidant produced in the spleen during erythrocyte degradation. We hypothesized that both wild and captive-bred male veiled chameleons (Chamaeleo calyptratus, which are highly aggressive to conspecifics, would respond to agonistic displays with increased levels of oxidative damage, but that increased levels of biliverdin would limit this increase. We found that even just visual exposure to a potential combatant resulted in decreased body mass during the subsequent 48-hour period, but that hematocrit, biliverdin concentration in the bile, relative spleen size, and oxidative damage in plasma, liver, and spleen were unaffected. Contrary to our predictions, we found that individuals with smaller spleens exhibited greater decreases in hematocrit and higher bile biliverdin concentrations, suggesting a revision to the idea of spleen-dependent erythrocyte processing. Interestingly, individuals with larger spleens had reduced oxidative damage in both the liver and spleen, demonstrating the spleen's importance in modulating oxidative damage. We also uncovered differences in spleen size and oxidative damage between wild and captive-bred chameleons, highlighting environmentally dependent differences in oxidative physiology. Lastly, we found no relationship between oxidative damage and biliverdin concentration, calling into question biliverdin's antioxidant role in this species.

  9. Separation of valence forms of chromium(III) and chromium(VI) by coprecipitation with iron(III) hydroxide

    International Nuclear Information System (INIS)

    Nazirmadov, B.; Khamidov, B.O.; Egorova, L.A.

    1989-01-01

    The sorption of 9.62·10 -5 M of Cr (III) and Cr (VI) with iron hydroxide in 1 M potassium nitrate and potassium chloride was investigated in relation to the pH of the medium. Experimental data on the sorption of chromium(III) and chromium(VI) with iron(III) hydroxide made it possible to determine the region of practically complete concentration of Cr (III) and Cr (VI) (pH = 3-6.5). The results from spectrophotometric investigations, calculated data on the distribution of the hydroxocationic forms of chromium(III) and the anions of chromium(IV), and their sorption by iron-(III) hydroxide made it possible to characterize the sorbability of the cationic and anionic forms of chromium in various degrees of oxidation. On this basis a method was developed for the separation of chromium(III) and chromium(VI) by coprecipitation on iron(III) hydroxide and their separation from the iron(III) hydroxide support

  10. Stabilization of structure in near-infrared fluorescent proteins by binding of biliverdin chromophore

    Science.gov (United States)

    Stepanenko, Olesya V.; Stepanenko, Olga V.; Bublikov, G. S.; Kuznetsova, I. M.; Verkhusha, V. V.; Turoverov, K. K.

    2017-07-01

    Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes and their mutants with different location of Cys residues, which able to bind a biliverdin chromophore, or without these Cys residues were studied using intrinsic tryptophan fluorescence, NIR fluorescence and circular dichroism. It was shown that a covalent binding of the biliverdin chromophore to a Cys residue via thioether group substantially stabilizes the spatial structure of NIR FPs. The stability of the protein structure and the chromophore association strength strongly depends on the location of Cys residues and decreases in the following order: a protein with Cys residues in both domains, a protein with Cys in PAS domains, and a protein with Cys in GAF domains. NIR FPs without Cys residues capable to covalently attach biliverdin have the lowest stability, comparable to NIR FP apoforms.

  11. Transgenic petunia with the iron(III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    Science.gov (United States)

    Murata, Yoshiko; Itoh, Yoshiyuki; Iwashita, Takashi; Namba, Kosuke

    2015-01-01

    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to diverse

  12. Transgenic petunia with the iron(III-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    Directory of Open Access Journals (Sweden)

    Yoshiko Murata

    Full Text Available Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III to iron(II and the uptake of iron(II by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III. Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems

  13. Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans

    Science.gov (United States)

    Pereira, Dora I.A.; Bruggraber, Sylvaine F.A.; Faria, Nuno; Poots, Lynsey K.; Tagmount, Mani A.; Aslam, Mohamad F.; Frazer, David M.; Vulpe, Chris D.; Anderson, Gregory J.; Powell, Jonathan J.

    2014-01-01

    Iron deficiency is the most common nutritional disorder worldwide with substantial impact on health and economy. Current treatments predominantly rely on soluble iron which adversely affects the gastrointestinal tract. We have developed organic acid-modified Fe(III) oxo-hydroxide nanomaterials, here termed nano Fe(III), as alternative safe iron delivery agents. Nano Fe(III) absorption in humans correlated with serum iron increase (P solubility. The most promising preparation (iron hydroxide adipate tartrate: IHAT) showed ~80% relative bioavailability to Fe(II) sulfate in humans and, in a rodent model, IHAT was equivalent to Fe(II) sulfate at repleting haemoglobin. Furthermore, IHAT did not accumulate in the intestinal mucosa and, unlike Fe(II) sulfate, promoted a beneficial microbiota. In cellular models, IHAT was 14-fold less toxic than Fe(II) sulfate/ascorbate. Nano Fe(III) manifests minimal acute intestinal toxicity in cellular and murine models and shows efficacy at treating iron deficiency anaemia. From the Clinical Editor This paper reports the development of novel nano-Fe(III) formulations, with the goal of achieving a magnitude less intestinal toxicity and excellent bioavailability in the treatment of iron deficiency anemia. Out of the tested preparations, iron hydroxide adipate tartrate met the above criteria, and may become an important tool in addressing this common condition. PMID:24983890

  14. Heme oxygenase activity correlates with serum indices of iron homeostasis in healthy nonsmokers

    Science.gov (United States)

    Heme oxygenase (HO) catalyzes the breakdown of heme to carbon monoxide, iron, and biliverdin. While the use of genetically altered animal models in investigation has established distinct associations between HO activity and systemic iron availability, studies have not yet confirm...

  15. Study of Ascorbic Acid as Iron(III Reducing Agent for Spectrophotometric Iron Speciation

    Directory of Open Access Journals (Sweden)

    Antesar Elmagirbi

    2012-10-01

    Full Text Available The study of ascorbic acid as a reducing agent for iron(III has been investigated in order to obtain an alternative carcinogenic reducing agent, hydroxylamine, used in spectrophotometric standard method based on the formation of a red-orange complex of Fe(II-o-phenanthroline. The study was optimised with regards to ascorbic acid concentration as well as pH solution. The results showed that ascorbic acid showed maximum capacity as reducing agent of iron(III under concentration of 4.46.10-4 M and pH solution of 1-4.Under these conditions, ascorbic acid reduced iron(III proportionally and performed similarly to that of hydroxylamine.  The method gave result to linear calibration over the range of 0.2-2 mg/L withhigh accuracy of 97 % and relative standard deviation of less than 2 %. This method was successfully applied to assay iron speciation in water samples.

  16. Iron (III) oxyhydroxide in isopropyl alcohol preparation, characterization and solvothermal treatment

    International Nuclear Information System (INIS)

    Carvalho, E.L.C.N.; Jafelicci Junior, M.

    1989-01-01

    Iron (III) nitrate hydrolysis was carried out in isopropyl alcohol solution by an aqueous amonia gas stream resulting in iron (III) oxyhydroxide sol. It has been investigated in this work the solvothermal treatment of this colloidal system at 120 0 C and 24 hours. Iron (III) oxyhydroxide freshly obtained and solvothermally treated. Samples were dryed by lyophilization. Products obtained were characterized by the following techniques: spectrophotometric iron analysis by 1,10-orthophenantroline complexation method, powder X-ray diffraction, vibrational infrared spectra and differential thermal analysis. After solvothermal treatment resulting product was crystallized into hematite, while freshly iron (III) oxyhydroxide was non crystalline. Both of them are very active powder, showing high water adsorption [pt

  17. Measuring marine iron(III) complexes by CLE-AdSV

    NARCIS (Netherlands)

    Town, R.M.; Leeuwen, van H.P.

    2005-01-01

    Iron(iii) speciation data, as determined by competitive ligand exchange?adsorptive stripping voltammetry (CLE-AdSV), is reconsidered in the light of the kinetic features of the measurement. The very large stability constants reported for iron(iii) in marine ecosystems are shown to be possibly due to

  18. Moessbauer study of iron(III) salicylates

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh, K; Sharma, N D; Gupta, D C [Kurukshetra Univ. (India). Dept. of Physics; Puri, D M [Kurukshetra Univ. (India). Dept. of Chemistry

    1979-07-01

    Moessbauer infrared and magnetic studies of different basic salicylates of iron(III) are reported. Comparison of observed isomer shift and quadrupole splitting with the earlier work allows to assign the trinuclear chain structure to the complexes wherein the central iron atom in the chain is considered to be octahedrally coordinated in case of salicylate and 4-aminosalicylate derivatives, and pentacoordinated for the thiosalicylate with the terminal iron atom in tetrahedral symmetry. The Moessbauer parameters and ..mu..sub(eff)-value indicate the high spin state of the central iron atom and low spin state for the terminal ones.

  19. Toxicological studies and antimicrobial properties of some Iron(III ...

    African Journals Online (AJOL)

    Two iron(III) complexes of Ciprofloxacin were synthesized by reaction of the ligand with iron(III) chloride hexahydrate in different solutions. The nature of bonding of the ligands and the structure of the isolated metal complexes were elucidated on the basis of their physical and spectroscopic studies. The infrared spectra ...

  20. Kinetic Study of Iron (III) Salicyl Hydroxamate Complexes

    International Nuclear Information System (INIS)

    Ali, K.; Ashiq, U.; Ara, R.; Kazmi, R.

    2005-01-01

    The formation of Salicylhydroxamic acid iron (III) complexes were studied at different pH. The reaction at pH 8 and 6 between iron nitrate and salicylhydroxamic acid is very fast and reddish brown colour with iron at 425 nm appears within seconds i.e. within mixing time. The concentration of salicylhydroxamic acid was 20-80 times higher than the concentration of iron (III) solution in order to fulfill pseudo first order conditions. The reddish brown colour appears within mixing time and further change in colour was very slow and observed at 425 nm wave length. The rate constant at pH 8 is 0.1886 sec and at pH 6 is 1.472 sec. The sharp appearance of colour is due to formation of 1:1 and 1:2 complexes while the observed slow change in colour may be due to rearrangement of salicylhydroxamic acid from bidentate to tridentate or it may be due to the formation of 1:3 complex. In the next set of reactions the 1:1 complex of salicylhydroxamic acid iron (III) was prepared by mixing iron (III) and salicylhydroxamic acid in 1:1 mole ratio and then the formation of 1:2 complex was observed at pH 5, 4.5 and 4. The concentration of salicylhydroxamic acid solution was 2-10 times higher than the 1:1 complex of salicylhydroxamic acid iron (III) complex. The observed reactions were very fast and were not truly a first order reaction. The rate constant is 24.85 sec at pH 4.5 and 16.98 sec at pH4. The reaction of 1:1 complex with salicylhydroxamic acid at pH3 was very fast. The lamda max of iron complex is 500 nm and of final mixture is 476 nm. The reaction was assumed to be reversible. The absorbance of both species at a particular wavelength is additive. Using this property the equilibrium constant was calculated which was not constant at different ratios of 1:1 complex and salicylhydroxamic acid, which further indicate the possibility of rearrangement reaction. (author)

  1. Mononuclear non-heme iron(III)

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 2. Mononuclear non-heme iron(III) complexes of linear and tripodal tridentate ligands as functional models for catechol dioxygenases: Effect of -alkyl substitution on regioselectivity and reaction rate. Mallayan Palaniandavar Kusalendiran Visvaganesan.

  2. Disproportionation of hydroxylamine by water-soluble iron(III) porphyrinate compounds.

    Science.gov (United States)

    Bari, Sara E; Amorebieta, Valentín T; Gutiérrez, María M; Olabe, José A; Doctorovich, Fabio

    2010-01-01

    The reactions of hydroxylamine (HA) with several water-soluble iron(III) porphyrinate compounds, namely iron(III) meso-tetrakis-(N-ethylpyridinium-2yl)-porphyrinate ([Fe(III)(TEPyP)](5+)), iron(III) meso-tetrakis-(4-sulphonatophenyl)-porphyrinate ([Fe(III)(TPPS)](3-)), and microperoxidase 11 ([Fe(III)(MP11)]) were studied for different [Fe(III)(Porph)]/[HA] ratios, under anaerobic conditions at neutral pH. Efficient catalytic processes leading to the disproportionation of HA by these iron(III) porphyrinates were evidenced for the first time. As a common feature, only N(2) and N(2)O were found as gaseous, nitrogen-containing oxidation products, while NH(3) was the unique reduced species detected. Different N(2)/N(2)O ratios obtained with these three porphyrinates strongly suggest distinctive mechanistic scenarios: while [Fe(III)(TEPyP)](5+) and [Fe(III)(MP11)] formed unknown steady-state porphyrinic intermediates in the presence of HA, [Fe(III)(TPPS)](3-) led to the well characterized soluble intermediate, [Fe(II)(TPPS)NO](4-). Free-radical formation was only evidenced for [Fe(III)(TEPyP)](5+), as a consequence of a metal centered reduction. We discuss the catalytic pathways of HA disproportionation on the basis of the distribution of gaseous products, free radicals formation, the nature of porphyrinic intermediates, the Fe(II)/Fe(III) redox potential, the coordinating capabilities of each complex, and the kinetic analysis. The absence of NO(2)(-) revealed either that no HAO-like activity was operative under our reaction conditions, or that NO(2)(-), if formed, was consumed in the reaction milieu.

  3. Arsenic removal with iron(II) and iron(III) in waters with high silicate and phosphate concentrations.

    Science.gov (United States)

    Roberts, Linda C; Hug, Stephan J; Ruettimann, Thomas; Billah, Morsaline; Khan, Abdul Wahab; Rahman, Mohammad Tariqur

    2004-01-01

    Arsenic removal by passive treatment, in which naturally present Fe(II) is oxidized by aeration and the forming iron(III) (hydr)oxides precipitate with adsorbed arsenic, is the simplest conceivable water treatment option. However, competing anions and low iron concentrations often require additional iron. Application of Fe(II) instead of the usually applied Fe(III) is shown to be advantageous, as oxidation of Fe(II) by dissolved oxygen causes partial oxidation of As(III) and iron(III) (hydr)oxides formed from Fe(II) have higher sorption capacities. In simulated groundwater (8.2 mM HCO3(-), 2.5 mM Ca2+, 1.6 mM Mg2+, 30 mg/L Si, 3 mg/L P, 500 ppb As(III), or As(V), pH 7.0 +/- 0.1), addition of Fe(II) clearly leads to better As removal than Fe(III). Multiple additions of Fe(II) further improved the removal of As(II). A competitive coprecipitation model that considers As(III) oxidation explains the observed results and allows the estimation of arsenic removal under different conditions. Lowering 500 microg/L As(III) to below 50 microg/L As(tot) in filtered water required > 80 mg/L Fe(III), 50-55 mg/L Fe(II) in one single addition, and 20-25 mg/L in multiple additions. With As(V), 10-12 mg/L Fe(II) and 15-18 mg/L Fe(III) was required. In the absence of Si and P, removal efficiencies for Fe(II) and Fe(III) were similar: 30-40 mg/L was required for As(II), and 2.0-2.5 mg/L was required for As(V). In a field study with 22 tubewells in Bangladesh, passive treatment efficiently removed phosphate, but iron contents were generally too low for efficient arsenic removal.

  4. Iron(III) citrate speciation in aqueous solution.

    Science.gov (United States)

    Silva, Andre M N; Kong, XiaoLe; Parkin, Mark C; Cammack, Richard; Hider, Robert C

    2009-10-28

    Citrate is an iron chelator and it has been shown to be the major iron ligand in the xylem sap of plants. Furthermore, citrate has been demonstrated to be an important ligand for the non-transferrin bound iron (NTBI) pool occurring in the plasma of individuals suffering from iron-overload. However, ferric citrate chemistry is complicated and a definitive description of its aqueous speciation at neutral pH remains elusive. X-Ray crystallography data indicates that the alcohol function of citrate (Cit4-) is involved in Fe(III) coordination and that deprotonation of this functional group occurs upon complex formation. The inability to include this deprotonation in the affinity constant calculations has been a major source of divergence between various reports of iron(III)-citrate affinity constants. However the recent determination of the alcoholic pKa of citric acid (H4Cit) renders the reassessment of the ferric citrate system possible. The aqueous speciation of ferric citrate has been investigated by mass spectrometry and EPR spectroscopy. It was observed that the most relevant species are a monoiron dicitrate species and dinuclear and trinuclear oligomeric complexes, the relative concentration of which depends on the solution pH value and the iron : citric acid molar ratio. Spectrophotometric titration was utilized for affinity constant determination and the formation constant for the biologically relevant [Fe(Cit)2]5- is reported for the first time.

  5. Effect of iron(III) ion on moso bamboo pyrolysis under microwave irradiation.

    Science.gov (United States)

    Dong, Qing; Li, Xiangqian; Wang, Zhaoyu; Bi, Yanhong; Yang, Rongling; Zhang, Jinfeng; Luo, Hongzhen; Niu, Miaomiao; Qi, Bo; Lu, Chen

    2017-11-01

    The effect of iron(III) ion on microwave pyrolysis of moso bamboo was investigated. Hydrofluoric acid washing was used as a pilot process to demineralize moso bamboo in order to eliminate the influences of the other inorganics contained in moso bamboo itself. The results indicated that the addition of iron(III) ion increased the maximal reaction temperatures under microwave condition dependent on the amount of the added iron(III) ion. The production of the non-condensable gases was promoted by the addition of iron(III) ion mainly at the expense of liquid products. Iron(III) ion exhibited the positive effect for syngas production and inhibited the formation of CO 2 and CH 4 . The formation of Fe 2 O 3 and Fe 3 O 4 was found during microwave pyrolysis and the mechanism of the two metallic oxides formation was described in this work. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Kinetics and mechanism of oxidation of glycine by iron(III)

    Indian Academy of Sciences (India)

    Kinetics and mechanism of oxidation of glycine by iron(III)-1,10-phenanthroline complex has been studied in perchloric acid medium. The reaction is first order with respect to iron(III) and glycine. An increase in (phenanthroline) increases the rate, while increase in [H+] decreases the rate. Hence it can be inferred that the ...

  7. Iron(III) species formed during iron(II) oxidation and iron-core formation in bacterioferritin of Escherichia coli

    International Nuclear Information System (INIS)

    Hawkins, C.; Treffry, A.; Mackey, J.; Williams, J.M.; Andrews, S.C.; Guest, J.R.; Harrison, P.M.

    1996-01-01

    This paper describes a preliminary investigation of the mechanisms of Fe(II) oxidation and storage of Fe(III) in the bacterioferritin of Escherichia coli (EcBFR). Using Moessbauer spectroscopy to examine the initial oxidation of iron by EcBFR it is confirmed that this ferritin exhibits 'ferroxidase' activity and is shown that dimeric and monomeric iron species are produced as intermediates. The characteristics of ferroxidase activity in EcBFR is compare d with those of human H-chain ferritin (HuHF) and discuss the different Moessbauer parameters of their dimeric iron with reference to the structures of their di-metal sites. In addition, it is presented preliminary findings suggesting that after an initial 'burst', the rate of oxidation is greatly reduced, possibly due to blockage of the ferroxidase centre by bound iron. A new component, not found in HuHF and probably representing a small cluster of Fe(III) atoms, is reported

  8. Mononuclear non-heme iron(III) complexes of linear and tripodal ...

    Indian Academy of Sciences (India)

    The rate of oxygenation depends on the solvent and the. Lewis acidity of iron(III) ... has been achieved by non-heme iron enzymes and their ..... oxygen atoms of nitrate ion (figure 3). ... enhanced covalency of iron-catecholate interaction and.

  9. ROLE OF IRON (II, III) HYDROXYCARBONATE GREEN RUST IN ARSENIC REMEDIATION USING ZEROVALENT IRON IN COLUMN TESTS

    Science.gov (United States)

    We examined corrosion products of zerovalent iron (Peerless iron) that was used in three column tests for removing arsenic under dynamic flow conditions with and without added phosphate and silicate. Iron(II, III) hydroxycarbonate and magnetite were major iron corrosion products...

  10. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion.

    Science.gov (United States)

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D; Nam, Wonwoo

    2014-02-18

    Reaction of a nonheme iron(III)-peroxo complex, [Fe(III)(14-TMC)(O2)](+), with NO(+), a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2˙(-)) + NO], affords an iron(IV)-oxo complex, [Fe(IV)(14-TMC)(O)](2+), and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [Fe(III)(14-TMC)(NO3)(F)](+).

  11. Mechanism of oxidation of L-methionine by iron(III)-1,10 ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Kinetics and mechanism of oxidation of L-methionine by iron(III)–1,10- phenanthroline complex have been studied in perchloric acid medium. The reaction is first order each in iron(III) and methionine. Increase in [phenanthroline] increases the rate while increase in [HClO4] decreases it. While the reactive species ...

  12. N-butylamine functionalized graphene oxide for detection of iron(III) by photoluminescence quenching.

    Science.gov (United States)

    Gholami, Javad; Manteghian, Mehrdad; Badiei, Alireza; Ueda, Hiroshi; Javanbakht, Mehran

    2016-02-01

    An N-butylamine functionalized graphene oxide nanolayer was synthesized and characterized by ultraviolet (UV)-visible spectrometry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Detection of iron(III) based on photoluminescence spectroscopy was investigated. The N-butylamine functionalized graphene oxide was shown to specifically interact with iron (III), compared with other cationic trace elements including potassium (I), sodium (I), calcium (II), chromium (III), zinc (II), cobalt (II), copper (II), magnesium (II), manganese (II), and molybdenum (VI). The quenching effect of iron (III) on the luminescence emission of N-butylamine functionalized graphene oxide layer was used to detect iron (III). The limit of detection (2.8 × 10(-6)  M) and limit of quantitation (2.9 × 10(-5)  M) were obtained under optimal conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  13. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion†

    Science.gov (United States)

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D.; Nam, Wonwoo

    2014-01-01

    Reaction of a nonheme iron(III)-peroxo complex, [FeIII(14-TMC)(O2)]+, with NO+, a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2•−) + NO], affords an iron(IV)-oxo complex, [FeIV(14-TMC)(O)]2+, and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [FeIII(14-TMC)(NO3)(F)]+. PMID:24394960

  14. An isoelectronic NO dioxygenase reaction using a nonheme iron(III)-peroxo complex and nitrosonium ion†

    OpenAIRE

    Yokoyama, Atsutoshi; Han, Jung Eun; Karlin, Kenneth D.; Nam, Wonwoo

    2014-01-01

    Reaction of a nonheme iron(III)-peroxo complex, [FeIII(14-TMC)(O2)]+, with NO+, a transformation which is essentially isoelectronic with that for nitric oxide dioxygenases [Fe(III)(O2•−) + NO], affords an iron(IV)-oxo complex, [FeIV(14-TMC)(O)]2+, and nitrogen dioxide (NO2), followed by conversion to an iron(III)-nitrato complex, [FeIII(14-TMC)(NO3)(F)]+.

  15. Microbial Reducibility of Fe(III Phases Associated with the Genesis of Iron Ore Caves in the Iron Quadrangle, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Ceth W. Parker

    2013-11-01

    Full Text Available The iron mining regions of Brazil contain thousands of “iron ore caves” (IOCs that form within Fe(III-rich deposits. The mechanisms by which these IOCs form remain unclear, but the reductive dissolution of Fe(III (hydroxides by Fe(III reducing bacteria (FeRB could provide a microbiological mechanism for their formation. We evaluated the susceptibility of Fe(III deposits associated with these caves to reduction by the FeRB Shewanella oneidensis MR-1 to test this hypothesis. Canga, an Fe(III-rich duricrust, contained poorly crystalline Fe(III phases that were more susceptible to reduction than the Fe(III (predominantly hematite associated with banded iron formation (BIF, iron ore, and mine spoil. In all cases, the addition of a humic acid analogue enhanced Fe(III reduction, presumably by shuttling electrons from S. oneidensis to Fe(III phases. The particle size and quartz-Si content of the solids appeared to exert control on the rate and extent of Fe(III reduction by S. oneidensis, with more bioreduction of Fe(III associated with solid phases containing more quartz. Our results provide evidence that IOCs may be formed by the activities of Fe(III reducing bacteria (FeRB, and the rate of this formation is dependent on the physicochemical and mineralogical characteristics of the Fe(III phases of the surrounding rock.

  16. Magnetic interactions in iron (III) porphyrin chlorides

    International Nuclear Information System (INIS)

    Ernst, J.; Subramanian, Japyesan; Fuhrhop, J.H.

    1977-01-01

    Intermolecular exchange interactions in iron(III) porphyrin chlorides (porphyrin = OEP, proto, TPP) have been studied by X-ray structure, EPR and magnetic susceptibility studies. The crystal structure of Fe(III)OEP-Cl was found to be different from that of the other two. Different types of exchange broadened EPR-spectra are obtained which are attributable to the arrangement in the crystals. The EPR results correlate well with magnetic susceptibility data. (orig.) [de

  17. Self-assembled Targeting of Cancer Cells by Iron(III)-doped, Silica Nanoparticles

    OpenAIRE

    Mitchell, K.K. Pohaku; Sandoval, S.; Cortes-Mateos, M. J.; Alfaro, J.G.; Kummel, A. C.; Trogler, W.C.

    2014-01-01

    Iron(III)-doped silica nanoshells are shown to possess an in vitro cell-receptor mediated targeting functionality for endocytosis. Compared to plain silica nanoparticles, iron enriched ones are shown to be target-specific, a property that makes them potentially better vehicles for applications, such as drug delivery and tumor imaging, by making them more selective and thereby reducing the nanoparticle dose. Iron(III) in the nanoshells can interact with endogenous transferrin, a serum protein ...

  18. Arene activation by a nonheme iron(III)-hydroperoxo complex: pathways leading to phenol and ketone products.

    Science.gov (United States)

    Faponle, Abayomi S; Banse, Frédéric; de Visser, Sam P

    2016-07-01

    Iron(III)-hydroperoxo complexes are found in various nonheme iron enzymes as catalytic cycle intermediates; however, little is known on their catalytic properties. The recent work of Banse and co-workers on a biomimetic nonheme iron(III)-hydroperoxo complex provided evidence of its involvement in reactivity with arenes. This contrasts the behavior of heme iron(III)-hydroperoxo complexes that are known to be sluggish oxidants. To gain insight into the reaction mechanism of the biomimetic iron(III)-hydroperoxo complex with arenes, we performed a computational (density functional theory) study. The calculations show that iron(III)-hydroperoxo reacts with substrates via low free energies of activation that should be accessible at room temperature. Moreover, a dominant ketone reaction product is observed as primary products rather than the thermodynamically more stable phenols. These product distributions are analyzed and the calculations show that charge interaction between the iron(III)-hydroxo group and the substrate in the intermediate state pushes the transferring proton to the meta-carbon atom of the substrate and guides the selectivity of ketone formation. These studies show that the relative ratio of ketone versus phenol as primary products can be affected by external interactions of the oxidant with the substrate. Moreover, iron(III)-hydroperoxo complexes are shown to selectively give ketone products, whereas iron(IV)-oxo complexes will react with arenes to form phenols instead.

  19. Complexation Effect on Redox Potential of Iron(III)-Iron(II) Couple: A Simple Potentiometric Experiment

    Science.gov (United States)

    Rizvi, Masood Ahmad; Syed, Raashid Maqsood; Khan, Badruddin

    2011-01-01

    A titration curve with multiple inflection points results when a mixture of two or more reducing agents with sufficiently different reduction potentials are titrated. In this experiment iron(II) complexes are combined into a mixture of reducing agents and are oxidized to the corresponding iron(III) complexes. As all of the complexes involve the…

  20. Application of sorption method on hydroxides for purification of some reactive from iron(III) markings

    International Nuclear Information System (INIS)

    Rakhmonberdiev, A.D.; Khamidov, B.O.

    1986-01-01

    The method of purification of solutions of citric acid, tartaric acid and their salts, potassium hydroxide, potassium nitrate and chloride, sodium perchlorate from iron (III) impurities by means of sorption method on zirconium hydroxide is elaborated. The control of iron(III) content in solutions is conducted by inversion voltammetry method with mercury-graphite electrode. It is defined that complete sorption of iron (III) ions achieves at ph =4÷14.

  1. Heterobimetallic gadolinium(III)-iron(III) complex of DTPA-bis(3-hydroxytyramide)

    International Nuclear Information System (INIS)

    Parac-Vogt, Tatjana N.; Kimpe, Kristof; Binnemans, Koen

    2004-01-01

    A derivative of diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA), carrying two catechol functional groups has been synthesised by the reaction between DTPA-bis(anhydride) and 3-hydroxytyramine (dopamine). The ligand DTPA-bis(3-hydroxytyramide), [DTPA(HTA) 2 ], is able to form stable heterobimetallic complexes with gadolinium(III) and iron(III) ions. The gadolinium(III) occupies the internal coordination cage of DTPA formed by three nitrogens, two carboxylate and two amide oxygens, while the [Fe(NTA)(H 2 O) 2 ] (nitrilotriacetic acid, NTA) binds to catechol units by the substitution of two water ligands. The formation of polymeric species was avoided by using the tripodal NTA ligand. The heterobimetallic complex was characterised by means of visible absorption spectroscopy, electron spray ionisation-mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR) spectroscopy

  2. Thermodynamics of complex formation of natural iron(III)porphyrins with neutral ligands

    International Nuclear Information System (INIS)

    Lebedeva, Nataliya Sh.; Yakubov, Sergey P.; Vyugin, Anatoly I.; Parfenyuk, Elena V.

    2003-01-01

    Calorimetric titrations in benzene and chloroform at 298.15 K have been performed to give the complexes stability constants and the thermodynamic parameters for the complex formation of nature iron(III)porphyrins with pyridine. Stoichimetry of the complexes formed has been determined. It has been found that the thermodynamic parameters obtained depend on nature of peripheral substituents of the porphyrins. The estimation of the influence of Cl - and Ac - ions on the processes studied has been carried out. Using thermodynamic analysis method, the crystallsolvates of nature iron(III)porphyrins with benzene have been studied. Stoichiometry, thermal and energetic stability of the π-π-complexes formed have been determined. The data obtained have been used to the estimate solvent effect on the thermodynamic parameters of axial coordination of pyridine on the iron(III)porphyrins in benzene

  3. Effect of treatment with single total-dose intravenous iron versus daily oral iron(III-hydroxide polymaltose on moderate puerperal iron-deficiency anemia

    Directory of Open Access Journals (Sweden)

    Iyoke CA

    2017-05-01

    Full Text Available Chukwuemeka Anthony Iyoke,1 Fausta Chioma Emegoakor,1 Euzebus Chinonye Ezugwu,1 Lucky Osaheni Lawani,2 Leonard Ogbonna Ajah,1 Jude Anazoeze Madu,3 Hyginus Uzo Ezegwui,1 Frank Okechukwu Ezugwu4 1Department of Obstetrics and Gynaecology, University of Nigeria, Enugu Campus, 2Department of Obstetrics and Gynaecology, Federal Teaching Hospital, Abakaliki, 3Department of Haematology, University of Nigeria, Nsukka, 4Department of Obstetrics and Gynaecology, College of Medicine, Enugu State University, Enugu, Nigeria Background: Iron-deficiency anemia is the most common nutritional cause of anemia in pregnancy and is often responsible for puerperal anemia. Puerperal anemia can impair postpartum maternal and neonatal well-being. Objective: To determine the effect of treatment of moderate puerperal iron-deficiency anemia using a single intravenous total-dose iron dextran versus daily single dose oral iron(III-hydroxide polymaltose. Methodology: A randomized controlled study in which postpartum women with moderate iron-deficiency anemia were randomized into treatment with either a single total-dose intravenous iron dextran or with daily single doses of oral iron(III-hydroxide polymaltose tablets for 6 weeks. Effects on hemoglobin concentration using either method were compared at 6 weeks postpartum. Analysis was per protocol using SPSS version 17 for windows. P-values ≤0.05 were considered significant. Results: Two hundred eighty-four women were recruited for the study: 142 women received single total dose intravenous infusion of iron dextran while 142 received daily oral iron(III-hydroxide polymaltose tablets. Approximately 84.0% (237/282 completed the study and were analyzed including 81% (115/142 of those randomized to injectable iron therapy compared to 85.9% (122/142 of those randomized to oral treatment. The proportions of women who had attained hemoglobin concentration of at least 10 g/dL by the 6 weeks postpartum visit did not differ

  4. Adsorption Characteristics of Different Adsorbents and Iron(III Salt for Removing As(V from Water

    Directory of Open Access Journals (Sweden)

    Josip Ćurko

    2016-01-01

    Full Text Available The aim of this study is to determine the adsorption performance of three types of adsorbents for removal of As(V from water: Bayoxide® E33 (granular iron(III oxide, Titansorb® (granular titanium oxide and a suspension of precipitated iron(III hydroxide. Results of As(V adsorption stoichiometry of two commercial adsorbents and precipitated iron(III hydroxide in tap and demineralized water were fitted to Freundlich and Langmuir adsorption isotherm equations, from which adsorption constants and adsorption capacity were calculated. The separation factor RL for the three adsorbents ranged from 0.04 to 0.61, indicating effective adsorption. Precipitated iron(III hydroxide had the greatest, while Titansorb had the lowest capacity to adsorb As(V. Comparison of adsorption from tap or demineralized water showed that Bayoxide and precipitated iron(III hydroxide had higher adsorption capacity in demineralized water, whereas Titansorb showed a slightly higher capacity in tap water. These results provide mechanistic insights into how commonly used adsorbents remove As(V from water.

  5. Experimental and Computational Evidence for the Mechanism of Intradiol Catechol Dioxygenation by Non-Heme Iron(III) Complexes

    Science.gov (United States)

    Jastrzebski, Robin; Quesne, Matthew G; Weckhuysen, Bert M; de Visser, Sam P; Bruijnincx, Pieter C A

    2014-01-01

    Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate-determining C=O bond formation step. PMID:25322920

  6. ARSENIC INTERACTION WITH IRON (II, III) HYDROXYCARBONATE GREEN RUST: IMPLICATIONS FOR ARSENIC REMEDIATION

    Science.gov (United States)

    Zerovalent iron is being used in permeable reactive barriers (PRBs) to remediate groundwater arsenic contamination. Iron(II, III) hydroxycarbonate green rust is a major corrosion product of zerovalent iron under anaerobic conditions. The interaction between arsenic and this green...

  7. Biomimetic oxidation of piperine and piplartine catalyzed by iron(III) and manganese(III) porphyrins.

    Science.gov (United States)

    Schaab, Estela Hanauer; Crotti, Antonio Eduardo Miller; Iamamoto, Yassuko; Kato, Massuo Jorge; Lotufo, Letícia Veras Costa; Lopes, Norberto Peporine

    2010-01-01

    Synthetic metalloporphyrins, in the presence of monooxygen donors, are known to mimetize various reactions of cytochrome P450 enzymes systems in the oxidation of drugs and natural products. The oxidation of piperine and piplartine by iodosylbenzene using iron(III) and manganese(III) porphyrins yielded mono- and dihydroxylated products, respectively. Piplartine showed to be a more reactive substrate towards the catalysts tested. The structures of the oxidation products were proposed based on electrospray ionization tandem mass spectrometry.

  8. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments.

    Science.gov (United States)

    Hori, Tomoyuki; Aoyagi, Tomo; Itoh, Hideomi; Narihiro, Takashi; Oikawa, Azusa; Suzuki, Kiyofumi; Ogata, Atsushi; Friedrich, Michael W; Conrad, Ralf; Kamagata, Yoichi

    2015-01-01

    Reduction of crystalline Fe(III) oxides is one of the most important electron sinks for organic compound oxidation in natural environments. Yet the limited number of isolates makes it difficult to understand the physiology and ecological impact of the microorganisms involved. Here, two-stage cultivation was implemented to selectively enrich and isolate crystalline iron(III) oxide reducing microorganisms in soils and sediments. Firstly, iron reducers were enriched and other untargeted eutrophs were depleted by 2-years successive culture on a crystalline ferric iron oxide (i.e., goethite, lepidocrocite, hematite, or magnetite) as electron acceptor. Fifty-eight out of 136 incubation conditions allowed the continued existence of microorganisms as confirmed by PCR amplification. High-throughput Illumina sequencing and clone library analysis based on 16S rRNA genes revealed that the enrichment cultures on each of the ferric iron oxides contained bacteria belonging to the Deltaproteobacteria (mainly Geobacteraceae), followed by Firmicutes and Chloroflexi, which also comprised most of the operational taxonomic units (OTUs) identified. Venn diagrams indicated that the core OTUs enriched with all of the iron oxides were dominant in the Geobacteraceae while each type of iron oxides supplemented selectively enriched specific OTUs in the other phylogenetic groups. Secondly, 38 enrichment cultures including novel microorganisms were transferred to soluble-iron(III) containing media in order to stimulate the proliferation of the enriched iron reducers. Through extinction dilution-culture and single colony isolation, six strains within the Deltaproteobacteria were finally obtained; five strains belonged to the genus Geobacter and one strain to Pelobacter. The 16S rRNA genes of these isolates were 94.8-98.1% identical in sequence to cultured relatives. All the isolates were able to grow on acetate and ferric iron but their physiological characteristics differed considerably in

  9. The preparation of magnetite from iron(III) and iron(II) salt solutions

    International Nuclear Information System (INIS)

    Segal, D.L.

    1980-10-01

    Methods are described for the preparation of magnetite from iron(III) and iron(II) salt solutions at temperatures between 295 to 373 K. The effect of the reagent concentration, a chelating agent and different alkali-metal cations on the formation of magnetite has been investigated. The magnetite samples have been examined by X-ray diffraction, transmission electron microscopy, adsorption of nitrogen, emission spectroscopy, X-ray photoelectron spectroscopy and by determination of the point of zero charge. A review of previous work on the preparation of magnetite in an aqueous environment is also included. This work is relevant to the corrosion processes which can occur in the water coolant circuits of nuclear reactors. (author)

  10. Differences and Comparisons of the Properties and Reactivities of Iron(III)–hydroperoxo Complexes with Saturated Coordination Sphere

    Science.gov (United States)

    Faponle, Abayomi S; Quesne, Matthew G; Sastri, Chivukula V; Banse, Frédéric; de Visser, Sam P

    2015-01-01

    Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)–oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)–hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)–hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)–hydroperoxo reacted directly with substrates or that an initial O–O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)–hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)–hydroperoxo complex with pentadentate ligand system (L52). Direct C–O bond formation by an iron(III)–hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L52)FeIII(OOH)]2+ should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)–hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O–O bond, whereas a heterolytic O–O bond breaking in heme iron(III)–hydroperoxo is found. PMID:25399782

  11. Toxicological studies and antimicrobial properties of some Iron(III ...

    African Journals Online (AJOL)

    SERVER

    2007-12-17

    Dec 17, 2007 ... Two iron(III) complexes of Ciprofloxacin were synthesized by reaction of the ... The infrared spectra suggest that two classes of compounds were obtained: molecular complex in .... Soluble in H2O, MeOH, EtOH; Mol. cond.

  12. Mechanism of oxidation of L-methionine by iron(III)

    Indian Academy of Sciences (India)

    phenanthroline complex have been studied in perchloric acid medium. The reaction is first order each in iron(III) and methionine. Increase in [phenanthroline] increases the rate while increase in [HClO4] decreases it. While the reactive species of the ...

  13. Determinação de ferro (III em produtos farmacêuticos por titulação fotométrica = Determination of iron (III in pharmaceutical products by photometric titration

    Directory of Open Access Journals (Sweden)

    Airton Vicente Pereira

    2011-01-01

    Full Text Available Este trabalho descreve a montagem de um sistema de titulacao fotometrica simples e de baixo custo para a determinacao de ferro (III em produtos farmaceuticos. O sistema de titulacao fotometrica foi construido utilizando-se a bomba peristaltica de um espectrofotometro convencional. O procedimento e baseado na titulacao de ferro (III com EDTA e acido salicilico como indicador. A absorcao do complexo ferro (III-acido salicilico foi monitorada espectrofotometricamente em 525 nm. O limite de quantificacao foi de 5 ƒÝg de ferro (III. O procedimento de titulacao fotometrica foi aplicado para a determinacao de ferro (III em amostras contendo sulfato ferroso e hidroxido ferrico polimaltosado. O procedimento mostrou sensibilidade, reprodutibilidade e precisao para a utilizacao em analise rotineira de ferro (III em produtos farmaceuticos.This paper describes a simple, precise and low-cost photometrictitration method for iron (III determination in pharmaceutical preparations. The photometric titration system was constructed using the peristaltic pump of a conventional spectrophotometer. The method is based on titration of iron (III with EDTA using salicylic acid as indicator. The absorption of the iron (III-salicylic acid complex wasmonitored spectrophotometrically at 525 nm. The limit of quantification was 5 ƒÝg of iron (III. The photometric titration procedure was applied for the determination of iron (III in samples of ferrous sulfate and ferric hydroxide polymaltose complex. The procedure showed sensibility, reproducibility and accuracy for use as a method for the routine analysis of iron (III in pharmaceutical formulations.

  14. Organic iron (III) complexing ligands during an iron enrichment experiment in the western subarctic North Pacific

    Science.gov (United States)

    Kondo, Yoshiko; Takeda, Shigenobu; Nishioka, Jun; Obata, Hajime; Furuya, Ken; Johnson, William Keith; Wong, C. S.

    2008-06-01

    Complexation of iron (III) with natural organic ligands was investigated during a mesoscale iron enrichment experiment in the western subarctic North Pacific (SEEDS II). After the iron infusions, ligand concentrations increased rapidly with subsequent decreases. While the increases of ligands might have been partly influenced by amorphous iron colloids formation (12-29%), most in-situ increases were attributable to the Dilution of the fertilized patch may have contributed to the rapid decreases of the ligands. During the bloom decline, ligand concentration increased again, and the high concentrations persisted for 10 days. The conditional stability constant was not different between inside and outside of the fertilized patch. These results suggest that the chemical speciation of the released iron was strongly affected by formation of the ligands; the production of ligands observed during the bloom decline will strongly impact the iron cycle and bioavailability in the surface water.

  15. Microbial dissimilatory iron(III) reduction: Studies on the mechanism and on processes of environmental relevance

    OpenAIRE

    Jahn, Michael

    2005-01-01

    Many microbes are able to respire aerobically oxygen or anaerobically other electron acceptors for example sulphate, nitrate, manganese(IV) or Fe(III). As iron minerals are widespread in nature, dissimilatory iron(III) reduction by different microorganisms is a very important process of anaerobic respiration. The general goal of this work was to improve the knowledge of processes, in which iron-reducing microbes are said to play an important role. For this purpose, in one part the focus wa...

  16. ARSENATE AND ARSENITE SORPTION AND ARSENITE OXIDATION BY IRON (II, III) HYDROXYCARBONATE GREEN RUST

    Science.gov (United States)

    Iron (II, III) hydroxycarbonate green rust is a major corrosion product of zerovalent iron that is being used in permeable reactive barriers to remediate groundwater arsenic contamination. To optimize the design of iron barriers, it is important to evaluate the influence of geoch...

  17. Applications of inorganic ion exchangers; I-sorption and fixation of some radionuclides in synthetic iron (III)titanate ion exchanger

    International Nuclear Information System (INIS)

    Abou-Mesalam, M.M.; El-Naggar, I.M.

    2002-01-01

    Iron(III) titanate as inorganic ion exchange material has been synthesized by addition of ferric nitrate solution to titanium tetrachloride (dissolved in 4M HCI) with molar ratio equal to unity. The data obtained proposed that the chemical formula of iron(III) titanate may written either as Fe 1 .3 (TiO). 2h 2 O or Fe(TiO 4 ) 0 .76.1.5H 2 O. The surface area values of unloaded and loaded iron(III) titanate with Cs + , Co 2 + and Eu 3 + ions were measured using BET-technique. The selectiy sequence for sorption of Cs + , Co 2 + and Fu 3 + ions on iron (III) titanate was found to be; Co 2 + > Eu 3 + > Cs + . The leach rate values of Cs + , Co 2 + and Fu 3 + ions from iron (II) titanate heated to 1000 degree C different leachants were determined and shows lower values compared to those obtained from unheated iron (III) titanate (dried at 50 degree C) which elucidate the suitability of iron (III) titanate in fixation of Cs + , Co 2 + and Eu 3 + ions by thermal treatment up to1000 degree.

  18. Ion-Selective Electrode for the Determination of Iron(III in Vitamin Formulations

    Directory of Open Access Journals (Sweden)

    Teixeira Marcos Fernando de S.

    1998-01-01

    Full Text Available A coated graphite-epoxy ion-selective electrode for iron(III, based on the ion-pair formed between [Fe(citrate2]3- and the tricaprylylmethylammonium cation (Aliquat 336 in a poly(vinylchloride (PVC matrix has been constructed. A thin membrane film of this ion-pair, dibutylphthalate (DBPh in PVC was deposited directly onto a Perspex® tube, which contained a graphite-epoxy conductor substrate. The coating solution was prepared by dissolving 30% (w/w of PVC in 10 mL of tetrahydrofuran following addition of 65% (w/w DBPh and 5% (w/w of the ionic pair. The effect of pH, citrate concentration and some cations on the electrode response has been investigated. The E(mV vs. log [Fe(citrate2]3- electrode response was linear for iron(III concentration from 1.0 x 10-3 mol/L to 1.0 x 10-1 mol/L in 1.0 mol/L citrate medium, with a slope of 19.3 ± 0.5 mV/decade and a useful lifetime of at least six months (more than 800 determinations for each polymeric membrane used. The detection limit was 7.5 x 10-4 mol/L and the relative standard deviation was less than 3% for a solution containing 5.0 x 10-3 mol/L of iron(III (n = 10. The application of this electrode for iron(III determination in samples of vitamin formulations is described. The results obtained with this procedure are in close agreement with those obtained using AA spectrophotometry (r = 0.9999.

  19. Anodic Stripping Voltammetric Detection of Arsenic(III) at Platinum-Iron(III) Nanoparticle Modified Carbon Nanotube on Glassy Carbon Electrode

    International Nuclear Information System (INIS)

    Shin, Seung Hyun; Hong, Hun Gi

    2010-01-01

    The electrochemical detection of As(III) was investigated on a platinum-iron(III) nanoparticles modified multiwalled carbon nanotube on glassy carbon electrode(nanoPt-Fe(III)/MWCNT/GCE) in 0.1 M H 2 SO 4 . The nanoPt-Fe(III)/ MWCNT/GCE was prepared via continuous potential cycling in the range from .0.8 to 0.7 V (vs. Ag/AgCl), in 0.1 M KCl solution containing 0.9 mM K 2 PtCl 6 and 0.6 mM FeCl 3 . The Pt nanoparticles and iron oxide were co-electrodeposited into the MWCNT-Nafion composite film on GCE. The resulting electrode was examined by cyclic voltammetry (CV), scanning electron microscopy (SEM), and anodic stripping voltammetry (ASV). For the detection of As(III), the nanoPt-Fe(III)/MWCNT/GCE showed low detection limit of 10 nM (0.75 ppb) and high sensitivity of 4.76 μAμM -1 , while the World Health Organization's guideline value of arsenic for drinking water is 10 ppb. It is worth to note that the electrode presents no interference from copper ion, which is the most serious interfering species in arsenic detection

  20. Multisensor system for determination of iron(II), iron(III) and uranium(VI) in complex solutions

    International Nuclear Information System (INIS)

    Legin, A.V.; Seleznev, B.L.; Rudnitskaya, A.M.; Vlasov, Yu.G.

    1998-01-01

    The aim of the present paper is the development and analytical evaluation of a multisensor system for determination of low content of iron(II), iron(III) and uranium(VI) in complex aqueous media. Sensor array included sensors on the basis of chalcogenide vitreous materials with redox and ionic cross-sensitivities, crystalline silver sulphide electrode, noble metal electrodes Pt, Au, Ag and redox sensor on the basis of oxide glass. Potentiometric measurements have been taken in a conventional electrochemical cell vs. a standard Ag/AgCl reference electrode. All measurements have been taken at room temperature. Calibration solutions contained UO 2 (NO 3 ) 2 in concentration range 10 -6 -1,610 -5 mol/L, K 3 Fe(CN) 6 and K 4 Fe(CN) 6 or FeSO 4 (NH 4 ) 2 SO 4 and FeCl 3 , with the ratio of Fe(II)/Fe(III) concentration from 100:1 to 1:100, the total concentration of Fe was 10 -4 and 10 -5 mol/L. All solutions have been made on the background electrolyte of calcium and magnesium chlorides and sulphates with the fixed content of 5-27 mmol/L of each component which is a typical one for groundwater or mining water. Sensor potentials have been processed by a back-propagation artificial neural net. Average error of determination of Fe(II) and Fe(III) is about 20 %, of uranium(VI) - 40 %. It was found that sensitivity of the sensor array to iron and uranium is irrespective of the chemical form of these species

  1. Chemical state analysis of iron(III) compounds precipitated homogeneously from solutions containing urea by means of Moessbauer spectrometry and x-ray diffractometry

    International Nuclear Information System (INIS)

    Ujihira, Yusuke; Ohyabu, Matashige; Murakami, Tetsuro; Horie, Tsuyoshi.

    1978-01-01

    Chemical states of iron(III) compounds, precipitated homogeneously by heating the iron(III) salt solution at 363 K in the presence of urea, was studied by means of Moessbauer spectrometry and X-ray diffractometry. The pH-time relation of urea hydrolysis revealed that the precipitation process from homogeneous solution is identical to the hydrolysis of iron(III) ion at pH around 2 under the homogeneous supply of OH - ion, which is generated by hydrolysis of urea. Accordingly, iron(III) oxide hydroxide or similar compounds to the hydrolysis products of iron(III) ion was precipitated by the precipitation from homogeneous solution methods. Akaganeite (β-FeOOH) was crystallized from 0.1 M iron(III) chloride solution. Goethite(α-FeOOH) and hematite(α-Fe 2 O 3 ) was precipitated from 0.1 M iron(III) nitrate solution, vigorous liberation of OH - ion favoring the crystallization of hematite. The addition of chloride ion to the solution resulted in the formation of akaganeite. Basic salt of iron sulfate[NH 4 Fe 3 (OH) 6 (SO 4 ) 2 ] and goethite were formed from 0.1 M iron(III) sulfate solution, the former being obtained in the more moderate condition of the urea hydrolysis ( 363 K). (author)

  2. CHEMICAL INTERACTIONS OF ARSENATE, ARSENITE, PHOSPHATE, AND SILICATE WITH IRON (II, III) HYDROXYCARBONATE GREEN RUST

    Science.gov (United States)

    Granular zerovalent iron has been proposed to be used as a medium in permeable reactive barriers (PRBs) to remove arsenic from contaminated groundwater. Iron(II, III) hydroxycarbonate green rust (carbonate green rust, or CGR) is a major corrosion product of zerovalent iron under ...

  3. Multisensor system for determination of iron(II), iron(III), uranium(VI) and uranium(IV) in complex solutions

    International Nuclear Information System (INIS)

    Legin, A.V.; Seleznev, B.L.; Rudnitskaya, A.M.; Vlasov, Yu.G.; Tverdokhlebov, S.V.; Mack, B.; Abraham, A.; Arnold, T.; Baraniak, L.; Nitsche, H.

    1999-01-01

    Development and analytical evaluation of a multisensor system based on the principles of 'electronic tongue' for the determination of low contents of uranium(VI), uranium(IV), iron(II) and iron(III) in complex aqueous media have been carried out. A set of 29 different chemical sensors on the basis of all- solid-state crystalline and vitreous materials with enhanced electronic conductivity and redox and ionic cross-sensitivity have been incorporated into the sensor array. Multidimensional data have been processed by pattern recognition methods such as artificial neural networks and partial least squares. It has been demonstrated that Fe(II) and Fe(III) contents in the range from 10 -7 to 10 -4 mol L -1 of total iron concentration can be determined with the average precision of about 25 %. U(VI) and U(IV) contents can been determined with the average precision of 10-40% depending on the concentration. The developed multisensor system can be applied in future for the analysis of mining and borehole waters as well other contaminated natural media, including on-site measurements. (author)

  4. Reactivity of tris(acetylacetonato) iron(III) with tridentate [ONO] donor Schiff base as an access to newer mixed-ligand iron(III) complexes

    Science.gov (United States)

    Bhattacharjee, Chira R.; Goswami, Pankaj; Pramanik, Harun A. R.; Paul, Pradip C.; Mondal, Paritosh

    2011-05-01

    Two new mixed-ligand iron(III) complexes, [Fe(L n)(acac)(C 2H 5OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac) 3] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H 2L 1) or 2-aminobenzoic acid (H 2L 2). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L n)(acac)X] ( n = 1, 2; X = Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, 1H and 13C NMR spectroscopy. Room temperature magnetic susceptibility measurements ( μeff ˜ 5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (Δ Ep > 100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential ( E1/2) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level.

  5. Reply to Comments on Measuring marine iron(III) complexes by CLE-AdSV

    NARCIS (Netherlands)

    Town, R.M.; Leeuwen, van H.P.

    2005-01-01

    The interpretation of CLE-AdSV based iron(iii) speciation data for marine waters has been called into question in light of the kinetic features of the measurement. The implications of the re-think may have consequences for understanding iron biogeochemistry and its impact on ecosystem functioning.

  6. Moessbauer spectroscopic evidence for iron(III) complexation and reduction in acidic aqueous solutions of indole-3-butyric acid

    International Nuclear Information System (INIS)

    Kovacs, K.; Kuzmann, E.; Vertes, A.; Kamnev, A.A.; Shchelochkov, A.G.; Medzihradszky-Schweiger, H.; Mink, J.; Hungarian Academy of Sciences, Budapest

    2004-01-01

    Moessbauer spectroscopic studies were carried out in acidic (pH 2.3) 57 Fe III nitrate containing aqueous solutions of indole-3-butyric acid (IBA), rapidly frozen in liquid nitrogen at various periods of time after mixing the reagents. The data obtained show that in solution in the presence of IBA, iron(III) forms a complex with a dimeric structure characterised by a quadrupole doublet, whereas without IBA under similar conditions iron(III) exhibits a broad spectral feature due to a slow paramagnetic spin relaxation which, at liquid nitrogen temperature, results in a large anomalous line broadening (or, at T = 4.2 K, in a hyperfine magnetic splitting). The spectra of 57 Fe III +IBA solutions, kept at ambient temperature under aerobic conditions for increasing periods of time before freezing, contained a gradually increasing contribution of a component with a higher quadrupole splitting. The Moessbauer parameters for that component are typical for iron(II) aquo complexes, thus showing that under these conditions gradual reduction of iron(III) occurs, so that the majority (85%) of dissolved iron(III) is reduced within 2 days. The Moessbauer parameters for the iron(III)-IBA complex in aqueous solution and in the solid state (separated from the solution by filtration) were found to be similar, which may indicate that the dissolved and solid complexes have the same composition and/or iron(III) coordination environment. For the solid complex, the data of elemental analysis suggest the following composition of the dimer: [L 2 Fe-(OH) 2 -FeL 2 ] (where L is indole-3-butyrate). This structure is also in agreement with the data of infrared spectroscopic study of the complex reported earlier, with the side-chain carboxylic group in indole-3-butyrate as a bidentate ligand. The Moessbauer parameters for the solid 57 Fe III -IBA complex at T = 80 K and its acetone solution rapidly frozen in liquid nitrogen were virtually identical, which indicates that the complex retains its

  7. Nanocrystalline Axially Bridged Iron Phthalocyanine Polymeric Conductor: (μ-Thiocyanato(phthalocyaninatoiron(III

    Directory of Open Access Journals (Sweden)

    Eiza Shimizu

    2016-01-01

    Full Text Available Skewered Iron(III phthalocyanine conducting polymer can be constructed with the utilization of axial thiocyanato ligands ((μ-thiocyanato(phthalocyaninatoiron(III; (FeIII(Pc(SCNn thereby creating additional avenues for electron transport through a linear SCN bridge, apart from the intermolecular π-π orbital overlap between the Pc molecules. In this paper, we report on the conversion of bulk FeIII(Pc(SCNn polymeric organic conductor into crystalline nanostructures through horizontal vapor phase growth process. The needle-like nanostructures are deemed to provide more ordered and, thus, more π-π interactive interskewer FeIII(Pc(SCNn polymer orientation, resulting in a twofold increase of its electrical conductivity per materials density unit.

  8. Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates**

    Science.gov (United States)

    Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P

    2015-01-01

    FeIII–hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme FeIII–hypohalite intermediates of possible relevance to iron halogenases. We show that FeIII-OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the FeIII-OCl, and ultimately FeIV=O, species and provide indirect evidence for a short-lived FeII-OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases. PMID:25663379

  9. Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz.

    Science.gov (United States)

    Neil, Chelsea W; Lee, Byeongdu; Jun, Young-Shin

    2014-10-21

    Iron(III) (hydr)oxides play an important role in the geochemical cycling of contaminants in natural and engineered aquatic systems. The ability of iron(III) (hydr)oxides to immobilize contaminants can be related to whether the precipitates form heterogeneously (e.g., at mineral surfaces) or homogeneously in solution. Utilizing grazing incidence small-angle X-ray scattering (GISAXS), we studied heterogeneous iron(III) (hydr)oxide nucleation and growth on quartz substrates for systems containing arsenate and phosphate anions. For the iron(III) only system, the radius of gyration (Rg) of heterogeneously formed precipitates grew from 1.5 to 2.5 (± 1.0) nm within 1 h. For the system containing 10(-5) M arsenate, Rg grew from 3.6 to 6.1 (± 0.5) nm, and for the system containing 10(-5) M phosphate, Rg grew from 2.0 to 4.0 (± 0.2) nm. While the systems containing these oxyanions had more growth, the system containing only iron(III) had the most nucleation events on substrates. Ex situ analyses of homogeneously and heterogeneously formed precipitates indicated that precipitates in the arsenate system had the highest water content and that oxyanions may bridge iron(III) hydroxide polymeric embryos to form a structure similar to ferric arsenate or ferric phosphate. These new findings are important because differences in nucleation and growth rates and particle sizes will impact the number of available reactive sites and the reactivity of newly formed particles toward aqueous contaminants.

  10. Complexation equilibria and spectrophotometric determination of iron(III) with 1-amino-4-hydroxyanthraquinone.

    Science.gov (United States)

    Abu-Bakr, M S; Sedaira, H; Hashem, E Y

    1994-10-01

    The complex equilibria of iron(III) with 1-amino-4-hydroxyanthraquinone (AMHA) were studied spectrophotometrically in 40% (v/v) ethanol and an ionic strength of 0.1M (NaClO(4)). The complexation reactions were demonstrated and characterized using graphical logarithmic analysis of the absorbance-pH graphs. A simple, rapid, selective and sensitive method for the spectrophotometric determination of trace amounts of Fe(III) is developed based on the formation of Fe(AMHA) complex at pH 2.5 (lambda(max) = 640 nm, epsilon approximately = 2.1 x 10(4) L. mol(-1) . cm(-1)) in the presence of a large number of foreign ions. Interferences caused by palladium(II) was masked by the addition of cyanide ions. The method has been applied to the determination of iron in some synthetic samples and polymetallic iron ores.

  11. Sulphate analysis in uranium leach iron(III) chloride solutions by inductively coupled argon plasma spectrometry

    International Nuclear Information System (INIS)

    Nirdosh, I.; Lakhani, S.; Yunus, M.Z.M.

    1993-01-01

    Inductively coupled Argon Plasma Spectrometry is used for the indirect determination of sulphate in iron(III) chloride leach solution of Elliot Lake uranium ores via addition of a known amount of barium ions and analyzing for excess of barium. The ore contains ∼ 7 wt% pyrite, FeS 2 , as the major mineral which oxidizes to generate sulphate during leaching with Fe(III). The effects of pH, the concentrations of Fe(III) and chloride ions and for presence of ethanol in the test samples on the accuracy of analysis are studied. It is found that unlike the Rhodizonate method, removal of iron(III) from or addition of ethanol to the test sample prior to analysis are not required. Linear calibration curves are obtained. (author)

  12. Precipitation of iron (III) using magnesium oxide in fluidized bed

    International Nuclear Information System (INIS)

    Esteban-Bocardo, P. A.; Ferreira-Rocha, S. D.

    2006-01-01

    A process for iron (III) removal by hydroxide precipitation from and acid synthetic inorganic effluent using magnesium oxide as an alternative precipitant agent in a fluidized bed was developed. An acid synthetic inorganic effluent containing 100 and 200 mg/l of ferric ions (pH=1.0) was continuously fed up to the acrylic column (30 cm high and 2 cm diameter) during 180 minutes. Magnesium oxide pulp (3% v/v) was injected at the beginning of the experiment in order to allow the iron hydroxides precipitation. The concentration and pH profiles agreed in their curves, while the pH profile rose,the concentration profile decreased and a high percentage of iron removal /higher to 99%) was reached. Extremely low iron concentrations have been reached, thus permitting to attend to the environmental standard of 10.0 mg/l for discharge of effluent containing ferric ions established by the law DN 10/86 of COPAM (Conselho de Politica Ambiental do Estado de Minas Gerais-Brazil). (Author)

  13. A study of the solvent effect on the chemical interaction between ortho-positronium and iron(III)-chloride

    International Nuclear Information System (INIS)

    Vertes, A.

    1980-01-01

    The chemical rate constant (k) between ortho-positronium (o-Ps) and iron(III)-chloride was measured in donor solvents as benzene, acetone, pyridine and ethanol. The minimal k was obtained in benzene and the maximal one in acetone. The minimal k value was explained by the low dispersity of FeCl 3 in benzene, and the high rate of the interaction in acetone was considered to be the result of the presence of monomer and dimer iron(III)-species and of the chloride coordination to iron(III). The probability of Ps formation depended only on the character of the solvent and not on the concentration of the FeCl 3 solute. (author)

  14. Neodymium Recovery by Chitosan/Iron(III Hydroxide [ChiFer(III] Sorbent Material: Batch and Column Systems

    Directory of Open Access Journals (Sweden)

    Hary Demey

    2018-02-01

    Full Text Available A low cost composite material was synthesized for neodymium recovery from dilute aqueous solutions. The in-situ production of the composite containing chitosan and iron(III hydroxide (ChiFer(III was improved and the results were compared with raw chitosan particles. The sorbent was characterized using Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy-energy dispersive X-ray analyses (SEM-EDX. The equilibrium studies were performed using firstly a batch system, and secondly a continuous system. The sorption isotherms were fitted with the Langmuir, Freundlich, and Sips models; experimental data was better described with the Langmuir equation and the maximum sorption capacity was 13.8 mg g-1 at pH 4. The introduction of iron into the biopolymer matrix increases by four times the sorption uptake of the chitosan; the individual sorption capacity of iron (into the composite was calculated as 30.9 mg Nd/g Fe. The experimental results of the columns were fitted adequately using the Thomas model. As an approach to Nd-Fe-B permanent magnets effluents, a synthetic dilute effluent was simulated at pH 4, in order to evaluate the selectivity of the sorbent material; the overshooting of boron in the column system confirmed the higher selectivity toward neodymium ions. The elution step was carried out using MilliQ-water with the pH set to 3.5 (dilute HCl solution.

  15. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation

    OpenAIRE

    Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E. M.; Jenkins, Jermaine L.; Heimiller, Chelsea; Maines, Mahin D.

    2016-01-01

    Biliverdin reductase A (BVR) and Akt isozymes have overlapping pleiotropic functions in the insulin/PI3K/MAPK pathway. Human BVR (hBVR) also reduces the hemeoxygenase activity product biliverdin to bilirubin and is directly activated by insulin receptor kinase (IRK). Akt isoenzymes (Akt1–3) are downstream of IRK and are activated by phosphatidylinositol-dependent kinase 1 (PDK1) phosphorylating T308 before S473 autophosphorylation. Akt (RxRxxSF) and PDK1 (RFxFPxFS) binding motifs are present ...

  16. Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite

    International Nuclear Information System (INIS)

    Zboril, Radek; Andrle, Marek; Oplustil, Frantisek; Machala, Libor; Tucek, Jiri; Filip, Jan; Marusak, Zdenek; Sharma, Virender K.

    2012-01-01

    Highlights: ► Ferrate(VI) has been found to be highly efficient to decontaminate chemical warfare agents. ► Fast degradation of sulfur mustard, soman and compound VX by ferrate(VI). ► Nanoscale zero-valent iron particles are considerably less efficient in degradation of studied warfare agents compared to ferrate(VI). - Abstract: Nanoscale zero-valent iron (nZVI) particles and a composite containing a mixture of ferrate(VI) and ferrate(III) were prepared by thermal procedures. The phase compositions, valence states of iron, and particle sizes of iron-bearing compounds were determined by combination of X-ray powder diffraction, Mössbauer spectroscopy and scanning electron microscopy. The applicability of these environmentally friendly iron based materials in treatment of chemical warfare agents (CWAs) has been tested with three representative compounds, sulfur mustard (bis(2-chlorethyl) sulfide, HD), soman ((3,3′-imethylbutan-2-yl)-methylphosphonofluoridate, GD), and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX). Zero-valent iron, even in the nanodimensional state, had a sluggish reactivity with CWAs, which was also observed in low degrees of CWAs degradation. On the contrary, ferrate(VI)/(III) composite exhibited a high reactivity and complete degradations of CWAs were accomplished. Under the studied conditions, the estimated first-order rate constants (∼10 −2 s −1 ) with the ferrate(VI)/(III) composite were several orders of magnitude higher than those of spontaneous hydrolysis of CWAs (10 −8 –10 −6 s −1 ). The results demonstrated that the oxidative technology based on application of ferrate(VI) is very promising to decontaminate CWAs.

  17. Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite

    Energy Technology Data Exchange (ETDEWEB)

    Zboril, Radek, E-mail: zboril@prfnw.upol.cz [Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Andrle, Marek; Oplustil, Frantisek [Military Institute VOP-026 Sternberk, Division in Brno, Rybkova 8, 602 00 Brno (Czech Republic); Machala, Libor; Tucek, Jiri; Filip, Jan; Marusak, Zdenek [Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Sharma, Virender K., E-mail: vsharma@fit.edu [Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States); Center of Ferrate Excellence, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Ferrate(VI) has been found to be highly efficient to decontaminate chemical warfare agents. Black-Right-Pointing-Pointer Fast degradation of sulfur mustard, soman and compound VX by ferrate(VI). Black-Right-Pointing-Pointer Nanoscale zero-valent iron particles are considerably less efficient in degradation of studied warfare agents compared to ferrate(VI). - Abstract: Nanoscale zero-valent iron (nZVI) particles and a composite containing a mixture of ferrate(VI) and ferrate(III) were prepared by thermal procedures. The phase compositions, valence states of iron, and particle sizes of iron-bearing compounds were determined by combination of X-ray powder diffraction, Moessbauer spectroscopy and scanning electron microscopy. The applicability of these environmentally friendly iron based materials in treatment of chemical warfare agents (CWAs) has been tested with three representative compounds, sulfur mustard (bis(2-chlorethyl) sulfide, HD), soman ((3,3 Prime -imethylbutan-2-yl)-methylphosphonofluoridate, GD), and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX). Zero-valent iron, even in the nanodimensional state, had a sluggish reactivity with CWAs, which was also observed in low degrees of CWAs degradation. On the contrary, ferrate(VI)/(III) composite exhibited a high reactivity and complete degradations of CWAs were accomplished. Under the studied conditions, the estimated first-order rate constants ({approx}10{sup -2} s{sup -1}) with the ferrate(VI)/(III) composite were several orders of magnitude higher than those of spontaneous hydrolysis of CWAs (10{sup -8}-10{sup -6} s{sup -1}). The results demonstrated that the oxidative technology based on application of ferrate(VI) is very promising to decontaminate CWAs.

  18. Eggshell Biliverdin and Protoporphyrin Pigments in a Songbird: Are They Derived from Erythrocytes, Blood Plasma, or the Shell Gland?

    Science.gov (United States)

    Hargitai, Rita; Boross, Nóra; Hámori, Susanne; Neuberger, Eszter; Nyiri, Zoltán

    Biliverdin and protoporphyrin pigments are deposited into the eggshell when the developing egg is in the shell gland. However, the site of synthesis of eggshell pigments is still uncertain, although it may influence the possible costs and potential functions of eggshell coloration in avian species. Eggshell pigments may be derived from red blood cells or be produced in other organs and then transferred to the shell gland, or they may be synthesized de novo in the shell gland. We studied in the canary (Serinus canaria) whether eggshell blue-green and brown pigmentations are associated with experimentally elevated anemia, female hematocrit level, immature erythrocyte percentage, and feces and plasma pigment levels during egg laying to find out the possible origin of eggshell pigments. We found no significant effects of hematocrit level or experimentally elevated anemia on intensity of eggshell blue-green and brown pigmentations; therefore, we consider it less likely that eggshell pigments are derived from erythrocytes. In addition, we found no significant associations between female feces biliverdin concentration during egg laying and intensity of eggshell blue-green pigmentation, suggesting that eggshell biliverdin may not originate from the spleen or liver. We found a negative association between plasma and feces protoporphyrin concentrations during egg laying and eggshell brown chroma. This result suggests that an increased production of protoporphyrin in the liver, which could have elevated plasma and feces protoporphyrin concentrations, could inhibit eggshell protoporphyrin pigmentation, probably through affecting enzymatic activities. We suggest that both pigments are produced de novo in the shell gland in the canary, but circulating pigment levels may influence shell gland pigment synthesis, thus connecting the physiological status of the female to eggshell coloration.

  19. Cloud point extraction of iron(III) and vanadium(V) using 8-quinolinol derivatives and Triton X-100 and determination of 10(-7)moldm(-3) level iron(III) in riverine water reference by a graphite furnace atomic absorption spectroscopy.

    Science.gov (United States)

    Ohashi, Akira; Ito, Hiromi; Kanai, Chikako; Imura, Hisanori; Ohashi, Kousaburo

    2005-01-30

    The cloud point extraction behavior of iron(III) and vanadium(V) using 8-quinolinol derivatives (HA) such as 8-quinolinol (HQ), 2-methyl-8-quinolinol (HMQ), 5-butyloxymethyl-8-quinolinol (HO(4)Q), 5-hexyloxymethyl-8-quinolinol (HO(6)Q), and 2-methyl-5-octyloxymethyl-8-quinolinol (HMO(8)Q) and Triton X-100 solution was investigated. Iron(III) was extracted with HA and 4% (v/v) Triton X-100 in the pH range of 1.70-5.44. Above pH 4.0, more than 95% of iron(III) was extracted with HQ, HMQ, and HMO(8)Q. Vanadium(V) was also extracted with HA and 4% (v/v) Triton X-100 in the pH range of 2.07-5.00, and the extractability increased in the following order of HMQ HQ cloud point extraction was applied to the determination of iron(III) in the riverine water reference by a graphite furnace atomic absorption spectroscopy. When 1.25 x 10(-3)M HMQ and 1% (v/v) Triton X-100 were used, the found values showed a good agreement with the certified ones within the 2% of the R.S.D. Moreover, the effect of an alkyl group on the solubility of 5-alkyloxymethyl-8-quinolinol and 2-methyl-5-alkyloxymethyl-8-quinolinol in 4% (v/v) Triton X-100 at 25 degrees C was also investigated.

  20. Biliverdin reductase: more than a namesake - the reductase, its Peptide fragments, and biliverdin regulate activity of the three classes of protein kinase C.

    Science.gov (United States)

    Gibbs, Peter E M; Tudor, Cicerone; Maines, Mahin D

    2012-01-01

    The expanse of human biliverdin reductase (hBVR) functions in the cells is arguably unmatched by any single protein. hBVR is a Ser/Thr/Tyr-kinase, a scaffold protein, a transcription factor, and an intracellular transporter of gene regulators. hBVR is an upstream activator of the insulin/IGF-1 signaling pathway and of protein kinase C (PKC) kinases in the two major arms of the pathway. In addition, it is the sole means for generating the antioxidant bilirubin-IXα. hBVR is essential for activation of ERK1/2 kinases by upstream MAPKK-MEK and by PKCδ, as well as the nuclear import and export of ERK1/2. Small fragments of hBVR are potent activators and inhibitors of the ERK kinases and PKCs: as such, they suggest the potential application of BVR-based technology in therapeutic settings. Presently, we have reviewed the function of hBVR in cell signaling with an emphasis on regulation of PKCδ activity.

  1. NO2-induced synthesis of nitrato-iron(III) porphyrin with diverse ...

    Indian Academy of Sciences (India)

    found serendipitously in the reaction of [Fe(4-Me-TPP)Cl] with nitrous acid, which ... Nitric oxide and its derivatives nitrite and nitrate ion ... oxide.2 Nitrate is produced in heme proteins from oxi- ... and nitrogen assimilation.4 Iron nitrate(III) porphyrins ... one-pot method.15 ... of the compound was determined based on the lack.

  2. The hydrolysis of iron(III) and iron(ll) ions between 25 deg C and 375 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Derek

    1971-11-15

    Some data on the stabilities of the known iron (III) and iron (II) ions are presented, that have been obtained in a theoretical study of the iron-water system at temperatures up to the critical temperature. In this study, estimates of the stability constants of the various ions in dilute solution have been made by a method based on the equations of classical thermodynamics and empirical equations for the change with temperature of ionic heat capacity. The data indicate that hydrolysis increases so rapidly with temperature that the Fe+3 - ion is practically non-existent above about 150 deg C and, except in very acid solutions, the Fe+2 - ion is a relatively minor constituent above about 250 deg C. The most stable of the ions over a wide range of conditions are probably Fe(OH){sub 2}+ , Fe(OH)+ and HFeO{sub 2}-

  3. Stabilization through precipitation in a system of colloidal iron(III) pyrophosphate salts

    NARCIS (Netherlands)

    van Leeuwen, Y.M.; Velikov, K.P.; Kegel, W.K.

    2012-01-01

    The ionic strength of a solution decreases during the precipitation of an insoluble salt, which can cause an initially unstable colloidal system to stabilize during its formation. We show this effect in the precipitation and aging of colloidal iron(III) pyrophosphate, where we observe two distinct

  4. Hydrogen-Bonding Interactions Trigger a Spin-Flip in Iron(III) Porphyrin Complexes**

    Science.gov (United States)

    Sahoo, Dipankar; Quesne, Matthew G; de Visser, Sam P; Rath, Sankar Prasad

    2015-01-01

    A key step in cytochrome P450 catalysis includes the spin-state crossing from low spin to high spin upon substrate binding and subsequent reduction of the heme. Clearly, a weak perturbation in P450 enzymes triggers a spin-state crossing. However, the origin of the process whereby enzymes reorganize their active site through external perturbations, such as hydrogen bonding, is still poorly understood. We have thus studied the impact of hydrogen-bonding interactions on the electronic structure of a five-coordinate iron(III) octaethyltetraarylporphyrin chloride. The spin state of the metal was found to switch reversibly between high (S=5/2) and intermediate spin (S=3/2) with hydrogen bonding. Our study highlights the possible effects and importance of hydrogen-bonding interactions in heme proteins. This is the first example of a synthetic iron(III) complex that can reversibly change its spin state between a high and an intermediate state through weak external perturbations. PMID:26109743

  5. Spin-crossover behavior of polymeric iron(III) complexes

    International Nuclear Information System (INIS)

    Maeda, Yonezo; Miyamoto, Makoto; Takashima, Yoshimasa; Oshio, Hiroaki

    1989-01-01

    Polymeric spin-crossover iron(III) complexes possessing poly(4-vinylpyridine), poly(N-vinylimidazole) or poly(octylmethacrylate-co-4-vinylpyridine) as ligand are prepared. In this experience enriched 57 Fe was used to get strong Moessbauer absorption. The enriched behavior of the complexes were examined by magnetic susceptibilities measurement, and Moessbauer and esr spectroscopies. Some of them show spin-state behavior over a wide range of temperature. Some of them show rapid spin-state interexchange compared to the Moessbauer time scale and others not. Spin-crossover behavior of polymeric complexes is characterized of wide spin-state transition temperature range

  6. Resonance Raman detection of iron-ligand vibrations in cyano(pyridine)(octaethylporphinato)iron(III): Effects of pyridine basicity on the Fe-CN bond strength

    International Nuclear Information System (INIS)

    Uno, Tadayuki; Hatano, Keiichiro; Nishimura, Yoshifumi; Arata, Yoji

    1988-01-01

    The influence of axial ligand basicity on the bonding of iron(III) in cyano adducts of octaethylporphyrin has been studied by resonance Raman spectroscopy. In a six-coordinate ferric low-spin complex, cyano(pyridine)(octaethylporphinato)iron(III), Fe(OEP)(CN)(py), Raman lines at 449 and 191 cm -1 were assigned to the ν(Fe-CN) and ν(Fe-py) stretching modes, respectively. When pyridine was displaced with its derivatives, py-X, where X = 4-cyano, 3-acetyl, 3-methyl, 4-methyl, 3,4-dimethyl, and 4-dimethylamino, the ν(Fe-CN) stretching frequency was found to decrease in the complex with a high pyridine basicity. It was concluded that the stronger the trans pyridine basicity, the weaker the iron-carbon (cyanide) bond. A clear frequency shift was observed in the ν 4 model, though most of the porphyrin vibrations were insensitive to the ligand substitution. The frequency of the ν 4 mode, which is the C a -N(pyrrole) breathing vibration of the porphyrin skeleton, was found to increase with an increase in pyridine basicity. This is contrary to what was found in ferrous low-spin hemes as CO complexes. The ν 4 shift in the CN complexes was explained in terms of forward π donation; donation of electrons from the porphyrin π orbital to the d π vacancy of the low-spin iron(III) weakened the C a -N(pyrrole) bonds and hence decreased the ν 4 frequency. 32 references, 8 figures

  7. Experimental and Computational Evidence for the Mechanism of Intradiol Catechol Dioxygenation by Non- Heme Iron(III) Complexes

    NARCIS (Netherlands)

    Jastrzebski, Robin; Quesne, Matthew G.; Weckhuysen, Bert M.; de Visser, Sam P.; Bruijnincx, Pieter C. A.

    2014-01-01

    Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and nonheme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational

  8. Structure and Magnetic Properties of a Dodecanuclear Twisted-Ring Iron(III) Cluster.

    Science.gov (United States)

    Caneschi, Andrea; Cornia, Andrea; Fabretti, Antonio C; Gatteschi, Dante

    1999-05-03

    An unprecedented nonplanar structure characterizes the complex [Fe(OCH 3 ) 2 (dbm)] 12 (on the left in the picture), which contains the largest cyclic ferric cluster yet reported with chemically equivalent bridging units. It is made up of twelve high-spin, antiferromagnetically coupled iron(III) centers and neatly reacts with Na I or Li I templates in organic solution to give hexairon(III) coronates (right). Fe=•, O=○, NaI or LiI=• Hdbm=dibenzoylmethane. © 1999 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  9. Biliverdin Reductase: More than a Namesake – The Reductase, Its Peptide Fragments, and Biliverdin Regulate Activity of the Three Classes of Protein Kinase C

    Science.gov (United States)

    Gibbs, Peter E. M.; Tudor, Cicerone; Maines, Mahin. D.

    2012-01-01

    The expanse of human biliverdin reductase (hBVR) functions in the cells is arguably unmatched by any single protein. hBVR is a Ser/Thr/Tyr-kinase, a scaffold protein, a transcription factor, and an intracellular transporter of gene regulators. hBVR is an upstream activator of the insulin/IGF-1 signaling pathway and of protein kinase C (PKC) kinases in the two major arms of the pathway. In addition, it is the sole means for generating the antioxidant bilirubin-IXα. hBVR is essential for activation of ERK1/2 kinases by upstream MAPKK-MEK and by PKCδ, as well as the nuclear import and export of ERK1/2. Small fragments of hBVR are potent activators and inhibitors of the ERK kinases and PKCs: as such, they suggest the potential application of BVR-based technology in therapeutic settings. Presently, we have reviewed the function of hBVR in cell signaling with an emphasis on regulation of PKCδ activity. PMID:22419908

  10. Studies of. gamma. -ray irradiation effects on tris(. beta. -diketonato)iron(III) and cobalt(III) coordination compounds by means of Moessbauer spectroscopy and magnetic susceptibility measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y.; Endo, K.; Sano, H. (Tokyo Metropolitan Univ. (Japan). Faculty of Science)

    1981-06-01

    Both absorption Moessbauer spectroscopy and magnetic susceptibility measurements on tris(..beta..-diketonato)iron(III) and cobalt(III) compounds indicate that ligands which have phenyl group as a substituent are more stable to ..gamma..-ray radiolysis, in accordance with previous results of emission Moessbauer spectroscopic studies of /sup 57/Co-labelled tris (..beta..-diketonato)cobalt(III) compounds.

  11. Reactivity of catecholamine-driven Fenton reaction and its relationships with iron(III) speciation.

    Science.gov (United States)

    Melin, Victoria; Henríquez, Adolfo; Freer, Juanita; Contreras, David

    2015-03-01

    Fenton reaction is the main source of free radicals in biological systems. The reactivity of this reaction can be modified by several factors, among these iron ligands are important. Catecholamine (dopamine, epinephrine, and norepinephrine) are able to form Fe(III) complexes whose extension in the coordination number depends upon the pH. Fe(III)-catecholamine complexes have been related with the development of several pathologies. In this work, the ability of catecholamines to enhance the oxidative degradation of an organic substrate (veratryl alcohol, VA) through Fenton and Fenton-like reactions was studied. The initial VA degradation rate at different pH values and its relationship to the different iron species present in solution were determined. Furthermore, the oxidative degradation of VA after 24 hours of reaction and its main oxidation products were also determined. The catecholamine-driven Fenton and Fenton-like systems showed higher VA degradation compared to unmodified Fenton or Fenton-like systems, which also showed an increase in the oxidation state of the VA degradation product. All of this oxidative degradation takes place at pH values lower than 5.50, where the primarily responsible species would be the Fe(III) mono-complex. The presence of Fe(III) mono-complex is essential in the ability of catecholamines to increase the oxidative capacity of Fenton systems.

  12. Understanding the role of multiheme cytochromes in iron(III) reduction and arsenic mobilization by Shewanella sp. ANA-3

    Science.gov (United States)

    Reyes, C.; Duenas, R.; Saltikov, C.

    2006-12-01

    The reduction of Fe (III) to Fe (II) and of arsenate (As (V)) to arsenite (As (III)) by Fe (III) reducing and As (V) respiring prokaryotes such as the bacterium Shewanella sp. ANA-3 may contribute to arsenic mobilization in aquifers contaminated with arsenic, specifically in places such as Bangladesh. Under oxic conditions As (V) predominates and is often adsorbed onto mineral surfaces such as amorphous ferrihydrite. However, under anoxic conditions As (III) predominates, sorbs to fewer minerals, and has a greater hydrologic mobility compared to As (V). The genetic mechanism underlying arsenic release from subsurface material most likely involves a combination of respiratory gene clusters (e.g. mtr/omc and arr). In this study, we are investigating the genetic pathways underlying arsenic mobilization. We have generated various mutations in the mtr/omc gene cluster, which encodes several outermembrane decaheme c-type cytochromes. Deletions in one mtr/omc gene did not eliminate iron reduction. However, strains carrying multiple gene deletions were greatly impaired in iron reduction abilities. Work is currently underway to generate combinations of iron reduction and arsenate reduction single and double mutants that will be used to investigate microbial mobilization of arsenic in flow-through columns containing As (V)-HFO coated sand. This work will address the importance of arsenate reduction and iron reduction in the mobilization of arsenic.

  13. Moessbauer spectroscopic study on valence-detrapping and trapping of mixed-valence trinuclear iron (III, III, II) fluorine-substitute benzoate complexes

    International Nuclear Information System (INIS)

    Sakai, Y.; Onaka, S.; Ogiso, R.; Takayama, T.; Takahashi, M.; Nakamoto, T.

    2012-01-01

    Four mixed-valence trinuclear iron(III, III, II) fluorine-substituted benzoate complexes were synthesized; Fe 3 O(C 6 F 5 COO) 6 (C 5 H 5 N) 3 ·CH 2 Cl 2 (1), Fe 3 O(C 6 F 5 COO) 6 (C 5 H 5 N) 3 (2), Fe 3 O(2H-C 6 F 4 COO) 6 (C 5 H 5 N) 3 (3), and Fe 3 O(4H-C 6 F 4 COO) 6 (C 5 H 5 N) 3 (4). By means of 57 Fe-Moessbauer spectroscopy, valence-detrapping and trapping phenomena have been investigated for the four mixed-valence complexes. The valence state of three iron ions is trapped at lower temperatures while it is fully detrapped at higher temperatures for 1. Valence detrapping is not observed for 2, 3, and 4 even at room temperature, although Moessbauer spectra for 3 and 4 show a complicated temperature dependence. (author)

  14. Iron(III) Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions.

    Science.gov (United States)

    Rebelo, Susana L H; Silva, André M N; Medforth, Craig J; Freire, Cristina

    2016-04-12

    Iron(III) fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H₂TPFPP) and the corresponding iron complex [Fe(TPFPP)Cl], and the use of [Fe(TPFPP)Cl] as an oxidation catalyst in green conditions. The preparations of H₂TPFPP and [Fe(TPFPP)Cl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(III)porphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide) and green solvent (ethanol). Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed.

  15. Thioether-ligated iron(ii) and iron(iii)-hydroperoxo/alkylperoxo complexes with an H-bond donor in the second coordination sphere†

    OpenAIRE

    Widger, Leland R.; Jiang, Yunbo; McQuilken, Alison C.; Yang, Tzuhsiung; Siegler, Maxime A.; Matsumura, Hirotoshi; Moënne-Loccoz, Pierre; Kumar, Devesh; de Visser, Sam P.; Goldberg, David P.

    2014-01-01

    The non-heme iron complexes, [FeII(N3PySR)(CH3CN)](BF4)2 (1) and [FeII(N3PyamideSR)](BF4)2 (2), afford rare examples of metastable Fe(iii)-OOH and Fe(iii)-OOtBu complexes containing equatorial thioether ligands and a single H-bond donor in the second coordination sphere. These peroxo complexes were characterized by a range of spectroscopic methods and density functional theory studies. The influence of a thioether ligand and of one H-bond donor on the stability and spectroscopic properties of...

  16. Determination of silver in fresh water by atomic absorption spectrometry following flotation preconcentration by iron(III) collectors

    Energy Technology Data Exchange (ETDEWEB)

    Cundeva, K.; Stafilov, T. [Institute of Chemistry, Faculty of Science, St. Cyril and Methodius University, Skopje (Yugoslavia)

    1997-08-01

    Colloid precipitate flotation of silver from fresh water is applied for preconcentration and separation. Optimal conditions using hydrated iron(III) oxide and iron(III) tetramethylenedithiocarbamate as collectors were investigated. Various factors affecting the silver recovery, including collector mass, nature of the supporting electrolyte, pH of the working medium, electrokinetic potential of the collector particle surfaces, type of surfactant, induction time etc., were checked. Within the optimal pH range (5.5-6.5) silver was separated quantitatively (94.9- 100.0%) with 30 mg Fe(III) as collector. The content of silver was determined by electrothermal atomic absorption spectrometry and compared to that from inductively coupled plasma-atomic emission spectrometry. The detection limit of silver by the method described is 0.01 {mu}g/L. (orig.) With 2 figs., 3 tabs.

  17. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

    Science.gov (United States)

    Sand, Wolfgang; Gehrke, Tilman

    2006-01-01

    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed.

  18. Precipitation of iron (III) using magnesium oxide in fluidized bed; Precipitacion de hierro (III) utilizando oxido de magnesio en lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Esteban-Bocardo, P. A.; Ferreira-Rocha, S. D.

    2006-07-01

    A process for iron (III) removal by hydroxide precipitation from and acid synthetic inorganic effluent using magnesium oxide as an alternative precipitant agent in a fluidized bed was developed. An acid synthetic inorganic effluent containing 100 and 200 mg/l of ferric ions (pH=1.0) was continuously fed up to the acrylic column (30 cm high and 2 cm diameter) during 180 minutes. Magnesium oxide pulp (3% v/v) was injected at the beginning of the experiment in order to allow the iron hydroxides precipitation. The concentration and pH profiles agreed in their curves, while the pH profile rose,the concentration profile decreased and a high percentage of iron removal (higher to 99%) was reached. Extremely low iron concentrations have been reached, thus permitting to attend to the environmental standard of 10.0 mg/l for discharge of effluent containing ferric ions established by the law DN 10/86 of COPAM (Conselho de Politica Ambiental do Estado de Minas Gerais-Brazil). (Author)

  19. Regiospecificity determinants of human heme oxygenase: differential NADPH- and ascorbate-dependent heme cleavage by the R183E mutant.

    Science.gov (United States)

    Wang, Jinling; Lad, Latesh; Poulos, Thomas L; Ortiz de Montellano, Paul R

    2005-01-28

    The ability of the human heme oxygenase-1 (hHO-1) R183E mutant to oxidize heme in reactions supported by either NADPH-cytochrome P450 reductase or ascorbic acid has been compared. The NADPH-dependent reaction, like that of wild-type hHO-1, yields exclusively biliverdin IXalpha. In contrast, the R183E mutant with ascorbic acid as the reductant produces biliverdin IXalpha (79 +/- 4%), IXdelta (19 +/- 3%), and a trace of IXbeta. In the presence of superoxide dismutase and catalase, the yield of biliverdin IXdelta is decreased to 8 +/- 1% with a corresponding increase in biliverdin IXalpha. Spectroscopic analysis of the NADPH-dependent reaction shows that the R183E ferric biliverdin complex accumulates, because reduction of the iron, which is required for sequential iron and biliverdin release, is impaired. Reversal of the charge at position 183 makes reduction of the iron more difficult. The crystal structure of the R183E mutant, determined in the ferric and ferrous-NO bound forms, shows that the heme primarily adopts the same orientation as in wild-type hHO-1. The structure of the Fe(II).NO complex suggests that an altered active site hydrogen bonding network supports catalysis in the R183E mutant. Furthermore, Arg-183 contributes to the regiospecificity of the wild-type enzyme, but its contribution is not critical. The results indicate that the ascorbate-dependent reaction is subject to a lower degree of regiochemical control than the NADPH-dependent reaction. Ascorbate may be able to reduce the R183E ferric and ferrous dioxygen complexes in active site conformations that cannot be reduced by NADPH-cytochrome P450 reductase.

  20. Fabrication and Application of Iron(III-Oxide Nanoparticle/Polydimethylsiloxane Composite Cone in Microfluidic Channels

    Directory of Open Access Journals (Sweden)

    Cheng-Chun Huang

    2012-01-01

    Full Text Available This paper presented the fabrication and applications of an iron(III-oxide nanoparticle/polydimethylsiloxane (PDMS cone as a component integrated in lab on a chip. The two main functions of this component were to capture magnetic microbeads in the microfluid and to mix two laminar fluids by generating disturbance. The iron(III-oxide nanoparticle/PDMS cone was fabricated by automatic dispensing and magnetic shaping. Three consecutive cones of 300 μm in height were asymmetrically placed along a microchannel of 2 mm in width and 1.1 mm in height. Flow passing the cones was effectively redistributed for Renolds number lower than . Streptavidin-coated magnetic microbeads which were bound with biotin were successfully captured by the composite cones as inspected under fluorescence microscope. The process parameters for fabricating the composite cones were investigated. The fabricated cone in the microchannel could be applied in lab on a chip for bioassay in the future.

  1. Spin-crossover in an iron(III)-bispidine-alkylperoxide system.

    Science.gov (United States)

    Bautz, Jochen; Comba, Peter; Que, Lawrence

    2006-09-04

    The iron(II) complex of a tetradentate bispidine ligand with two tertiary amines and two pyridine groups (L = dimethyl [3,7-dimethyl-9,9'-dihydroxy-2,4-di-(2-pyridyl)-3,7-diazabicyclo nonan-1,5-dicaboxylate]) is oxidized with tert-butyl hydroperoxide to the corresponding end-on tert-butylperoxo complex [Fe(III)(L)(OOtBu)(X)]n+ (X = solvent, anion). UV-vis, resonance Raman, and EPR spectroscopy, as a function of the solvent, show that this is a spin-crossover compound. The experimentally observed Raman vibrations for both low-spin and high-spin isomers are in good agreement with those computed by DFT.

  2. As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley).

    Science.gov (United States)

    Jiménez-Cedillo, M J; Olguín, M T; Fall, C; Colin-Cruz, A

    2013-03-15

    The sorption of As(III) and As(V) from aqueous solutions onto iron-modified Petroselinum crispum (PCFe) and iron-modified carbonaceous material from the pyrolysis of P. crispum (PCTTFe) was investigated. The modified sorbents were characterized with scanning electron microscopy. The sorbent elemental composition was determined with energy-dispersive X-ray spectroscopy (EDS). The principal functional groups from the sorbents were determined with FT-IR. The specific surfaces and points of zero charge (pzc) of the materials were also determined. As(III) and As(V) sorption onto the modified sorbents were performed in a batch system. After the sorption process, the As content in the liquid and solid phases was determined with atomic absorption and neutron activation analyses, respectively. After the arsenic sorption processes, the desorption of Fe from PCFe and PCTTFe was verified with atomic absorption spectrometry. The morphology of PC changed after iron modification. The specific area and pzc differed significantly between the iron-modified non-pyrolyzed and pyrolyzed P. crispum. The kinetics of the arsenite and arsenate sorption processes were described with a pseudo-second-order model. The Langmuir-Freundlich model provided the isotherms with the best fit. Less than 0.02% of the Fe was desorbed from the PCFe and PCTTFe after the As(III) and As(V) sorption processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Experimental investigation of aluminum complexing with sodium ion and of gallium and iron (III) speciation in natural solutions

    International Nuclear Information System (INIS)

    Diakonov, Igor

    1995-01-01

    The aim of this work is to acquire thermodynamic data on the aqueous complexes forming between sodium and aluminum, gallium and hydroxide, and iron (III) and hydroxide. These data will provide for a better understanding of the transport and distribution of these elements in surface and hydrothermal fluids. Stability constants of the sodium-aluminate complex (Na Al(OH) 4 deg.) were obtained from boehmite solubility measurements at temperatures from 125 to 350 deg. C in alkaline solutions containing from 0.1 to 1 mol/L sodium. Complementary potentiometric measurements were performed with a sodium selective electrode, between 75 and 200 deg C (the potentiometric study was carried out by Gleb Pokrovski). Analyses of these data within the framework of the revised Helgeson-Kirkham-Flowers (HKF) model allowed determination of the HKF parameters for Na Al(OH) 4 deg. and calculation of its thermodynamic properties to 800 deg. C and 5 kb. The results of this work show that Na Al(OH) 4 deg. complex formation increases significantly the solubility of aluminum-bearing minerals and consequently aluminum mobility in hydrothermal fluids. Gallium speciation in surface and hydrothermal fluids is dominated by the negatively charged species, Ga(OH) 4 - . The thermodynamic properties of this species were determined from of OEGaOOH solubility measurements as a function of pH and temperature from 25 to 250 deg. C. In general, the variation of gallium aqueous speciation with pH is similar to that of aluminum other than at temperatures less than 200 deg. C over the pH range 3 - 6. This difference can account for the independent behavior of gallium versus aluminum in numerous low temperature natural systems. The thermodynamic properties of Fe(OH) 3 deg. which dominates the speciation of Fe(III) in surface waters and Fe(OH) 4 - were determined from hematite solubility measurements as a function of pH, oxygen pressure and temperature from 110 to 300 deg. C. The available thermodynamic data on

  4. Formation of environmentally persistent free radical (EPFR) in iron(III) cation-exchanged smectite clay.

    Science.gov (United States)

    Nwosu, Ugwumsinachi G; Roy, Amitava; dela Cruz, Albert Leo N; Dellinger, Barry; Cook, Robert

    2016-01-01

    Environmentally persistent free radicals (EPFRs) have been found at a number of Superfund sites, with EPFRs being formed via a proposed redox process at ambient environmental conditions. The possibility of such a redox process taking place at ambient environmental conditions is studied utilizing a surrogate soil system of phenol and iron(III)-exchanged calcium montmorillonite clay, Fe(III)CaM. Sorption of phenol by the Fe(III)CaM is demonstrated by Fourier-transformed infra-red (FT-IR) spectroscopy, as evidenced by the peaks between 1345 cm(-1) and 1595 cm(-1), and at lower frequencies between 694 cm(-1) and 806 cm(-1), as well as X-ray diffraction (XRD) spectroscopy, as shown by an increase in interlayer spacing within Fe(III)CaM. The formation and characterization of the EPFRs is determined by electron paramagnetic resonance (EPR) spectroscopy, showing phenoxyl-type radical with a g-factor of 2.0034 and ΔHP-P of 6.1 G at an average concentration of 7.5 × 10(17) spins per g. EPFRs lifetime data are indicative of oxygen and water molecules being responsible for EPFR decay. The change in the oxidation state of the iron redox center is studied by X-ray absorption near-edge structure (XANES) spectroscopy, showing that 23% of the Fe(III) is reduced to Fe(II). X-ray photoemission spectroscopy (XPS) results confirm the XANES results. These findings, when combined with the EPFR concentration data, demonstrate that the stoichiometry of the EPFR formation under the conditions of this study is 1.5 × 10(-2) spins per Fe(II) atom.

  5. Characterization of a tricationic trigonal bipyramidal iron(IV) cyanide complex, with a very high reduction potential, and its iron(II) and iron(III) congeners.

    Science.gov (United States)

    England, Jason; Farquhar, Erik R; Guo, Yisong; Cranswick, Matthew A; Ray, Kallol; Münck, Eckard; Que, Lawrence

    2011-04-04

    Currently, there are only a handful of synthetic S = 2 oxoiron(IV) complexes. These serve as models for the high-spin (S = 2) oxoiron(IV) species that have been postulated, and confirmed in several cases, as key intermediates in the catalytic cycles of a variety of nonheme oxygen activating enzymes. The trigonal bipyramidal complex [Fe(IV)(O)(TMG(3)tren)](2+) (1) was both the first S = 2 oxoiron(IV) model complex to be generated in high yield and the first to be crystallographically characterized. In this study, we demonstrate that the TMG(3)tren ligand is also capable of supporting a tricationic cyanoiron(IV) unit, [Fe(IV)(CN)(TMG(3)tren)](3+) (4). This complex was generated by electrolytic oxidation of the high-spin (S = 2) iron(II) complex [Fe(II)(CN)(TMG(3)tren)](+) (2), via the S = 5/2 complex [Fe(III)(CN)(TMG(3)tren)](2+) (3), the progress of which was conveniently monitored by using UV-vis spectroscopy to follow the growth of bathochromically shifting ligand-to-metal charge transfer (LMCT) bands. A combination of X-ray absorption spectroscopy (XAS), Mössbauer and NMR spectroscopies was used to establish that 4 has a S = 0 iron(IV) center. Consistent with its diamagnetic iron(IV) ground state, extended X-ray absorption fine structure (EXAFS) analysis of 4 indicated a significant contraction of the iron-donor atom bond lengths, relative to those of the crystallographically characterized complexes 2 and 3. Notably, 4 has an Fe(IV/III) reduction potential of ∼1.4 V vs Fc(+/o), the highest value yet observed for a monoiron complex. The relatively high stability of 4 (t(1/2) in CD(3)CN solution containing 0.1 M KPF(6) at 25 °C ≈ 15 min), as reflected by its high-yield accumulation via slow bulk electrolysis and amenability to (13)C NMR at -40 °C, highlights the ability of the sterically protecting, highly basic peralkylguanidyl donors of the TMG(3)tren ligand to support highly charged high-valent complexes.

  6. Adsorption and transformation of selected human-used macrolide antibacterial agents with iron(III) and manganese(IV) oxides

    International Nuclear Information System (INIS)

    Feitosa-Felizzola, Juliana; Hanna, Khalil; Chiron, Serge

    2009-01-01

    The adsorption/transformation of two members (clarithromycin and roxithromycin) of the macrolide (ML) antibacterial agents on the surface of three environmental subsurface sorbents (clay, iron(III) and manganese(IV) oxy-hydroxides) was investigated. The adsorption fitted well to the Freundlich model with a high sorption capacity. Adsorption probably occurred through a surface complexation mechanism and was accompanied by slow degradation of the selected MLs. Transformation proceeded through two parallel pathways: a major pathway was the hydrolysis of the cladinose sugar, and to a lesser extent the hydrolysis of the lactone ring. A minor pathway was the N-dealkylation of the amino sugar. This study indicates that Fe(III) and Mn(IV) oxy-hydroxides in aquatic sediments may play an important role in the natural attenuation of MLs. Such an attenuation route yields a range of intermediates that might retain some of their biological activity. - Iron(III) and manganese(IV) oxy-hydroxides in aquatic sediments may play an important role in the natural attenuation of macrolide antibacterial agents

  7. Adsorption and transformation of selected human-used macrolide antibacterial agents with iron(III) and manganese(IV) oxides

    Energy Technology Data Exchange (ETDEWEB)

    Feitosa-Felizzola, Juliana [Laboratoire Chimie Provence, Aix-Marseille Universites-CNRS (UMR 6264), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France); Hanna, Khalil [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement, CNRS-Universite Henri Poincare-Nancy 1 (UMR 7564), 405 rue de Vandoeuvre, 54600 Villers-les-Nancy (France); Chiron, Serge [Laboratoire Chimie Provence, Aix-Marseille Universites-CNRS (UMR 6264), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)], E-mail: serge.chiron@univ-provence.fr

    2009-04-15

    The adsorption/transformation of two members (clarithromycin and roxithromycin) of the macrolide (ML) antibacterial agents on the surface of three environmental subsurface sorbents (clay, iron(III) and manganese(IV) oxy-hydroxides) was investigated. The adsorption fitted well to the Freundlich model with a high sorption capacity. Adsorption probably occurred through a surface complexation mechanism and was accompanied by slow degradation of the selected MLs. Transformation proceeded through two parallel pathways: a major pathway was the hydrolysis of the cladinose sugar, and to a lesser extent the hydrolysis of the lactone ring. A minor pathway was the N-dealkylation of the amino sugar. This study indicates that Fe(III) and Mn(IV) oxy-hydroxides in aquatic sediments may play an important role in the natural attenuation of MLs. Such an attenuation route yields a range of intermediates that might retain some of their biological activity. - Iron(III) and manganese(IV) oxy-hydroxides in aquatic sediments may play an important role in the natural attenuation of macrolide antibacterial agents.

  8. Interactions between iron(III)-hydroxide polymaltose complex and commonly used medications / laboratory studies in rats.

    Science.gov (United States)

    Funk, Felix; Canclini, Camillo; Geisser, Peter

    2007-01-01

    Simple iron salts, such as iron sulphate, often interact with food and other medications reducing bioavailability and tolerability. Iron(III)-hydroxide polymaltose complex (IPC, Maltofer) provides a soluble form of non-ionic iron, making it an ideal form of oral iron supplementation. The physicochemical properties of IPC predict a low potential for interactions. The effects of co-administration with aluminium hydroxide (CAS 21645-51-2), acetylsalicylic acid (CAS 50-78-2), bromazepam (CAS 1812-30-2), calcium acetate (CAS 62-54-4), calcium carbonate (CAS 471-34-1), auranofin (CAS 34031-32-8), magnesium-L-aspartate hydrochloride (CAS 28184-71-6), methyldopa sesquihydrate (CAS 41372-08-1), paracetamol (CAS 103-90-2), penicillamine (CAS 52-67-5), sulfasalazine (CAS 599-79-1), tetracycline hydrochloride (CAS 64-75-5), calcium phosphate (CAS 7757-93-9) in combination with vitamin D3 (CAS 67-97-0), and a multi-vitamin preparation were tested in rats fed an iron-deficient diet. Uptake of iron from radiolabelled IPC with and without concomitant medications was compared. None of the medicines tested had a significant effect on iron uptake. Iron-59 retrieval from blood and major storage organs was 64-76% for IPC alone compared with 59-85% following co-administration with other medications. It is concluded that, under normal clinical conditions, IPC does not interact with these medications.

  9. Carbon-13 magnetic relaxation rates or iron (III) complexes of some biogenic amines and parent compounds in aqueous solutions

    International Nuclear Information System (INIS)

    Lai, A.; Monduzzi, M.; Saba, G.

    1980-01-01

    Spin-lattice relaxation rates (R 1 ) from naturally occuring C-13 F.T. N.M.R. spectra of some catecholamines and parent compounds with Iron(III) at pD = 4 were determined in order to elucidate the molecular mechanism underlying their association in aqueous solutions. Complexation was observed only for catecholic ligands. The R 1 values were used to calculate iron-carbon scaled distances, and two complexation models were proposed where the catecholic function binds Fe(III) in the first and second coordination spheres respectively. The latter case was shown to be the consistent with the molecular geometries. (orig.)

  10. Competition of dipositive metal ions for Fe (III) binding sites in chelation therapy of Iron Load

    International Nuclear Information System (INIS)

    Rehmani, Fouzia S.

    2005-01-01

    Iron overload is a condition in which excessive iron deposited in the liver, kidney and spleen of human beings in the patients of beta thalassemia and sickle cell anemia. Instead of its importance iron could be toxic when in excess, it damages the tissues. For the treatment of iron overload, a drug desferrioxamine mesylate has been used. It is linear trihydroxamic acid, a natural siderophore produced by streptomyces which removes the extra iron from body. Salicylhydroxamate type siderphore. In present research salicylhydroxamate was used for the complexation with dipositive metal ions which are available in biological environments such as Mn (II), Co (II), Ni (II) and Cu (II). The aim of our work was to study the competition reactions between Fe (III) and other dipositive ions; to calculate the thermodynamic data of chelation of these metal ions complexes with hydroxamate by computer program and comparison with hydroxamate complexes. (author)

  11. Scientific Opinion on the safety of the complexation product of sodium tartrate and iron(III) chloride as a food additive

    OpenAIRE

    2015-01-01

    The complexation product of sodium tartrates and iron(III) chloride (Fe mTA) is proposed for use as an anti-caking agent, only in salt or its substitutes, with a maximum use level of 106 mg Fe mTA/kg salt. Fe mTA can be expected to dissociate into its constituent iron(III) and tartrate components upon ingestion. Studies in rats demonstrated that up to 90 % of ingested DL-tartrate or tartaric acid were absorbed, studies in humans suggested that only 20 % of an ingested dose of tartaric acid we...

  12. Radiochemical study of the sorption of iodate ions on iron(III) hydroxide precipitate

    International Nuclear Information System (INIS)

    Music, S.; Sipalo-Zuljevic, J.; Wolf, R.H.H.

    1980-01-01

    The sorption of iodate ions on iron(III) hydroxide in dependence on the pH, the aging time of the precipitate and the duration of the contact between the sorbate and the sorbent have been studied. Na 131 IO 3 was used as a radioactive indicator. The sorption mechanism has been discussed in terms of electrostatic and ion-exchange processes at the solid/liquid interface. (author)

  13. Moessbauer studies of iron(III)-(indole-3-alkanoic acids) systems in frozen aqueous solutions

    International Nuclear Information System (INIS)

    Kovacs, K.; Kuzmann, E.; Homonnay, Z.; Szilagyi, P.A.; Vertes, A.; Kamnev, A.A.; Sharma, V.K.

    2005-01-01

    Moessbauer investigations of iron(III) salts in aqueous solutions in the presence of indole-3-alkanoic acid ligands are described. The measurements showed two parallel reactions between the ligands and ferric ions: a complex formation and a redox process. The oxidation process takes place in the ligands, and a part of Fe 3+ is reduced to Fe 2+ . (author)

  14. Iron-Mediated Homogeneous ICAR ATRP of Methyl Methacrylate under ppm Level Organometallic Catalyst Iron(III Acetylacetonate

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2016-01-01

    Full Text Available Atom Transfer Radical Polymerization (ATRP is an important polymerization process in polymer synthesis. However, a typical ATRP system has some drawbacks. For example, it needs a large amount of transition metal catalyst, and it is difficult or expensive to remove the metal catalyst residue in products. In order to reduce the amount of catalyst and considering good biocompatibility and low toxicity of the iron catalyst, in this work, we developed a homogeneous polymerization system of initiators for continuous activator regeneration ATRP (ICAR ATRP with just a ppm level of iron catalyst. Herein, we used oil-soluble iron (III acetylacetonate (Fe(acac3 as the organometallic catalyst, 1,1′-azobis (cyclohexanecarbonitrile (ACHN with longer half-life period as the thermal initiator, ethyl 2-bromophenylacetate (EBPA as the initiator, triphenylphosphine (PPh3 as the ligand, toluene as the solvent and methyl methacrylate (MMA as the model monomer. The factors related with the polymerization system, such as concentration of Fe(acac3 and ACHN and polymerization kinetics, were investigated in detail at 90 °C. It was found that a polymer with an acceptable molecular weight distribution (Mw/Mn = 1.43 at 45.9% of monomer conversion could be obtained even with 1 ppm of Fe(acac3, making it needless to remove the residual metal in the resultant polymers, which makes such an ICAR ATRP process much more industrially attractive. The “living” features of this polymerization system were further confirmed by chain-extension experiment.

  15. Determinação de ferro (III em produtos farmacêuticos por titulação fotométrica - doi: 10.4025/actascihealthsci.v33i1.8034 Determination of iron (III in pharmaceutical products by photometric titration - doi: 10.4025/actascihealthsci.v33i1.8034

    Directory of Open Access Journals (Sweden)

    Flávio Luís Beltrame

    2011-05-01

    Full Text Available Este trabalho descreve a montagem de um sistema de titulação fotométrica simples e de baixo custo para a determinação de ferro (III em produtos farmacêuticos. O sistema de titulação fotométrica foi construído utilizando-se a bomba peristáltica de um espectrofotômetro convencional. O procedimento é baseado na titulação de ferro (III com EDTA e ácido salicílico como indicador. A absorção do complexo ferro (III-ácido salicílico foi monitorada espectrofotometricamente em 525 nm. O limite de quantificação foi de 5 µg de ferro (III. O procedimento de titulação fotométrica foi aplicado para a determinação de ferro (III em amostras contendo sulfato ferroso e hidróxido férrico polimaltosado. O procedimento mostrou sensibilidade, reprodutibilidade e precisão para a utilização em análise rotineira de ferro (III em produtos farmacêuticos.This paper describes a simple, precise and low-cost photometric titration method for iron (III determination in pharmaceutical preparations. The photometric titration system was constructed using the peristaltic pump of a conventional spectrophotometer. The method is based on titration of iron (III with EDTA using salicylic acid as indicator. The absorption of the iron (III-salicylic acid complex was monitored spectrophotometrically at 525 nm. The limit of quantification was 5 µg of iron (III. The photometric titration procedure was applied for the determination of iron (III in samples of ferrous sulfate and ferric hydroxide polymaltose complex. The procedure showed sensibility, reproducibility and accuracy for use as a method for the routine analysis of iron (III in pharmaceutical formulations.

  16. Synthesis, iron(III) complexation properties, molecular dynamics simulations and P. aeruginosa siderophore-like activity of two pyoverdine analogs.

    Science.gov (United States)

    Antonietti, Viviane; Boudesocque, Stéphanie; Dupont, Laurent; Farvacques, Natacha; Cézard, Christine; Da Nascimento, Sophie; Raimbert, Jean-François; Socrier, Larissa; Robin, Thierry-Johann; Morandat, Sandrine; El Kirat, Karim; Mullié, Catherine; Sonnet, Pascal

    2017-09-08

    P. aeruginosa ranks among the top five organisms causing nosocomial infections. Among the many novel strategies for developing new therapeutics against infection, targeting iron uptake mechanism seems promising as P. aeruginosa needs iron for its growth and survival. To scavenge iron, the bacterium produces siderophores possessing a very high affinity towards Fe(III) ions such as pyoverdines. In this work, we decided to study two pyoverdine analogs, aPvd2 and aPvd3, structurally close to the endogen pyoverdine. The pFe constants calculated with the values of formation showed a high affinity of aPvd3 towards Fe(III). Molecular dynamics calculations demonstrated that aPvd3-Fe forms with Fe(III) stable 1:1 complexes in water, whereas aPvd2 does not. Only aPvd3 is able to increase the bacterial growth and represents thus an alternative to pyoverdine for iron acquisition by the bacterium. The aPvd2-3 interaction studies with a lipid membrane indicated that they were unable to interact and to cross the plasma membrane of bacteria by passive diffusion. Consequently, the penetration of aPvd3 is ruled by a transport membrane protein. These results showed that aPvd3 may be used to inhibit pyoverdine uptake or to promote the accumulation and release of antibiotics into the cell following a Trojan horse strategy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Investigation of the interaction of iron(III) complexes with dAMP by ESI-MS, MALDI-MS and potentiometric titration: insights into synthetic nuclease behavior.

    Science.gov (United States)

    Fernandes, Christiane; Oliveira Moreira, Rafaela; Lube, Leonardo M; Horn, Adolfo; Szpoganicz, Bruno; Sherrod, Stacy; Russell, David H

    2010-06-07

    We report herein the characterization by electrospray ionization (ESI) mass spectrometry (MS), matrix assisted laser desorption ionization (MALDI-MS) and potentiometric titration of three iron(III) compounds: [Fe(III)(HPClNOL)Cl2]·NO3 (1), [Cl(HPClNOL)Fe(III)-(μ-O)-Fe(III)(HPClNOL)Cl]·Cl2·H2O (2) and [(SO4)(HPClNOL)Fe(III)-(μ-O)-Fe(III)(HPClNOL)(SO4)]·6H2O (3), where HPClNOL= 1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol). Despite the fact that the compounds have distinct structures in solid state and non-buffered solution, all compounds present similar ESI and MALDI mass spectra in a buffered medium (pH 7.0). At this pH, the species [(PClNOL)Fe(III)-(μ-O)-Fe(III)(PClNOL)](2+) (m/z 354) was observed for all the compounds under investigation. Potentiometric titration confirms a similar behavior for all compounds, indicating that the dihydroxo form [(OH)(HPClNOL)Fe(III)-(μ-O)-Fe(III)(HPClNOL)(OH)](2+) is the major species at pH 7.0, for all the compounds. The products of the interaction between compounds (1), (2) and (3) and dAMP (2'-deoxyadenosine-5'-monophosphate) in a buffered medium (pH 7.0) were identified by MALDI-MS/MS. The fragmentation data obtained by MS/MS allow one to identify the nature of the interaction between the iron(III) compounds and dAMP, revealing the direct interaction between the iron center and phosphate groups.

  18. Iron(iii) bis(pyrazol-1-yl)acetate based decanuclear metallacycles: synthesis, structure, magnetic properties and DFT calculations.

    Science.gov (United States)

    Gajewska, Małgorzata J; Bieńko, Alina; Herchel, Radovan; Haukka, Matti; Jerzykiewicz, Maria; Ożarowski, Andrzej; Drabent, Krzysztof; Hung, Chen-Hsiung

    2016-09-27

    The synthesis, structural aspects, magnetic interpretation and theoretical rationalizations for a new member of the ferric wheel family, a decanuclear iron(iii) complex with the formula [Fe 10 (bdtbpza) 10 (μ 2 -OCH 3 ) 20 ] (1), featuring the N,N,O tridentate bis(3,5-di-tert-butylpyrazol-1-yl)acetate ligand, are reported. The influence of the steric effect on both the core geometry and coordination mode is observed. Temperature dependent (2.0-300 K range) magnetic susceptibility studies carried out on complexes 1 established unequivocally antiferromagnetic (AF) interactions between high-spin iron(iii) centers (S = 5/2), leading to a ground state S = 0. The mechanism of AF intramolecular coupling was proved using a broken-symmetry approach within the density functional method at the B3LYP/def2-TZVP(-f)/def2-SVP level of theory.

  19. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria.

    Science.gov (United States)

    Si, Youbin; Zou, Yan; Liu, Xiaohong; Si, Xiongyuan; Mao, Jingdong

    2015-03-01

    Iron reduction and mercury methylation by dissimilatory iron-reducing bacteria (DIRB), Geobacter sulfurreducens and Shewanella oneidensis, were studied, and the relationship of mercury methylation coupled to iron reduction was determined. The ability of both bacteria for reducing iron was tested, and Fe(III) reduction occurred with the highest rate when ferric oxyhydroxide was used as a terminal electron acceptor. G. sulfurreducens had proven to mediate the production of methylmercury (MeHg), and a notable increase of MeHg following the addition of inorganic Hg was observed. When the initial concentration of HgCl2 was 500nM, about 177.03nM of MeHg was determined at 8d after G. sulfurreducens inoculation. S. oneidensis was tested negligible for Hg methylation and only 12.06nM of MeHg was determined. Iron reduction could potentially influence Hg methylation rates. The increase in MeHg was consistent with high rate of iron reduction, indicating that Fe(III) reduction stimulated the formation of MeHg. Furthermore, the net MeHg concentration increased at low Fe(III) additions from 1.78 to 3.57mM, and then decreased when the added Fe(III) was high from 7.14 to 17.85mM. The mercury methylation rate was suppressed with high Fe(III) additions, which might have been attributable to mercury complexation and low availability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Reverse osmosis membrane composition, structure and performance modification by bisulphite, iron(III), bromide and chlorite exposure.

    Science.gov (United States)

    Ferrer, O; Gibert, O; Cortina, J L

    2016-10-15

    Reverse osmosis (RO) membrane exposure to bisulphite, chlorite, bromide and iron(III) was assessed in terms of membrane composition, structure and performance. Membrane composition was determined by Rutherford backscattering spectrometry (RBS) and membrane performance was assessed by water and chloride permeation, using a modified version of the solution-diffusion model. Iron(III) dosage in presence of bisulphite led to an autooxidation of the latter, probably generating free radicals which damaged the membrane. It comprised a significant raise in chloride passage (chloride permeation coefficient increased 5.3-5.1 fold compared to the virgin membrane under the conditions studied) rapidly. No major differences in terms of water permeability and membrane composition were observed. Nevertheless, an increase in the size of the network pores, and a raise in the fraction of aggregate pores of the polyamide (PA) layer were identified, but no amide bond cleavage was observed. These structural changes were therefore, in accordance with the transport properties observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sorption of microamount of colloidal silver iodide on hydrated iron(III) oxide

    International Nuclear Information System (INIS)

    Kepak, F.; Nova, J.

    1975-01-01

    Sorption of a microamount of colloidal silver iodide labelled with 131 I on hydrated iron/III/ oxide suspension was studied. The sorption dependence upon pH, sorbent amount, and inert electrolyte concentration has revealed that sorption of silver iodide reaches no more than 63%. The sorption lasted one hour during which the maximum value was reached. Desorption time was one hour, as well. Except for measuring the sorption dependence on pH, the sorption pH was 7.0, temperature 24+-2 0 C. (F.G.)

  2. Iron(III) protoporphyrin IX-single-wall carbon nanotubes modified electrodes for hydrogen peroxide and nitrite detection

    International Nuclear Information System (INIS)

    Turdean, Graziella L.; Popescu, Ionel Catalin; Curulli, Antonella; Palleschi, Giuseppe

    2006-01-01

    Iron(III) protoporphyrin IX (Fe(III)P), adsorbed either on single-walled carbon nanotubes (SWCNT) or on hydroxyl-functionalized SWCNT (SWCNT-OH), was incorporated within a Nafion matrix immobilized on the surface of a graphite electrode. From cyclic voltammetric measurements, performed under different experimental conditions (pH and potential scan rate), it was established that the Fe(III)P/Fe(II)P redox couple involves 1e - /1H + . The heterogeneous electron transfer process occurred faster when Fe(III)P was adsorbed on SWCNT-OH (∼11 s -1 ) than on SWCNT (∼4.9 s -1 ). Both the SWCNT-Fe(III)P- and SWCNT-OH-Fe(III)P-modified graphite electrodes exhibit electrocatalytic activity for H 2 O 2 and nitrite reduction. The modified electrodes sensitivities were found varying in the following sequences: S SWCNT-OH-Fe(III)P = 2.45 mA/M ∼ S SWCNT-Fe(III)P = 2.95 mA/M > S Fe(III)P = 1.34 mA/M for H 2 O 2 , and S SWCNT-Fe(III)P = 3.54 mA/M > S Fe(III)P 1.44 mA/M > S SWCNT-OH-Fe(III)P = 0.81 mA/M for NO 2 -

  3. Impact of Microcystis aeruginosa Exudate on the Formation and Reactivity of Iron Oxide Particles Following Fe(II) and Fe(III) Addition.

    Science.gov (United States)

    Garg, Shikha; Wang, Kai; Waite, T David

    2017-05-16

    Impact of the organic exudate secreted by a toxic strain of Microcystis aeruginosa on the formation, aggregation, and reactivity of iron oxides that are formed on addition of Fe(II) and Fe(III) salts to a solution of the exudate is investigated in this study. The exudate has a stabilizing effect on the particles formed with decreased aggregation rate and increased critical coagulant concentration required for diffusion-limited aggregation to occur. These results suggest that the presence of algal exudates from Microcystis aeruginosa may significantly influence particle aggregation both in natural water bodies where Fe(II) oxidation results in oxide formation and in water treatment where Fe(III) salts are commonly added to aid particle growth and contaminant capture. The exudate also affects the reactivity of iron oxide particles formed with exudate coated particles undergoing faster dissolution than bare iron oxide particles. This has implications to iron availability, especially where algae procure iron via dissolution of iron oxide particles as a result of either reaction with reducing moieties, light-mediated ligand to metal charge transfer and/or reaction with siderophores. The increased reactivity of exudate coated particles is attributed, for the most part, to the smaller size of these particles, higher surface area and increased accessibility of surface sites.

  4. Characterization of heme oxygenase and biliverdin reductase gene expression in zebrafish (Danio rerio): Basal expression and response to pro-oxidant exposures

    International Nuclear Information System (INIS)

    Holowiecki, Andrew; O'Shields, Britton; Jenny, Matthew J.

    2016-01-01

    While heme is an important cofactor for numerous proteins, it is highly toxic in its unbound form and can perpetuate the formation of reactive oxygen species. Heme oxygenase enzymes (HMOX1 and HMOX2) degrade heme into biliverdin and carbon monoxide, with biliverdin subsequently being converted to bilirubin by biliverdin reductase (BVRa or BVRb). As a result of the teleost-specific genome duplication event, zebrafish have paralogs of hmox1 (hmox1a and hmox1b) and hmox2 (hmox2a and hmox2b). Expression of all four hmox paralogs and two bvr isoforms were measured in adult tissues (gill, brain and liver) and sexually dimorphic differences were observed, most notably in the basal expression of hmox1a, hmox2a, hmox2b and bvrb in liver samples. hmox1a, hmox2a and hmox2b were significantly induced in male liver tissues in response to 96 h cadmium exposure (20 μM). hmox2a and hmox2b were significantly induced in male brain samples, but only hmox2a was significantly reduced in male gill samples in response to the 96 h cadmium exposure. hmox paralogs displayed significantly different levels of basal expression in most adult tissues, as well as during zebrafish development (24 to 120 hpf). Furthermore, hmox1a, hmox1b and bvrb were significantly induced in zebrafish eleutheroembryos in response to multiple pro-oxidants (cadmium, hemin and tert-butylhydroquinone). Knockdown of Nrf2a, a transcriptional regulator of hmox1a, was demonstrated to inhibit the Cd-mediated induction of hmox1b and bvrb. These results demonstrate distinct mechanisms of hmox and bvr transcriptional regulation in zebrafish, providing initial evidence of the partitioning of function of the hmox paralogs. - Highlights: • hmox1a, hmox2a, hmox2b and bvrb are sexually dimorphic in expression. • hmox paralogs were induced in adult tissues by cadmium exposure. • hmox1a, hmox1b and bvrb were induced by multiple pro-oxidants zebrafish embryos. • Differential expression of zebrafish hmox paralogs suggest

  5. Characterization of heme oxygenase and biliverdin reductase gene expression in zebrafish (Danio rerio): Basal expression and response to pro-oxidant exposures

    Energy Technology Data Exchange (ETDEWEB)

    Holowiecki, Andrew [Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487 (United States); Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children' s Research Foundation, Cincinnati, OH (United States); O' Shields, Britton [Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487 (United States); Jenny, Matthew J., E-mail: mjjenny@ua.edu [Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2016-11-15

    While heme is an important cofactor for numerous proteins, it is highly toxic in its unbound form and can perpetuate the formation of reactive oxygen species. Heme oxygenase enzymes (HMOX1 and HMOX2) degrade heme into biliverdin and carbon monoxide, with biliverdin subsequently being converted to bilirubin by biliverdin reductase (BVRa or BVRb). As a result of the teleost-specific genome duplication event, zebrafish have paralogs of hmox1 (hmox1a and hmox1b) and hmox2 (hmox2a and hmox2b). Expression of all four hmox paralogs and two bvr isoforms were measured in adult tissues (gill, brain and liver) and sexually dimorphic differences were observed, most notably in the basal expression of hmox1a, hmox2a, hmox2b and bvrb in liver samples. hmox1a, hmox2a and hmox2b were significantly induced in male liver tissues in response to 96 h cadmium exposure (20 μM). hmox2a and hmox2b were significantly induced in male brain samples, but only hmox2a was significantly reduced in male gill samples in response to the 96 h cadmium exposure. hmox paralogs displayed significantly different levels of basal expression in most adult tissues, as well as during zebrafish development (24 to 120 hpf). Furthermore, hmox1a, hmox1b and bvrb were significantly induced in zebrafish eleutheroembryos in response to multiple pro-oxidants (cadmium, hemin and tert-butylhydroquinone). Knockdown of Nrf2a, a transcriptional regulator of hmox1a, was demonstrated to inhibit the Cd-mediated induction of hmox1b and bvrb. These results demonstrate distinct mechanisms of hmox and bvr transcriptional regulation in zebrafish, providing initial evidence of the partitioning of function of the hmox paralogs. - Highlights: • hmox1a, hmox2a, hmox2b and bvrb are sexually dimorphic in expression. • hmox paralogs were induced in adult tissues by cadmium exposure. • hmox1a, hmox1b and bvrb were induced by multiple pro-oxidants zebrafish embryos. • Differential expression of zebrafish hmox paralogs suggest

  6. Nonanuclear Spin-Crossover Complex Containing Iron(II) and Iron(III) Based on a 2,6-Bis(pyrazol-1-yl)pyridine Ligand Functionalized with a Carboxylate Group.

    Science.gov (United States)

    Abhervé, Alexandre; Recio-Carretero, María José; López-Jordà, Maurici; Clemente-Juan, Juan Modesto; Canet-Ferrer, Josep; Cantarero, Andrés; Clemente-León, Miguel; Coronado, Eugenio

    2016-09-19

    The synthesis and magnetostructural characterization of [Fe(III)3(μ3-O)(H2O)3[Fe(II)(bppCOOH)(bppCOO)]6](ClO4)13·(CH3)2CO)6·(solvate) (2) are reported. This compound is obtained as a secondary product during synthesis of the mononuclear complex [Fe(II)(bppCOOH)2](ClO4)2 (1). The single-crystal X-ray diffraction structure of 2 shows that it contains the nonanuclear cluster of the formula [Fe(III)3(μ3-O)(H2O)3[Fe(II)(bppCOOH)(bppCOO)]6](13+), which is formed by a central Fe(III)3O core coordinated to six partially deprotonated [Fe(II)(bppCOOH)(bppCOO)](+) complexes. Raman spectroscopy studies on single crystals of 1 and 2 have been performed to elucidate the spin and oxidation states of iron in 2. These studies and magnetic characterization indicate that most of the iron(II) complexes of 2 remain in the low-spin (LS) state and present a gradual and incomplete spin crossover above 300 K. On the other hand, the Fe(III) trimer shows the expected antiferromagnetic behavior. From the structural point of view, 2 represents the first example in which bppCOO(-) acts as a bridging ligand, thus forming a polynuclear magnetic complex.

  7. Detection of the electronic structure of iron-(iii)-oxo oligomers forming in aqueous solutions.

    Science.gov (United States)

    Seidel, Robert; Kraffert, Katrin; Kabelitz, Anke; Pohl, Marvin N; Kraehnert, Ralph; Emmerling, Franziska; Winter, Bernd

    2017-12-13

    The nature of the small iron-oxo oligomers in iron-(iii) aqueous solutions has a determining effect on the chemical processes that govern the formation of nanoparticles in aqueous phase. Here we report on a liquid-jet photoelectron-spectroscopy experiment for the investigation of the electronic structure of the occurring iron-oxo oligomers in FeCl 3 aqueous solutions. The only iron species in the as-prepared 0.75 M solution are Fe 3+ monomers. Addition of NaOH initiates Fe 3+ hydrolysis which is followed by the formation of iron-oxo oligomers. At small enough NaOH concentrations, corresponding to approximately [OH]/[Fe] = 0.2-0.25 ratio, the iron oligomers can be stabilized for several hours without engaging in further aggregation. Here, we apply a combination of non-resonant as well as iron 2p and oxygen 1s resonant photoelectron spectroscopy from a liquid microjet to detect the electronic structure of the occurring species. Specifically, the oxygen 1s partial electron yield X-ray absorption (PEY-XA) spectra are found to exhibit a peak well below the onset of liquid water and OH - (aq) absorption. The iron 2p absorption gives rise to signal centered between the main absorption bands typical for aqueous Fe 3+ . Absorption bands in both PEY-XA spectra are found to correlate with an enhanced photoelectron peak near 20 eV binding energy, which demonstrates the sensitivity of resonant photoelectron (RPE) spectroscopy to mixing between iron and ligand orbitals. These various signals from the iron-oxo oligomers exhibit maximum intensity at [OH]/[Fe] = 0.25 ratio. For the same ratio, we observe changes in the pH as well as in complementary Raman spectra, which can be assigned to the transition from monomeric to oligomeric species. At approximately [OH]/[Fe] = 0.3 we begin to observe particles larger than 1 nm in radius, detected by small-angle X-ray scattering.

  8. Manganese associated nanoparticles agglomerate of iron(III) oxide: synthesis, characterization and arsenic(III) sorption behavior with mechanism.

    Science.gov (United States)

    Gupta, Kaushik; Maity, Arjun; Ghosh, Uday Chand

    2010-12-15

    Three samples of manganese associated hydrous iron(III) oxide (MNHFO), prepared by incinerating metal hydroxide precipitate at T (± 5)=90, 300 and 600°C, showed increase of crystalline nature in XRD patterns with decreasing As(III) removal percentages. TEM images showed the increase of crystallinity from sample-1 (MNHFO-1) to sample-3 (MNHFO-3). Dimensions (nm) of particles estimated were 5.0, 7.0 and 97.5. Optimization of pH indicated that MNHFO-1 could remove aqueous As(III) efficiently at pH between 3.0 and 7.0. Kinetic and equilibrium data of reactions under the experimental conditions described the pseudo-second order and the Langmuir isotherm equations very well, respectively. The Langmuir capacity (q(m)) estimated was 691.04 mmol kg(-1). The values of enthalpy, Gibb's free energy and entropy changes (ΔH(0)=+23.23 kJ mol(-1), ΔG(0)=-3.43 to -7.20 kJ mol(-1) at T=283-323K, ΔS(0)=+0.094 kJ mol(-1)K(-1)) suggested that the reaction was endothermic, spontaneous and took place with increasing entropy. The As(III) sorbed by MNHFO-1 underwent surface oxidation to As(V), and evidences appeared from the XPS and FTIR investigations. MNHFO-1 packed column (internal diameter: 1.0 cm, height: 3.7 cm) filtered 11.5 dm(3) groundwater (105 μg As dm(-3)) with reducing arsenic concentration to ≤ 10 μg dm(-3). Copyright © 2010 Elsevier B.V. All rights reserved.

  9. The sorption of inorganic arsenic on modified sepiolite: Effect of hydrated iron(III-oxide

    Directory of Open Access Journals (Sweden)

    Ilić Nikola I.

    2014-01-01

    Full Text Available The sorption of inorganic arsenic species, As(III and As(V, from water by sepiolite modified with hydrated iron(III oxide was investigated at 25 °C through batch studies. The influence of the initial pH value, the initial As concentrations, the contact time and types of water on the sorption capacity was investigated. Two types of water were used, deionized and groundwater. The maximal sorption capacity for As(III from deionized water was observed at initial and final pH value 7.0, while the bonding of As(V was observed to be almost pH independent for pH value in the range from 2.0 to 7.0, and the significant decrease in the sorption capacity was observed at pH values above 7.0. The sorption capacity at initial pH 7.0 was about 10 mg gˉ1 for As(III and 4.2 mg gˉ1 for As(V in deionized water. The capacity in groundwater was decreased by 40 % for As(III and by 20 % for As(V. The Langmuir model and pseudo-second order kinetic model revealed good agreement with the experimental results. The results show that Fe(III-modified sepiolite exhibits significant affinity for arsenic removal and it has a potential for the application in water purification processes. [Projekat Ministarstva nauke Republike Srbije, br. III 45019, III 43009 i TR 37010

  10. Mussel-Inspired Protein Nanoparticles Containing Iron(III)-DOPA Complexes for pH-Responsive Drug Delivery.

    Science.gov (United States)

    Kim, Bum Jin; Cheong, Hogyun; Hwang, Byeong Hee; Cha, Hyung Joon

    2015-06-15

    A novel bioinspired strategy for protein nanoparticle (NP) synthesis to achieve pH-responsive drug release exploits the pH-dependent changes in the coordination stoichiometry of iron(III)-3,4-dihydroxyphenylalanine (DOPA) complexes, which play a major cross-linking role in mussel byssal threads. Doxorubicin-loaded polymeric NPs that are based on Fe(III)-DOPA complexation were thus synthesized with a DOPA-modified recombinant mussel adhesive protein through a co-electrospraying process. The release of doxorubicin was found to be predominantly governed by a change in the structure of the Fe(III)-DOPA complexes induced by an acidic pH value. It was also demonstrated that the fabricated NPs exhibited effective cytotoxicity towards cancer cells through efficient cellular uptake and cytosolic release. Therefore, it is anticipated that Fe(III)-DOPA complexation can be successfully utilized as a new design principle for pH-responsive NPs for diverse controlled drug-delivery applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates

    NARCIS (Netherlands)

    Delaire, Caroline; van Genuchten, Case M.; Amrose, Susan E.; Gadgil, Ashok J.

    2016-01-01

    Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment

  12. The Efficiency of Strontium-90 Desorption Using Iron (III Solutions in the Decontamination Process of Radioactive Soils

    Directory of Open Access Journals (Sweden)

    Olga Vladimirovna Cheremisina

    2018-03-01

    Full Text Available The paper presents the investigation on the estimated efficiency of iron (III chloride solutions in the decontamination process of radioactive soils with 90 Sr, according to kinetic and thermodynamic characteristics of the desorption process. The specific 90 Sr radioactivity of soil samples was (3.9±0.3·104 Bq·g. The adsorption isotherms of Sr 2+ and Fe 3+ are described with the Langmuir equation. The values of Gibbs energy G0298 = -4.65 kJ·mol -1 and equilibrium ion exchange constant Keq = 6,5 confirm the hypothesis of strontium removal from soils with iron (III cations. The effectiveness of the method is substantiated by experimental and calculated results of this study samples of radioactive soils are deactivated in 90% after 9.5 hours, whereas the kinetic constant is 6.77·10 s -1 . The suggested method of soil cleanup with 0.2 M Fe 3+ solutions is optimal and complies with the environmental requirements.

  13. Investigation of iron(III) reduction and trace metal interferences in the determination of dissolved iron in seawater using flow injection with luminol chemiluminescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Ussher, Simon J. [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Milne, Angela [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Department of Oceanography, Florida State University, Tallahassee, FL 32306-4320 (United States); Landing, William M. [Department of Oceanography, Florida State University, Tallahassee, FL 32306-4320 (United States); Attiq-ur-Rehman, Kakar [Department of Chemistry, University of Balochistan, Quetta (Pakistan); Seguret, Marie J.M.; Holland, Toby [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Achterberg, Eric P. [National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH (United Kingdom); Nabi, Abdul [Department of Chemistry, University of Balochistan, Quetta (Pakistan); Worsfold, Paul J., E-mail: pworsfold@plymouth.ac.uk [School of Earth, Ocean and Environmental Sciences (SEOES), University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-10-12

    A detailed investigation into the performance of two flow injection-chemiluminescence (FI-CL) manifolds (with and without a preconcentration column) for the determination of sub-nanomolar dissolved iron (Fe(II) + Fe(III)), following the reduction of Fe(III) by sulphite, in seawater is described. Kinetic experiments were conducted to examine the efficiency of reduction of inorganic Fe(III) with sulphite under different conditions and a rigorous study of the potential interference caused by other transition metals present in seawater was conducted. Using 100 {mu}M concentrations of sulphite a reduction time of 4 h was sufficient to quantitatively reduce Fe(III) in seawater. Under optimal conditions, cobalt(II) and vanadium(IV)/(III) were the major positive interferences and strategies for their removal are reported. Specifically, cobalt(II) was masked by the addition of dimethylglyoxime to the luminol solution and vanadium(IV) was removed by passing the sample through an 8-hydroxyquinoline column in a low pH carrier stream. Manganese(II) also interfered by suppression of the CL response but this was not significant at typical open ocean concentrations.

  14. Predictive modelling of Fe(III) precipitation in iron removal process for bioleaching circuits.

    Science.gov (United States)

    Nurmi, Pauliina; Ozkaya, Bestamin; Kaksonen, Anna H; Tuovinen, Olli H; Puhakka, Jaakko A

    2010-05-01

    In this study, the applicability of three modelling approaches was determined in an effort to describe complex relationships between process parameters and to predict the performance of an integrated process, which consisted of a fluidized bed bioreactor for Fe(3+) regeneration and a gravity settler for precipitative iron removal. Self-organizing maps were used to visually evaluate the associations between variables prior to the comparison of two different modelling methods, the multiple regression modelling and artificial neural network (ANN) modelling, for predicting Fe(III) precipitation. With the ANN model, an excellent match between the predicted and measured data was obtained (R (2) = 0.97). The best-fitting regression model also gave a good fit (R (2) = 0.87). This study demonstrates that ANNs and regression models are robust tools for predicting iron precipitation in the integrated process and can thus be used in the management of such systems.

  15. Adsorption characteristics of As(III) from aqueous solution on iron oxide coated cement (IOCC)

    International Nuclear Information System (INIS)

    Kundu, Sanghamitra; Gupta, A.K.

    2007-01-01

    Contamination of potable groundwater with arsenic is a serious health hazard, which calls for proper treatment before its use as drinking water. The objective of the present study is to assess the effectiveness of iron oxide coated cement (IOCC) for As(III) adsorption from aqueous solution. Batch studies were conducted to study As(III) adsorption onto IOCC at ambient temperature as a function of adsorbent dose, pH, contact time, initial arsenic concentration and temperature. Kinetics reveal that the uptake of As(III) ion is very rapid and most of fixation occurs within the first 20 min of contact. The pseudo-second order rate equation successfully described the adsorption kinetics. Langmuir, Freundlich, Redlich-Peterson (R-P), and Dubinin-Radushkevich (D-R) models were used to describe the adsorption isotherms at different initial As(III) concentrations and at 30 g l -1 fixed adsorbent dose. The maximum adsorption capacity of IOCC for As(III) determined from the Langmuir isotherm was 0.69 mg g -1 . The mean free energy of adsorption (E) calculated from the D-R isotherm was found to be 2.86 kJ mol -1 which suggests physisorption. Thermodynamic parameters indicate an exothermic nature of adsorption and a spontaneous and favourable process. The results suggest that IOCC can be suitably used for As(III) removal from aqueous solutions

  16. Impact of two iron(III) chelators on the iron, cadmium, lead and nickel accumulation in poplar grown under heavy metal stress in hydroponics.

    Science.gov (United States)

    Mihucz, Victor G; Csog, Árpád; Fodor, Ferenc; Tatár, Enikő; Szoboszlai, Norbert; Silaghi-Dumitrescu, Luminiţa; Záray, Gyula

    2012-04-15

    Poplar (Populus jacquemontiana var. glauca cv. Kopeczkii) was grown in hydroponics containing 10 μM Cd(II), Ni(II) or Pb(II), and Fe as Fe(III) EDTA or Fe(III) citrate in identical concentrations. The present study was designed to compare the accumulation and distribution of Fe, Cd, Ni and Pb within the different plant compartments. Generally, Fe and heavy-metal accumulation were higher by factor 2-7 and 1.6-3.3, respectively, when Fe(III) citrate was used. Iron transport towards the shoot depended on the Fe(III) chelate and, generally, on the heavy metal used. Lead was accumulated only in the root. The amounts of Fe and heavy metals accumulated by poplar were very similar to those of cucumber grown in an identical way, indicating strong Fe uptake regulation of these two Strategy I plants: a cultivar and a woody plant. The Strategy I Fe uptake mechanism (i.e. reducing Fe(III) followed by Fe(II) uptake), together with the Fe(III) chelate form in the nutrient solution had significant effects on Fe and heavy metal uptake. Poplar appears to show phytoremediation potential for Cd and Ni, as their transport towards the shoot was characterized by 51-54% and 26-48% depending on the Fe(III) supply in the nutrient solution. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Moessbauer spectroscopic studies of alkylammonium iron(III) complexes

    International Nuclear Information System (INIS)

    Katada, M.; Kozawa, S.; Nakajima, Y.

    2006-01-01

    Alkylammonium iron(III) complexes, [(n-C n H 2n+1 )mNH 4-m ] 3 [Fe(CN) 6 ] were prepared and studied by Moessbauer spectroscopy, XRD, and DSC. In the complexes with m=2, the temperature dependences of the area intensity of Moessbauer are correlated to the motion of alkyl chains. The temperature dependence of the complex with n=4 was linear and smaller than that of other complexes. Especially in the complex with n=6, the deviation from the linear was the largest in the complexes observed. This result is attributed to the structural difference of the complex. The complexes with n≥8 consist of two-dimensional layer structure. The temperature dependence of the area intensity was similar to each other. This means that the motion of alkyl chain in these complexes are almost the same. The values of quadrupole splitting for the complexes were larger those that of the complexes (m=1). This indicates that the form of [Fe(CN) 6 ] 3- ion is affected by the differences of the number of alkyl groups. (author)

  18. Investigation of iron(III) complex with crown-porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, Denis A., E-mail: pankratov@radio.chem.msu.ru; Dolzhenko, Vladimir D. [Lomonosov Moscow State University (Russian Federation); Stukan, Reonald A. [Semenov Institute of Chemical Physics, Russian Academy of Sciences (Russian Federation); Al Ansari, Yana F.; Savinkina, Elena V. [Lomonosov Moscow State Academy of Fine Chemical Technology (Russian Federation); Kiselev, Yury M. [Lomonosov Moscow State University (Russian Federation)

    2013-08-15

    Iron complex of 5-(4-(((4 Prime -hydroxy-benzo-15-crown-5)-5 Prime -yl)diazo)phenyl)-10,15, 20-triphenylporphyrin was investigated by {sup 57}Fe Moessbauer spectroscopy and EPR. Two Fe sites were identified; they give two differing signals, doublet and wide absorption in a large velocity interval. EPR spectra of solutions of the complex in chloroform at room temperature also show two signals with g = 2.064, A{sub Fe} = 0.032 cm{sup - 1}; g = 2.015, A{sub Fe} = 0.0034 cm{sup - 1}. The doublet asymmetry is studied vs. temperature and normal angle to the sample plane and gamma-beam. The isomer shift {delta} in the doublet varies from 0.25 to 0.41 mm/s in the 360-5 K temperature range, whereas quadruple splitting value is constant, {Delta} {approx} 0.65 mm/s. The relax absorption may be described as a wide singlet ({delta} = 0.30- 0.44 mm/s and {Gamma} = 2.83-3.38 mm/s); its relative area strongly depends on temperature. According to {delta}, both signals are assigned to Fe(III)

  19. Iron(III Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions

    Directory of Open Access Journals (Sweden)

    Susana L. H. Rebelo

    2016-04-01

    Full Text Available Iron(III fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H2TPFPP and the corresponding iron complex [Fe(TPFPPCl], and the use of [Fe(TPFPPCl] as an oxidation catalyst in green conditions. The preparations of H2TPFPP and [Fe(TPFPPCl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(IIIporphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide and green solvent (ethanol. Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed.

  20. A Novel Sensor for Monitoring of Iron(III) Ions Based on Porphyrins

    Science.gov (United States)

    Vlascici, Dana; Fagadar-Cosma, Eugenia; Popa, Iuliana; Chiriac, Vlad; Gil-Agusti, Mayte

    2012-01-01

    Three A3B porphyrins with mixed carboxy-, phenoxy-, pyridyl-, and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10−7–1 × 10−1 M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples. PMID:22969395

  1. A novel sensor for monitoring of iron(III) ions based on porphyrins.

    Science.gov (United States)

    Vlascici, Dana; Fagadar-Cosma, Eugenia; Popa, Iuliana; Chiriac, Vlad; Gil-Agusti, Mayte

    2012-01-01

    Three A(3)B porphyrins with mixed carboxy-, phenoxy-, pyridyl-, and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10(-7)-1 × 10(-1) M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples.

  2. Obstruction of photoinduced electron transfer from excited porphyrin to graphene oxide: a fluorescence turn-on sensing platform for iron (III ions.

    Directory of Open Access Journals (Sweden)

    Zhong De Liu

    Full Text Available A comparative research of the assembly of different porphyrin molecules on graphene oxide (GO and reduced graphene oxide (RGO was carried out, respectively. Despite the cationic porphyrin molecules can be assembled onto the surfaces of graphene sheets, including GO and RGO, to form complexes through electrostatic and π-π stacking interactions, the more obvious fluorescence quenching and the larger red-shift of the Soret band of porphyrin molecule in RGO-bound states were observed than those in GO-bound states, due to the difference of molecular flattening in degree. Further, more interesting finding was that the complexes formed between cationic porphyrin and GO, rather than RGO sheets, can facilitate the incorporation of iron (III ions into the porphyrin moieties, due to the presence of the oxygen-contained groups at the basal plane of GO sheets served as auxiliary coordination units, which can high-efficiently obstruct the electron transfer from excited porphyrin to GO sheets and result in the occurrence of fluorescence restoration. Thus, a fluorescence sensing platform has been developed for iron (III ions detection in this contribution by using the porphyrin/GO nanohybrids as an optical probe, and our present one exhibited rapid and sensitive responses and high selectivity toward iron (III ions.

  3. Iron(III) diethylenetriaminepentaacetic acid complex on polyallylamine functionalized multiwalled carbon nanotubes: immobilization, direct electrochemistry and electrocatalysis.

    Science.gov (United States)

    Liu, Hailing; Cui, Yanyun; Li, Pan; Zhou, Yiming; Zhu, Xiaoshu; Tang, Yawen; Chen, Yu; Lu, Tianhong

    2013-05-07

    A nonenzymatic iron(III) diethylenetriaminepentaacetic acid (Fe(III)-DETPA) complex based amperometric sensor for the analytical determination of hydrogen peroxide was developed. By combining the electrostatic interaction between the Fe(III)-DETPA complex and polyallylamine (PAH) functionalized multiwalled carbon nanotubes (MWCNTs) as well as the ionotropic crosslinking interaction between PAH and ethylenediamine-tetramethylene phosphonic acid (EDTMP), the electroactive Fe(III)-DETPA complex was successfully incorporated within the MWCNT matrix, and firmly immobilized on the Au substrate electrode. The fabricated electrochemical sensor was characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical methods. The influences of solution pH and ionic strength on the electrochemical sensor were investigated. The prepared electrochemical sensor had a fast response to hydrogen peroxide (<3 s) and an excellent linear range of concentration from 1.25 × 10(-8) to 4.75 × 10(-3) M with a detection limit of 6.3 × 10(-9) M under the optimum conditions.

  4. Coumarin-Based Fluorescent Probes for Dual Recognition of Copper(II and Iron(III Ions and Their Application in Bio-Imaging

    Directory of Open Access Journals (Sweden)

    Olimpo García-Beltrán

    2014-01-01

    Full Text Available Two new coumarin-based “turn-off” fluorescent probes, (E-3-((3,4-dihydroxybenzylideneamino-7-hydroxy-2H-chromen-2-one (BS1 and (E-3-((2,4-dihydroxybenzylideneamino-7-hydroxy-2H-chromen-2-one (BS2, were synthesized and their detection of copper(II and iron(III ions was studied. Results show that both compounds are highly selective for Cu2+ and Fe3+ ions over other metal ions. However, BS2 is detected directly, while detection of BS1 involves a hydrolysis reaction to regenerate 3-amino-7-hydroxycoumarin (3 and 3,4-dihydroxybenzaldehyde, of which 3 is able to react with copper(II or iron(III ions. The interaction between the tested compounds and copper or iron ions is associated with a large fluorescence decrease, showing detection limits of ca. 10−5 M. Preliminary studies employing epifluorescence microscopy demonstrate that Cu2+ and Fe3+ ions can be imaged in human neuroblastoma SH-SY5Y cells treated with the tested probes.

  5. Cellular Studies with UVA Radiation: A Role for Iron (invited paper)

    International Nuclear Information System (INIS)

    Tyrrell, R.M.; Pourzand, C.A.; Brown, J.; Hejmadi, V.; Kvam, V.; Ryter, S.; Watkin, R.D.

    2000-01-01

    The UVA (320-380 nm) component of sunlight or sunbeds acts as an oxidising carcinogen and has been clearly implicated in skin cancer. Since UVA radiation interacts with cells by generating active oxygen species, the damaging effects of this radiation will be exacerbated by the presence of catalytically reactive iron in cells. It has now been shown by two independent techniques (dequenching of metal-quenched calcein fluorescence in cells and changes in the binding activity of the iron responsive protein IRPI) that UVA radiation causes an immediate release of 'free' iron in human skin fibroblasts via the proteolysis of ferritin (Ft). Within minutes of exposure to a range of doses of UVA at natural exposure levels, the binding activity of IRP-1, as well as Ft levels, decrease in a dose-dependent manner. It is proposed that the oxidative damage to lysosomes that leads to Ft degradation and the consequent release of potentially harmful 'free' iron to the cytosol might be a major factor in UVA-induced damage to the skin. UVA radiation also breaks down heme-containing proteins in the microsomal membrane to release free heme as an additional photosensitising component. This will provide another source of enhanced free iron in skin cells since constitutive heme oxygenase 2 (in keratinocytes) and UVA-inducible heme oxygenase-1 (in fibroblasts) are likely to break down any free heme to biliverdin and release iron and carbon monoxide in the process. It is postulated that, in skin fibroblasts, this free heme release and the enhanced free iron pools will lead to an adaptive response involving heme oxygenase (with a maximum about 10 h) and ferritin (in 24-48 h) that will scavenge the heme and iron released by subsequent oxidising (UVA) treatments. (author)

  6. The role of order-disorder transitions in the quest for molecular multiferroics: structural and magnetic neutron studies of a mixed valence iron(II)-iron(III) formate framework.

    Science.gov (United States)

    Cañadillas-Delgado, Laura; Fabelo, Oscar; Rodríguez-Velamazán, J Alberto; Lemée-Cailleau, Marie-Hélène; Mason, Sax A; Pardo, Emilio; Lloret, Francesc; Zhao, Jiong-Peng; Bu, Xian-He; Simonet, Virginie; Colin, Claire V; Rodríguez-Carvajal, Juan

    2012-12-05

    Neutron diffraction studies have been carried out to shed light on the unprecedented order-disorder phase transition (ca. 155 K) observed in the mixed-valence iron(II)-iron(III) formate framework compound [NH(2)(CH(3))(2)](n)[Fe(III)Fe(II)(HCOO)(6)](n). The crystal structure at 220 K was first determined from Laue diffraction data, then a second refinement at 175 K and the crystal structure determination in the low temperature phase at 45 K were done with data from the monochromatic high resolution single crystal diffractometer D19. The 45 K nuclear structure reveals that the phase transition is associated with the order-disorder of the dimethylammonium counterion that is weakly anchored in the cavities of the [Fe(III)Fe(II)(HCOO)(6)](n) framework. In the low-temperature phase, a change in space group from P31c to R3c occurs, involving a tripling of the c-axis due to the ordering of the dimethylammonium counterion. The occurrence of this nuclear phase transition is associated with an electric transition, from paraelectric to antiferroelectric. A combination of powder and single crystal neutron diffraction measurements below the magnetic order transition (ca. 37 K) has been used to determine unequivocally the magnetic structure of this Néel N-Type ferrimagnet, proving that the ferrimagnetic behavior is due to a noncompensation of the different Fe(II) and Fe(III) magnetic moments.

  7. Influence of weak magnetic field and tartrate on the oxidation and sequestration of Sb(III) by zerovalent iron: Batch and semi-continuous flow study.

    Science.gov (United States)

    Fan, Peng; Sun, Yuankui; Qiao, Junlian; Lo, Irene M C; Guan, Xiaohong

    2018-02-05

    The influence of weak magnetic field (WMF) and tartrate on the oxidation and sequestration of Sb(III) by zerovalent iron (ZVI) was investigated with batch and semi-continuous reactors. The species analysis of antinomy in aqueous solution and solid precipitates implied that both Sb(III) adsorption preceding its conversion to Sb(V) in solid phase and Sb(III) oxidation to Sb(V) preceding its adsorption in aqueous phase occurred in the process of Sb(III) sequestration by ZVI. The application of WMF greatly increased the rate constants of Sb tot (total Sb) and Sb(III) disappearance during Sb(III)-tartrate and uncomplexed-Sb(III) sequestration by ZVI. The enhancing effect of WMF was primarily due to the accelerated ZVI corrosion in the presence of WMF, as evidenced by the influence of WMF on the change of solution and solid properties with reaction. However, tartrate greatly retarded Sb removal by ZVI. It was because tartrate inhibited ZVI corrosion, competed with Sb(III) and Sb(V) for the active surface sites, increased the negative surface charge of the generated iron (hydr)oxides due to its adsorption, and formed soluble complexes with Fe(III). The positive effect of WMF on Sb(III)-tartrate and uncomplexed-Sb(III) removal by ZVI was also verified with a magnetic semi-continuous reactor. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Manganese-incorporated iron(III) oxide-graphene magnetic nanocomposite: synthesis, characterization, and application for the arsenic(III)-sorption from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Debabrata; Gupta, Kaushik; Ghosh, Arup Kumar [Presidency University, Department of Chemistry and Biochemistry (India); De, Amitabha [Saha Institute of Nuclear Physics, Chemical Science Division (India); Banerjee, Sangam [Saha Institute of Nuclear Physics, Surface Physics Division (India); Ghosh, Uday Chand, E-mail: ucghosh@yahoo.co.in [Presidency University, Department of Chemistry and Biochemistry (India)

    2012-12-15

    High specific surface area of graphene (GR) has gained special scientific attention in developing magnetic GR nanocomposite aiming to apply for the remediation of diverse environmental problems like point-of-use water purification and simultaneous separation of contaminants applying low external magnetic field (<1.0 T) from ground water. Fabrication of magnetic manganese-incorporated iron(III) oxide (Mn{sub x}{sup 2+}Fe{sub 2-x}{sup 3+}O{sub 4}{sup 2-}) (IMBO)-GR nanocomposite is reported by exfoliating the GR layers. Latest microscopic, spectroscopic, powder X-ray diffraction, BET surface area, and superconducting quantum interference device characterizations showed that the material is a magnetic nanocomposite with high specific surface area (280 m{sup 2} g{sup -1}) and pore volume (0.3362 cm{sup 3} g{sup -1}). Use of this composite for the immobilization of carcinogenic As(III) from water at 300 K and pH {approx}7.0 showed that the nanocomposite has higher binding efficiency with As(III) than the IMBO owing to its high specific surface area. The composite showed almost complete (>99.9 %) As(III) removal ({<=}10 {mu}g L{sup -1}) from water. External magnetic field of 0.3 T efficiently separated the water dispersed composite (0.01 g/10 mL) at room temperature (300 K). Thus, this composite is a promising material which can be used effectively as a potent As(III) immobilizer from the contaminated groundwater (>10 {mu}g L{sup -1}) to improve drinking water quality.

  9. Kinetics and mechanism of reduction of iron(iii) kojic acid complex by hydroquinone and l-cysteine

    International Nuclear Information System (INIS)

    Hussain, Z.; Perviaz, M.; Kazmi, S.A.; Johnson, A.S.; Offiong, O.E.

    2014-01-01

    The effect of pH on the kinetics of reduction of iron(III) kojic acid complex by hydroquinone (H/sub 2/Q) and L-cysteine (L-Cys) was studied in the pH range of 2.34 - 4.03 for H/sub 2/Q and 3.04 - 5.5 for L-cysteine at ionic strength of 0.5 M and at 35 degree C. The pseudo-first order rate constants for the reduction of Fe(KA)3 by L-cysteine and hydroquinone increase linearly with increasing reductant concentration, indicating first-order kinetics in reductant concentration. However, whereas the rate of reduction by H2Q increases with increasing pH, an opposite trend was observed in the case of reduction by L-cysteine. Plausible rate laws and mechanisms have been proposed in line with these observations. Activation parameters (delta H no and delta S no) were evaluated for the reduction of iron (III) kojic acid complex by cysteine and the values obtained are 35.25 kJmol-1, -141.4 JK-1mol-1 and 28.14 kJmol-1 , 161.2 JK-1mol-1 for pH 4.5 and 3.52 respectively. (author)

  10. Aquachloridobis[5-(2-pyridyl-1H-tetrazolato-κN1]iron(III

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2009-08-01

    Full Text Available The title compound, [Fe(C6H4N52Cl(H2O], was synthesized by hydrothermal reaction of FeCl3 with 2-(1H-tetrazol-5-ylpyridine. The iron(III metal centre exhibits a distorted octahedral coordination geometry provided by four N atoms from two bidentate organic ligands, one water O atom and one chloride anion. The pyridine and tetrazole rings are nearly coplanar [dihedral angles = 4.32 (15 and 5.04 (14°]. In the crystal structure, intermolecular O—H...N hydrogen bonds link the complex molecules into a two-dimensional network parallel to (100.

  11. Adsorption studies of iron(III) on chitin

    Indian Academy of Sciences (India)

    Unknown

    of particle size and dosage of the adsorbant, contact time, initial concentration of the adsorbate and tem- perature were experimentally ... Adsorption; chitin; variable parameters; fraction of adsorption; temperature effect. 1. Introduction. Iron is one of the ... about the presence of iron in drinking water is its ob- jectionable taste.

  12. Transformation of Nitrate and Toluene in Groundwater by Sulfur Modified Iron(SMI-III)

    Science.gov (United States)

    Lee, W.; Park, S.; Lim, J.; Hong, U.; Kwon, S.; Kim, Y.

    2009-12-01

    In Korea, nitrate and benzene, toluene, ethylbenzene, and xylene isomers (BTEX) are frequently detected together as ground water contaminants. Therefore, a system simultaneously treating both nitrate (inorganic compound) and BTEX (organic compounds) is required to utilize groundwater as a water resource. In this study, we investigated the efficiency of Sulfur Modified Iron (SMI-III) in treating both nitrate and BTEX contaminated groundwater. Based on XRD (X-Ray Diffraction) analysis, the SMI-III is mainly composed of Fe3O4, S, and Fe. A series of column tests were conducted at three different empty bed contact times (EBCTs) for each compound. During the experiments, removal efficiency for both nitrate and toluene were linearly correlated with EBCT, suggesting that SMI-III have an ability to transform both nitrate and toluene. The concentration of SO42- and oxidation/reduction potential (ORP) were also measured. After exposed to nitrate contaminated groundwater, the composition of SMI-III was changed to Fe2O3, Fe3O4, Fe, and Fe0.95S1.05. The trends of effluent sulfate concentrations were inversely correlated with effluent nitrate concentrations, while the trends of ORP values, having the minimum values of -480 mV, were highly correlated with effluent nitrate concentrations. XRD analysis before and after exposed to nitrate contaminated groundwater, sulfate production, and nitrite detection as a reductive transformation by-product of nitrate suggest that nitrate is reductively transformed by SMI-III. Interestingly, in the toluene experiments, the trends of ORP values were inversely correlated with effluent toluene concentrations, suggesting that probably degrade through oxidation reaction. Consequently, nitrate and toluene probably degrade through reduction and oxidation reaction, respectively and SMI-III could serve as both electron donor and acceptor.

  13. Avaliação da eficácia do uso intravenoso de sacarato de hidróxido de ferro III no tratamento de pacientes adultos com anemia ferropriva Evaluation of the efficacy of intravenous iron III-hydroxide saccharate for treating adult patients with iron deficiency anemia

    Directory of Open Access Journals (Sweden)

    Rodolfo D. Cançado

    2007-06-01

    Full Text Available O objetivo desse estudo foi avaliar a eficácia do uso intravenoso de sacarato de hidróxido de ferro III no tratamento de pacientes adultos com anemia ferropriva. No período de janeiro de 2003 a dezembro de 2005, estudamos cinqüenta pacientes com anemia ferropriva que apresentaram intolerância e/ou resposta inadequada ao tratamento com ferro por via oral e/ou valor de hemoglobina inferior a 7,0 g/dL. Os principais exames laboratoriais realizados foram: hemograma completo, contagem de reticulócitos, ferro sérico, capacidade total de ligação de ferro e ferritina sérica. Os pacientes receberam uma dose semanal de 200 mg de sacarato de hidróxido de ferro III diluído em 250 mL de soro fisiológico a 0,9%, administrado por via intravenosa em trinta minutos. O tratamento foi realizado até a obtenção do valor de hemoglobina igual ou maior que 12,0 g/dL para mulheres e 13,0 g/dL para homens, ou até a administração da dose total de ferro parenteral recomendada para cada paciente. A idade mediana dos cinqüenta pacientes estudados foi de 45 anos, variando entre 28 e 76 anos; quarenta (80,0% eram do sexo feminino. A causa mais comum de anemia ferropriva no sexo feminino foi sangramento uterino anormal observado em 25/40 pacientes (62,5% e, no sexo masculino, gastrectomia parcial em 7/10 (70,0%. Vinte e quatro (48,0% pacientes foram incluídos nesse estudo por falta de resposta à terapia com ferro oral, 22 (44,0% por intolerância ao ferro oral e quatro (8,0% por hemoglobina The objective of this study was to evaluate the efficacy of intravenous iron III-hydroxide saccharate to treat adult patients with iron deficiency anemia. Between January 2003 and December 2005 we studied 50 patients with iron deficiency anemia who presented intolerance or inadequate response to oral iron therapy, or hemoglobin level < 7 g/dL. The main laboratory tests performed were: complete blood cell count, reticulocyte count, serum iron, total iron-binding capacity

  14. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(III) reduction in a riparian zone.

    Science.gov (United States)

    Ding, Bangjing; Li, Zhengkui; Qin, Yunbin

    2017-12-01

    Anaerobic ammonium oxidation coupled to iron(III) reduction (termed Feammox) is a recently discovered pathway of nitrogen cycling. However, little is known about the pathways of N transformation via Feammox process in riparian zones. In this study, evidence for Feammox in riparian zones with or without vegetation cover was demonstrated using isotope tracing technique and high-throughput sequencing technology. The results showed that Feammox could occur in riparian zones, and demonstrated that N 2 directly from Feammox was dominant Feammox pathway. The Feammox rates in vegetated soil samples was 0.32-0.37 mg N kg -1 d -1 , which is higher than that in un-vegetated soil samples (0.20 mg N kg -1 d -1 ). Moreover, the growth of vegetation led to a 4.99-6.41% increase in the abundance of iron reducing bacteria (Anaeromyxobacter, Pseudomonas and Geobacter) and iron reducing bacteria play an essential role in Feammox process. An estimated loss of 23.7-43.9 kg N ha -1 year -1 was associated with Feammox in the examined riparian zone. Overall, the co-occurrence of ammonium oxidation and iron reduction suggest that Feammox can play an essential role in the pathway of nitrogen removal in riparian zones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Accumulation and distribution of iron, cadmium, lead and nickel in cucumber plants grown in hydroponics containing two different chelated iron supplies.

    Science.gov (United States)

    Csog, Árpád; Mihucz, Victor G; Tatár, Eniko; Fodor, Ferenc; Virág, István; Majdik, Cornelia; Záray, Gyula

    2011-07-01

    Cucumber plants grown in hydroponics containing 10 μM Cd(II), Ni(II) and Pb(II), and iron supplied as Fe(III) EDTA or Fe(III) citrate in identical concentrations, were investigated by total-reflection X-ray fluorescence spectrometry with special emphasis on the determination of iron accumulation and distribution within the different plant compartments (root, stem, cotyledon and leaves). The extent of Cd, Ni and Pb accumulation and distribution were also determined. Generally, iron and heavy-metal contaminant accumulation was higher when Fe(III) citrate was used. The accumulation of nickel and lead was higher by about 20% and 100%, respectively, if the iron supply was Fe(III) citrate. The accumulation of Cd was similar. In the case of Fe(III) citrate, the total amounts of Fe taken up were similar in the control and heavy-metal-treated plants (27-31 μmol/plant). Further, the amounts of iron transported from the root towards the shoot of the control, lead- and nickel-contaminated plants were independent of the iron(III) form. Although Fe mobility could be characterized as being low, its distribution within the shoot was not significantly affected by the heavy metals investigated. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. Sorption of Am(III) on attapulgite/iron oxide magnetic composites. Effect of pH, ionic strength and humic acid

    International Nuclear Information System (INIS)

    Yu, T.; East China Institute of Technology, Fuzhou, Jiangxi; Fan, Q.H.; Wu, W.S.; Lanzhou Univ., Gansu; Liu, S.P.; Pan, D.Q.; Zhang, Y.Y.; Li, P.

    2012-01-01

    Attapulgite/iron oxide magnetic (ATP/IOM) composites was prepared, and the sorption behavior of Am(III) on that composites was studied as a function of pH, ionic strength, the solid-to-liquid ratio (m/V), contact time, and the concentration of Am(III) under ambient conditions using batch technique. The time to achieve the sorption equilibrium was less than 5 h. The sorption of Am(III) on ATP/IOM composites was strongly affected by pH and ionic strength. Though ion exchange reaction contributed to Am(III) sorption over low pH range and low ionic strength, the sorption was mainly dominated by surface complexion (i.e., outer- and/or inner-sphere complexes) in the whole observed pH range. In the presence of humic acid (HA), the sorption edge of Am(III) on ATP/IOM composites obviously shifted to lower pH; but Am(III) sorption gradually became weak after pH exceeded 4, which may be mainly in terms of the soluble complexes of HA-Am(III). (orig.)

  17. Biodegradation of pharmaceuticals and endocrine disruptors with oxygen, nitrate, manganese (IV), iron (III) and sulfate as electron acceptors

    Science.gov (United States)

    Schmidt, Natalie; Page, Declan; Tiehm, Andreas

    2017-08-01

    Biodegradation of pharmaceuticals and endocrine disrupting compounds was examined in long term batch experiments for a period of two and a half years to obtain more insight into the effects of redox conditions. A mix including lipid lowering agents (e.g. clofibric acid, gemfibrozil), analgesics (e.g. diclofenac, naproxen), beta blockers (e.g. atenolol, propranolol), X-ray contrast media (e.g. diatrizoic acid, iomeprol) as well as the antiepileptic carbamazepine and endocrine disruptors (e.g. bisphenol A, 17α-ethinylestradiol) was analyzed in batch tests in the presence of oxygen, nitrate, manganese (IV), iron (III), and sulfate. Out of the 23 selected substances, 14 showed a degradation of > 50% of their initial concentrations under aerobic conditions. The beta blockers propranolol and atenolol and the analgesics pentoxifylline and naproxen showed a removal of > 50% under anaerobic conditions. In particular naproxen proved to be degradable with oxygen and under most anaerobic conditions, i.e. with manganese (IV), iron (III), or sulfate. The natural estrogens estriol, estrone and 17β-estradiol showed complete biodegradation under aerobic and nitrate-reducing conditions, with a temporary increase of estrone during transformation of estriol and 17β-estradiol. Transformation of 17β-estradiol under Fe(III)-reducing conditions resulted in an increase of estriol as well. Concentrations of clofibric acid, carbamazepine, iopamidol and diatrizoic acid, known for their recalcitrance in the environment, remained unchanged.

  18. In vitro studies on interactions of iron salts and complexes with food-stuffs and medicaments.

    Science.gov (United States)

    Geisser, P

    1990-07-01

    It has been shown in the present study that food components such as phytic acid, oxalic acid, tannin, sodium alginate, choline and choline salts, vitamins A, D3 and E, soy oil and soy flour, do not undergo any interactions with iron(III)-hydroxide polymaltose complex (Ferrum Hausmann). Phytic acid, oxalic acid, tannin and sodium alginate, however, react with iron(II) or iron(III)-salts at pH values of 3.0, 5.5 and 8.0, giving rise to iron complexes. Trimethylamine-N-oxide, which is present in fish meal, reacts with iron(II)-sulphate to produce iron(III) reaction products; it does not react with iron(III)-hydroxide polymaltose complex. Special soybean flours show no irreversible adsorption or precipitation with iron(III)-hydroxyide polymaltose complex over the pH range 3.0-8.0, in contrast to iron(II)-sulphate. Antacids containing aluminium hydroxide, talc, ion exchange resins or other unabsorbable, insoluble components absorb iron(III)-hydroxide polymaltose complex in the pH range 3.0-8.0 in a reversible manner, while the strong adsorption or precipitation observed with iron(II)-sulphate at pH 8.0 is irreversible. No interaction was observed between the steroid hormones studied and iron(II)-sulphate or iron(III)-hydroxide polymaltose complex. On the basis of the measured compatibilities, iron(III)-hydroxide polymaltose complex can be administered orally simultaneously with many other drugs, without prejudicing the absorption of iron or of the other drug as is often seen with iron(II) and iron(III) salts.

  19. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.

    Science.gov (United States)

    Joe-Wong, Claresta; Brown, Gordon E; Maher, Kate

    2017-09-05

    Hexavalent chromium is a water-soluble pollutant, the mobility of which can be controlled by reduction of Cr(VI) to less soluble, environmentally benign Cr(III). Iron(II/III)-bearing clay minerals are widespread potential reductants of Cr(VI), but the kinetics and pathways of Cr(VI) reduction by such clay minerals are poorly understood. We reacted aqueous Cr(VI) with two abiotically reduced clay minerals: an Fe-poor montmorillonite and an Fe-rich nontronite. The effects of ionic strength, pH, total Fe content, and the fraction of reduced structural Fe(II) [Fe(II)/Fe(total)] were examined. The last variable had the largest effect on Cr(VI) reduction kinetics: for both clay minerals, the rate constant of Cr(VI) reduction varies by more than 3 orders of magnitude with Fe(II)/Fe(total) and is described by a linear free energy relationship. Under all conditions examined, Cr and Fe K-edge X-ray absorption near-edge structure spectra show that the main Cr-bearing product is a Cr(III)-hydroxide and that Fe remains in the clay structure after reacting with Cr(VI). This study helps to quantify our understanding of the kinetics of Cr(VI) reduction by Fe(II/III)-bearing clay minerals and may improve predictions of Cr(VI) behavior in subsurface environments.

  20. Mononuclear nonheme iron(III) complexes that show superoxide dismutase-like activity and antioxidant effects against menadione-mediated oxidative stress.

    Science.gov (United States)

    Hitomi, Yutaka; Iwamoto, Yuji; Kashida, Akihiro; Kodera, Masahito

    2015-05-21

    This communication describes the superoxide dismutase (SOD)-like activity of mononuclear iron(III) complexes with pentadentate monocarboxylamido ligands. The SOD activity can be controlled by the electronic nature of the substituent group on the ligand. The nitro-substituted complex showed clear cytoprotective activity against menadione-mediated oxidative stress in cultured cells.

  1. Sorption of samarium in iron (II) and (III) phosphates in aqueous systems

    International Nuclear Information System (INIS)

    Diaz F, J.C.

    2006-01-01

    The radioactive residues that are stored in the radioactive confinements its need to stay isolated of the environment while the radioactivity levels be noxious. An important mechanism by which the radioactive residues can to reach the environment, it is the migration of these through the underground water. That it makes necessary the investigation of reactive materials that interacting with those radionuclides and that its are able to remove them from the watery resources. The synthesis and characterization of materials that can be useful in Environmental Chemistry are very important because its characteristics are exposed and its behavior in chemical phenomena as the sorption watery medium is necessary to use it in the environmental protection. In this work it was carried out the sorption study of the samarium III ion in the iron (II) and (III) phosphate; obtaining the sorption isotherms in function of pH, of the phosphate mass and of the concentration of the samarium ion using UV-visible spectroscopy to determine the removal percentage. The developed experiments show that as much the ferrous phosphate as the ferric phosphate present a great affinity by the samarium III, for what it use like reactive material in contention walls can be very viable because it sorption capacity has overcome 90% to pH values similar to those of the underground and also mentioning that the form to obtain these materials is very economic and simple. (Author)

  2. Novel spin transition between S = 5/2 and S = 3/2 in highly saddled iron(III) porphyrin complexes at extremely low temperatures.

    Science.gov (United States)

    Ohgo, Yoshiki; Chiba, Yuya; Hashizume, Daisuke; Uekusa, Hidehiro; Ozeki, Tomoji; Nakamura, Mikio

    2006-05-14

    A novel spin transition between S = 5/2 and S = 3/2 has been observed for the first time in five-coordinate, highly saddled iron(III) porphyrinates by EPR and SQUID measurements at extremely low temperatures.

  3. 21 CFR 186.1374 - Iron oxides.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Iron oxides. 186.1374 Section 186.1374 Food and... Substances Affirmed as GRAS § 186.1374 Iron oxides. (a) Iron oxides (oxides of iron, CAS Reg. No. 1332-37-2) are undefined mixtures of iron (II) oxide (CAS Reg. No. 1345-25-1, black cubic crystals) and iron (III...

  4. Adrenaline and triiodothyronine modify the iron handling in the freshwater air-breathing fish Anabas testudineus Bloch: role of ferric reductase in iron acquisition.

    Science.gov (United States)

    Rejitha, V; Peter, M C Subhash

    2013-01-15

    The effects of in vivo adrenaline and triiodothyronine (T(3)) on ferric reductase (FR) activity, a membrane-bound enzyme that reduces Fe(III) to Fe(II) iron, were studied in the organs of climbing perch (Anabas testudineus Bloch). Adrenaline injection (10 ng g(-1)) for 30 min produced significant inhibition of FR activity in the liver and kidney and that suggests a role for this stress hormone in iron acquisition in this fish. Short-term T(3) injection (40 ng g(-1)) reduced FR activity in the gills of fed fish but not in the unfed fish. Similar reduction of FR activity was also obtained in the intestine and kidney of fed fish after T(3) injection. Feeding produced pronounced decline in FR activity in the spleen but T(3) challenge in fed and unfed fish increased its activity in this iron storing organ and that point to the sensitivity of FR system to feeding activity. The in vitro effects of Fe on FR activity in the gill explants of freshwater fish showed correlations of FR with Na(+), K(+)-ATPase and H(+)-ATPase activities. Substantial increase in the FR activity was found in the gill explants incubated with all the tested doses of Fe(II) iron (1.80, 3.59 and 7.18 μM) and Fe(III) iron (1.25, 2.51 and 5.02 μM) and this indicate that FR and Na pump activity are positively correlated. On the contrary, substantial reduction of gill H(+)-ATPase activity was found in the gill explants incubated with Fe(II) iron and Fe(III) iron indicating that perch gills may not require a high acidic microenvironment for the reduction of Fe(III) iron. Accumulation of iron in the gill explants after Fe(III) iron incubation implies a direct relationship between Fe acquisition and FR activity in this tissue. The inverse correlation between FR activity and H(+)-ATPase activity in Fe(II) or Fe(III) loaded gills and the significant positive correlations of FR activity with total [Fe] content in the Fe(III) loaded gills substantiate that FR which shows sensitivity to sodium and proton pumps

  5. Extraction of iron(III) with diphenyl-2-pyridylmethane dissolved in benzene from aqueous chloride solutions

    International Nuclear Information System (INIS)

    Suhail Ahmed; Shamas-Ud-Zuha; Abdul Ghafoor; Ejaz, M.

    1978-01-01

    The mechanism of extraction has been investigated by partition, slope analysis and loading-ratio data. The results obtained give a picture of the mechanism of extraction of FeCl 4 - ions in relation to the hydration and solvation of the compound extracted. The possible formula of the extracted species is (DPPM)sub(3)Hsub(3)Osup(+)(Hsub(2)O)sub(n)-FeClsub(4)sup(-). In dilute aqueous hydrochloric acid systems the influence of the concentration of a number of salts with cations of different electrical potentials (Ze/r), on iron(III) extraction, has been studied. Splitting of the organic phases occurs at high acid and/or high salt concentrations. The phenomenon is explained on the basis of the variability of the hydration number. Investigations have been made to understand the parameters controlling the extraction of the metal and it is shown that the extraction offers a simple, fast and selective separation method of iron from solutions. (author)

  6. Polypyrrole–titanium(IV) doped iron(III) oxide nanocomposites: Synthesis, characterization with tunable electrical and electrochemical properties

    International Nuclear Information System (INIS)

    Nandi, Debabrata; Ghosh, Arup Kumar; Gupta, Kaushik; De, Amitabha; Sen, Pintu; Duttachowdhury, Ankan; Ghosh, Uday Chand

    2012-01-01

    Highlights: ► Synthesis and characterization of polymer nanocomposite based on titanium doped iron(III) oxide. ► Electrical conductivity increased 100 times in composite with respect to polymer. ► Electrochemical capacitance of polymer composites increased with nanooxide content. ► Thermal stability of the polymer enhanced with nano oxide content. -- Abstract: Titanium(IV)-doped synthetic nanostructured iron(III) oxide (NITO) and polypyrrole (PPy) nanocomposites was fabricated by in situ polymerization using FeCl 3 as initiator. The polymer nanocomposites (PNCs) and pure NITO were characterized by X-ray diffraction, Föurier transform infrared spectroscopy, scanning electron microscopy, electron dispersive X-ray spectroscopy, transmission electron microscopy, etc. Thermo gravimetric and differential thermal analyses showed the enhancement of thermal stability of PNCs than the pure polymer. Electrical conductivity of the PNCs had increased significantly from 0.793 × 10 −2 S/cm to 0.450 S/cm with respect to the PPy, and that had been explained by 3-dimensional variable range hopping (VRH) conduction mechanisms. In addition, the specific capacitance of PNCs had increased from 147 F/g to 176 F/g with increasing NITO content than that of pure NITO (26 F/g), presumably due to the growing of mesoporous structure with increasing NITO content in PNCs which reduced the charge transfer resistance significantly.

  7. Aqua complex of iron(III) and 5-chloro-3-(2-(4,4-dimethyl-2,6-dioxocyclohexylidene)hydrazinyl)-2-hydroxybenzenesulfonate: Structure and catalytic activity in Henry reaction

    Science.gov (United States)

    Mahmudov, Kamran T.; Kopylovich, Maximilian N.; Haukka, Matti; Mahmudova, Gunay S.; Esmaeila, Espandi F.; Chyragov, Famil M.; Pombeiro, Armando J. L.

    2013-09-01

    A water-soluble iron(III) complex [Fe(H2O)3(L)]·5H2O (1) was prepared by reaction of iron(III) chloride with 5-chloro-3-(2-(4,4-dimethyl-2,6-dioxocyclohexylidene)hydrazinyl)-2-hydroxy-benzenesulfonic acid (H3L). The complex was characterized by IR, 1H NMR and ESI-MS spectroscopies, elemental and X-ray crystal structural analyses. The coordination environment of the central iron(III) is a distorted octahedron, three sites being occupied by L3- ligand, which chelates in O,N,O fashion, while three other sites are filled with the water molecules. The uncoordinated water molecules are held in the channels of the overall 3D supramolecular structure by the carbonyl and sulfonyl groups of L3- and the ligated waters. Apart from the multiple hydrogen bonds, an intermolecular charge-assisted O···Cl halogen bonding with 3.044 Å distance was described. 1 acts as an effective catalyst in the Henry reaction producing nitroaldols from nitroethane and various aldehydes with yields up to 90% and threo/erythro diastereoselectivity ranging from 3:1 to 1:1.

  8. Abrupt spin transition with thermal hysteresis of iron(III) complex [Fe(III)(Him)2(hapen)]AsF6 (Him = imidazole, H2hapen = N,N'-bis(2-hydroxyacetophenylidene)ethylenediamine).

    Science.gov (United States)

    Fujinami, Takeshi; Koike, Masataka; Matsumoto, Naohide; Sunatsuki, Yukinari; Okazawa, Atsushi; Kojima, Norimichi

    2014-02-17

    The solvent-free spin crossover iron(III) complex [Fe(III)(Him)2(hapen)]AsF6 (Him = imidazole, H2hapen = N,N'-bis(2-hydroxyacetophenylidene)ethylenediamine), exhibiting thermal hysteresis, was synthesized and characterized. The Fe(III) ion has an octahedral coordination geometry, with N2O2 donor atoms of the planar tetradentate ligand (hapen) and two nitrogen atoms of two imidazoles at the axial positions. One of two imidazoles is hydrogen-bonded to the phenoxo oxygen atom of hapen of the adjacent unit to give a hydrogen-bonded one-dimensional chain, while the other imidazole group is free from hydrogen bonding. The temperature dependencies of the magnetic susceptibilities and Mössbauer spectra revealed an abrupt spin transition between the high-spin (S = 5/2) and low-spin (S = 1/2) states, with thermal hysteresis.

  9. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Science.gov (United States)

    Huang, Guan; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-01

    This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O2. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  10. Spectroscopic, potentiometric and theoretical studies on the binding properties of a novel tripodal polycatechol-imine ligand towards iron(III)

    Science.gov (United States)

    Kanungo, B. K.; Sahoo, Suban K.; Baral, Minati

    2008-12-01

    A novel multidentate tripodal ligand, cis, cis-1,3,5-tris[(2,3-dihydroxybenzylidene)aminomethyl]cyclohexane (TDBAC, L) containing one catechol unit in each arms of a tripodal amine, cis, cis-1,3,5-tris(aminomethyl)cyclohexane was investigated as a chelator for iron(III) through potentiometric and spectrophotometric methods in an aqueous medium of 0.1N ionic strength and 25 ± 1 °C as well as in ethanol by continuous variation method. From pH metric in water, three protonation constants characterized for the three-hydroxyl groups of the catechol units at ortho were used as input data to evaluate the stability constants of the complexes. Formation of monomeric complexes FeLH 3, FeLH 2, FeLH and FeL were depicted. In ethanol, formation of complexes FeL, Fe 2L and Fe 3L were characterized. Structures of the complexes were explained by using the experimental evidences and predicted through molecular modeling calculations. The ligand showed potential to coordinate iron(III) through three imine nitrogens and three catecholic oxygens at ortho to form a tris(iminocatecholate) type complex.

  11. Application Of Bacterial Iron Reduction For The Removal Of Iron Impurities From Industrial Silica Sand And Kaolin

    Science.gov (United States)

    Zegeye, A.; Yahaya, S.; Fialips, C. I.; White, M.; Manning, D. A.; Gray, N.

    2008-12-01

    Biogeochemical evidence exists to support the potential importance of crystalline or amorphous Fe minerals as electron acceptor for Fe reducing bacteria in soils and subsurface sediments. This microbial metabolic activity can be exploited as alternative method in different industrial applications. For instance, the removal of ferric iron impurities from minerals for the glass and paper industries currently rely on physical and chemical treatments having substantial economical and environmental disadvantages. The ability to remove iron by other means, such as bacterial iron reduction, may reduce costs, allow lower grade material to be mined, and improve the efficiency of mineral processing. Kaolin clay and silica sand are used in a wide range of industrial applications, particularly in paper, ceramics and glass manufacturing. Depending on the geological conditions of deposition, they are often associated with iron (hydr)oxides that are either adsorbed to the mineral surfaces or admixed as separate iron bearing minerals. In this study, we have examined the Fe(III) removal efficiency from kaolin and silica sand by a series of iron- reducing bacteria from the Shewanella species (S. alga BrY, S. oneidensis MR-1, S. putrefaciens CN32 and S. putrefaciens ATCC 8071) in the presence of anthraquinone 2,6 disulfonate (AQDS). We have also investigated the effectiveness of a natural organic matter, extracted with the silica sand, as a substitute to AQDS for enhancing Fe(III) reduction kinetics. The microbial reduction of Fe(III) was achieved using batch cultures under non-growth conditions. The rate and the extent of Fe(III) reduction was monitored as a function of the initial Fe(III) content, Shewanella species and temperature. The bacterially- treated minerals were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) to observe any textural and mineralogical transformation. The whiteness and ISO brightness of the kaolin was also measured by

  12. The Effect of Temperature and Ionic Strength on the Oxidation of Iodide by Iron(III): A Clock Reaction Kinetic Study

    Science.gov (United States)

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2012-01-01

    A laboratory exercise has recently been reported in which the students use the initial rates method based on the clock reaction approach to deduce the rate law and propose a reaction mechanism for the oxidation of iodide by iron(III) ions. The same approach is used in the exercise proposed herein; the students determine the dependence of the…

  13. Reactive oxygen species and associated reactivity of peroxymonosulfate activated by soluble iron species

    Science.gov (United States)

    Watts, Richard J.; Yu, Miao; Teel, Amy L.

    2017-10-01

    The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical + sulfate radical probe, and hexachloroethane as a reductant + nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole > > TCE > PCE > > nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion.

  14. Reactive oxygen species and associated reactivity of peroxymonosulfate activated by soluble iron species.

    Science.gov (United States)

    Watts, Richard J; Yu, Miao; Teel, Amy L

    2017-10-01

    The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical+sulfate radical probe, and hexachloroethane as a reductant+nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole>TCE>PCE >nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion. Published by Elsevier B.V.

  15. Facile and reversible formation of iron(III)-oxo-cerium(IV) adducts from nonheme oxoiron(IV) complexes and cerium(III)

    Energy Technology Data Exchange (ETDEWEB)

    Draksharapu, Apparao; Rasheed, Waqas; Klein, Johannes E.M.N.; Que, Lawrence Jr. [Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN (United States)

    2017-07-24

    Ceric ammonium nitrate (CAN) or Ce{sup IV}(NH{sub 4}){sub 2}(NO{sub 3}){sub 6} is often used in artificial water oxidation and generally considered to be an outer-sphere oxidant. Herein we report the spectroscopic and crystallographic characterization of [(N4Py)Fe{sup III}-O-Ce{sup IV}(OH{sub 2})(NO{sub 3}){sub 4}]{sup +} (3), a complex obtained from the reaction of [(N4Py)Fe{sup II}(NCMe)]{sup 2+} with 2 equiv CAN or [(N4Py)Fe{sup IV}=O]{sup 2+} (2) with Ce{sup III}(NO{sub 3}){sub 3} in MeCN. Surprisingly, the formation of 3 is reversible, the position of the equilibrium being dependent on the MeCN/water ratio of the solvent. These results suggest that the Fe{sup IV} and Ce{sup IV} centers have comparable reduction potentials. Moreover, the equilibrium entails a change in iron spin state, from S=1 Fe{sup IV} in 2 to S=5/2 in 3, which is found to be facile despite the formal spin-forbidden nature of this process. This observation suggests that Fe{sup IV}=O complexes may avail of reaction pathways involving multiple spin states having little or no barrier. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Thermo-Kinetic Investigation of Comparative Ligand Effect on Cysteine Iron Redox Reaction

    Directory of Open Access Journals (Sweden)

    Masood Ahmad Rizvi

    2015-03-01

    Full Text Available Transition metal ions in their free state bring unwanted biological oxidations generating oxidative stress. The ligand modulated redox potential can be indispensable in prevention of such oxidative stress by blocking the redundant bio-redox reactions. In this study we investigated the comparative ligand effect on the thermo-kinetic aspects of biologically important cysteine iron (III redox reaction using spectrophotometric and potentiometric methods. The results were corroborated with the complexation effect on redox potential of iron(III-iron(II redox couple. The selected ligands were found to increase the rate of cysteine iron (III redox reaction in proportion to their stability of iron (II complex (EDTA < terpy < bipy < phen. A kinetic profile and the catalytic role of copper (II ions by means of redox shuttle mechanism for the cysteine iron (III redox reaction in presence of 1,10-phenanthroline (phen ligand is also reported.

  17. Adsorção de arsênio(V pela quitosana ferro - III reticulada Asorption of arsenic (V by crosslinked iron-III-chitosan

    Directory of Open Access Journals (Sweden)

    Tathyane Fagundes

    2008-01-01

    Full Text Available The removal of As(V by a crosslinked iron(III-chitosan adsorbent was evaluated under various conditions. The adsorption capacity of CH-FeCL was around 54 mg/g of As(V. The kinetics of adsorption obeys a pseudo-first-order model with rate constants equal to 0.022, 0.028, and 0.033 min-1 at 15, 25 and 35 ºC respectively. Adsorption data were well described by the Langmuir model, although they could be modeled also by the Langmuir-Freundlich equation. The maximum adsorption capacity, calculated with the Langmuir model, was 127 mg g-1 of As(V. The inhibition by competing anions is dependant on their kind and valence.

  18. Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation

    International Nuclear Information System (INIS)

    Kanel, Sushil Raj; Nepal, Dhriti; Manning, Bruce; Choi, Heechul

    2007-01-01

    The surface-modified iron nanoparticles (S-INP) were synthesized, characterized and tested for the remediation of arsenite (As(III)), a well known toxic groundwater contaminant of concern. The S-INP material was fully dispersed in the aqueous phase with a particle size distribution of 2-10 nm estimated from high-resolution transmission electron microscopy (HR-TEM). X-ray photoelectron spectroscopy (XPS) revealed that an Fe(III) oxide surface film was present on S-INP in addition to the bulk zero-valent Fe 0 oxidation state. Transport of S-INP through porous media packed in 10 cm length column showed particle breakthroughs of 22.1, 47.4 and 60 pore volumes in glass beads, unbaked sand, and baked sand, respectively. Un-modified INP was immobile and aggregated on porous media surfaces in the column inlet area. Results using S-INP pretreated 10 cm sand-packed columns containing ∼2 g of S-INP showed that 100 % of As(III) was removed from influent solutions (flow rate 1.8 mL min -1 ) containing 0.2, 0.5 and 1.0 mg L -1 As(III) for 9, 7 and 4 days providing 23.3, 20.7 and 10.4 L of arsenic free water, respectively. In addition, it was found that 100% of As(III) in 0.5 mg/L solution (flow rate 1.8 mL min -1 ) was removed by S-INP pretreated 50 cm sand packed column containing 12 g of S-INP for more than 2.5 months providing 194.4 L of arsenic free water. Field emission scanning electron microscopy (FE-SEM) showed S-INP had transformed to elongated, rod-like shaped corrosion product particles after reaction with As(III) in the presence of sand. These results suggest that S-INP has great potential to be used as a mobile, injectable reactive material for in-situ sandy groundwater aquifer treatment of As(III)

  19. Iron Coordination and Halogen-Bonding Assisted Iodosylbenzene Activation

    DEFF Research Database (Denmark)

    Wegeberg, Christina; Poulsen de Sousa, David; McKenzie, Christine

    catalytic mixtures using soluble terminal oxygen transfer agents. Isolation of a reactive iron-terminal oxidant adduct, an unique Fe(III)-OIPh complex, is facilitated by strong stabilizing supramolecular halogen-bonding. L3-edge XANES suggests +1.6 for the average oxidation state for the iodine atom3......The iron complex of the hexadentate ligand N,N,N'-tris(2-pyridylmethyl)ethylendiamine-N'-acetate (tpena) efficiently catalyzes selective oxidations of electron-rich olefins and sulfides by insoluble iodosylbenzene (PhIO). Surprisingly, these reactions are faster and more selective than homogenous...... in the iron(III)-coordinated PhIO. This represents a reduction of iodine relative to the original “hypervalent” (+3) PhIO. The equivalent of electron density must be removed from the {(tpena)Fe(III)O} moiety, however Mössbauer spectroscopy shows that the iron atom is not high valent....

  20. 2 : 2 Fe(III): ligand and "adamantane core" 4 : 2 Fe(III): ligand (hydr)oxo complexes of an acyclic ditopic ligand

    DEFF Research Database (Denmark)

    Ghiladi, Morten; Larsen, Frank B.; McKenzie, Christine J.

    2005-01-01

    A bis-hydroxo-bridged diiron(III) complex and a bis-mu-oxo-bis-mu-hydroxo-bridged tetrairon( III) complex are isolated from the reaction of 2,6-bis((N, N'-bis-(2-picolyl) amino) methyl)-4-tert-butylphenol (Hbpbp) with iron perchlorate in acidic and neutral solutions respectively. The X-ray struct......A bis-hydroxo-bridged diiron(III) complex and a bis-mu-oxo-bis-mu-hydroxo-bridged tetrairon( III) complex are isolated from the reaction of 2,6-bis((N, N'-bis-(2-picolyl) amino) methyl)-4-tert-butylphenol (Hbpbp) with iron perchlorate in acidic and neutral solutions respectively. The X...

  1. Isoporphyrin Intermediate in Heme Oxygenase Catalysis

    Science.gov (United States)

    Evans, John P.; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-01-01

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the α-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin π-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of α-meso-phenylheme-IX, α-meso-(p-methylphenyl)-mesoheme-III, and α-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593–42604), only the α-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced α-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation. PMID:18487208

  2. Isoporphyrin intermediate in heme oxygenase catalysis. Oxidation of alpha-meso-phenylheme.

    Science.gov (United States)

    Evans, John P; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-07-11

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the alpha-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin pi-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of alpha-meso-phenylheme-IX, alpha-meso-(p-methylphenyl)-mesoheme-III, and alpha-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593-42604), only the alpha-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced alpha-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation.

  3. The Efficiency of Strontium-90 Desorption Using Iron (III) Solutions in the Decontamination Process of Radioactive Soils

    OpenAIRE

    Olga Vladimirovna Cheremisina; Vasiliy Sergeev; Varvara Alabusheva; Alexander Fedorov; Alexandra Iliyna

    2018-01-01

    The paper presents the investigation on the estimated efficiency of iron (III) chloride solutions in the decontamination process of radioactive soils with 90 Sr, according to kinetic and thermodynamic characteristics of the desorption process. The specific 90 Sr radioactivity of soil samples was (3.9±0.3)·104 Bq·g. The adsorption isotherms of Sr 2+ and Fe 3+ are described with the Langmuir equation. The values of Gibbs energy G0298 = -4.65 kJ·mol -1 and equilibrium ion exchange constant ...

  4. Potassium iron(III)hexacyanoferrate(II) supported on polymethylmethacrylate ion-exchanger for removal of strontium(II)

    International Nuclear Information System (INIS)

    Taj, S.; Ashraf Chaudhry, M.; Mazhar, M.

    2009-01-01

    Potassium iron(III)hexacyanoferrate(II) supported on poly metylmethacrylate has been synthesized and investigated for the strontium(II) removal from HNO 3 and HCl solutions. The ion exchange material characterized by different techniques and found to be stable in 1.0-4.0 M HNO 3 solutions, has been used to elaborate different parameters related to ion exchange and sorption processes involved. The data collected suggested its use to undertake removal of Sr(II) from more acidic active waste solutions. Thus the material synthesized had been adjudged to present better chances of application for Sr(II) removal as compared to other such materials. (author)

  5. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust.

    Science.gov (United States)

    Longo, Amelia F; Feng, Yan; Lai, Barry; Landing, William M; Shelley, Rachel U; Nenes, Athanasios; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Ingall, Ellery D

    2016-07-05

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.

  6. Oxidative Debromination and Degradation of Tetrabromo-bisphenol A by a Functionalized Silica-Supported Iron(III-tetrakis(p-sulfonatophenylporphyrin Catalyst

    Directory of Open Access Journals (Sweden)

    Masami Fukushima

    2013-05-01

    Full Text Available Tetrabromobisphenol A (TBBPA, a commonly used brominated flame retardant, also functions as an endocrine disruptor. Thus, the degradation of TBBPA has attracted considerable interest among the scientific community. Iron(III-porphyrin complexes are generally regarded as “green” catalysts and have been reported to catalyze the efficient degradation and dehalogenation of halogenated phenols in environmental wastewaters. However, they are quickly deactivated due to self-degradation in the presence of an oxygen donor, such as KHSO5. In the present study, an iron(III-tetrakis (p-sulfonatophenyl-porphyrin (FeTPPS was immobilized on imidazole-modified silica (FeTPPS/IPS via coordination of the Fe(III with the nitrogen atom in imidazole to suppress self-degradation and thus enhance the catalyst reusability. The oxidative degradation and debromination of TBBPA and the influence of humic acid (HA, a major component in leachates, on the oxidation of TBBPA was investigated. More than 95% of the TBBPA was degraded in the pH range from 3 to 8 in the absence of HA, while the optimal pH for the reaction was at pH 8 in the presence of HA. Although the rate of degradation was decreased in the presence of HA, over 95% of the TBBPA was degraded within 12 h in the presence of 28 mg-C L−1 of HA. At pH 8, the FeTPPS/IPS catalyst could be reused up to 10 times without any detectable loss of activity for TBBPA for degradation and debromination, even in the presence of HA.

  7. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Guan, E-mail: huangg66@126.com; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-30

    Graphical abstract: A biomimetic catalyst of iron-tetrakis(4-sulfonatophenyl)porphyrin immobilized on powdered chitosan achieves efficient cyclohexane oxidation with high ketone and alcohol yields. - Highlights: • Fe (TPPS)/pd-CTS is an excellent catalyst for cyclohexane oxidation. • Amino ligation alters the electron cloud density around the iron cation. • Amino coordination likely reduces the activation energy of Fe (TPPS). • The catalyst achieved 22.9 mol% yields of cyclohexanone and cyclohexanol. - Abstract: This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O{sub 2}. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  8. Iron (III Ion Sensor Based on the Seedless Grown ZnO Nanorods in 3 Dimensions Using Nickel Foam Substrate

    Directory of Open Access Journals (Sweden)

    Mazhar Ali Abbasi

    2013-01-01

    Full Text Available In the present work, the seedless, highly aligned and vertical ZnO nanorods in 3 dimensions (3D were grown on the nickel foam substrate. The seedless grown ZnO nanorods were characterised by field emission scanning electron microscopy (FESEM, high resolution transmission electron microscopy (HRTEM, and X-ray diffraction (XRD techniques. The characterised seedless ZnO nanorods in 3D on nickel foam were highly dense, perpendicular to substrate, grown along the (002 crystal plane, and also composed of single crystal. In addition to this, these seedless ZnO nanorods were functionalized with trans-dinitro-dibenzo-18-6 crown ether, a selective iron (III ion ionophore, along with other components of membrane composition such as polyvinyl chloride (PVC, 2-nitopentylphenyl ether as plasticizer (NPPE, and tetrabutyl ammonium tetraphenylborate (TBATPB as conductivity increaser. The sensor electrode has shown high linearity with a wide range of detection of iron (III ion concentrations from 0.005 mM to 100 mM. The low limit of detection of the proposed ion selective electrode was found to be 0.001 mM. The proposed sensor also described high storage stability, selectivity, reproducibility, and repeatability and a quick response time of less than 10 s.

  9. [Peritoneal fluid iron levels in women with endometriosis].

    Science.gov (United States)

    Polak, Grzegorz; Wertel, Iwona; Tarkowski, Rafał; Kotarski, Jan

    2010-01-01

    Endometriosis is characterized by a cyclic hemorrhage within the peritoneal cavity. Accumulating data suggests that iron homeostasis in the peritoneal cavity may be disrupted by endometriosis. The aim of our study was to evaluate iron levels in peritoneal fluid (PF) of women with and without endometriosis. Seventy-five women were studied: 50 women with endometriosis and, as a reference group, 25 patients with functional follicle ovarian cysts. Iron concentrations in the PF were measured using a commercially available colorimetric assay kit. Iron concentrations were significantly higher in PF from women with endometriosis as compared to the reference group. Patients with stages III/IV endometriosis had significantly higher PF iron concentrations than women with stages I/II of the disease. Disrupted iron homeostasis in the peritoneal cavity of women with endometriosis plays a role in the pathogenesis of the disease.

  10. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation.

    Science.gov (United States)

    Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E M; Jenkins, Jermaine L; Heimiller, Chelsea; Maines, Mahin D

    2016-08-01

    Biliverdin reductase A (BVR) and Akt isozymes have overlapping pleiotropic functions in the insulin/PI3K/MAPK pathway. Human BVR (hBVR) also reduces the hemeoxygenase activity product biliverdin to bilirubin and is directly activated by insulin receptor kinase (IRK). Akt isoenzymes (Akt1-3) are downstream of IRK and are activated by phosphatidylinositol-dependent kinase 1 (PDK1) phosphorylating T(308) before S(473) autophosphorylation. Akt (RxRxxSF) and PDK1 (RFxFPxFS) binding motifs are present in hBVR. Phosphorylation of glycogen synthase kinase 3 (GSK3) isoforms α/β by Akts inhibits their activity; nonphosphorylated GSK3β inhibits activation of various genes. We examined the role of hBVR in PDK1/Akt1/GSK3 signaling and Akt1 in hBVR phosphorylation. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. hBVR and Akt1 coimmunoprecipitated, and in-cell Förster resonance energy transfer (FRET) and glutathione S-transferase pulldown analyses identified Akt1 pleckstrin homology domain as the interactive domain. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. Site-directed mutagenesis, mass spectrometry, and kinetic analyses identified S(230) in hBVR (225)RNRYLSF sequence as the Akt1 target. Underlined amino acids are the essential residues of the signaling motifs. In cells, hBVR-activated Akt1 increased both GSK3α/β and forkhead box of the O class transcription class 3 (FoxO3) phosphorylation and inhibited total GSK3 activity; depletion of hBVR released inhibition and stimulated glucose uptake. Immunoprecipitation analysis showed that PDK1 and hBVR interact through hBVR's PDK1 binding (161)RFGFPAFS motif and formation of the PDK1/hBVR/Akt1 complex. sihBVR blocked complex formation. Findings identify hBVR as a previously unknown coactivator of Akt1 and as a key mediator of Akt1/GSK3 pathway, as well as define a key role for hBVR in Akt1 activation by PDK1.-Miralem, T., Lerner

  11. Study on competitive adsorption mechanism among oxyacid-type heavy metals in co-existing system: Removal of aqueous As(V), Cr(III) and As(III) using magnetic iron oxide nanoparticles (MIONPs) as adsorbents

    Science.gov (United States)

    Lin, Sen; Lian, Cheng; Xu, Meng; Zhang, Wei; Liu, Lili; Lin, Kuangfei

    2017-11-01

    The adsorption and co-adsorption of As(V), Cr(VI) and As(III) onto the magnetic iron oxide nanoparticles (MIONPs) surface were investigated comprehensively to clarify the competitive processes. The results reflected that the MIONPs had remarkable preferential adsorption to As(V) compared with Cr(VI) and As(III). And it was determined, relying on the analysis of heavy metals variations on the MIONPs surface at different co-adsorption stages using FTIR and XPS, that the inner-sphere complexation made vital contribution to the preferential adsorption for As(V), corresponding with the replacement experiments where As(V) could grab extensively active sites on the MIONPs pre-occupied by As(III) or Cr(V) uniaxially. The desorption processes displayed that the strongest affinity between the MIONPs and As(V) where As(III) and Cr(VI) were more inclined to wash out. It is wish to provide a helpful direction with this study for the wastewater treatment involving multiple oxyacid-type heavy metals using MIONPs as adsorbents.

  12. Analysis of the structure of poly-3-hydroxybutyrate ultrathin fibers modified with iron (III) complex with tetraphenylporphyrin

    Science.gov (United States)

    Olkhov, A. A.; Karpova, S. G.; Lobanov, A. V.; Tyubaeva, P. M.; Artemov, N. S.; Iordansky, A. L.

    2017-12-01

    In the treatment of many infectious diseases and cancer, transdermal systems based on solid polymer matrices or gels containing functional substances with antiseptic (antibacterial) properties are often used. One of the most promising types of matrices with antiseptic properties are the ones of nano- and microfiber-bonded cloth obtained by electrospinning based on biopolymer poly(3-hydroxybutyrate). The present work investigates the effects of iron (III) complex with tetraphenylporphyrin and the influence on the geometry, crystalline order and molecular dynamics in the intercrystalline (amorphous phase) of ultrathin PHB fibers.

  13. Efficient catalytic cycloalkane oxidation employing a "helmet" phthalocyaninato iron(III) complex.

    Science.gov (United States)

    Brown, Elizabeth S; Robinson, Jerome R; McCoy, Aaron M; McGaff, Robert W

    2011-06-14

    We have examined the catalytic activity of an iron(III) complex bearing the 14,28-[1,3-diiminoisoindolinato]phthalocyaninato (diiPc) ligand in oxidation reactions with three substrates (cyclohexane, cyclooctane, and indan). This modified metallophthalocyaninato complex serves as an efficient and selective catalyst for the oxidation of cyclohexane and cyclooctane, and to a far lesser extent indan. In the oxidations of cyclohexane and cyclooctane, in which hydrogen peroxide is employed as the oxidant under inert atmosphere, we have observed turnover numbers of 100.9 and 122.2 for cyclohexanol and cyclooctanol, respectively. The catalyst shows strong selectivity for alcohol (vs. ketone) formation, with alcohol to ketone (A/K) ratios of 6.7 and 21.0 for the cyclohexane and cyclooctane oxidations, respectively. Overall yields (alcohol + ketone) were 73% for cyclohexane and 92% for cyclooctane, based upon the total hydrogen peroxide added. In the catalytic oxidation of indan under similar conditions, the TON for 1-indanol was 10.1, with a yield of 12% based upon hydrogen peroxide. No 1-indanone was observed in the product mixture.

  14. Glasses Containing Iron (II, III) Oxides For Immobilization Of Radioactive Technetium

    International Nuclear Information System (INIS)

    Kruger, A.A.; Heo, J.; Xu, K.; Choi, J.K.; Hrma, P.R.; Um, W.

    2011-01-01

    Technetium-99 (Tc-99) has posed serious environmental threats as US Department of Energy's high-level waste. This work reports the vitrification of Re, as surrogate for Tc-99, by iron-borosilicate and iron-phosphate glasses, respectively. Iron-phosphate glasses can dissolve Re as high as ∼ 1.2 wt. %, which can become candidate waste forms for Tc-99 disposal, while borosilicate glasses can retain less than 0.1 wt. % of Re due to high melting temperature and long melting duration. Vitrification of Re as Tc-99's mimic was investigated using iron-borosilicate and iron-phosphate glasses. The retention of Re in borosilicate glasses was less than 0.1 wt. % and more than 99 wt. % of Re were volatilized due to high melting temperature and long melting duration. Because the retention of Re in iron-phosphate glasses is as high as 1.2 wt. % and the volatilization is reduced down to ∼50 wt. %, iron-phosphate glasses can be one of the glass waste form candidates for Tc (or Re) disposal. The investigations of chemical durability and leaching test of iron-phosphate glasses containing Re are now underway to test the performance of the waste form.

  15. Mechanistic Study of Monodisperse Iron Oxide Nanocrystals ...

    African Journals Online (AJOL)

    To gain better insight into the formation of iron oxide nanocrystals from the solution phase thermal decomposition of iron (III) oleate complex, different reaction conditions including time, heating ramp, as well as concentrations of iron oleate precursor and oleic acid ligand were systematically varied and the resulting ...

  16. Iron Profile and Glycaemic Control in Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Gunjan Misra

    2016-12-01

    Full Text Available Iron overload is increasingly being connected to insulin resistance in Type 2 Diabetes Mellitus (T2DM patients. Free iron causes the assembly of reactive oxygen species that invariably steer the body’s homeostasis towards oxidative stress-mediated diabetic complications. This study aims to assess the serum iron, total iron binding capacity (TIBC, and percentage transferrin saturation (Tsat of 150 subjects divided into three groups (I,II,III of 50. Healthy individuals (controls constituted Group I. Group II consisted of T2DM patients with optimal glycaemic control. T2DM patients with suboptimal glycaemic control formed group III. Mean serum free iron concentration was 105.34 ± 3.5, 107.33 ± 3.45, and 125.58 ± 3.45 μg/dL in Group I, Group II, and Group III, respectively. Mean serum TIBC concentration in Group I, Group II, and Group III was 311.39 ± 5.47, 309.63 ± 6.1, and 284.2 ± 3.18 μg/dL, respectively. Mean serum transferrin saturation (% in Group I, Group II, and Group III was 34.17 ± 1.21, 35.02 ± 1.2, and 44.39 ± 1.07, respectively. The difference between TIBC, mean serum free iron concentration, and transferrin saturation between Group I and Group III (for all, p values <0.001, as well as between Group II and Group III (p values 0.0012, 0.0015, and <0.0001, respectively was statistically significant. The fasting plasma glucose values of Groups II and III were significantly higher than those of Group I, (p < 0.0001. Glycated haemoglobin (HbA1c values were also shown to increase from Group I to II and then III, and the increase was highly significant (all p values <0.0001. Thus, decreased glycaemic control and an increase in the glycation of haemoglobin was the key to elevation in serum iron values and alterations in other parameters. However, a significant correlation was absent between serum iron and HbA1c (r = 0.05 and transferrin saturation (r = 0.0496 in Group III.

  17. Kinetic, spectroscopic and chemical modification study of iron release from transferrin; iron(III) complexation to adenosine triphosphate

    International Nuclear Information System (INIS)

    Thompson, C.P.

    1985-01-01

    Amino acids other than those that serve as ligands have been found to influence the chemical properties of transferrin iron. The catalytic ability of pyrophosphate to mediate transferrin iron release to a terminal acceptor is largely quenched by modification non-liganded histine groups on the protein. The first order rate constants of iron release for several partially histidine modified protein samples were measured. A statistical method was employed to establish that one non-liganded histidine per metal binding domain was responsible for the reduction in rate constant. These results imply that the iron mediated chelator, pyrophosphate, binds directly to a histidine residue on the protein during the iron release process. EPR spectroscopic results are consistent with this interpretation. Kinetic and amino acid sequence studies of ovotransferrin and lactoferrin, in addition to human serum transferrin, have allowed the tentative assignment of His-207 in the N-terminal domain and His-535 in the C-terminal domain as the groups responsible for the reduction in rate of iron release. The above concepts have been extended to lysine modified transferrin. Complexation of iron(II) to adenosine triphosphate (ATP) was also studied to gain insight into the nature of iron-ATP species present at physiological pH. 31 P NMR spectra are observed when ATP is presented in large excess

  18. Reconstruction of Extracellular Respiratory Pathways for Iron(III Reduction in Shewanella oneidensis strain MR-1

    Directory of Open Access Journals (Sweden)

    Dan eCoursolle

    2012-02-01

    Full Text Available Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA, an integral outer membrane β-barrel protein (MtrB and an outer membrane-anchored c-type cytochrome (MtrC. Together, these components facilitate transfer of electrons from the c-type cytochrome CymA in the cytoplasmic membrane to electron acceptors at and beyond the outer membrane. The genes encoding these core proteins have paralogs in the S. oneidensis genome (mtrB and mtrA each have four while mtrC has three and some of the paralogs of mtrC and mtrA are able to form functional Mtr complexes. We demonstrate that of the additional three mtrB paralogs found in the S. oneidensis genome, only MtrE can replace MtrB to form a functional respiratory pathway to soluble iron(III citrate. We also evaluate which mtrC / mtrA paralog pairs (a total of 12 combinations are able to form functional complexes with endogenous levels of mtrB paralog expression. Finally, we reconstruct all possible functional Mtr complexes and test them in a S. oneidensis mutant strain where all paralogs have been eliminated from the genome. We find that each combination tested with the exception of MtrA / MtrE / OmcA is able to reduce iron(III citrate at a level significantly above background. The results presented here have implications towards the evolution of anaerobic extracellular respiration in Shewanella and for future studies looking to increase the rates of substrate reduction for water treatment, bioremediation, or electricity production.

  19. Use of Fe(III) oxalate for oxidativewastewater treatment; Einsatz von Fe(III)-Oxalat zur chemisch-oxidativen Abwasserbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.M.; Vogelpohl, A. [Clausthal Univ., Clausthal-Zellerfeld (Germany). Inst. fuer Thermische Verfahrenstechnik

    1998-08-01

    Iron(III)-oxalate was used as an iron catalyst for the Photo Fenton reaction. Iron(III) oxalations ([Fe(C{sub 2}O{sub 4}){sub 3}]{sup 3-}) are reduced to Fe(II) by irradiation using near UV-light ({lambda} = 300 - 400 nm) or visible light ({lambda} > 400 nm). At the same time, CO{sub 2}{sup -} or C{sub 2}O{sub 4}{sup -}-radicals originate, which cause the secondary reduction of Fe(III) to Fe(II). By means of the photolytically regenerated Fe(II) ions, hydroxyl radicals are increasingly formed, so that the degradation of organic substances is accelerated. The work aimed to assess the catalytic effect of Fe(III) oxalate for photochemical oxidation processes and to establish the parameters influencing further treatment of leachate from a municipal waste sanitary landfill by means of technical-scale experiments. (orig.) [Deutsch] In der vorliegenden Arbeit wurde Eisen(III)-Oxalat als Eisenkatalysator fuer die Photo-Fenton-Reaktion eingesetzt. Eisen(III)-Oxalationen ([Fe(C{sub 2}O{sub 4}){sub 3}]{sup 3-}) werden durch Strahlung mit nahem UV-Licht ({lambda}=300 bis 400 nm) oder mit sichtbarem Licht ({lambda}>400 nm) zu Fe(II) reduziert. Gleichzeitig entstehen CO{sub 2}{sup .-} oder C{sub 2}O{sub 4}{sup .-}-Radikale, die eine sekundaere Reduktion von Fe(III) zu Fe(II) bewirken. Mit Hilfe der photolytiisch regenerierten Fe(II)-Ionen werden vermehrt Hydroxylradikale gebildet und damit die Abbaugeschwindigkeit der organischen Substanzen beschleunigt. Ziel der hier vorgestellten Arbeit war es, die katalytische Wirkung von Fe(III)-Oxalat fuer photochemische Oxidationsverfahren abzuschaetzen und die Einflussparameter zur weitergehenden Behandlung eines Deponiesickerwassers aus Hausmuelldeponie anhand von Technikumsversuchen zu ermitteln. (orig.)

  20. Lithium, rubidium and cesium ion removal using potassium iron(III) hexacyanoferrate(II) supported on polymethylmethacrylate

    International Nuclear Information System (INIS)

    Shabana Taj; Din Muhammad; Ashraf Chaudhry, M.; Muhammad Mazhar

    2011-01-01

    Potassium iron(III) hexacyanoferrate(II) supported on poly methyl methacrylate, has been developed and investigated for the removal of lithium, rubidium and cesium ions. The material is capable of sorbing maximum quantities of these ions from 5.0, 2.5 and 4.5 M HNO 3 solutions respectively. Sorption studies, conducted individually for each metal ion, under optimized conditions, demonstrated that it was predominantly physisorption in the case of lithium ion while shifting to chemisorption with increasing ionic size. Distribution coefficient (K d ) values followed the order Cs + > Rb + > Li + at low concentrations of metal ions. Following these findings Cs + can preferably be removed from 1.5 to 5 M HNO 3 nuclear waste solutions. (author)

  1. Synthesis, Physicochemical Properties, and Antimicrobial Studies of Iron (III Complexes of Ciprofloxacin, Cloxacillin, and Amoxicillin

    Directory of Open Access Journals (Sweden)

    Fabian I. Eze

    2014-01-01

    Full Text Available Iron (III complexes of ciprofloxacin, amoxicillin, and cloxacillin were synthesized and their aqueous solubility profiles, relative stabilities, and antimicrobial properties were evaluated. The complexes showed improved aqueous solubility when compared to the corresponding ligands. Relative thermal and acid stabilities were determined spectrophotometrically and the results showed that the complexes have enhanced thermal and acid stabilities when compared to the pure ligands. Antimicrobial studies showed that the complexes have decreased activities against most of the tested microorganisms. Ciprofloxacin complex, however, showed almost the same activity as the corresponding ligand. Job’s method of continuous variation suggested 1 : 2 metals to ligand stoichiometry for ciprofloxacin complex but 1 : 1 for cloxacillin complex.

  2. Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou0388@hotmail.com [Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha-Lu, Taichung 433, Taiwan (China); Wang, Chih-Ta [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan Hsien 717, Taiwan (China); Huang, Kai-Yu [Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha-Lu, Taichung 433, Taiwan (China)

    2009-08-15

    The aim of this study is to investigate the effects of operating parameters on the specific energy consumption and removal efficiency of synthetic wastewater containing indium (III) ions by electrocoagulation in batch mode using an iron electrode. Several parameters, including different electrode pairs, supporting electrolytes, initial concentration, pH variation, and applied voltage, were investigated. In addition, the effects of applied voltage, supporting electrolyte, and initial concentration on indium (III) ion removal efficiency and specific energy consumption were investigated under the optimum balance of reasonable removal efficiency and relative low energy consumption. Experiment results indicate that a Fe/Al electrode pair is the most efficient choice of the four electrode pairs in terms of energy consumption. The optimum supporting electrolyte concentration, initial concentration, and applied voltage were found to be 100 mg/l NaCl, 20 mg/l, and 20 V, respectively. A higher pH at higher applied voltage (20 or 30 V) enhanced the precipitation of indium (III) ion as insoluble indium hydroxide, which improved the removal efficiency. Results from the indium (III) ion removal kinetics show that the kinetics data fit the pseudo second-order kinetic model well. Finally, the composition of the sludge produced was characterized with energy dispersion spectra (EDS).

  3. Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption

    International Nuclear Information System (INIS)

    Chou, Wei-Lung; Wang, Chih-Ta; Huang, Kai-Yu

    2009-01-01

    The aim of this study is to investigate the effects of operating parameters on the specific energy consumption and removal efficiency of synthetic wastewater containing indium (III) ions by electrocoagulation in batch mode using an iron electrode. Several parameters, including different electrode pairs, supporting electrolytes, initial concentration, pH variation, and applied voltage, were investigated. In addition, the effects of applied voltage, supporting electrolyte, and initial concentration on indium (III) ion removal efficiency and specific energy consumption were investigated under the optimum balance of reasonable removal efficiency and relative low energy consumption. Experiment results indicate that a Fe/Al electrode pair is the most efficient choice of the four electrode pairs in terms of energy consumption. The optimum supporting electrolyte concentration, initial concentration, and applied voltage were found to be 100 mg/l NaCl, 20 mg/l, and 20 V, respectively. A higher pH at higher applied voltage (20 or 30 V) enhanced the precipitation of indium (III) ion as insoluble indium hydroxide, which improved the removal efficiency. Results from the indium (III) ion removal kinetics show that the kinetics data fit the pseudo second-order kinetic model well. Finally, the composition of the sludge produced was characterized with energy dispersion spectra (EDS).

  4. Effect of Organic Substances on the Efficiency of Fe(Ii to Fe(Iii Oxidation and Removal of Iron Compounds from Groundwater in the Sedimentation Process

    Directory of Open Access Journals (Sweden)

    Krupińska Izabela

    2017-09-01

    Full Text Available One of the problems with iron removal from groundwater is organic matter. The article presents the experiments involved groundwater samples with a high concentration of total iron - amounting to 7.20 mgFe/dm3 and an increased amount of organic substances (TOC from 5.50 to 7.50 mgC/dm3. The water samples examined differed in terms of the value of the ratio of the TOC concentration and the concentration of total iron (D. It was concluded that with increase in the coexistence ratio of organic substances and total iron in water (D = [TOC]/[Fetot], efficiency of Fe(II to Fe(III oxidization with dissolved oxygen decreased, while the oxidation time was increasing. This rule was not demonstrated for potassium manganate (VII when used as an oxidizing agent. The application of potassium manganate (VII for oxidation of Fe(II ions produced the better results in terms of total iron concentration reduction in the sedimentation process than the oxidation with dissolved oxygen.

  5. Effect of Organic Substances on the Efficiency of Fe(Ii) to Fe(Iii) Oxidation and Removal of Iron Compounds from Groundwater in the Sedimentation Process

    Science.gov (United States)

    Krupińska, Izabela

    2017-09-01

    One of the problems with iron removal from groundwater is organic matter. The article presents the experiments involved groundwater samples with a high concentration of total iron - amounting to 7.20 mgFe/dm3 and an increased amount of organic substances (TOC from 5.50 to 7.50 mgC/dm3). The water samples examined differed in terms of the value of the ratio of the TOC concentration and the concentration of total iron (D). It was concluded that with increase in the coexistence ratio of organic substances and total iron in water (D = [TOC]/[Fetot]), efficiency of Fe(II) to Fe(III) oxidization with dissolved oxygen decreased, while the oxidation time was increasing. This rule was not demonstrated for potassium manganate (VII) when used as an oxidizing agent. The application of potassium manganate (VII) for oxidation of Fe(II) ions produced the better results in terms of total iron concentration reduction in the sedimentation process than the oxidation with dissolved oxygen.

  6. Iron-57 and iridium-193 Moessbauer spectroscopic studies of supported iron-iridium catalysts

    International Nuclear Information System (INIS)

    Berry, F.J.; Jobson, S.

    1988-01-01

    57 Fe and 193 Ir Moessbauer spectroscopy shows that silica- and alumina-supported iron-iridium catalysts formed by calcination in air contain mixtures of small particle iron(III) oxide and iridium(IV) oxide. The iridium dioxide in both supported catalysts is reduced in hydrogen to metallic iridium. The α-Fe 2 O 3 in the silica supported materials is predominantly reduced in hydrogen to an iron-iridium alloy whilst in the alumina-supported catalyst the iron is stabilised by treatment in hydrogen as iron(II). Treatment of a hydrogen-reduced silica-supported iron catalyst in hydrogen and carbon monoxide is accompanied by the formation of iron carbides. Carbide formation is not observed when the iron-iridium catalysts are treated in similar atmospheres. The results from the bimetallic catalysts are discussed in terms of the hydrogenation of associatively adsorbed carbon monoxide and the selectivity of supported iron-iridium catalysts to methanol formation. (orig.)

  7. Modification of glassy carbon electrode with multi-walled carbon nanotubes and iron(III)-porphyrin film: Application to chlorate, bromate and iodate detection

    International Nuclear Information System (INIS)

    Salimi, Abdollah; MamKhezri, Hussein; Hallaj, Rahman; Zandi, Shiva

    2007-01-01

    In this study, multi-wall carbon nanotubes (MWCTs) is evaluated as a transducer, stabilizer and immobilization matrix for the construction of amperometric sensor based on iron-porphyrin. 5,10,15,20-Tetraphenyl-21H,23H-porphine iron(III) chloride (Fe(III)P) adsorbed on MWCNTs immobilized on the surface of glassy carbon electrode. Cyclic voltammograms of the Fe(III)P-incorporated-MWCNTs indicate a pair of well-defined and nearly reversible redox couple with surface confined characteristics at wide pH range (2-12). The surface coverage (Γ) and charge transfer rate constant (k s ) of Fe(III)P immobilized on MWCNTs were 7.68 x 10 -9 mol cm -2 and 1.8 s -1 , respectively, indicating high loading ability of MWCNTs for Fe(III)P and great facilitation of the electron transfer between Fe(III)P and carbon nanotubes immobilized on the electrode surface. Modified electrodes exhibit excellent electrocatalytic activity toward reduction of ClO 3 - , IO 3 - and BrO 3 - in acidic solutions. The catalytic rate constants for catalytic reduction of bromate, chlorate and iodate were 6.8 x 10 3 , 7.4 x 10 3 and 4.8 x 10 2 M -1 s -1 , respectively. The hydrodynamic amperometry of rotating-modified electrode at constant potential versus reference electrode was used for detection of bromate, chlorate and iodate. The detection limit, linear calibration range and sensitivity for chlorate, bromate and iodate detections were 0.5 μM, 2 μM to 1 mM, 8.4 nA/μM, 0.6 μM, 2 μM to 0.15 mM, 11 nA/μM, and 2.5 μM, 10 μM to 4 mM and 1.5 nA/μM, respectively. Excellent electrochemical reversibility of the redox couple, good reproducibility, high stability, low detection limit, long life time, fast amperometric response time, wide linear concentration range, technical simplicity and possibility of rapid preparation are great advantages of this sensor. The obtained results show promising practical application of the Fe(III)P-MWCNTs-modified electrode as an amperometric sensor for chlorate, iodate and

  8. Modification of glassy carbon electrode with multi-walled carbon nanotubes and iron(III)-porphyrin film: Application to chlorate, bromate and iodate detection

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Abdollah [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Nanotechnology Research Center of University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); E-mail: absalimi@uok.ac.ir; MamKhezri, Hussein [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Hallaj, Rahman [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Zandi, Shiva [Laboratory of Biochemistry, Kurdistan Medical University, Sanandaj (Iran, Islamic Republic of)

    2007-06-10

    In this study, multi-wall carbon nanotubes (MWCTs) is evaluated as a transducer, stabilizer and immobilization matrix for the construction of amperometric sensor based on iron-porphyrin. 5,10,15,20-Tetraphenyl-21H,23H-porphine iron(III) chloride (Fe(III)P) adsorbed on MWCNTs immobilized on the surface of glassy carbon electrode. Cyclic voltammograms of the Fe(III)P-incorporated-MWCNTs indicate a pair of well-defined and nearly reversible redox couple with surface confined characteristics at wide pH range (2-12). The surface coverage ({gamma}) and charge transfer rate constant (k {sub s}) of Fe(III)P immobilized on MWCNTs were 7.68 x 10{sup -9} mol cm{sup -2} and 1.8 s{sup -1}, respectively, indicating high loading ability of MWCNTs for Fe(III)P and great facilitation of the electron transfer between Fe(III)P and carbon nanotubes immobilized on the electrode surface. Modified electrodes exhibit excellent electrocatalytic activity toward reduction of ClO{sub 3} {sup -}, IO{sub 3} {sup -} and BrO{sub 3} {sup -} in acidic solutions. The catalytic rate constants for catalytic reduction of bromate, chlorate and iodate were 6.8 x 10{sup 3}, 7.4 x 10{sup 3} and 4.8 x 10{sup 2} M{sup -1} s{sup -1}, respectively. The hydrodynamic amperometry of rotating-modified electrode at constant potential versus reference electrode was used for detection of bromate, chlorate and iodate. The detection limit, linear calibration range and sensitivity for chlorate, bromate and iodate detections were 0.5 {mu}M, 2 {mu}M to 1 mM, 8.4 nA/{mu}M, 0.6 {mu}M, 2 {mu}M to 0.15 mM, 11 nA/{mu}M, and 2.5 {mu}M, 10 {mu}M to 4 mM and 1.5 nA/{mu}M, respectively. Excellent electrochemical reversibility of the redox couple, good reproducibility, high stability, low detection limit, long life time, fast amperometric response time, wide linear concentration range, technical simplicity and possibility of rapid preparation are great advantages of this sensor. The obtained results show promising practical

  9. CHRONIC HEART FAILURE AND IRON-DEFICIENT ANEMIA

    Directory of Open Access Journals (Sweden)

    M. V. Melnik

    2015-12-01

    Full Text Available 62 chronic heart failure (CHF patients with iron-deficient anemia (IDA were studied. Standard CHF therapy (angiotensin converting enzyme inhibitors, β-blockers, diuretics, cardiac glycosides was accompanied with the correction of iron deficiency by intravenous injection of Venofer and subsequent Ferro-Folgamma prescription (average daily dose of iron 137,75±5mg. After treatment serum iron level increased by 95,5% and hemoglobin level – by 9,8%. Left ventricular ejection fraction increased by 32,2% and physical activity tolerance – by 47,6%. Before treatment 32 CHF patients with IDA (51,6% had III functional class (FC of CHF according to NYHA and 16 patients (25,8% – IV FC. After treatment I FC was observed in 18 CHF patients (29%, II FC – in 26 patients and only 18 patients demonstrated III FC of CHF.

  10. CHRONIC HEART FAILURE AND IRON-DEFICIENT ANEMIA

    Directory of Open Access Journals (Sweden)

    M. V. Melnik

    2007-01-01

    Full Text Available 62 chronic heart failure (CHF patients with iron-deficient anemia (IDA were studied. Standard CHF therapy (angiotensin converting enzyme inhibitors, β-blockers, diuretics, cardiac glycosides was accompanied with the correction of iron deficiency by intravenous injection of Venofer and subsequent Ferro-Folgamma prescription (average daily dose of iron 137,75±5mg. After treatment serum iron level increased by 95,5% and hemoglobin level – by 9,8%. Left ventricular ejection fraction increased by 32,2% and physical activity tolerance – by 47,6%. Before treatment 32 CHF patients with IDA (51,6% had III functional class (FC of CHF according to NYHA and 16 patients (25,8% – IV FC. After treatment I FC was observed in 18 CHF patients (29%, II FC – in 26 patients and only 18 patients demonstrated III FC of CHF.

  11. A highly sensitive amperometric sensor for oxygen based on iron(II) tetrasulfonated phthalocyanine and iron(III) tetra-(N-methyl-pyridyl)-porphyrin multilayers

    International Nuclear Information System (INIS)

    Duarte, Juliana C.; Luz, Rita C.S.; Damos, Flavio S.; Tanaka, Auro A.; Kubota, Lauro T.

    2008-01-01

    The development of a highly sensitive sensor for oxygen is proposed using a glassy carbon (GC) electrode modified with alternated layers of iron(II) tetrasulfonated phthalocyanine (FeTsPc) and iron(III) tetra-(N-methyl-pyridyl)-porphyrin (FeT4MPyP). The modified electrode showed excellent catalytic activity for the oxygen reduction. The reduction potential of the oxygen was shifted about 330 mV toward less negative values with this modified electrode, presenting a peak current much higher than those observed on a bare GC electrode. Cyclic voltammetry and rotating disk electrode (RDE) experiments indicated that the oxygen reduction reaction involves 4 electrons with a heterogenous rate constant (k obs ) of 3 x 10 5 mol -1 L s -1 . A linear response range from 0.2 up to 6.4 mg L -1 , with a sensitivity of 4.12 μA L mg -1 (or 20.65 μA cm -2 L mg -1 ) and a detection limit of 0.06 mg L -1 were obtained with this sensor. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation (R.S.D.) was 2.0% for 10 measurements of a solution of 6.4 mg L -1 oxygen. The sensor was applied to determine oxygen in pond and tap water samples showing to be a promising tool for this purpose

  12. THE WIDESPREAD OF Fe(III)-REDUCING BACTERIA IN NATURAL ECOSYSTEMS OF ECUADOR.

    Science.gov (United States)

    Tashyrev, O B; Govorukha, V M

    2015-01-01

    The widespread of Fe(III)-reducing microorganisms in natural ecosystems of Ecuador of La Favorita, Tungurahua volcano and Papallacta areas was experimentally proved. High efficiency of microbial precipitation of soluble iron compounds was also demonstrated. Obtained results indicate the potential ability of Fe(III)-reducing microorganisms to influence the formation of carbon and iron vector fluxes in ecosystems, as well as development of effective biotechnologies of water purification from iron compounds.

  13. Heme oxygenase activity increases after exercise in healthy volunteers

    Science.gov (United States)

    AbstractHeme oxygenase (HO) is an essential, rate-limiting protein which participates in the catabolism of heme to iron, carbon monoxide (CO), and biliverdin. The alpha methene bridge carbon of the heme is eliminated as CO which can be measured as blood carboxyhemoglobin (COHb)....

  14. Iron oxide redox chemistry and nuclear fuel disposal

    International Nuclear Information System (INIS)

    Jobe, D.J.; Lemire, R.J.; Taylor, P.

    1997-04-01

    Solubility and stability data for iron (III) oxides and aqueous Fe(II) and Fe(III) species are reviewed, and selected values are used to calculate potential-pH diagrams for the iron system at temperatures of 25 and 100 deg C, chloride activities {C1 - } = 10 -2 and 1 mol/kg, total carbonate activity {C T } = 10 -3 mol/kg, and iron(III) oxide/oxyhydroxide solubility products (25 deg C values) K sp = {Fe 3+ }{OH - } 3 = 10 -38.5 , 10 -40 and 10 -42 . The temperatures and anion concentrations bracket the range of conditions expected in a Canadian nuclear fuel waste disposal vault. The three solubility products represent a conservative upper limit, a most probable value, and a minimum credible value, respectively, for the iron oxides likely to be important in controlling redox conditions in a disposal vault for CANDU nuclear reactor fuel. Only in the first of these three cases do the calculated redox potentials significantly exceed values under which oxidative dissolution of the fuel may occur. (author)

  15. Economically attractive route for the preparation of high quality magnetic nanoparticles by the thermal decomposition of iron(III) acetylacetonate.

    Science.gov (United States)

    Effenberger, Fernando B; Couto, Ricardo A; Kiyohara, Pedro K; Machado, Giovanna; Masunaga, Sueli H; Jardim, Renato F; Rossi, Liane M

    2017-03-17

    The thermal decomposition (TD) methods are among the most successful in obtaining magnetic nanoparticles with a high degree of control of size and narrow particle size distribution. Here we investigated the TD of iron(III) acetylacetonate in the presence of oleic acid, oleylamine, and a series of alcohols in order to disclose their role and also investigate economically attractive alternatives for the synthesis of iron oxide nanoparticles without compromising their size and shape control. We have found that some affordable and reasonably less priced alcohols, such as 1,2-octanediol and cyclohexanol, may replace the commonly used and expensive 1,2-hexadecanediol, providing an economically attractive route for the synthesis of high quality magnetic nanoparticles. The relative cost for the preparation of Fe 3 O 4 NPs is reduced to only 21% and 9% of the original cost when using 1,2-octanediol and cyclohexanol, respectively.

  16. Effect of calcium on adsorptive removal of As(III) and As(V) by iron oxide-based adsorbents

    KAUST Repository

    Uwamariya, V.

    2014-06-25

    The effects of calcium on the equilibrium adsorption capacity of As(III) and As(V) onto iron oxide-coated sand (IOCS) and granular ferric hydroxide (GFH) were investigated through batch experiments, rapid small-scale column tests (RSSCT) and kinetics modelling. Batch experiments showed that at calcium concentrations≤20 mg/L, high As(III) and As(V) removal efficiencies by IOCS and GFH are achieved at pH 6. An increase of the calcium concentration to 40 and 80 mg/L reversed this trend, giving higher removal efficiencies at higher pH (8). The adsorption capacities of IOCS and GFH at an equilibrium arsenic concentration of 10 g/L were found to be between 2.0 and 3.1 mg/g for synthetic water without calcium and between 2.8 and 5.3 mg/g when 80 mg/L of calcium was present at the studied pH values. After 10 hours of filter run in RSSCT, approximately 1000 empty bed volumes, the ratios of C/Co for As(V) were 26% and 18% for calcium-free model water; and only 1% and 0.2% after addition of 80 mg/L of Ca for filter columns with IOCS and GFH, respectively. The adsorption of As(III) and As(V) onto GFH follows a second-order reaction, with and without addition of calcium. The adsorption of As(III) and As(V) onto IOCS follows a first-order reaction without calcium addition, and moves to the second-reaction-order kinetics when calcium is added. Based on the intraparticle diffusion model, the main controlling mechanism for As(III) adsorption is intraparticle diffusion, while surface diffusion contributes greatly to the adsorption of As(V).

  17. Synthesis and characterization of iron (II and III) phosphates by X-ray diffraction and Scanning Electron Microscopy of high vacuum

    International Nuclear Information System (INIS)

    Diaz F, J.C.; Solis M, L.; Garcia R, G.; Romero G, E.T.

    2002-01-01

    The XRD and Sem techniques for determining the mineralogical and structural composition of iron II and III phosphates have been used. The mineralogical and structural composition of the materials revealed that they are the ferrous phosphate and the ferric phosphate. The contribution of the synthesis and characterization of these phosphates is that they can be used as components in the geological barriers capable to avoiding the dispersion from the hazardous radioactive materials to the environment. (Author)

  18. Wastewater engineering applications of BioIronTech process based on the biogeochemical cycle of iron bioreduction and (biooxidation

    Directory of Open Access Journals (Sweden)

    Volodymyr Ivanov

    2014-12-01

    Full Text Available Bioreduction of Fe(III and biooxidation of Fe(II can be used in wastewater engineering as an innovative biotechnology BioIronTech, which is protected for commercial applications by US patent 7393452 and Singapore patent 106658 “Compositions and methods for the treatment of wastewater and other waste”. The BioIronTech process comprises the following steps: 1 anoxic bacterial reduction of Fe(III, for example in iron ore powder; 2 surface renovation of iron ore particles due to the formation of dissolved Fe2+ ions; 3 precipitation of insoluble ferrous salts of inorganic anions (phosphate or organic anions (phenols and organic acids; 4 (biooxidation of ferrous compunds with the formation of negatively, positively, or neutrally charged ferric hydroxides, which are good adsorbents of many pollutants; 5 disposal or thermal regeration of ferric (hydroxide. Different organic substances can be used as electron donors in bioreduction of Fe(III. Ferrous ions and fresh ferrous or ferric hydroxides that are produced after iron bioreduction and (biooxidation adsorb and precipitate diferent negatively charged molecules, for example chlorinated compounds of sucralose production wastewater or other halogenated organics, as well as phenols, organic acids, phosphate, and sulphide. Reject water (return liquor from the stage of sewage sludge dewatering on municipal wastewater treatment plants represents from 10 to 50% of phosphorus load when being recycled to the aeration tank. BioIronTech process can remove/recover more than 90% of phosphorous from this reject water thus replacing the conventional process of phosphate precipitation by ferric/ferrous salts, which are 20–100 times more expensive than iron ore, which is used in BioIronTech process. BioIronTech process can remarkably improve the aerobic and anaerobic treatments of municipal and industrial wastewaters, especially anaerobic digestion of lipid- and sulphate-containing food-processing wastewater. It

  19. Intramuscular versus Subcutaneous Administration of Iron Dextran in Suckling Piglets

    Directory of Open Access Journals (Sweden)

    M. Svoboda

    2007-01-01

    Full Text Available The aim of the study was to compare the development of red blood cell indices after subcutaneous versus intramuscular administration of iron dextran to suckling piglets during early postnatal period. The piglets in group I (n = 17 were injected subcutaneously (into groin with 200 mg Fe3+ as iron dextran on day 3 of life. In group II (n = 16, the piglets received intramuscular injection (into gluteal muscles of 200 mg Fe3+ as iron dextran on day 3 of life. In group III (n = 10, the piglets did not receive any iron till the age of 3 days. The blood was taken and analyzed (Hb, PCV, RBC, MCV, MCH, MCHC, Fe on days 3, 7, 14, 21, 28 and 35. Haematological indices of piglets in group III were characteristic for hypochromic anaemia. Anaemia in group III had a detrimental effect on the growth rate of piglets. The development of red blood cell indices and iron concentration in blood plasma in subcutaneously treated piglets did not differ significantly from that of intramuscularly-treated group. Both treatments prevented development of anaemia.

  20. [Effects of iron on azoreduction by Shewanella decolorationis S12].

    Science.gov (United States)

    Chen, Xing-Juan; Xu, Mei-Ying; Sun, Guo-Ping

    2010-01-01

    The effects of soluble and insoluble Fe(III) on anaerobic azoreduction by Shewanella decolorationis S12 were examined in a series of experiments. Results showed that the effects of iron on anaerobic azoreduction depended on the solubility and concentration of the compounds. Azoreduction was inhibited by insoluble Fe(III) and 0.05-2 mmol/L Fe2 O3 all decelerated the azoreduction activity of 0.2 mmol/L amaranth, but the increase in the concentrations of Fe2O3 did not cause an increasing inhibition. Soluble Fe(III) of which concentration less than 0.4 mmol/L enhanced azoreduction activity of 0.2 mmol/L amaranth but there was no linear relationship between the concentration of soluble Fe(III) and azoreduction activity. Soluble Fe(III) of which concentration more than 1 mmol/L inhibited azoreduction activity of 0.2 mmol/L amaranth and an increasing concentration resulted in an increased inhibition. The inhibition was strengthened under the conditions of limited electron donor. On the other hand, soluble Fe(III) and Fe(II) could relieve the inhibition of azoreduction by dicumarol which blocked quinone cycle. It suggests that in addition to quinone cycle, there is a Fe(III) Fe(II) cycle shuttling electrons in cytoplasmic and periplasmic environment. That is the reason why low concentration of soluble Fe(III) or Fe (II) can enhance azoreduction of S. decolorationis S12. It also indicates that insoluble Fe(III) and high concentration of soluble Fe(III) do compete with azo dye for electrons once it acts as electron acceptor. Thus, when iron and azo dye coexisted, iron could serve as an electron transfer agent or electron competitive inhibitor for anaerobic azoreduction under different conditions. High efficiency of azoreduction can be achieved through controlling the solubility and concentration of irons.

  1. Polypyridyl iron(II) complexes showing remarkable photocytotoxicity ...

    Indian Academy of Sciences (India)

    reported a high spin (S=5/2) ternary iron(III) complex. [Fe(BHA)(L)Cl] of a ... designed low-spin iron(II) complexes as a new class of ..... They were moderately soluble in methanol, ethanol and .... Cell permeable DCFDA on oxidation by cel-.

  2. The synthesis of chlorophyll-a biosynthetic precursors and methyl substituted iron porphyrins

    International Nuclear Information System (INIS)

    Matera, K.M.

    1988-01-01

    The biosynthetic intermediates were incubated in a plant system. The activity levels calculated show that magnesium 6-acrylate porphyrins and one of the magnesium 6-β-hydroxypropionate porphyrins are not intermediates. In addition, plant systems incubated with 18 O 2 were found to synthesize magnesium 2,4-divinyl pheoporphyrin-a 5 incorporated with 18 O at the 9-carbonyl oxygen. Mass spectroscopy confirmed the presence of the oxygen label, thus eliminating one of two hypothesized pathways to chlorophyll-a. An overall description is given of iron porphyrins and iron porphyrin containing proteins. The function of the propionic side chains of the heme prosthetic group during electron transport reactions will be investigated. The synthesis of a series of iron(III) hexamethyl porphyrins with increasingly longer substituents in the remaining two peripheral positions of the porphyrin is described. Models for NMR studies of iron chlorin containing enzymes are discussed. Iron(III) pyropheophorbide-a and methyl pyropheophorbide-a were synthesized in addition to 5-CD 3 , 10-CD 2 iron(III) pyropheophorbide-a and methyl pyropheophorbide-a. Together, these pyropheophorbides were used to assign NMR resonances and ultimately provide a model for other iron chlorins. The synthesis of nickel(II) anhydro-mesorhodoporphyrin from zinc(III) anhydromesorhodochlorin is described; this nickel porphyrin was used as a standard for ring current calculations of reduced nickel analogs of anhydromesorhodoporphyrin

  3. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains.

    Science.gov (United States)

    Senoura, Takeshi; Sakashita, Emi; Kobayashi, Takanori; Takahashi, Michiko; Aung, May Sann; Masuda, Hiroshi; Nakanishi, Hiromi; Nishizawa, Naoko K

    2017-11-01

    Rice OsYSL9 is a novel transporter for Fe(II)-nicotianamine and Fe(III)-deoxymugineic acid that is responsible for internal iron transport, especially from endosperm to embryo in developing seeds. Metal chelators are essential for safe and efficient metal translocation in plants. Graminaceous plants utilize specific ferric iron chelators, mugineic acid family phytosiderophores, to take up sparingly soluble iron from the soil. Yellow Stripe 1-Like (YSL) family transporters are responsible for transport of metal-phytosiderophores and structurally similar metal-nicotianamine complexes. Among the rice YSL family members (OsYSL) whose functions have not yet been clarified, OsYSL9 belongs to an uncharacterized subgroup containing highly conserved homologs in graminaceous species. In the present report, we showed that OsYSL9 localizes mainly to the plasma membrane and transports both iron(II)-nicotianamine and iron(III)-deoxymugineic acid into the cell. Expression of OsYSL9 was induced in the roots but repressed in the nonjuvenile leaves in response to iron deficiency. In iron-deficient roots, OsYSL9 was induced in the vascular cylinder but not in epidermal cells. Although OsYSL9-knockdown plants did not show a growth defect under iron-sufficient conditions, these plants were more sensitive to iron deficiency in the nonjuvenile stage compared with non-transgenic plants. At the grain-filling stage, OsYSL9 expression was strongly and transiently induced in the scutellum of the embryo and in endosperm cells surrounding the embryo. The iron concentration was decreased in embryos of OsYSL9-knockdown plants but was increased in residual parts of brown seeds. These results suggested that OsYSL9 is involved in iron translocation within plant parts and particularly iron translocation from endosperm to embryo in developing seeds.

  4. Influence of dihydroxybenzenes on paracetamol and ciprofloxacin degradation and iron(III) reduction in Fenton processes.

    Science.gov (United States)

    Costa E Silva, Beatriz; de Lima Perini, João Angelo; Nogueira, Raquel F Pupo

    2017-03-01

    The degradation of paracetamol (PCT) and ciprofloxacin (CIP) was compared in relation to the generation of dihydroxylated products, Fe(III) reduction and reaction rate in the presence of dihydroxybenzene (DHB) compounds, or under irradiation with free iron (Fe 3+ ) or citrate complex (Fecit) in Fenton or photo-Fenton process. The formation of hydroquinone (HQ) was observed only during PCT degradation in the dark, which increased drastically the rate of PCT degradation, since HQ formed was able to reduce Fe 3+ and contributed to PCT degradation efficiency. When HQ was initially added, PCT and CIP degradation rate in the dark was much higher in comparison to the absence of HQ, due to the higher and faster formation of Fe 2+ at the beginning of reaction. In the absence of HQ, no CIP degradation was observed; however, when HQ was added after 30 min, the degradation rate increased drastically. Ten PCT hydroxylated intermediates were identified in the absence of HQ, which could contribute for Fe(III) reduction and consequently to the degradation in a similar way as HQ. During CIP degradation, only one product of hydroxyl radical attack on benzene ring and substitution of the fluorine atom was identified when HQ was added to the reaction medium.

  5. The first iron(III) complexes with cyclin-dependent kinase inhibitors: Magnetic, spectroscopic (IR, ES+ MS, NMR, Fe-57 Mossbauer), theoretical, and biological activity studies

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Popa, Igor; Čajan, Michal; Zbořil, R.; Kryštof, Vladimír; Mikulík, J.

    2010-01-01

    Roč. 104, č. 4 (2010), s. 405-417 ISSN 0162-0134 R&D Projects: GA MŠk 1M0512; GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : Iron(III) complexes * 57Fe Mössbauer spectroscopy * CDK inhibition Subject RIV: CA - Inorganic Chemistry Impact factor: 3.317, year: 2010

  6. Sorption of samarium in iron (II) and (III) phosphates in aqueous systems; Sorcion de samario en fosfatos de hierro (II) y (III) en sistemas acuosos

    Energy Technology Data Exchange (ETDEWEB)

    Diaz F, J C

    2006-07-01

    The radioactive residues that are stored in the radioactive confinements its need to stay isolated of the environment while the radioactivity levels be noxious. An important mechanism by which the radioactive residues can to reach the environment, it is the migration of these through the underground water. That it makes necessary the investigation of reactive materials that interacting with those radionuclides and that its are able to remove them from the watery resources. The synthesis and characterization of materials that can be useful in Environmental Chemistry are very important because its characteristics are exposed and its behavior in chemical phenomena as the sorption watery medium is necessary to use it in the environmental protection. In this work it was carried out the sorption study of the samarium III ion in the iron (II) and (III) phosphate; obtaining the sorption isotherms in function of pH, of the phosphate mass and of the concentration of the samarium ion using UV-visible spectroscopy to determine the removal percentage. The developed experiments show that as much the ferrous phosphate as the ferric phosphate present a great affinity by the samarium III, for what it use like reactive material in contention walls can be very viable because it sorption capacity has overcome 90% to pH values similar to those of the underground and also mentioning that the form to obtain these materials is very economic and simple. (Author)

  7. Coupling of Carbon Dioxide with Epoxides Efficiently Catalyzed by Thioether-Triphenolate Bimetallic Iron(III) Complexes: Catalyst Structure-Reactivity Relationship and Mechanistic DFT Study

    KAUST Repository

    Della Monica, Francesco; Vummaleti, Sai V. C.; Buonerba, Antonio; Nisi, Assunta De; Monari, Magda; Milione, Stefano; Grassi, Alfonso; Cavallo, Luigi; Capacchione, Carmine

    2016-01-01

    A series of dinuclear iron(III)I complexes supported by thioether-triphenolate ligands have been prepared to attain highly Lewis acidic catalysts. In combination with tetrabutylammonium bromide (TBAB) they are highly active catalysts in the synthesis of cyclic organic carbonates through the coupling of carbon dioxide to epoxides with the highest initial turnover frequencies reported to date for the conversion of propylene oxide to propylene carbonate for iron-based catalysts (5200h-1; 120°C, 2MPa, 1h). In particular, these complexes are shown to be highly selective catalysts for the coupling of carbon dioxide to internal oxiranes affording the corresponding cyclic carbonates in good yield and with retention of the initial stereochemical configuration. A density functional theory (DFT) investigation provides a rational for the relative high activity found for these Fe(III) complexes, showing the fundamental role of the hemilabile sulfur atom in the ligand skeleton to promote reactivity. Notably, in spite of the dinuclear nature of the catalyst precursor only one metal center is involved in the catalytic cycle. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Coupling of Carbon Dioxide with Epoxides Efficiently Catalyzed by Thioether-Triphenolate Bimetallic Iron(III) Complexes: Catalyst Structure-Reactivity Relationship and Mechanistic DFT Study

    KAUST Repository

    Della Monica, Francesco

    2016-08-25

    A series of dinuclear iron(III)I complexes supported by thioether-triphenolate ligands have been prepared to attain highly Lewis acidic catalysts. In combination with tetrabutylammonium bromide (TBAB) they are highly active catalysts in the synthesis of cyclic organic carbonates through the coupling of carbon dioxide to epoxides with the highest initial turnover frequencies reported to date for the conversion of propylene oxide to propylene carbonate for iron-based catalysts (5200h-1; 120°C, 2MPa, 1h). In particular, these complexes are shown to be highly selective catalysts for the coupling of carbon dioxide to internal oxiranes affording the corresponding cyclic carbonates in good yield and with retention of the initial stereochemical configuration. A density functional theory (DFT) investigation provides a rational for the relative high activity found for these Fe(III) complexes, showing the fundamental role of the hemilabile sulfur atom in the ligand skeleton to promote reactivity. Notably, in spite of the dinuclear nature of the catalyst precursor only one metal center is involved in the catalytic cycle. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Spectrophotometric determination of iron (III) in tap water using 8 ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-14

    Nov 14, 2011 ... Beers law was obeyed in the range of 1 to 14 ug/ml Fe3+. The recovery was between 98.60 ... Federal and state regulations limit the iron content of drinking water to <1 ppm, though iron is easily .... weighed and dissolved in chloroform in a 100 ml volumetric flask and made up to the mark with chloroform.

  10. ARSENIC ADSORPTION AND REDUCTION IN IRON-RICH SOILS NEARBY LANDFILLS IN NORTHWEST FLORIDA

    Directory of Open Access Journals (Sweden)

    Hongqin Xue

    2016-01-01

    Full Text Available In Florida, soils are mainly composed of Myakka, an acid soil characterized by a subsurface accumulation of humus and Al(III and Fe(III oxides. Downgradient of the landfills in Northwest Florida, elevated levels of iron and arsenic observations had been made in the groundwater from monitoring wells, which was attributed to the geomicrobial iron and arsenic reduction. There is thus an immediate research need for a better understanding of the reduction reactions that are responsible for the mobilization of iron and arsenic in the subsurface soil nearby landfills. Owing to the high Fe(III oxide content, As(V adsorption reactions with Fe(III oxide surfaces are particularly important, which may control As(V reduction. This research focused on the investigation of the biogeochemical processes of the subsurface soil nearby landfills of Northwest Florida. Arsenic and iron reduction was studied in batch reactors and quantified based on Monod-type microbial kinetic growth simulations. As(V adsorption in iron-rich Northwest Floridian soils was further investigated to explain the reduction observations. It was demonstrated in this research that solubilization of arsenic in the subsurface soil nearby landfills in Northwest Florida would likely occur under conditions favoring Fe(III dissimilatory reduction.

  11. Moessbauer study of Fe(III)-reducing sugar complexes

    International Nuclear Information System (INIS)

    Wolowiec, S.; Drabent, K.

    1985-01-01

    Iron(III) complexes with glucose, galactose, mannose and lactose were prepared. The Moessbauer and magnetic susceptibility data demonstrate the polymeric structure of the complexes. The thermal behaviour of the Fe(III)-glucose complex was monitored by Moessbauer spectroscopy. (author)

  12. Selectivity and Activity of Iron Molybdate Catalysts in Oxidation of Methanol

    Directory of Open Access Journals (Sweden)

    Khalid Khazzal Hummadi

    2009-06-01

    Full Text Available The selectivity and activity of iron molybdate catalysts prepared by different methods are compared with those of a commercial catalyst in the oxidation of methanol to formaldehyde in a continuous tubular bed reactor at 200-350 oC (473-623 oK, 10 atm (1013 kPa, with a methanol-oxygen mixture fixed at 5.5% by volume methanol: air ratio. The iron(III molybdate catalyst prepared by co-precipitation and filtration had a selectivity towards formaldehyde in methanol oxidation comparable with a commercial catalyst; maximum selectivity (82.3% was obtained at 573oK when the conversion was 59.7%. Catalysts prepared by reacting iron (III and molybdate by kneading or precipitation followed by evaporation, omitting a filtration stage, were less active and less selective. The selectivity-activity relationships of these catalysts as a function of temperature were discussed in relation to the method of preparation, surface areas and composition. By combing this catalytic data with data from the patent literature we demonstrate a synergy between iron and molybdenum in regard to methanol oxidation to formaldehyde; the optimum composition corresponded to an iron mole fraction 0.2-0.3. The selectivity to formaldehyde was practically constant up to an iron mole fraction 0.3 and then decreased at higher iron concentrations. The iron component can be regarded as the activity promoter. The iron molybdate catalysts can thus be related to other two-component MoO3-based selective oxidation catalysts, e.g. bismuth and cobalt molybdates. The iron oxide functions as a relatively basic oxide abstracting, in the rate-controlling step, a proton from the methyl of a bound methoxy group of chemisorbed methanol. It was proposed that a crucial feature of the sought after iron(III molybdate catalyst is the presence of -O-Mo-O-Fe-O-Mo-O- groups as found in the compound Fe2(MoO43 and for Fe3+ well dispersed in MoO3 generally. At the higher iron(III concentrations the loss of

  13. Thermodynamic model for solution behavior and solid-liquid equilibrium in Na-Al(III)-Fe(III)-Cr(III)-Cl-H2O system at 25°C

    Science.gov (United States)

    André, Laurent; Christov, Christomir; Lassin, Arnault; Azaroual, Mohamed

    2018-03-01

    The knowledge of the thermodynamic behavior of multicomponent aqueous electrolyte systems is of main interest in geo-, and environmental-sciences. The main objective of this study is the development of a high accuracy thermodynamic model for solution behavior, and highly soluble M(III)Cl3(s) (M= Al, Fe, Cr) minerals solubility in Na-Al(III)-Cr(III)-Fe(III)-Cl-H2O system at 25°C. Comprehensive thermodynamic models that accurately predict aluminium, chromium and iron aqueous chemistry and M(III) mineral solubilities as a function of pH, solution composition and concentration are critical for understanding many important geochemical and environmental processes involving these metals (e.g., mineral dissolution/alteration, rock formation, changes in rock permeability and fluid flow, soil formation, mass transport, toxic M(III) remediation). Such a model would also have many industrial applications (e.g., aluminium, chromium and iron production, and their corrosion, solve scaling problems in geothermal energy and oil production). Comparisons of solubility and activity calculations with the experimental data in binary and ternary systems indicate that model predictions are within the uncertainty of the data. Limitations of the model due to data insufficiencies are discussed. The solubility modeling approach, implemented to the Pitzer specific interaction equations is employed. The resulting parameterization was developed for the geochemical Pitzer formalism based PHREEQC database.

  14. Manganese and iron oxidation by fungi isolated from building stone.

    Science.gov (United States)

    de la Torre, M A; Gomez-Alarcon, G

    1994-01-01

    Acid and nonacid generating fungal strains isolated from weathered sandstone, limestone, and granite of Spanish cathedrals were assayed for their ability to oxidize iron and manganese. In general, the concentration of the different cations present in the mineral salt media directly affected Mn(IV) oxide formation, although in some cases, the addition of glucose and nitrate to the culture media was necessary. Mn(II) oxidation in acidogenic strains was greater in a medium containing the highest concentrations of glucose, nitrate, and manganese. High concentrations of Fe(II), glucose, and mineral salts were optimal for iron oxidation. Mn(IV) precipitated as oxides or hydroxides adhered to the mycelium. Most of the Fe(III) remained in solution by chelation with organic acids excreted by acidogenic strains. Other metabolites acted as Fe(III) chelators in nonacidogenic strains, although Fe(III) deposits around the mycelium were also detected. Both iron and manganese oxidation were shown to involve extracellular, hydrosoluble enzymes, with maximum specific activities during exponential growth. Strains able to oxidize manganese were also able to oxidize iron. It is concluded that iron and manganese oxidation reported in this work were biologically induced by filamentous fungi mainly by direct (enzymatic) mechanisms.

  15. Flashphotolysis investigations of the influence of the ionic strength on the kinetics of energy transfer reactions. Investigation of the reaction of Tb(III)- and Eu(III)-trisdipicolinate with different charged iron compounds

    International Nuclear Information System (INIS)

    Dorle, A.

    1999-01-01

    Luminescent lanthanide complexes are especially important as labels for the investigation of biological substances. The rare earths are employed as probes and are often able to substitute more expensive radioactive labels. The kinetic investigations of the reactions of Tb(III)- and Eu(III)-trisdipicolinate (charge: 3**-) with different charged iron complexes as quenchers (charge: 3 - , 1 - , 2 + ) (solvent: H 2 O) at varying ionic strength give results that can help to find out more details about how the intermolecular energy transfer takes place. By creating a Stern-Volmer plot one can get the rate constant of the luminescent quenching: Plotting the rate constants of quenching taken from the timeresolved flashphotolysis measurement (y-axis) versus the concentration of the quencher (x-axis) the resulting slope equals a rate constant k 2 of 2 nd order. (author)

  16. Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy, Manjunath; Vehkamäki, Marko [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Kukli, Kaupo, E-mail: kaupo.kukli@helsinki.fi [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); University of Tartu, Institute of Physics, W. Ostwald 1, EE-50411 Tartu (Estonia); Dimri, Mukesh Chandra [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Kemell, Marianna; Hatanpää, Timo; Heikkilä, Mikko J. [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Mizohata, Kenichiro [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 Helsinki (Finland); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Ritala, Mikko; Leskelä, Markku [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-07-29

    Bismuth iron oxide films with varying contributions from Fe{sub 2}O{sub 3} or Bi{sub 2}O{sub 3} were prepared using atomic layer deposition. Bismuth (III) 2,3-dimethyl-2-butoxide, was used as the bismuth source, iron(III) tert-butoxide as the iron source and water vapor as the oxygen source. The films were deposited as stacks of alternate Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} layers. Films grown at 140 °C to the thickness of 200–220 nm were amorphous, but crystallized upon post-deposition annealing at 500 °C in nitrogen. Annealing of films with intermittent bismuth and iron oxide layers grown to different thicknesses influenced their surface morphology, crystal structure, composition, electrical and magnetic properties. Implications of multiferroic performance were recognized in the films with the remanent charge polarization varying from 1 to 5 μC/cm{sup 2} and magnetic coercivity varying from a few up to 8000 A/m. - Highlights: • Bismuth iron oxide thin films were grown by atomic layer deposition at 140 °C. • The major phase formed in the films upon annealing at 500 °C was BiFeO{sub 3}. • BiFeO{sub 3} films and films containing excess Bi favored electrical charge polarization. • Slight excess of iron oxide enhanced saturative magnetization behavior.

  17. The Nature of the intermediates in the reactions of Fe(III)- and Mn(III)-microperoxidase-8 with H2O2 : a rapid kinetic study

    NARCIS (Netherlands)

    Primus, J.L.; Grunenwald, S.; Hagedoorn, P.L.; Albrecht-Gary, A.M.; Mandon, D.; Veeger, C.

    2002-01-01

    Kinetic studies were performed with microperoxidase-8 (Fe(III)MP-8), the proteolytic breakdown product of horse heart cytochrome c containing an octapeptide linked to an iron protoporphyrin IX. Mn(III) was substituted for Fe(III) in Mn(III)MP-8.The mechanism of formation of the reactive metal-oxo

  18. Utilization of subsurface microbial electrochemical systems to elucidate the mechanisms of competition between methanogenesis and microbial iron(III)/humic acid reduction in Arctic peat soils

    Science.gov (United States)

    Friedman, E. S.; Miller, K.; Lipson, D.; Angenent, L. T.

    2012-12-01

    High-latitude peat soils are a major carbon reservoir, and there is growing concern that previously dormant carbon from this reservoir could be released to the atmosphere as a result of continued climate change. Microbial processes, such as methanogenesis and carbon dioxide production via iron(III) or humic acid reduction, are at the heart of the carbon cycle in Arctic peat soils [1]. A deeper understanding of the factors governing microbial dominance in these soils is crucial for predicting the effects of continued climate change. In previous years, we have demonstrated the viability of a potentiostatically-controlled subsurface microbial electrochemical system-based biosensor that measures microbial respiration via exocellular electron transfer [2]. This system utilizes a graphite working electrode poised at 0.1 V NHE to mimic ferric iron and humic acid compounds. Microbes that would normally utilize these compounds as electron acceptors donate electrons to the electrode instead. The resulting current is a measure of microbial respiration with the electrode and is recorded with respect to time. Here, we examine the mechanistic relationship between methanogenesis and iron(III)- or humic acid-reduction by using these same microbial-three electrode systems to provide an inexhaustible source of alternate electron acceptor to microbes in these soils. Chamber-based carbon dioxide and methane fluxes were measured from soil collars with and without microbial three-electrode systems over a period of four weeks. In addition, in some collars we simulated increased fermentation by applying acetate treatments to understand possible effects of continued climate change on microbial processes in these carbon-rich soils. The results from this work aim to increase our fundamental understanding of competition between electron acceptors, and will provide valuable data for climate modeling scenarios. 1. Lipson, D.A., et al., Reduction of iron (III) and humic substances plays a major

  19. Oxidation of Cr(III)-Fe(III) Mixed-phase Hydroxides by Chlorine: Implications on the Control of Hexavalent Chromium in Drinking Water.

    Science.gov (United States)

    Chebeir, Michelle; Liu, Haizhou

    2018-05-17

    The occurrence of chromium (Cr) as an inorganic contaminant in drinking water is widely reported. One source of Cr is its accumulation in iron-containing corrosion scales of drinking water distribution systems as Cr(III)-Fe(III) hydroxide, i.e., FexCr(1-x)(OH)3(s), where x represents the Fe(III) molar content and typically varies between 0.25 and 0.75. This study investigated the kinetics of inadvertent hexavalent chromium Cr(VI) formation via the oxidation of FexCr(1-x)(OH)3(s) by chlorine as a residual disinfectant in drinking water, and examined the impacts of Fe(III) content and drinking water chemical parameters including pH, bromide and bicarbonate on the rate of Cr(VI) formation. Data showed that an increase in Fe(III) molar content resulted in a significant decrease in the stoichiometric Cr(VI) yield and the rate of Cr(VI) formation, mainly due to chlorine decay induced by Fe(III) surface sites. An increase in bicarbonate enhanced the rate of Cr(VI) formation, likely due to the formation of Fe(III)-carbonato surface complexes that slowed down the scavenging reaction with chlorine. The presence of bromide significantly accelerated the oxidation of FexCr(1-x)(OH)3(s) by chlorine, resulting from the catalytic effect of bromide acting as an electron shuttle. A higher solution pH between 6 and 8.5 slowed down the oxidation of Cr(III) by chlorine. These findings suggested that the oxidative conversion of chromium-containing iron corrosion products in drinking water distribution systems can lead to the occurrence of Cr(VI) at the tap, and the abundance of iron, and a careful control of pH, bicarbonate and bromide levels can assist the control of Cr(VI) formation.

  20. Fenton-like chemistry in water: Oxidation catalysis by Fe(III) and H2O2

    NARCIS (Netherlands)

    Ensing, B.; Buda, F.; Baerends, E.J.

    2003-01-01

    The formation of active intermediates from the Fenton-like reagent (a mixture of iron(III) ions and hydrogen peroxide) in aqueous solution has been investigated using static DFT calculations and Car-Parrinello molecular dynamics simulations. We show the spontaneous formation of the iron(III)

  1. Liquid-liquid extraction of iron (III) from Ouenza iron ore leach liquor ...

    African Journals Online (AJOL)

    The effect of several parameters, such as contact time, HCl concentration, TBP concentration and chloride inorganic salt (KCl) concentration on the efficiency of extraction of iron was examined at 19±2°C. It was found that, for 2 min 3M TBP in presence of 5M HCl and 2 M KCl solutions led to a high yiel of extraction (98.57 ...

  2. Spin-State-Controlled Photodissociation of Iron(III) Azide to an Iron(V) Nitride Complex

    Czech Academy of Sciences Publication Activity Database

    Andris, E.; Navrátil, R.; Jašík, J.; Sabenya, G.; Costas, M.; Srnec, Martin; Roithová, J.

    2017-01-01

    Roč. 56, č. 45 (2017), s. 14057-14060 ISSN 1521-3773 Institutional support: RVO:61388955 Keywords : Ion spectroscopy * Iron(V) nitride * Photodissociation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry

  3. Functional Significance of Iron Deficiency. Annual Nutrition Workshop Series, Volume III.

    Science.gov (United States)

    Enwonwu, Cyril O., Ed.

    Iron deficiency anemia impairs cognitive performance, physical capacity, and thermoregulation. Recent evidence suggests that these functional impairments are also evident in subclinical nonanemic iron deficiency. Very little is known about the relevance of the latter to the health of blacks, who have been shown to have the highest prevalence of…

  4. The [Fe(III)[Fe(III)(L1)2]3] star-type single-molecule magnet.

    Science.gov (United States)

    Saalfrank, Rolf W; Scheurer, Andreas; Bernt, Ingo; Heinemann, Frank W; Postnikov, Andrei V; Schünemann, Volker; Trautwein, Alfred X; Alam, Mohammad S; Rupp, Holger; Müller, Paul

    2006-06-21

    Star-shaped complex [Fe(III)[Fe(III)(L1)2]3] (3) was synthesized starting from N-methyldiethanolamine H2L1 (1) and ferric chloride in the presence of sodium hydride. For 3, two different high-spin iron(III) ion sites were confirmed by Mössbauer spectroscopy at 77 K. Single-crystal X-ray structure determination revealed that 3 crystallizes with four molecules of chloroform, but, with only three molecules of dichloromethane. The unit cell of 3.4CHCl3 contains the enantiomers (delta)-[(S,S)(R,R)(R,R)] and (lambda)-[(R,R)(S,S)(S,S)], whereas in case of 3.3CH2Cl2 four independent molecules, forming pairs of the enantiomers [lambda-(R,R)(R,R)(R,R)]-3 and [lambda-(S,S)(S,S)(S,S)]-3, were observed in the unit cell. According to SQUID measurements, the antiferromagnetic intramolecular coupling of the iron(III) ions in 3 results in a S = 10/2 ground state multiplet. The anisotropy is of the easy-axis type. EPR measurements enabled an accurate determination of the ligand-field splitting parameters. The ferric star 3 is a single-molecule magnet (SMM) and shows hysteretic magnetization characteristics below a blocking temperature of about 1.2 K. However, weak intermolecular couplings, mediated in a chainlike fashion via solvent molecules, have a strong influence on the magnetic properties. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) were used to determine the structural and electronic properties of star-type tetranuclear iron(III) complex 3. The molecules were deposited onto highly ordered pyrolytic graphite (HOPG). Small, regular molecule clusters, two-dimensional monolayers as well as separated single molecules were observed. In our STS measurements we found a rather large contrast at the expected locations of the metal centers of the molecules. This direct addressing of the metal centers was confirmed by DFT calculations.

  5. Surface decoration of amine-rich carbon nitride with iron nanoparticles for arsenite (As{sup III}) uptake: The evolution of the Fe-phases under ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Georgiou, Y., E-mail: yiannisgeorgiou@hotmail.com [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Mouzourakis, E., E-mail: emouzou@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Bourlinos, A.B., E-mail: bourlino@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry and Experimental Physics, Palacky University in Olomouc, 77146 (Czech Republic); Zboril, R., E-mail: radek.zboril@upol.cz [Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry and Experimental Physics, Palacky University in Olomouc, 77146 (Czech Republic); Karakassides, M.A., E-mail: mkarakas@cc.uoi.gr [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Douvalis, A.P., E-mail: adouval@uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Bakas, Th., E-mail: tbakas@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Deligiannakis, Y., E-mail: ideligia@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece)

    2016-07-15

    Highlights: • Novel hybrid based on carbon nitride and iron nanoparticles (gC{sub 3}N{sub 4}-rFe). • gC{sub 3}N{sub 4}-rFe superior As{sup III} sorbent(76.5 mg g{sup −1}). • Surface complexation modeling of As{sup III} adsorption. • Dual mode EPR,monitoring of Fe{sup 2+} and Fe{sup 3+} evolution. - Abstract: A novel hybrid material (gC{sub 3}N{sub 4}-rFe) consisting of amine-rich graphitic carbon nitride (gC{sub 3}N{sub 4}), decorated with reduced iron nanoparticles (rFe) is presented. XRD and TEM show that gC{sub 3}N{sub 4}-rFe bears aggregation-free Fe-nanoparticles (10 nm) uniformly dispersed over the gC{sub 3}N{sub 4} surface. In contrast, non-supported iron nanoparticles are strongly aggregated, with non-uniform size distribution (20–100 nm). {sup 57}Fe-Mössbauer spectroscopy, dual-mode electron paramagnetic resonance (EPR) and magnetization measurements, allow a detailed mapping of the evolution of the Fe-phases after exposure to ambient O{sub 2}. The as-prepared gC{sub 3}N{sub 4}-rFe bears Fe{sup 2+} and Fe° phases, however only after long exposure to ambient O{sub 2}, a Fe-oxide layer is formed around the Fe° core. In this [Fe°/Fe-oxide] core-shell configuration, the gC{sub 3}N{sub 4}-rFe hybrid shows enhanced As{sup III} uptake capacity of 76.5 mg g{sup −1}, i.e., ca 90% higher than the unmodified carbonaceous support, and 300% higher than the non-supported Fe-nanoparticles. gC{sub 3}N{sub 4}-rFe is a superior As{sup III} sorbent i.e., compared to its single counterparts or vs. graphite/graphite oxide or activated carbon analogues (11–36 mg g{sup −1}). The present results demonstrate that the gC{sub 3}N{sub 4} matrix is not simply a net that holds the particles, but rather an active component that determines particle formation dynamics and ultimately their redox profile, size and surface dispersion homogeneity.

  6. Moessbauer investigation of iron uptake in wheat

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, K., E-mail: kkriszti@bolyai.elte.hu [Eoetvoes Lorand University, Laboratory of Nuclear Chemistry, Institute of Chemistry (Hungary); Kuzmann, E. [Hungarian Academy of Sciences, Laboratory of Nuclear Chemistry, Chemical Research Center (Hungary); Fodor, F.; Cseh, E. [Eoetvoes Lorand University, Department of Plant Physiology (Hungary); Homonnay, Z.; Vertes, A. [Eoetvoes Lorand University, Laboratory of Nuclear Chemistry, Institute of Chemistry (Hungary)

    2008-07-15

    Iron uptake and distribution in wheat roots were studied with {sup 57}Fe Moessbauer spectroscopy. Plants were grown both in iron sufficient and in iron deficient nutrient solutions. Moessbauer spectra of the frozen iron sufficient roots exhibited three iron(III) components with the typical average Moessbauer parameters of {delta} = 0.50 mm s{sup -1}, {Delta} = 0.43 mm s{sup -1}, {delta} = 0.50 mm s{sup -1}, {Delta} = 0.75 mm s{sup -1} and {delta} = 0.50 mm s{sup -1}, {Delta} = 1.20 mm s{sup -1} at 80 K. These doublets are very similar to those obtained earlier for cucumber [0], which allows us to suppose that iron is stored in a very similar way in different plants. No ferrous iron could be identified in any case, not even in the iron deficient roots, which confirms the mechanism proposed for iron uptake in the graminaceous plants.

  7. Iron oxide nanoparticles for plant nutrition? A preliminary Mössbauer study

    Energy Technology Data Exchange (ETDEWEB)

    Homonnay, Z., E-mail: homonnay@caesar.elte.hu [EötvösLoránd University, Institute of Chemistry (Hungary); Tolnai, Gy. [Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry (Hungary); Fodor, F.; Solti, Á. [EötvösLoránd University, Institute of Biology (Hungary); Kovács, K.; Kuzmann, E.; Ábrahám, A. [EötvösLoránd University, Institute of Chemistry (Hungary); Szabó, E. Gy.; Németh, P.; Szabó, L.; Klencsár, Z. [Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry (Hungary)

    2016-12-15

    One of the most important micronutrients for plants is iron. We have prepared iron(III) oxyhydroxide and magnetite nanoparticles with the aim to use them as possible nutrition source for plants. The iron(III)-oxide/oxyhydroxide nanoparticles prepared under our experimental conditions as colloidal suspensions proved to be 6-line ferrihydrite nanoparticles as verified by XRD, TEM/SAED and Mössbauer spectroscopy measurements. {sup 57}Fe Mössbauer spectra of magnetite nanoparticles prepared under different preparation conditions could be analyzed on the basis of a common model based on the superposition of four sextet components displaying Gaussian-shaped hyperfine magnetic field distributions.

  8. Thermodynamic model for solution behavior and solid-liquid equilibrium in Na-Al(III-Fe(III-Cr(III-Cl-H2O system at 25°C

    Directory of Open Access Journals (Sweden)

    André Laurent

    2018-03-01

    Full Text Available The knowledge of the thermodynamic behavior of multicomponent aqueous electrolyte systems is of main interest in geo-, and environmental-sciences. The main objective of this study is the development of a high accuracy thermodynamic model for solution behavior, and highly soluble M(IIICl3(s (M= Al, Fe, Cr minerals solubility in Na-Al(III-Cr(III-Fe(III-Cl-H2O system at 25°C. Comprehensive thermodynamic models that accurately predict aluminium, chromium and iron aqueous chemistry and M(III mineral solubilities as a function of pH, solution composition and concentration are critical for understanding many important geochemical and environmental processes involving these metals (e.g., mineral dissolution/alteration, rock formation, changes in rock permeability and fluid flow, soil formation, mass transport, toxic M(III remediation. Such a model would also have many industrial applications (e.g., aluminium, chromium and iron production, and their corrosion, solve scaling problems in geothermal energy and oil production. Comparisons of solubility and activity calculations with the experimental data in binary and ternary systems indicate that model predictions are within the uncertainty of the data. Limitations of the model due to data insufficiencies are discussed. The solubility modeling approach, implemented to the Pitzer specific interaction equations is employed. The resulting parameterization was developed for the geochemical Pitzer formalism based PHREEQC database.

  9. Role of dust alkalinity in acid mobilization of iron

    OpenAIRE

    A. Ito; Y. Feng

    2010-01-01

    Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl) may play a key role in the transformation of insoluble iron (Fe in the oxidized or ferric (III) form) to soluble forms (e.g., Fe(II), inorganic soluble species of Fe(III), and organic complexes of iron). On the other hand, mineral dust particles have a potential of neutralizing the acidic species due to the alkali...

  10. On the structure and spin states of Fe(III)-EDDHA complexes.

    Science.gov (United States)

    Gómez-Gallego, Mar; Fernández, Israel; Pellico, Daniel; Gutiérrez, Angel; Sierra, Miguel A; Lucena, Juan J

    2006-07-10

    DFT methods are suitable for predicting both the geometries and spin states of EDDHA-Fe(III) complexes. Thus, extensive DFT computational studies have shown that the racemic-Fe(III) EDDHA complex is more stable than the meso isomer, regardless of the spin state of the central iron atom. A comparison of the energy values obtained for the complexes under study has also shown that high-spin (S = 5/2) complexes are more stable than low-spin (S = 1/2) ones. These computational results matched the experimental results of the magnetic susceptibility values of both isomers. In both cases, their behavior has been fitted as being due to isolated high-spin Fe(III) in a distorted octahedral environment. The study of the correlation diagram also confirms the high-spin iron in complex 2b. The geometry optimization of these complexes performed with the standard 3-21G* basis set for hydrogen, carbon, oxygen, and nitrogen and the Hay-Wadt small-core effective core potential (ECP) including a double-xi valence basis set for iron, followed by single-point energy refinement with the 6-31G* basis set, is suitable for predicting both the geometries and the spin-states of EDDHA-Fe(III) complexes. The presence of a high-spin iron in Fe(III)-EDDHA complexes could be the key to understanding their lack of reactivity in electron-transfer processes, either chemically or electrochemically induced, and their resistance to photodegradation.

  11. Role of vitamin C transporters and biliverdin reductase in the dual pro-oxidant and anti-oxidant effect of biliary compounds on the placental-fetal unit in cholestasis during pregnancy

    International Nuclear Information System (INIS)

    Perez, Maria J.; Castano, Beatriz; Jimenez, Silvia; Serrano, Maria A.; Gonzalez-Buitrago, Jose M.; Marin, Jose J.G.

    2008-01-01

    Maternal cholestasis causes oxidative damage to the placental-fetal unit that may challenge the outcome of pregnancy. This has been associated with the accumulation of biliary compounds able to induce oxidative stress. However, other cholephilic compounds such as ursodeoxycholic acid (UDCA) and bilirubin have direct anti-oxidant properties. In the present study we investigated whether these compounds exert a protective effect on cholestasis-induced oxidative stress in placenta as compared to maternal and fetal livers, and whether this is due in part to the activation of anti-oxidant mechanisms involving vitamin C uptake and biliverdin/bilirubin recycling. In human placenta (JAr) and liver (HepG2) cells, deoxycholic acid (DCA) similar rates of free radical generation. In JAr (not HepG2), the mitochondrial membrane potential and cell viability were impaired by low DCA concentrations; this was partly prevented by bilirubin and UDCA. In HepG2, taurocholic acid (TCA) and UDCA up-regulated biliverdin-IXα reductase (BVRα) and the vitamin C transporter SVCT2 (not SVCT1), whereas bilirubin up-regulated both SVCT1 and SVCT2. In JAr, TCA and UDCA up-regulated BVRα, SVCT1 and SVCT2, whereas bilirubin up-regulated only SVCT2. A differential response to these compounds of nuclear receptor expression (SXR, CAR, FXR and SHP) was found in both cell types. When cholestasis was induced in pregnant rats, BVRα, SVCT1 and SVCT2 expression in maternal and fetal livers was stimulated, and this was further enhanced by UDCA treatment. In placenta, only BVRα was up-regulated. In conclusion, bilirubin accumulation and UDCA administration may directly and indirectly protect the placental-fetal unit from maternal cholestasis-induced oxidative stress

  12. Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xuejun; Wu, Zhijun [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875 (China); He, Mengchang, E-mail: hemc@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875 (China); Meng, Xiaoguang [Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Jin, Xin [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875 (China); Qiu, Nan; Zhang, Jing [Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-07-15

    Graphical abstract: - Highlights: • Antimony adsorption depended on the Sb species, pH, and the type of iron oxides. • Sb(V) adsorption favored at acidic pH, Sb(III) adsorption optimized in wider pH. • Antimony was adsorbed onto the iron oxides by the inner-sphere surface complex. • Bidentate mononuclear ({sup 2}E) was the dominant form of Sb incorporated into HFO. • XAFS and XPS indicated Sb(III) adsorbed was slowly oxidized to Sb(V). - Abstract: Antimony is detected in soil and water with elevated concentration due to a variety of industrial applications and mining activities. Though antimony is classified as a pollutant of priority interest by the United States Environmental Protection Agency (USEPA) and Europe Union (EU), very little is known about its environmental behavior and adsorption mechanism. In this study, the adsorption behaviors and surface structure of antimony (III/V) on iron oxides were investigated using batch adsorption techniques, surface complexation modeling (SCM), X-ray photon spectroscopy (XPS) and extended X-ray absorption fine structure spectroscopy (EXAFS). The adsorption isotherms and edges indicated that the affinity of Sb(V) and Sb(III) toward the iron oxides depended on the Sb species, solution pH, and the characteristics of iron oxides. Sb(V) adsorption was favored at acidic pH and decreased dramatically with increasing pH, while Sb(III) adsorption was constant over a broad pH range. When pH is higher than 7, Sb(III) adsorption by goethite and hydrous ferric oxide (HFO) was greater than Sb(V). EXAFS analysis indicated that the majority of Sb(III), either adsorbed onto HFO or co-precipitated by FeCl{sub 3}, was oxidized into Sb(V) probably due to the involvement of O{sub 2} in the long duration of sample preservation. Only one Sb–Fe subshell was filtered in the EXAFS spectra of antimony adsorption onto HFO, with the coordination number of 1.0–1.9 attributed to bidentate mononuclear edge-sharing ({sup 2}E) between Sb and

  13. Phase III randomized trial comparing intravenous to oral iron in patients with cancer-related iron deficiency anemia not on erythropoiesis stimulating agents.

    Science.gov (United States)

    Noronha, Vanita; Joshi, Amit; Patil, Vijay Maruti; Banavali, Shripad D; Gupta, Sudeep; Parikh, Purvish M; Marfatia, Shalaka; Punatar, Sachin; More, Sucheta; Goud, Supriya; Nakti, Dipti; Prabhash, Kumar

    2018-04-01

    We aimed to find the optimal route of iron supplementation in patients with malignancy and iron deficiency (true or functional) anemia not receiving erythropoiesis stimulating agents (ESA). Adult patients with malignancy requiring chemotherapy, hemoglobin (Hb) 10% were randomized to intravenous (IV) iron sucrose or oral ferrous sulfate. The primary endpoint was change in Hb from baseline to 6 weeks. Secondary endpoints included blood transfusion, quality of life (QoL), toxicity, response and overall survival. A total of 192 patients were enrolled over 5 years: 98 on IV arm and 94 on oral arm. Median age was 51 years; over 95% patients had solid tumors. The mean absolute increase in Hb at 6 weeks was 0.11 g/dL (standard deviation [SD]: 1.48) in IV arm and -0.16 g/dL (SD: 1.36) in oral arm, P = 0.23. Twenty-three percent patients on IV iron and 18% patients on oral iron had a rise in Hb of ≥1 g/dL at 6 weeks, P = 0.45. Thirteen patients (13.3%) on the IV iron arm and 14 patients (14.9%) on the oral arm required blood transfusion, P = 1.0. Gastrointestinal toxicity (any grade) developed in 41% patients on IV iron and 44% patients on oral iron, P = 1.0. 5 patients on IV iron and none on oral iron had hypersensitivity, P = 0.06. QoL was not significantly different between the two arms. IV iron was not superior to oral iron in patients with malignancy on chemotherapy and iron deficiency anemia. © 2017 John Wiley & Sons Australia, Ltd.

  14. The ground states of iron(III) porphines: role of entropy-enthalpy compensation, Fermi correlation, dispersion, and zero-point energies.

    Science.gov (United States)

    Kepp, Kasper P

    2011-10-01

    Porphyrins are much studied due to their biochemical relevance and many applications. The density functional TPSSh has previously accurately described the energy of close-lying electronic states of transition metal systems such as porphyrins. However, a recent study questioned this conclusion based on calculations of five iron(III) porphines. Here, we compute the geometries of 80 different electronic configurations and the free energies of the most stable configurations with the functionals TPSSh, TPSS, and B3LYP. Zero-point energies and entropy favor high-spin by ~4kJ/mol and 0-10kJ/mol, respectively. When these effects are included, and all electronic configurations are evaluated, TPSSh correctly predicts the spin of all the four difficult phenylporphine cases and is within the lower bound of uncertainty of any known theoretical method for the fifth, iron(III) chloroporphine. Dispersion computed with DFT-D3 favors low-spin by 3-53kJ/mol (TPSSh) or 4-15kJ/mol (B3LYP) due to the attractive r(-6) term and the shorter distances in low-spin. The very large and diverse corrections from TPSS and TPSSh seem less consistent with the similarity of the systems than when calculated from B3LYP. If the functional-specific corrections are used, B3LYP and TPSSh are of equal accuracy, and TPSS is much worse, whereas if the physically reasonable B3LYP-computed dispersion effect is used for all functionals, TPSSh is accurate for all systems. B3LYP is significantly more accurate when dispersion is added, confirming previous results. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Significance of Iron(II,III) Hydroxycarbonate Green Rust in Arsenic Remediation Using Zerovalent Iron in Laboratory Column Tests

    Science.gov (United States)

    We examined the corrosion products of zerovalent iron used in three column tests for removing arsenic from water under dynamic flow conditions. Each column test lasted three- to four-months using columns consisting of a 10.3-cm depth of 50 : 50 (w : w, Peerless iron : sand) in t...

  16. Iron transport and storage in the coccolithophore: Emiliania huxleyi.

    Science.gov (United States)

    Hartnett, Andrej; Böttger, Lars H; Matzanke, Berthold F; Carrano, Carl J

    2012-11-01

    Iron is an essential element for all living organisms due to its ubiquitous role in redox and other enzymes, especially in the context of respiration and photosynthesis. The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood with two basic strategies for iron uptake being distinguished: strategy I plants use a mechanism involving soil acidification and induction of Fe(III)-chelate reductase (ferrireductase) and Fe(II) transporter proteins while strategy II plants have evolved sophisticated systems based on high-affinity, iron specific, binding compounds called phytosiderophores. In contrast, there is little knowledge about the corresponding systems in marine plant-like lineages. Herein we report a study of the iron uptake and storage mechanisms in the coccolithophore Emiliania huxleyi. Short term radio-iron uptake studies indicate that iron is taken up by Emiliania in a time and concentration dependent manner consistent with an active transport process. Based on inhibitor studies it appears that iron is taken up directly as Fe(iii). However if a reductive step is involved the Fe(II) must not be accessible to the external environment. Upon long term exposure to (57)Fe we have been able, using a combination of Mössbauer and XAS spectroscopies, to identify a single metabolite which displays spectral features similar to the phosphorus-rich mineral core of bacterial and plant ferritins.

  17. Studies on effect of Microbial Iron Chelators on Candida Albican

    International Nuclear Information System (INIS)

    Rehmani, Fouzia S.; Milicent, S.; Zaheer-Uddin

    2005-01-01

    Iron is an essential for the life of all microbe cells. It generally exists in the oxidized form Fe(III). Even under anaerobic reducing condition the metal appear to be taken up as Fe(III). Thus free-living microorganisms require specific and effective ferric ion transport system to cope with low availability of the metal. In iron deficient environment they produce a low molecular weight specific chelators called siderphores or microbial iron chelators. Siderphores compete for limited supplied of iron. These compounds came out of the cell but can not re-enter without iron due to high affinity of these siderphores often have more than one catechol/hydroxamate functions and are multidentate (usually hexadentate ligands). The aim of the present research is to check the effect of iron chelators, namely gallic acid and salisyl hydroxamate on the growth of Candida albican in vitro. C. albican is the opportunistic paltogen present as the normal flora inside human body. In vivo the growth of C. albican is distributed by the use of antibiotics and immuno suppressers. In cases of iron over-dosage in human being, the patients are treated with certain a-iron chelators. Hence an attempt is made to notice the effect that might be inhibition or enhancement of the organism in vitro. (author)

  18. Absorption of iron in the aged; investigation of mucosal-uptake, mucosal-transfer and retention of a physiological dose of inorganic iron

    International Nuclear Information System (INIS)

    Marx, J.J.M.

    1976-01-01

    Iron (II) and iron (III) uptake by the mucosal cells, the retention in the body, and the mucosal-transport fraction were studied in 40 healthy people over 65 years old, in 30 young adults and in 20 patients with iron-deficiency. The study was performed with 59 Fe as a tracer and 51 Cr as an inert indicator. The radioactivity was measured with a whole body scanner 24 hours and 24 days after ingestion

  19. Siderophore-mediated iron dissolution from nontronites is controlled by mineral cristallochemistry

    Directory of Open Access Journals (Sweden)

    Damien eParrello

    2016-03-01

    Full Text Available Bacteria living in oxic environments experience iron deficiency due to limited solubility and slow dissolution kinetics of iron-bearing minerals. To cope with iron deprivation, aerobic bacteria have evolved various strategies, including release of siderophores or other organic acids that scavenge external Fe(III and deliver it to the cells. This research investigated the role of siderophores produced by Pseudomonas aeruginosa in the acquisition of Fe(III from two iron-bearing colloidal nontronites (NAu-1 and NAu-2, comparing differences in bioavailability related with site occupancy and distribution of Fe(III in the two lattices. To avoid both the direct contact of the mineral colloids with the bacterial cells and the uncontrolled particle aggregation, nontronite suspensions were homogenously dispersed in a porous silica gel before the dissolution experiments. A multiparametric approach coupling UV-vis spectroscopy and spectral decomposition algorithm was implemented to monitor simultaneously the solubilisation of Fe and the production of pyoverdine in microplate-based batch experiments. Both nontronites released Fe in a particle concentration-dependent manner when incubated with the wild-type P. aeruginosa strain, however iron released from NAu-2 was substantially greater than from NAu-1. The profile of organic acids produced in both cases was similar and may not account for the difference in the iron dissolution efficiency. In contrast, a pyoverdine-deficient mutant was unable to mobilise Fe(III from either nontronite, whereas iron dissolution occurred in abiotic experiments conducted with purified pyoverdine. Overall, our data provide evidence that P. aeruginosa indirectly mobilise Fe from nontronites primarily through the production of pyoverdine. The structural Fe present on the edges of Nau-2 rather than Nau-1 particles appears to be more bio-accessible, indicating that the distribution of Fe, in the tetrahedron and/or in the octahedron

  20. Iron(II) and Iron(III) Spin Crossover: Toward an Optimal Density Functional

    DEFF Research Database (Denmark)

    Siig, Oliver S; Kepp, Kasper P.

    2018-01-01

    Spin crossover (SCO) plays a major role in biochemistry, catalysis, materials, and emerging technologies such as molecular electronics and sensors, and thus accurate prediction and design of SCO systems is of high priority. However, the main tool for this purpose, density functional theory (DFT......), is very sensitive to applied methodology. The most abundant SCO systems are Fe(II) and Fe(III) systems. Even with average good agreement, a functional may be significantly more accurate for Fe(II) or Fe(III) systems, preventing balanced study of SCO candidates of both types. The present work investigates....../precise, inaccurate/imprecise) are observed. More generally, our work illustrates the importance not only of overall accuracy but also of balanced accuracy for systems likely to occur in context....

  1. Natural clinoptilolite exchanged with iron: characterization and catalytic activity in nitrogen monoxide reduction

    Directory of Open Access Journals (Sweden)

    Daria Tito-Ferro

    2016-12-01

    Full Text Available The aim of this work was to characterize the natural clinoptilolite from Tasajeras deposit, Cuba, modified by hydrothermal ion-exchange with solutions of iron (II sulfate and iron (III nitrate in acid medium. Besides this, its catalytic activity to reduce nitrogen monoxide with carbon monoxide/propene in the presence of oxygen was evaluated. The characterization was performed by Mössbauer and UV-Vis diffuse reflectance spectroscopies and adsorption measurements. The obtained results lead to conclude that in exchanged samples, incorporated divalent and trivalent irons are found in octahedral coordination. Both irons should be mainly in cationic extra-framework positions inside clinoptilolite channels as charge compensating cations, and also as iron oxy-hydroxides resulting from limited hydrolysis of these cations. The iron (III exchanged samples has a larger amount of iron oxy-hydroxides agglomerates. The iron (II exchanged samples have additionally iron (II sulfate adsorbed. The catalytic activity in the nitrogen monoxide reduction is higher in the exchanged zeolites than starting. Among all samples, those exchanged of iron (II has the higher catalytic activity. This lead to outline that, main catalytically active centers are associated with divalent iron.

  2. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange

    Science.gov (United States)

    Fitzsimmons, Jessica N.; John, Seth G.; Marsay, Christopher M.; Hoffman, Colleen L.; Nicholas, Sarah L.; Toner, Brandy M.; German, Christopher R.; Sherrell, Robert M.

    2017-02-01

    Hydrothermally sourced dissolved metals have been recorded in all ocean basins. In the oceans' largest known hydrothermal plume, extending westwards across the Pacific from the Southern East Pacific Rise, dissolved iron and manganese were shown by the GEOTRACES program to be transported halfway across the Pacific. Here, we report that particulate iron and manganese in the same plume also exceed background concentrations, even 4,000 km from the vent source. Both dissolved and particulate iron deepen by more than 350 m relative to 3He--a non-reactive tracer of hydrothermal input--crossing isopycnals. Manganese shows no similar descent. Individual plume particle analyses indicate that particulate iron occurs within low-density organic matrices, consistent with its slow sinking rate of 5-10 m yr-1. Chemical speciation and isotopic composition analyses reveal that particulate iron consists of Fe(III) oxyhydroxides, whereas dissolved iron consists of nanoparticulate Fe(III) oxyhydroxides and an organically complexed iron phase. The descent of plume-dissolved iron is best explained by reversible exchange onto slowly sinking particles, probably mediated by organic compounds binding iron. We suggest that in ocean regimes with high particulate iron loadings, dissolved iron fluxes may depend on the balance between stabilization in the dissolved phase and the reversibility of exchange onto sinking particles.

  3. Estudo polarográfico sobre a determinação de Fe(III utilizando-se a técnica da polarografia de pulso diferencial Polarographic study about the determination of Fe(III using the technique of differencial pulse polarography

    Directory of Open Access Journals (Sweden)

    Luiz Manoel Aleixo

    2001-12-01

    Full Text Available A differential pulse polarographic study with the objective to determine iron (III in presense of copper (II in a supporting electrolyte based on citrate - EDTA was made. The best experimental conditions found were a supporting electrolyte of citrate 0.25 mol L-1, EDTA 0.050 mol L-1 and KNO3 0.50 mol L-1, pH 5.00. In this media iron (III showed a polarographic peak in -0.08 V and the copper (II in -0.34 V, both vs. Ag/AgCl (saturated KCl. Thus, a analytical method was developed and applied to determine iron (III in brass alloy, a matrix were copper is in large excess over iron. The results obtained showed no interference of copper in the iron determination. The value of 0.21% of iron in the sample alloy composition was obtained and the method was validated by atomic absortion and recovery test, and the results exhibited a good agreement with the proposed method.

  4. Iron-EHPG as an hepatobiliary MR contrast agent: initial imaging and biodistribution studies

    International Nuclear Information System (INIS)

    Lauffer, R.B.; Greif, W.L.; Stark, D.D.; Vincent, A.C.; Saini, S.; Wedeen, V.J.; Brady, T.J.

    1988-01-01

    A paramagnetic relaxation agent targeted to functioning hepatocytes of the liver and excreted into the bile would be useful in the enhancement of normal liver and biliary anatomy in MR imaging. We sought to demonstrate the feasibility of this approach using the prototype hepatobiliary MR contrast agent, iron(III) ethylenebis-(2-hydroxyphenylglycine) (Fe(EHPG) - ). The biodistribution, relaxation enhancement, and imaging characteristics of Fe(EHPG) - were compared to those of the non-specific iron chelate iron(III) diethylenetriaminepentaacetic acid (Fe(DTPA) 2- ), which has a comparable effect on water proton relaxation times. (author)

  5. Spin dynamics in mesoscopic size magnetic systems: A 1HNMR study in rings of iron (III) ions

    International Nuclear Information System (INIS)

    Lascialfari, A.; Gatteschi, D.; Borsa, F.; Cornia, A.

    1997-01-01

    Two magnetic molecular clusters containing almost coplanar rings of iron (III) ions with spinS=5/2 have been investigated by 1 H NMR and relaxation measurements. The first system, which will be referred to as Fe6, is a molecule of general formula [NaFe 6 (OCH 3 ) 12 (C 17 O 4 H 15 ) 6 ] + ClO 4 - or [NaFe 6 (OCH 3 ) 12 (C 15 H 11 O 2 ) 6 ] + ClO 4 - or [LiFe 6 (OCH 3 ) 12 (C 15 H 11 O 2 ) 6 ] + ClO 4 - while the second type of ring, denoted Fe10, corresponds to the molecule [Fe 10 (OCH 3 ) 20 (C 2 H 2 O 2 Cl) 10 ]. The 1 H NMR linewidth is broadened by the nuclear dipolar interaction and by the dipolar coupling of the protons with the iron (III) paramagnetic moment. It is found that the nuclear spin-lattice relaxation rate, T 1 -1 , of the proton is a sensitive probe of the Fe spin dynamics. In both clusters, T 1 -1 decreases with decreasing temperatures from room temperature, goes through a peak just below about 30 K in Fe6 and 10 K in Fe10, and it drops exponentially to very small values at helium temperature. The temperature dependence of the relaxation rate is discussed in terms of the fluctuations of the local spins within the allowed total spin configurations in the framework of the weak collision theory to describe the nuclear relaxation. We use the calculated energy levels for the Fe6 ring based on a Heisenberg Hamiltonian and the value of J obtained from the fit of the magnetic susceptibility to describe semiquantitatively the behavior of T 1 -1 vs T. The exponential drop of T 1 -1 at low temperature is consistent with a nonmagnetic singlet ground state separated by an energy gap from the first excited triplet state. (Abstract Truncated)

  6. Remediation of DDT-contaminated water and soil by using pretreated iron byproducts from the automotive industry.

    Science.gov (United States)

    Satapanajaru, Tunlawit; Anurakpongsatorn, Patana; Pengthamkeerati, Patthra

    2006-01-01

    The objective of this study was to quantify the effectiveness of different pretreated iron byproducts from the automotive industry to degrade DDT [(1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] in aqueous solutions and soil slurry. Iron byproducts from automotive manufacturing were pretreated by three different methods (heating, solvent and 0.5N HCl acid washing) prior to experimentation. All pretreated irons were used at 5% (wt v-1) to treat 0.014 mM (5 mgL-1) of DDT in aqueous solution. Among the pretreated irons, acid pretreated iron results in the fastest destruction rates, with a pseudo first-order degradation rate of 0.364 d-1. By lowering the pH of the DDT aqueous solution from 9 to 3, destruction kinetic rates increase more than 20%. In addition, when DDT-contaminated soil slurry (3.54 mg kg-1) was incubated with 5% (wt v-1) acid-pretreated iron, more than 90% destruction of DDT was observed within 8 weeks. Moreover, DDT destruction kinetics were enhanced when Fe(II), Fe(III) or Al(III) sulfate salts were added to the soil slurry, with the following order of destruction kinetics: Al(III) sulfate > Fe(III) sulfate > Fe(II) sulfate. These results provide proof-of concept that inexpensive iron byproducts of the automotive industry can be used to remediate DDT-contaminated water and soil.

  7. Iron minerals formed by dissimilatory iron-and sulfur reducing bacteria studied by Moessbauer spectrometry

    International Nuclear Information System (INIS)

    Chistyakova, N. I.; Rusakov, V. S.; Nazarova, K. A.; Koksharov, Yu. A.; Zavarzina, D. G.; Greneche, J.-M.

    2008-01-01

    Zero-field and in-field Moessbauer investigations and electron paramagnetic resonance (EPR) measurements to follow the kinetics of the iron mineral formation by thermophilic dissimilatory anaerobic Fe(III)-reducing bacteria (strain Z-0001) and anaerobic alkaliphilic bacteria (strain Z-0531) were carried out.

  8. Chemical Castration Using Iron (III Chloride Hexahydrate (KEBIRI KIMIAWI MENGGUNAKAN FERIKLORIDA HEKSAHIDRAT

    Directory of Open Access Journals (Sweden)

    Mokhamad Fakhrul Ulum

    2017-09-01

    Full Text Available Chemical castration is a method that can be applied easily without any surgical intervention in animals. This study utilized iron (III chloride hexahydrate (FeCl3.6H2O as a new material for chemical castration in mice. Twenty seven adult male mice were divided into five groups: FeCl3 20% (n = 6, FeCl3 10% (n = 6, FeCl3 5.0% (n = 6, FeCl3 2.5% (n = 6, and control NaCl 0.9% (n = 3. A 0.2 mL of NaCl 0.9% or FeCl3 in various concentrations was injected intra-testicularly on each testis of the mice. Post-castration survival rate with LD50 values was obtained at the concentrations between 2.5-5.0% of FeCl3 groups, and 100% mice survived in the control group. The size of testis and concentration of spermatozoa decreased, in contrast with the increased concentration of FeCl3 solution used seven days post-injection compared to the control group. ABSTRAK Kebiri/kastrasi kimiawi secara injeksi intra-testis merupakan metode pengebiriam yang dapat dilakukan dengan mudah tanpa prosedur bedah pada hewan. Penelitian ini memanfaatkan larutan besi (ferri/III klorida (FeCl3 sebagai bahan baru untuk tindakan kebiri kimiawi pada mencit. Mencit jantan dewasa umur lima bulan sebanyak 27 ekor dibagi dalam lima kelompok yaitu FeCl3 20% (n=6, FeCl3 10% (n=6, FeCl3 5,0% (n=6, FeCl3 2,5% (n=6 dan kontrol NaCl 0,9% (n=3. Larutan FeCl3 sebanyak 0,2 mL diinjeksikan secara intra-testikel pada setiap organ testis. Daya hidup pascakebiri injeksi nilai LD 50 diperoleh pada kelompok FeCl3 konsentrasi di antara 2,5-5,0 % dan kelompok kontrol 100 % hidup. Organ testis dalam skrotum mengalami pengecilan ukuran dan konsentrasi spermatozoa mengalami penurunan seiring dengan peningkatan konsentrasi larutan FeCl3 yang digunakan setelah tujuh hari pasca injeksi dibandingkan dengan kontrol.

  9. Spectrophotometric determination of ethionamide in pharmaceuticals using Folin–Ciocalteu reagent and iron(III-ferricyanide as chromogenic agents

    Directory of Open Access Journals (Sweden)

    Nagib A.S. Qarah

    2017-09-01

    Full Text Available Two simple and sensitive spectrophotometric methods are described for the determination of ethionamide (ETM in pure drug and tablets. The first method is based on the reduction of Folin–Ciocalteu (F–C reagent by ETM in sodium carbonate medium to form a blue coloured complex, which was measured at 760 nm (Molybdenum–tungsten blue method. In the second method (Prussian blue method, iron(III was reduced to iron(II by ETM in HCl medium, in which iron(II was complexed with ferricyanide, and the resulting Prussian blue was also measured at 760 nm. The absorbance measured in each case was related to the ETM concentration. The experimental conditions were carefully studied and optimised. Beer's law was obeyed in concentration ranges of 1–40 μg/ml and 0.2–4.0 μg/ml with the Molybdenum-tungsten blue method and the Prussian blue method, respectively, with corresponding molar absorptivity values of 5.72 × 103 and 3.18 × 104 l/(mol·cm. The limits of detection (LOD and quantification (LOQ were 0.09 and 0.27 μg/ml for the Molybdenum-tungsten blue method and 0.01 and 0.04 μg/ml for the Prussian blue method. Within-day and between-day relative standard deviations (%RSD at three different concentration levels were <3%, and the respective relative errors (%RE were ≤2%, implying good accuracy and precision of the methods. The proposed methods were successfully applied to the determination of ETM in bulk powder and tablets, and the results demonstrated that the methods were as accurate and precise as the official method.

  10. How do operating conditions affect As(III) removal by iron electrocoagulation?

    Science.gov (United States)

    Delaire, Caroline; Amrose, Susan; Zhang, Minghui; Hake, James; Gadgil, Ashok

    2017-04-01

    Iron electrocoagulation (Fe-EC) has been shown to effectively remove arsenic from contaminated groundwater at low cost and has the potential to improve access to safe drinking water for millions of people. Understanding how operating conditions, such as the Fe dosage rate and the O 2 recharge rate, affect arsenic removal at different pH values is crucial to maximize the performance of Fe-EC under economic constraints. In this work, we improved upon an existing computational model to investigate the combined effects of pH, Fe dosage rate, and O 2 recharge rate on arsenic removal in Fe-EC. We showed that the impact of the Fe dosage rate strongly depends on pH and on the O 2 recharge rate, which has important practical implications. We identified the process limiting arsenic removal (As(III) oxidation versus As(V) adsorption) at different pH values, which allowed us to interpret the effect of operating conditions on Fe-EC performance. Finally, we assessed the robustness of the trends predicted by the model, which assumes a constant pH, against lab experiments reproducing more realistic conditions where pH is allowed to drift during treatment as a result of equilibration with atmospheric CO 2 . Our results provide a nuanced understanding of how operating conditions impact arsenic removal by Fe-EC and can inform decisions regarding the operation of this technology in a range of groundwaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Selective Iron(III ion uptake using CuO-TiO2 nanostructure by inductively coupled plasma-optical emission spectrometry

    Directory of Open Access Journals (Sweden)

    Rahman Mohammed M

    2012-12-01

    Full Text Available Abstract Background CuO-TiO2 nanosheets (NSs, a kind of nanomaterials is one of the most attracting class of transition doped semiconductor materials due to its interesting and important optical, electrical, and structural properties and has many technical applications, such as in metal ions detection, photocatalysis, Chemi-sensors, bio-sensors, solar cells and so on. In this paper the synthesis of CuO-TiO2 nanosheets by the wet-chemically technique is reported. Methods CuO-TiO2 NSs were prepared by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS, powder X-ray diffraction (XRD, and field-emission scanning electron microscopy (FE-SEM etc. Results The structural and optical evaluation of synthesized NSs were measured by XRD pattern, Fourier transform infrared (FT-IR and UV–vis spectroscopy, respectively which confirmed that the obtained NSs are well-crystalline CuO-TiO2 and possessing good optical properties. The morphological analysis of CuO-TiO2 NSs was executed by FE-SEM, which confirmed that the doped products were sheet-shaped and growth in large quantity. Here, the analytical efficiency of the NSs was applied for a selective adsorption of iron(III ion prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES. The selectivity of NSs towards various metal ions, including Au(III, Cd(II, Co(II, Cr(III, Fe(III, Pd(II, and Zn(II was analyzed. Conclusions Based on the selectivity study, it was confirmed that the selectivity of doped NSs phase was the most towards Fe(III ion. The static adsorption capacity for Fe(III was calculated to be 110.06 mgg−1. Results from adsorption isotherm also verified that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of CuO-TiO2 NSs adsorption sites.

  12. The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria.

    Science.gov (United States)

    Zhang, Zhennan; Yin, Naiyi; Du, Huili; Cai, Xiaolin; Cui, Yanshan

    2016-05-01

    Arsenic (As) is a redox-active metalloid whose toxicity and mobility in soil depend on its oxidation state. Arsenite [As(III)] can be oxidized by microbes and adsorbed by minerals in the soil. However, the combined effects of these abiotic and biotic processes are not well understood. In this study, the fate of arsenic in the presence of an isolated As(III)-oxidizing bacterium (Pseudomonas sp. HN-1, 10(9) colony-forming units (CFUs)·ml(-1)) and three iron oxides (goethite, hematite, and magnetite at 1.6 g L(-1)) was determined using batch experiments. The total As adsorption by iron oxides was lower with bacteria present and was higher with iron oxides alone. The total As adsorption decreased by 78.6%, 36.0% and 79.7% for goethite, hematite and magnetite, respectively, due to the presence of bacteria. As(III) adsorbed on iron oxides could also be oxidized by Pseudomonas sp. HN-1, but the oxidation rate (1.3 μmol h(-1)) was much slower than the rate in the aqueous phase (96.2 μmol h(-1)). Therefore, the results of other studies with minerals only might overestimate the adsorptive capacity of solids in natural systems; the presence of minerals might hinder As(III) oxidation by microbes. Under aerobic conditions, in the presence of iron oxides and As(III)-oxidizing bacteria, arsenic is adsorbed onto iron oxides within the adsorption capacity, and As(V) is the primary form in the solid and aqueous phases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Iron-based radiochromic systems for UV dosimetry applications

    Science.gov (United States)

    Lee, Hannah J.; Alqathami, Mamdooh; Blencowe, Anton; Ibbott, Geoffrey

    2018-01-01

    Phototherapy treatment using ultraviolet (UV) A and B light sources has long existed as a treatment option for various skin conditions. Quality control for phototherapy treatment recommended by the British Association of Dermatologists and British Photodermatology Group generally focused on instrumentation-based dosimetry measurements. The purpose of this study was to present an alternative, easily prepared dosimeter system for the measurement of UV dose and as a simple quality assurance technique for phototherapy treatments. Five different UVA-sensitive radiochromic dosimeter formulations were investigated and responded with a measurable and visible optical change both in solution and in gel form. Iron(III) reduction reaction formulations were found to be more sensitive to UVA compared to iron(II) oxidation formulations. One iron(III) reduction formulation was found to be especially promising due to its sensitivity to UVA dose, ease of production, and linear response up to a saturation point.

  14. The Siderocalin/Enterobactin Interaction: A Link between Mammalian Immunity and Bacterial Iron Transport

    Energy Technology Data Exchange (ETDEWEB)

    Meux, Susan C.

    2008-05-12

    The siderophore enterobactin (Ent) is produced by enteric bacteria to mediate iron uptake. Ent scavenges iron and is taken up by the bacteria as the highly stable ferric complex [Fe{sup III}(Ent)]{sup 3-}. This complex is also a specific target of the mammalian innate immune system protein, Siderocalin (Scn), which acts as an anti-bacterial agent by specifically sequestering siderophores and their ferric complexes during infection. Recent literature suggesting that Scn may also be involved in cellular iron transport has increased the importance of understanding the mechanism of siderophore interception and clearance by Scn; Scn is observed to release iron in acidic endosomes and [Fe{sup III}(Ent)]{sup 3-} is known to undergo a change from catecholate to salicylate coordination in acidic conditions, which is predicted to be sterically incompatible with the Scn binding pocket (also referred to as the calyx). To investigate the interactions between the ferric Ent complex and Scn at different pH values, two recombinant forms of Scn with mutations in three residues lining the calyx were prepared: Scn-W79A/R81A and Scn-Y106F. Binding studies and crystal structures of the Scn-W79A/R81A:[Fe{sup III}(Ent)]{sup 3-} and Scn-Y106F:[Fe{sup III}(Ent)]{sup 3-} complexes confirm that such mutations do not affect the overall conformation of the protein but do weaken significantly its affinity for [Fe{sup III}(Ent)]{sup 3-}. Fluorescence, UV-Vis and EXAFS spectroscopies were used to determine Scn/siderophore dissociation constants and to characterize the coordination mode of iron over a wide pH range, in the presence of both mutant proteins and synthetic salicylate analogs of Ent. While Scn binding hinders salicylate coordination transformation, strong acidification results in the release of iron and degraded siderophore. Iron release may therefore result from a combination of Ent degradation and coordination change.

  15. Reductive dehalogenation by layered iron(II)-iron(III) hydroxides and related iron(II) containing solids

    DEFF Research Database (Denmark)

    Yin, Weizhao

    In the present PhD project, novel synthesis and modifications of layered Fe(II)-Fe(III) hydroxides (green rusts, GRs) were investigated with focus on improved dehalogenation of carbon tetrachloride by using modified green rusts and/or altered reaction conditions. The Ph.D. project has comprised: 1...... sulphate green rust formation by aerial oxidation of FeII or co-precipitation by adding Fe(III) salt to Fe(II). In comparison with traditional green rust synthesis, pure GRs were synthesized in minutes. 2. Enhanced dehalogenation of CT by GR in presence of selected amino acids. In presence of glycine......, chloroform (CF) formation is effectively suppressed: less than 10% of CT is transformed to CF, and more than 90% of dehalogenation products are found to be formic acid and carbon monoxide in presence of 60 mM glycine; while a 80% of CF recovery was obtained without amino acids addition. 3. A “switch...

  16. Glycine buffered synthesis of layered iron(II)-iron(III) hydroxides (green rusts)

    DEFF Research Database (Denmark)

    Yin, Weizhao; Huang, Lizhi; Pedersen, Emil Bjerglund

    2017-01-01

    Layered Fe(II)-Fe(III) hydroxides (green rusts, GRs) are efficient reducing agents against oxidizing contaminants such as chromate, nitrate, selenite, and nitroaromatic compounds and chlorinated solvents. In this study, we adopted a buffered precipitation approach where glycine (GLY) was used...

  17. Kinetic studies on the oxidation of oxyhemoglobin by biologically active iron thiosemicarbazone complexes: relevance to iron-chelator-induced methemoglobinemia.

    Science.gov (United States)

    Basha, Maram T; Rodríguez, Carlos; Richardson, Des R; Martínez, Manuel; Bernhardt, Paul V

    2014-03-01

    The oxidation of oxyhemoglobin to methemoglobin has been found to be facilitated by low molecular weight iron(III) thiosemicarbazone complexes. This deleterious reaction, which produces hemoglobin protein units unable to bind dioxygen and occurs during the administration of iron chelators such as the well-known 3-aminopyridine-2-pyridinecarbaldehyde thiosemicarbazone (3-AP; Triapine), has been observed in the reaction with Fe(III) complexes of some members of the 3-AP structurally-related thiosemicarbazone ligands derived from di-2-pyridyl ketone (HDpxxT series). We have studied the kinetics of this oxidation reaction in vitro using human hemoglobin and found that the reaction proceeds with two distinct time-resolved steps. These have been associated with sequential oxidation of the two different oxyheme cofactors in the α and β protein chains. Unexpected steric and hydrogen-bonding effects on the Fe(III) complexes appear to be the responsible for the observed differences in the reaction rate across the series of HDpxxT ligand complexes used in this study.

  18. Iron Deficiency Anaemia in Pregnancy and Postpartum: Pathophysiology and Effect of Oral versus Intravenous Iron Therapy

    Directory of Open Access Journals (Sweden)

    Alhossain A. Khalafallah

    2012-01-01

    Full Text Available Nutritional iron-deficiency anaemia (IDA is the most common disorder in the world, affecting more than two billion people. The World Health Organization’s global database on anaemia has estimated a prevalence of 14% based on a regression-based analysis. Recent data show that the prevalence of IDA in pregnant women in industrialized countries is 17.4% while the incidence of IDA in developing countries increases significantly up to 56%. Although oral iron supplementation is widely used for the treatment of IDA, not all patients respond adequately to oral iron therapy. This is due to several factors including the side effects of oral iron which lead to poor compliance and lack of efficacy. The side effects, predominantly gastrointestinal discomfort, occur in a large cohort of patients taking oral iron preparations. Previously, the use of intravenous iron had been associated with undesirable and sometimes serious side effects and therefore was underutilised. However, in recent years, new type II and III iron complexes have been developed, which offer better compliance and toleration as well as high efficacy with a good safety profile. In summary, intravenous iron can be used safely for a rapid repletion of iron stores and correction of anaemia during and after pregnancy.

  19. Redox behaviors of iron by absorption spectroscopy and redox potential measurement

    International Nuclear Information System (INIS)

    Oh, Jae Yong

    2010-02-01

    This work is performed to study the redox (reduction/oxidation) behaviors of iron in aqueous system by a combination of absorption spectroscopy and redox potential measurements. There are many doubts on redox potential measurements generally showing low accuracies and high uncertainties. In the present study, redox potentials are measured by utilizing various redox electrodes such as Pt, Au, Ag, and glassy carbon (GC) electrodes. Measured redox potentials are compared with calculated redox potentials based on the chemical oxidation speciation of iron and thermodynamic data by absorption spectroscopy, which provides one of the sensitive and selective spectroscopic methods for the chemical speciation of Fe(II/III). From the comparison analyses, redox potential values measured by the Ag redox electrode are fairly consistent with those calculated by the chemical aqueous speciation of iron in the whole system. In summary, the uncertainties of measured redox potentials are closely related with the total Fe concentration and affected by the formation of mixed potentials due to Fe(III) precipitates in the pH range of 6 ∼ 9 beyond the solubility of Fe(III), whilst being independent of the initially prepared concentration ratios between Fe(II) and Fe(III)

  20. From iron coordination compounds to metal oxide nanoparticles.

    Science.gov (United States)

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel; Cazacu, Maria

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe 2 III Fe II O(CH 3 COO) 6 (H 2 O) 3 ]·2H 2 O (FeAc1), μ 3 -oxo trinuclear iron(III) acetate, [Fe 3 O(CH 3 COO) 6 (H 2 O) 3 ]NO 3 ∙4H 2 O (FeAc2), iron furoate, [Fe 3 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeF), iron chromium furoate, FeCr 2 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  1. Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xin-Jun [State Key Lab. of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, BJ (China); Graduate Univ., Chinese Academy of Sciences, BJ (China); Yang Jing; Chen Xue-Ping; Sun Guo-Xin [State Key Lab. of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, BJ (China); Zhu Yong-Guan [State Key Lab. of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, BJ (China); Key Lab. of Urban Environment and Health, Inst. of Urban Environment, Chinese Academy of Sciences, Xiamen (China)

    2009-12-15

    Purpose: Dissimilatory iron-reducing bacteria have been described by both culture-dependent and -independent methods in various environments, including freshwater, marine sediments, natural wetlands, and contaminated aquifers. However, little is known about iron-reducing microbial communities in paddy soils. The goal of this study was to characterize iron-reducing microbial communities in paddy soil. Moreover, the effect of dissolved and solid-phase iron (III) species on the iron-reducing microbial communities was also investigated by enrichment cultures. Methods: Ferric citrate and ferrihydrite were used respectively to set up enrichment cultures of dissimilatory ironreducing microorganisms using 1% inoculum of soil samples, and the iron reduction was measured. Moreover, bacterial DNA was extracted and 16S rRNA genes were PCR-amplified, and subsequently analyzed by the clone library and terminal restriction fragment length polymorphism (T-RFLP). Results: Phylogenetic analysis of 16S rRNA gene sequences extracted from the enrichment cultures revealed that Bradyrhizobium, Bacteroides, Clostridium and Ralstonia species were the dominant bacteria in the ferric citrate enrichment. However, members of the genera Clostridium, Bacteroides, and Geobacter were the dominant micro-organisms in the ferrihydrite enrichment. Analysis of enrichment cultures by T-RFLP strongly supported the cloning and sequencing results. Conclusions: The present study demonstrated that dissimilatory iron-reducing consortia in As-contaminated paddy soil are phylogenetically diverse. Moreover, iron (III) sources as a key factor have a strong effect on the iron (III)-reducing microbial community structure and relative abundance in the enrichments. In addition, Geobacter species are selectively enriched by ferrihydrite enrichment cultures. (orig.)

  2. Thermodynamic analysis of growth of iron oxide films by MOCVD ...

    Indian Academy of Sciences (India)

    Abstract. Thermodynamic calculations, using the criterion of minimization of total Gibbs free energy of the system, have been carried out for the metalorganic chemical vapour deposition (MOCVD) process involving the -ketoesterate complex of iron [tris(-butyl-3-oxo-butanoato)iron(III) or Fe(tbob)3] and molecular oxygen.

  3. Gas-phase complexes formed between amidoxime ligands and vanadium or iron investigated using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mustapha, Adetayo M; Pasilis, Sofie P

    2016-08-15

    Amidoxime-functionalized sorbents can be used to extract uranium from seawater. Iron(III) and vanadium(V) may compete with uranium for adsorption sites. We use 2,6-dihydroxyiminopiperidine (DHIP) and N(1) ,N(5) -dihydroxypentanediimidamide (DHPD) to model amidoxime functional groups and characterize the vanadium(V) and iron(III) complexes with these ligands. We also examine the effect of iron(III) and vanadium(V) on uranyl(VI) complexation by DHIP and DHPD. The experiments were carried out in positive ion mode using a quadrupole ion trap mass spectrometer equipped with an electrospray ionization source. The effect on the mass spectra of changes in ligand, metal:ligand mole ratio, and pH was examined. Iron(III) formed a 1:2 metal:ligand complex with DHIP at all metal:ligand mole ratios and pH values investigated; it formed both 1:2 and 1:3 metal:ligand complexes with DHPD. Vanadium(V) formed 1:1 and 1:2 metal:ligand complexes with DHIP. A 1:2 metal:ligand complex was formed with DHPD at all vanadium(V):DHPD mole ratios investigated. Changes in solution pH did not affect the ions observed. The relative binding affinities of the metal ions towards DHIP followed the order iron(III) > vanadium(V) > uranyl(VI). This study presents a first look at the gas-phase vanadium(V)- and iron(III)-DHIP and -DHPD complexes using electrospray ionization mass spectrometry. These metals form stronger complexes with amidoxime ligands than uranyl(VI), and will affect uranyl(VI) adsorption to amidoxime-based sorbents. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Kinetics of chromium (VI) reduction by ferrous iron

    International Nuclear Information System (INIS)

    Batchelor, B.; Schlautman, M.; Hwang, I.; Wang, R.

    1998-09-01

    Chromium is a primary inorganic contaminant of concern at the Pantex Plant. Chromium concentrations have been found to be two orders of magnitude higher than the drinking water standards, particularly in certain wells in the perched aquifer below Zone 12. In situ reduction of a mobile form of chromium, Cr(VI) to an immobile form, Cr(III), was examined as a viable option to active soil restoration. Successfully immobilizing chromium in the vadose zone as Cr(III) will reduce the amount of chromium that reaches the groundwater table. The results from the solution experiments indicated that chromium was rapidly and stoichiometrically reduced by Fe(II) in solution. Also, the slurry experiments showed that the aquifer solids removed Fe(II) from solution, but a portion of the iron removed remained available for reaction with Cr(VI), but at a slower rate. A model to predict different amounts of iron pseudo-components was developed, which allowed prediction of iron amounts required to reduce chromium under in situ conditions

  5. Theoretical analysis of the binding of iron(III) protoporphyrin IX to 4-methoxyacetophenone thiosemicarbazone via DFT-D3, MEP, QTAIM, NCI, ELF, and LOL studies.

    Science.gov (United States)

    Nkungli, Nyiang Kennet; Ghogomu, Julius Numbonui

    2017-07-01

    Thiosemicarbazones display diverse pharmacological properties, including antimalarial activities. Their pharmacological activities have been studied in depth, but little of this research has focused on their antimalarial mode of action. To elucidate this antimalarial mechanism, we investigated the nature of the interactions between iron(III) protoporphyrin IX (Fe(III)PPIX) and the thione-thiol tautomers of 4-methoxyacetophenone thiosemicarbazone (MAPTSC). Dispersion-corrected density functional theory (DFT-D3), the quantum theory of atoms in molecules (QTAIM), the noncovalent interaction (NCI) index, the electron localization function (ELF), the localized orbital locator (LOL), and thermodynamic calculations were employed in this work. Fe(III)PPIX-MAPTSC binding is expected to inhibit hemozoin formation, thereby preventing Fe(III)PPIX detoxification in plasmodia. Preliminary studies geared toward the identification of atomic binding sites in the thione-thiol tautomers of MAPTSC were carried out using molecular electrostatic potential (MEP) maps and conceptual DFT-based local reactivity indices. The thionic sulfur and the 2 N-azomethine nitrogen/thiol sulfur of, respectively, the thione and thiol tautomers of MAPTSC were identified as the most favorable nucleophilic sites for electrophilic attack. The negative values of the computed Fe(III)PPIX-MAPTSC binding energies, enthalpies, and Gibbs free energies are indicative of the existence and stability of Fe(III)PPIX-MAPTSC complexes. MAPTSC-Fe(III) coordinate bonds and strong hydrogen bonds (N-H···O) between the NH 2 group in MAPTSC and the C=O group in one propionate side chain of Fe(III)PPIX are crucial to Fe(III)PPIX-MAPTSC binding. QTAIM, NCI, ELF, and LOL analyses revealed a subtle interplay of weak noncovalent interactions dominated by dispersive-like van der Waals interactions between Fe(III)PPIX and MAPTSC that stabilize the Fe(III)PPIX-MAPTSC complexes.

  6. Synthesis and characterization of Fe(III-piperazine-derived complexes encapsulated in zeolite Y

    Directory of Open Access Journals (Sweden)

    Márcio E. Berezuk

    2012-01-01

    Full Text Available Zeolite-encapsulated complexes have been widely applied in hydrocarbon oxidation catalysis. The "ship-in-a-bottle" encapsulation of iron(III complexes containing piperazine and piperazine-derivative ligands in zeolite-Y is described. The flexible ligand methodology was employed and the efficiency and reproducibility of the procedure was investigated. The catalysts were characterized employing several techniques and the results indicate the presence of coordinated and uncoordinated iron(III ions inside and outside the zeolitic cage.

  7. Influence of iron redox transformations on plutonium sorption to sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hixon, A.E.; Powell, B.A. [Environmental Engineering and Earth Sciences, Clemson Univ., Clemson, SC (United States); Hu, Y.J.; Nitsche, H. [Dept. of Chemistry, Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab., Berkeley, CA (United States); Kaplan, D.I. [Savannah River National Lab., Aiken, SC (United States); Kukkadapu, R.K.; Qafoku, O. [Pacific Northwest National Lab., Richland, WA (United States)

    2010-07-01

    Plutonium subsurface mobility is primarily controlled by its oxidation state, which in turn is loosely coupled to the oxidation state of iron in the system. Experiments were conducted to examine the effect of sediment iron mineral composition and oxidation state on plutonium sorption and reduction. A pH 6.3 vadose zone sediment containing iron oxides and iron-containing phyllosilicates was treated with various complexants (ammonium oxalate) and reductants (hydroxylamine hydrochloride and dithionite-citrate-bicarbonate (DCB)) to selectively leach and/or reduce iron oxide and phyllosilicate/clay Fe(III). {sup 57}Fe-Moessbauer spectroscopy was used to identify initial iron mineral composition of the sediment and monitor dissolution and reduction of iron oxides and reduction of phyllosilicate Fe(III). {sup 57}Fe-Moessbauer spectroscopy showed that the Fe-mineral composition of the untreated sediment is: 25-30% hematite, 60-65% small-particle/Al-goethite, and < 10% Fe(III) in phyllosilicate; there was no detectable Fe(II). Upon reduction with a strong chemical reductant (dithionite-citrate-bicarbonate buffer), much of the hematite and goethite was removed. Partial reduction of phyllosilicate Fe(III) was evident in the sediments subjected to DCB treatment. Sorption of Pu(V) was monitored over one week for the untreated and each of five treated sediment fractions. Plutonium oxidation state speciation in the aqueous and solid phases was monitored using solvent extraction, coprecipitation, and XANES. The rate of sorption appears to correlate with the fraction of Fe(II) in the sediment (untreated or treated). Pu(V) was the only oxidation state measured in the aqueous phase, irrespective of treatment, whereas Pu(IV) and much smaller amounts of Pu(V) and Pu(VI) were measured in the solid phase. Surface-mediated reduction of Pu(V) to Pu(IV) occurred in treated and untreated sediment samples; Pu(V) remained on untreated sediment surface for two days before reducing to Pu

  8. Spectrophotometric determination of phosphorus in iron alloys employing a flow injection system

    OpenAIRE

    Gervasio,Ana P. G.; Miranda,Carlos E. S.; Luca,Gilmara C.; Tumang,Cristiane A.; Campos,Luis F. P.; Reis,Boaventura F.

    2001-01-01

    A flow-injection procedure for spectrophotometric determination of phosphorus in electrolytic iron and iron alloys is proposed. The method is based on the ammonium molybdate reaction followed by stannous chloride reduction in acidic medium. In order to circumvent the severe interference caused by the major constituents such as Fe(III) and Cr(III), a mini-column packed with AG50W-X8 resin was coupled to the manifold. A sample throughput of 40 determinations per hour, a dynamical range from P 0...

  9. Crystal structures and Moessbauer spectra of spin-crossover iron(III) complexes of quinquedentate ligands

    International Nuclear Information System (INIS)

    Maeda, Yonezo; Noda, Yosuke; Oshio, Hiroki; Takashima, Yoshimasa; Matsumoto, Naohide

    1994-01-01

    Magnetic properties, Moessbauer spectra and crystal structures of spin-crossover iron(III) complexes with a quinquedentate ligand [FeLX]BPh 4 are reported. X and L denote a unidentate ligand and a quinquedentate ligand, respectively. [Fe(mbpN)(im)]BPh 4 shows spin-crossover behavior in an appropriate organic solvent, and [Fe(mbpN)(lut)]BPh 4 , [Fe(bpN)(py)]BPh 4 and [Fe(salten)X]BPh 4 (X = 4me-py or 2me-im) show spin-crossover behavior in a solid and in an organic solvent. It was found that the ligand field strength of salten was stronger than that of mbpN. The rates of spin-state interexchange in the complexes are as fast as the inverse of the lifetime (1 x 10 -7 s) of the Moessbauer nuclear level. The Moessbauer spectroscopic behavior of [Fe(mbpN)(lut)]BPh 4 and [Fe(bpN)(py)]BPh 4 is different to that of [Fe(salten)X]BPh 4 (X = 4me-py or 2me-im). The difference was ascribed to the different geometrical positions of the corresponding anions. (orig.)

  10. Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles

    DEFF Research Database (Denmark)

    Gilbert, Benjamin; Katz, Jordan E.; Huse, Nils

    2013-01-01

    photo-initiated interfacial electron transfer. This approach enables time-resolved study of the fate and mobility of electrons within the solid phase. However, complete analysis of the ultrafast processes following dye photoexcitation of the sensitized iron(iii) oxide nanoparticles has not been reported....... We addressed this topic by performing femtosecond transient absorption (TA) measurements of aqueous suspensions of uncoated and DCF-sensitized iron oxide and oxyhydroxide nanoparticles, and an aqueous iron(iii)–dye complex. Following light absorption, excited state relaxation times of the dye of 115...... a four-state model of the dye-sensitized system, finding electron and energy transfer to occur on the same ultrafast timescale. The interfacial electron transfer rates for iron oxides are very close to those previously reported for DCF-sensitized titanium dioxide (for which dye–oxide energy transfer...

  11. The solvent extraction of zinc, iron, and indium from chloride solutions by neutral organophosphorus compounds

    International Nuclear Information System (INIS)

    Preston, J.S.; Du Preez, A.C.

    1985-01-01

    The preparation of several neutral organophosphorus compounds and their evaluation as selective extractants for zinc in chloride media are described. The compounds belong to the series trialkyl phosphates (RO) 3 PO, dialkyl alkylphosphonates R'PO(OR) 2 , alkyl dialkylphosphinates R 2 'PO(OR), and trialkyl-phosphine oxides R 3 'PO. They were characterized by measurement of their physical properties (melting and boiling points, refractive indices, and densities), and their purities were confirmed by osmometric determination of their molecular masses; by carbon and hydrogen microanalysis; by the titrimetric determination of acidic impurities; and, for liquid products, by comparison of their experimental molar refractivities with empirical values. Metal-distribution equilibria were determined for solutions of the extractants in xylene and aqueous phase containing 0,5 to 5,0 M sodium chloride. Moderately good selectivities were shown for zinc(II) over iron(III), and excellent selectivities were shown for zinc(II) over iron(II), copper(II), lead(II), and cadmium(II). The extraction of indium(III) was similar to that of zinc(II). The extraction of zinc(III), iron(III), and indium(III) increased markedly through the series. (RO) 3 PO 2 2 'PO(OR) 3 'PO. The incorporation of phenyl groups into the compounds led to weaker extraction. The extracted complexes of zinc(II), iron(III), and indium(III) have the stoichiometries ZnCl 2 L 2 ,FeCl 3 L 2 (H 2 O), and InCl 3 L 2 (H 2 O) respectively, where L represents the neutral organophosphorus compound

  12. Role of dust alkalinity in acid mobilization of iron

    Directory of Open Access Journals (Sweden)

    A. Ito

    2010-10-01

    Full Text Available Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl may play a key role in the transformation of insoluble iron (Fe in the oxidized or ferric (III form to soluble forms (e.g., Fe(II, inorganic soluble species of Fe(III, and organic complexes of iron. On the other hand, mineral dust particles have a potential of neutralizing the acidic species due to the alkaline buffer ability of carbonate minerals (e.g., CaCO3 and MgCO3. Here we demonstrate the impact of dust alkalinity on the acid mobilization of iron in a three-dimensional aerosol chemistry transport model that includes a mineral dissolution scheme. In our model simulations, most of the alkaline dust minerals cannot be entirely consumed by inorganic acids during the transport across the North Pacific Ocean. As a result, the inclusion of alkaline compounds in aqueous chemistry substantially limits the iron dissolution during the long-range transport to the North Pacific Ocean: only a small fraction of iron (<0.2% dissolves from hematite in the coarse-mode dust aerosols with 0.45% soluble iron initially. On the other hand, a significant fraction of iron (1–2% dissolves in the fine-mode dust aerosols due to the acid mobilization of the iron-containing minerals externally mixed with carbonate minerals. Consequently, the model quantitatively reproduces higher iron solubility in smaller particles as suggested by measurements over the Pacific Ocean. It implies that the buffering effect of alkaline content in dust aerosols might help to explain the inverse relationship between aerosol iron solubility and particle size. We also demonstrate that the iron solubility is sensitive to the chemical specification of iron-containing minerals in dust. Compared with the dust sources, soluble iron from combustion sources contributes to a relatively marginal effect for deposition of soluble iron over the North

  13. Iron(III) complexes of certain tetradentate phenolate ligands as ...

    Indian Academy of Sciences (India)

    non-heme iron enzymes, which catalyse the oxidative cleavage of catechols to cis, cis-muconic acids with the incorporation of ... nature of heterocyclic rings of the ligands and the methyl substituents on them regulate the electronic spectral features .... and simple substitution reactions.19,21 The complexes of [H2(L5)] and ...

  14. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Papassiopi, N.; Vaxevanidou, K.; Christou, C.; Karagianni, E.; Antipas, G.S.E., E-mail: gantipas@metal.ntua.gr

    2014-01-15

    Highlights: • Fe(III)–Cr(III) hydroxides enhance groundwater quality better than pure Cr(III) compounds. • Crystalline Cr(OH){sub 3}·3H{sub 2}O was unstable, with a solubility higher than 50 μg/l. • Amorphous Cr(OH){sub 3}(am) was stable with a solubility lower than 50 μg/l in the range 5.7 < pH < 11. • For mixed Fe{sub 0.75}Cr{sub 0.25}(OH){sub 3}, the stability region was extended to 4.8 < pH < 13.5. -- Abstract: Chromium is a common contaminant of soils and aquifers and constitutes a major environmental problem. In nature, chromium usually exists in the form of two oxidation states, trivalent, Cr(III), which is relatively innocuous for biota and for the aquatic environment, and hexavalent, Cr(VI) which is toxic, carcinogenic and very soluble. Accordingly, the majority of wastewater and groundwater treatment technologies, include a stage where Cr(VI) is reduced to Cr(III), in order to remove chromium from the aqueous phase and bind the element in the form of environmentally stable solid compounds. In the absence of iron the final product is typically of the form Cr(OH){sub 3}·xH{sub 2}O whereas in the presence of iron the precipitate is a mixed Fe{sub (1−x)}Cr{sub x}(OH){sub 3} phase. In this study, we report on the synthesis, characterisation and stability of mixed (Fe{sub x},Cr{sub 1−x})(OH){sub 3} hydroxides as compared to the stability of Cr(OH){sub 3}. We established that the plain Cr(III) hydroxide, abiding to the approximate molecular formula Cr(OH){sub 3}·3H{sub 2}O, was crystalline, highly soluble, i.e. unstable, with a tendency to transform into the stable amorphous hydroxide Cr(OH){sub 3}(am) phase. Mixed Fe{sub 0.75}Cr{sub 0.25}(OH){sub 3} hydroxides were found to be of the ferrihydrite structure, Fe(OH){sub 3}, and we correlated their solubility to that of a solid solution formed by plain ferrihydrite and the amorphous Cr(III) hydroxide. Both our experimental results and thermodynamic calculations indicated that mixed Fe(III)–Cr(III

  15. On iron radionuclide interactions and in situ measurement of iron corrosion products

    International Nuclear Information System (INIS)

    Puranen, A.; Jonsson, M.; Cui, D.; Scheidegger, A.M.; Wersin, P.; Spahiu, K.

    2005-01-01

    Full text of publication follows: In performance assessments of hard rock repositories, it is conservatively assumed that waste canisters are breached and that the spent fuel will get into contact with groundwater after 1000 years. When the canister eventually fails to protect HLW from groundwater, dissolved radionuclides from HLW will react with iron canister materials. The reactivity will depend on the conditions in solution and at the iron-water interface. To improve our understanding on the redox chemistry at near field conditions, batch experiments are conducted by contacting polished iron foils with a synthetic groundwater solution containing 10 mM NaCl, 2 mM NaHCO 3 and 5 ppm Se(IV), Se(VI), Tc(VII) and U(VI) in a glove box filled with Ar + 0.03% CO 2 gas mixture. The reaction rates are measured by analysing Se, Tc and U concentrations by ICP-MS. Iron corrosion products formed during the reaction(s) is monitored in-situ by a Layer Raman spectrometer through an optical window. The corrosion potential of the iron foil as well as the Eh and pH values of the bulk solution are recorded continuously during the experiment. The reacted iron foil is embedded with EPOXY resin, and the cross section will be analysed by SEM-EDS and XAS. The preliminary experimental results shows that with the formation of iron green rust FeII 4 FeIII 2 (OH) 12 CO 3 on iron foil, the rates of redox reactions between iron and the negatively charged radionuclides species are increased. The observation is explained by the fact that radionuclide anionic species can be first adsorbed then reduced on the positively charged outer surface of iron green rust. The positive charge is a result of the electrical balance of the negative charges of carbonate contained between the layered iron hydroxides in the green rust. Reduced forms of radionuclides are identified in the iron corrosion products. The results suggest that the formation of iron green rust as a corrosion product on the surface of iron

  16. [Influence of Dissimilatory Iron Reduction on the Speciation and Bioavailability of Heavy Metals in Soil].

    Science.gov (United States)

    Si, You-bin; Wang, Juan

    2015-09-01

    Fe(III) dissimilatory reduction by microbes is an important process of producing energy in the oxidation of organic compounds under anaerobic condition with Fe(III) as the terminal electron acceptor and Fe(II) as the reduction product. This process is of great significance in element biogeochemical cycle. Iron respiration has been described as one of the most ancient forms of microbial metabolism on the earth, which is bound up with material cycle in water, soil and sediments. Dissimilatory iron reduction plays important roles in heavy metal form transformation and the remediation of heavy metal and radionuclide contaminated soils. In this paper, we summarized the research progress of iron reduction in the natural environment, and discussed the influence and the mechanism of dissimilatory iron reduction on the speciation and bioavailability of heavy metals in soil. The effects of dissimilatory iron reduction on the speciation of heavy metals may be attributed to oxidation and reduction, methytation and immobilization of heavy metals in relation to their bioavailability in soils. The mechanisms of Fe(III) dissimilatory reduction on heavy metal form transformation contain biological and chemical interactions, but the mode of interaction remains to be further investigated.

  17. Determination of stability constants of iron(III and chromium(III-nitrilotriacetate-methyl cysteine mixed complexes by electrophoretic technique

    Directory of Open Access Journals (Sweden)

    Brij Bhushan Tewari

    2004-06-01

    Full Text Available The stability constants of Fe(III and Cr(III with methyl cysteine and nitrilotriacetate (NTA were determined by paper electrophoretic technique. Beside binary ternary complexes have also been studied, in which nitrilotriacetate and methyl cysteine acts as primary and secondary ligand, respectively. The stability constants of mixed ligand complexes metal (M-nitrilotriacetate-methyl cysteine have been found to be 5.72 plus or minus 0.09 and 5.54 plus or minus 0.11 (log K values for Fe(III and Cr(III complexes, respectively, at 35 oC and ionic strength 0.1 M.

  18. Turn-on fluorogenic and chromogenic detection of Fe(III) and its application in living cell imaging

    International Nuclear Information System (INIS)

    Sivaraman, Gandhi; Sathiyaraja, Vijayaraj; Chellappa, Duraisamy

    2014-01-01

    Two rhodamine-based sensors RDI-1, RDI-2 was designed and synthesized by incorporation of the rhodamine 6G fluorophore and 2-formyl imidazole as the recognizing unit via the imine linkages. RDI-1, RDI-2 exhibits very high selectivity and an excellent sensitivity towards Fe(III) ions in aqueous buffer solution on compared with other probes. The color change from colorless to pink and turn-on fluorescence after binding with iron (III) was observed. Based on jobs plot and ESI-MS studies, the 1:1 binding mode was proposed. Live cell imaging experiments with each probe showed that these probes widely applicable to detect Fe 3+ in living cells. -- Highlights: • Two rhodamine based probes was synthesized and used to recognize iron (III). • The chemosensors can be applied to detect iron(III) ions by color and turn-on fluorescent changes. • The very low detection limit was reported. • The applicability of these probes for live cell fluorescence imaging was studied

  19. Turn-on fluorogenic and chromogenic detection of Fe(III) and its application in living cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, Gandhi; Sathiyaraja, Vijayaraj; Chellappa, Duraisamy, E-mail: dcmku123@gmail.com

    2014-01-15

    Two rhodamine-based sensors RDI-1, RDI-2 was designed and synthesized by incorporation of the rhodamine 6G fluorophore and 2-formyl imidazole as the recognizing unit via the imine linkages. RDI-1, RDI-2 exhibits very high selectivity and an excellent sensitivity towards Fe(III) ions in aqueous buffer solution on compared with other probes. The color change from colorless to pink and turn-on fluorescence after binding with iron (III) was observed. Based on jobs plot and ESI-MS studies, the 1:1 binding mode was proposed. Live cell imaging experiments with each probe showed that these probes widely applicable to detect Fe{sup 3+} in living cells. -- Highlights: • Two rhodamine based probes was synthesized and used to recognize iron (III). • The chemosensors can be applied to detect iron(III) ions by color and turn-on fluorescent changes. • The very low detection limit was reported. • The applicability of these probes for live cell fluorescence imaging was studied.

  20. Iron-Mediated Oxidation of Methoxyhydroquinone under Dark Conditions: Kinetic and Mechanistic Insights.

    Science.gov (United States)

    Yuan, Xiu; Davis, James A; Nico, Peter S

    2016-02-16

    Despite the biogeochemical significance of the interactions between natural organic matter (NOM) and iron species, considerable uncertainty still remains as to the exact processes contributing to the rates and extents of complexation and redox reactions between these important and complex environmental components. Investigations on the reactivity of low-molecular-weight quinones, which are believed to be key redox active compounds within NOM, toward iron species, could provide considerable insight into the kinetics and mechanisms of reactions involving NOM and iron. In this study, the oxidation of 2-methoxyhydroquinone (MH2Q) by ferric iron (Fe(III)) under dark conditions in the absence and presence of oxygen was investigated within a pH range of 4-6. Although Fe(III) was capable of stoichiometrically oxidizing MH2Q under anaerobic conditions, catalytic oxidation of MH2Q was observed in the presence of O2 due to further cycling between oxygen, semiquinone radicals, and iron species. A detailed kinetic model was developed to describe the predominant mechanisms, which indicated that both the undissociated and monodissociated anions of MH2Q were kinetically active species toward Fe(III) reduction, with the monodissociated anion being the key species accounting for the pH dependence of the oxidation. The generated radical intermediates, namely semiquinone and superoxide, are of great importance in reaction-chain propagation. The kinetic model may provide critical insight into the underlying mechanisms of the thermodynamic and kinetic characteristics of metal-organic interactions and assist in understanding and predicting the factors controlling iron and organic matter transformation and bioavailability in aquatic systems.

  1. Biological activity of Fe(III) aquo-complexes towards ferric chelate reductase (FCR).

    Science.gov (United States)

    Escudero, Rosa; Gómez-Gallego, Mar; Romano, Santiago; Fernández, Israel; Gutiérrez-Alonso, Ángel; Sierra, Miguel A; López-Rayo, Sandra; Nadal, Paloma; Lucena, Juan J

    2012-03-21

    In this study we have obtained experimental evidence that confirms the high activity of aquo complexes III and IV towards the enzyme FCR, responsible for the reduction of Fe(III) to Fe(II) in the process of iron acquisition by plants. The in vivo FCR assays in roots of stressed cucumber plants have shown a higher efficiency of the family of complexes III and a striking structure-activity relationship with the nature of the substituent placed in a phenyl group far away from the metal center. The results obtained in this work demonstrate that all the aquo compounds tested interact efficiently with the enzyme FCR and hence constitute a new concept of iron chelates that could be of great use in agronomy.

  2. As(III) oxidation by MnO2 during groundwater treatment.

    Science.gov (United States)

    Gude, J C J; Rietveld, L C; van Halem, D

    2017-03-15

    The top layer of natural rapid sand filtration was found to effectively oxidise arsenite (As(III)) in groundwater treatment. However, the oxidation pathway has not yet been identified. The aim of this study was to investigate whether naturally formed manganese oxide (MnO 2 ), present on filter grains, could abiotically be responsible for As(III) oxidation in the top of a rapid sand filter. For this purpose As(III) oxidation with two MnO 2 containing powders was investigated in aerobic water containing manganese(II) (Mn(II)), iron(II) (Fe(II)) and/or iron(III) (Fe(III)). The first MnO 2 powder was a very pure - commercially available - natural MnO 2 powder. The second originated from a filter sand coating, produced over 22 years in a rapid filter during aeration and filtration. Jar test experiments showed that both powders oxidised As(III). However, when applying the MnO 2 in aerated, raw groundwater, As(III) removal was not enhanced compared to aeration alone. It was found that the presence of Fe(II)) and Mn(II) inhibited As(III) oxidation, as Fe(II) and Mn(II) adsorption and oxidation were preferred over As(III) on the MnO 2 surface (at pH 7). Therefore it is concluded that just because MnO 2 is present in a filter bed, it does not necessarily mean that MnO 2 will be available to oxidise As(III). However, unlike Fe(II), the addition of Fe(III) did not hinder As(III) oxidation on the MnO 2 surface; resulting in subsequent effective As(V) removal by the flocculating hydrous ferric oxides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Iron in the aquifer system of Suffolk County, New York, 1990–98

    Science.gov (United States)

    Brown, Craig J.; Walter, Donald A.; Colabufo, Steven

    1999-01-01

    High concentrations of dissolved iron in ground water contribute to the biofouling of public-supply wells, and the treatment and remediation of biofouling are costly. Water companies on Long Island, N.Y., spend several million dollars annually to recondition, redevelop, and replace supply wells and distribution lines; treat dissolved iron with sequestering agents or by filtration; and respond to iron-related complaints by customers. This report summarizes the results of studies done by the U.S. Geological Survey, in cooperation with the Suffolk County Water Authority, to characterize the geochemistry and microbiology of iron in the aquifer system of Suffolk County. This information should be helpful for the siting and operation of supply wells.Concentrations of dissolved iron in Long Island's ground water, and the frequency of iron biofouling of wells, are highest in ground-water-discharge zones, particularly near the south shore. Ground water along a deep north-south flowpath of the Magothy aquifer in southwestern Suffolk County becomes anaerobic (oxygen deficient) and Fe(III) reducing at a distance of 8 to 10 kilometers south of the ground-water divide, and this change coincides with the downgradient increase in dissolved iron concentrations. The distribution of organic carbon, and the distribution and local variations in reactivity of Fe(III), in Magothy aquifer sediments have resulted in localized differences in redox microenvironments. For example, Fe(III)-reducing zones are associated with anaerobic conditions, where relatively large amounts of Fe(III) oxyhydroxide grain coatings are present, whereas sulfate-reducing zones are associated with lignite-rich lenses of silt and clay and appear to have developed in response to the depletion of available Fe(III) oxyhydroxides. The sulfate-reducing zones are characterized by relatively low concentrations of dissolved iron (resulting from iron-disulfide precipitation) and may be large enough to warrant water

  4. Colorimetric Determination of the Iron(III)-Thiocyanate Reaction Equilibrium Constant with Calibration and Equilibrium Solutions Prepared in a Cuvette by Sequential Additions of One Reagent to the Other

    Science.gov (United States)

    Nyasulu, Frazier; Barlag, Rebecca

    2011-01-01

    The well-known colorimetric determination of the equilibrium constant of the iron(III-thiocyanate complex is simplified by preparing solutions in a cuvette. For the calibration plot, 0.10 mL increments of 0.00100 M KSCN are added to 4.00 mL of 0.200 M Fe(NO[subscript 3])[subscript 3], and for the equilibrium solutions, 0.50 mL increments of…

  5. Iron specificity of a biosensor based on fluorescent pyoverdin immobilized in sol-gel glass

    Science.gov (United States)

    2011-01-01

    Two current technologies used in biosensor development are very promising: 1. The sol-gel process of making microporous glass at room temperature, and 2. Using a fluorescent compound that undergoes fluorescence quenching in response to a specific analyte. These technologies have been combined to produce an iron biosensor. To optimize the iron (II or III) specificity of an iron biosensor, pyoverdin (a fluorescent siderophore produced by Pseudomonas spp.) was immobilized in 3 formulations of porous sol-gel glass. The formulations, A, B, and C, varied in the amount of water added, resulting in respective R values (molar ratio of water:silicon) of 5.6, 8.2, and 10.8. Pyoverdin-doped sol-gel pellets were placed in a flow cell in a fluorometer and the fluorescence quenching was measured as pellets were exposed to 0.28 - 0.56 mM iron (II or III). After 10 minutes of exposure to iron, ferrous ion caused a small fluorescence quenching (89 - 97% of the initial fluorescence, over the range of iron tested) while ferric ion caused much greater quenching (65 - 88%). The most specific and linear response was observed for pyoverdin immobilized in sol-gel C. In contrast, a solution of pyoverdin (3.0 μM) exposed to iron (II or III) for 10 minutes showed an increase in fluorescence (101 - 114%) at low ferrous concentrations (0.45 - 2.18 μM) while exposure to all ferric ion concentrations (0.45 - 3.03 μM) caused quenching. In summary, the iron specificity of pyoverdin was improved by immobilizing it in sol-gel glass C. PMID:21554740

  6. Determining Iron Content in Foods by Spectrophotometry.

    Science.gov (United States)

    Adams, Paul E.

    1995-01-01

    Describes a laboratory experiment for secondary school chemistry students utilizing the classic reaction between the iron(III) ion and the thiocyanate ion. The experiment also works very well in other chemistry courses as an experience in spectrophotometric analysis. (PVD)

  7. From iron(III) precursor to magnetite and vice versa

    International Nuclear Information System (INIS)

    Gotic, M.; Jurkin, T.; Music, S.

    2009-01-01

    The syntheses of nanosize magnetite particles by wet-chemical oxidation of Fe 2+ have been extensively investigated. In the present investigation the nanosize magnetite particles were synthesised without using the Fe(II) precursor. This was achieved by γ-irradiation of water-in-oil microemulsion containing only the Fe(III) precursor. The corresponding phase transformations were monitored. Microemulsions (pH ∼ 12.5) were γ-irradiated at a relatively high dose rate of ∼22 kGy/h. Upon 1 h of γ-irradiation the XRD pattern of the precipitate showed goethite and unidentified low-intensity peaks. Upon 6 h of γ-irradiation, reductive conditions were achieved and substoichiometric magnetite (∼Fe 2.71 O 4 ) particles with insignificant amount of goethite particles found in the precipitate. Hydrated electrons (e aq - ), organic radicals and hydrogen gas as radiolytic products were responsible for the reductive dissolution of iron oxide in the microemulsion and the reduction Fe 3+ → Fe 2+ . Upon 18 h of γ-irradiation the precipitate exhibited dual behaviour, it was a more oxidised product than the precipitate obtained after 6 h of γ-irradiation, but it contained magnetite particles in a more reduced form (∼Fe 2.93 O 4 ). It was presumed that the reduction and oxidation processes existed as concurrent competitive processes in the microemulsion. After 18 h of γ-irradiation the pH of the medium shifted from the alkaline to the acidic range. The high dose rate of ∼22 kGy/h was directly responsible for this shift to the acidic range. At a slightly acidic pH a further reduction of Fe 3+ → Fe 2+ resulted in the formation of more stoichiometric magnetite particles, whereas the oxidation conditions in the acidic medium permitted the oxidation Fe 2+ → Fe 3+ . The Fe 3+ was much less soluble in the acidic medium and it hydrolysed and recrystallised as goethite. The γ-irradiation of the microemulsion for 25 h at a lower dose rate of 16 kGy/h produced pure

  8. Effects of iron-reducing bacteria and nitrate-reducing bacteria on the transformations of iron corrosion products, magnetite and siderite, formed at the surface of non-alloy steel

    International Nuclear Information System (INIS)

    Etique, Marjorie

    2014-01-01

    Radioactive waste is one of the major problems facing the nuclear industry. To circumvent this issue France plans to store vitrified high-level nuclear waste in a stainless steel container, placed into a non-alloy steel overpack, at a depth of 500 m in an argillaceous formation. The main iron corrosion products formed at the surface of the non-alloy steel are siderite (Fe II CO 3 ) and magnetite (Fe II Fe III 2 O 4 ). These compounds are formed in the anoxic conditions present in the nuclear waste repository and play a protective role against corrosion as a passive layer. This work aims to investigate the activity of nitrate-reducing bacteria (NRB, Klebsiella mobilis) and iron-reducing bacteria (IRB, Shewanella putrefaciens) during the transformation of siderite and magnetite, especially those involved in anoxic iron biogeochemical cycle. Klebsiella mobilis and Shewanella putrefaciens were first incubated with siderite or magnetite suspensions (high surface specific area) in order to exacerbate the microbial iron transformation, subsequently incubated with a magnetite/siderite film synthesized by anodic polarization at applied current density. The transformation of siderite and magnetite by direct or indirect microbial processes led to the formation of carbonated green rust (Fe II 4 Fe III 2 (OH) 12 CO 3 ). As a transient phase shared by several bacterial reactions involving Fe II and Fe III , this compound is the cornerstone of the anoxic iron biogeochemical cycle. The novelty of this thesis is the consideration of bacterial metabolisms of NRB and IRB often overlooked in bio-corrosion processes. (author) [fr

  9. Role of iron species in the photo-transformation of phenol in artificial and natural seawater

    International Nuclear Information System (INIS)

    Calza, Paola; Massolino, Cristina; Pelizzetti, Ezio; Minero, Claudio

    2012-01-01

    The role played by iron oxides (goethite and akaganeite) and iron(II)/(III) species as photo-sensitizers toward the transformation of organic matter was examined in saline water using phenol as a model molecule. The study was carried out in NaCl 0.7 M solution at pH 8, artificial (ASW) and natural (NSW) seawater, in a device simulating solar light spectrum and intensity. Under illumination phenol decomposition occurs in all the investigated cases. Conversely, dark experiments show that no reaction takes place, implying that phenol transformation is a light- activated process. Following the addition of Fe(II) ions to aerated solutions, Fe(II) is easily oxidized to Fe(III) and hydrogen peroxide is formed. Regardless of the addition of Fe(II) or Fe(III) ions, photo-activated degradation is mediated by Fe(III) species. Several (and different) hydroxylated and halogenated intermediates were identified. In ASW, akaganeite promotes the formation of ortho and para chloro derivatives (2- and 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol), while goethite induces the formation of 3-chlorophenol and bromophenols. Conversely, Fe(II) or Fe(III) addition causes the formation of 3- and 4-chlorophenol and 2,3- or 3,4-dichlorophenol. 4-Bromophenol was only identified when irradiating Fe(II) spiked solutions. Natural seawater sampled in the Gulf of Trieste, Italy, has been spiked with phenol and irradiated. Phenol photo-induced transformation in NSW mediated by natural photosensitizers occurs and leads to the formation of numerous halophenols, condensed products and nitrophenols. When NSW is spiked with phenol and iron oxides, Fe(II) or Fe(III), halophenols production is enhanced. A close analogy exists between Fe(III), Fe(II)/goethite in ASW and NSW products. Different halophenols production in the natural seawater samples depends on Fe(II)/goethite (above all for 3-chlorophenol, 2,3-dichlorophenol and 4-bromophenol formation) and on Fe(III) colloidal species (3

  10. Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments

    Science.gov (United States)

    Sun, W.; Sierra-Alvarez, R.; Milner, L.; Oremland, R.; Field, J.A.

    2009-01-01

    The objective of this study was to explore a bioremediation strategy based on injecting NO3- to support the anoxic oxidation of ferrous iron (Fe(II)) and arsenite (As(III)) in the subsurface as a means to immobilize As in the form of arsenate (As(V)) adsorbed onto biogenic ferric (Fe(III)) (hydr)oxides. Continuous flows and filled columns were used to simulate a natural anaerobic groundwater and sediment system with co-occurring As(III) and Fe(II) in the presence (column SF1) or absence (column SF2) of nitrate, respectively. During operation for 250 days, the average influent arsenic concentration of 567 ??g L-1 was reduced to 10.6 (??9.6) ??g L-1 in the effluent of column SF1. The cumulative removal of Fe(II) and As(III) in SF1 was 6.5 to 10-fold higher than that in SF2. Extraction and measurement of the mass of iron and arsenic immobilized on the sand packing of the columns were close to the iron and arsenic removed from the aqueous phase during column operation. The dominant speciation of the immobilized iron and arsenic was Fe(III) and As(V) in SF1, compared with Fe(II) and As(III) in SF2. The speciation was confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicate that microbial oxidation of As(III) and Fe(II) linked to denitrification resulted in the enhanced immobilization of aqueous arsenic in anaerobic environments by forming Fe(III) (hydr)oxide coated sands with adsorbed As(V). ?? 2009 American Chemical Society.

  11. Evaluation of the influence of UV/IR radiation on iron release from ferritin

    International Nuclear Information System (INIS)

    Gritzkov, M.; Kochev, V.; Vladimirova, L

    2010-01-01

    In the present work the influence of UV/IR radiation on the iron-releasing process from ferritin is investigated. The ferritins are a family of iron-storing proteins playing a key role in the biochemical reactions between iron and oxygen-processes of exclusive importance for the existence of all living organisms. The iron is stored within the ferritin core in the form of insoluble crystals containing Fe(III). Therefore for its release, the mineral matrix has to be decomposed, usually through a reduction of Fe(III) to Fe(II). Our study considers the action of UV/IR radiation on the structure of the protein molecule. Eventual changes in the ferritin conformation under the irradiation could result in the change of channel forming regions responsible for the iron efflux. This can be assess by the quantity of Fe (II) obtained in a subsequent mobilization procedure evoked by exogenous reducing agents. In our case the content of the reduced iron is determined electrochemically by the method of potentiometric titration. As already was shown, this method promises to become highly useful for quantitative evaluation of released Fe 2+ . (Author)

  12. The convenient preparation of stable aryl-coated zerovalent iron nanoparticles

    Directory of Open Access Journals (Sweden)

    Olga A. Guselnikova

    2015-05-01

    Full Text Available A novel approach for the in situ synthesis of zerovalent aryl-coated iron nanoparticles (NPs based on diazonium salt chemistry is proposed. Surface-modified zerovalent iron NPs (ZVI NPs were prepared by simple chemical reduction of iron(III chloride aqueous solution followed by in situ modification using water soluble arenediazonium tosylate. The resulting NPs, with average iron core diameter of 21 nm, were coated with a 10 nm thick organic layer to provide long-term protection in air for the highly reactive zerovalent iron core up to 180 °C. The surface-modified iron NPs possess a high grafting density of the aryl group on the NPs surface of 1.23 mmol/g. FTIR spectroscopy, XRD, HRTEM, TGA/DTA, and elemental analysis were performed in order to characterize the resulting material.

  13. Molecular-level spectroscopic investigations of the complexation and photodegradation of catechol to/by iron(III)

    Science.gov (United States)

    Al-Abadleh, Hind; Tofan-Lazar, Julia; Situm, Arthur; Slikboer, Samantha

    2014-05-01

    Surface water plays a crucial role in facilitating or inhibiting surface reactions in atmospheric aerosols. Little is known about the role of surface water in the complexation of organic molecules to transition metals in multicomponent aerosol systems. We will show results from real time diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments for the in situ complexation of catechol to Fe(III) and its photosensitized degradation under dry and humid conditions. Catechol was chosen as a simple model for humic-like substances (HULIS) in aerosols and aged polyaromatic hydrocarbons (PAH). It has also been detected in secondary organic aerosols (SOA) formed from the reaction of hydroxyl radicals with benzene. Given the importance of the iron content in aerosols and its biogeochemistry, our studies were conducted using FeCl3. For comparison, these surface-sensitive studies were complemented with bulk aqueous ATR-FTIR, UV-vis, and HPLC measurements for structural, quantitative and qualitative information about complexes in the bulk, and potential degradation products. The implications of our studies on understanding interfacial and condensed phase chemistry relevant to multicomponent aerosols, water thin islands on buildings, and ocean surfaces containing transition metals will be discussed.

  14. Iron-sulfide redox flow batteries

    Science.gov (United States)

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  15. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kumar Suranjit, E-mail: suranjit@gmail.com [Department of Environmental Studies, Faculty of Science, The M. S. University of Baroda, Vadodara, 390002, Gujarat (India); Gandhi, Pooja, E-mail: poojagandhi.3090@gmail.com [Department of Environmental Sciences, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), New Vallabh Vidyanagar, Anand, Gujarat, 388121 (India); Selvaraj, Kaliaperumal, E-mail: k.selvaraj@ncl.res.in [Nano and Computational Materials Lab, Catalysis Division, National Chemical Laboratory, Council of Scientific and Industrial Research, Pune, 411008 (India)

    2014-10-30

    Graphical abstract: - Highlights: • Colloidal GnIP synthesised using extract of Mint leaves were entrapped in chitosan beads. • GnIP loaded beads were employed for removal of As ions, showed excellent removal efficiency. • Iron and chitosan are cost effective materials hence can be a good adsorbent for removal of arsenic. - Abstract: The present study reports a new approach to synthesise nano iron particles using leaf extract of Mint (Mentha spicata L.) plant. The synthesised GnIPs were subjected to detailed adsorption studies for removal of arsenite and arsenate from aqueous solution of defined concentration. Iron nanoparticles synthesised using leaf extract showed UV–vis absorption peaks at 360 and 430 nm. TEM result showed the formation of polydispersed nanoparticles of size ranging from 20 to 45 nm. Nanoparticles were found to have core–shell structure. The planer reflection of selected area electron diffraction (SAED) and XRD analysis suggested that iron particles were crystalline and belonged to fcc (face centred cubic) type. Energy-dispersive X-ray analysis (EDAX) shows that Fe was an integral component of synthesised nanoparticles. The content of Fe in nanoparticles was found to be 40%, in addition to other elements like C (16%), O (19%) and Cl (23%). FT-IR study suggested that functional groups like -NH, -C=O, -C=N and -C=C were involved in particle formation. The removal efficiency of GnIP-chitosan composite for As(III) and As(V) was found to be 98.79 and 99.65%. Regeneration of adsorbent suggested that synthesised green GnIP may work as an effective tool for removal of arsenic from contaminated water.

  16. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution

    International Nuclear Information System (INIS)

    Prasad, Kumar Suranjit; Gandhi, Pooja; Selvaraj, Kaliaperumal

    2014-01-01

    Graphical abstract: - Highlights: • Colloidal GnIP synthesised using extract of Mint leaves were entrapped in chitosan beads. • GnIP loaded beads were employed for removal of As ions, showed excellent removal efficiency. • Iron and chitosan are cost effective materials hence can be a good adsorbent for removal of arsenic. - Abstract: The present study reports a new approach to synthesise nano iron particles using leaf extract of Mint (Mentha spicata L.) plant. The synthesised GnIPs were subjected to detailed adsorption studies for removal of arsenite and arsenate from aqueous solution of defined concentration. Iron nanoparticles synthesised using leaf extract showed UV–vis absorption peaks at 360 and 430 nm. TEM result showed the formation of polydispersed nanoparticles of size ranging from 20 to 45 nm. Nanoparticles were found to have core–shell structure. The planer reflection of selected area electron diffraction (SAED) and XRD analysis suggested that iron particles were crystalline and belonged to fcc (face centred cubic) type. Energy-dispersive X-ray analysis (EDAX) shows that Fe was an integral component of synthesised nanoparticles. The content of Fe in nanoparticles was found to be 40%, in addition to other elements like C (16%), O (19%) and Cl (23%). FT-IR study suggested that functional groups like -NH, -C=O, -C=N and -C=C were involved in particle formation. The removal efficiency of GnIP-chitosan composite for As(III) and As(V) was found to be 98.79 and 99.65%. Regeneration of adsorbent suggested that synthesised green GnIP may work as an effective tool for removal of arsenic from contaminated water

  17. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    International Nuclear Information System (INIS)

    Omran, Mamdouh; Fabritius, Timo; Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A.; El-Aref, Mortada; Elmanawi, Abd El-Hamid

    2015-01-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe 2 O 3 and P 2 O 5 contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe 3+ ) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases

  18. The reduction of U(VI) on corroded iron under anoxic conditions

    International Nuclear Information System (INIS)

    Cui, D.; Spahiu, K.

    2002-01-01

    The corrosion of iron and the interaction between corroded iron and U(VI) in anoxic conditions were investigated. The anoxic conditions were obtained by flushing an 99.97% Ar-0.03% CO 2 gas mixture through the test vessel, in which an oxygen trap and six reaction bottles containing synthetic groundwater (10 mM NaCl and 2 mM HCO 3 - .) were placed. The dark-green coloured corrosion product, formed on iron surface after three months corrosion in synthetic groundwater solutions, was identified by powder X-ray diffraction to be carbonate green rust, Fe 4 II Fe 2 III (OH) 12 CO 3 . The iron foil that reacted in a solution (10 ppm U(VI), 10 mM NaCl and 2 mM HCO 3 - ) for three months was analysed by SEM-EDS. The result shows that: (i) an uneven layer of carbonate green rust (1-5 μm thick) formed on the metallic iron; (ii) a thin (0.3 μm) uranium-rich layer deposited on top of the carbonate green rust layer; and (iii) some UO 2 crystals (3-5 μm sized) on the thin uranium layer. The experimental results proved that the U(VI) removal capacity of metal iron is not hindered by formation of a layer of carbonate green rust on the iron. Tests with cast iron and pure iron indicate that they have similar U(VI) removal capacities. At the end of experiment, U concentrations in solution approached the solubility of UO 2 (s), 10 -8 M. The stability of the carbonate green rust at the experimental conditions, pH, E h , [Fe 2+ ] and [HCO 3 - ], is discussed. (orig.)

  19. Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium Synechococcus PCC 7002

    Energy Technology Data Exchange (ETDEWEB)

    Swanner, E. D.; Bayer, T.; Wu, W.; Hao, L.; Obst, M.; Sundman, A.; Byrne, J. M.; Michel, F. M.; Kleinhanns, I. C.; Kappler, A.; Schoenberg, R.

    2017-04-11

    In this study, we couple iron isotope analysis to microscopic and mineralogical investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III) precipitation with photosynthetically produced oxygen. In the presence of the cyanobacterium Synechococcus PCC 7002, aqueous Fe(II) (Fe(II)aq) is oxidized and precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Feppt), with distinct isotopic fractionation (ε56Fe) values determined from fitting the δ56Fe(II)aq (1.79‰ and 2.15‰) and the δ56Feppt (2.44‰ and 2.98‰) data trends from two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using microscopy and chemical extractions and likely represent Fe(II) and Fe(III) sorbed to minerals and cells. The iron desorbed with sodium acetate (FeNaAc) yielded heavier δ56Fe compositions than Fe(II)aq. Modeling of the fractionation during Fe(III) sorption to cells and Fe(II) sorption to Feppt, combined with equilibration of sorbed iron and with Fe(II)aq using published fractionation factors, is consistent with our resulting δ56FeNaAc. The δ56Feppt data trend is inconsistent with complete equilibrium exchange with Fe(II)aq. Because of this and our detection of microbially excreted organics (e.g., exopolysaccharides) coating Feppt in our microscopic analysis, we suggest that electron and atom exchange is partially suppressed in this system by biologically produced organics. These results indicate that cyanobacteria influence the fate and composition of iron in sunlit environments via their role in Fe(II) oxidation through O2 production, the capacity of their cell surfaces to sorb iron, and the interaction of secreted organics with Fe(III) minerals.

  20. Hisar in Leskovac at the end of the early iron age

    Directory of Open Access Journals (Sweden)

    Stojić Milorad

    2007-01-01

    Full Text Available All parts of the site Hisar in Leskovac provided material from Iron Age III according to the division by M. Garašanin (mainly from the 5th century BC. Four or perhaps five habitations from this period, in relation to the excavated surface (app. 15 000 m2, indicate a settlement with a larger number of dwelling places. Its architecture - wattle and daub huts and dug outs - has no particular characteristics, and is similar to habitations from previous periods in the Morava valley. Archaeological material from Iron Age III includes pottery made on the wheel of Greek style, hand made pottery and decorative silver and bronze objects.

  1. Determination of trace impurities in high-purity iron using salting-out of polyoxyethylene-type surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Matsumiya, Hiroaki, E-mail: h-matsu@numse.nagoya-u.ac.jp [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Sakane, Yuto; Hiraide, Masataka [Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2009-10-19

    To an iron sample solution was added polyoxyethylene-4-isononylphenoxy ether (PONPE, nonionic surfactant, average number of ethylene oxides 7.5) and the surfactant was aggregated by the addition of lithium chloride. The iron(III) matrix was collected into the condensed surfactant phase in >99.9% yields, leaving trace metals [e.g., Ti(IV), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II), and Bi(III)] in the aqueous phase. After removing the surfactant phase by centrifugation, the remaining trace metals were concentrated onto an iminodiacetic acid-type chelating resin. The trace metals were desorbed with dilute nitric acid for the determination by inductively coupled plasma-mass spectrometry or graphite-furnace atomic absorption spectrometry. The proposed separation method allowed the analysis of high-purity iron metals for trace impurities at low {mu}g g{sup -1} to ng g{sup -1} levels.

  2. Potentiometric and electrokinetic signatures of iron(II) interactions with (α,γ)-Fe2O3.

    Science.gov (United States)

    Toczydłowska, Diana; Kędra-Królik, Karolina; Nejbert, Krzysztof; Preočanin, Tajana; Rosso, Kevin M; Zarzycki, Piotr

    2015-10-21

    The electrochemical signatures of Fe(II) interactions with iron(III) oxides are poorly understood, despite their importance in controlling the amount of mobilized iron. Here, we report the potentiometric titration of α,γ-Fe2O3 oxides exposed to Fe(II) ions. We monitored in situ surface and ζ potentials, the ratio of mobilized ferric to ferrous, and the periodically analyzed nanoparticle crystal structure using X-ray diffraction. Electrokinetic potential reveals weak but still noticeable specific sorption of Fe(II) to the oxide surface under acidic conditions, and pronounced adsorption under alkaline conditions that results in a surface potential reversal. By monitoring the aqueous iron(II/III) fraction, we found that the addition of Fe(II) ions produces platinum electrode response consistent with the iron solubility-activity curve. Although, XRD analysis showed no evidence of γ-Fe2O3 transformations along the titration pathway despite iron cycling between aqueous and solid reservoirs, the magnetite formation cannot be ruled out.

  3. Iron sulphide containing hydrodesulfurization catalysts : Mössbauer study of the sulfidibility of alpha-iron(III) oxide

    NARCIS (Netherlands)

    Ramselaar, W.L.T.M.; Beer, de V.H.J.; Kraan, van der A.M.

    1988-01-01

    As a first step in the study of the sulphidation of carbon-supported iron oxide catalyst systems the sulphiding of a well-characterized, unsupported model compound, viz. a-Fe2O3(mean particle diameter ca. 50 nm) was investigated using in-situ Mössbauer spectroscopy and the temperature-programmed

  4. An Empirical Ultraviolet Iron Spectrum Template Applicable to Active Galaxies

    DEFF Research Database (Denmark)

    Vestergaard, Marianne; Wilkes, B. J.

    2001-01-01

    Iron emission is often a severe contaminant in optical-ultraviolet spectra of active galaxies. Its presence complicates emission line studies. A viable solution, already successfully applied at optical wavelengths, is to use an empirical iron emission template. We have generated FeII and Fe......III templates for ultraviolet active galaxy spectra based on HST archival 1100 - 3100 A spectra of IZw1. Their application allows fitting and subtraction of the iron emission in active galaxy spectra. This work has shown that in particular CIII] lambda 1909 can be heavily contaminated by other line emission...

  5. Moessbauer spectroscopy-nuclear hyperfine technique for studying dynamic chemical states of iron complexes

    International Nuclear Information System (INIS)

    Maeda, Y.

    2005-01-01

    A brief introduction of Moessbauer spectroscopy will be presented, followed by a discussion of the Moessbauer parameters, isomer shifts, quadrupole splittings, and spectral shapes of complexes in the presence of relaxation of the electronic states of the iron atoms. The usefulness of Moessbauer spectroscopy to demonstrate the dynamic phenomena of electronic states will be discussed in this lecture. (1) The Moessbauer spectra of mixed valence dinuclear and trinuclear iron complexes will be discussed in connection with the chemical structure of the complexes: The values of the quadrupole splittings and isomer shifts of [Fe II Fe III (bpmp) (ppa) 2 ](BF 4 ) 2 increase on raising the temperature, where Hbpmp represents 2,6-bis[bis(2- pyridylmethyl)aminoethyl]-4-methylphenol and ppa is 3-n-phenylpropionic acid. The spectra can be accounted for by postulating intramolecular electron exchange between two energetically inequivalent vibronic states Fe A 2+ Fe B 3+ and Fe A 3+ Fe B 2+ : The apparent time averaged valence states of the iron atoms are 2.2 and 2.8 on the Moessbauer time scale at 293 K. (2) The Moessbauer spectra of iron(III) spin-crossover complexes will be discussed in connection with the spin-transition rate and chemical structure of the complexes. The Moessbauer spectra of spin-crossover iron(III) complexes with LIESST (Light Induced Electronic Spin-State Transition) and of metallomesogens will be discussed to illustrate the extension of this research area by the use of Moessbauer spectroscopy.

  6. Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments.

    Science.gov (United States)

    Bonnefoy, Violaine; Holmes, David S

    2012-07-01

    This minireview presents recent advances in our understanding of iron oxidation and homeostasis in acidophilic Bacteria and Archaea. These processes influence the flux of metals and nutrients in pristine and man-made acidic environments such as acid mine drainage and industrial bioleaching operations. Acidophiles are also being studied to understand life in extreme conditions and their role in the generation of biomarkers used in the search for evidence of existing or past extra-terrestrial life. Iron oxidation in acidophiles is best understood in the model organism Acidithiobacillus ferrooxidans. However, recent functional genomic analysis of acidophiles is leading to a deeper appreciation of the diversity of acidophilic iron-oxidizing pathways. Although it is too early to paint a detailed picture of the role played by lateral gene transfer in the evolution of iron oxidation, emerging evidence tends to support the view that iron oxidation arose independently more than once in evolution. Acidic environments are generally rich in soluble iron and extreme acidophiles (e.g. the Leptospirillum genus) have considerably fewer iron uptake systems compared with neutrophiles. However, some acidophiles have been shown to grow as high as pH 6 and, in the case of the Acidithiobacillus genus, to have multiple iron uptake systems. This could be an adaption allowing them to respond to different iron concentrations via the use of a multiplicity of different siderophores. Both Leptospirillum spp. and Acidithiobacillus spp. are predicted to synthesize the acid stable citrate siderophore for Fe(III) uptake. In addition, both groups have predicted receptors for siderophores produced by other microorganisms, suggesting that competition for iron occurs influencing the ecophysiology of acidic environments. Little is known about the genetic regulation of iron oxidation and iron uptake in acidophiles, especially how the use of iron as an energy source is balanced with its need to take up

  7. Solvent free oxidation of primary alcohols and diols using thymine iron(III) catalyst.

    Science.gov (United States)

    Al-Hunaiti, Afnan; Niemi, Teemu; Sibaouih, Ahlam; Pihko, Petri; Leskelä, Markku; Repo, Timo

    2010-12-28

    In this study, we developed an efficient and selective iron-based catalyst system for the synthesis of ketones from secondary alcohols and carboxylic acids from primary alcohol. In situ generated iron catalyst of thymine-1-acetate (THA) and FeCl(3) under solvent-free condition exhibits high activity. As an example, 1-octanol and 2-octanol were oxidized to 1-octanoic acid and 2-octanone with 89% and 98% yields respectively.

  8. The long term tsunami impact: Evolution of iron speciation and major elements concentration in tsunami deposits from Thailand.

    Science.gov (United States)

    Kozak, Lidia; Niedzielski, Przemyslaw

    2017-08-01

    The article describes the unique studies of the chemical composition changes of new geological object (tsunami deposits in south Thailand - Andaman Sea Coast) during four years (2005-2008) from the beginning of formation of it (deposition of tsunami transported material, 26 December 2004). The chemical composition of the acid leachable fraction of the tsunami deposits has been studied in the scope of concentration macrocompounds - concentration of calcium, magnesium, iron, manganese and iron speciation - the occurrence of Fe(II), Fe(III) and non-ionic iron species described as complexed iron (Fe complex). The changes of chemical composition and iron speciation in the acid leachable fraction of tsunami deposits have been observed with not clear tendencies of changes direction. For iron speciation changes the transformation of the Fe complex to Fe(III) has been recorded with no significant changes of the level of Fe(II). Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Microbial removal of Fe(III) impurities from clay using dissimilatory iron reducers.

    Science.gov (United States)

    Lee, E Y; Cho, K S; Ryu, H W; Chang, Y K

    1999-01-01

    Fe(III) impurities, which detract refractoriness and whiteness from porcelain and pottery, could be biologically removed from low-quality clay by indigenous dissimilatory Fe(III)-reducing microorganisms. Insoluble Fe(III) in clay particles was leached out as soluble Fe(II), and the Fe(III) reduction reaction was coupled to the oxidation of sugars such as glucose, maltose and sucrose. A maximum removal of 44-45% was obtained when the relative amount of sugar was 5% (w/w; sugar/clay). By the microbial treatment, the whiteness of the clay was increased from 63.20 to 79.64, whereas the redness was clearly decreased from 13.47 to 3.55.

  10. Development of a C3-symmetric benzohydroxamate tripod: Trimetallic complexation with Fe(III), Cr(III) and Al(III)

    Science.gov (United States)

    Baral, Minati; Gupta, Amit; Kanungo, B. K.

    2016-06-01

    The design, synthesis and physicochemical characterization of a C3-symmetry Benzene-1,3,5-tricarbonylhydroxamate tripod, noted here as BTHA, are described. The chelator was built from a benzene as an anchor, symmetrically extended by three hydroxamate as ligating moieties, each bearing O, O donor sites. A combination of absorption spectrophotometry, potentiometry and theoretical investigations are used to explore the complexation behavior of the ligand with some trivalent metal ions: Fe(III), Cr(III), and Al(III). Three protonation constants were calculated for the ligand in a pH range of 2-11 in a highly aqueous medium (9:1 H2O: DMSO). A high rigidity in the molecular structure restricts the formation of 1:1 (M/L) metal encapsulation but shows a high binding efficiency for a 3:1 metal ligand stoichiometry giving formation constant (in β unit) 28.73, 26.13 and 19.69 for [M3L]; Mdbnd Fe(III), Al(III) and Cr(III) respectively, and may be considered as an efficient Fe-carrier. The spectrophotometric study reveals of interesting electronic transitions occurred during the complexation. BTHA exhibits a peak at 238 nm in acidic pH and with the increase of pH, a new peak appeared at 270 nm. A substantial shifting in both of the peaks in presence of the metal ions implicates a s coordination between ligand and metal ions. Moreover, complexation of BTHA with iron shows three distinct colors, violet, reddish orange and yellow in different pH, enables the ligand to be considered for the use as colorimetric sensor.

  11. Synthesis and characterization of iron (II and III) phosphates by X-ray diffraction and Scanning Electron Microscopy of high vacuum; Sintesis y caracterizacion de fosfatos de hierro (II, III) por difraccion de rayos X y microscopia electronica de barrido de alto vacio

    Energy Technology Data Exchange (ETDEWEB)

    Diaz F, J.C.; Solis M, L.; Garcia R, G.; Romero G, E.T. [Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The XRD and Sem techniques for determining the mineralogical and structural composition of iron II and III phosphates have been used. The mineralogical and structural composition of the materials revealed that they are the ferrous phosphate and the ferric phosphate. The contribution of the synthesis and characterization of these phosphates is that they can be used as components in the geological barriers capable to avoiding the dispersion from the hazardous radioactive materials to the environment. (Author)

  12. FeS-coated sand for removal of arsenic(III) under anaerobic conditions in permeable reactive barriers

    Science.gov (United States)

    Han, Y.-S.; Gallegos, T.J.; Demond, A.H.; Hayes, K.F.

    2011-01-01

    Iron sulfide (as mackinawite, FeS) has shown considerable promise as a material for the removal of As(III) under anoxic conditions. However, as a nanoparticulate material, synthetic FeS is not suitable for use in conventional permeable reactive barriers (PRBs). This study developed a methodology for coating a natural silica sand to produce a material of an appropriate diameter for a PRB. Aging time, pH, rinse time, and volume ratios were varied, with a maximum coating of 4.0 mg FeS/g sand achieved using a pH 5.5 solution at a 1:4 volume ratio (sand: 2 g/L FeS suspension), three days of aging and no rinsing. Comparing the mass deposited on the sand, which had a natural iron-oxide coating, with and without chemical washing showed that the iron-oxide coating was essential to the formation of a stable FeS coating. Scanning electron microscopy images of the FeS-coated sand showed a patchwise FeS surface coating. X-ray photoelectron spectroscopy showed a partial oxidation of the Fe(II) to Fe(III) during the coating process, and some oxidation of S to polysulfides. Removal of As(III) by FeS-coated sand was 30% of that by nanoparticulate FeS at pH 5 and 7. At pH 9, the relative removal was 400%, perhaps due to the natural oxide coating of the sand or a secondary mineral phase from mackinawite oxidation. Although many studies have investigated the coating of sands with iron oxides, little prior work reports coating with iron sulfides. The results suggest that a suitable PRB material for the removal of As(III) under anoxic conditions can be produced through the deposition of a coating of FeS onto natural silica sand with an iron-oxide coating. ?? 2010 Elsevier Ltd.

  13. Removal of arsenic from synthetic acid mine drainage by electrochemical pH adjustment and coprecipitation with iron hydroxide.

    Science.gov (United States)

    Wang, Jenny Weijun; Bejan, Dorin; Bunce, Nigel J

    2003-10-01

    Acid mine drainage (AMD), which is caused by the biological oxidation of sulfidic materials, frequently contains arsenic in the form of arsenite, As(III), and/or arsenate, As(V), along with much higher concentrations of dissolved iron. The present work is directed toward the removal of arsenic from synthetic AMD by raising the pH of the solution by electrochemical reduction of H+ to elemental hydrogen and coprecipitation of arsenic with iron(III) hydroxide, following aeration of the catholyte. Electrolysis was carried out at constant current using two-compartment cells separated with a cation exchange membrane. Four different AMD model systems were studied: Fe(III)/As(V), Fe(III)/As(III), Fe(II)/As(V), and Fe(II)/As(III) with the initial concentrations for Fe(III) 260 mg/L, Fe(II) 300 mg/L, As(V), and As(III) 8 mg/L. Essentially quantitative removal of arsenic and iron was achieved in all four systems, and the results were independent of whether the pH was adjusted electrochemically or by the addition of NaOH. Current efficiencies were approximately 85% when the pH of the effluent was 4-7. Residual concentrations of arsenic were close to the drinking water standard proposed by the World Health Organization (10 microg/L), far below the mine waste effluent standard (500 microg/L).

  14. Synthesis and characterization of μ-hydroxido- and μ-polycarboxylato-bridged iron(III complexes with 2,2’-bipyridine

    Directory of Open Access Journals (Sweden)

    Tasić Nikola

    2014-01-01

    Full Text Available Four novel polymeric iron(III complexes with 2,2’-bipyridine (bipy and different aromatic polycarboxylato ligands as anions of phthalic (pht, isophthalic (ipht, terephthalic (tpht and pyromellitic (pyr acid were synthesized by ligand exchange reaction. The complexes were characterized by elemental and TG/DSC analysis, FTIR and diffuse reflectance UV-VIS-NIR spectroscopy and magnetic susceptibility measurements. Based on analytical and spectral data the formulae of the complexes are {[Fe4(bipy2 (H2O2(OH6(pht3]•2H2O}n (1, {[Fe4(bipy2(Hipht2(ipht2(OH6]•4H2O}n (2, {[Fe4(bipy2(Htpht2(OH6(tpht2]•4H2O}n (3 and {[Fe4(bipy(H2O8(OH4 (pyr2]•H2O}n (4. All complexes are red brown and low-spin with a distorted octahedral geometry and FeO6 or FeN2O4 chromophore. Polycarboxylato ligands have a bridging role in all cases, whereas monodentate COO groups are present in 2 and 3, bridging and chelate COO groups are established in 1 and 4. The thermal behaviour of 1-4 was investigated in detail and the molar dehydration enthalpies were calculated. According to the all those results, the structural formulae of the complexes 1-4 were proposed. [Projekat Ministarstva nauke Republike Srbije, br. III45007

  15. Redox speciation of particulate iron and manganese during river/ocean mixing

    International Nuclear Information System (INIS)

    Zaw, M.; Szymczak, R.; Payne, T.

    2000-01-01

    Full text: A synchrotron radiation experiment was performed at the Australian National Beamline Facility (Photon Factory, Tsukuba, Japan) to investigate changes in the physico-chemical nature of particles during estuarine mixing. X-ray absorption near edge structure spectra (XANES) analysis was used to determine solid-state redox speciation of iron and manganese throughout the river/ocean salinity transects. Particles (>0.4μm) collected using clean techniques were stored under nitrogen during TROPICS Project expeditions to the Fly and Sepik Rivers, PNG. Results indicated that initially, particulate manganese was mostly present as Mn(IV) and Mn(III) compounds with some surface-adsorbed Mn(II). Similarly, iron was present as particulate Fe(III) and Fe(II/III) compounds with some adsorbed Fe(II). During river-ocean mixing, the proportions of both Mn(II) and Fe(III) significantly increased. These observations maybe due to increasing photochemical activity in the river plume, surface-sorption of reduced species related to the estuarine residence time of particles, or enhanced scavenging of ocean-sourced elements. Copyright (2000) American Chemical Society

  16. Polyaminoquinoline iron chelators for vectorization of antiproliferative agents: design, synthesis, and validation.

    Science.gov (United States)

    Corcé, Vincent; Morin, Emmanuelle; Guihéneuf, Solène; Renault, Eric; Renaud, Stéphanie; Cannie, Isabelle; Tripier, Raphaël; Lima, Luís M P; Julienne, Karine; Gouin, Sébastien G; Loréal, Olivier; Deniaud, David; Gaboriau, François

    2012-09-19

    Iron chelation in tumoral cells has been reported as potentially useful during antitumoral treatment. Our aim was to develop new polyaminoquinoline iron chelators targeting tumoral cells. For this purpose, we designed, synthesized, and evaluated the biological activity of a new generation of iron chelators, which we named Quilamines, based on an 8-hydroxyquinoline (8-HQ) scaffold linked to linear polyamine vectors. These were designed to target tumor cells expressing an overactive polyamine transport system (PTS). A set of Quilamines bearing variable polyamine chains was designed and assessed for their ability to interact with iron. Quilamines were also screened for their cytostatic/cytotoxic effects and their selective uptake by the PTS in the CHO cell line. Our results show that both the 8-HQ moiety and the polyamine part participate in the iron coordination. HQ1-44, the most promising Quilamine identified, presents a homospermidine moiety and was shown to be highly taken up by the PTS and to display an efficient antiproliferative activity that occurred in the micromolar range. In addition, cytotoxicity was only observed at concentrations higher than 100 μM. We also demonstrated the high complexation capacity of HQ1-44 with iron while much weaker complexes were formed with other cations, indicative of a high selectivity. We applied the density functional theory to study the binding energy and the electronic structure of prototypical iron(III)-Quilamine complexes. On the basis of these calculations, Quilamine HQ1-44 is a strong tridentate ligand for iron(III) especially in the form of a 1:2 complex.

  17. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    Energy Technology Data Exchange (ETDEWEB)

    Omran, Mamdouh, E-mail: mamdouh.omran@oulu.fi [Process Metallurgy Research Group, Faculty of Technology, University of Oulu (Finland); Mineral Processing and Agglomeration Lab, Central Metallurgical Research and Development Institute, Cairo (Egypt); Fabritius, Timo [Process Metallurgy Research Group, Faculty of Technology, University of Oulu (Finland); Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A. [Mineral Processing and Agglomeration Lab, Central Metallurgical Research and Development Institute, Cairo (Egypt); El-Aref, Mortada; Elmanawi, Abd El-Hamid [Geology Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2015-08-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe{sub 2}O{sub 3} and P{sub 2}O{sub 5} contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe{sup 3+}) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases.

  18. Thermometric studies on the Fe(III)-EDTA chelate.

    Science.gov (United States)

    Dot, K

    1978-02-01

    A DeltaH of -11.5 +/- 0.5 kJ/mole has been determined for the formation of the Fe(III)-EDTA chelate at 25.0 degrees and mu = 0.1(= [HClO(4)] + [NaClO(4)]) by a direct thermometric titration procedure. The entropy change, DeltaS, has been calculated to be 440 J.mole(-1) .deg(-1) by combining the result of the heat measurements with the free energy change obtained from the stability constant previously determined. A relationship between the DeltaS values and the standard partial molal entropies of the tervalent metal ions is discussed. In addition, conditions for the thermometric titration of Fe(III) with NA(4)EDTA at room temperature have been investigated. Iron(III) can be determined in the presence of fairly large amounts of phosphate, Cr(III), Mn(II) and Al(III).

  19. Influence of Carbon Sources and Electron Shuttles on Ferric Iron Reduction by Cellulomonas sp. Strain ES6

    Energy Technology Data Exchange (ETDEWEB)

    Dr Robin Gerlach; Erin K. Field; Sridhar Viamajala; Brent M. Peyton; William A. Apel; Al B. Cunningham

    2011-09-01

    Microbially reduced iron minerals can reductively transform a variety of contaminants including heavy metals, radionuclides, chlorinated aliphatics, and nitroaromatics. A number of Cellulomonas spp. strains, including strain ES6, isolated from aquifer samples obtained at the U.S. Department of Energy's Hanford site in Washington, have been shown to be capable of reducing Cr(VI), TNT, natural organic matter, and soluble ferric iron [Fe(III)]. This research investigated the ability of Cellulomonas sp. strain ES6 to reduce solid phase and dissolved Fe(III) utilizing different carbon sources and various electron shuttling compounds. Results suggest that Fe(III) reduction by and growth of strain ES6 was dependent upon the type of electron donor, the form of iron present, and the presence of synthetic or natural organic matter, such as anthraquinone-2,6-disulfonate (AQDS) or humic substances. This research suggests that Cellulomonas sp. strain ES6 could play a significant role in metal reduction in the Hanford subsurface and that the choice of carbon source and organic matter addition can allow for independent control of growth and iron reduction activity.

  20. Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles

    International Nuclear Information System (INIS)

    Wu, Pingxiao; Li, Shuzhen; Ju, Liting; Zhu, Nengwu; Wu, Jinhua; Li, Ping; Dang, Zhi

    2012-01-01

    Highlights: ► Organo-montmorillonite supported iron nanoparticles were found to be more efficient in the removal of Cr(VI) than unsupported iron nanoparticles. ► The iron nanoparticles were accommodated by the sectional structure of the clay minerals which were helpful to protect the nanoparticles from aggregating. ► XPS and XANES provided some direct information about the reduction mechanisms. ► The structure of the supported iron nanoparticles was stable in the reaction with Cr(VI). - Abstract: Iron nanoparticles exhibit greater reactivity than micro-sized Fe 0 , and they impart advantages for groundwater remediation. In this paper, supported iron nanoparticles were synthesized to further enhance the speed and efficiency of remediation. Natural montmorillonite and organo-montmorillonite were chosen as supporting materials. The capacity of supported iron nanoparticles was evaluated, compared to unsupported iron nanoparticles, for the reduction of aqueous Cr(VI). The reduction of Cr(VI) was much greater with organo-montmorillonite supported iron nanoparticles and fitted the pseudo-second order equation better. With a dose at 0.47 g/L, a total removal capacity of 106 mg Cr/g Fe 0 was obtained. Other factors that affect the efficiency of Cr(VI) removal, such as pH values, the initial Cr(VI) concentration and storage time of nanoparticles were investigated. X-ray photoelectron spectrometry (XPS) and X-ray absorption near edge structure (XANES) were used to figure out the mechanism of the removal of Cr(VI). XPS indicated that the Cr(VI) bound to the particle surface was completely reduced to Cr(III) under a range of conditions. XANES confirmed that the Cr(VI) reacted with iron nanoparticles was completely reduced to Cr(III).

  1. Effect of iron, taurine and arginine on rat hepatic fibrosis

    International Nuclear Information System (INIS)

    Song Liangwen; Wang Dewen; Cui Xuemei

    1997-01-01

    Objective: The promotion role of iron on pathogenesis of hepatic fibrosis and the protective role of taurine and L-arginine against hepatic fibrosis were studied. Method: The model of rat radiation hepatic fibrosis was used. Experimental rats were divided into 0 Gy, 30 Gy, 30 Gy + iron, 30 Gy + taurine and 30 Gy + L-arginine groups. Serum iron, liver tissue hydroxyproline (Hyp) and malondialdehyde (MDA) were measured one and three months respectively after irradiation of hepatic tissue, production and distribution characteristics of hepatic tissue type I and III collagen were observed with a polarizing microscope. Results: Administration of iron agent could significantly increase hepatic tissue MDA content and serum iron concentration, one month after irradiation, hepatic tissue Hyp in 30 Gy + iron group began to increase, and collagen in hepatic tissue obviously increased. Taurine and L-arginine could reduce serum iron concentration and decrease production of hepatic fissure Hyp. Conclusion: Exogenous iron agent could promote early development of radiation hepatic fibrosis; taurine and arginine could diminish pathologic alteration of hepatic fibrosis to a certain extent

  2. Enhanced Iron Solubility at Low pH in Global Aerosols

    Directory of Open Access Journals (Sweden)

    Ellery D. Ingall

    2018-05-01

    Full Text Available The composition and oxidation state of aerosol iron were examined using synchrotron-based iron near-edge X-ray absorption spectroscopy. By combining synchrotron-based techniques with water leachate analysis, impacts of oxidation state and mineralogy on aerosol iron solubility were assessed for samples taken from multiple locations in the Southern and the Atlantic Oceans; and also from Noida (India, Bermuda, and the Eastern Mediterranean (Crete. These sampling locations capture iron-containing aerosols from different source regions with varying marine, mineral dust, and anthropogenic influences. Across all locations, pH had the dominating influence on aerosol iron solubility. When aerosol samples were approximately neutral pH, iron solubility was on average 3.4%; when samples were below pH 4, the iron solubility increased to 35%. This observed aerosol iron solubility profile is consistent with thermodynamic predictions for the solubility of Fe(III oxides, the major iron containing phase in the aerosol samples. Source regions and transport paths were also important factors affecting iron solubility, as samples originating from or passing over populated regions tended to contain more soluble iron. Although the acidity appears to affect aerosol iron solubility globally, a direct relationship for all samples is confounded by factors such as anthropogenic influence, aerosol buffer capacity, mineralogy and physical processes.

  3. Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans.

    Science.gov (United States)

    Quatrini, Raquel; Jedlicki, Eugenia; Holmes, David S

    2005-12-01

    Commercial bioleaching of copper and the biooxidation of gold is a cost-effective and environmentally friendly process for metal recovery. A partial genome sequence of the acidophilic, bioleaching bacterium Acidithiobacillus ferrooxidans is available from two public sources. This information has been used to build preliminary models that describe how this microorganism confronts unusually high iron loads in the extremely acidic conditions (pH 2) found in natural environments and in bioleaching operations. A. ferrooxidans contains candidate genes for iron uptake, sensing, storage, and regulation of iron homeostasis. Predicted proteins exhibit significant amino acid similarity with known proteins from neutrophilic organisms, including conservation of functional motifs, permitting their identification by bioinformatics tools and allowing the recognition of common themes in iron transport across distantly related species. However, significant differences in amino acid sequence were detected in pertinent domains that suggest ways in which the periplasmic and outer membrane proteins of A. ferrooxidans maintain structural integrity and relevant protein-protein contacts at low pH. Unexpectedly, the microorganism also contains candidate genes, organized in operon-like structures that potentially encode at least 11 siderophore systems for the uptake of Fe(III), although it does not exhibit genes that could encode the biosynthesis of the siderophores themselves. The presence of multiple Fe(III) uptake systems suggests that A. ferrooxidans can inhabit aerobic environments where iron is scarce and where siderophore producers are present. It may also help to explain why it cannot tolerate high Fe(III) concentrations in bioleaching operations where it is out-competed by Leptospirillum species.

  4. Microbial iron reduction related to metal speciation in mine waste at the former uranium mine in Ranstad

    International Nuclear Information System (INIS)

    Nejad, F.T.

    1998-02-01

    Mining activities in Ranstad uranium mine started in 1965 and ended in 1969. In 1988 the final restoration was discussed, and it was proposed to water-fill the open pit and cover the waste disposal area using the 'dry method'. Today the open pit has become a lake. Also some alum shale was placed on the land surface where it has been weathered by oxygen and water during 30 years. In 1994 it was observed that the color of the lake turned over to brown-red. Further studies showed increasing iron concentration in the lake and around the tailings area. For estimation of microbial iron reduction in the lake, three iron reducing bacteria were isolated from the water-filled open pit. For the enrichment process, water samples were inoculated in an anoxic enrichment medium. The isolates were able to reduce Fe(III) oxyhydroxide by oxidation of lactate as energy source. Growth of these strains was determined by production of a black precipitation of iron sulfide and was confirmed by estimation of total number of cells. Fe(III) reduction was monitored by measuring the accumulation of Fe(II) over time. Comparison of the 16S rRNA gene sequences of strains Tran-l, Tran-2, and Tran-3 with the EMBL data base showed 98.6% identity with Shewanella putrefaciens, 98.7% identity with Shewanella alga and 98.2% identity with Aeromonas salmonicida, respectively. S. putrefaciens strains have been isolated from many different environments, many of which are suboxic or anoxic. In addition to growing aerobically, S. putrefaciens can use Fe(III) as terminal electron acceptor under anaerobic conditions. To distinguish if the Fe(III) and/or organic compounds presence in weathered alum shale can be utilized by iron reducing bacteria isolated from the lake, reduction of Fe(III) coupled to the oxidation of organic compounds in sterile and non-sterile weathered alum shale was studied. The reduction of Fe(III) coupled to growth of bacteria on sterile and non-sterile shale was observed. Furthermore

  5. Microbial iron reduction related to metal speciation in mine waste at the former uranium mine in Ranstad

    Energy Technology Data Exchange (ETDEWEB)

    Nejad, F.T. [Goeteborg Univ. (Sweden). Dept. of General and Marine Microbiology

    1998-02-01

    Mining activities in Ranstad uranium mine started in 1965 and ended in 1969. In 1988 the final restoration was discussed, and it was proposed to water-fill the open pit and cover the waste disposal area using the `dry method`. Today the open pit has become a lake. Also some alum shale was placed on the land surface where it has been weathered by oxygen and water during 30 years. In 1994 it was observed that the color of the lake turned over to brown-red. Further studies showed increasing iron concentration in the lake and around the tailings area. For estimation of microbial iron reduction in the lake, three iron reducing bacteria were isolated from the water-filled open pit. For the enrichment process, water samples were inoculated in an anoxic enrichment medium. The isolates were able to reduce Fe(III) oxyhydroxide by oxidation of lactate as energy source. Growth of these strains was determined by production of a black precipitation of iron sulfide and was confirmed by estimation of total number of cells. Fe(III) reduction was monitored by measuring the accumulation of Fe(II) over time. Comparison of the 16S rRNA gene sequences of strains Tran-l, Tran-2, and Tran-3 with the EMBL data base showed 98.6% identity with Shewanella putrefaciens, 98.7% identity with Shewanella alga and 98.2% identity with Aeromonas salmonicida, respectively. S. putrefaciens strains have been isolated from many different environments, many of which are suboxic or anoxic. In addition to growing aerobically, S. putrefaciens can use Fe(III) as terminal electron acceptor under anaerobic conditions. To distinguish if the Fe(III) and/or organic compounds presence in weathered alum shale can be utilized by iron reducing bacteria isolated from the lake, reduction of Fe(III) coupled to the oxidation of organic compounds in sterile and non-sterile weathered alum shale was studied. The reduction of Fe(III) coupled to growth of bacteria on sterile and non-sterile shale was observed. Furthermore

  6. Effect of Iron Fe (II and Fe (III in a Binary System Evaluated Bioluminescent Method

    Directory of Open Access Journals (Sweden)

    Elena Sorokina

    2013-01-01

    Full Text Available The effect of iron ions Fe2+ and Fe3+ on the bioluminescent recombinant strain of Escherichia coli in a single-component and binary system. Found that for the bacteria E. coli Fe3+ ions are more toxic than Fe2+. Under the combined effect of iron toxicity increases, the percentage of luminescence quenching increases, but the value is much less than the sum of the indicator for the Fe2+ and Fe3+. The biological effect of insertion of iron is not proportional to their content in the mixture.

  7. Nitric oxide activation by distal redox modulation in tetranuclear iron nitrosyl complexes.

    Science.gov (United States)

    de Ruiter, Graham; Thompson, Niklas B; Lionetti, Davide; Agapie, Theodor

    2015-11-11

    A series of tetranuclear iron complexes displaying a site-differentiated metal center was synthesized. Three of the metal centers are coordinated to our previously reported ligand, based on a 1,3,5-triarylbenzene motif with nitrogen and oxygen donors. The fourth (apical) iron center is coordinatively unsaturated and appended to the trinuclear core through three bridging pyrazolates and an interstitial μ4-oxide moiety. Electrochemical studies of complex [LFe3(PhPz)3OFe][OTf]2 revealed three reversible redox events assigned to the Fe(II)4/Fe(II)3Fe(III) (-1.733 V), Fe(II)3Fe(III)/Fe(II)2Fe(III)2 (-0.727 V), and Fe(II)2Fe(III)2/Fe(II)Fe(III)3 (0.018 V) redox couples. Combined Mössbauer and crystallographic studies indicate that the change in oxidation state is exclusively localized at the triiron core, without changing the oxidation state of the apical metal center. This phenomenon is assigned to differences in the coordination environment of the two metal sites and provides a strategy for storing electron and hole equivalents without affecting the oxidation state of the coordinatively unsaturated metal. The presence of a ligand-binding site allowed the effect of redox modulation on nitric oxide activation by an Fe(II) metal center to be studied. Treatment of the clusters with nitric oxide resulted in binding of NO to the apical iron center, generating a {FeNO}(7) moiety. As with the NO-free precursors, the three reversible redox events are localized at the iron centers distal from the NO ligand. Altering the redox state of the triiron core resulted in significant change in the NO stretching frequency, by as much as 100 cm(-1). The increased activation of NO is attributed to structural changes within the clusters, in particular, those related to the interaction of the metal centers with the interstitial atom. The differences in NO activation were further shown to lead to differential reactivity, with NO disproportionation and N2O formation performed by the more

  8. Uses of complexone III and ion exchange resins in colorimetric determination with o-phenanthroline of Fe traces in uranium compounds; Aplicacion de la complexona III y resinas combadoras a la determinacion colorimetrica con orto-fenantro-lina de trazas de dhierro en compuesto de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Cellini, R; Ruiz Sanchez, F

    1956-07-01

    The determination of small quantities of iron using o-phenanthroline, assumes the elimination of some cations interference by means of pH control before the formation of a coloured complex. We have eluded that difficulty by the connected action of complexones III and ion exchange. the previous forms quelate with the iron (III) with a stability constant high enough to permit the pass of an iron solution through a cation resin column without being fixed which never occurs with the interferer cations. Mercury is the only element with a similar stability, but it has been eliminated previously. (Author) 16 refs.

  9. Influence of iron solubility and charged surface-active compounds on lipid oxidation in fatty acid ethyl esters containing association colloids.

    Science.gov (United States)

    Homma, Rika; Johnson, David R; McClements, D Julian; Decker, Eric A

    2016-05-15

    The impact of iron compounds with different solubilities on lipid oxidation was studied in the presence and absence of association colloids. Iron (III) sulfate only accelerated lipid oxidation in the presence of association colloids while iron (III) oleate accelerated oxidation in the presence and absence of association colloids. Further, iron (III) oxide retarded lipid oxidation both with and without association colloids. The impact of charged association colloids on lipid oxidation in ethyl oleate was also investigated. Association colloids consisting of the anionic surface-active compound dodecyl sulphosuccinate sodium salt (AOT), cationic surface-active compound hexadecyltrimethylammonium bromide (CTAB), and nonionic surface-active compound 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) retarded, promoted, and had no effect on lipid oxidation rates, respectively. These results indicate that the polarity of metal compounds and the charge of association colloids play a big role in lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Analytical applications of N-phenyl-n-butyro hydroxamic and N-p-tolyl-n-butyro hydroxamic acids towards chromium (VI), copper (II), iron (III) and uranium (VI)

    International Nuclear Information System (INIS)

    Elkhadir, A. Y. F.

    2001-05-01

    Two aliphatic hydroxamic acids were prepared; N-phenyl-n-butyro hydroxamic acid and N-p-tolyl-n-butyro hydroxamic acid, by the reaction of β-phenylhydroxylamine and p-tolyl hydroxylamine with n-butyryl chloride. The acids were identified by: their melting points, characteristic reactions with acidic solutions of vanadium (V) and iron (III), infrared spectroscopy, nitrogen content and molecular weight determination. The extractability of these acids towards Cr (VI), Cu (II), Fe (III) and U (VI) were investigated at different pH values and molar acid concentrations. N-phenyl-n- butyro hydroxamic acid has a maximum extraction (98.80%) for Cr (VI) at 4 M H 2 SO 4 , (83.25%) for Cu (II) at pH 6, (99.17%) for Fe (III) at pH 5 and (99.76%) at 4 M HNO 3 for U (VI) respectively. N-p-tolyl-n-butyro hydroxamic acid has a maximum extraction (98.40%) for Cr (VI)at 4 M H 2 SO 4 , (81.30%) for Cu (II) at pH 6, (92.80%) for Fe (III) at pH 5 and (99.64%) for U (VI) at 4 M HNO 3 , respectively. The ratios of the metal to ligands were determined by job method (continuous variation method) and were found to be 1:2 for Cr (VI) and U (VI). (Author)

  11. Analytical applications of N-phenyl-n-butyro hydroxamic and N-p-tolyl-n-butyro hydroxamic acids towards chromium (VI), copper (II), iron (III) and uranium (VI)

    Energy Technology Data Exchange (ETDEWEB)

    Elkhadir, A Y. F. [Department of Chemistry, Faculty of Science, University of Khartoum, Khartoum (Sudan)

    2001-05-01

    Two aliphatic hydroxamic acids were prepared; N-phenyl-n-butyro hydroxamic acid and N-p-tolyl-n-butyro hydroxamic acid, by the reaction of {beta}-phenylhydroxylamine and p-tolyl hydroxylamine with n-butyryl chloride. The acids were identified by: their melting points, characteristic reactions with acidic solutions of vanadium (V) and iron (III), infrared spectroscopy, nitrogen content and molecular weight determination. The extractability of these acids towards Cr (VI), Cu (II), Fe (III) and U (VI) were investigated at different pH values and molar acid concentrations. N-phenyl-n- butyro hydroxamic acid has a maximum extraction (98.80%) for Cr (VI) at 4 M H{sub 2}SO{sub 4}, (83.25%) for Cu (II) at pH 6, (99.17%) for Fe (III) at pH 5 and (99.76%) at 4 M HNO{sub 3} for U (VI) respectively. N-p-tolyl-n-butyro hydroxamic acid has a maximum extraction (98.40%) for Cr (VI)at 4 M H{sub 2} SO{sub 4}, (81.30%) for Cu (II) at pH 6, (92.80%) for Fe (III) at pH 5 and (99.64%) for U (VI) at 4 M HNO{sub 3}, respectively. The ratios of the metal to ligands were determined by job method (continuous variation method) and were found to be 1:2 for Cr (VI) and U (VI). (Author)

  12. Coprecipitation of arsenate with metal oxides. 3. Nature, mineralogy, and reactivity of iron(III)-aluminum precipitates.

    Science.gov (United States)

    Violante, Antonio; Pigna, Massimo; Del Gaudio, Stefania; Cozzolino, Vincenza; Banerjee, Dipanjan

    2009-03-01

    Coprecipitation involving arsenic with aluminum or iron has been studied because this technique is considered particularly efficient for removal of this toxic element from polluted waters. Coprecipitation of arsenic with mixed iron-aluminum solutions has received scant attention. In this work we studied (i)the mineralogy, surface properties, and chemical composition of mixed iron-aluminum oxides formed at initial Fe/Al molar ratio of 1.0 in the absence or presence of arsenate [As/ Fe+Al molar ratio (R) of 0, 0.01, or 0.1] and at pH 4.0, 7.0, and 10.0 and aged for 30 and 210 days at 50 degrees C and (ii) the removal of arsenate from the coprecipitates after addition of phosphate. The amounts of short-range ordered precipitates (ferrihydrite, aluminous ferrihydrite and/or poorly crystalline boehmite) were greater than those found in iron and aluminum systems (studied in previous works), due to the capacity of both aluminum and arsenate to retard or inhibitthe transformation of the initially formed precipitates into well-crystallized oxides (gibbsite, bayerite, and hematite). As a consequence, the surface areas of the iron-aluminum oxides formed in the absence or presence of arsenate were usually much larger than those of aluminum or iron oxides formed under the same conditions. Arsenate was found to be associated mainly into short-range ordered materials. Chemical composition of all samples was affected by pH, initial R, and aging. Phosphate sorption was facilitated by the presence of short-range ordered materials, mainly those richer in aluminum, but was inhibited by arsenate present in the samples. The quantities of arsenate replaced by phosphate, expressed as percentages of its total amount present in the samples, were particularly low, ranging from 10% to 26%. A comparison of the desorption of arsenate by phosphate from aluminum-arsenate and iron-arsenate (studied in previous works) and iron-aluminum-arsenate coprecipitates evidenced that phosphate has a greater

  13. Evaluating the Effectiveness of Various Methods of Iron Deficiency Prevention in Infants

    Directory of Open Access Journals (Sweden)

    N.А. Bielykh

    2015-02-01

    Full Text Available Objective: to evaluate the effectiveness of various methods of iron deficiency prevention in infants. Materials and Methods. Within 30-cluster regional epidemiological study on the prevalence of iodine and iron deficiency in children, we have analyzed the results of screening for anemia in 948 children, carried out questioning of mothers, determined the concentration of iron in breast milk. The effectiveness of preventive measures was assessed by indicators of iron supplementation of the body in 96 children depending on the existing method of iron prophylaxis. Results of the Study. It was found that the use by mother during lactation of iron-containing vitamin-mineral complexes had no effect on the iron content in breast milk. It is proved that administration of iron (III hydroxide polymaltose complex 1 mg/kg/day for 2 months is the most effective way to prevent iron deficiency in children who are exclusively breastfed.

  14. Influence of complexes of iron on genetic changes at gamma-irradiated wheat

    International Nuclear Information System (INIS)

    Shamilov, E. N.; Rzayev, A.A.; Huseynova, Z.H; Mamedli, S.A; Azizov, I.V.

    2006-01-01

    Full text: At the result of research action of salts of some metals on living organisms their preventive and therapeutic action is revealed. It was revealed, that metals in structure of organic complex connections are less toxic, than as inorganic salts. Presence of organic ligand gives metallic-complexes lipophilically, will neutralize electrostatistical charges of metals therefore their transport through cellular membranes is strongly facilitated. In this connection rather expedient study of radioprotector properties of trivalent metals and their complexes is represented. Use of iron as a radioprotector is caused with its ability to steady complexing biogenic character. As objects of researches are taken seeds drought-resistant firm of wheat Triticum L. Seeds subjected to the general uniform scale of irradiation-from a source 60 Co and gamma to installation R khund a t average capacity of a doze of radiation dose rate (D R=0,024 Gy/s). Before the irradiation seeds have been processed pyrocatechol, iron pyrocatechol, thiocarbamide, iron-thiocarbamide, rutin and iron rutin at concentration 10 2 M. For synthesis of complexes used chloride of iron (III), thiocarbamide, pyrocatechol marks a .p.a. . Routines (3- ramnoglycoside-3,5,7,3,4-penta-oksi-flavone, chartreuse fine-grained a powder) have received from (Sophora japonica L.): Synthesis complexes of iron carried out by the following technique: stoichiometric quantity of thiocarbamide, pyrocatechol and routine dissolved separately in 50 ml isopropyl alcohol. A solution of chloride of iron (III) deposits dropped out, separated, dried up to constant weight was added to the received solutions in the portions at hashing.

  15. Spectroscopic and functional characterization of iron-bound forms of Azotobacter vinelandii (Nif)IscA.

    Science.gov (United States)

    Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K

    2012-10-16

    The ability of Azotobacter vinelandii(Nif)IscA to bind Fe has been investigated to assess the role of Fe-bound forms in NIF-specific Fe-S cluster biogenesis. (Nif)IscA is shown to bind one Fe(III) or one Fe(II) per homodimer and the spectroscopic and redox properties of both the Fe(III)- and Fe(II)-bound forms have been characterized using the UV-visible absorption, circular dichroism, and variable-temperature magnetic circular dichroism, electron paramagnetic resonance, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic intermediate-spin (S = 3/2) Fe(III) center (E/D = 0.33, D = 3.5 ± 1.5 cm(-1)) that is most likely 5-coordinate with two or three cysteinate ligands and a rhombic high spin (S = 2) Fe(II) center (E/D = 0.28, D = 7.6 cm(-1)) with properties similar to reduced rubredoxins or rubredoxin variants with three cysteinate and one or two oxygenic ligands. Iron-bound (Nif)IscA undergoes reversible redox cycling between the Fe(III)/Fe(II) forms with a midpoint potential of +36 ± 15 mV at pH 7.8 (versus NHE). l-Cysteine is effective in mediating release of free Fe(II) from both the Fe(II)- and Fe(III)-bound forms of (Nif)IscA. Fe(III)-bound (Nif)IscA was also shown to be a competent iron source for in vitro NifS-mediated [2Fe-2S] cluster assembly on the N-terminal domain of NifU, but the reaction occurs via cysteine-mediated release of free Fe(II) rather than direct iron transfer. The proposed roles of A-type proteins in storing Fe under aerobic growth conditions and serving as iron donors for cluster assembly on U-type scaffold proteins or maturation of biological [4Fe-4S] centers are discussed in light of these results.

  16. Uses of complexone III and ion exchange resins in colorimetric determination with o-phenanthroline of Fe traces in uranium compounds

    International Nuclear Information System (INIS)

    Fernandez Cellini, R.; Ruiz Sanchez, F.

    1956-01-01

    The determination of small quantities of iron using o-phenanthroline, assumes the elimination of some cations interference by means of pH control before the formation of a coloured complex. We have eluded that difficulty by the connected action of complexones III and ion exchange. the previous forms quelate with the iron (III) with a stability constant high enough to permit the pass of an iron solution through a cation resin column without being fixed which never occurs with the interferer cations. Mercury is the only element with a similar stability, but it has been eliminated previously. (Author) 16 refs

  17. Pharmacokinetic and in vivo evaluation of a self-assembled gadolinium(III)-iron(II) contrast agent with high relaxivity.

    Science.gov (United States)

    Parac-Vogt, Tatjana N; Vander Elst, Luce; Kimpe, Kristof; Laurent, Sophie; Burtéa, Carmen; Chen, Feng; Van Deun, Rik; Ni, Yicheng; Muller, Robert N; Binnemans, Koen

    2006-01-01

    A high-molecular weight tetrametallic supramolecular complex [(Ln-DTPA-phen)3Fe]- (Ln = Gd, Eu, La) has been obtained upon self-assembly around one iron(II) ion of three 1,10-phenantroline-based molecules substituted in 5'-position with the polyaminocarboxylate diethylenetriamine-N,N,N',N',N'-pentaacetate, DTPA-phen(4-). The ICP-MS measurements indicated that the lanthanide:iron ratio is 3:1. Photoluminescence spectra of [Eu-DTPA-phen](-) and of [(Eu-DTPA-phen)3Fe]- are nearly identical, implying that the first coordination sphere of the lanthanide(III) ion has not been changed upon coordination of phenantroline unit to iron(II) ion. NMRD measurements revealed that at 20 MHz and 310 K the relaxivity of the [(Gd-DTPA-phen)3Fe]- is equal to 9.5 +/- 0.3 s(-1) mM(-1) of Gd (28.5 s(-1) per millimole per liter of complex) which is significantly higher than that for Gd-DTPA (3.9 s(-1) mM(-1)). The pharmacokinetic parameters of [(Gd-DTPA-phen)3Fe]- in rats indicate that the elimination of [(Gd-DTPA-phen)3Fe]- is significantly slower than that of Gd-DTPA and is correlated with a reduced volume of distribution. The low volume of distribution and the longer elimination time (T(e1/2)) suggest that the agent is confined to the blood compartment, so it could have an important potential as a blood pool contrast agent. The biodistribution profile of [(Gd-DTPA-phen)3Fe]- 2 h after injection indicates significantly higher concentrations of [(Gd-DTPA-phen)3Fe]- as compared with Gd-DTPA in kidney, liver, lungs, heart and spleen. The images obtained on rats by MR angiography show the enhancement of the abdominal blood vessels. The signal intensity reaches a maximum of 55% at 7 min post-contrast and remains around 25% after 90 min. MRI-histomorphological correlation studies of [Gd-DTPA-phen]- and [(Gd-DTPA-phen)3Fe]- showed that both agents displayed potent contrast enhancement in organs including the liver. The necrosis avidity tests indicated that, in contrast to the [Gd

  18. Importance of different physiological groups of iron reducing microorganisms in an acidic mining lake remediation experiment.

    Science.gov (United States)

    Porsch, Katharina; Meier, Jutta; Kleinsteuber, Sabine; Wendt-Potthoff, Katrin

    2009-05-01

    Iron- and sulfate-reducing microorganisms play an important role for alkalinity-generating processes in mining lakes with low pH. In the acidic mining lake 111 in Lusatia, Germany, a passive in situ remediation method was tested in a large scale experiment, in which microbial iron and sulfate reduction are stimulated by addition of Carbokalk (a mixture of the nonsugar compounds of sugar beets and lime) and straw. The treated surface sediment consisted of three layers of different pH and geochemical composition. The top layer was acidic and rich in Fe(III), the second and third layer both showed moderately acidic to circum-neutral pH values, but only the second was rich in organics, strongly reduced and sulfidic. Aim of the study was to elucidate the relative importance of neutrophilic heterotrophic, acidophilic heterotrophic, and acidophilic autotrophic iron-reducing microorganisms in each of the three layers. In order to distinguish between them, the effect of their respective characteristic electron donors acetate, glucose, and elemental sulfur on potential iron reduction rates was investigated. Limitation of iron reduction by the availability of Fe(III) was revealed by the addition of Fe(OH)(3). The three groups of iron-reducing microorganisms were quantified by most probable number (MPN) technique and their community composition was analyzed by cloning and sequencing of 16S rRNA genes. In the acidic surface layer, none of the three electron donors stimulated iron reduction; acetate even had an inhibiting effect. In agreement with this, no decrease of the added electron donors was observed. Iron reduction rates were low in comparison to the other layers. Iron reduction in layers 2 and 3 was enhanced by glucose and acetate, accompanied by a decrease of these electron donors. Addition of elemental sulfur did not enhance iron reduction in either layer. Layer 2 exhibited the highest iron reduction rate (4.08 mmol dm(-3) d(-1)) and the highest cell numbers in MPN

  19. Ammonia adsorption properties and its mechanism of deodorant filter made of iron ascorbate on porous iron frame; Tetsu takotai, asukorubin san dasshu filter no ammonia dasshu kiko

    Energy Technology Data Exchange (ETDEWEB)

    Noda, T.; Kanamaru, T.; Maeda, S. [Nippon Steel Corp., Tokyo (Japan)

    1996-07-10

    A deodorant filter was made by treating porous metallic iron with an L-ascorbic acid aqueous solutions depositing the iron ascorbate on it. The ammonia adsorption capacity of the deodorant filter was studied with repetitive runs of adsorption tests. The results show that the ammonia adsorption capacity of the iron ascorbate is nearly equal to conventions: granular activated carbon at the beginning, but unlike the letter, the iron ascorbate perfectly recovers the capacity via reversible desorption. ESR and Mossbauer spectroscopy reveal that ammonia goes into the inner coordination sphere of Fe(II) and Fe(III), capable of reversible adsorption and desorption, and that the reactivity of iron is attributable to the formation of the ascorbate complex, which is formed in the specific manufacturing process of the deodorant filter. 13 refs., 7 figs., 1 tab.

  20. Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Pingxiao, E-mail: pppxwu@scut.edu.cn [College of Environmental Science and Engineering, South China University of Technology, Guangzhou 510006 (China); Li, Shuzhen [School of Chemical and Environmental Engineering, Wuyi University, Jiangmen, Guangdong Province 529020 (China); Ju, Liting [College of Environmental Science and Engineering, South China University of Technology, Guangzhou 510006 (China); Zhu, Nengwu [College of Environmental Science and Engineering, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006 (China); The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions (China); Wu, Jinhua; Li, Ping [College of Environmental Science and Engineering, South China University of Technology, Guangzhou 510006 (China); Dang, Zhi [College of Environmental Science and Engineering, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006 (China); The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Organo-montmorillonite supported iron nanoparticles were found to be more efficient in the removal of Cr(VI) than unsupported iron nanoparticles. Black-Right-Pointing-Pointer The iron nanoparticles were accommodated by the sectional structure of the clay minerals which were helpful to protect the nanoparticles from aggregating. Black-Right-Pointing-Pointer XPS and XANES provided some direct information about the reduction mechanisms. Black-Right-Pointing-Pointer The structure of the supported iron nanoparticles was stable in the reaction with Cr(VI). - Abstract: Iron nanoparticles exhibit greater reactivity than micro-sized Fe{sup 0}, and they impart advantages for groundwater remediation. In this paper, supported iron nanoparticles were synthesized to further enhance the speed and efficiency of remediation. Natural montmorillonite and organo-montmorillonite were chosen as supporting materials. The capacity of supported iron nanoparticles was evaluated, compared to unsupported iron nanoparticles, for the reduction of aqueous Cr(VI). The reduction of Cr(VI) was much greater with organo-montmorillonite supported iron nanoparticles and fitted the pseudo-second order equation better. With a dose at 0.47 g/L, a total removal capacity of 106 mg Cr/g Fe{sup 0} was obtained. Other factors that affect the efficiency of Cr(VI) removal, such as pH values, the initial Cr(VI) concentration and storage time of nanoparticles were investigated. X-ray photoelectron spectrometry (XPS) and X-ray absorption near edge structure (XANES) were used to figure out the mechanism of the removal of Cr(VI). XPS indicated that the Cr(VI) bound to the particle surface was completely reduced to Cr(III) under a range of conditions. XANES confirmed that the Cr(VI) reacted with iron nanoparticles was completely reduced to Cr(III).

  1. Synthesis and characterization of iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes of salicylidene-N-anilinoacetohydrazone (H2L1) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H2L2).

    Science.gov (United States)

    AbouEl-Enein, S A; El-Saied, F A; Kasher, T I; El-Wardany, A H

    2007-07-01

    Salicylidene-N-anilinoacetohydrazone (H(2)L(1)) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H(2)L(2)) and their iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes have been synthesized and characterized by IR, electronic spectra, molar conductivities, magnetic susceptibilities and ESR. Mononuclear complexes are formed with molar ratios of 1:1, 1:2 and 1:3 (M:L). The IR studies reveal various modes of chelation. The electronic absorption spectra and magnetic susceptibility measurements show that the iron(III), nickel(II) and cobalt(II) complexes of H(2)L(1) have octahedral geometry. While the cobalt(II) complexes of H(2)L(2) were separated as tetrahedral structure. The copper(II) complexes have square planar stereochemistry. The ESR parameters of the copper(II) complexes at room temperature were calculated. The g values for copper(II) complexes proved that the Cu-O and Cu-N bonds are of high covalency.

  2. Photoconversion and fluorescence properties of a red/green-type cyanobacteriochrome AM1_C0023g2 that binds not only phycocyanobilin but also biliverdin.

    Directory of Open Access Journals (Sweden)

    Keiji eFushimi

    2016-04-01

    Full Text Available Cyanobacteriochromes (CBCRs are distantly related to the red/far-red responsive phytochromes. Red/green-type CBCRs are widely distributed among various cyanobacteria. The red/green-type CBCRs covalently bind phycocyanobilin (PCB and show red/green reversible photoconversion. Recent studies revealed that some red/green-type CBCRs from chlorophyll d-bearing cyanobacterium Acaryochloris marina covalently bind not only PCB but also biliverdin (BV. The BV-binding CBCRs show far-red/orange reversible photoconversion. Here, we identified another CBCR (AM1_C0023g2 from A. marina that also covalently binds not only PCB but also BV with high binding efficiencies, although BV chromophore is unstable in the presence of urea. Replacement of Ser334 with Gly resulted in significant improvement in the yield of the BV-binding holoprotein, thereby ensuring that the mutant protein is a fine platform for future development of optogenetic switches. We also succeeded in detecting near-infrared fluorescence from mammalian cells harboring PCB-binding AM1_C0023g2 whose fluorescence quantum yield is 3.0%. Here the PCB-binding holoprotein is shown as a platform for future development of fluorescent probes.

  3. Mechanistic investigation of Fe(III) oxide reduction by low molecular weight organic sulfur species

    Science.gov (United States)

    Eitel, Eryn M.; Taillefert, Martial

    2017-10-01

    Low molecular weight organic sulfur species, often referred to as thiols, are known to be ubiquitous in aquatic environments and represent important chemical reductants of Fe(III) oxides. Thiols are excellent electron shuttles used during dissimilatory iron reduction, and in this capacity could indirectly affect the redox state of sediments, release adsorbed contaminants via reductive dissolution, and influence the carbon cycle through alteration of bacterial respiration processes. Interestingly, the reduction of Fe(III) oxides by thiols has not been previously investigated in environmentally relevant conditions, likely due to analytical limitations associated with the detection of thiols and their oxidized products. In this study, a novel electrochemical method was developed to simultaneously determine thiol/disulfide pair concentrations in situ during the reduction of ferrihydrite in batch reactors. First order rate laws with respect to initial thiol concentration were confirmed for Fe(III) oxyhydroxide reduction by four common thiols: cysteine, homocysteine, cysteamine, and glutathione. Zero order was determined for both Fe(III) oxyhydroxide and proton concentration at circumneutral pH. A kinetic model detailing the molecular mechanism of the reaction was optimized with proposed intermediate surface structures. Although metal oxide overall reduction rate constants were inversely proportional to the complexity of the thiol structure, the extent of metal reduction increased with structure complexity, indicating that surface complexes play a significant role in the ability of these thiols to reduce iron. Taken together, these results demonstrate the importance of considering the molecular reaction mechanism at the iron oxide surface when investigating the potential for thiols to act as electron shuttles during dissimilatory iron reduction in natural environments.

  4. Calculated electronic structure of chromium surfaces and chromium monolayers on iron

    International Nuclear Information System (INIS)

    Victora, R.H.; Falicov, L.M.

    1985-01-01

    A self-consistent calculation of the magnetic and electronic properties of the chromium (100) and (110) surfaces and of a chromium monolayer on the (100) and (110) iron surfaces is presented. It is found that (i) the (100) chromium surface is ferromagnetic with a greatly enhanced spin polarization (3.00 electrons); (ii) a substantial enhancement of the spin imbalance exists several (>5) layers into the bulk; (iii) the (110) chromium surface is antiferromagnetic with a large (2.31) spin imbalance; (iv) the (100) chromium monolayer on ferromagnetic iron is ferromagnetic, with a huge spin imbalance (3.63), and aligned antiferromagnetically with respect to the bulk iron; (v) the (110) chromium monolayer on ferromagnetic iron is also ferromagnetic, with a spin imbalance of 2.25 and antiferromagnetically aligned to the iron. The spin imbalance of chromium on iron (100) is possibly the largest of any transition-metal system

  5. The nanosphere iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these 'Mars-soil analogs' were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxyl mineral such as 'green rust', or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable meaghemite (gamma-Fe203) by mild heat treatment and then to nanophase hematite (aplha-Fe203) by extensive heat treatment. Their chemical reactivity offers a plausible mechanism for the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxide and silicate phase surfaces. The mode of formation of these (nanophase) iron oxides on Mars is still unknown.

  6. Escherichia coli class Ib ribonucleotide reductase contains a dimanganese(III)-tyrosyl radical cofactor in vivo†

    Science.gov (United States)

    Cotruvo, Joseph A.; Stubbe, JoAnne

    2011-01-01

    Escherichia coli class Ib ribonucleotide reductase (RNR) converts nucleoside 5′-diphosphates to deoxynucleoside 5′-diphosphates in iron-limited and oxidative stress conditions. We have recently demonstrated in vitro that this RNR is active with both diferric-tyrosyl radical (FeIII2-Y•) and dimanganese(III)-Y• (MnIII2-Y•) cofactors in the β2 subunit, NrdF [Cotruvo J.A., Jr. and Stubbe J., Biochemistry (2010) 49, 1297–1309]. Here we demonstrate, by purification of this protein from its endogenous levels in an E. coli strain deficient in its five known iron uptake pathways and grown under iron-limited conditions, that the MnIII2-Y• cofactor is assembled in vivo. This is the first definitive determination of the active cofactor of a class Ib RNR purified from its native organism without overexpression. From 88 g of cell paste, 150 μg of NrdF was isolated with ~95% purity, with 0.2 Y•/β2, 0.9 Mn/β2, and a specific activity of 720 nmol/min/mg. In these conditions, the class Ib RNR is the primary active RNR in the cell. Our results strongly suggest that E. coli NrdF is an obligate manganese protein in vivo and that the MnIII2-Y• cofactor assembly pathway we have identified in vitro involving the flavodoxin-like protein NrdI, present inside the cell at catalytic levels, is operative in vivo. PMID:21250660

  7. Evidence for ferritin as dominant iron-bearing species in the rhizobacterium Azospirillum brasilense Sp7 provided by low-temperature/in-field Mössbauer spectroscopy.

    Science.gov (United States)

    Kovács, Krisztina; Kamnev, Alexander A; Pechoušek, Jiří; Tugarova, Anna V; Kuzmann, Ernő; Machala, Libor; Zbořil, Radek; Homonnay, Zoltán; Lázár, Károly

    2016-02-01

    For the ubiquitous diazotrophic rhizobacterium Azospirillum brasilense, which has been attracting the attention of researchers worldwide for the last 35 years owing to its significant agrobiotechnological and phytostimulating potential, the data on iron acquisition and its chemical speciation in cells are scarce. In this work, for the first time for azospirilla, low-temperature (at 80 K, 5 K, as well as at 2 K without and with an external magnetic field of 5 T) transmission Mössbauer spectroscopic studies were performed for lyophilised biomass of A. brasilense (wild-type strain Sp7 grown with (57)Fe(III) nitrilotriacetate complex as the sole source of iron) to enable quantitative chemical speciation analysis of the intracellular iron. In the Mössbauer spectrum at 80 K, a broadened quadrupole doublet of high-spin iron(III) was observed with a few percent of a high-spin iron(II) contribution. In the spectrum measured at 5 K, a dominant magnetically split component appeared with the parameters typical of ferritin species from other bacteria, together with a quadrupole doublet of a superparamagnetic iron(III) component and a similarly small contribution from the high-spin iron(II) component. The Mössbauer spectra recorded at 2 K (with or without a 5 T external field) confirmed the assignment of ferritin species. About 20% of total Fe in the dry cells of A. brasilense strain Sp7 were present in iron(III) forms superparamagnetic at both 5 and 2 K, i.e. either different from ferritin cores or as ferritin components with very small particle sizes.

  8. In situ reduction of as-prepared γ-Iron Oxide Nanoparticles

    DEFF Research Database (Denmark)

    Garbus, Pelle Gorm; Ahlburg, Jakob; Christensen, Mogens

    -ray diffraction measurement. The as-prepared maghemite nanoparticles were synthesized by the continuous decomposition of solutes in supercritical hydrothermal flow synthesis [3, 4]. The reagent used was ferric ammonium citrate (C6H8O7•xFe(III)•yNH3) that under hydrothermal flow synthesis decomposes into the γ......-iron oxide Fe2O3. The reduction of maghemite to body centered cubic (BCC) iron does not go through a detectable intermediate state.1.Jensen, K.M., et al., Mechanisms for iron oxide formation under hydrothermal conditions: an in situ total scattering study. ACS nano, 2014. 8(10): p. 10704-10714.2.Andersen, H...

  9. Cloud point extraction and speciation of iron(3) of 10-7-10-6 M level using 8-quinolinol derivatives and triton X-100

    International Nuclear Information System (INIS)

    Ohashi, K.; Ougiyanagi, J.; Choi, S.Y.; Ito, H.; Imura, H.

    2001-01-01

    The cloud point extraction behaviour, specification, and determination of traces of iron(III) with 8-quinolinol derivatives (HA), such as 8-quinolinol (HQ), 2-methyl-8-quinolinol (HMQ), and 2-methyl-5-octyl-oxy-methyl-8-quinolinol (HMO 8 Q) were investigated. Above pH 4.0, more than 95% of iron(III) was extracted with 5.00 x 10 -2 M HQ, HMQ, and HMO 8 Q in 4 (v/v)% Triton X-100. The proposed method was applied to the determination of iron(III) in the Riverine Water Reference (JAC 0031 and JAC 0032) by graphite furnace atomic absorption spectrometry. The results agreed well with the certified values within 2% of the RSD. (authors)

  10. Dissolution of copper and iron from malachite ore and precipitation of copper sulfate pentahydrate by chemical process

    OpenAIRE

    H. Kokes; M.H. Morcali; E. Acma

    2014-01-01

    The present work describes an investigation of a chemical process for the recovery of copper and iron from malachite ore. For the dissolution of copper and iron, H2SO4 was employed as well as H2O2 as an oxidizing agent. The effects of reaction temperature and time, acid concentration, liquid-to-solid ratio and agitation rate on the copper and iron percentage were investigated. Following the steps of dissolving the copper and iron sulfate and filtering, iron (III) hydroxide was precipitated by...

  11. Analysis of Yellow Striped Mutants of Zea mays Reveals Novel Loci Contributing to Iron Deficiency Chlorosis

    Directory of Open Access Journals (Sweden)

    David Chan-Rodriguez

    2018-02-01

    Full Text Available The micronutrient iron (Fe is essential for photosynthesis, respiration, and many other processes, but it is only sparingly soluble in aqueous solution, making adequate acquisition by plants a serious challenge. Fe is a limiting factor for plant growth on approximately 30% of the world’s arable lands. Moreover, Fe deficiency in humans is a global health issue, affecting 1.62 billion people, or about 25% of the world’s population. It is imperative that we gain a better understanding of the mechanisms that plants use to regulate iron homeostasis, since these will be important targets for future biofortification and crop improvement strategies. Grasses and non-grasses have evolved independent mechanisms for primary iron uptake from the soil. The grasses, which include most of the world’s staple grains, have evolved a distinct ‘chelation’ mechanism to acquire iron from the soil. Strong iron chelators called phytosiderophores (PSs are synthesized by grasses and secreted into the rhizosphere where they bind and solubilize Fe(III. The Fe(III-PS complex is then taken up into root cells via transporters specific for the Fe(III-PS complex. In this study, 31 novel, uncharacterized striped maize mutants available through the Maize Genetics Cooperation Stock Center (MGCSC were analyzed to determine whether their mutant phenotypes are caused by decreased iron. Many of these proved to be either pale yellow or white striped mutants. Complementation tests were performed by crossing the MGCSC mutants to ys1 and ys3 reference mutants. This allowed assignment of 10 ys1 alleles and 4 ys3 alleles among the novel mutants. In addition, four ys∗ mutant lines were identified that are not allelic to either ys1 or ys3. Three of these were characterized as being non-allelic to each other and as having low iron in leaves. These represent new genes involved in iron acquisition by maize, and future cloning of these genes may reveal novel aspects of the grass iron

  12. Oxidation of dibenzothiophene as a model substrate for the removal of organic sulphur from fossil fuels by iron(III ions generated from pyrite by Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    VLADIMIR P. BESKOSKI

    2007-06-01

    Full Text Available Within this paper a new idea for the removal of organically bonded sulphur from fossil fuels is discussed. Dibenzothiophene (DBT was used as a model compound of organicmolecules containing sulphur. This form of (biodesulphurization was performed by an indirect mechanism in which iron(III ions generated from pyrite by Acidithiobacillus ferrooxidans performed the abiotic oxidation. The obtained reaction products, dibenzothiopene sulfoxide and dibenzothiophene sulfone, are more soluble in water than the basic substrate and the obtained results confirmed the basic hypothesis and give the posibility of continuing the experiments related to application of this (biodesulphurization process.

  13. Sustainability of the effects of medicinal iron and iron rich food supplementation on haemoglobin, intelligence quotient and growth of school aged girls

    Directory of Open Access Journals (Sweden)

    Monika Jain

    2014-12-01

    Full Text Available Anaemia in school aged girls is an important but neglected issue. Since iron supplementation programmes have had little reported success in reducing anaemia, interest is turning to food based approaches that have higher potential for achieving far reaching benefits. The purpose of the study was to observe sustainability of the effect of iron and food supplementation on haemoglobin (Hb, intelligence quotient (IQ and growth of the subjects. At baseline, estimation of haemoglobin (Hb, red cell indices, serum iron, total iron binding capacity, serum transferrin saturation and serum ferritin was done. IQ, weight and height were measured using standard procedures. Anaemic subjectswere divided into three groups, viz., (i twice weekly supplementation of iron folic acid syrup (53 mg iron/week; (ii daily supplementation of 4 niger seed and defatted soyaflour biscuits plus 2 lemons (45 mg iron/week and (iii control. Non anaemic group(NAC was not intervened. Endline data was collected after 120 days. Follow up for Hb, IQ, weight and height was done 4 months after cessation of supplementation. The prevalence of anaemia was 77% in the study population; 46% subjects had mild anaemia and 32% had moderate anaemia. Iron status was lower in anaemic subjects (p<0.001.Iron supplementation was more effective in raising Hb and building iron stores than iron rich food supplementation. Iron supplementation improved IQ but did not bring about catch up of anaemics to non anaemics. Iron rich food supplementation was better than medicinal iron in promoting growth in anaemic girls. The impact of iron rich food supplementation on Hb, IQ and growth sustained for 4 months while that of medicinal iron did not. Effects of food supplementation are sustainable for 4 months, therefore, this strategy holds more potential to control anaemia, in school aged girls.

  14. Voltammetric determination of arsenic in high iron and manganese groundwaters.

    Science.gov (United States)

    Gibbon-Walsh, Kristoff; Salaün, Pascal; Uroic, M Kalle; Feldmann, Joerg; McArthur, John M; van den Berg, Constant M G

    2011-09-15

    Determination of the speciation of arsenic in groundwaters, using cathodic stripping voltammetry (CSV), is severely hampered by high levels of iron and manganese. Experiments showed that the interference is eliminated by addition of EDTA, making it possible to determine the arsenic speciation on-site by CSV. This work presents the CSV method to determine As(III) in high-iron or -manganese groundwaters in the field with only minor sample treatment. The method was field-tested in West-Bengal (India) on a series of groundwater samples. Total arsenic was subsequently determined after acidification to pH 1 by anodic stripping voltammetry (ASV). Comparative measurements by ICP-MS as reference method for total As, and by HPLC for its speciation, were used to corroborate the field data in stored samples. Most of the arsenic (78±0.02%) was found to occur as inorganic As(III) in the freshly collected waters, in accordance with previous studies. The data shows that the modified on-site CSV method for As(III) is a good measure of water contamination with As. The EDTA was also found to be effective in stabilising the arsenic speciation for longterm sample storage at room temperature. Without sample preservation, in water exposed to air and sunlight, the As(III) was found to become oxidised to As(V), and Fe(II) oxidised to Fe(III), removing the As(V) by adsorption on precipitating Fe(III)-hydroxides within a few hours. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides

    International Nuclear Information System (INIS)

    Papassiopi, N.; Vaxevanidou, K.; Christou, C.; Karagianni, E.; Antipas, G.S.E.

    2014-01-01

    Highlights: • Fe(III)–Cr(III) hydroxides enhance groundwater quality better than pure Cr(III) compounds. • Crystalline Cr(OH) 3 ·3H 2 O was unstable, with a solubility higher than 50 μg/l. • Amorphous Cr(OH) 3 (am) was stable with a solubility lower than 50 μg/l in the range 5.7 0.75 Cr 0.25 (OH) 3 , the stability region was extended to 4.8 3 ·xH 2 O whereas in the presence of iron the precipitate is a mixed Fe (1−x) Cr x (OH) 3 phase. In this study, we report on the synthesis, characterisation and stability of mixed (Fe x ,Cr 1−x )(OH) 3 hydroxides as compared to the stability of Cr(OH) 3 . We established that the plain Cr(III) hydroxide, abiding to the approximate molecular formula Cr(OH) 3 ·3H 2 O, was crystalline, highly soluble, i.e. unstable, with a tendency to transform into the stable amorphous hydroxide Cr(OH) 3 (am) phase. Mixed Fe 0.75 Cr 0.25 (OH) 3 hydroxides were found to be of the ferrihydrite structure, Fe(OH) 3 , and we correlated their solubility to that of a solid solution formed by plain ferrihydrite and the amorphous Cr(III) hydroxide. Both our experimental results and thermodynamic calculations indicated that mixed Fe(III)–Cr(III) hydroxides are more effective enhancers of groundwater quality, in comparison to the plain amorphous or crystalline Cr(III) hydroxides, the latter found to have a solubility typically higher than 50 μg/l (maximum EU permitted Cr level in drinking water), while the amorphous Cr(OH) 3 (am) phase was within the drinking water threshold in the range 5.7 0.75 Cr 0.25 (OH) 3 hydroxides studied were of extended stability in the 4.8 < pH < 13.5 range

  16. Photoreduction of Terrigenous Fe-Humic Substances Leads to Bioavailable Iron in Oceans.

    Science.gov (United States)

    Blazevic, Amir; Orlowska, Ewelina; Kandioller, Wolfgang; Jirsa, Franz; Keppler, Bernhard K; Tafili-Kryeziu, Myrvete; Linert, Wolfgang; Krachler, Rudolf F; Krachler, Regina; Rompel, Annette

    2016-05-23

    Humic substances (HS) are important iron chelators responsible for the transport of iron from freshwater systems to the open sea, where iron is essential for marine organisms. Evidence suggests that iron complexed to HS comprises the bulk of the iron ligand pool in near-coastal waters and shelf seas. River-derived HS have been investigated to study their transport to, and dwell in oceanic waters. A library of iron model compounds and river-derived Fe-HS samples were probed in a combined X-ray absorption spectroscopy (XAS) and valence-to-core X-ray emission spectroscopy (VtC-XES) study at the Fe K-edge. The analyses performed revealed that iron complexation in HS samples is only dependent on oxygen-containing HS functional groups, such as carboxyl and phenol. The photoreduction mechanism of Fe III -HS in oceanic conditions into bioavailable aquatic Fe II forms, highlights the importance of river-derived HS as an iron source for marine organisms. Consequently, such mechanisms are a vital component of the upper-ocean iron biogeochemistry cycle.

  17. Identification of localized redox states in plant-type two-iron ferrodoxins using the nuclear Overhauser effect

    International Nuclear Information System (INIS)

    Dugad, L.B.; La Mar, G.N.; Banci, L.; Bertini, I.

    1990-01-01

    The homonuclear Overhauser effect (NOE), in conjunction with nonselective spin-lattice relaxation measurements, has been employed to assign the contact-shifted resonances for the reduced form of two typical plant-type two-iron ferrodoxins from the algae Spirulina platensis and Porphyra umbilicalis. These results demonstrate that the NOE should have broad general applicability for the assignments and electronic structural elucidation of diverse subclasses of paramagnetic iron-sulfur cluster proteins. NOE connectivities were detected only among sets of resonances exhibiting characteristically different deviations from Curie behavior, providing strong support for the applicability of the spin Hamiltonian formulation for the NMR properties of the antiferromagnetically coupled iron clusters. The geminal β-methylene protons for the two cysteines bound to the iron(II) center were clearly identified, as well as the C α H and one C β H for each of the cysteines bound to the iron(III). The identification of the iron bound to cysteines 41 and 46 as the iron(II) in the reduced protein was effected on the basis of dipolar contacts between the bound cysteines. Resolved labile proton contact-shifted resonances are attributed to hydrogen bonding to the iron(III) center, and it is concluded that the contact-shifted resonances for the more numerous hydrogen bonds to the iron(II) center are not resolved from the diamagnetic envelope. The identification of the iron closer to the protein surface as the more reducible one is consistent with predictions based on a larger number of hydrogen bonds to this center

  18. From dihydrated iron(III) phosphate to monohydrated ammonium-iron(II) phosphate: Solvothermal reaction mediated by acetone-urea mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso, Belen F., E-mail: mbafernandez@uniovi.es [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain); Trobajo, Camino [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo-CINN, Julian Claveria 8, 33006 Oviedo (Spain); Pique, Carmen [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain); Garcia, Jose R. [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo-CINN, Julian Claveria 8, 33006 Oviedo (Spain); Blanco, Jesus A. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain)

    2012-12-15

    By reaction between synthetic phosphosiderite FePO{sub 4}{center_dot}2H{sub 2}O, urea (NH{sub 2}){sub 2}CO, and acetone (CH{sub 3}){sub 2}CO, we report a novel solvothermal synthesis of polycrystalline NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O. The preparation of other two individual phases, NH{sub 4}Fe{sub 2}(OH)(PO{sub 4}){sub 2}{center_dot}2H{sub 2}O and NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2}, is also described. The obtained product is a function of the reaction time and the N/P molar ratio in the reagent mixture, and the existence of structural memory in the dissolution-precipitation processes is discussed. Below 25 K, NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O behaves magnetically in a complex way, because both ferromagnetic and antiferromagnetic signals are superimposed, suggesting the existence of a canting of iron(II) magnetic moments. - Graphical abstract: Solvothermal synthesis of polycrystalline NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O is presented. The preparation of other two individual phases, NH{sub 4}Fe{sub 2}(OH)(PO{sub 4}){sub 2}{center_dot}2H{sub 2}O and NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2} as a function of the N/P molar ratio in the reagent mixture and the reaction time, is also described. Highlights: Black-Right-Pointing-Pointer Solvothermal synthesis of NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O from an Fe(III) phosphate: reduction process. Black-Right-Pointing-Pointer Formation of two intermediate metastable phases: phase diagram. Black-Right-Pointing-Pointer Thermal decomposition in two steps: mass loss of both water and ammonia. Black-Right-Pointing-Pointer Magnetic behaviour: AF+constant spontaneous magnetization.

  19. Comparing soluble ferric pyrophosphate to common iron salts and chelates as sources of bioavailable iron in a Caco-2 cell culture model.

    Science.gov (United States)

    Zhu, Le; Glahn, Raymond P; Nelson, Deanna; Miller, Dennis D

    2009-06-10

    Iron bioavailability from supplements and fortificants varies depending upon the form of the iron and the presence or absence of iron absorption enhancers and inhibitors. Our objectives were to compare the effects of pH and selected enhancers and inhibitors and food matrices on the bioavailability of iron in soluble ferric pyrophosphate (SFP) to other iron fortificants using a Caco-2 cell culture model with or without the combination of in vitro digestion. Ferritin formation was the highest in cells treated with SFP compared to those treated with other iron compounds or chelates. Exposure to pH 2 followed by adjustment to pH 7 markedly decreased FeSO(4) bioavailability but had a smaller effect on bioavailabilities from SFP and sodium iron(III) ethylenediaminetetraacetate (NaFeEDTA), suggesting that chelating agents minimize the effects of pH on iron bioavailability. Adding ascorbic acid (AA) and cysteine to SFP in a 20:1 molar ratio increased ferritin formation by 3- and 2-fold, respectively, whereas adding citrate had no significant effect on the bioavailability of SFP. Adding phytic acid (10:1) and tannic acid (1:1) to iron decreased iron bioavailability from SFP by 91 and 99%, respectively. The addition of zinc had a marked inhibitory effect on iron bioavailability. Calcium and magnesium also inhibited iron bioavailability but to a lesser extent. Incorporating SFP in rice greatly reduced iron bioavailability from SFP, but this effect can be partially reversed with the addition of AA. SFP and FeSO(4) were taken up similarly when added to nonfat dry milk. Our results suggest that dietary factors known to enhance and inhibit iron bioavailability from various iron sources affect iron bioavailability from SFP in similar directions. However, the magnitude of the effects of iron absorption inhibitors on SFP iron appears to be smaller than on iron salts, such as FeSO(4) and FeCl(3). This supports the hypothesis that SFP is a promising iron source for food fortification

  20. Kinetic study of the isotopic exchange of Na+ and Zn2+ ions on iron and chromium titanates

    International Nuclear Information System (INIS)

    Zakaria, E.S.; Ali, I.M.; Aly, H.F.

    2004-01-01

    Iron(III) (FeTi) and chromium (III) titanates (CrTi) were prepared as cation exchange materials in a granular form. The rate of the isotopic exchange of Na + /*Na + and Zn 2+ /*Zn 2+ between aqueous solution and iron(III) and chromium(III) titanates in Na + or Zn 2+ form has been carried out radiometrically in the 25-60 deg C temperature range. The exchange rate is controlled by a particle diffusion mechanism and experimental and theoretical approaches have been used to obtain the rate of diffusion through the spherical particles of the exchangers. The values of self diffusion (D-bar) of Na + and Zn 2+ ions were measured at different operation conditions, particle size, reaction temperatures and drying temperatures of the matrix. The values of kinetic and thermodynamic parameters were calculated and their significance discussed. (author)

  1. The Effect of Date (Phoenix dactylifera Juice on Haemoglobin Level An Experimental Study in Iron Supplemented Rats

    Directory of Open Access Journals (Sweden)

    Ady Try Himawan Zen

    2013-06-01

    Full Text Available There has been more research on the iron supplementation. Date juice has been shown to be rich in iron. It has been reported to increase the hemoglobin level in rats. Few studies has been conducted on the effect of date juice on the hemoglobin level in male white Wistar rats fed low iron diet.This research was conducted to evaluate the effect of (Phoenix dactylifera juice on haemoglobin level in iron supplemented rats. In this experimental study using post test control group design, 24 male white Wistar rats were divided into 4 groups. G-I served as the control group (standard diet and aquadest. G II was given the low Fe diet and aquadest for 21 d. G-III,IV were given the low fe diet and aquadest plus date juice at the concentration of 50%, 100% respectively. The treatment was given for 14 days. Spectrophotometer was used to assess the haemoglobin level of rats. One way anova followed by Post Hoc LSD was applied for the data analysis. Mean of hemoglobin (g/dl level for the four groups were 12,03, 7.72, 9.25, 10.35 respectively. Test resulted in p<0.05. Post Hoc LSD test resulted in a significant different between K-I and G-II, G-III, G-IV ;G-II and G-III, G-IV ;G-III and G-IV. In conclusion, date juice increases the haemoglobin level in male white rats fed on the low fe diet.

  2. Prevention of Acid Mine Drainage Through Complexation of Ferric Iron by Soluble Microbial Growth Products

    Science.gov (United States)

    Pandey, S.; Yacob, T. W.; Silverstein, J.; Rajaram, H.; Minchow, K.; Basta, J.

    2011-12-01

    Acid mine drainage (AMD) is a widespread environmental problem with deleterious impacts on water quality in streams and watersheds. AMD is generated largely by the oxidation of metal sulfides (i.e. pyrite) by ferric iron. This abiotic reaction is catalyzed by conversion of ferrous to ferric iron by iron and sulfur oxidizing microorganisms. Biostimulation is currently being investigated as an attempt to inhibit the oxidation of pyrite and growth of iron oxidizing bacteria through addition of organic carbon. This may stimulate growth of indigenous communities of acidophilic heterotrophic bacteria to compete for oxygen. The goal of this research is to investigate a secondary mechanism associated with carbon addition: complexation of free Fe(III) by soluble microbial growth products (SMPs) produced by microorganisms growing in waste rock. Exploratory research at the laboratory scale examined the effect of soluble microbial products (SMPs) on the kinetics of oxidation of pure pyrite during shaker flask experiments. The results confirmed a decrease in the rate of pyrite oxidation that was dependent upon the concentration of SMPs in solution. We are using these data to verify results from a pyrite oxidation model that accounts for SMPs. This reactor model involves differential-algebraic equations incorporating total component mass balances and mass action laws for equilibrium reactions. Species concentrations determined in each time step are applied to abiotic pyrite oxidation rate expressions from the literature to determine the evolution of total component concentrations. The model was embedded in a parameter estimation algorithm to determine the reactive surface area of pyrite in an abiotic control experiment, yielding an optimized value of 0.0037 m2. The optimized model exhibited similar behavior to the experiment for this case; the root mean squared of residuals for Fe(III) was calculated to be 7.58 x 10-4 M, which is several orders of magnitude less than the actual

  3. Radiometric titration of thallium(III) with EDTA

    International Nuclear Information System (INIS)

    Rao, V.R.S.; Pulla Rao, Ch.; Tataiah, G.

    1978-01-01

    Radioactive solutions containing very small amounts of thallium(III) can be determined by radiometric titration using ammonia as hydrolysing agent. Aqueous solution of thallium(I) (both inactive and radioactive) is treated with bromine water till the appearance of the brown colour of bromine, and the solution is warmed to 80 deg C to expel the excess bromine. By this procedure all thallium(I) is quantitatively oxidised to thallium(III). An aqueous solution of ammonia is added to precipitate thallium(III) as thallic oxide. It is then filtered, washed with water to free it from bromide and then dissolved in 2N HCl and the solution is then standardised. 2 ml of this solution is transferred to a 20 ml volumetric flask, 1 ml of radioactive thallium(III) solution to be standardised is added as well as incremental amounts of EDTA solution and mixed thoroughly. Uncomplexed thallium(III) is then precipitated by the addition of an ammonia solution and diluted to 20 ml. Required amount of this mixture is centrifuged. The beta activity of the supernatant aliquot is measured using a GM counter. Quantitative determination of Tl(III) in the range of 1-10 μM can be carried out. The interference of cations such as Au(III), iron(III), Ga(III) can be eliminated by pretreatment of the Tl(III) solution before carrying out radiometric titration. The results obtained are reproducible and accurate to +-3%. (T.I.)

  4. Key Roles of Size and Crystallinity of Nanosized Iron Hydr(oxides) Stabilized by Humic Substances in Iron Bioavailability to Plants.

    Science.gov (United States)

    Kulikova, Natalia A; Polyakov, Alexander Yu; Lebedev, Vasily A; Abroskin, Dmitry P; Volkov, Dmitry S; Pankratov, Denis A; Klein, Olga I; Senik, Svetlana V; Sorkina, Tatiana A; Garshev, Alexey V; Veligzhanin, Alexey A; Garcia Mina, Jose M; Perminova, Irina V

    2017-12-27

    Availability of Fe in soil to plants is closely related to the presence of humic substances (HS). Still, the systematic data on applicability of iron-based nanomaterials stabilized with HS as a source for plant nutrition are missing. The goal of our study was to establish a connection between properties of iron-based materials stabilized by HS and their bioavailability to plants. We have prepared two samples of leonardite HS-stabilized iron-based materials with substantially different properties using the reported protocols and studied their physical chemical state in relation to iron uptake and other biological effects. We used Mössbauer spectroscopy, XRD, SAXS, and TEM to conclude on iron speciation, size, and crystallinity. One material (Fe-HA) consisted of polynuclear iron(III) (hydr)oxide complexes, so-called ferric polymers, distributed in HS matrix. These complexes are composed of predominantly amorphous small-size components (Bioavailability studies were conducted on wheat plants under conditions of iron deficiency. The uptake studies have shown that small and amorphous ferric polymers were readily translocated into the leaves on the level of Fe-EDTA, whereas relatively large and crystalline feroxyhyte NPs were mostly sorbed on the roots. The obtained data are consistent with the size exclusion limits of cell wall pores (5-20 nm). Both samples demonstrated distinct beneficial effects with respect to photosynthetic activity and lipid biosynthesis. The obtained results might be of use for production of iron-based nanomaterials stabilized by HS with the tailored iron availability to plants. They can be applied as the only source for iron nutrition as well as in combination with the other elements, for example, for industrial production of "nanofortified" macrofertilizers (NPK).

  5. Isolation and identification of ferric reducing bacteria and evaluation of their roles in iron availability in two calcareous soils

    Science.gov (United States)

    Ghorbanzadeh, N.; Lakzian, A.; Haghnia, G. H.; Karimi, A. R.

    2014-12-01

    Iron is an essential element for all organisms which plays a crucial role in important biochemical processes such as respiration and photosynthesis. Iron deficiency seems to be an important problem in many calcareous soils. Biological dissimilatory Fe(III) reduction increases iron availability through reduction of Fe(III) to Fe(II). The aim of this study was to isolate, identify and evaluate some bacterial isolates for their abilities to reduce Fe(III) in two calcareous soils. Three bacterial isolates were selected and identified from paddy soils by using 16S rRNA amplification and then inoculated to sterilized and non-sterilized calcareous soils in the presence and absence of glucose. The results showed that all isolates belonged to Bacillus genus and were capable of reducing Fe(III) to Fe(II) in vitro condition. The amount of Fe(III) reduction in sterilized calcareous soils was significantly higher when inoculated with PS23 isolate and Shewanella putrefaciens ( S. putrefaciens) (as positive control) compared to PS16 and PS11 isolates. No significant difference was observed between PS11 and PS16 isolates in the presence of indigenous microbial community. The results also revealed that glucose had a significant effect on Fe(III) reduction in the examined calcareous soil samples. The amount of Fe(III) reduction increased two-fold when soil samples were treated with glucose and inoculated by S. putrefaciens and PS23 in non-sterilized soils.

  6. Aspergillus niger Secretes Citrate to Increase Iron Bioavailability

    Science.gov (United States)

    Odoni, Dorett I.; van Gaal, Merlijn P.; Schonewille, Tom; Tamayo-Ramos, Juan A.; Martins dos Santos, Vitor A. P.; Suarez-Diez, Maria; Schaap, Peter J.

    2017-01-01

    Aspergillus niger has an innate ability to secrete various organic acids, including citrate. The conditions required for A. niger citrate overproduction are well described, but the physiological reasons underlying extracellular citrate accumulation are not yet fully understood. One of the less understood culture conditions is the requirement of growth-limiting iron concentrations. While this has been attributed to iron-dependent citrate metabolizing enzymes, this straightforward relationship does not always hold true. Here, we show that an increase in citrate secretion under iron limited conditions is a physiological response consistent with a role of citrate as A. niger iron siderophore. We found that A. niger citrate secretion increases with decreasing amounts of iron added to the culture medium and, in contrast to previous findings, this response is independent of the nitrogen source. Differential transcriptomics analyses of the two A. niger mutants NW305 (gluconate non-producer) and NW186 (gluconate and oxalate non-producer) revealed up-regulation of the citrate biosynthesis gene citA under iron limited conditions compared to iron replete conditions. In addition, we show that A. niger can utilize Fe(III) citrate as iron source. Finally, we discuss our findings in the general context of the pH-dependency of A. niger organic acid production, offering an explanation, besides competition, for why A. niger organic acid production is a sequential process influenced by the external pH of the culture medium. PMID:28824560

  7. Recovery of indium ions by nanoscale zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen; Su, Yiming [Tongji University, State Key Laboratory of Pollution Control and Resources Reuse (China); Wen, Zhipan [Wuhan Institute of Technology, School of Chemistry and Environmental Engineering (China); Zhang, Yalei; Zhou, Xuefei, E-mail: zhouxuefei@tongji.edu.cn; Dai, Chaomeng, E-mail: daichaomeng@tongji.edu.cn [Tongji University, State Key Laboratory of Pollution Control and Resources Reuse (China)

    2017-03-15

    Indium and its compounds have plenty of industrial applications and high demand. Therefore, indium recovery from various industrial effluents is necessary. It was sequestered by nanoscale zero-valent iron (nZVI) whose size mainly ranged from 50 to 70 nm. Adsorption kinetics and isotherm, influence of pH, and ionic strength were thoroughly investigated. The reaction process was well fitted to a pseudo second-order model, and the maximum adsorption capacity of In(III) was 390 mg In(III)/g nZVI similar to 385 mg In(III)/g nZVI at 298 K calculated by Langmuir model. The mole ratio of Fe(II) released to In(III) immobilized was 3:2, which implied a special chemical process of co-precipitation combined Fe(OH){sub 2} with In(OH){sub 3}. Transmission electron microscopy with an energy-disperse X-ray (TEM-EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize surface morphology, corrosion products, and valence state of indium precipitate formed on nanoparticles. The structural evolution changed from core-shell structure of iron oxide to sheet structure of co-precipitation, to sphere structure that hydroxide gradually dissolved as the pH decreased, and to cavity structures for the pH continually decreased. Furthermore, below pH 4.7, the In(III) enrichment was inhibited for the limited capacity of co-precipitation. Also, it was found that Ca{sup 2+} and HPO{sub 4}{sup 2−} have more negative influence on In(III) recovery compared with Na{sup +}, NO{sub 3}{sup −}, HCO{sub 3}{sup −}, and SO{sub 4}{sup 2−}. Therefore, the In(III) recovery can be described by a mechanism which consists of adsorption, co-precipitation, and reduction and was over 78% even after 3 cycles. The results confirmed that it was applicable to employ nZVI for In(III) immobilization.

  8. Characterisation and application of the Fe(II)/Fe(III) redox reaction in an ionic liquid analogue

    International Nuclear Information System (INIS)

    Lloyd, David; Vainikka, Tuomas; Ronkainen, Markus; Kontturi, Kyösti

    2013-01-01

    Highlights: • The Fe(II)/Fe(III) reaction is shown to be facile using a wall-jet electrode and RDE. • Deposition/stripping of iron has equally slow kinetics as in aqueous systems. • An IL based all-iron RFB is reported for the first time, energy efficiency is 37%. • An Zn–Fe complex is shown to form. In an RFB this gives an energy efficiency of 78%. • Problems resulting from the use of redox probes and urea-based DES are demonstrated. -- Abstract: In this paper we report the properties of the Fe(II)/Fe(III) reaction in a deep eutectic solvent based on choline chloride and ethylene glycol. This reaction is shown to be facile using a wall-jet electrode and rotating disc electrode. The deposition and stripping of iron exhibits equally slow kinetics as in aqueous systems. Using these two reactions an all-iron redox flow battery based on ionic liquids is reported for the first time. An energy efficiency of 37% is attained at a current density of 0.5 mA cm −2 . A Zn(II)–Fe(II) complex is shown to form when zinc is oxidized by Fe(III). When this complex is applied in a redox flow battery energy efficiencies of 78% are achieved at a current density of 0.5 mA cm −2

  9. Metabolism of bilirubin by human cytochrome P450 2A6

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Bakar, A' edah, E-mail: a.abubakar@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Arthur, Dionne M. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide (Australia); Wikman, Anna S. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Department of Pharmaceutical Biosciences, Uppsala University, SE-75123 Uppsala (Sweden); Rahnasto, Minna; Juvonen, Risto O.; Vepsäläinen, Jouko; Raunio, Hannu [School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, POB 1627, 70211 Kuopio (Finland); Ng, Jack C. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide (Australia); Lang, Matti A. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia)

    2012-05-15

    The mouse cytochrome P450 (CYP) 2A5 has recently been shown to function as hepatic “Bilirubin Oxidase” (Abu-Bakar, A., et al., 2011. Toxicol. Appl. Pharmacol. 257, 14–22). To date, no information is available on human CYP isoforms involvement in bilirubin metabolism. In this paper we provide novel evidence for human CYP2A6 metabolising the tetrapyrrole bilirubin. Incubation of bilirubin with recombinant yeast microsomes expressing the CYP2A6 showed that bilirubin inhibited CYP2A6-dependent coumarin 7-hydroxylase activity to almost 100% with an estimated K{sub i} of 2.23 μM. Metabolite screening by a high-performance liquid chromatography/electrospray ionisation mass spectrometry indicated that CYP2A6 oxidised bilirubin to biliverdin and to three other smaller products with m/z values of 301, 315 and 333. Molecular docking analyses indicated that bilirubin and its positively charged intermediate interacted with key amino acid residues at the enzyme's active site. They were stabilised at the site in a conformation favouring biliverdin formation. By contrast, the end product, biliverdin was less fitting to the active site with the critical central methylene bridge distanced from the CYP2A6 haem iron facilitating its release. Furthermore, bilirubin treatment of HepG2 cells increased the CYP2A6 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A6 compared to cells treated only with CHX. Collectively, the observations indicate that the CYP2A6 may function as human “Bilirubin Oxidase” where bilirubin is potentially a substrate and a regulator of the enzyme. -- Highlights: ► Human CYP2A6 interacts with bilirubin with a high affinity. ► Bilirubin docking to the CYP2A6 active site is more stable than biliverdin docking. ► Recombinant CYP2A6 microsomes metabolised bilirubin to biliverdin. ► Bilirubin increased the hepatic

  10. Metabolism of bilirubin by human cytochrome P450 2A6

    International Nuclear Information System (INIS)

    Abu-Bakar, A'edah; Arthur, Dionne M.; Wikman, Anna S.; Rahnasto, Minna; Juvonen, Risto O.; Vepsäläinen, Jouko; Raunio, Hannu; Ng, Jack C.; Lang, Matti A.

    2012-01-01

    The mouse cytochrome P450 (CYP) 2A5 has recently been shown to function as hepatic “Bilirubin Oxidase” (Abu-Bakar, A., et al., 2011. Toxicol. Appl. Pharmacol. 257, 14–22). To date, no information is available on human CYP isoforms involvement in bilirubin metabolism. In this paper we provide novel evidence for human CYP2A6 metabolising the tetrapyrrole bilirubin. Incubation of bilirubin with recombinant yeast microsomes expressing the CYP2A6 showed that bilirubin inhibited CYP2A6-dependent coumarin 7-hydroxylase activity to almost 100% with an estimated K i of 2.23 μM. Metabolite screening by a high-performance liquid chromatography/electrospray ionisation mass spectrometry indicated that CYP2A6 oxidised bilirubin to biliverdin and to three other smaller products with m/z values of 301, 315 and 333. Molecular docking analyses indicated that bilirubin and its positively charged intermediate interacted with key amino acid residues at the enzyme's active site. They were stabilised at the site in a conformation favouring biliverdin formation. By contrast, the end product, biliverdin was less fitting to the active site with the critical central methylene bridge distanced from the CYP2A6 haem iron facilitating its release. Furthermore, bilirubin treatment of HepG2 cells increased the CYP2A6 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A6 compared to cells treated only with CHX. Collectively, the observations indicate that the CYP2A6 may function as human “Bilirubin Oxidase” where bilirubin is potentially a substrate and a regulator of the enzyme. -- Highlights: ► Human CYP2A6 interacts with bilirubin with a high affinity. ► Bilirubin docking to the CYP2A6 active site is more stable than biliverdin docking. ► Recombinant CYP2A6 microsomes metabolised bilirubin to biliverdin. ► Bilirubin increased the hepatic CYP2A6

  11. Geochemical patterns and microbial contribution to iron plaque formation in the rice plant rhizosphere

    Science.gov (United States)

    Maisch, Markus; Murata, Chihiro; Unger, Julia; Kappler, Andreas; Schmidt, Caroline

    2015-04-01

    Rice is the major food source for more than half of the world population and 80 percent of the worldwide rice cultivation is performed on water logged paddy soils. The establishment of reducing conditions in the soil and across the soil-water interface not only stimulates the microbial production and release of the greenhouse gas methane. These settings also create optimal conditions for microbial iron(III) reduction and therefore saturate the system with reduced ferrous iron. Through the reduction and dissolution of ferric minerals that are characterized by their high surface activity, sorbed nutrients and contaminants (e.g. arsenic) will be mobilized and are thus available for uptake by plants. Rice plants have evolved a strategy to release oxygen from their roots in order to prevent iron toxification in highly ferrous environments. The release of oxygen to the reduced paddy soil causes ferric iron plaque formation on the rice roots and finally increases the sorption capacity for toxic metals. To this date the geochemical and microbiological processes that control the formation of iron plaque are not deciphered. It has been hypothesized that iron(II)-oxidizing bacteria play a potential role in the iron(III) mineral formation along the roots. However, not much is known about the actual processes, mineral products, and geochemical gradients that establish within the rhizosphere. In the present study we have developed a growth set-up that allows the co-cultivation of rice plants and iron(II)-oxidizing bacteria, as well as the visual observation and in situ measurement of geochemical parameters. Oxygen and dissolved iron(II) gradients have been measured using microelectrodes and show geochemical hot spots that offer optimal growth conditions for microaerophilic iron(II) oxidizers. First mineral identification attempts of iron plaque have been performed using Mössbauer spectroscopy and microscopy. The obtained results on mineraology and crystallinity have been

  12. Microlensing of quasar ultraviolet iron emission

    Energy Technology Data Exchange (ETDEWEB)

    Guerras, E.; Mediavilla, E. [Instituto de Astrofísica de Canarias, Vía Láctea S/N, La Laguna 38200, Tenerife (Spain); Jimenez-Vicente, J. [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, 18071 Granada (Spain); Kochanek, C. S. [Department of Astronomy and the Center for Cosmology and Astroparticle Physics, The Ohio State University, 4055 McPherson Lab, 140 West 18th Avenue, Columbus, OH 43221 (United States); Muñoz, J. A. [Departamento de Astronomía y Astrofísica, Universidad de Valencia, 46100 Burjassot, Valencia (Spain); Falco, E. [Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Motta, V.; Rojas, K. [Departamento de Física y Astronomía, Universidad de Valparaíso, Avda. Gran Bretaña 1111, Valparaíso (Chile)

    2013-12-01

    We measure the differential microlensing of the UV Fe II and Fe III emission line blends between 14 quasar image pairs in 13 gravitational lenses. We find that the UV iron emission is strongly microlensed in four cases with amplitudes comparable to that of the continuum. Statistically modeling the magnifications, we infer a typical size of r{sub s}∼4√(M/M{sub ⊙}) light-days for the Fe line-emitting regions, which is comparable to the size of the region generating the UV continuum (∼3-7 light-days). This may indicate that a significant part of the UV Fe II and Fe III emission originates in the quasar accretion disk.

  13. Simultaneous Fe(III) reduction and ammonia oxidation process in Anammox sludge.

    Science.gov (United States)

    Li, Xiang; Huang, Yong; Liu, Heng-Wei; Wu, Chuan; Bi, Wei; Yuan, Yi; Liu, Xin

    2018-02-01

    In recent years, there have been a number of reports on the phenomenon in which ferric iron (Fe(III)) is reduced to ferrous iron [Fe(II)] in anaerobic environments, accompanied by simultaneous oxidation of ammonia to NO 2 - , NO 3 - , or N 2. However, studies on the relevant reaction characteristics and mechanisms are rare. Recently, in research on the effect of Fe(III) on the activity of Anammox sludge, excess ammonia oxidization has also been found. Hence, in the present study, Fe(III) was used to serve as the electron acceptor instead of NO 2 - , and the feasibility and characteristics of Anammox coupled to Fe(III) reduction (termed Feammox) were investigated. After 160days of cultivation, the conversion rate of ammonia in the reactor was above 80%, accompanied by the production of a large amount of NO 3 - and a small amount of NO 2 - . The total nitrogen removal rate was up to 71.8%. Furthermore, quantities of Fe(II) were detected in the sludge fluorescence in situ hybridization (FISH) and denaturated gradient gel electrophoresis (DGGE) analyses further revealed that in the sludge, some Anammox bacteria were retained, and some microbes were enriched during the acclimatization process. We thus deduced that in Anammox sludge, Fe(III) reduction takes place together with ammonia oxidation to NO 2 - and NO 3 - along with the Anammox process. Copyright © 2017. Published by Elsevier B.V.

  14. Arsenate and Arsenite Sorption on Magnetite: Relations to Groundwater Arsenic Treatment Using Zerovalent Iron and Natural Attenuation

    Science.gov (United States)

    Magnetite (Fe3O4) is a zerovalent iron corrosion product; it is also formed in natural soil and sediment. Sorption of arsenate (As(V)) and arsenite (As(III)) on magnetite is an important process of arsenic removal from groundwater using zerovalent iron-based permeable reactive ba...

  15. Host heme oxygenase-1: Friend or foe in tackling pathogens?

    Science.gov (United States)

    Singh, Nisha; Ahmad, Zeeshan; Baid, Navin; Kumar, Ashwani

    2018-05-14

    Infectious diseases are a major challenge in management of human health worldwide. Recent literature suggests that host immune system could be modulated to ameliorate the pathogenesis of infectious disease. Heme oxygenase (HMOX1) is a key regulator of cellular signaling and it could be modulated using pharmacological reagents. HMOX1 is a cytoprotective enzyme that degrades heme to generate carbon monoxide (CO), biliverdin, and molecular iron. CO and biliverdin (or bilirubin derived from it) can restrict the growth of a few pathogens. Both of these also induce antioxidant pathways and anti-inflammatory pathways. On the other hand, molecular iron can induce proinflammatory pathway besides making the cellular environment oxidative in nature. Since microbial infections often induce oxidative stress in host cells/tissues, role of HMOX1 has been analyzed in the pathogenesis of number of infections. In this review, we have described the role of HMOX1 in pathogenesis of bacterial infections caused by Mycobacterium species, Salmonella and in microbial sepsis. We have also provided a succinct overview of the role of HMOX1 in parasitic infections such as malaria and leishmaniasis. In the end, we have also elaborated the role of HMOX1 in viral infections such as AIDS, hepatitis, dengue, and influenza. © 2018 IUBMB Life, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  16. Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL.

    Science.gov (United States)

    Blair, Matthew W; Knewtson, Sharon Jb; Astudillo, Carolina; Li, Chee-Ming; Fernandez, Andrea C; Grusak, Michael A

    2010-10-05

    Iron deficiency anemia is a global problem which often affects women and children of developing countries. Strategy I plants, such as common bean (Phaseolus vulgaris L.) take up iron through a process that involves an iron reduction mechanism in their roots; this reduction is required to convert ferric iron to ferrous iron. Root absorbed iron is critical for the iron nutrition of the plant, and for the delivery of iron to the shoot and ultimately the seeds. The objectives of this study were to determine the variability and inheritance for iron reductase activity in a range of genotypes and in a low × high seed iron cross (DOR364 x G19833), to identify quantitative trait loci (QTL) for this trait, and to assess possible associations with seed iron levels. The experiments were carried out with hydroponically grown plants provided different amounts of iron varying between 0 and 20 μM Fe(III)-EDDHA. The parents, DOR364 and G19833, plus 13 other cultivated or wild beans, were found to differ in iron reductase activity. Based on these initial experiments, two growth conditions (iron limited and iron sufficient) were selected as treatments for evaluating the DOR364 × G19833 recombinant inbred lines. A single major QTL was found for iron reductase activity under iron-limited conditions (1 μM Fe) on linkage group b02 and another major QTL was found under iron sufficient conditions (15 μM Fe) on linkage group b11. Associations between the b11 QTL were found with several QTL for seed iron. Genes conditioning iron reductase activity in iron sufficient bean plants appear to be associated with genes contributing to seed iron accumulation. Markers for bean iron reductase (FRO) homologues were found with in silico mapping based on common bean synteny with soybean and Medicago truncatula on b06 and b07; however, neither locus aligned with the QTL for iron reductase activity. In summary, the QTL for iron reductase activity under iron limited conditions may be useful in

  17. Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L. and association with seed iron accumulation QTL

    Directory of Open Access Journals (Sweden)

    Fernandez Andrea C

    2010-10-01

    Full Text Available Abstract Background Iron deficiency anemia is a global problem which often affects women and children of developing countries. Strategy I plants, such as common bean (Phaseolus vulgaris L. take up iron through a process that involves an iron reduction mechanism in their roots; this reduction is required to convert ferric iron to ferrous iron. Root absorbed iron is critical for the iron nutrition of the plant, and for the delivery of iron to the shoot and ultimately the seeds. The objectives of this study were to determine the variability and inheritance for iron reductase activity in a range of genotypes and in a low × high seed iron cross (DOR364 × G19833, to identify quantitative trait loci (QTL for this trait, and to assess possible associations with seed iron levels. Results The experiments were carried out with hydroponically grown plants provided different amounts of iron varying between 0 and 20 μM Fe(III-EDDHA. The parents, DOR364 and G19833, plus 13 other cultivated or wild beans, were found to differ in iron reductase activity. Based on these initial experiments, two growth conditions (iron limited and iron sufficient were selected as treatments for evaluating the DOR364 × G19833 recombinant inbred lines. A single major QTL was found for iron reductase activity under iron-limited conditions (1 μM Fe on linkage group b02 and another major QTL was found under iron sufficient conditions (15 μM Fe on linkage group b11. Associations between the b11 QTL were found with several QTL for seed iron. Conclusions Genes conditioning iron reductase activity in iron sufficient bean plants appear to be associated with genes contributing to seed iron accumulation. Markers for bean iron reductase (FRO homologues were found with in silico mapping based on common bean synteny with soybean and Medicago truncatula on b06 and b07; however, neither locus aligned with the QTL for iron reductase activity. In summary, the QTL for iron reductase activity

  18. Fe(III) mobilisation by carbonate in low temperature environments: Study of the solubility of ferrihydrite in carbonate media and the formation of Fe(III) carbonate complexes

    International Nuclear Information System (INIS)

    Grivé, Mireia; Duro, Lara; Bruno, Jordi

    2014-01-01

    Graphical abstract: - Highlights: • We have determined thermodynamic stabilities of Fe(III)-carbonate species. • We have determined the effect of those species on the solubility of ferrihydrite. • Results. • Highlight the importance of two Fe(III)-carbonate: FeOHCO 3 and Fe(CO 3 ) 3 3− . - Abstract: The linkage between the iron and the carbon cycles is of paramount importance to understand and quantify the effect of increased CO 2 concentrations in natural waters on the mobility of iron and associated trace elements. In this context, we have quantified the thermodynamic stability of mixed Fe(III) hydroxo-carbonate complexes and their effect on the solubility of Fe(III) oxihydroxides. We present the results of carefully performed solubility measurements of 2-line ferrihydrite in the slightly acidic to neutral–alkaline pH ranges (3.8–8.7) under constant pCO 2 varying between (0.982–98.154 kPa) at 25 °C. The outcome of the work indicates the predominance of two Fe(III) hydroxo carbonate complexes FeOHCO 3 and Fe(CO 3 ) 3 3− , with formation constants log * β° 1,1,1 = 10.76 ± 0.38 and log β° 1,0,3 = 24.24 ± 0.42, respectively. The solubility constant for the ferrihydrite used in this study was determined in acid conditions (pH: 1.8–3.2) in the absence of CO 2 and at T = (25 ± 1) °C, as log * K s,0 = 1.19 ± 0.41. The relative stability of the Fe(III)-carbonate complexes in alkaline pH conditions has implications for the solubility of Fe(III) in CO 2 -rich environments and the subsequent mobilisation of associated trace metals that will be explored in subsequent papers

  19. Effect of iron containing supplements on rats' dental caries progression.

    Science.gov (United States)

    Eshghi, Ar; Kowsari-Isfahan, R; Rezaiefar, M; Razavi, M; Zeighami, S

    2012-01-01

    Iron deficiency is the most common form of malnutrition in developing countries. Iron containing supplements have been used effectively to solve this problem. In children, because of teeth staining after taking iron drops, parents have the idea that iron drops are the cause of tooth decay; therefore, they limit this vital supplement in their children's diet. Hereby, we evaluate the histologic effect of iron containing supplements on tooth caries in rice rats with cariogenic or non-cariogenic diet. Twelve rats were selected and divided into four groups for this interventional experimental study. Four different types of dietary regimens were used for four months; group A, cariogenic diet with iron containing supplements; group B, cariogenic diet without iron containing supplements; group C, non-cariogenic diet with iron containing supplements; group D, non-cariogenic diet without iron containing supplements. After sacrificing the rats, 20-micron histological sections of their posterior teeth were prepared using the Ground Section method, then they were studied under polarized light microscopy. In order to compare the progression of caries in different samples, the depth of the lesions in the enamel was measured as three grades I, II and III. The mean grade value of A, B, C and D groups were 1.61, 2.61, 1.37 and 1.80, respectively. Statistical analysis revealed that significantly fewer caries were seen in the group which had received iron containing supplements and cariogenic diet compared with cariogenic diet without iron supplements (pcariogenic dietary regimen.

  20. Biliverdin reductase/bilirubin mediates the anti-apoptotic effect of hypoxia in pulmonary arterial smooth muscle cells through ERK1/2 pathway

    International Nuclear Information System (INIS)

    Song, Shasha; Wang, Shuang; Ma, Jun; Yao, Lan; Xing, Hao; Zhang, Lei; Liao, Lin; Zhu, Daling

    2013-01-01

    Inhibition of pulmonary arterial smooth muscle cell (PASMC) apoptosis induced by hypoxia plays an important role in pulmonary arterial remodeling leading to aggravate hypoxic pulmonary arterial hypertension. However, the mechanisms of hypoxia acting on PASMC apoptosis remain exclusive. Biliverdin reductase (BVR) has many essential biologic roles in physiological and pathological processes. Nevertheless, it is unclear whether the hypoxia-induced inhibition on PASMC apoptosis is mediated by BVR. In the present work, we found BVR majorly localized in PASMCs and was up-regulated in levels of protein and mRNA by hypoxia. Then we studied the contribution of BVR to anti-apoptotic response of hypoxia in PASMCs. Our results showed that siBVR, blocking generation of bilirubin, reversed the effect of hypoxia on enhancing cell survival and apoptotic protein (Bcl-2, procasepase-9, procasepase-3) expression, preventing nuclear shrinkage, DNA fragmentation and mitochondrial depolarization in starved PASMCs, which were recovered by exogenous bilirubin. Moreover, the inhibitory effect of bilirubin on PASMC apoptosis under hypoxic condition was blocked by the inhibitor of ERK1/2 pathway. Taken together, our data indicate that BVR contributes to the inhibitory process of hypoxia on PASMC apoptosis, which is mediated by bilirubin through ERK1/2 pathway. Highlights: • BVR expresses in PASMC and is up-regulated by hypoxia in protein and mRNA levels. • BVR/bilirubin contribute to the inhibitive process of hypoxia on PASMC apoptosis. • Bilirubin protects PASMC from apoptosis under hypoxia via ERK1/2 pathway

  1. Biliverdin reductase/bilirubin mediates the anti-apoptotic effect of hypoxia in pulmonary arterial smooth muscle cells through ERK1/2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Song, Shasha [Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319 (China); Wang, Shuang [Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319 (China); Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin 150081 (China); Ma, Jun; Yao, Lan; Xing, Hao; Zhang, Lei; Liao, Lin [Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319 (China); Zhu, Daling, E-mail: dalingz@yahoo.com [Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319 (China); Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin 150081 (China)

    2013-08-01

    Inhibition of pulmonary arterial smooth muscle cell (PASMC) apoptosis induced by hypoxia plays an important role in pulmonary arterial remodeling leading to aggravate hypoxic pulmonary arterial hypertension. However, the mechanisms of hypoxia acting on PASMC apoptosis remain exclusive. Biliverdin reductase (BVR) has many essential biologic roles in physiological and pathological processes. Nevertheless, it is unclear whether the hypoxia-induced inhibition on PASMC apoptosis is mediated by BVR. In the present work, we found BVR majorly localized in PASMCs and was up-regulated in levels of protein and mRNA by hypoxia. Then we studied the contribution of BVR to anti-apoptotic response of hypoxia in PASMCs. Our results showed that siBVR, blocking generation of bilirubin, reversed the effect of hypoxia on enhancing cell survival and apoptotic protein (Bcl-2, procasepase-9, procasepase-3) expression, preventing nuclear shrinkage, DNA fragmentation and mitochondrial depolarization in starved PASMCs, which were recovered by exogenous bilirubin. Moreover, the inhibitory effect of bilirubin on PASMC apoptosis under hypoxic condition was blocked by the inhibitor of ERK1/2 pathway. Taken together, our data indicate that BVR contributes to the inhibitory process of hypoxia on PASMC apoptosis, which is mediated by bilirubin through ERK1/2 pathway. Highlights: • BVR expresses in PASMC and is up-regulated by hypoxia in protein and mRNA levels. • BVR/bilirubin contribute to the inhibitive process of hypoxia on PASMC apoptosis. • Bilirubin protects PASMC from apoptosis under hypoxia via ERK1/2 pathway.

  2. Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates

    NARCIS (Netherlands)

    Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G.; Padamati, Sandeep K.; Gomez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R.; de Visser, Sam P.

    2015-01-01

    Fe-III-hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their

  3. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.

    Science.gov (United States)

    Miot, J; Benzerara, K; Morin, G; Bernard, S; Beyssac, O; Larquet, E; Kappler, A; Guyot, F

    2009-06-01

    In phosphate-rich environments, vivianite (Fe(II)(3)(PO(4))(2), 8H(2)O) is an important sink for dissolved Fe(II) and is considered as a very stable mineral due to its low solubility at neutral pH. In the present study, we report the mineralogical transformation of vivianite in cultures of the nitrate-reducing iron-oxidizing bacterial strain BoFeN1 in the presence of dissolved Fe(II). Vivianite was first transformed into a greenish phase consisting mostly of an amorphous mixed valence Fe-phosphate. This precipitate became progressively orange and the final product of iron oxidation consisted of an amorphous Fe(III)-phosphate. The sub-micrometer analysis by scanning transmission X-ray microscopy of the iron redox state in samples collected at different stages of the culture indicated that iron was progressively oxidized at the contact of the bacteria and at a distance from the cells in extracellular minerals. Iron oxidation in the extracellular minerals was delayed by a few days compared with cell-associated Fe-minerals. This led to strong differences of Fe redox in between these two types of minerals and finally to local heterogeneities of redox within the sample. In the absence of dissolved Fe(II), vivianite was not significantly transformed by BoFeN1. Whereas Fe(II) oxidation at the cell contact is most probably directly catalyzed by the bacteria, vivianite transformation at a distance from the cells might result from oxidation by nitrite. In addition, processes leading to the export of Fe(III) from bacterial oxidation sites to extracellular minerals are discussed including some involving colloids observed by cryo-transmission electron microscopy in the culture medium.

  4. The FIND-CKD study--a randomized controlled trial of intravenous iron versus oral iron in non-dialysis chronic kidney disease patients: background and rationale.

    Science.gov (United States)

    Macdougall, Iain C; Bock, Andreas; Carrera, Fernando; Eckardt, Kai-Uwe; Gaillard, Carlo; Van Wyck, David; Roubert, Bernard; Cushway, Timothy; Roger, Simon D

    2014-04-01

    Rigorous data are sparse concerning the optimal route of administration and dosing strategy for iron therapy with or without concomitant erythropoiesis-stimulating agent (ESA) therapy for the management of iron deficiency anaemia in patients with non-dialysis dependent chronic kidney disease (ND-CKD). FIND-CKD was a 56-week, open-label, multicentre, prospective, randomized three-arm study (NCT00994318) of 626 patients with ND-CKD and iron deficiency anaemia randomized to (i) intravenous (IV) ferric carboxymaltose (FCM) at an initial dose of 1000 mg iron with subsequent dosing as necessary to target a serum ferritin level of 400-600 µg/L (ii) IV FCM at an initial dose of 200 mg with subsequent dosing as necessary to target serum ferritin 100-200 µg/L or (iii) oral ferrous sulphate 200 mg iron/day. The primary end point was time to initiation of other anaemia management (ESA therapy, iron therapy other than study drug or blood transfusion) or a haemoglobin (Hb) trigger (two consecutive Hb values FIND-CKD was the longest randomized trial of IV iron therapy to date. Its findings will address several unanswered questions regarding iron therapy to treat iron deficiency anaemia in patients with ND-CKD. It was also the first randomized trial to utilize both a high and low serum ferritin target range to adjust IV iron dosing, and the first not to employ Hb response as its primary end point.

  5. Structure of short-range-ordered iron(III)-precipitates formed by iron(II) oxidation in water containing phosphate, silicate, and calcium

    Science.gov (United States)

    Voegelin, A.; Frommer, J.; Vantelon, D.; Kaegi, R.; Hug, S. J.

    2009-04-01

    The oxidation of Fe(II) in water leads to the formation of Fe(III)-precipitates that strongly affect the fate of nutrients and contaminants in natural and engineered systems. Examples include the cycling of As in rice fields irrigated with As-rich groundwater or the treatment of drinking water for As removal. Knowledge of the types of Fe(III)-precipitates forming in such systems is essential for the quantitative modeling of nutrient and contaminant dynamics and for the optimization of water purification techniques on the basis of a mechanistic understanding of the relevant biogeochemical processes. In this study, we investigated the local coordination of Fe, P, and Ca in Fe(III)-precipitates formed by aeration of synthetic Fe(II)-containing groundwater with variable composition (pH 7, 2-30 mg/L Fe(II), 2-20 mg/L phosphate-P, 2-20 mg/L silicate-Si, 8 mM Na-bicarbonate or 2.5 mM Ca-&1.5 mM Mg-bicarbonate). After 4 hours of oxidation, Fe(III)-precipitates were collected on 0.2 µm nylon filters and dried. The precipitates were analyzed by Fe K-edge EXAFS (XAS beamline, ANKA, Germany) and by P and Ca K-edge XANES spectroscopy (LUCIA beamline, SLS, Switzerland). The Fe K-edge EXAFS spectra indicated that local Fe coordination in the precipitates systematically shifted with water composition. As long as water contained P, mainly short-range-ordered Fe(III)-phosphate formed (with molar P/Fe ~0.5). In the absence of P, Fe(III) precipitated as hydrous ferric oxide at high Si/Fe>0.5, as ferrihydrite at intermediate Si/Fe, and mainly as lepidocrocite at Si/Fe<0.2. Analysis of the EXAFS by shell-fitting indicated that Fe(III)-phosphates mainly contained mono- or oligomeric (edge- or corner-sharing) Fe and that the linkage between neighboring Fe(III)-octahedra changed from predominantly edge-sharing in Si-rich hydrous ferric oxide to edge- and corner-sharing in ferrihydrite. Electron microscopic data showed that changes in local precipitate structure were systematically

  6. Magnetic properties of iron loaded MCM-48 molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Veronica R. [Centro de Investigacion y Tecnologia Quimica, Universidad Tecnologica Nacional, Facultad Regional Cordoba. Cordoba (Argentina); CONICET (Argentina); Oliva, Marcos I. [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Cordoba (Argentina); IFEG-CONICET (Argentina); Vaschetto, Eliana G. [Centro de Investigacion y Tecnologia Quimica, Universidad Tecnologica Nacional, Facultad Regional Cordoba. Cordoba (Argentina); Urreta, Silvia E., E-mail: urreta@famaf.unc.edu.a [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Cordoba (Argentina); Eimer, Griselda A. [Centro de Investigacion y Tecnologia Quimica, Universidad Tecnologica Nacional, Facultad Regional Cordoba. Cordoba (Argentina); CONICET (Argentina); Silvetti, Silvia P. [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Cordoba (Argentina)

    2010-11-15

    Mesoporous molecular sieves of MCM-48 type were loaded with iron by the wet impregnation method, using Fe(III) nitrate or Fe(II) sulfate aqueous solutions as Fe sources, to obtain a magnetic porous composite. The iron loaded materials were characterized by XRD, N{sub 2} adsorption and DRUV-vis and compared with the Si-MCM-48 host. Their magnetic properties were studied by measuring the hysteresis loops up to 1.5 T at different temperatures (5-300 K) and by magnetization vs. temperature curves following the conventional zero field cooling (ZFC) and field cooling (FC) protocols. Materials with high structure regularity and surface area are obtained, which exhibit a mixed paramagnetic and superparamagnetic behavior, arising in isolated iron ions inserted in the host framework, and in small iron oxide clusters or nanoparticles forming inside the pores, respectively. Larger hematite particles (8-13 nm) grown on the external surface provide a quite small ferromagnetic contribution to the hysteresis loop.

  7. Magnetic properties of iron loaded MCM-48 molecular sieves

    International Nuclear Information System (INIS)

    Elias, Veronica R.; Oliva, Marcos I.; Vaschetto, Eliana G.; Urreta, Silvia E.; Eimer, Griselda A.; Silvetti, Silvia P.

    2010-01-01

    Mesoporous molecular sieves of MCM-48 type were loaded with iron by the wet impregnation method, using Fe(III) nitrate or Fe(II) sulfate aqueous solutions as Fe sources, to obtain a magnetic porous composite. The iron loaded materials were characterized by XRD, N 2 adsorption and DRUV-vis and compared with the Si-MCM-48 host. Their magnetic properties were studied by measuring the hysteresis loops up to 1.5 T at different temperatures (5-300 K) and by magnetization vs. temperature curves following the conventional zero field cooling (ZFC) and field cooling (FC) protocols. Materials with high structure regularity and surface area are obtained, which exhibit a mixed paramagnetic and superparamagnetic behavior, arising in isolated iron ions inserted in the host framework, and in small iron oxide clusters or nanoparticles forming inside the pores, respectively. Larger hematite particles (8-13 nm) grown on the external surface provide a quite small ferromagnetic contribution to the hysteresis loop.

  8. Electron small polarons and their mobility in iron (oxyhydr)oxide nanoparticles

    DEFF Research Database (Denmark)

    Katz, Jordan E; Zhang, Xiaoyi; Attenkofer, Klaus

    2012-01-01

    Electron mobility within iron (oxyhydr)oxides enables charge transfer between widely separated surface sites. There is increasing evidence that this internal conduction influences the rates of interfacial reactions and the outcomes of redox-driven phase transformations of environmental interest....... To determine the links between crystal structure and charge-transport efficiency, we used pump-probe spectroscopy to study the dynamics of electrons introduced into iron(III) (oxyhydr)oxide nanoparticles via ultrafast interfacial electron transfer. Using time-resolved x-ray spectroscopy and ab initio...

  9. Development of Vmax III. Magnetic wall climbing robot with holonomic and omni-directional mobility

    International Nuclear Information System (INIS)

    Tsuru, Kiyoshi; Hirose, Shigeo

    2012-01-01

    Wall-climbing robots having holonomic and omni-directional mobility would enhance the manipulation performance of the mounted arm and enable it to execute various tasks on the surface of large structures. This study focuses on the wall-climbing robots having permanent magnet attractive units to stick to the surface of iron structure such as atomic reactors and discuss the development of a specific holonomic and omni-directional wall-climbing mechanisms. Basic driving mechanism of the wall-climbing robot is based on our former invention named Omni Disk which consists of multiple rollers attached to one side of a rotating disk and having a mechanism to direct the rollers to the same direction. We firstly discuss about the mechanical improvements of the Omni Disk to make it lightweight and low cost. We next discusses about four types of methods to attach permanent magnets to the wall-climbing robot and generates attractive force on the iron wall and select the best type based on the motion experiments about the constructed models. As the result of these considerations, we developed a holonomic and omni-directional wall-climbing robot named Vmax III which consists of three Omni Disks having permanent magnet at their center having the function to change the magnetic attractive force. By using the Vmax III, we studied about the relation among the magnetic attractive force of three Omni Disks, posture of the Vmax III and inclination angle of the iron wall and clarified the optimized distribution of the magnetic attractive force of the Omni Disks in different inclination of the iron wall. (author)

  10. The ground states of iron(III) porphines: Role of entropy–enthalpy compensation, Fermi correlation, dispersion, and zero-point energies

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2011-01-01

    on calculations of five iron(III) porphines. Here, we compute the geometries of 80 different electronic configurations and the free energies of the most stable configurations with the functionals TPSSh, TPSS, and B3LYP. Zero-point energies and entropy favor high-spin by ~4kJ/mol and 0–10kJ/mol, respectively. When...... favors low-spin by 3–53kJ/mol (TPSSh) or 4–15kJ/mol (B3LYP) due to the attractive r−6 term and the shorter distances in low-spin. The very large and diverse corrections from TPSS and TPSSh seem less consistent with the similarity of the systems than when calculated from B3LYP. If the functional......-specific corrections are used, B3LYP and TPSSh are of equal accuracy, and TPSS is much worse, whereas if the physically reasonable B3LYP-computed dispersion effect is used for all functionals, TPSSh is accurate for all systems. B3LYP is significantly more accurate when dispersion is added, confirming previous results....

  11. Halogen-Bonding-Assisted Iodosylbenzene Activation by a Homogenous Iron Catalyst

    DEFF Research Database (Denmark)

    de Sousa, David P.; Wegeberg, Christina; Vad, Mads Sørensen

    2016-01-01

    The iron(III) complex of hexadentate N,N,N′-tris(2-pyridylmethyl)ethylendiamine-N′-acetate (tpena−) is a more effective homogenous catalyst for selective sulfoxidation and epoxidation with insoluble iodosylbenzene, [PhIO]n, compared with soluble methyl-morpholine-N-oxide (NMO). We propose that two...

  12. Adsorption of trace elements of radionuclides on hydrous iron oxides

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.

    1988-01-01

    Factors that influence the adsorption of trace elements or radionuclides on hydrous iron oxides were investigated. The adsorption of monovalent cations (Cs + , Rb + ) on hydrous iron oxides is not strongly pH-dependent and it can be regarded as nonspecific. On the other hand, the adsorption of Ag + , divalent cations (Zn 2+ , Cd 2+ , Mn 2+ , Sr 2+ ) or trivalent cations (Cr 3+ , La 3+ , Ce 3+ , Eu 3+ , Gd 3+ , Er 3+ , Yb 3+ ) is strongly pH-dependent. The regularities of the adsorption of these cations on hydrous iron oxides are discussed. The differences in the adsorption behaviour of some divalent and trivalent cations are also explained. Freshly precipitated iron(III) hydroxide can be used for the decontamination of radionuclides from low-level waste solutions. However, the efficacy of decontamination depends on the oxidation state and the chemical properties of radionuclides. (author) 40 refs.; 9 figs

  13. Removal of iron interferences by solvent extraction for geochemical analysis by atomic-absorption spectrophotometry

    Science.gov (United States)

    Zhou, L.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    Iron is a common interferent in the determination of many elements in geochemical samples. Two approaches for its removal have been taken. The first involves removal of iron by extraction with methyl isobutyl ketone (MIBK) from hydrochloric acid medium, leaving the analytes in the aqueous phase. The second consists of reduction of iron(III) to iron(II) by ascorbic acid to minimize its extraction into MIBK, so that the analytes may be isolated by extraction. Elements of interest can then be determined using the aqueous solution or the organic extract, as appropriate. Operating factors such as the concentration of hydrochloric acid, amounts of iron present, number of extractions, the presence or absence of a salting-out agent, and the optimum ratio of ascorbic acid to iron have been determined. These factors have general applications in geochemical analysis by atomic-absorption spectrophotometry. ?? 1985.

  14. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Ruzicka, Alex M.; Haack, Henning; Chabot, Nancy L.

    2017-01-01

    By far most of the melted and differentiated planetesimals that have been sampled as meteorites are metal-rich iron meteorites or stony iron meteorites. The parent asteroids of these meteorites accreted early and differentiated shortly after the solar system formed, producing some of the oldest...... and interpretations for iron and stony iron meteorites (Plate 13.1). Such meteorites provide important constraints on the nature of metal-silicate separation and mixing in planetesimals undergoing partial to complete differentiation. They include iron meteorites that formed by the solidification of cores...... (fractionally crystallized irons), irons in which partly molten metal and silicates of diverse types were mixed together (silicate-bearing irons), stony irons in which partly molten metal and olivine from cores and mantles were mixed together (pallasites), and stony irons in which partly molten metal...

  15. sup(60)Co hot atom chemistry of tris(acetylacetonato) cobalt(III) adsorbed on silica gel

    International Nuclear Information System (INIS)

    Nishioji, H.; Sakai, Y.; Tominaga, T.

    1985-01-01

    The sup(60)Co hot atom reactions were studied in tris(acetylacetonato)cobalt(III) adsorbed on silica gel surface. sup(57)Fe Moessbauer spectra of tris(acetylacetonato)iron(III) in the corresponding system were also measured in order to examine the state of dispersion of complex molecules on silica gel. The retention formation processes were discussed in terms of the dependence of sup(60)Co retention on the adsorbed amount (concentration) of cobalt(III) complexes. (author)

  16. THE EFFECT OF PH, PHOSPHATE AND OXIDANT TYPE ON THE REMOVAL OF ARSENIC FROM DRINKING WATER DURING IRON REMOVAL

    Science.gov (United States)

    In many regions of the United States, groundwaters that contain arsenic (primarily As[III]) also contain significant amounts of iron (Fe[II]). Arsenic removal will most likely be achieved by iron removal in many of those cases which will consist of oxidization followed by filtra...

  17. Selectivity and Activity of Iron Molybdate Catalysts in Oxidation of Methanol

    OpenAIRE

    Khalid Khazzal Hummadi; Karim H. Hassan; Phillip C.H. Mitchell

    2009-01-01

    The selectivity and activity of iron molybdate catalysts prepared by different methods are compared with those of a commercial catalyst in the oxidation of methanol to formaldehyde in a continuous tubular bed reactor at 200-350 oC (473-623 oK), 10 atm (1013 kPa), with a methanol-oxygen mixture fixed at 5.5% by volume methanol: air ratio. The iron(III) molybdate catalyst prepared by co-precipitation and filtration had a selectivity towards formaldehyde in methanol oxidation comparable with a c...

  18. Iron binary and ternary coatings with molybdenum and tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Yar-Mukhamedova, Gulmira, E-mail: gulmira-alma-ata@mail.ru [Institute Experimental and Theoretical Physics Al-Farabi Kazakh National University, 050038, Al-Farabi av., 71, Almaty (Kazakhstan); Ved, Maryna; Sakhnenko, Nikolay; Karakurkchi, Anna; Yermolenko, Iryna [National Technical University “Kharkov Polytechnic Institute”, Kharkov (Ukraine)

    2016-10-15

    Highlights: • High quality coatings of double Fe-Mo and ternary Fe-Mo-W electrolytic alloys can be produced both in a dc and a pulsed mode. • Application of unipolar pulsed current allows receiving an increased content of the alloying components and their more uniform distribution over the surface. • It is established that Fe-Mo and Fe-Mo-W coatings have an amorphous structure and exhibit improved corrosion resistance and microhardness as compared with the steel substrate due to the inclusion molybdenum and tungsten. - Abstract: Electrodeposition of Fe-Mo-W and Fe-Mo layers from a citrate solution containing iron(III) on steel and iron substrates is compared. The utilization of iron(III) compounds significantly improved the electrolyte stability eliminating side anodic redox reactions. The influence of concentration ratios and electrodeposition mode on quality, chemical composition, and functional properties of the alloys is determined. It has been found that alloys deposited in pulse mode have more uniform surface morphology and chemical composition and contain less impurities. Improvement in physical and mechanical properties as well as corrosion resistance of Fe-Mo and Fe-Mo-W deposits when compared with main alloy forming metals is driven by alloying components chemical passivity as well as by alloys amorphous structure. Indicated deposits can be considered promising materials in surface hardening technologies and repair of worn out items.

  19. A phase III study of the efficacy and safety of a novel iron-based phosphate binder in dialysis patients.

    Science.gov (United States)

    Floege, Jürgen; Covic, Adrian C; Ketteler, Markus; Rastogi, Anjay; Chong, Edward M F; Gaillard, Sylvain; Lisk, Laura J; Sprague, Stuart M

    2014-09-01

    Efficacy of PA21 (sucroferric oxyhydroxide), a novel calcium-free polynuclear iron(III)-oxyhydroxide phosphate binder, was compared with that of sevelamer carbonate in an open-label, randomized, active-controlled phase III study. Seven hundred and seven hemo- and peritoneal dialysis patients with hyperphosphatemia received PA21 1.0-3.0 g per day and 348 received sevelamer 4.8-14.4 g per day for an 8-week dose titration, followed by 4 weeks without dose change, and then 12 weeks maintenance. Serum phosphorus reductions at week 12 were -0.71 mmol/l (PA21) and -0.79 mmol/l (sevelamer), demonstrating non-inferiority of, on average, three tablets of PA21 vs. eight of sevelamer. Efficacy was maintained to week 24. Non-adherence was 15.1% (PA21) vs. 21.3% (sevelamer). The percentage of patients that reported at least one treatment-emergent adverse event was 83.2% with PA21 and 76.1% with sevelamer. A higher proportion of patients withdrew owing to treatment-emergent adverse events with PA21 (15.7%) vs. sevelamer (6.6%). Mild, transient diarrhea, discolored feces, and hyperphosphatemia were more frequent with PA21; nausea and constipation were more frequent with sevelamer. After 24 weeks, 99 hemodialysis patients on PA21 were re-randomized into a 3-week superiority analysis of PA21 maintenance dose in 50 patients vs. low dose (250 mg per day (ineffective control)) in 49 patients. The PA21 maintenance dose was superior to the low dose in maintaining serum phosphorus control. Thus, PA21 was effective in lowering serum phosphorus in dialysis patients, with similar efficacy to sevelamer carbonate, a lower pill burden, and better adherence.

  20. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.

    Science.gov (United States)

    Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo

    2012-12-01

    In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Stability of bacterial carotenoids in the presence of iron in a model of the gastric compartment - comparison with dietary reference carotenoids.

    Science.gov (United States)

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-04-15

    Recently isolated spore-forming pigmented marine bacteria, Bacillus indicus HU36 and Bacillus firmus GB1 are sources of carotenoids (∼fifteen distinct yellow and orange pigments and ∼thirteen distinct pink pigments, respectively). They are glycosides of oxygenated lycopene derivatives (apo-lycopenoids) and are assumed to be more heat- and gastric-stable than common carotenoids. In this study, the oxidation by O2 of the bacterial carotenoids was initiated by free iron (Fe(II) and Fe(III)) or by heme iron (metmyoglobin) in a mildly acidic aqueous solution mimicking the gastro-intestinal compartment and compared to the oxidation of the common dietary carotenoids β-carotene, lycopene and astaxanthin. Under these conditions, all bacterial carotenoids appear more stable in the presence of heme iron vs. free iron. Carotenoid autoxidation initiated by Fe(II) is relatively fast and likely involves reactive oxygen-iron species derived from Fe(II) and O2. By contrast, the corresponding reaction with Fe(III) is kinetically blocked by the slow preliminary reduction of Fe(III) into Fe(II) by the carotenoids. The stability of carotenoids toward autoxidation increases as follows: β-carotenecarotenoids react more quickly than reference carotenoids with Fe(III), but much more slowly than the reference carotenoids with Fe(II). This reaction is correlated with the structure of the carotenoids, which can have opposite effects in a micellar system: bacterial carotenoids with electro-attracting terminal groups have a lower reducing capacity than β-carotene and lycopene. However, their polar head favours their location close to the interface of micelles, in closer contact with oxidative species. Kinetic analyses of the iron-induced autoxidation of astaxanthin and HU36 carotenoids has been performed and gives insights in the underlying mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Spectrophotometric determination of zirconium in nickel-base alloys with Arsenazo III after separation by froth flotation

    International Nuclear Information System (INIS)

    Sekine, K.; Onishi, H.

    1977-01-01

    0.02-0.1% of zirconium can be determined in nickel alloys by spectrophotometry with Arsenazo III after its separation from the sample solution by means of froth flotation using Arsenazo III and Zephiramine. Nickel, chromium and iron do not interfere. Analysis of standard alloys yielded a standard deviation of 2.2%. (orig.) [de

  3. Metal interferences and their removal prior to the determination of As(T) and As(III) in acid mine waters by hydride generation atomic absorption spectrometry

    Science.gov (United States)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ball, James W.

    2003-01-01

    Hydride generation atomic absorption spectrometry (HGAAS) is a sensitive and selective method for the determination of total arsenic (arsenic(III) plus arsenic(V)) and arsenic(III); however, it is subject to metal interferences for acid mine waters. Sodium borohydride is used to produce arsine gas, but high metal concentrations can suppress arsine production. This report investigates interferences of sixteen metal species including aluminum, antimony(III), antimony(V), cadmium, chromium(III), chromium(IV), cobalt, copper(II), iron(III), iron(II), lead, manganese, nickel, selenium(IV), selenium(VI), and zinc ranging in concentration from 0 to 1,000 milligrams per liter and offers a method for removing interfering metal cations with cation exchange resin. The degree of interference for each metal without cation-exchange on the determination of total arsenic and arsenic(III) was evaluated by spiking synthetic samples containing arsenic(III) and arsenic(V) with the potential interfering metal. Total arsenic recoveries ranged from 92 to 102 percent for all metals tested except antimony(III) and antimony(V) which suppressed arsine formation when the antimony(III)/total arsenic molar ratio exceeded 4 or the antimony(V)/total arsenic molar ratio exceeded 2. Arsenic(III) recoveries for samples spiked with aluminum, chromium(III), cobalt, iron(II), lead, manganese, nickel, selenium(VI), and zinc ranged from 84 to 107 percent over the entire concentration range tested. Low arsenic(III) recoveries occurred when the molar ratios of metals to arsenic(III) were copper greater than 120, iron(III) greater than 70, chromium(VI) greater than 2, cadmium greater than 800, antimony(III) greater than 3, antimony(V) greater than 12, or selenium(IV) greater than 1. Low recoveries result when interfering metals compete for available sodium borohydride, causing incomplete arsine production, or when the interfering metal oxidizes arsenic(III). Separation of interfering metal cations using

  4. LiFePO4 Nanostructures Fabricated from Iron(III) Phosphate (FePO4 x 2H2O) by Hydrothermal Method.

    Science.gov (United States)

    Saji, Viswanathan S; Song, Hyun-Kon

    2015-01-01

    Electrode materials having nanometer scale dimensions are expected to have property enhancements due to enhanced surface area and mass/charge transport kinetics. This is particularly relevant to intrinsically low electronically conductive materials such as lithium iron phosphate (LiFePO4), which is of recent research interest as a high performance intercalation electrode material for Li-ion batteries. Many of the reported works on LiFePO4 synthesis are unattractive either due to the high cost of raw materials or due to the complex synthesis technique. In this direction, synthesis of LiFePO4 directly from inexpensive FePO4 shows promise.The present study reports LiFePO4 nanostructures prepared from iron (III) phosphate (FePO4 x 2H2O) by precipitation-hydrothermal method. The sintered powder was characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Inductive coupled plasma-optical emission spectroscopy (ICP-OES), and Electron microscopy (SEM and TEM). Two synthesis methods, viz. bulk synthesis and anodized aluminum oxide (AAO) template-assisted synthesis are reported. By bulk synthesis, micro-sized particles having peculiar surface nanostructuring were formed at precipitation pH of 6.0 to 7.5 whereas typical nanosized LiFePO4 resulted at pH ≥ 8.0. An in-situ precipitation strategy inside the pores of AAO utilizing the spin coating was utilized for the AAO-template-assisted synthesis. The template with pores filled with the precipitate was subsequently subjected to hydrothermal process and high temperature sintering to fabricate compact rod-like structures.

  5. The influence of extracellular superoxide on iron redox chemistry and bioavailability to aquatic microorganisms

    Directory of Open Access Journals (Sweden)

    Andrew eRose

    2012-04-01

    Full Text Available Superoxide, the one-electron reduced form of dioxygen, is produced in the extracellular milieu of aquatic microbes through a range of abiotic chemical processes and also by microbes themselves. Due to its ability to promote both oxidative and reductive reactions, superoxide may have a profound impact on the redox state of iron, potentially influencing iron solubility, complex speciation and bioavailability. The interplay between iron, superoxide and oxygen may also produce a cascade of other highly reactive transients in oxygenated natural waters. For microbes, the overall effect of reactions between superoxide and iron may be deleterious or beneficial, depending on the organism and its chemical environment. Here I critically discuss recent advances in understanding: (i sources of extracellular superoxide in natural waters, with a particular emphasis on microbial generation; (ii the chemistry of reactions between superoxide and iron; and (iii the influence of these processes on iron bioavailability and microbial iron nutrition.

  6. Uranium determination by spectrophotometry, in chloride solutions, using titanium (III) as reducer; Determinacao de uranio por espectrofotometria, em solucoes cloridricas, utilizando titanio (III) como redutor

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, E T.R.; Bastos, M B.R.

    1986-08-01

    A simple method for determining uranium in uranium (VI) solutions with the presence of uranium (IV), iron (II), and titanium (IV) in chloridic solution is described. The method comprises in uranium (VI) reduction with titanium (III), acidity adjustment and uranium (IV) spectrophotometry in hydrochloric acid 2 M. (C.G.C.).

  7. ASME codification of ductile cast iron cask for transport and storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Saegusa, Toshiari; Arai, Taku

    2012-01-01

    The CRIEPI has been executing research and development on ductile cast iron cask for transport and storage of spent nuclear fuel in order to diversify options of the casks. Based on the research results, the CRIEPI proposed materials standards (Section II) and structural design standards (Section III) for the ductile cast iron cask to the authoritative and international ASME (American Society of Mechanical Engineers) Codes. For the Section II, the CRIEPI proposed the JIS G 5504 material with additional requirement prohibiting repair of cast body by welding, etc. as well as the ASTM A874 material to the Part A. In addition, the CRIEPI proposed design stress allowables, physical properties (thermal conductivity, modulus of elasticity, etc.), and external pressure chart to the Part D. For the Section III, the CRIEPI proposed a fracture toughness requirement of the ductile cast iron cask at -40degC to WB and WC of Division 3. Additionally, the CRIEPI proposed a design fatigue curve of the ductile cast iron cask to Appendix of Division 1. This report describes the outline of the proposed standards, their bases, and the deliberation process in order to promote proper usage of the code, future improvement, etc. (author)

  8. A Heme Oxygenase-1 Transducer Model of Degenerative and Developmental Brain Disorders

    Directory of Open Access Journals (Sweden)

    Hyman M. Schipper

    2015-03-01

    Full Text Available Heme oxygenase-1 (HO-1 is a 32 kDa protein which catalyzes the breakdown of heme to free iron, carbon monoxide and biliverdin. The Hmox1 promoter contains numerous consensus sequences that render the gene exquisitely sensitive to induction by diverse pro-oxidant and inflammatory stimuli. In “stressed” astroglia, HO-1 hyperactivity promotes mitochondrial iron sequestration and macroautophagy and may thereby contribute to the pathological iron deposition and bioenergetic failure documented in Alzheimer disease, Parkinson disease and certain neurodevelopmental conditions. Glial HO-1 expression may also impact neuroplasticity and cell survival by modulating brain sterol metabolism and the proteasomal degradation of neurotoxic proteins. The glial HO-1 response may represent a pivotal transducer of noxious environmental and endogenous stressors into patterns of neural damage and repair characteristic of many human degenerative and developmental CNS disorders.

  9. Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B

    DEFF Research Database (Denmark)

    Dideriksen, Knud; Baker, Joel A.; Stipp, Susan Louise Svane

    2008-01-01

    be controlled by isotope fractionation between the free and complexed iron.We have determined the equilibrium Fe isotope fractionation induced by organic ligand activity in experiments with solutions having co-existing inorganic Fe(III) species and siderophore complexes, Fedesferrioxamine B (at pH 2). The two......-type fractionation during precipitation, this experiment yielded an isotope fractionation factor of a56Fesolution-solid=1.00027. Calculations based on these results indicate that isotopic re-equilibration is unlikely to significantly affect our determined equilibrium Fe isotope fractionation between inorganically...... and organically complexed Fe. To determine the equilibrium Fe isotope fractionation between inorganically and organically bound Fe(III), experiments with variable proportions of inorganic Fe were carried out at 25 °C. Irrespective of the proportion of inorganic Fe, equilibrium fractionation factors were within...

  10. Influence of iron redox cycling on organo-mineral associations in Arctic tundra soil

    Science.gov (United States)

    Herndon, Elizabeth; AlBashaireh, Amineh; Singer, David; Roy Chowdhury, Taniya; Gu, Baohua; Graham, David

    2017-06-01

    Arctic tundra stores large quantities of soil organic matter under varying redox conditions. As the climate warms, these carbon reservoirs are susceptible to increased rates of decomposition and release to the atmosphere as the greenhouse gases carbon dioxide (CO2) and methane (CH4). Geochemical interactions between soil organic matter and minerals influence decomposition in many environments but remain poorly understood in Arctic tundra systems and are not considered in decomposition models. The accumulation of iron (Fe) oxyhydroxides and organo-iron precipitates at redox interfaces may be particularly important for carbon cycling given that ferric iron [Fe(III)] species can enhance decomposition by serving as terminal electron acceptors in anoxic soils or inhibit microbial decomposition by binding organic molecules. Here, we examine chemical properties of solid-phase Fe and organic matter in organic and mineral horizons within the seasonally thawed active layer of Arctic tundra on the North Slope of Alaska. Spectroscopic techniques, including micro-X-ray fluorescence (μXRF) mapping, micro-X-ray absorption near-edge structure (μXANES) spectroscopy, and Fourier transform infrared spectroscopy (FTIR), were coupled with chemical sequential extractions and physical density fractionations to evaluate the spatial distribution and speciation of Fe-bearing phases and associated organic matter in soils. Organic horizons were enriched in poorly crystalline and crystalline iron oxides, and approximately 60% of total Fe stored in organic horizons was calculated to derive from upward translocation from anoxic mineral horizons. Ferrihydrite and goethite were present as coatings on mineral grains and plant debris, and in aggregates with clays and particulate organic matter. Minor amounts of ferrous iron [Fe(II)] were present in iron sulfides (i.e., pyrite and greigite) in mineral horizon soils and iron phosphates (vivianite) in organic horizons. Concentrations of organic

  11. Iron deficiency in chronic systolic heart failure(indic study

    Directory of Open Access Journals (Sweden)

    Sunil Verma

    2016-01-01

    Full Text Available Background: Chronic systolic heart failure (HF is characterized by the left ventricular dysfunction, exercise intolerance and is associated with neurohormonal activation that affects several organs such as kidney and skeletal muscle. Anemia is common in HF and may worsen symptoms. Iron deficiency (ID is also common in HF patients with or without anemia. Iron is the key cofactor in oxidative metabolism in skeletal muscle and the Krebs cycle. There is a paucity of data regarding iron metabolism in chronic systolic HF in India. Methods: IroN Deficiency In CHF study (INDIC is an observational study that investigated forty chronic heart failure patients for the presence of ID. Serum ferritin (micrograms per liter, serum iron (micrograms per liter, total iron binding capacity (micrograms per liter, transferring (milligrams per deciliter, and transferrin saturation were measured to assess iron status. Results: There were 67.5% (27/40 patients who had ID with a mean serum ferritin level of 76.4 μg/L. Of the 27 iron deficient patients, 22 (55% had an absolute ID, and 5 had a functional ID. Eight out of 27 of the iron deficient patients were anemic (20% of the total cohort, 30% of the iron deficient patients. Anemia was seen in 6 other patients, which was possibly anemia of chronic disease. There was a trend for more advanced New York Heart Association (NYHA class (NYHA III and NYHA IV patients with ID (37.4% vs. 30.77%, P = 0.697. Conclusion: In our study, ID was very common, affecting more than half of the patients with systolic HF. Absolute ID was the most common cause of ID and patients with ID had a tendency to have advanced NYHA class. Our study also demonstrated that ID can occur in the absence of anemia (iron depletion.

  12. Analysis of Crystal Structure of Fe3O4 Thin Films Based on Iron Sand Growth by Spin Coating Method

    Science.gov (United States)

    Rianto, D.; Yulfriska, N.; Murti, F.; Hidayati, H.; Ramli, R.

    2018-04-01

    Recently, iron sand used as one of base materials in the steel industry. However, the content of iron sand can be used as starting materials in sensor technology in the form of thin films. In this paper, we report the analysis of crystal structure of magnetite thin film based on iron sand from Tiram’s Beach. The magnetic content of sand separated by a permanent magnet, then it was milled at 30 hours milling time. In order to increase the purity of magnetite, it washed after milling using aquades under magnetic separation by a magnet permanent. The thin film has been prepared using iron (III) nitrate by sol–gel technique. The precursor is resulted by dissolving magnetite in oxalic acid and nitric acid. Then, solution of iron (III) nitrate dissolved in ethylene glycol was applied on glass substrates by spin coating. The X-Ray Diffraction is operated thin film characterization. The structure of magnetite has been studied based on X-Ray Peaks that correspond to magnetite content of thin films.

  13. Draft ASME code case on ductile cast iron for transport packaging

    International Nuclear Information System (INIS)

    Saegusa, T.; Arai, T.; Hirose, M.; Kobayashi, T.; Tezuka, Y.; Urabe, N.; Hueggenberg, R.

    2004-01-01

    The current Rules for Construction of ''Containment Systems for Storage and Transport Packagings of Spent Nuclear Fuel and High Level Radioactive Material and Waste'' of Division 3 in Section III of ASME Code (2001 Edition) does not include ductile cast iron in its list of materials permitted for use. The Rules specify required fracture toughness values of ferritic steel material for nominal wall thickness 5/8 to 12 inches (16 to 305 mm). New rule for ductile cast iron for transport packaging of which wall thickness is greater than 12 inches (305mm) is required

  14. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Drochioiu, Gabi; Ion, Laura [Alexandru Ioan Cuza University of Iasi, 11 Carol I, Iasi 700506 (Romania); Murariu, Manuela; Habasescu, Laura [Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi 700487 (Romania)

    2014-10-06

    An elevation in the concentration of heavy metal ions in Alzheimer’s disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1–3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloid-β peptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals.

  15. The synthesis, structures and characterisation of new mixed-ligand manganese and iron complexes with tripodal, tetradentate ligands

    NARCIS (Netherlands)

    van Gorkum, R.; Berding, J.; Mills, A.M.; Kooijman, H.; Tooke, D.M.; Spek, A.L.; Mutikainen, I.; Turpeinen, U.; Reedijk, J.; Bouwman, E.

    2008-01-01

    The preparation of new manganese and iron complexes with the general formula [M(tripod)(anion)] is described, where M = FeIII or MnIII, “tripod” is a dianionic tetradentate tripodal ligand and the anion is a chelating β-diketonate, 8-oxyquinoline or acetate. The synthesis of this type of complexes

  16. Novel KMnO4-modified iron oxide for effective arsenite removal

    International Nuclear Information System (INIS)

    Huang, Yao-Hui; Shih, Yu-Jen; Cheng, Fu-Ji

    2011-01-01

    Highlights: ► We employ the MnBT-4 adsorbent for As (III)/(V) removal in solution. ► The waste iron oxide BT-4 acts as the support to immobilize Mn using FBR reactor. ► MnBT-4 has higher arsenite adsorption as compared with BT4. ► Easy solid–liquid separation and cost effective are the merits of applying MnBT-4. - Abstract: This work demonstrates the synthesis of a novel KMnO 4 -modified form of iron oxide, MnBT-4, using a fluidized bed reactor (FBR) for the adsorptive removal of arsenic (III)/(V). Characterization by XRD, BET, and SEM indicated that the BT-4 support was poorly crystallized goethite (α-FeOOH) with a specific surface area of 229 m 2 g −1 . In FBR experiments of synthesizing MnBT-4, the Fe and Mn salts were found to have an optimal dosage ratio of less than 4, which maximized the KMnO 4 immobilization efficiency. The immobilized Mn compounds on MnBT-4 underwent an additional oxidation step of As (III), promoting arsenic adsorption. When applied MnBT-4 for As (III) removal from solution, the sorption isotherm was accurately fitted with Langmuir and Freundlich models, while the maximum adsorption capacity of 27.4 mg g −1 exceeded those of other adsorbents in the literature. Batch experimental results revealed that both raw BT-4 and MnBT-4 could take up a large amount of As (V). However, the MnBT-4 provided a substantially higher As (III) removal efficiency than BT-4.

  17. Moessbauer spectrometry applied to the study of laboratory samples made of iron gall ink

    International Nuclear Information System (INIS)

    Burgaud, C.; Rouchon, V.; Refait, P.; Wattiaux, A.

    2008-01-01

    Iron gall inks consist of a mixture of vitriol, gall nut extracts and gum arabic. The association of the iron(II) sulphate present in vitriols, and the carboxyphenolic acids present in gall nut extracts leads to the formation of dark coloured iron-based precipitates. In order to evaluate the percentage of iron used in the formation of these precipitates, transmission Moessbauer spectroscopy (MS) measurements were performed on laboratory made inks at room temperature. These were completed by X-ray diffraction (XRD), and Raman spectroscopy measurements. The samples consisted of several solutions of iron(II) sulphate, gallic acid and gum arabic. After evaporation, the residues were analysed. Up to eight different Moessbauer signatures were detected, most of them correlated to iron sulphates. The Moessbauer signature of the iron gall precipitate was also isolated. It is not distinctly defined and may overlap with the signatures of iron(III) hydroxy-sulphates, such as jarosite or copiapite. Raman spectrometry then proved to be a useful complementary technique for the identification of the precipitate. (orig.)

  18. From iron coordination compounds to metal oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Mihail Iacob

    2016-12-01

    Full Text Available Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2IIIFeIIO(CH3COO6(H2O3]·2H2O (FeAc1, μ3-oxo trinuclear iron(III acetate, [Fe3O(CH3COO6(H2O3]NO3∙4H2O (FeAc2, iron furoate, [Fe3O(C4H3OCOO6(CH3OH3]NO3∙2CH3OH (FeF, iron chromium furoate, FeCr2O(C4H3OCOO6(CH3OH3]NO3∙2CH3OH (FeCrF, and an iron complex with an original macromolecular ligand (FePAZ were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination or using a nonconventional energy source (i.e., microwave or ultrasonic treatment to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  19. Iron chloride catalysed PCDD/F-formation: Experiments and PCDD/F-signatures.

    Science.gov (United States)

    Zhang, Mengmei; Buekens, Alfons; Ma, Siyuan; Li, Xiaodong

    2018-01-01

    Iron chloride is often cited as catalyst of PCDD/F-formation, together with copper chloride. Conversely, iron chloride catalysis has been less studied during de novo tests. This paper presents such de novo test data, derived from model fly ash incorporating iron (III) chloride and established over a vast range of temperature and oxygen concentration in the gas phase. Both PCDD/F-output and its signature are extensively characterised, including homologue and congener profiles. For the first time, a complete isomer-specific analysis is systematically established, for all samples. Special attention is paid to the chlorophenols route PCDD/F, to the 2,3,7,8-substituted congeners, and to their relationship and antagonism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Kinetics of microbial Fe(III) oxyhydroxidereduction: The role of mineral properties

    NARCIS (Netherlands)

    Bonneville, Steeve

    2005-01-01

    In many soils, sediments and groundwaters, ferric iron is a major potential electron acceptor for the oxidation of organic matter. In contrast to other terminal electron acceptors (e.g. nitrate or sulfate), the concentration of Fe3+(aq), is limited by the low solubility of Fe(III) oxyhydroxides

  1. Effect of Iron Containing Supplements on Rats' Dental Caries Progression

    Directory of Open Access Journals (Sweden)

    AR. Eshghi

    2012-01-01

    Full Text Available Objective: Iron deficiency is the most common form of malnutrition in developing countries. Iron containing supplements have been used effectively to solve this problem. In children, because of teeth staining after taking iron drops, parents have the idea that iron drops are the cause of tooth decay; therefore, they limit thisvital supplement in their children’s diet. Hereby, we evaluate the histologic effect of iron containing supplements on tooth caries in rice rats with cariogenic or noncariogenic diet.Materials and Methods: Twelve rats were selected and divided into four groups for this interventional experimental study. Four different types of dietary regimens were used for four months; group A, cariogenic diet with iron containing supplements; group B, cariogenic diet without iron containing supplements; groupC, non-cariogenic diet with iron containing supplements; group D, non-cariogenic diet without iron containing supplements. After sacrificing the rats, 20-micron histological sections of their posterior teeth were prepared using the Ground Sectionmethod, then they were studied under polarized light microscopy. In order to compare the progression of caries in different samples, the depth of the lesions in the enamel was measured as three grades I, II and III.Results: The mean grade value of A, B, C and D groups were 1.61, 2.61, 1.37 and 1.80, respectively. Statistical analysis revealed that significantly fewer caries were seen in the group which had received iron containing supplements and cariogenicdiet compared with cariogenic diet without iron supplements (p<0.05.Conclusion: Ferrous sulfate reduces the progression of dental caries in the cariogenic dietary regimen.

  2. Adsorption Mechanisms of Trivalent Gold onto Iron Oxy-Hydroxides: From the Molecular Scale to the Model

    International Nuclear Information System (INIS)

    Cances, Benjamin; Benedetti, Marc; Farges, Francois; Brown, Gordon E. Jr.

    2007-01-01

    Gold is a highly valuable metal that can concentrate in iron-rich exogenetic horizons such as laterites. An improved knowledge of the retention mechanisms of gold onto highly reactive soil components such as iron oxy-hydroxides is therefore needed to better understand and predict the geochemical behavior of this element. In this study, we use EXAFS information and titration experiments to provide a realistic thermochemical description of the sorption of trivalent gold onto iron oxy-hydroxides. Analysis of Au LIII-edge XAFS spectra shows that aqueous Au(III) adsorbs from chloride solutions onto goethite surfaces as inner-sphere square-planar complexes (Au(III)(OH,Cl)4), with dominantly OH ligands at pH > 6 and mixed OH/Cl ligands at lower pH values. In combination with these spectroscopic results, Reverse Monte Carlo simulations were used to constraint the possible sorption sites on the surface of goethite. Based on this structural information, we calculated sorption isotherms of Au(III) on Fe oxy-hydroxides surfaces, using the CD-MUSIC (Charge Distribution - MUlti SIte Complexation) model. The various Au(III)-sorbed species were identified as a function of pH, and the results of these EXAFS+CD-MUSIC models are compared with titration experiments. The overall good agreement between the predicted and measured structural models shows the potential of this combined approach to better model sorption processes of transition elements onto highly reactive solid surfaces such as goethite and ferrihydrite

  3. Is iron a limiting factor of Nodularia spumigena blooms?

    Directory of Open Access Journals (Sweden)

    Lidia Paczuska

    2003-12-01

    Full Text Available It is well known that a deficiency of iron, a trace element essential to every living organism, limits the growth of algae and cyanobacteria. Nodularia spumigena Mertens is a blue-green algae species inhabiting the Baltic region that often forms toxic blooms.     The aim of the study was to assess the growth of the toxic cyanobacteria with respect to iron bioavailability. The measured growth parameters were the numbers of cells (optical density, chlorophyll a and pheopigment a concentrations. The iron concentrations used ranged from 10-7 to 10-4 mol dm-3. Under iron stress conditions (<5 × 10-7 mol dm-3, growth inhibition, gradual pigment decay and cell mortality were observed. However, enriching the medium with complexing factors like citric acid and EDTA significantly stimulated the growth rate and chlorophyll a production. The citric acid - EDTA - Fe (5 × 10-7 mol dm-3 complex was demonstrably effective in stimulating the rate of cell division. Starting with 10-6 mol dm-3, the higher the iron(III concentration used in the media, the more intensive the growth of the cyanobacteria populations. This was most rapid in the presence of high iron concentrations (10-4 mol dm-3, regardless of the presence of complexing agents.     It appears that the growth of toxic cyanobacteria N. spumigena, and thus also its ability to form blooms, may well depend on iron availability in the environment.

  4. Electrochemical Studies of Interactions Between Fe(II/Fe(III and Amino Acids Using Ferrocene-Modified Carbon Paste Electrode

    Directory of Open Access Journals (Sweden)

    Vatrál Jaroslav

    2014-12-01

    Full Text Available The electrochemical behavior of an Fe(II/Fe(III redox couple in the presence of various selected amino acids has been studied using ferrocene-modified carbon paste electrode at pH = 7.4. Because of Fe(II/Fe(III solubility issues at physiological pH, ferrocene was used as a source of iron. Anodic oxidation of iron (pH = 7.2 occurred at 0.356 V and cathodic oxidation at 0.231 V, both vs Ag|AgCl. Treatment of the voltammetric data showed that it was a purely diffusion-controlled reaction with the involvement of one electron. After addition of amino acids, potential shifts and current changes can be observed on the voltammograms. Cyclic voltammetry experiments revealed the capability of amino acids to change the electrochemical behavior of the Fe(II/Fe(III redox couple.

  5. Genetic and biochemical investigations of the role of MamP in redox control of iron biomineralization in Magnetospirillum magneticum.

    Science.gov (United States)

    Jones, Stephanie R; Wilson, Tiffany D; Brown, Margaret E; Rahn-Lee, Lilah; Yu, Yi; Fredriksen, Laura L; Ozyamak, Ertan; Komeili, Arash; Chang, Michelle C Y

    2015-03-31

    Magnetotactic bacteria have evolved complex subcellular machinery to construct linear chains of magnetite nanocrystals that allow the host cell to sense direction. Each mixed-valent iron nanoparticle is mineralized from soluble iron within a membrane-encapsulated vesicle termed the magnetosome, which serves as a specialized compartment that regulates the iron, redox, and pH environment of the growing mineral. To dissect the biological components that control this process, we have carried out a genetic and biochemical study of proteins proposed to function in iron mineralization. In this study, we show that the redox sites of c-type cytochromes of the Magnetospirillum magneticum AMB-1 magnetosome island, MamP and MamT, are essential to their physiological function and that ablation of one or both heme motifs leads to loss of function, suggesting that their ability to carry out redox chemistry in vivo is important. We also develop a method to heterologously express fully heme-loaded MamP from AMB-1 for in vitro biochemical studies, which show that its Fe(III)-Fe(II) redox couple is set at an unusual potential (-89 ± 11 mV) compared with other related cytochromes involved in iron reduction or oxidation. Despite its low reduction potential, it remains competent to oxidize Fe(II) to Fe(III) and mineralize iron to produce mixed-valent iron oxides. Finally, in vitro mineralization experiments suggest that Mms mineral-templating peptides from AMB-1 can modulate the iron redox chemistry of MamP.

  6. Dissolution of copper and iron from malachite ore and precipitation of copper sulfate pentahydrate by chemical process

    Directory of Open Access Journals (Sweden)

    H. Kokes

    2014-03-01

    Full Text Available The present work describes an investigation of a chemical process for the recovery of copper and iron from malachite ore. For the dissolution of copper and iron, H2SO4 was employed as well as H2O2 as an oxidizing agent. The effects of reaction temperature and time, acid concentration, liquid-to-solid ratio and agitation rate on the copper and iron percentage were investigated. Following the steps of dissolving the copper and iron sulfate and filtering, iron (III hydroxide was precipitated by adjusting the pH level of the solution. Subsequently, copper sulfate pentahydrate was obtained by using various precipitants (i.e. ethanol, methanol and sulfuric acid.

  7. A novel iron-containing polyoxometalate heterogeneous photocatalyst for efficient 4-chlorophennol degradation by H{sub 2}O{sub 2} at neutral pH

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Qian; Zhang, Lizhong [Department of Chemistry and Applied Chemistry, Changji University, Changji 831100 (China); Zhao, Xiufeng, E-mail: zhaoxiufeng19670@126.com [Department of Chemistry and Applied Chemistry, Changji University, Changji 831100 (China); Chen, Han; Yin, Dongju [Department of Chemistry and Applied Chemistry, Changji University, Changji 831100 (China); Li, Jianhui [Department of Chemistry and Applied Chemistry, Changji University, Changji 831100 (China); National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2016-07-30

    Graphical abstract: An iron-containing polyoxometalate (Fe{sup III}LysSiW) catalyst showes good performance in the degradation of 4-chlorophenol by H{sub 2}O{sub 2}, especially in irradiated system. The catalytic activity of Fe{sup III}LysSiW stems from synergetic effect of ferric iron for Fenton-like catalysis and SiW{sub 12}O{sub 40}{sup 4−} for photocatalysis, respectively. The chemisorption of H{sub 2}O{sub 2} on Fe{sup III}LysSiW surface by hydrogen bonding also promotes both the Fenton-like and photocatalytic processes. - Highlights: • An iron-containing POM was synthesized as heterogeneous Fenton-like catalyst. • The catalyst has both the Fenton-like and photocatalytic activity at neutral pH. • The activity stems from the co-existence of iron and heteropolyanion in the catalyst. • The hydrogen bonding of H{sub 2}O{sub 2} on the catalyst surface enhances the reaction rate. - Abstract: An iron-containing polyoxometalate (Fe{sup III}LysSiW) was synthesized from ferric chloride (Fe{sup III}), lysine (Lys) and silicotungstic acid (SiW), and characterized using ICP-AES, TG, FT-IR, UV–vis DRS, XRD and SEM. The chemical formula of Fe{sup III}LysSiW was determined as [Fe(H{sub 2}O){sub 5}(C{sub 6}H{sub 14}N{sub 2}O{sub 2})]HSiW{sub 12}O{sub 40}·8H{sub 2}O, with Keggin-structured SiW{sub 12}O{sub 40}{sup 4−} heteropolyanion and lysine moiety. As a heterogeneous catalyst, the as prepared Fe{sup III}LysSiW showed good performance in the degradation of 4-chlorophenol by H{sub 2}O{sub 2} in both the dark and irradiated systems. Under the conditions of 4-chlorophenol 100 mg/L, Fe{sup III}LysSiW 1.0 g/L, H{sub 2}O{sub 2} 20 mmol/L and pH 6.5, 4-chlorophenol could be completely degraded in ca. 40 min in the dark and ca. 15 min upon irradiation. Prolonging the reaction time to 3 h, the TOC removal reached to ca. 71.3% in the dark and ca. 98.8% under irradiation. The catalytic activity of Fe{sup III}LysSiW stems from synergetic effect of ferric iron and Si

  8. The nature of the Iron Moiety bisorped by immobilized Saccharomyces Cervisiae at low pH: A Mossbauer spectroscopic investigation

    International Nuclear Information System (INIS)

    Khalil, Mustaim I.; Al-Wassil, Abdulaziz I.

    1999-01-01

    The nature of the adsorped Fe-moiety on immobilized Saccharomyces Cervisiae at low pH has been investigated by Mossbauer spectroscopy. The Mossbauer spectrum at 77K exhibited two sites: the major one (69%) was a quadrupole-split double, Delta Q=0.77 mms with an isomer shift 0.46 mms, assigned to the high spin octahedrally coordinated iron (III); and a single line minor site (31%) with an isomer shift, d=0.36 mms, assigned to the high-spin tetrahedral iron (III) Cl-moiety. An electrostatic and a covalent mode of Fe binding were then inferred. (author)

  9. Manganese-incorporated iron(III) oxide–graphene magnetic nanocomposite: synthesis, characterization, and application for the arsenic(III)-sorption from aqueous solution

    International Nuclear Information System (INIS)

    Nandi, Debabrata; Gupta, Kaushik; Ghosh, Arup Kumar; De, Amitabha; Banerjee, Sangam; Ghosh, Uday Chand

    2012-01-01

    High specific surface area of graphene (GR) has gained special scientific attention in developing magnetic GR nanocomposite aiming to apply for the remediation of diverse environmental problems like point-of-use water purification and simultaneous separation of contaminants applying low external magnetic field ( x 2+ Fe 2−x 3+ O 4 2− ) (IMBO)–GR nanocomposite is reported by exfoliating the GR layers. Latest microscopic, spectroscopic, powder X-ray diffraction, BET surface area, and superconducting quantum interference device characterizations showed that the material is a magnetic nanocomposite with high specific surface area (280 m 2 g −1 ) and pore volume (0.3362 cm 3 g −1 ). Use of this composite for the immobilization of carcinogenic As(III) from water at 300 K and pH ∼7.0 showed that the nanocomposite has higher binding efficiency with As(III) than the IMBO owing to its high specific surface area. The composite showed almost complete (>99.9 %) As(III) removal (≤10 μg L −1 ) from water. External magnetic field of 0.3 T efficiently separated the water dispersed composite (0.01 g/10 mL) at room temperature (300 K). Thus, this composite is a promising material which can be used effectively as a potent As(III) immobilizer from the contaminated groundwater (>10 μg L −1 ) to improve drinking water quality.

  10. Trace analysis of iron in environmental water and snow samples from Poland

    International Nuclear Information System (INIS)

    Golimowski, J.

    1989-01-01

    A voltammetric method for the determination of iron at detection limit of 4 μg/l is described, using the catalytic current of the reduction of the Fe(III)-triethanolamine (TEA) complex in the presence of bromate ions. The determination was performed at a mercury hanging drop electrode without preconcentration, using the TEA alkaline solution as a supporting electrolyte and the differential pulse technique. A peak current for the Fe-(III)-TEA catalytic reduction was observed at a potential of -1.0 V (Ag/AgCl saturated electrode). The influence of TEA, BrO 3 and NaOH concentrations on the peak height was studied. It was found that a 100-fold excess of Mn, a 50-fold excess of Cr(VI) and Zn did not interfere in the determination. This method was applied to the determination of iron in water, snow and waste water samples

  11. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.

    2014-01-01

    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...... to that continuing on Earth – although on much smaller length- and timescales – with melting of the metal and silicates; differentiation into core, mantle, and crust; and probably extensive volcanism. Iron and stony-iron meteorites are our only available analogues to materials found in the deep interiors of Earth...

  12. Why Need for National Expert Group Technical Consultation on Prevention and Treatment of Iron Deficiency Anemia

    Directory of Open Access Journals (Sweden)

    Pradeep Aggarwal

    2018-04-01

    Full Text Available Iron deficiency anemia is the most common nutrient deficiency in India. It impacts the lives of millions of mothers and children in our country through impaired health, development, quality of life and productivity. The Government of India initiated National Iron-plus Initiative Programme (NIPI for Control of Iron Deficiency Anaemia in 2013 with an aim to prevent and treat anaemia amongst different age groups, namely i 6-59 months; ii 6-10 years; iii 11-19 years, iv Pregnant and lactating Mothers, and v Women in Reproductive age group.

  13. Distribution and forms of iron in the vertisols of Serbia

    Directory of Open Access Journals (Sweden)

    DRAGIŠA S. MILOŠEV

    2011-05-01

    Full Text Available Soil of arable land and meadows from the Ap horizon, taken from ten different localities, were investigated for different forms of Fe, including total (HF, pseudo-total (HNO3, 0.1 M HCl extractable and DTPA (diethylenetriaminepentaacetic acid-extractable. A sequential fractional procedure was employed to separate the Fe into fractions: water soluble and exchangeable Fe (I, Fe specifically adsorbed with carbonates (II, reducibly releasable Fe in oxides (III, Fe bonded with organic matter (IV and Fe structurally bonded in silicates (residual fraction (V. The soil pH, cation exchange capacity, and size fractions (clay and silt had a strongest influence on the distribution of the different forms of Fe. The different extraction methods showed similar patterns of the Fe content in arable and meadow soils. However, the DTPA iron did not correspond with the total iron, which confirms the widespread incidence of iron-deficiency in vertisols is independent of the total iron in soils. The amount of exchangeable (fraction I and specifically adsorbed (II iron showed no dependence on its content in the other fractions, indicating low mobility of iron in vertisols. The strong positive correlation (r = 0.812 and 0.956 between the content of iron in HNO3 and HF and its contents in the primary and secondary minerals (fraction – V indicate a low content of plant accessible iron in the vertisol. The sequential fractional procedure was confirmed as suitable for accessing the content and availability of iron in the vertisols of Serbia.

  14. Effect of other metals on iron bioavailability in presence of a selective chelator

    International Nuclear Information System (INIS)

    Rehman, F.S.

    1995-01-01

    Iron (III) is generally very easily chelated by a number of chelators in the biological environment, either supplied by food or already present there. One of the these chelator is gallic acid. The stability constants of the complexes formed between gallic acid and other trace metals have been determined by a potentiometric method. The data obtained was computed with the help of computer program B est . The resulted Beta values were compared with already known values of iron gallic acid complexes. (author)

  15. Coordination and Oxidation States of Iron Incorporated in Mesoporous MCM41

    International Nuclear Information System (INIS)

    Lazar, K.; Pal-Borbely, G.; Szegedi, A.; Beyer, H. K.

    2002-01-01

    Mesoporous Fe-MCM41 samples (Si/Fe=25) were synthesized and characterized under evacuation and reducing/oxidizing treatments by in situ FTIR and Moessbauer spectroscopies. Both Fe(II) and Fe(III) located in low coordination states in top layers of pore walls exhibit Lewis acidity and may participate in Fe(III) ↔ Fe(II) processes at low temperatures (570 K). Furthermore, Fe(III) ↔ Fe(II) cycles can be achieved and repeated with participation of the full amount of iron at higher temperatures (670 K). The accompanying formation of oxygen vacancies and restoration of the structure in the reverse process does not result in extended damages; the MCM41 structure retains its stability under the conditions applied.

  16. Extraction and atomic absorption spectrophotometric determination of iron and ruthenium by using potassium xanthates

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, M; Kiboku, M [Kinki Univ., Higashi-Osaka, Osaka (Japan)

    1981-06-01

    Potassium xanthates (potassium o-alkyl dithiocarbonate; KRX) react with many metal ions, and so the complex formation with iron (II, III) ion and the extraction of their complexes has been studied to some extent, but those of ruthenium (III) have not been. Iron-xanthate and ruthenium-xanthate complexes can be extracted into methyl isobutyl ketone (MIBK) from weakly acidic solution to weakly alkaline solution. For quantitative extraction of iron (20 ..mu..g/40 ml), KRX concentration should be above 2.0 x 10/sup -2/ mol dm/sup -3/ of KEtX, 1.0 x 10/sup -2/ mol dm/sup -3/ of KPrX, and 5.0 x 10/sup -3/ mol dm/sup -3/ of KBtX and KPeX, and for that of ruthenium (202 ..mu..g/40 ml), it should be above 2.0 x 10/sup -1/ mol dm/sup -3/ of KEtX and KPrX. Formation constant of ruthenium-xanthate complexes is presumed to be small. A 100-fold excess of Ni(II), Co(II), Cu(II), WO/sub 4//sup 2 -/, PO/sub 4//sup 3 -/, CrO/sub 4//sup 2 -/, and Cr/sub 2/O/sub 7//sup 2 -/ interfered with the determination of iron, however, the interferences are eliminated by adding 5 ml of 0.1 mol dm/sup -3/ ascorbic acid solution. For the determination of ruthenium, a 50-fold excess of Ag(I), Hg(II), Pb(II), Zn(II), Mn(II), Cr(III), and Pt(II), or a 100-fold excess of NO/sub 2//sup -/, S/sub 2/O/sub 3//sup 2 -/, CrO/sub 4//sup 2 -/ and Cr/sub 2/O/sub 7//sup 2 -/, respectively, interfered. The coefficient of variation after each ten runs, ranges from 0.9% to 3.2% in the determination of 10 ..mu..g, 20 ..mu..g, and 30 ..mu..g of iron, and from 1.4% to 4.3% in the determination of 100 ..mu..g, 200 ..mu..g, and 300 ..mu..g of ruthenium. The determination limit in aqueous samples is 0.02 ppm for iron and 0.2 ppm for ruthenium, when the volume ratio of aqueous phase to organic phase (MIBK) is 10:1.

  17. Adsorptive removal of arsenic by novel iron/olivine composite: Insights into preparation and adsorption process by response surface methodology and artificial neural network.

    Science.gov (United States)

    Ghosal, Partha S; Kattil, Krishna V; Yadav, Manoj K; Gupta, Ashok K

    2018-03-01

    Olivine, a low-cost natural material, impregnated with iron is introduced in the adsorptive removal of arsenic. A wet impregnation method and subsequent calcination were employed for the preparation of iron/olivine composite. The major preparation process parameter, viz., iron loading and calcination temperature were optimized through the response surface methodology coupled with a factorial design. A significant variation of adsorption capacity of arsenic (measured as total arsenic), i.e., 63.15 to 310.85 mg/kg for arsenite [As(III) T ] and 76.46 to 329.72 mg/kg for arsenate [As(V) T ] was observed, which exhibited the significant effect of the preparation process parameters on the adsorption potential. The iron loading delineated the optima at central points, whereas a monotonous decreasing trend of adsorption capacity for both the As(III) T and As(V) T was observed with the increasing calcination temperature. The variation of adsorption capacity with the increased iron loading is more at lower calcination temperature showing the interactive effect between the factors. The adsorbent prepared at the optimized condition of iron loading and calcination temperature, i.e., 10% and 200 °C, effectively removed the As(III) T and As(V) T by more than 96 and 99%, respectively. The material characterization of the adsorbent showed the formation of the iron compound in the olivine and increase in specific surface area to the tune of 10 multifold compared to the base material, which is conducive to the enhancement of the adsorption capacity. An artificial neural network was applied for the multivariate optimization of the adsorption process from the experimental data of the univariate optimization study and the optimized model showed low values of error functions and high R 2 values of more than 0.99 for As(III) T and As(V) T . The adsorption isotherm and kinetics followed Langmuir model and pseudo second order model, respectively demonstrating the chemisorption in this

  18. Graphite nodules in fatigue-tested cast iron characterized in 2D and 3D

    DEFF Research Database (Denmark)

    Mukherjee, Krishnendu; Fæster, Søren; Hansen, Niels

    2017-01-01

    Thick-walled ductile iron casts have been studied by applying (i) cooling rate calculations by FVM, (ii) microstructural characterization by 2D SEM and 3D X-ray tomography techniques and (iii) fatigue testing of samples drawn from components cast in sand molds and metal molds. An analysis has shown...... correlations between cooling rate, structure and fatigue strengths demonstrating the benefit of 3D structural characterization to identify possible causes of premature fatigue failure of ductile cast iron....

  19. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments

    DEFF Research Database (Denmark)

    Schippers, A.; Jørgensen, BB

    2002-01-01

    as substrates and NO3- as electron acceptor, in the presence of (FeS2)-Fe-55, to test for co-oxidation of FeS2, but an anaerobic microbial dissolution of (FeS2)-Fe-55, could not been detected. FeS2 and FeS were not oxidized by amorphous Fe(III) oxide in the presence of Fe-complexing organic compounds......Pyrite (FeS2) and iron monosulfide (FeS) play a central role in the sulfur and iron cycles of marine sediments, They may be buried in the sediment or oxidized by O-2 after transport by bioturbation to the sediment surface. FeS2 and FeS may also be oxidized within the anoxic sediment in which NO3...... marine sediments and incubated at different temperatures for > 1 yr. Bacteria could not be enriched with FeS2 as substrate or with FeS and amorphous Fe(III) oxide. With FeS and NO3-, 14 enrichments were obtained. One of these enrichments was further cultivated anaerobically with Fe2+ and S-0...

  20. Preparation of iron molybdate catalysts for methanol to formaldehyde oxidation based on ammonium molybdoferrate(II precursor

    Directory of Open Access Journals (Sweden)

    N.V. Nikolenko

    2018-03-01

    Full Text Available It was demonstrated that iron molybdate catalysts for methanol oxidation can be prepared using Fe(II as a precursor instead of Fe(III. This would allow for reduction of acidity of preparation solutions as well as elimination of Fe(III oxide impurities which are detrimental for the process selectivity. The system containing Fe(II and Mo(VI species in aqueous solution was investigated using UV–Vis spectroscopy. It was demonstrated that three types of chemical reactions occur in the Fe(II–Mo(VI system: (i formation of complexes between Fe(II and molybdate(VI ions, (ii inner sphere oxidation of coordinated Fe(II by Mo(VI and (iii decomposition of the Fe–Mo complexes to form scarcely soluble Fe(III molybdate, Mo(VI hydrous trioxide and molybdenum blue. Solid molybdoferrate(II prepared by interaction of Fe(II and Mo(VI in solution was characterized by EDXA, TGA, DTA and XRD and a scheme of its thermal evolution proposed. The iron molybdate catalyst prepared from Fe(II precursor was tested in methanol-to-formaldehyde oxidation in a continuous flow fixed-bed reactor to show similar activity and selectivity to the conventional catalyst prepared with the use of Fe(III.

  1. Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa.

    Science.gov (United States)

    de Chial, Magaly; Ghysels, Bart; Beatson, Scott A; Geoffroy, Valérie; Meyer, Jean Marie; Pattery, Theresa; Baysse, Christine; Chablain, Patrice; Parsons, Yasmin N; Winstanley, Craig; Cordwell, Stuart J; Cornelis, Pierre

    2003-04-01

    Pseudomonas aeruginosa produces, under conditions of iron limitation, a high-affinity siderophore, pyoverdine (PVD), which is recognized at the level of the outer membrane by a specific TonB-dependent receptor, FpvA. So far, for P. aeruginosa, three different PVDs, differing in their peptide chain, have been described (types I-III), but only the FpvA receptor for type I is known. Two PVD-producing P. aeruginosa strains, one type II and one type III, were mutagenized by a mini-TnphoA3 transposon. In each case, one mutant unable to grow in the presence of the strong iron chelator ethylenediaminedihydroxyphenylacetic acid (EDDHA) and the cognate PVD was selected. The first mutant, which had an insertion in the pvdE gene, upstream of fpvA, was unable to take up type II PVD and showed resistance to pyocin S3, which is known to use type II FpvA as receptor. The second mutant was unable to take up type III PVD and had the transposon insertion in fpvA. Cosmid libraries of the respective type II and type III PVD wild-type strains were constructed and screened for clones restoring the capacity to grow in the presence of PVD. From the respective complementing genomic fragments, type II and type III fpvA sequences were determined. When in trans, type II and type III fpvA restored PVD production, uptake, growth in the presence of EDDHA and, in the case of type II fpvA, pyocin S3 sensitivity. Complementation of fpvA mutants obtained by allelic exchange was achieved by the presence of cognate fpvA in trans. All three receptors posses an N-terminal extension of about 70 amino acids, similar to FecA of Escherichia coli, but only FpvAI has a TAT export sequence at its N-terminal end.

  2. Smectite alteration by anaerobic iron corrosion

    International Nuclear Information System (INIS)

    Sanders, D.; Kaufhold, S.; Hassel, A.W.; Dohrmann, R.

    2010-01-01

    Document available in extended abstract form only. The interaction of smectites with corroding steel/iron represents a crucial topic in the estimation of the long term confinement properties of clay barriers for the encasement of steel/iron containers. Especially in case of engineered clay barriers a possible deterioration of favourable smectite properties as response to corrosion could reduce the barrier capacity. The extent of this reduction is unknown, yet. The essential properties of bentonite clays in this context are on the one hand the relatively high swelling pressure together with low hydraulic conductivity, which results from the well known expandability of smectite interlayers in aqueous environments. On the other hand smectites are cation exchangers being able to long term encase radioactive cations in a way that negative charges of silicate layers are compensated by easily exchangeable hydrated cations. Both properties are directly related to the crystal and chemical composition of smectites. The nature of the corrosion of steel canisters in clay barriers will - after a first short aerobic phase - predominantly be anaerobic resulting in the formation of Fe(II) and two equivalents of hydroxide ions. In a set of exposition experiments anaerobic corroding iron in bentonite gels was studied in order to determine alteration of the smectite fraction. During the exposition a green coloration of the bentonite neighbouring to corroding iron was observed. Upon contact to oxygen in a humid state the bentonite turned reddish indicating the oxidation of Fe(II) to Fe(III). This observation is in accordance with reported results indicating the formation of an iron rich smectite. Chemical analysis of the 'green bentonite' reveals an increase of iron fraction e.g. from 3.4% mass to 9.3% mass . The adsorbed iron is predominantly Fe(II) which was proven by chromato-metric titration. The estimated ratio between silicon to increased iron content is Si: Fe ≅ 2

  3. Kinetics of microbial Fe(III) oxyhydroxide reduction : The role of mineral properties

    NARCIS (Netherlands)

    Bonneville, S.C.

    2005-01-01

    In many soils, sediments and groundwaters, ferric iron is a major potential electron acceptor for the oxidation of organic matter. In contrast to other terminal electron acceptors (e.g. nitrate or sulfate), the concentration of Fe3+(aq), is limited by the low solubility of Fe(III) oxyhydroxides

  4. The effect of electron irradiation on the structure and iron speciation in sodium aluminum (iron) phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, S.V., E-mail: serge.stefanovsky@yandex.ru [Frumkin Institute of Physical Chemistry and Electrochemistry RAS (Russian Federation); Presniakov, I.A.; Sobolev, A.V.; Glazkova, I.S. [Lomonosov Moscow State University, Department of Chemistry (Russian Federation); Kadyko, M.I.; Stefanovsky, O.I. [Frumkin Institute of Physical Chemistry and Electrochemistry RAS (Russian Federation)

    2016-08-01

    The effect of 8 MeV electron irradiation on the structure of glasses in the series 40 Na{sub 2}O, (20-x) Al{sub 2}O{sub 3}, x Fe{sub 2}O{sub 3}, 40 P{sub 2}O{sub 5} (mol.%) and on the iron speciation in these samples was studied by FTIR and Mössbauer spectroscopic techniques. Irradiation up to a dose of 1.0 MGy has no appreciable effects on the character of the bonds within anionic motif of the glass network. Electron irradiation increases the fraction of aluminum in octahedral coordination. Iron in both unirradiated and irradiated glasses is present mainly as Fe(III) (60–75% of the total amount) in the glasses and partly as Fe(II) and the ratio of two forms remains constant up to a dose of 1.0 MGy.

  5. The nanophase iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron oxide/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these "Mars-soil analogs" were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging, specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The clay acted as an effective matrix, both chemically and sterically, preventing the major part of the synthesized iron oxides from ripening, i.e., growing and developing larger crystals. The precipitated iron oxides appear as isodiametric or slightly elongated particles in the size range 1-10 nm, having large specific surface area. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxy mineral such as "green rust," or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable maghemite (gamma-Fe2O3) by mild heat treatment and then to nanophase hematite (alpha-Fe2O3) by extensive heat treatment. After mild heating, the iron-enriched clay became slightly magnetic, to the extent that it adheres to a hand-held magnet, as was observed with Mars soil. The chemical reactivity of the iron-enriched clays strongly resembles, and offers a plausible mechanism

  6. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks

    Science.gov (United States)

    Tangalos, G.E.; Beard, B.L.; Johnson, C.M.; Alpers, Charles N.; Shelobolina, E.S.; Xu, H.; Konishi, H.; Roden, E.E.

    2012-01-01

    The inventories and Fe isotope composition of aqueous Fe(II) and solid-phase Fe compounds were quantified in neutral-pH, chemically precipitated sediments downstream of the Iron Mountain acid mine drainage site in northern California, USA. The sediments contain high concentrations of amorphous Fe(III) oxyhydroxides [Fe(III)am] that allow dissimilatory iron reduction (DIR) to predominate over Fe–S interactions in Fe redox transformation, as indicated by the very low abundance of Cr(II)-extractable reduced inorganic sulfur compared with dilute HCl-extractable Fe. δ56Fe values for bulk HCl- and HF-extractable Fe were ≈ 0. These near-zero bulk δ56Fe values, together with the very low abundance of dissolved Fe in the overlying water column, suggest that the pyrite Fe source had near-zero δ56Fe values, and that complete oxidation of Fe(II) took place prior to deposition of the Fe(III) oxide-rich sediment. Sediment core analyses and incubation experiments demonstrated the production of millimolar quantities of isotopically light (δ56Fe ≈ -1.5 to -0.5‰) aqueous Fe(II) coupled to partial reduction of Fe(III)am by DIR. Trends in the Fe isotope composition of solid-associated Fe(II) and residual Fe(III)am are consistent with experiments with synthetic Fe(III) oxides, and collectively suggest an equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)am of approximately -2‰. These Fe(III) oxide-rich sediments provide a model for early diagenetic processes that are likely to have taken place in Archean and Paleoproterozoic marine sediments that served as precursors for banded iron formations. Our results suggest pathways whereby DIR could have led to the formation of large quantities of low-δ56Fe minerals during BIF genesis.

  7. Investigation of iron-containing complexes of deoxyribonucleic acid nucleosides by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Greguskova, M.; Novotny, J.; Cernohorsky, I.; Cirak, J.

    1975-01-01

    DNA and nucleoside complexes with ferric and ferrous ions were investigated for the concentration of iron ions, ionic strength, temperature, and the nature and spatial configuration of neighbouring atoms of the iron ions in the complexes. Moessbauer spectroscopy was used. The Moessbauer measurements were conducted on lyophilized samples at room temperature (300 K) and on frozen solutions at liquid nitrogen temperature (77 K). Quadrupole splitting was found in all spectra obtained by a Pd(Co) source, with the exception of thymidine, thus indicating that the formation of complexes had not affected the oxidation state of iron ions. A decrease in isomer shift and an increase in quadrupole splitting were found in all spectra obtained by an iron(III) chloride source as well as in all spectra obtained by an iron chloride tetrahydrate source. UV irradiation of the samples prior to the Moessbauer measurements was found to have no effect on the Moessbauer spectra but to result in changes in the oxidation state of iron ions, mainly their valency and the ferrous/ferric ion ratio. The results are shown in a table and in graphs. (L.O.)

  8. Arsenic removal from water using iron-coated seaweeds.

    Science.gov (United States)

    Vieira, Bárbara R C; Pintor, Ariana M A; Boaventura, Rui A R; Botelho, Cidália M S; Santos, Sílvia C R

    2017-05-01

    Arsenic is a semi-metal element that can enter in water bodies and drinking water supplies from natural deposits and from mining, industrial and agricultural practices. The aim of the present work was to propose an alternative process for removing As from water, based on adsorption on a brown seaweed (Sargassum muticum), after a simple and inexpensive treatment: coating with iron-oxy (hydroxides). Adsorption equilibrium and kinetics were studied and modeled in terms of As oxidation state (III and V), pH and initial adsorbate concentration. Maximum adsorption capacities of 4.2 mg/g and 7.3 mg/g were obtained at pH 7 and 20 °C for arsenite and arsenate, respectively. When arsenite was used as adsorbate, experimental evidences pointed to the occurrence of redox reactions involving As(III) oxidation to As(V) and Fe(III) reduction to Fe(II), with As(V) uptake by the adsorbent. The proposed adsorption mechanism was then based on the assumption that arsenate was the adsorbed arsenic species. The most relevant drawback found in the present work was the considerable leaching of iron to the solution. Arsenite removal from a mining-influenced water by adsorption plus precipitation was studied and compared to a traditional process of coagulation/flocculation. Both kinds of treatment provided practically 100% of arsenite removal from the contaminated water, leading at best in 12.9 μg/L As after the adsorption and precipitation assays and 14.2 μg/L after the coagulation/flocculation process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Spectrophotometric determination of phosphorus in iron alloys employing a flow injection system

    Directory of Open Access Journals (Sweden)

    Gervasio Ana P. G.

    2001-01-01

    Full Text Available A flow-injection procedure for spectrophotometric determination of phosphorus in electrolytic iron and iron alloys is proposed. The method is based on the ammonium molybdate reaction followed by stannous chloride reduction in acidic medium. In order to circumvent the severe interference caused by the major constituents such as Fe(III and Cr(III, a mini-column packed with AG50W-X8 resin was coupled to the manifold. A sample throughput of 40 determinations per hour, a dynamical range from P 0.25 to 6.00 mg L-1, a reagent consumption of 25 mg ammonium molybdate and 2 mg stannous chloride per determination, and a relative standard deviation < 1% (n = 10 for a typical sample with 2.20 mg L-1 P were achieved. Three different types of samples were used to evaluate system performance. Accuracy was assessed by comparing the results with certified values and no significant difference at 95 % confidence level was observed.

  10. Dissociation kinetics of Fe(III)- and Al(III)-natural organic matter complexes at pH 6.0 and 8.0 and 25 °C

    Science.gov (United States)

    Jones, Adele M.; Pham, A. Ninh; Collins, Richard N.; Waite, T. David

    2009-05-01

    The rate at which iron- and aluminium-natural organic matter (NOM) complexes dissociate plays a critical role in the transport of these elements given the readiness with which they hydrolyse and precipitate. Despite this, there have only been a few reliable studies on the dissociation kinetics of these complexes suggesting half-times of some hours for the dissociation of Fe(III) and Al(III) from a strongly binding component of NOM. First-order dissociation rate constants are re-evaluated here at pH 6.0 and 8.0 and 25 °C using both cation exchange resin and competing ligand methods for Fe(III) and a cation exchange resin method only for Al(III) complexes. Both methods provide similar results at a particular pH with a two-ligand model accounting satisfactorily for the dissociation kinetics results obtained. For Fe(III), half-times on the order of 6-7 h were obtained for dissociation of the strong component and 4-5 min for dissociation of the weak component. For aluminium, the half-times were on the order of 1.5 h and 1-2 min for the strong and weak components, respectively. Overall, Fe(III) complexes with NOM are more stable than analogous complexes with Al(III), implying Fe(III) may be transported further from its source upon dilution and dispersion.

  11. {Fe6O2}-Based Assembly of a Tetradecanuclear Iron Nanocluster

    Directory of Open Access Journals (Sweden)

    Svetlana G. Baca

    2011-01-01

    Full Text Available The tetradecanuclear FeIII pivalate nanocluster [Fe14O10(OH4(Piv18], comprising a new type of metal oxide framework, has been solvothermally synthesized from a hexanuclear iron pivalate precursor in dichlormethane/acetonitrile solution. Magnetic measurements indicate the presence of very strong antiferromagnetic interactions in the cluster core.

  12. Superconducting properties of iron chalcogenide thin films

    Directory of Open Access Journals (Sweden)

    Paolo Mele

    2012-01-01

    Full Text Available Iron chalcogenides, binary FeSe, FeTe and ternary FeTexSe1−x, FeTexS1−x and FeTe:Ox, are the simplest compounds amongst the recently discovered iron-based superconductors. Thin films of iron chalcogenides present many attractive features that are covered in this review, such as: (i easy fabrication and epitaxial growth on common single-crystal substrates; (ii strong enhancement of superconducting transition temperature with respect to the bulk parent compounds (in FeTe0.5Se0.5, zero-resistance transition temperature Tc0bulk = 13.5 K, but Tc0film = 19 K on LaAlO3 substrate; (iii high critical current density (Jc ~ 0.5 ×106 A cm2 at 4.2 K and 0 T for FeTe0.5Se0.5 film deposited on CaF2, and similar values on flexible metallic substrates (Hastelloy tapes buffered by ion-beam assisted deposition with a weak dependence on magnetic field; (iv high upper critical field (~50 T for FeTe0.5Se0.5, Bc2(0, with a low anisotropy, γ ~ 2. These highlights explain why thin films of iron chalcogenides have been widely studied in recent years and are considered as promising materials for applications requiring high magnetic fields (20–50 T and low temperatures (2–10 K.

  13. Synthesis and characterization ligand tris-(2-thiosalicylamidoethyl)amine and its iron complexes and indium

    International Nuclear Information System (INIS)

    Guerra-Garcia, Pedro Pablo; Valle Bourrouet, Grettel

    2006-01-01

    The synthesis of coordination chemistry ligand tris-(2-tiosalicilamidoetil)amine is presented within the framework of study of tripod ligands, the corresponding complexes of iron and indium. Also, its spectroscopic characterization by proton magnetic resonance is showed; so the influence of ligand on a redox active metal and an inactive is compared. Electrochemical methods have been used. The presence of sulfur atoms modifies the redox and magnetic behavior of iron ion (III), as has been found in other similar ligands [es

  14. Iron Refractory Iron Deficiency Anaemia: A Rare Cause of Iron Deficiency Anaemia

    LENUS (Irish Health Repository)

    McGrath, T

    2018-01-01

    We describe the case of a 17-month-old boy with a hypochromic microcytic anaemia, refractory to oral iron treatment. After exclusion of dietary and gastrointestinal causes of iron deficiency, a genetic cause for iron deficiency was confirmed by finding two mutations in the TMPRSS6 gene, consistent with a diagnosis of iron-refractory iron deficiency anaemia (IRIDA).

  15. Preparation and characterization of iron(III) 99Mo-molybdate(VI) gels for the assessment of 99mTc elution performance

    International Nuclear Information System (INIS)

    Amin, Mahmoud; Fasih, Tharwat W.; El-Absy, Mohamed A.

    2018-01-01

    New iron(III) 99 Mo-molybdate(VI) gels (Fe 99 Mo) of high Mo content were prepared by the precipitation/filtration method. 99 Mo-MoO 3 dissolved in NaOH was added to aqueous solutions of Fe(NO 3 ) 3 at Mo/Fe mole fractions ∝2.21 and 1.99 with continuous stirring at ambient room temperature. Two different Fe 99 Mo were precipitated from the mixed solutions adjusted at pH 2 and 4.7. The amount of water of hydration increased with the increasing the gel settling time and pH of the mixed solution. The matrices were characterized by radiometric, XRD, SEM, XRF, FT-IR, TGA, and DTA measurements. Small chromatographic columns of 2.0 g Fe 99 Mo containing ≥800 mg Mo tagged with 740 MBq 99 Mo were eluted with 5 mL saline solution. Highly reproducible 99m Tc elution indices suitable for preparation of 99 Mo/ 99m Tc generators were achieved from generator supported with 0.5 g Al 2 O 3 filter. Elution performance of 99m Tc radionuclide was highly dependent on the gel structural properties.

  16. Preservation of organic matter in nontronite against iron redox cycling.

    Science.gov (United States)

    Zeng, Q.

    2015-12-01

    It is generally believed that clay minerals can protect organic matter from degradation in redox active environments, but both biotic and abiotic factors can influence the redox process and thus potentially change the clay-organic associations. However, the specific mechanisms involved in this process remain poorly understood. In this study, a model organic compound, 12-Aminolauric acid (ALA) was selected to intercalate into the structural interlayer of nontronite (an iron-rich smectite, NAu-2) to form an ALA-intercalated NAu-2 composite (ALA-NAu-2). Shawanella putrefaciens CN32 and sodium dithionite were used to reduce structural Fe(III) to Fe(II) in NAu-2 and ALA-NAu-2. The bioreduced ALA-NAu-2 was subsequently re-oxidized by air. The rates and extents of bioreduction and air re-oxidation were determined with wet chemistry methods. ALA release from ALA-NAu-2 via redox process was monitored. Mineralogical changes after iron redox cycle were investigated with X-ray diffraction, infrared spectroscopy, and scanning and transmission electron microscopy. At the beginning stage of bioreduction, S. putrefaciens CN32 reduced Fe(III) from the edges of nontronite and preferentially reduced and dissolved small and poorly crystalline particles, and released ALA, resulting a positive correlation between ALA release and iron reduction extent (80%). Because bacteria are the principal agent for mediating redox process in natural environments, our results demonstrated that the structural interlayer of smectite can serve as a potential shelter to protect organic matter from oxidation.

  17. Final Activity Report: The Effects of Iron Complexing Ligands on the Long Term Ecosystem Response to Iron Enrichment of HNLC waters

    Energy Technology Data Exchange (ETDEWEB)

    Trick, Charles Gordon [Western University

    2013-07-30

    Substantial increases in the concentrations of the stronger of two Fe(III) complexing organic ligand classes measured during the mesoscale Fe enrichment studies IronEx II and SOIREE appeared to sharply curtailed Fe availability to diatoms and thus limited the efficiency of carbon sequestration to the deep. Detailed observations during IronEx II (equatorial Pacific Ocean) and SOIREE (Southern Ocean –Pacific sector) indicate that the diatoms began re-experiencing Fe stress even though dissolved Fe concentrations remained elevated in the patch. This surprising outcome likely is related to the observed increased concentrations of strong Fe(III)-complexing ligands in seawater. Preliminary findings from other studies indicate that diatoms may not readily obtain Fe from these chemical species whereas Fe bound by strong ligands appears to support growth of cyanobacteria and nanoflagellates. The difficulty in assessing the likelihood of these changes with in-situ mesoscale experiments is the extended monitoring period needed to capture the long-term trajectory of the carbon cycle. A more detailed understanding of Fe complexing ligand effects on long-term ecosystem structure and carbon cycling is essential to ascertain not only the effect of Fe enrichment on short-term carbon sequestration in the oceans, but also the potential effect of Fe enrichment in modifying ecosystem structure and trajectory.

  18. Evidence for Microbial Iron Reduction in a Landfill Leachate-Polluted Aquifer (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Christensen, Thomas Højlund

    1994-01-01

    Aquifer sediment samples obtained from the anaerobic part of a landfill leachate plume in Vejen, Denmark, were suspended in groundwater or in an artificial medium and incubated. The strictly anaerobic suspensions were tested for reduction of ferric iron (Fe(III)) oxides, which was measured...

  19. Selective liquid-liquid extraction of antimony(III from hydrochloric acid media by N-n-octylaniline in xylene

    Directory of Open Access Journals (Sweden)

    M. A. ANUSE

    2004-04-01

    Full Text Available N-n-Octylaniline in xylene was used for the extraction separation of antimony(III from hydrochloric acid media. Antimony(III was extracted quantitatively with 10 mL 4 % N-n-octylaniline in xylene. It was stripped from the organic phase with 0.5 M ammonia and estimated photometrically by the iodide method. The effect of metal ion, acid, reagent concentration and various foreign ions was investigated. The method affords binary and ternary separation of antimony(III from tellurium(IV, selenium(IV, lead(II, bismuth(III, tin(IV, germanium(IV, copper(II, gold(III, iron(III and zinc(II. The method is applicable for the analysis of synthetic mixtures, alloys and semiconductor thin films. It is fast, accurate and precise.

  20. Effect of excess supply of heavy metals on the absorption and translocation of iron (/sup 59/Fe) in barley

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, C P; Bisht, S S; Agarwala, S C [Lucknow Univ. (India). Dept. of Botany

    1978-03-01

    The effects of an excess supply of manganese, copper, zinc, cobalt, and nickel on the absorption and translocation of iron tagged with /sup 59/Fe were xamined in 15 days old barley seedlings raised in solution culture. Excess heavy metal treatments and /sup 59/Fe were administered in three different ways: (i) both excess heavy metals and iron supplied through roots- Series A; (ii) excess heavy metal supplied as foliar spray and iron through roots- Series B; and (iii) excess heavy metal supplied through roots and iron as foliar spray-Series C. Results obtained revealed that excess concentrations of manganese, zinc, cobalt, and a to a lesser extent copper interfered with the absorption of iron from the rooting medium, but excess nickel enhanced the absorption and translocation of iron. Thus, unlike other metals, a toxic supply of nickel does not induce iron deficiency.

  1. Sorption of Hg(II and Pb(II Ions on Chitosan-Iron(III from Aqueous Solutions: Single and Binary Systems

    Directory of Open Access Journals (Sweden)

    Byron Lapo

    2018-03-01

    Full Text Available The present work describes the study of mercury Hg(II and lead Pb(II removal in single and binary component systems into easily prepared chitosan-iron(III bio-composite beads. Scanning electron microscopy and energy-dispersive X-ray (SEM-EDX analysis, Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA and point of zero charge (pHpzc analysis were carried out. The experimental set covered pH study, single and competitive equilibrium, kinetics, chloride and sulfate effects as well as sorption–desorption cycles. In single systems, the Langmuir nonlinear model fitted the experimental data better than the Freundlich and Sips equations. The sorbent material has more affinity to Hg(II rather than Pb(II ions, the maximum sorption capacities were 1.8 mmol·g−1 and 0.56 mmol·g−1 for Hg(II and Pb(II, respectively. The binary systems data were adjusted with competitive Langmuir isotherm model. The presence of sulfate ions in the multicomponent system [Hg(II-Pb(II] had a lesser impact on the sorption efficiency than did chloride ions, however, the presence of chloride ions improves the selectivity towards Hg(II ions. The bio-based material showed good recovery performance of metal ions along three sorption–desorption cycles.

  2. Biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Uluozlu, Ozgur Dogan; Usta, Canan; Soylak, Mustafa

    2007-01-01

    The biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin for preconcentration-separation of them have been investigated. The sorbed analytes on biosorbent were eluted by using 1 mol L -1 HCl and analytes were determined by flame atomic absorption spectrometry. The influences of analytical parameters including amounts of pH, B. sphaericus, sample volume etc. on the quantitative recoveries of analytes were investigated. The effects of alkaline, earth alkaline ions and some metal ions on the retentions of the analytes on the biosorbent were also examined. Separation and preconcentration of Cu, Pb, Fe and Co ions from real samples was achieved quantitatively. The detection limits by 3 sigma for analyte ions were in the range of 0.20-0.75 μg L -1 for aqueous samples and in the range of 2.5-9.4 ng g -1 for solid samples. The validation of the procedure was performed by the analysis of the certified standard reference materials (NRCC-SLRS 4 Riverine Water, SRM 2711 Montana soil and GBW 07605 Tea). The presented method was applied to the determination of analyte ions in green tea, black tea, cultivated mushroom, boiled wheat, rice and soil samples with successfully results

  3. Immobilization of selenium by biofilm of Shewanella putrefaciens with and without Fe(III)-citrate complex

    International Nuclear Information System (INIS)

    Suzuki, Yoshinori; Sakama, Yosuke; Saiki, Hiroshi; Kitamura, Akira; Yoshikawa, Hideki; Tanaka, Kazuya

    2014-01-01

    To investigate the effect of biofilms on selenium migration, we examined selenite reduction by biofilms of an iron-reducing bacterium, Shewanella putrefaciens, under anaerobic conditions. The biofilms were grown under static conditions on culture cover glasses coated with poly-L-lysine. Optical microscopic observation of the biofilms after staining with 0.1% crystal violet solution revealed that the cells were surrounded by filamentous extracellular polymer substances. Exposure of the biofilms to aqueous selenite resulted in the formation of red precipitates, which were assigned to nanoparticulate elemental selenium using X-ray absorption near-edge structure analysis. Micrographic observation showed that the precipitates immobilized at the biofilms. We also examined the selenite reduction in the presence of Fe(III)-citrate complex. In this case, a dark brown precipitate formed at the biofilms. X-ray absorption near-edge structure analysis revealed that the precipitate was a mixed compound with elemental selenium and iron selenide. These findings indicate that biofilms of iron-reducing bacteria in the environment can immobilize selenium by reducing Se(IV) to Se(0), and Fe(III)-citrate complex promotes the reduction of Se(0) to Se(-II). (author)

  4. A novel thermal decomposition approach for the synthesis of silica-iron oxide core–shell nanoparticles

    International Nuclear Information System (INIS)

    Kishore, P.N.R.; Jeevanandam, P.

    2012-01-01

    Highlights: ► Silica-iron oxide core–shell nanoparticles have been synthesized by a novel thermal decomposition approach. ► The silica-iron oxide core–shell nanoparticles are superparamagnetic at room temperature. ► The silica-iron oxide core–shell nanoparticles serve as good photocatalyst for the degradation of Rhodamine B. - Abstract: A simple thermal decomposition approach for the synthesis of magnetic nanoparticles consisting of silica as core and iron oxide nanoparticles as shell has been reported. The iron oxide nanoparticles were deposited on the silica spheres (mean diameter = 244 ± 13 nm) by the thermal decomposition of iron (III) acetylacetonate, in diphenyl ether, in the presence of SiO 2 . The core–shell nanoparticles were characterized by X-ray diffraction, infrared spectroscopy, field emission-scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy, diffuse reflectance spectroscopy, and magnetic measurements. The results confirm the presence of iron oxide nanoparticles on the silica core. The core–shell nanoparticles are superparamagnetic at room temperature indicating the presence of iron oxide nanoparticles on silica. The core–shell nanoparticles have been demonstrated as good photocatalyst for the degradation of Rhodamine B.

  5. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    International Nuclear Information System (INIS)

    Ngoi, Kuan Hoon; Chia, Chin-Hua; Zakaria, Sarani; Chiu, Wee Siong

    2015-01-01

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature

  6. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    Energy Technology Data Exchange (ETDEWEB)

    Ngoi, Kuan Hoon; Chia, Chin-Hua, E-mail: chia@ukm.edu.my; Zakaria, Sarani [School of Applied Physics, Faculty Science and Technology, University Kebangsaan Malaysia 43600 UKM Bangi, Selangor (Malaysia); Chiu, Wee Siong [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur (Malaysia)

    2015-09-25

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature.

  7. Valence-delocalization of the mixed-valence oxo-centered trinuclear iron propionates [FeIII2FeIIO(C2H5CO2)6(py)3[npy; n = 0, 1.5

    International Nuclear Information System (INIS)

    Nakamoto, Tadahiro; Katada, Motomi; Kawata, Satoshi; Kitagawa, Susumu; Sano, Hirotoshi; Konno, Michiko

    1994-01-01

    Mixed-valence trinuclear iron propionates [Fe III 2 Fe II O(C 2 H 5 CO 2 ) 6 (py) 3 [npy, where n = 0, 1.5, were synthesized and the structure of the pyridine-solvated complex was determined by single-crystal X-ray diffraction. Moessbauer spectra of the solvated propionate complex showed a temperature-dependent mixed-valence state related to phase transitions, reaching an almost delocalized valence state at room temperature. On the other hand, the non-solvated propionate showed a remarkable change of the spectral shape related to a phase transition, remaining in a localized valence state at higher temperatures up to room temperature. (orig.)

  8. HO-1-mediated macroautophagy: a mechanism for unregulated iron deposition in aging and degenerating neural tissues.

    Science.gov (United States)

    Zukor, Hillel; Song, Wei; Liberman, Adrienne; Mui, Jeannie; Vali, Hojatollah; Fillebeen, Carine; Pantopoulos, Kostas; Wu, Ting-Di; Guerquin-Kern, Jean-Luc; Schipper, Hyman M

    2009-05-01

    Oxidative stress, deposition of non-transferrin iron, and mitochondrial insufficiency occur in the brains of patients with Alzheimer disease (AD) and Parkinson disease (PD). We previously demonstrated that heme oxygenase-1 (HO-1) is up-regulated in AD and PD brain and promotes the accumulation of non-transferrin iron in astroglial mitochondria. Herein, dynamic secondary ion mass spectrometry (SIMS) and other techniques were employed to ascertain (i) the impact of HO-1 over-expression on astroglial mitochondrial morphology in vitro, (ii) the topography of aberrant iron sequestration in astrocytes over-expressing HO-1, and (iii) the role of iron regulatory proteins (IRP) in HO-1-mediated iron deposition. Astroglial hHO-1 over-expression induced cytoplasmic vacuolation, mitochondrial membrane damage, and macroautophagy. HO-1 promoted trapping of redox-active iron and sulfur within many cytopathological profiles without impacting ferroportin, transferrin receptor, ferritin, and IRP2 protein levels or IRP1 activity. Thus, HO-1 activity promotes mitochondrial macroautophagy and sequestration of redox-active iron in astroglia independently of classical iron mobilization pathways. Glial HO-1 may be a rational therapeutic target in AD, PD, and other human CNS conditions characterized by the unregulated deposition of brain iron.

  9. Model compounds of iron gall inks – a Mössbauer study

    Energy Technology Data Exchange (ETDEWEB)

    Lerf, A. [Bavarian Academy of Sciences, Walther Meißner Institute (Germany); Wagner, F. E., E-mail: fwagner@tum.de [Technical University of Munich, Physics Department E15 (Germany)

    2016-12-15

    Ferrogallic inks were used for at least two millennia before they became obsolete in the 20{sup th} century. The chemistry of such inks is, however, still largely unclear. Today it is of particular interest for the conservation of old manuscripts. {sup 57}Fe Mössbauer spectra of the ink on historical documents showed the presence of Fe(II) oxalate and of Fe(III) sites presumably representing iron oxihydroxides. To obtain more information on the behaviour of ink on paper we have performed Mössbauer studies at 300 and 4.2 K on iron gall inks prepared from FeSO{sub 4}⋅7H{sub 2}O and tannin. These inks were either written on paper or isolated as a precipitate by centrifugation. In the dried precipitate there is still a strong contribution of the FeSO{sub 4}⋅7H{sub 2}O which is absent in the same ink written on paper, for which a broad ferrous component with a quadrupole splitting (QS) of about 2.5 mm/s was found. The dominant Fe(III) site present in all inks on paper with QS ≈ 0.82 mm/s is not Fe(III) gallate and different from the precipitates. We propose that nanoparticulate oxidic clusters or molecular composites covered by a shell of polymerized oxidation products of the phenols are formed on the paper.

  10. Model compounds of iron gall inks – a Mössbauer study

    International Nuclear Information System (INIS)

    Lerf, A.; Wagner, F. E.

    2016-01-01

    Ferrogallic inks were used for at least two millennia before they became obsolete in the 20 th century. The chemistry of such inks is, however, still largely unclear. Today it is of particular interest for the conservation of old manuscripts. 57 Fe Mössbauer spectra of the ink on historical documents showed the presence of Fe(II) oxalate and of Fe(III) sites presumably representing iron oxihydroxides. To obtain more information on the behaviour of ink on paper we have performed Mössbauer studies at 300 and 4.2 K on iron gall inks prepared from FeSO 4 ⋅7H 2 O and tannin. These inks were either written on paper or isolated as a precipitate by centrifugation. In the dried precipitate there is still a strong contribution of the FeSO 4 ⋅7H 2 O which is absent in the same ink written on paper, for which a broad ferrous component with a quadrupole splitting (QS) of about 2.5 mm/s was found. The dominant Fe(III) site present in all inks on paper with QS ≈ 0.82 mm/s is not Fe(III) gallate and different from the precipitates. We propose that nanoparticulate oxidic clusters or molecular composites covered by a shell of polymerized oxidation products of the phenols are formed on the paper.

  11. Iron deficiency regulated OsOPT7 is essential for iron homeostasis in rice.

    Science.gov (United States)

    Bashir, Khurram; Ishimaru, Yasuhiro; Itai, Reiko Nakanishi; Senoura, Takeshi; Takahashi, Michiko; An, Gynheung; Oikawa, Takaya; Ueda, Minoru; Sato, Aiko; Uozumi, Nobuyuki; Nakanishi, Hiromi; Nishizawa, Naoko K

    2015-05-01

    The molecular mechanism of iron (Fe) uptake and transport in plants are well-characterized; however, many components of Fe homeostasis remain unclear. We cloned iron-deficiency-regulated oligopeptide transporter 7 (OsOPT7) from rice. OsOPT7 localized to the plasma membrane and did not transport Fe(III)-DMA or Fe(II)-NA and GSH in Xenopus laevis oocytes. Furthermore OsOPT7 did not complement the growth of yeast fet3fet4 mutant. OsOPT7 was specifically upregulated in response to Fe-deficiency. Promoter GUS analysis revealed that OsOPT7 expresses in root tips, root vascular tissue and shoots as well as during seed development. Microarray analysis of OsOPT7 knockout 1 (opt7-1) revealed the upregulation of Fe-deficiency-responsive genes in plants grown under Fe-sufficient conditions, despite the high Fe and ferritin concentrations in shoot tissue indicating that Fe may not be available for physiological functions. Plants overexpressing OsOPT7 do not exhibit any phenotype and do not accumulate more Fe compared to wild type plants. These results indicate that OsOPT7 may be involved in Fe transport in rice.

  12. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process.

    Science.gov (United States)

    Sun, Min; Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi

    2013-12-15

    The chelated-iron process is among the most promising techniques for the hydrogen sulfide (H2S) removal due to its double advantage of waste minimization and resource recovery. However, this technology has encountered the problem of chelate degradation which made it difficult to ensure reliable and economical operation. This work aims to develop a novel fuel-cell-assisted chelated-iron process which employs an air-cathode fuel cell for the catalyst regeneration. By using such a process, sulfur and electricity were effectively recovered from H2S and the problem of chelate degradation was well controlled. Experiment on a synthetic sulfide solution showed the fuel-cell-assisted chelated-iron process could maintain high sulfur recovery efficiencies generally above 90.0%. The EDTA was preferable to NTA as the chelating agent for electricity generation, given the Coulombic efficiencies (CEs) of 17.8 ± 0.5% to 75.1 ± 0.5% for the EDTA-chelated process versus 9.6 ± 0.8% to 51.1 ± 2.7% for the NTA-chelated process in the pH range of 4.0-10.0. The Fe (III)/S(2-) ratio exhibited notable influence on the electricity generation, with the CEs improved by more than 25% as the Fe (III)/S(2-) molar ratio increased from 2.5:1 to 3.5:1. Application of this novel process in treating a H2S-containing biogas stream achieved 99% of H2S removal efficiency, 78% of sulfur recovery efficiency, and 78.6% of energy recovery efficiency, suggesting the fuel-cell-assisted chelated-iron process was effective to remove the H2S from gas streams with favorable sulfur and energy recovery efficiencies. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Preparation and electrochemistry of a pyrene-linked iron terpyridine and its anodic redox polymer

    International Nuclear Information System (INIS)

    Lin, Hsiao-Chu; Straus, Daniel A.; Johnson, Victoria Anne; Lu, Jia E.; Lopez, Louise; Terrill, Roger H.

    2012-01-01

    An iron(II)bis-terpyridine complex bearing 4′ pendant pyrenyl groups on each ligand (Fe(tpySCH 2 -pyr) 2 2+ ) was synthesized, characterized electrochemically and was shown to form a novel redox polymer via anodic electropolymerization. Immersion of glassy carbon electrodes into dilute acetonitrile solutions of the complex and then into clean electrolyte established that the complex will physisorb onto glassy carbon at 0.1 monolayer coverage from 500 μM solution. Anodic cyclic voltammetry of the pyrenyl iron compound revealed well-resolved Fe(II/III) centered redox waves near 0.9 V and an irreversible, pyrene centered oxidation at ca. 1.1 V. The Fe(II/III) waves grew in magnitude over time and persisted in fresh complex-free electrolyte indicating a surface electropolymerization reaction most likely mediated via the pyrene pendant groups, and exhibiting facile charge transport through a ca. 100 nm polymer film. Spectroelectrochemical analysis of Fe(tpySCH 2 -pyr) 2 (OTf) 2 films grown on indium–tin oxide transparent electrodes confirmed the presence of a Fe(II/III) redox-active film that has a nearly Nernstian response, but with a small Fe(II) component that does not oxidize interfacially.

  14. X-ray diffraction study of phase transitions in iron(II) trisnioximate hexadecylboronate clathrochelate complex

    International Nuclear Information System (INIS)

    Vorontsov, I.I.; Antipin, M.Yu.; Dubovik, I.I.; Papkov, V.S.; Potekhin, K.A.; Voloshin, Ya.Z.; Stash, A.I.; Belsky, V.K.

    2001-01-01

    Crystals of the iron(II) nioximate hexadecylboronate clathrochelate complex-FeNx 3 (BHd ) 2 [tris(μ-1,2-cyclohexanedionedioximato-O:O ' )di-n-hexadecyldiborato(2-) - N,'''N''',N''',N''',N''',N ' ]iron(II) - are investigated by differential scanning calorimetry and X-ray diffraction. Two structural phase transitions are revealed at T cr1 = 290(3) K and T cr2 = 190(3) K. The crystal structures of phases I, II, and III are determined by X-ray diffraction analysis at 303, 243, and 153 K, respectively. It is demonstrated that the I ↔ II phase transition is due to a change in the system of translations, and the II ↔ III phase transition is accompanied only by a jumpwise change in the unit cell parameters. The possible mechanisms of phase transitions are discussed in terms of geometry and molecular packing of FeNx 3 (BHd) 2 in all three phases

  15. The Haptoglobin-CD163-Heme Oxygenase-1 Pathway for Hemoglobin Scavenging

    Directory of Open Access Journals (Sweden)

    Jens Haugbølle Thomsen

    2013-01-01

    Full Text Available The haptoglobin- (Hp- CD163-heme oxygenase-1 (HO-1 pathway is an efficient captor-receptor-enzyme system to circumvent the hemoglobin (Hb/heme-induced toxicity during physiological and pathological hemolyses. In this pathway, Hb tightly binds to Hp leading to CD163-mediated uptake of the complex in macrophages followed by lysosomal Hp-Hb breakdown and HO-1-catalyzed conversion of heme into the metabolites carbon monoxide (CO, biliverdin, and iron. The plasma concentration of Hp is a limiting factor as evident during accelerated hemolysis, where the Hp depletion may cause serious Hb-induced toxicity and put pressure on backup protecting systems such as the hemopexin-CD91-HO pathway. The Hp-CD163-HO-1 pathway proteins are regulated by the acute phase mediator interleukin-6 (IL-6, but other regulatory factors indicate that this upregulation is a counteracting anti-inflammatory response during inflammation. The heme metabolites including bilirubin converted from biliverdin have overall an anti-inflammatory effect and thus reinforce the anti-inflammatory efficacy of the Hp-CD163-HO-1 pathway. Future studies of animal models of inflammation should further define the importance of the pathway in the anti-inflammatory response.

  16. Impact of Fe(III)-OM complexes and Fe(III) polymerization on SOM pools reactivity under different land uses

    Science.gov (United States)

    Giannetta, B.; Plaza, C.; Zaccone, C.; Siebecker, M. G.; Rovira, P.; Vischetti, C.; Sparks, D. L.

    2017-12-01

    Soil organic matter (SOM) protection and long-term accumulation are controlled by adsorption to mineral surfaces in different ways, depending on its molecular structure and pedo-climatic conditions. Iron (Fe) oxides are known to be key regulators of the soil carbon (C) cycle, and Fe speciation in soils is highly dependent on environmental conditions and chemical interactions with SOM. However, the molecular structure and hydrolysis of Fe species formed in association with SOM is still poorly described. We hypothesize the existence of two pools of Fe which interact with SOM: mononuclear Fe(III)-SOM complexes and precipitated Fe(III) hydroxides. To verify our hypothesis, we investigated the interactions between Fe(III) and physically isolated soil fractions by means of batch experiments at pH 7. Specifically, we examined the fine silt plus clay (FSi+C) fraction, obtained by ultrasonic dispersion and wet sieving. The soil samples spanned several land uses, including coniferous forest (CFS), grassland (GS), technosols (TS) and agricultural (AS) soils. Solid phase products and supernatants were analyzed for C and Fe content. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis were also performed. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to assess the main C functional groups involved in C complexation and desorption experiments. Preliminary linear combination fitting (LCF) of Fe K-edge extended X-ray absorption fine structure (EXAFS) spectra suggested the formation of ferrihydrite-like polymeric Fe(III) oxides in reacted CFS and GS samples, with higher C and Fe concentration. Conversely, mononuclear Fe(III) OM complexes dominated the speciation for TS and AS samples, characterized by lower C and Fe concentration, inhibiting the hydrolysis and polymerization of Fe (III). This approach will help revealing the mechanisms by which SOM pools can control Fe(III) speciation, and will elucidate how both Fe(III

  17. Genetics Home Reference: iron-refractory iron deficiency anemia

    Science.gov (United States)

    ... refractory iron deficiency anemia Iron-refractory iron deficiency anemia Printable PDF Open All Close All Enable Javascript ... expand/collapse boxes. Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  18. Remediation of U(VI)-contaminated water using zero-valent iron

    International Nuclear Information System (INIS)

    Abdelouas, A.; Gong, W.; Lutze, W.; Nuttall, E.

    1999-01-01

    We investigated the possibility of U(VI) reduction by zero-valent iron (Fe 0 ). We conducted batch experiments with granular iron and solutions containing 0.25 and 9.3 mg L -1 U(VI) at 24 deg C. The solution pH ranges between 2 and 9. In all experiments uranium removal was complete within several hours to several days regardless of the pH value. The reduced uranium precipitated as poorly crystallized hydrated uraninite, UO 2 .nH 2 O. The reduction of U(VI) to U(IV) by Fe 0 was found to be the principal mechanism of U removal from the solution. Other mechanisms such as U(VI) sorption on the newly formed Fe(III) hydroxides are insignificant. These results show that zero-valent iron can be used to remedy U-contaminated waters from uranium mines and mill tailings sites, the pH of which usually ranges between 2 and 9. (authors)

  19. Soluble iron nutrients in Saharan dust over the central Amazon rainforest

    Science.gov (United States)

    Rizzolo, Joana A.; Barbosa, Cybelli G. G.; Borillo, Guilherme C.; Godoi, Ana F. L.; Souza, Rodrigo A. F.; Andreoli, Rita V.; Manzi, Antônio O.; Sá, Marta O.; Alves, Eliane G.; Pöhlker, Christopher; Angelis, Isabella H.; Ditas, Florian; Saturno, Jorge; Moran-Zuloaga, Daniel; Rizzo, Luciana V.; Rosário, Nilton E.; Pauliquevis, Theotonio; Santos, Rosa M. N.; Yamamoto, Carlos I.; Andreae, Meinrat O.; Artaxo, Paulo; Taylor, Philip E.; Godoi, Ricardo H. M.

    2017-02-01

    The intercontinental transport of aerosols from the Sahara desert plays a significant role in nutrient cycles in the Amazon rainforest, since it carries many types of minerals to these otherwise low-fertility lands. Iron is one of the micronutrients essential for plant growth, and its long-range transport might be an important source for the iron-limited Amazon rainforest. This study assesses the bioavailability of iron Fe(II) and Fe(III) in the particulate matter over the Amazon forest, which was transported from the Sahara desert (for the sake of our discussion, this term also includes the Sahel region). The sampling campaign was carried out above and below the forest canopy at the ATTO site (Amazon Tall Tower Observatory), a near-pristine area in the central Amazon Basin, from March to April 2015. Measurements reached peak concentrations for soluble Fe(III) (48 ng m-3), Fe(II) (16 ng m-3), Na (470 ng m-3), Ca (194 ng m-3), K (65 ng m-3), and Mg (89 ng m-3) during a time period of dust transport from the Sahara, as confirmed by ground-based and satellite remote sensing data and air mass backward trajectories. Dust sampled above the Amazon canopy included primary biological aerosols and other coarse particles up to 12 µm in diameter. Atmospheric transport of weathered Saharan dust, followed by surface deposition, resulted in substantial iron bioavailability across the rainforest canopy. The seasonal deposition of dust, rich in soluble iron, and other minerals is likely to assist both bacteria and fungi within the topsoil and on canopy surfaces, and especially benefit highly bioabsorbent species. In this scenario, Saharan dust can provide essential macronutrients and micronutrients to plant roots, and also directly to plant leaves. The influence of this input on the ecology of the forest canopy and topsoil is discussed, and we argue that this influence would likely be different from that of nutrients from the weathered Amazon bedrock, which otherwise provides the

  20. Iron(II) porphyrins induced conversion of nitrite into nitric oxide: A computational study.

    Science.gov (United States)

    Zhang, Ting Ting; Liu, Yong Dong; Zhong, Ru Gang

    2015-09-01

    Nitrite reduction to nitric oxide by heme proteins was reported as a protective mechanism to hypoxic injury in mammalian physiology. In this study, the pathways of nitrite reduction to nitric oxide mediated by iron(II) porphyrin (P) complexes, which were generally recognized as models for heme proteins, were investigated by using density functional theory (DFT). In view of two type isomers of combination of nitrite and Fe(II)(P), N-nitro- and O-nitrito-Fe(II)-porphyrin complexes, and two binding sites of proton to the different O atoms of nitrite moiety, four main pathways for the conversion of nitrite into nitric oxide mediated by iron(II) porphyrins were proposed. The results indicate that the pathway of N-bound Fe(II)(P)(NO2) isomer into Fe(III)(P)(NO) and water is similar to that of O-bound isomer into nitric oxide and Fe(III)(P)(OH) in both thermodynamical and dynamical aspects. Based on the initial computational studies of five-coordinate nitrite complexes, the conversion of nitrite into NO mediated by Fe(II)(P)(L) complexes with 14 kinds of proximal ligands was also investigated. Generally, the same conclusion that the pathways of N-bound isomers are similar to those of O-bound isomer was obtained for iron(II) porphyrin with ligands. Different effects of ligands on the reduction reactions were also found. It is notable that the negative proximal ligands can improve reactive abilities of N-nitro-iron(II) porphyrins in the conversion of nitrite into nitric oxide compared to neutral ligands. The findings will be helpful to expand our understanding of the mechanism of nitrite reduction to nitric oxide by iron(II) porphyrins. Copyright © 2015 Elsevier Inc. All rights reserved.