WorldWideScience

Sample records for iron hydroxyl phosphate

  1. Stability, electrochemical behaviors and electronic structures of iron hydroxyl-phosphate

    International Nuclear Information System (INIS)

    Wang Zhongli; Sun Shaorui; Li Fan; Chen Ge; Xia Dingguo; Zhao Ting; Chu Wangsheng; Wu Ziyu

    2010-01-01

    Iron hydroxyl-phosphate with a uniform spherical particle size of around 1 μm, a compound of the type Fe 2-y □ y (PO 4 )(OH) 3-3y (H 2 O) 3y-2 (where □ represents a vacancy), has been synthesized by hydrothermal methods. The particles are composed of spheres of diameter -1 and 120 mAh g -1 at current densities of 170 mA g -1 and 680 mA g -1 , respectively. The stability of crystal structure of this material was studied by TGA and XRD which show that the material remains stable at least up to the temperature 200 deg. C. Investigation of the electronic structure of the iron hydroxyl-phosphate by GGA + U calculation has indicated that it has a better electronic conductivity than LiFePO 4 .

  2. Stability, electrochemical behaviors and electronic structures of iron hydroxyl-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhongli; Sun Shaorui; Li Fan; Chen Ge [College of Environmental and Energy Engineering, Beijing University of Technology, Pingleyuan 100, Chaoyang District, Beijing 100022 (China); Xia Dingguo, E-mail: dgxia@bjut.edu.cn [College of Environmental and Energy Engineering, Beijing University of Technology, Pingleyuan 100, Chaoyang District, Beijing 100022 (China); Zhao Ting; Chu Wangsheng [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); University of Science and Technology of China, Hefei 230026 (China); Wu Ziyu, E-mail: wuzy@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); University of Science and Technology of China, Hefei 230026 (China)

    2010-09-01

    Iron hydroxyl-phosphate with a uniform spherical particle size of around 1 {mu}m, a compound of the type Fe{sub 2-y}{open_square}{sub y}(PO{sub 4})(OH){sub 3-3y}(H{sub 2}O){sub 3y-2} (where {open_square} represents a vacancy), has been synthesized by hydrothermal methods. The particles are composed of spheres of diameter <100 nm. The compound exhibits good electrochemical performance, with reversible capacities of around 150 mAh g{sup -1} and 120 mAh g{sup -1} at current densities of 170 mA g{sup -1} and 680 mA g{sup -1}, respectively. The stability of crystal structure of this material was studied by TGA and XRD which show that the material remains stable at least up to the temperature 200 deg. C. Investigation of the electronic structure of the iron hydroxyl-phosphate by GGA + U calculation has indicated that it has a better electronic conductivity than LiFePO{sub 4}.

  3. Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids.

    Science.gov (United States)

    Xu, Ren-kou; Zhu, Yong-guan; Chittleborough, David

    2004-01-01

    Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by low-molecular-weight organic acids. Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the pKa values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was notcorrelated with pKa. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate.

  4. Iron phosphate glass containing simulated fast reactor waste: Characterization and comparison with pristine iron phosphate glass

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Asuvathraman, R.; Venkata Krishnan, R.; Ravindran, T.R.; Govindaraj, R.; Govindan Kutty, K.V.; Vasudeva Rao, P.R.

    2014-01-01

    Detailed characterization was carried out on an iron phosphate glass waste form containing 20 wt.% of a simulated nuclear waste. High temperature viscosity measurement was carried out by the rotating spindle method. The Fe 3+ /Fe ratio and structure of this waste loaded iron phosphate glass was investigated using Mössbauer and Raman spectroscopy respectively. Specific heat measurement was carried out in the temperature range of 300–700 K using differential scanning calorimeter. Isoconversional kinetic analysis was employed to understand the crystallization behavior of the waste loaded iron phosphate glass. The glass forming ability and glass stability of the waste loaded glass were also evaluated. All the measured properties of the waste loaded glass were compared with the characteristics of pristine iron phosphate glass

  5. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    International Nuclear Information System (INIS)

    Cao Feng; Li Dongxu

    2010-01-01

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe 3+ , which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  6. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Cao Feng; Li Dongxu, E-mail: dongxuli@njut.edu.c [College of Materials Science and Engineering, Nanjing University of Technology, Jiangsu Nanjing 210009 (China)

    2010-03-15

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe{sup 3+}, which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  7. Biosynthesis and characterization of layered iron phosphate

    International Nuclear Information System (INIS)

    Zhou Weijia; He Wen; Wang Meiting; Zhang Xudong; Yan Shunpu; Tian Xiuying; Sun Xianan; Han Xiuxiu; Li Peng

    2008-01-01

    Layered iron phosphate with uniform morphology has been synthesized by a precipitation method with yeast cells as a biosurfactant. The yeast cells are used to regulate the nucleation and growth of layered iron phosphate. The uniform layered structure is characterized by small-angle x-ray diffraction (SAXD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses. Fourier transform infrared spectroscopy (FT-IR) is used to analyze the chemical bond linkages in organic–inorganic hybrid iron phosphate. The likely synthetic mechanism of nucleation and oriented growth is discussed. The electrical conductivity of hybrid iron phosphate heat-treated at different temperatures is presented

  8. Phosphate Recovery From Sewage Sludge Containing Iron Phosphate

    NARCIS (Netherlands)

    Wilfert, P.K.

    2018-01-01

    The scope of this thesis was to lay the basis for a phosphate recovery technology that can be applied on sewage sludge containing iron phosphate. Such a technology should come with minimal changes to the existing sludge treatment configuration while keeping the use of chemicals or energy as small as

  9. Synthesis of amorphous acid iron phosphate nanoparticles

    International Nuclear Information System (INIS)

    Palacios, E.; Leret, P.; Fernández, J. F.; Aza, A. H. De; Rodríguez, M. A.

    2012-01-01

    A simple method to precipitate nanoparticles of iron phosphate with acid character has been developed in which the control of pH allows to obtain amorphous nanoparticles. The acid aging of the precipitated amorphous nanoparticles favored the P–O bond strength that contributes to the surface reordering, the surface roughness and the increase of the phosphate acid character. The thermal behavior of the acid iron phosphate nanoparticles has been also studied and the phosphate polymerization at 400 °C produces strong compacts of amorphous nanoparticles with interconnected porosity.

  10. Hydroxyl radical-modified fibrinogen as a marker of thrombosis: the role of iron.

    Science.gov (United States)

    Lipinski, B; Pretorius, E

    2012-07-01

    Excessive free iron in blood and in organ tissues (so called iron overload) has been observed in degenerative diseases such as atherosclerosis, cancer, neurological, and certain autoimmune diseases, in which fibrin-like deposits are also found. Although most of the body iron is bound to hemoglobin and myoglobin in a divalent ferrous form, a certain amount of iron exists in blood as a trivalent (ferric) ion. This particular chemical state of iron has been shown to be toxic to the human body when not controlled by endogenous and/or dietary chelating agents. Experiments described in this paper show for the first time that ferric ions (Fe(3+)) can generate hydroxyl radicals without participation of any redox agent, thus making it a special case of the Fenton reaction. Ferric chloride was also demonstrated to induce aggregation of purified fibrinogen at the same molar concentrations that were used for the generation of hydroxyl radicals. Iron-aggregated fibrinogen, by contrast to native molecule, could not be dissociated into polypeptide subunit chains as shown in a polyacrylamide gel electrophoresis. The mechanism of this phenomenon is very likely based on hydroxyl radical-induced modification of fibrinogen tertiary structure with the formation of insoluble aggregates resistant to enzymatic and chemical degradations. Soluble modified fibrinogen species can be determined in blood of thrombotic patients by the reaction with protamine sulfate and/or by scanning electron microscopy. In view of these findings, it is postulated that iron-induced alterations in fibrinogen structure is involved in pathogenesis of certain degenerative diseases associated with iron overload and persistent thrombosis. It is concluded that the detection of hydroxyl radical-modified fibrinogen may be utilized as a marker of a thrombotic condition in human subjects.

  11. Iron phosphate materials as cathodes for lithium batteries

    CERN Document Server

    Prosini, Pier Paolo

    2011-01-01

    ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" describes the synthesis and the chemical-physical characteristics of iron phosphates, and presents methods of making LiFePO4 a suitable cathode material for lithium-ion batteries. The author studies carbon's ability to increase conductivity and to decrease material grain size, as well as investigating the electrochemical behaviour of the materials obtained. ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" also proposes a model to explain lithium insertion/extraction in LiFePO4 and to predict voltage profiles at variou

  12. Iron phosphate glasses: Bulk properties and atomic scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Kitheri; Stennett, Martin C.; Hyatt, Neil C.; Asuvathraman, R.; Dube, Charu L.; Gandy, Amy S.; Govindan Kutty, K. V.; Jolley, Kenny; Vasudeva Rao, P. R.; Smith, Roger

    2017-10-01

    Bulk properties such as glass transition temperature, density and thermal expansion of iron phosphate glass compositions, with replacement of Cs by Ba, are investigated as a surrogate for the transmutation of 137Cs to 137Ba, relevant to the immobilisation of Cs in glass. These studies are required to establish the appropriate incorporation rate of 137Cs in iron phosphate glass. Density and glass transition temperature increases with the addition of BaO indicating the shrinkage and reticulation of the iron phosphate glass network. The average thermal expansion coefficient reduces from 19.8 × 10-6 K-1 to 13.4 × 10-6 K-1, when 25 wt. % of Cs2O was replaced by 25 wt. % of BaO in caesium loaded iron phosphate glass. In addition to the above bulk properties, the role of Ba as a network modifier in the structure of iron phosphate glass is examined using various spectroscopic techniques. The FeII content and average coordination number of iron in the glass network was estimated using Mössbauer spectroscopy. The FeII content in the un-doped iron phosphate glass and barium doped iron phosphate glasses was 20, 21 and 22 ± 1% respectively and the average Fe coordination varied from 5.3 ± 0.2 to 5.7 ± 0.2 with increasing Ba content. The atomic scale structure was further probed by Fe K-edge X-ray absorption spectroscopy. The average coordination number provided by extended X-ray absorption fine structure spectroscopy and X-ray absorption near edge structure was in good agreement with that given by the Mössbauer data.

  13. Nuclear waste immobilization in iron phosphate glasses

    International Nuclear Information System (INIS)

    Garcia, D.A.; Rodriguez, Diego A.; Menghini, Jorge E.; Bevilacqua, Arturo

    2007-01-01

    Iron-phosphate glasses have become important in the nuclear waste immobilization area because they have some advantages over silicate-based glasses, such as a lower processing temperature and a higher nuclear waste load without losing chemical and mechanical properties. Structure and chemical properties of iron-phosphate glasses are determined in terms of the main components, in this case, phosphate oxide along with the other oxides that are added to improve some of the characteristics of the glasses. For example, Iron oxide improves chemical durability, lead oxide lowers fusion temperature and sodium oxide reduces viscosity at high temperature. In this work a study based on the composition-property relations was made. We used different techniques to characterize a series of iron-lead-phosphate glasses with uranium and aluminium oxide as simulated nuclear waste. We used the Arquimedes method to determine the bulk density, differential temperature analysis (DTA) to determine both glass transition temperature and crystallization temperature, dilatometric analysis to calculate the linear thermal expansion coefficient, chemical durability (MCC-1 test) and X-ray diffraction (XRD). We also applied some theoretic models to calculate activation energies associated with the glass transition temperature and crystallization processes. (author)

  14. Silane surface modification effects on the electromagnetic properties of phosphatized iron-based SMCs

    Science.gov (United States)

    Fan, Liang-Fang; Hsiang, Hsing-I.; Hung, Jia-Jing

    2018-03-01

    It is difficult to achieve homogeneous phosphatized iron powder dispersion in organic resins during the preparation of soft magnetic composites (SMCs). Inhomogeneous iron powder mixing in organic resins generally leads to the formation of micro-structural defects in SMCs and hence causes the magnetic properties to become worse. Phosphatized iron powder dispersion in organic resins can be improved by coating the phosphatized iron powder surfaces with a coupling agent. This study investigated the (3-aminopropyl) triethoxysilane (APTES) surface modification effects on the electromagnetic properties of phosphatized iron-based soft magnetic composites (SMCs). The results showed that the phosphatized iron powder surface can be modified using APTES to improve the phosphatized iron powder and epoxy resin compatibility and hence enhance phosphate iron powder epoxy mixing. The tensile strength, initial permeability, rated current under DC-bias superposition and magnetic loss in SMCs prepared using phosphatized iron powders can be effectively improved using APTES surface modification, which provides a promising candidate for power chip inductor applications.

  15. Characterization of iron phosphate glasses prepared by microwave heating

    International Nuclear Information System (INIS)

    Almeida, Fabio Jesus Moreira de

    2006-01-01

    Phosphate glasses have been investigated since the fifties, because they are relatively easy to prepare, have low melting temperatures (1000 deg C - 1200 deg C and low glass transition. However, these glasses were very sensitive to humidity, showing a very low chemical durability. Iron phosphate glasses have been prepared by melting inorganic precursors in conventional electric furnaces and induction furnaces. By adding iron, phosphate glasses became chemical resistant and were thought to be used as nuclear waste forms or mechanical resistance fibers. The use of microwaves has been investigated because it makes possible a fast and homogeneous heating of the materials. Microwave promotes the self-heating of the material by the interaction of the external electromagnetic field with the molecules and ions of the material. Niobium phosphate glasses was also produced already through the heating of precursors in microwave ovens. Other glasses containing iron in theirs structure was produced by conventional furnaces and they had your structures analyzed. But even so, it was not still published synthesis of iron phosphate glasses starting from the melting of precursors materials in microwave ovens. In the present work mixtures of (NH 4 ) 2 HPO 4 and Fe 3 O 4 or (NH 4 ) 2 HPO 4 and Fe 2 O 3 were exposed to microwave energy with electromagnetic waves of 2,45 GHz. It was proposed that the absorption of this radiation for the material causes the heating from room temperature to melting temperature. The obtained iron phosphate glasses was analyzed by X-ray diffraction, Moessbauer spectroscopy, and Differential Thermal Analysis. Iron phosphate glasses were also produced in electrical furnaces for comparison. (author)

  16. Characterization of iron phosphate glasses prepared by microwave heating

    International Nuclear Information System (INIS)

    Almeida, Fabio Jesus Moreira de

    2006-01-01

    Phosphate glasses have been investigated since the fifties, because they are relatively easy to prepare, have low melting temperatures (1000 deg C - 1200 deg C), and low glass transition. However, these glasses were very sensitive to humidity, showing a very low chemical durability. Iron phosphate glasses have been prepared by melting inorganic precursors in conventional electric furnaces and induction furnaces. By adding iron, phosphate glasses became chemical resistant and were thought to be used as nuclear waste forms or mechanical resistance fibers. The use of microwaves has been investigated because it makes possible a fast and homogeneous heating of the materials. Microwave promotes the self-heating of the material by the interaction of the external electromagnetic field with the molecules and ions of the material. Niobium phosphate glasses was also produced already through the heating of precursors in microwave ovens. Other glasses containing iron in theirs structure was produced by conventional furnaces and they had your structures analyzed. But even so, it was not still published synthesis of iron phosphate glasses starting from the melting of precursors materials in microwave ovens. In the present work mixtures of (NH 4 ) 2 HPO 4 and Fe 3 O 4 or (NH 4 ) 2 HPO 4 and Fe 2 O 3 were exposed to microwave energy with electromagnetic waves of 2,45 GHz. It was proposed that the absorption of this radiation for the material causes the heating from room temperature to melting temperature. The obtained iron phosphate glasses was analyzed by X-ray diffraction, Moessbauer spectroscopy, and Differential Thermal Analysis. Iron phosphate glasses were also produced in electrical furnaces for comparison. (author)

  17. Co-precipitation of phosphate and iron limits mitochondrial phosphate availability in Saccharomyces cerevisiae lacking the yeast frataxin homologue (YFH1).

    Science.gov (United States)

    Seguin, Alexandra; Santos, Renata; Pain, Debkumar; Dancis, Andrew; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2011-02-25

    Saccharomyces cerevisiae cells lacking the yeast frataxin homologue (Δyfh1) accumulate iron in the mitochondria in the form of nanoparticles of ferric phosphate. The phosphate content of Δyfh1 mitochondria was higher than that of wild-type mitochondria, but the proportion of mitochondrial phosphate that was soluble was much lower in Δyfh1 cells. The rates of phosphate and iron uptake in vitro by isolated mitochondria were higher for Δyfh1 than wild-type mitochondria, and a significant proportion of the phosphate and iron rapidly became insoluble in the mitochondrial matrix, suggesting co-precipitation of these species after oxidation of iron by oxygen. Increasing the amount of phosphate in the medium decreased the amount of iron accumulated by Δyfh1 cells and improved their growth in an iron-dependent manner, and this effect was mostly transcriptional. Overexpressing the major mitochondrial phosphate carrier, MIR1, slightly increased the concentration of soluble mitochondrial phosphate and significantly improved various mitochondrial functions (cytochromes, [Fe-S] clusters, and respiration) in Δyfh1 cells. We conclude that in Δyfh1 cells, soluble phosphate is limiting, due to its co-precipitation with iron.

  18. Iron-phosphate-based chemically bonded phosphate ceramics for mixed waste stabilization

    International Nuclear Information System (INIS)

    Wagh, A.S.; Jeong, S.Y.; Singh, D.

    1997-01-01

    In an effort to develop chemically bonded phosphate ceramics for mixed waste stabilization, a collaborative project to develop iron-phosphate based ceramics has been initiated between Argonne National Laboratory and the V. G. Khlopin Radium Institute in St. Petersburg, Russia. The starter powders are oxides of iron that are generated as inexpensive byproduct materials in the iron and steel industry. They contain iron oxides as a mixture of magnetite (Fe 3 O 4 ) and haematite (Fe 2 O 3 ). In this initial phase of this project, both of these compounds were investigated independently. Each was reacted with phosphoric acid solution to form iron phosphate ceramics. In the case of magnetite, the reaction was rapid. Adding ash as the waste component containing hazardous contaminants resulted in a dense and hard ceramic rich in glassy phase. On the other hand, the reaction of phosphoric acid solution with a mixture of haematite and ash waste contaminated with cesium and americium was too slow. Samples had to be molded under pressure. They were cured for 2-3 weeks and then hardened by heating at 350 degrees C for 3 h. The resulting ceramics in both cases were subjected to physical tests for measurement of density, open porosity, compression strength, phase analyses using X-ray diffraction and differential thermal analysis, and leaching tests using toxicity characteristic leaching procedure (TCLP) and ANS 16.1 with 7 days of leaching. Using the preliminary information obtained from these tests, we evaluated these materials for stabilization of Department of Energy's mixed waste streams

  19. Infrared spectra of phosphate sorbed on iron hydroxide gel and the sorption products

    International Nuclear Information System (INIS)

    Nanzyo, M.

    1986-01-01

    Infrared absorption spectra of phosphate sorbed on iron hydroxide gel were obtained by applying the differential diffuse reflectance method. Absorption bands due to P-O stretching vibration were observed at 1,110 and 1,010 cm -1 at pH 12.3. With decreasing pH, these absorption bands gradually shifted to 1,100 and 1,020 cm -1 at pH 4.9. At pH 2.3, they became a broad single absorption band at 1,060 cm -1 . At pH 11 or above, the difference in the Na + adsorption between phosphated iron hydroxide gel and iron hydroxide gel was almost equal to the amount of phosphate sorption. This finding shows that phosphate was retained on the iron hydroxide gel surface as a bidentate ligand at a high pH. It was concluded that at a high pH phosphate was sorbed on iron hydroxide gel as a binuclear surface complex similar to that on goethite; the change in spectra for P-O stretching vibration with decreasing pH value was mainly caused by an increase in the fraction of amorphous iron phosphate; at pH 2.3, the phosphate sorption product consisted of amorphous iron phosphate. (author)

  20. A study of phosphate absorption by magnesium iron hydroxycarbonate.

    Science.gov (United States)

    Du, Yi; Rees, Nicholas; O'Hare, Dermot

    2009-10-21

    A study of the mechanism of phosphate adsorption by magnesium iron hydroxycarbonate, [Mg(2.25)Fe(0.75)(OH)(6)](CO(3))(0.37).0.65H(2)O over a range of pH has been carried out. The efficiency of the phosphate removal from aqueous solution has been investigated between pH 3-9 and the resulting solid phases have been studied by elemental analysis, XRD, FT-IR, Raman, HRTEM, EDX and solid-state MAS (31)P NMR. The analytical and spectroscopic data suggest that phosphate removal from solution occurs not by anion intercalation of the relevant phosphorous oxyanion (H(2)PO(4)(-) or HPO(4)(2-)) into the LDH but by the precipitation of either an insoluble iron hydrogen phosphate hydrate and/or a magnesium phosphate hydrate.

  1. Aluminum and iron contents in phosphate treated swamp rice farm ...

    African Journals Online (AJOL)

    In 2006 aluminum and iron contents were determined in phosphate treated swamp rice farm of Mbiabet, Akwa Ibom State. The objectives were to determine the aluminum and iron contents, the effect of drying, phosphate and lime application in an acid sulphate soil grown to rice in Nigeria. The soil samples used were ...

  2. Acid-base properties and surface complexation modeling of phosphate anion adsorption by wasted low grade iron ore with high phosphorus.

    Science.gov (United States)

    Yuan, Xiaoli; Bai, Chenguang; Xia, Wentang; An, Juan

    2014-08-15

    The adsorption phenomena and specific reaction processes of phosphate onto wasted low grade iron ore with high phosphorus (WLGIOWHP) were studied in this work. Zeta potential and Fourier transform infrared spectroscopy (FTIR) analyses were used to elucidate the interaction mechanism between WLGIOWHP and aqueous solution. The results implied that the main adsorption mechanism was the replacement of surface hydroxyl groups by phosphate via the formation of inner-sphere complex. The adsorption process was characterized by chemical adsorption onto WLGIOWHP. The non-electrostatic model (NEM) was used to simulate the surface adsorption of phosphate onto WLGIOWHP. The total surface site density and protonation constants for NEM (N(T)=1.6×10(-4) mol/g, K(a1)=2.2×10(-4), K(a2)=6.82×10(-9)) were obtained by non-linear data fitting of acid-base titrations. In addition, the NEM was used to establish the surface adsorption complexation modeling of phosphate onto WLGIOWHP. The model successfully predicted the adsorption of phosphate onto WLGIOWHP from municipal wastewater. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Novel iron-cobalt derivatised lithium iron phosphate nanocomposite for lithium ion battery cathode

    CSIR Research Space (South Africa)

    Ikpo, CO

    2013-01-01

    Full Text Available Described herein is the electrochemical study conducted on lithium ion battery cathode material consisting of composite of lithium iron phosphate (LiFePO(sub4), iron-cobalt derivatised carbon nanotubes (FeCo-CNT) and polyaniline (PA) nanomaterials...

  4. An improved PNGV modeling and SOC estimation for lithium iron phosphate batteries

    Science.gov (United States)

    Li, Peng

    2017-11-01

    Because lithium iron phosphate battery has many advantages, it has been used more and more widely in the field of electric vehicle. The lithium iron phosphate battery, presents the improved PNGV model, and the batteries charge discharge characteristics and pulse charge discharge experiments, identification of parameters of the battery model by interpolation and least square fitting method, to achieve a more accurate modeling of lithium iron phosphate battery, and the extended Calman filter algorithm (EKF) is completed state nuclear power battery (SOC) estimate.

  5. Serum Hydroxyl Radical Scavenging Capacity as Quantified with Iron-Free Hydroxyl Radical Source

    Science.gov (United States)

    Endo, Nobuyuki; Oowada, Shigeru; Sueishi, Yoshimi; Shimmei, Masashi; Makino, Keisuke; Fujii, Hirotada; Kotake, Yashige

    2009-01-01

    We have developed a simple ESR spin trapping based method for hydroxyl (OH) radical scavenging-capacity determination, using iron-free OH radical source. Instead of the widely used Fenton reaction, a short (typically 5 seconds) in situ UV-photolysis of a dilute hydrogen peroxide aqueous solution was employed to generate reproducible amounts of OH radicals. ESR spin trapping was applied to quantify OH radicals; the decrease in the OH radical level due to the specimen’s scavenging activity was converted into the OH radical scavenging capacity (rate). The validity of the method was confirmed in pure antioxidants, and the agreement with the previous data was satisfactory. In the second half of this work, the new method was applied to the sera of chronic renal failure (CRF) patients. We show for the first time that after hemodialysis, OH radical scavenging capacity of the CRF serum was restored to the level of healthy control. This method is simple and rapid, and the low concentration hydrogen peroxide is the only chemical added to the system, that could eliminate the complexity of iron-involved Fenton reactions or the use of the pulse-radiolysis system. PMID:19794928

  6. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1989-01-01

    This patent describes lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 0 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms

  7. Effect of Ba in the glass characteristics of cesium loaded iron phosphate glasses

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Asuvathraman, R.; Vasudeva Rao, P.R.

    2015-01-01

    Radioactive 137 Cs extracted from high level nuclear waste, when immobilized in a suitable matrix can be used as a γsource in medical industry. Iron phosphate glass (IPG) is one of a suitable matrix for the immobilization of 137 Cs prior to the immobilization of 137 Cs in IPG, it is essential to optimize the immobilization conditions using natural (inactive) cesium. Glass characteristics of inactive Cs loaded iron phosphate glasses were already explored in our earlier studies. However, the change in glass characteristics of 137 Cs loaded iron phosphate glass to 137 Ba loaded iron phosphate glass need to be studied before the immobilization of 137 Cs in iron phosphate glass as 137 Cs transforms to 137 Ba due to nuclear transmutation ( 137 Cs(β,γ) 137 Ba). This paper reports the studies on such a behaviour by incorporating inactive Ba in cesium loaded iron phosphate glasses. Cs and Ba loaded iron phosphate glasses were prepared by melt quench technique in air using appropriate amounts of Fe 2 O 3 , NH 4 H 2 PO 4 , Ba(OH) 2.8 H 2 O and Cs 2 CO 3 . The chemicals were added such that the glass formed possesses the batch composition of (a) 21.4 wt. % Fe 2 O 3 -45 wt. % Cs 2 O-5 wt % BaO-P 2 O 5 (henceforth referred as IP50Cs45Ba5); (b) 21.4 wt. % Fe 2 O 3 -25 wt. % Cs 2 O-25 wt % BaO-P 2 O5 (henceforth referred as IP50Cs25Ba25). The thermal expansion measurements were also carried out using a home-built quartz push-rod dilatometer. The data related to change in thermal expansion behaviour, glass forming ability, glass stability and structural changes in phosphate network due to the partial replacement of Cs with Ba will also be discussed. (author)

  8. A Review of Iron Phosphate Glasses and Recommendations for Vitrifying Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Delbert E. Ray; Chandra S. Ray

    2013-11-01

    This report contains a comprehensive review of the research conducted, world-wide, on iron phosphate glass over the past ~30 years. Special attention is devoted to those iron phosphate glass compositions which have been formulated for the purpose of vitrifying numerous types of nuclear waste, with special emphasis on the wastes stored in the underground tanks at Hanford WA. Data for the structural, chemical, and physical properties of iron phosphate waste forms are reviewed for the purpose of understanding their (a) outstanding chemical durability which meets all current DOE requirements, (b) high waste loadings which can exceed 40 wt% (up to 75 wt%) for several Hanford wastes, (c) low melting temperatures, can be as low as 900°C for certain wastes, and (d) high tolerance for “problem” waste components such as sulfates, halides, and heavy metals (chromium, actinides, noble metals, etc.). Several recommendations are given for actions that are necessary to smoothly integrate iron phosphate glass technology into the present waste treatment plans and vitrification facilities at Hanford.

  9. Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture.

    Science.gov (United States)

    Wang, Zhe; Lin, Yan; Wu, Deyi; Kong, Hainan

    2016-02-01

    A simple method to functionalize diatomite with hydrous iron oxide was attempted and its performance as a new active filtration material to remove and recover phosphate from water was investigated under varying solution conditions. The Langmuir phosphate adsorption capacity increased from 0.6 mgP/g for raw diatomite to 4.89, 14.71, 25.02 mgP/g for hydrous iron oxide modified diatomite (HIOMD), depending on the amount of iron loaded. Loading of hydrous iron oxide caused the increase in true and bulk density and a decline in filtration rate, but to a lesser extent. It was shown that the HIOMD product with suitable iron content could retain a good filtration performance with a greatly increased adsorption capacity for phosphate. The phosphate adsorption increased by decreasing pH and by increasing ionic strength at high pH levels. The adsorption process was interpreted by ligand exchange. Coexisting oxyanions of sulfate, nitrate, citrate, carbonate, silicate and humic acid showed different effects on phosphate fixation but it was presumed that their influence at their concentrations and pH levels commonly encountered in effluent or natural waters was limited, i.e., HIOMD had a reasonably good selectivity. Results in repeated adsorption, desorption and regeneration experiment showed that the adsorbed phosphate could be recovered and the material could be reused after regeneration. The column test showed that HIOMD could be potentially utilized as an adsorption filtration medium for phosphate removal and recovery from water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Bench-scale study of the effect of phosphate on an aerobic iron oxidation plant for mine water treatment.

    Science.gov (United States)

    Tischler, Judith S; Wiacek, Claudia; Janneck, Eberhard; Schlömann, Michael

    2014-01-01

    At the opencast pit Nochten acidic iron- and sulfate-rich mine waters are treated biotechnologically in a mine-water treatment plant by microbial iron oxidation. Due to the low phosphate concentration in such waters the treatment plant was simulated in bench-scale to investigate the influence of addition of potassium dihydrogen phosphate on chemical and biological parameters of the mine-water treatment. As a result of the phosphate addition the number of cells increased, which resulted in an increase of the iron oxidation rate in the reactor with phosphate addition by a factor of 1.7 compared to a reference approach without phosphate addition. Terminal restriction fragment length polymorphism (T-RFLP) analysis during the cultivation revealed a shift of the microbial community depending on the phosphate addition. While almost exclusively iron-oxidizing bacteria related to "Ferrovum" sp. were detected with phosphate addition, the microbial community was more diverse without phosphate addition. In the latter case, iron-oxidizing bacteria ("Ferrovum" sp., Acidithiobacillus spp.) as well as non-iron-oxidizing bacteria (Acidiphilium sp.) were identified. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-01-01

    The lead-iron-phosphate nuclear waste glass developed at Oak Ridge National Laboratory (ORNL) was evaluated for its potential as an improvement over the current reference waste form, borosilicate glass. Vitreous lead-iron-phosphate glass appears to have substantially better chemical durability than borosilicate glass. However, severe crystallization leading to deteriorated chemical durability would result if this glass were poured into large canisters as is presently done with borosilicate glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from borosilicate glass. Therefore, in order to realize the performance advantages of the lead-iron-phosphate material in a nuclear waste form, it would be necessary to process it so that it is rapidly cooled, thus retaining its vitreous structure. 22 refs., 4 figs., 4 tabs

  12. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    Science.gov (United States)

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  13. Coprecipitation of neptunium and plutonium with iron and zirconium dibutyl phosphates

    International Nuclear Information System (INIS)

    Sokhina, L.P.; Rovnyj, S.I.; Goncharuk, L.V.

    1988-01-01

    Neptunium and plutonium coprecipitation with precipitates of dibutyl phosphates of some elements significant for radiochemical technology is studied. By the ability to coprecipitation of actinides with precipitates of dibutyl phosphates the cations may be arranged in the series Fe > Al > La > ≥ Zr ≥ Th. The composition of neptunium and plutonium mixed precipitates on the basis of iron dibutyl phosphates corresponding to the formula (Me(NO 3 ) 2 Al 2 ) n x · FeA 3 , where Me-neptunium or plutonium, A-anion of dibutyl phosphoric acid, n=1-4, is determined. Solubility of mixed precipitations in nitric acid and carbonate solutions is studied. Mixed precipitations on the basis of iron dibutyl phosphates are found to have the least solubility, their solubility being lower than that of individual compounds of dibutyl phoshates. The mechanism of formation of mixed precipitates is suggested and discussed

  14. Fe phase complexes and their thermal stability in iron phosphate catalysts supported on silica

    Energy Technology Data Exchange (ETDEWEB)

    Dasireddy, Venkata D. B. C., E-mail: dasireddy@gmail.com; Bharuth-Ram, K.; Harilal, A.; Singh, S.; Friedrich, H. B. [University of KwaZulu-Natal, School of Chemistry and Physics (South Africa)

    2015-04-15

    Comparative XRD and Mössbauer spectroscopy studies have been conducted on the effect of temperature on the phase transformations of an iron phosphate catalyst synthesized using the ammonia gel method (CAT1) and a commercial grade FePO {sub 4} catalyst supported on silica using wet impregnation method (CAT2). The XRD patterns of both catalysts showed the presence of iron phosphate and the tridymite phase of aluminum phosphate. Mössbauer spectra of the catalysts show that the phases present in CAT1 are thermally stable up to 500 {sup ∘}C, but CAT2 shows significant changes with the tridymite phase of iron phosphate increasing from 6 % to 29 % of the spectral area at a temperature of 500 {sup ∘}C.

  15. Immobilization of Uranium Silicide in Sintered Iron-Phosphate Glass

    International Nuclear Information System (INIS)

    Mateos, Patricia; Russo, Diego; Rodriguez, Diego; Heredia, A; Sanfilippo, M.; Sterba, Mario

    2003-01-01

    This work is a continuation of a previous one performed in vitrification of uranium silicide in borosilicate and iron-silicate glasses, by sintering.We present the results obtained with an iron-phosphate glass developed at our laboratory and we compare this results with those obtained with the above mentioned glasses. The main objective was to develop a method as simple as possible, so as to get a monolithic glass block with the appropriate properties to be disposed in a deep geological repository.The thermal transformation of the uranium silicide was characterized by DTA/TG analysis and X-ray diffraction.We determined the evolution of the crystalline phases and the change in weight.Calcined uranium silicide was mixed with natural U 3 O 8 , the amount of U 3 O 8 was calculated to simulate an isotopic dilution of 4%.This material was mixed with powdered iron-phosphate glass (in wt.%: 64,9 P 2 O 5 ; 22,7 Fe 2 O 3 ; 8,1 Al 2 O 3 ; 4,3 Na 2 O) in different proportions (in wt%): 7%, 10% y 15%.The powders were pressed and sintered at temperatures between 585 y 670 °C. Samples of the sintered pellet were prepared for the lixiviation tests (MCC-1P: monolithic samples; deionised water; 90° C; 7, 14 and 28 days).The samples showed a quite good durability (0,6 g.m -2 .day -1 ), similar to borosilicate glasses.The microstructure of the glass samples showed that the uranium particles are much better integrated to the glass matrix in the iron-phosphate glasses than in the borosilicate or iron-silicate glasses.We can conclude that the sintered product obtained could be a good alternative for the immobilization of nuclear wastes with high content of uranium, as the ones arising from the conditioning of research reactors spent fuels

  16. Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1984-01-01

    Results are presented which show that lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high-level defense and high-level commercial radioactive waste. Relative to the borosilicate nuclear waste glasses that are currently the ''reference'' waste form for the long-term disposal of nuclear waste, lead-iron phosphate glasses have several distinct advantages: (1) an aqueous corrosion rate that is about 1000 times lower, (2) a processing temperature that is 100 0 to 250 0 C lower and, (3) a much lower melt viscosity in the temperature range from 800 0 to 1000 0 C. Most significantly, the lead-iron phosphate waste form can be processed using a technology similar to that developed for borosilicate nuclear waste glasses

  17. Aqueous phosphate removal using nanoscale zero-valent iron

    International Nuclear Information System (INIS)

    Almeelbi, Talal; Bezbaruah, Achintya

    2012-01-01

    Nanoscale zero-valent iron (NZVI) particles have been used for the remediation of a wide variety of contaminants. NZVI particles have high reactivity because of high reactive surface area. In this study, NZVI slurry was successfully used for phosphate removal and recovery. Batch studies conducted using different concentrations of phosphate (1, 5, and 10 mg PO 4 3− -P/L with 400 mg NZVI/L) removed ∼96 to 100 % phosphate in 30 min. Efficacy of the NZVI in phosphate removal was found to 13.9 times higher than micro-ZVI (MZVI) particles with same NZVI and MZVI surface area concentrations used in batch reactors. Ionic strength, sulfate, nitrate, and humic substances present in the water affected in phosphate removal by NZVI but they may not have any practical significance in phosphate removal in the field. Phosphate recovery batch study indicated that better recovery is achieved at higher pH and it decreased with lowering of the pH of the aqueous solution. Maximum phosphate recovery of ∼78 % was achieved in 30 min at pH 12. The successful rapid removal of phosphate by NZVI from aqueous solution is expected to have great ramification for cleaning up nutrient rich waters.

  18. Role of lead as modifier on the properties of lead iron phosphate nuclear waste glasses

    International Nuclear Information System (INIS)

    Hazra, G.; Mitra, P.; Das, T.

    2011-01-01

    Lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high level defence and high level commercial radioactive waste for long term disposal. Lead iron phosphate glasses have several advantages such as lower aqueous corrosion rate, lower processing temperature etc. (author)

  19. Degradation of bis- p -nitrophenyl phosphate using zero-valent iron nanoparticles

    International Nuclear Information System (INIS)

    Valle-Orta, Maiby; Guerrero, Rubén Saldivar; Díaz, David; Dubé, Inti Zumeta; Quiñonez, José Luis Ortiz

    2017-01-01

    Phosphate esters are employed in some agrochemical formulations and have long life time in the Environment. They are neurotoxic to mammals and it is very difficult to hydrolyze them. It is easy to find papers in the literature dealing with transition metal complexes used in the hydrolysis processes of organophosphorous compounds. However, there are few reports related with degradation of phosphate esters with inorganic nanoparticles. In this work bis-4-nitrophenyl phosphate (BNPP) was used as an agrochemical agent model. The BNPP interaction with zero-valent iron nanoparticles (ZVI NPs), in aqueous media, was searched. The concentration of BNPP was 1000 times higher than the ZVI NPs concentration. The average size of the used iron nanoparticles was 10.2 ± 3.2 nm. The BNPP degradation process was monitored by means of UV-visible method. Initially, the BNPP hydrolysis happens through the P-O bonds breaking-off under the action of the ZVI NPs. Subsequently, the nitro groups were reduced to amine groups. The overall process takes place in 10 minutes. The reaction products were identified employing standard substances in adequate concentrations. The iron by-products were isolated and characterized by X-RD. These iron derivatives were identified as magnetite (Fe 3 O 4 ) and/or maghemite (γ-Fe 2 O 3 ) and lepidocrocite (γ-FeOOH). A suggested BNPP degradation mechanism will be discussed. (paper)

  20. Eddy current and total power loss separation in the iron-phosphate-polyepoxy soft magnetic composites

    International Nuclear Information System (INIS)

    Taghvaei, A.H.; Shokrollahi, H.; Janghorban, K.; Abiri, H.

    2009-01-01

    This work investigates the magnetic properties of iron-phosphate-polyepoxy soft magnetic composite materials. FTIR spectra, EDX analysis, distribution maps, X-ray diffraction pattern and density measurements show that the particles surface layer contains a thin layer of nanocrystalline/amorphous phosphate with high coverage of powders surface. In this paper, a formula for calculating the eddy current loss and total loss components by loss separation method is presented and finally the different parts of power losses are calculated. The results show that, the contribution of eddy current in the bulk material for single coating layer (k b = 0.18) is higher in comparison with double coating layer (k b = 0.09). Moreover, iron-phosphate-polyepoxy composites (P = 0.000004f 2 ) have lower power loss in comparison with iron-phosphate composites (P = 0.00002f 2 ).

  1. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    Science.gov (United States)

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  2. Iron exchange between transferrin molecules mediated by phosphate compounds and other cell metabolites.

    Science.gov (United States)

    Morgan, E H

    1977-08-25

    The ability of a large number of cellular metabolites to release iron from transferrin was investigated by measuring the rate at which they could mediate iron exchange between two types of transferrin. Rabbit transferrin labelled with 59Fe was incubated with human apotransferrin in the presence of the metabolites. After varying periods of incubation the human transferrin was separated from the rabbit transferrin by immunoprecipitation. GTP, 2,3-diphosphoglycerate, ATP, ADP and citrate produced the most rapid exchange of iron between the two types of transferrin, but many other compounds showed some degree of activity. Iron exchange mediated by the organic phosphates had the characteristics of a single first-order reaction and was sensitive to changes of incubation temperature and pH. The activation energy for the exchange reaction was approx. 13 kcal/mol. The rate of iron exchange from the oxalate - iron - transferrin complex was much lower than from bicarbonate - iron - transferrin. It is concluded that several organic phosphates have the capacity of releasing iron from transferrin. These compounds may represent the means by which the iron is released during the process of cellular uptake.

  3. Investigations on the passivity of iron in borate and phosphate buffers, pH 8.4

    International Nuclear Information System (INIS)

    Sieber, I.V.; Hildebrand, H.; Virtanen, S.; Schmuki, P.

    2006-01-01

    In the present work surface analytical experiments (XPS and AES) on the passive film on iron formed in borate and phosphate buffers (pH 8.4) have been carried out. In the passive film formed in phosphate buffer a significant amount of phosphates is found in the outer part of the film. Boron species are not significantly incorporated in the passive film formed in borate buffer. The mechanism of the reduction of the passive film depends strongly on the electrolyte composition. In borate buffer, cathodic polarization leads to reductive dissolution of the passive film whereas in phosphate buffer the passive film is converted into metallic iron without dissolution but via laterally inhomogeneously formation of an intermediate Fe(II) phosphate layer

  4. AN ALTERNATIVE HOST MATRIX BASED ON IRON PHOSPHATE GLASSES FOR THE VITRIFICATION OF SPECIALIZED WASTE FORMS

    International Nuclear Information System (INIS)

    Day, Delbert D.

    2000-01-01

    As mentioned above, the overall goal of this research project was to collect the scientific information essential to develop iron phosphate glass based nuclear wasteforms. The specific objectives of the project were: (1) Investigate the structure of binary iron phosphate glasses and it's dependence on the composition and melting atmosphere: Understand atomic arrangements and nature of the bonding. Establish structure-property relationships. Determine the compositions and melting conditions which optimize the critical properties of the base glass. (2) Understand the structure of iron phosphate wasteforms and it's dependence on the composition and melting atmosphere: Investigate how the waste elements are bonded and coordinated within the glass structure. Establish structure-property relationships for the waste glasses. Determine the compositions and melting atmosphere for which the critical properties of the waste forms would be optimum. (3) Determine the role(s) played by the valence states of iron ions and it's dependence on the composition and melting atmosphere: Understand the different roles of iron(II) and iron(III) ions in determining the critical properties of the base glass and the waste forms. Investigate how the iron valence and its significance depend on the composition and melting atmosphere. (4) Investigate glass forming and crystallization processes of the iron phosphate glasses and their waste forms: Understand the dependence of the glass forming and crystallization characteristics on overall glass composition and valence states of iron ions. Identify the products of devitrification and investigate the critical properties of these crystalline compounds which may adversely affect the chemical and physical properties of the waste forms

  5. Synthesis and characterization of niobium and iron phosphate glasses for U3O8 immobilization

    International Nuclear Information System (INIS)

    Ghussn, Luciana

    2005-01-01

    Niobium and iron phosphate glasses were produced by melting inorganic compound mixtures in electric furnaces and microwave ovens. The chemical durability was compared among niobium phosphate glasses produced by both processes, and equivalent results were obtained. Leaching tests were also performed to compare the chemical durability among monolithic glass blocks and sintered glasses. The glass transition, crystallization and melting temperatures as well the Hruby parameter (K H ) and the activation energy for crystallization were determined from differential thermal analysis of niobium phosphate glasses produced in electric furnaces. Niobium phosphate glasses are thermally more stable (K H =0.82 +- 0.04) than iron phosphate glasses (K H = 0.42 +- 0.03). Sintered glasses were produced from particles with different particle size distributions and sintering temperatures in the range of 720 - 800 deg C for niobium phosphate and 530 - 680 deg C for iron phosphate glasses. The sintering process was suitable because a glass with composition 37P 2 O 5 -23K 2 O-40Nb 2 O 5 showing leaching rate of 10 -6 g.cm -2 .d -1 , 99 % of the monolithic density and none crystalline phases was obtained. This glass only crystallizes itself after re heating at temperatures above 800 deg C , showing two crystalline phases identified as KNb 3 O 8 e K 3 NbP 2 O 9 . The activation energies for crystallization are 496 +- 7 kJ/mol and 513 +- 14 kJ/mol. Niobium phosphate sintered glasses are better densified than sintered iron phosphate glasses. The leaching rate of sintered glasses that show open porosity is higher than monolithic glass blocks. This effect is related to an increase of the surface area associated to open porous and, a correction of the value of the surface area used to calculate the leaching rate is required. A model was proposed based on the surface area of spherical porous to take in account that effect. Even after correcting the surface area, the leaching rates of sintered

  6. Phosphate dynamics in an acidic mountain stream: Interactions involving algal uptake, sorption by iron oxide, and photoreduction

    Science.gov (United States)

    Tate, Cathy M.; Broshears, Robert E.; McKnight, Diane M.

    1995-01-01

    Acid mine drainage streams in the Rocky Mountains typically have few algal species and abundant iron oxide deposits which can sorb phosphate. An instream injection of radiolabeled phosphate (32P0,) into St. Kevin Gulch, an acid mine drainage stream, was used to test the ability of a dominant algal species, Ulothrix sp., to rapidly assimilate phosphate. Approximately 90% of the injected phosphate was removed from the water column in the 175-m stream reach. When shaded stream reaches were exposed to full sunlight after the injection ended, photoreductive dissolution of iron oxide released sorbed 32P, which was then also removed downstream. The removal from the stream was modeled as a first-order process by using a reactive solute transport transient storage model. Concentrations of 32P mass-’ of algae were typically lo-fold greater than concentrations in hydrous iron oxides. During the injection, concentrations of 32P increased in the cellular P pool containing soluble, low-molecular-weight compounds and confirmed direct algal uptake of 32P0, from water. Mass balance calculations indicated that algal uptake and sorption on iron oxides were significant in removing phosphate. We conclude that in stream ecosystems, PO, sorbed by iron oxides can act as a dynamic nutrient reservoir regulated by photoreduction.

  7. Investigation of lead-iron-phosphate glass for SRP waste

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1986-10-01

    The search for a host solid for the immobilization of nuclear waste has focused on various vitreous waste forms. Recently, lead-iron-phosphate (LIP) glasses have been proposed for solidification of all types of HLLW. Investigation of this glass for vitrification of SRP waste demonstrated that the phosphate glass is incompatible with the current borosilicate glass technology. The durability of LIP glasses in deionized water was comparable to current borosilicate waste glass formulations, and the LIP glass has a low melt temperature. However, many of the defense waste constituents have low solubility in the phosphate melt, producing an inhomogeneous product. Also, the LIP melt is highly corrosive which prevents the use of current melter materials, in particular Inconel 690, and thus requires more exotic materials of construction such as platinum

  8. Iron environment in ferritin with large amounts of phosphate, from Azotobacter vinelandii and horse spleen, analyzed using Extended X-ray Absorption fine Structure (EXAFS)

    International Nuclear Information System (INIS)

    Rohrer, J.S.; Islam, Q.T.; Sayes, D.E.; Theil, E.C.; Watt, G.D.

    1990-01-01

    The iron core of proteins in the ferritin family displays structural variations that includes phosphate content was well as the number and the degree of ordering of the iron atoms. Earlier studies had shown that ferritin iron cores naturally high in phosphate, e.g., Azotobacter vinelandii (AV) ferritin had decreased long-range order. Here, the influence of phosphate on the local structure around iron in ferritin cores is reported, comparing the EXAFS of AV ferritin, reconstituted ferritin and native horse spleen ferritin. In contrast, when the phosphate content was high in AV ferritin and horse spleen ferritin reconstituted with phosphate, the average iron atom had five to six phosphorus neighbors at 3.17 angstrom. Moreover, the number of detectable iron neighbors was lower when phosphate was high or present during reconstitution and the interatomic distance was longer indicating that some phosphate bridges neighboring iron atoms. However, the decrease in the number of detectable iron-iron neighbors compared to HSF and the higher number of Fe-P interactions relative to Fe-Fe interactions suggest that some phosphate ligands were chain termini, or blocked crystal growth, and/or introduced defects which contributed both to the long-range disorder and to altered redox properties previously observed in AV ferritin

  9. Properties and solubility of chrome in iron alumina phosphate glasses containing high level nuclear waste

    International Nuclear Information System (INIS)

    Huang, W.; Day, D.E.; Ray, C.S.; Kim, C.W.; Reis, S.T.D.

    2004-01-01

    Chemical durability, glass formation tendency, and other properties of iron alumina phosphate glasses containing 70 wt% of a simulated high level nuclear waste (HLW), doped with different amounts of Cr 2 O 3 , have been investigated. All of the iron alumina phosphate glasses had an outstanding chemical durability as measured by their small dissolution rate (1 . 10 -9 g/(cm 2 . min)) in deionized water at 90 C for 128 d, their low normalized mass release as determined by the product consistency test (PCT) and a barely measurable corrosion rate of 2 . d) after 7 d at 200 C by the vapor hydration test (VHT). The solubility limit for Cr 2 O 3 in the iron phosphate melts was estimated at 4.1 wt%, but all of the as-annealed melts contained a few percent of crystalline Cr 2 O 3 that had no apparent effect on the chemical durability. The chemical durability was unchanged after deliberate crystallization, 48 h at 650 C. These iron phosphate waste forms, with a waste loading of at least 70 wt%, can be readily melted in commercial refractory crucibles at 1250 C for 2 to 4 h, are resistant to crystallization, meet all current US Department of Energy requirements for chemical durability, and have a solubility limit for Cr 2 O 3 which is at least three times larger than that for borosilicate glasses. (orig.)

  10. Manganese-induced hydroxyl radical formation in rat striatum is not attenuated by dopamine depletion or iron chelation in vivo

    NARCIS (Netherlands)

    W.N. Sloot (W.); J. Korf (Jakob); J.F. Koster (Johan); L.E.A. de Wit (Elly); J.-B.P. Gramsbergen (J. B P)

    1996-01-01

    textabstractThe present studies were aimed at investigating the possible roles of dopamine (DA) and iron in production of hydroxyl radicals (.OH) in rat striatum after Mn2+ intoxication. For this purpose, DA depletions were assessed concomitant with in vivo 2,3- and 2,5-dihydroxybenzoic acid (DHBA)

  11. Direct Observation of a Nonheme Iron(IV)–Oxo Complex That Mediates Aromatic C–F Hydroxylation

    OpenAIRE

    Sahu, Sumit; Quesne, Matthew G.; Davies, Casey G.; Dürr, Maximilian; Ivanović-Burmazović, Ivana; Siegler, Maxime A.; Jameson, Guy N. L.; de Visser, Sam P.; Goldberg, David P.

    2014-01-01

    The synthesis of a pentadentate ligand with strategically designed fluorinated arene groups in the second coordination sphere of a nonheme iron center is reported. The oxidatively resistant fluorine substituents allow for the trapping and characterization of an FeIV(O) complex at −20 °C. Upon warming of the FeIV(O) complex, an unprecedented arene C–F hydroxylation reaction occurs. Computational studies support the finding that substrate orientation is a critical factor in the observed reactiv...

  12. Power capability evaluation for lithium iron phosphate batteries based on multi-parameter constraints estimation

    Science.gov (United States)

    Wang, Yujie; Pan, Rui; Liu, Chang; Chen, Zonghai; Ling, Qiang

    2018-01-01

    The battery power capability is intimately correlated with the climbing, braking and accelerating performance of the electric vehicles. Accurate power capability prediction can not only guarantee the safety but also regulate driving behavior and optimize battery energy usage. However, the nonlinearity of the battery model is very complex especially for the lithium iron phosphate batteries. Besides, the hysteresis loop in the open-circuit voltage curve is easy to cause large error in model prediction. In this work, a multi-parameter constraints dynamic estimation method is proposed to predict the battery continuous period power capability. A high-fidelity battery model which considers the battery polarization and hysteresis phenomenon is presented to approximate the high nonlinearity of the lithium iron phosphate battery. Explicit analyses of power capability with multiple constraints are elaborated, specifically the state-of-energy is considered in power capability assessment. Furthermore, to solve the problem of nonlinear system state estimation, and suppress noise interference, the UKF based state observer is employed for power capability prediction. The performance of the proposed methodology is demonstrated by experiments under different dynamic characterization schedules. The charge and discharge power capabilities of the lithium iron phosphate batteries are quantitatively assessed under different time scales and temperatures.

  13. Comparison of one-, two-, and three-dimensional iron phosphates containing ethylenediamine

    International Nuclear Information System (INIS)

    Song Yanning; Zavalij, Peter Y.; Chernova, Natasha A.; Suzuki, Masatsugu; Whittingham, M.S.

    2003-01-01

    A new two-dimensional (2d) iron phosphate, (C 2 N 2 H 10 )Fe 2 O(PO 4 ) 2 , has been synthesized under hydrothermal conditions in the system of FeCl 3 -H 3 PO 4 -C 2 N 2 H 8 -H 2 O. The crystal data is: space group P2 1 /c, a=10.670(1) A, b=10.897(1) A, c=9.918(1) A, β=105.632(1) deg. , Z=4. The layered structure consists of double sheet layers, of composition Fe 2 O(PO 4 ) 2 , built from FeO 5 trigonal bipyramids and PO 4 tetrahedra. The amine holds the layers together via H-bonding. The study of the magnetic properties reveals two magnetic transitions at 160 and 30 K with spin-glass-like behavior below 160 K. By varying the hydrothermal conditions, three other iron phosphates were synthesized: the one-dimensional (1d) (C 2 N 2 H 10 )Fe(HPO 4 ) 2 (OH)·H 2 O, the 2d (C 2 N 2 H 10 )Fe 2 (PO 4 ) 2 (OH) 2 , and the three-dimensional (3d) (C 2 N 2 H 10 ) 2 Fe 4 O(PO 4 ) 4 ·H 2 O. The 1d compound can be used as the starting reagent in the synthesis of both the 2d compound and the 3d lipscombite Fe 3 (PO 4 ) 2 (OH) 2 due to the similar building blocks in their structures. In the 3d phosphate (C 2 N 2 H 10 ) 2 Fe 4 O(PO 4 ) 4 ·H 2 O, manganese can substitute for half of the iron atoms. Magnetic study shows ordering transitions at about 30 K, however, manganese substitution depresses the magnetic ordering temperature

  14. Studies on the synthesis and characterization of cesium-containing iron phosphate glasses

    Science.gov (United States)

    Joseph, Kitheri; Govindan Kutty, K. V.; Chandramohan, P.; Vasudeva Rao, P. R.

    2009-02-01

    Isotopes of cesium and strontium can be utilized as radiation source for various industrial and medical applications after their separation from high level nuclear waste. However, these elements need to be immobilized in a suitable matrix. In the present work, a systematic approach has been made to immobilize inactive cesium into iron phosphate glass. Up to 36 mol% of Cs 2O has been loaded successfully without crystallization. The glass transition temperature of the cesium loaded glass was found to increase initially and then decrease as a function of Cs 2O content. Mössbauer studies show that the concentration of Fe 3+ ions in the cesium loaded glasses is >95%. Volatilization experiments at 1263 K show that the weight loss is >0.5% for a period of 4 h. The 36 mol% of Cs 2O loaded iron phosphate glass with high Fe 3+ content described in this paper is reported for the first time.

  15. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A review

    Directory of Open Access Journals (Sweden)

    T.V.S.L. Satyavani

    2016-03-01

    Full Text Available Lithium ion battery technology has the potential to meet the requirements of high energy density and high power density applications. A continuous search for novel materials is pursued continually to exploit the latent potential of this technology. In this review paper, methods for preparation of Lithium Iron Phosphate are discussed which include solid state and solution based synthesis routes. The methods to improve the electrochemical performance of lithium iron phosphate are presented in detail.

  16. Characterization of the Ornithine Hydroxylation Step in Albachelin Biosynthesis

    Directory of Open Access Journals (Sweden)

    Kendra Bufkin

    2017-10-01

    Full Text Available N-Hydroxylating monooxygenases (NMOs are involved in siderophore biosynthesis. Siderophores are high affinity iron chelators composed of catechol and hydroxamate functional groups that are synthesized and secreted by microorganisms and plants. Recently, a new siderophore named albachelin was isolated from a culture of Amycolatopsis alba growing under iron-limiting conditions. This work focuses on the expression, purification, and characterization of the NMO, abachelin monooxygenase (AMO from A. alba. This enzyme was purified and characterized in its holo (FAD-bound and apo (FAD-free forms. The apo-AMO could be reconstituted by addition of free FAD. The two forms of AMO hydroxylate ornithine, while lysine increases oxidase activity but is not hydroxylated and display low affinity for NADPH.

  17. Different arsenate and phosphate incorporation effects on the nucleation and growth of iron(III) (Hydr)oxides on quartz.

    Science.gov (United States)

    Neil, Chelsea W; Lee, Byeongdu; Jun, Young-Shin

    2014-10-21

    Iron(III) (hydr)oxides play an important role in the geochemical cycling of contaminants in natural and engineered aquatic systems. The ability of iron(III) (hydr)oxides to immobilize contaminants can be related to whether the precipitates form heterogeneously (e.g., at mineral surfaces) or homogeneously in solution. Utilizing grazing incidence small-angle X-ray scattering (GISAXS), we studied heterogeneous iron(III) (hydr)oxide nucleation and growth on quartz substrates for systems containing arsenate and phosphate anions. For the iron(III) only system, the radius of gyration (Rg) of heterogeneously formed precipitates grew from 1.5 to 2.5 (± 1.0) nm within 1 h. For the system containing 10(-5) M arsenate, Rg grew from 3.6 to 6.1 (± 0.5) nm, and for the system containing 10(-5) M phosphate, Rg grew from 2.0 to 4.0 (± 0.2) nm. While the systems containing these oxyanions had more growth, the system containing only iron(III) had the most nucleation events on substrates. Ex situ analyses of homogeneously and heterogeneously formed precipitates indicated that precipitates in the arsenate system had the highest water content and that oxyanions may bridge iron(III) hydroxide polymeric embryos to form a structure similar to ferric arsenate or ferric phosphate. These new findings are important because differences in nucleation and growth rates and particle sizes will impact the number of available reactive sites and the reactivity of newly formed particles toward aqueous contaminants.

  18. Characterization of iron phosphate glasses prepared by microwave heating; Obtencao de vidros fosfatos contendo ferro por meio do aquecimento em fornos de microondas

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Fabio Jesus Moreira de

    2006-07-01

    Phosphate glasses have been investigated since the fifties, because they are relatively easy to prepare, have low melting temperatures (1000 deg C - 1200 deg C), and low glass transition. However, these glasses were very sensitive to humidity, showing a very low chemical durability. Iron phosphate glasses have been prepared by melting inorganic precursors in conventional electric furnaces and induction furnaces. By adding iron, phosphate glasses became chemical resistant and were thought to be used as nuclear waste forms or mechanical resistance fibers. The use of microwaves has been investigated because it makes possible a fast and homogeneous heating of the materials. Microwave promotes the self-heating of the material by the interaction of the external electromagnetic field with the molecules and ions of the material. Niobium phosphate glasses was also produced already through the heating of precursors in microwave ovens. Other glasses containing iron in theirs structure was produced by conventional furnaces and they had your structures analyzed. But even so, it was not still published synthesis of iron phosphate glasses starting from the melting of precursors materials in microwave ovens. In the present work mixtures of (NH{sub 4}){sub 2}HPO{sub 4} and Fe{sub 3}O{sub 4} or (NH{sub 4}){sub 2}HPO{sub 4} and Fe{sub 2}O{sub 3} were exposed to microwave energy with electromagnetic waves of 2,45 GHz. It was proposed that the absorption of this radiation for the material causes the heating from room temperature to melting temperature. The obtained iron phosphate glasses was analyzed by X-ray diffraction, Moessbauer spectroscopy, and Differential Thermal Analysis. Iron phosphate glasses were also produced in electrical furnaces for comparison. (author)

  19. Catalytic Ozonation by Iron Coated Pumice for the Degradation of Natural Organic Matters

    Directory of Open Access Journals (Sweden)

    Alper Alver

    2018-05-01

    Full Text Available The use of iron-coated pumice (ICP in heterogeneous catalytic ozonation significantly enhanced the removal efficiency of natural organic matters (NOMs in water, due to the synergistic effect of hybrid processes when compared to sole ozonation and adsorption. Multiple characterization analyses (BET, TEM, XRD, DLS, FT-IR, and pHPZC were employed for a systematic investigation of the catalyst surface properties. This analysis indicated that the ICP crystal structure was α-FeOOH, the surface hydroxyl group of ICP was significantly increased after coating, the particle size of ICP was about 200–250 nm, the BET surface area of ICP was about 10.56 m2 g−1, the pHPZC value of ICP was about 7.13, and that enhancement by iron loading was observed in the FT-IR spectra. The contribution of surface adsorption, hydroxyl radicals, and sole ozonation to catalytic ozonation was determined as 21.29%, 66.22%, and 12.49%, respectively. The reaction kinetic analysis with tert-Butyl alcohol (TBA was used as a radical scavenger, confirming that surface ferrous iron loading promoted the role of the hydroxyl radicals. The phosphate was used as an inorganic probe, and significantly inhibited the removal efficiency of catalytic NOM ozonation. This is an indication that the reactions which occur are more dominant in the solution phase.

  20. Simulation of alpha decay of actinides in iron phosphate glasses by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dube, Charu L., E-mail: dubecharu@gmail.com; Stennett, Martin C.; Gandy, Amy S.; Hyatt, Neil C.

    2016-03-15

    Highlights: • Alpha decay of actinides in iron phosphate glasses is simulated by employing ion irradiation technique. • FTIR and Raman spectroscopic measurements confirm modification of glass network. • The depolymerisation of glass network after irradiation is attributed to synergetic effect of nuclear and electronic losses. - Abstract: A surrogate approach of ion beam irradiation is employed to simulate alpha decay of actinides in iron phosphate nuclear waste glasses. Bismuth and helium ions of different energies have been selected for simulating glass matrix modification owing to radiolysis and ballistic damage due to recoil atoms. Structural modification and change in coordination number of network former were probed by employing Reflectance Fourier-Transform Infrared (FT-IR), and Raman spectroscopies as a consequence of ion irradiation. Depolymerisation is observed in glass sample irradiated at intermediate energy of 2 MeV. Helium blisters of micron size are seen in glass sample irradiated at low helium ion energy of 30 keV.

  1. An alternative host matrix based on iron phosphate glasses for the vitrification of specialized nuclear waste forms. Annual progress report, September 15, 1996 - September 14, 1997

    International Nuclear Information System (INIS)

    Day, D.E.; Marasinghe, K.; Ray, C.S.

    1997-01-01

    'Objectives of this project are to: (1) investigate the glass composition and processing conditions that yield optimum properties for iron phosphate glasses for vitrifying radioactive waste, (2) determine the atomic structure of iron phosphate glasses and the structure-property relationships, (3) determine how the physical and structural properties of iron phosphate glasses are affected by the addition of simulated high level nuclear waste components, and (4) investigate the process and products of devitrification of iron phosphate waste forms. The glass forming ability of about 125 iron phosphate melts has been investigated in different oxidizing to reducing atmospheres using various iron oxide raw materials such as Fe 2 O 3 , FeO, Fe 3 O 4 , and FeC 2 O 4 2H 2 O. The chemical durability, redox equilibria between Fe(II) and Fe(III), crystallization behavior and structural features for these glasses and their crystalline forms have been investigated using a variety of techniques including Mossbauer spectroscopy, X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), Extended x-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) analysis, differential thermal and thermogravimetric analysis (DTA/TGA), and X-ray and neutron diffraction.'

  2. Structure of cesium loaded iron phosphate glasses: An infrared and Raman spectroscopy study

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Premila, M.; Amarendra, G.; Govindan Kutty, K.V.; Sundar, C.S.; Vasudeva Rao, P.R.

    2012-01-01

    The structure of cesium loaded iron phosphate glasses (IPG) was investigated using infrared and Raman spectroscopy. The spectra of the cesium doped samples revealed a structural modification of the parent glass owing to the incorporation of cesium. The structural changes could be correlated with the variation observed in the glass transition temperature of these glasses. Increased Cs-mediated cationic cross linking appears to be the reason for the initial rise in glass transition temperature up to 21 mol% Cs 2 O in IPG; while, breakdown of the phosphate network with increasing cesium content, brings down the glass transition temperature.

  3. A new iron calcium phosphate material to improve the osteoconductive properties of a biodegradable ceramic: a study in rabbit calvaria.

    Science.gov (United States)

    Manchón, Angel; Hamdan Alkhraisat, Mohammad; Rueda-Rodriguez, Carmen; Prados-Frutos, Juan Carlos; Torres, Jesús; Lucas-Aparicio, Julia; Ewald, Andrea; Gbureck, Uwe; López-Cabarcos, Enrique

    2015-10-20

    β-tricalcium phosphate (β-TCP) is an osteoconductive and biodegradable material used in bone regeneration procedures, while iron has been suggested as a tool to improve the biological performance of calcium phosphate-based materials. However, the mechanisms of interaction between these materials and human cells are not fully understood. In order to clarify this relationship, we have studied the iron role in β-TCP ceramics. Iron-containing β-TCPs were prepared by replacing CaCO3 with C6H5FeO7 at different molar ratios. X-ray diffraction analysis indicated the occurrence of β-TCP as the sole phase in the pure β-TCP and iron-containing ceramics. The incorporation of iron ions in the β-TCP lattice decreased the specific surface area as the pore size was shifted toward meso- and/or macropores. Furthermore, the human osteoblastlike cell line MG-63 was cultured onto the ceramics to determine cell proliferation and viability, and it was observed that the iron-β-TCP ceramics have better cytocompatibility than pure β-TCP. Finally, in vivo assays were performed using rabbit calvaria as a bone model. The scaffolds were implanted for 8 and 12 weeks in the defects created in the skullcap with pure β-TCP as the control. The in vivo behavior, in terms of new bone formed, degradation, and residual graft material were investigated using sequential histological evaluations and histomorphometric analysis. The in vivo implantation of the ceramics showed enhanced bone tissue formation and scaffold degradation for iron-β-TCPs. Thus, iron appears to be a useful tool to enhance the osteoconductive properties of calcium phosphate ceramics.

  4. Dependence of the phosphate sorption capacity on the aluminium and iron in Finnish soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1963-12-01

    Full Text Available An attempt was made to study to what extent the capacity of the more or less acid soils in Finland to sorb phosphate may be explained on the basis of their content of aluminium and iron. The indicator of the phosphate sorption capacity was calculated on the basis of the Freundlich adsorption isotherm according to the procedure proposed by TERÄSVUORI (8. The material consisted of 390 samples from cultivated and virgin soils representing both topsoils and subsoils. The indicator of the phosphate sorption capacity, the coefficient k, varied in the present material from 40 to 1510. The mean values (with the confidence limits at the 95 per cent level were for the 109 samples of sand and fine sand soils 290 ± 17, for the 103 samples of loam and silt soils 201 ± 24, for the 151 clay soils 308 ± 20, and for the 27 humus soils 236 ± 41. The total linear correlation coefficients between k and the soil pH, and its contents of organic carbon or clay were low or negligible in most of the soil groups. The correlation of k with the content of aluminium extracted by Tamm’s acid ammonium oxalate was fairly close in the clay soils (r = 0.84***, lower in the sand and fine sand soils (r = 0.77***, and in the loam and silt soils, and in the humus soils it was rather poor (r = 0.65*** and 0.63*** resp.. The elimination of the effect of the ammonium oxalate soluble iron decreased the correlation in the two latter groups quite markedly (to 0.32** and 0.37 resp., while the corresponding decrease in the coefficients for the former groups was less significant (to 0.64*** and 0.75*** resp.. The elimination of the effect of the ammonium oxalate soluble aluminium, on the other hand, decreased the correlation coefficients between k and the ammonium oxalate soluble iron in the sand and fine sand soils from 0.59*** to 0.26**, in the loam and silt soils from 0.73*** to 0.54***, in the clay soils from 0.70*** to 0.51***, and in the humus soils from 0.68*** to 0.49*. The

  5. The effects of uranium on the structure of iron phosphate glasses

    International Nuclear Information System (INIS)

    Badyal, Y.; Karabulut, M.; Marasinghe, K.; Saboungi, M.L.; Haeffner, D.; Shastri, S.; Day, D.E.; Ray, C.S.

    1999-01-01

    Because of their high chemical durability and waste loading capacity, iron phosphate glasses are a natural candidate for a nuclear waste disposal medium. The authors have studied the effects of uranium on the structure of iron phosphate glasses with both neutron and high-energy x-ray diffraction. The results of neutron scattering, which is mostly sensitive to pair correlations involving light atoms, i.e., O-O, Fe-O and P-O, indicate the main structural features of the base glass are largely unaffected by the addition of UO 2 . The nearest-neighbor P-O, Fe-O and O-O peaks remain at the same position in real space and their intensities scale approximately with concentration. These findings are consistent with earlier results using Raman scattering and EXAFS on the Fe-K edge, where in both cases the spectra remain similar to the base glass. The results of high-energy x-ray scattering, which is sensitive to correlations involving the heavier atoms and thus complements the neutron measurements, are also consistent with the overall picture of uranium occupying interstitial sites in the relatively undisturbed base glass structure. Combining the neutron and x-ray data for a 10 mol% UO 2 glass suggests the intriguing possibility of a U 6+ uranyl ion configuration although further work is needed to establish the precise local structure and valence state of uranium in these glasses

  6. Synthesis and characterization of iron (II and III) phosphates by X-ray diffraction and Scanning Electron Microscopy of high vacuum

    International Nuclear Information System (INIS)

    Diaz F, J.C.; Solis M, L.; Garcia R, G.; Romero G, E.T.

    2002-01-01

    The XRD and Sem techniques for determining the mineralogical and structural composition of iron II and III phosphates have been used. The mineralogical and structural composition of the materials revealed that they are the ferrous phosphate and the ferric phosphate. The contribution of the synthesis and characterization of these phosphates is that they can be used as components in the geological barriers capable to avoiding the dispersion from the hazardous radioactive materials to the environment. (Author)

  7. Higher Fe{sup 2+}/total Fe ratio in iron doped phosphate glass melted by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Ashis K., E-mail: ashis@cgcri.res.in [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Sinha, Prasanta K. [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Das, Dipankar [UGC-DAE Consortium for Scientific Research, Kolkata 700098 (India); Guha, Chandan [Department of Chemical Engineering, Jadavpur University, Kolkata 700032 (India); Sen, Ranjan [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India)

    2015-03-15

    Highlights: • Iron doped phosphate glasses prepared using microwave heating and conventional heating under air and reducing atmosphere. • Presence of iron predominantly in the ferrous oxidation state in all the glasses. • Significant concentrations of iron in the ferrous oxidation state on both octahedral and tetrahedral sites in all the glasses. • Ratio of Fe{sup 2+} with total iron is found higher in microwave prepared glasses in comparison to conventional prepared glasses. - Abstract: Iron doped phosphate glasses containing P{sub 2}O{sub 5}–MgO–ZnO–B{sub 2}O{sub 3}–Al{sub 2}O{sub 3} were melted using conventional resistance heating and microwave heating in air and under reducing atmosphere. All the glasses were characterised by UV–Vis–NIR spectroscopy, Mössbauer spectroscopy, thermogravimetric analysis and wet colorimetry analysis. Mössbauer spectroscopy revealed presence of iron predominantly in the ferrous oxidation state on two different sites in all the glasses. The intensity of the ferrous absorption peaks in UV–Vis–NIR spectrum was found to be more in glasses prepared using microwave radiation compared to the glasses prepared in a resistance heating furnace. Thermogravimetric analysis showed increasing weight gain on heating under oxygen atmosphere for glass corroborating higher ratio of FeO/(FeO + Fe{sub 2}O{sub 3}) in glass melted by direct microwave heating. Wet chemical analysis also substantiated the finding of higher ratio Fe{sup +2}/ΣFe in microwave melted glasses. It was found that iron redox ratio was highest in the glasses prepared in a microwave furnace under reducing atmosphere.

  8. Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution

    International Nuclear Information System (INIS)

    Zhang, Chang; Li, Yongqiu; Wang, Fenghua; Yu, Zhigang; Wei, Jingjing; Yang, Zhongzhu; Ma, Chi; Li, Zihao; Xu, ZiYi; Zeng, Guangming

    2017-01-01

    Highlights: • Magnetic zirconium-iron oxide nanoparticle (MZION) was successfully synthesized. • The removal of phosphate could be effectively fulfilled using MZION. • MZION could be conveniently separated by magnet after adsorption. • The Fe/Zr molar ratios played a key role in adsorption capacity and magnetic separation. - Abstract: In this study, magnetic zirconium-iron oxide nanoparticles (MZION) of different Fe/Zr molar ratios were successfully prepared using the co-precipitation method, and their performance for phosphate removal was systematically evaluated. The as-obtained adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential analyzer, Fourier transform infrared spectroscopy (FT-IR) and Brunauer Emmett Teller (BET) specific surface area analysis. The effects of pH, ionic strength, and co-existing ions (including Cl − , SO 4 2− , NO 3 − and HCO 3 − ) were measured to evaluate the adsorption performance in batch experiments. The results showed that decreasing the Fe/Zr molar ratios increased the specific surface area that was propitious to adsorption process, but the adsorption capacity enhanced with the decrease of Fe/Zr molar ratios. Phosphate adsorption on MZION could be well described by the Freundlich equilibrium model and pseudo-second-order kinetics. The adsorption of phosphate was highly pH dependent and decreased with increasing pH from 1.5 to 10.0. The adsorption was slightly affected by ionic strength. With the exception of HCO 3 − , co-existing anions showed minimum or no effect on their adsorption performance. After adsorption, phosphate on these MZION could be easily desorbed by 0.1 M NaOH solution. The phosphate adsorption mechanism of MZION followed the inner-sphere complexing mechanism, and the surface −OH groups played a significant role in the phosphate adsorption. Additionally, the main advantages of MZION consisted in its

  9. Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chang, E-mail: zhangchang@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li, Yongqiu [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Wang, Fenghua, E-mail: 952157786@qq.com [Institute of Physical Education, Xinjiang Normal University, Urumqi 830054 (China); Yu, Zhigang; Wei, Jingjing; Yang, Zhongzhu; Ma, Chi; Li, Zihao; Xu, ZiYi; Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2017-02-28

    Highlights: • Magnetic zirconium-iron oxide nanoparticle (MZION) was successfully synthesized. • The removal of phosphate could be effectively fulfilled using MZION. • MZION could be conveniently separated by magnet after adsorption. • The Fe/Zr molar ratios played a key role in adsorption capacity and magnetic separation. - Abstract: In this study, magnetic zirconium-iron oxide nanoparticles (MZION) of different Fe/Zr molar ratios were successfully prepared using the co-precipitation method, and their performance for phosphate removal was systematically evaluated. The as-obtained adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential analyzer, Fourier transform infrared spectroscopy (FT-IR) and Brunauer Emmett Teller (BET) specific surface area analysis. The effects of pH, ionic strength, and co-existing ions (including Cl{sup −}, SO{sub 4}{sup 2−}, NO{sub 3}{sup −} and HCO{sub 3}{sup −}) were measured to evaluate the adsorption performance in batch experiments. The results showed that decreasing the Fe/Zr molar ratios increased the specific surface area that was propitious to adsorption process, but the adsorption capacity enhanced with the decrease of Fe/Zr molar ratios. Phosphate adsorption on MZION could be well described by the Freundlich equilibrium model and pseudo-second-order kinetics. The adsorption of phosphate was highly pH dependent and decreased with increasing pH from 1.5 to 10.0. The adsorption was slightly affected by ionic strength. With the exception of HCO{sub 3}{sup −}, co-existing anions showed minimum or no effect on their adsorption performance. After adsorption, phosphate on these MZION could be easily desorbed by 0.1 M NaOH solution. The phosphate adsorption mechanism of MZION followed the inner-sphere complexing mechanism, and the surface −OH groups played a significant role in the phosphate adsorption. Additionally, the main

  10. Iron Phosphate Glass for Vitrifying Hanford AZ102 LAW in Joule Heated and Cold Crucible Induction Melters - 12240

    Energy Technology Data Exchange (ETDEWEB)

    Day, Delbert E.; Brow, Richard K.; Ray, Chandra S.; Reis, Signo T. [Missouri University of Science and Technology, 1870 Miner Circle, Rolla, MO 65409 (United States); Kim, Cheol-Woon [MO-SCI Corporation, 4040 HyPoint North, Rolla, MO 65401 (United States); Vienna, John D.; Sevigny, Gary [Pacific North West National Laboratory, Battelle Blvd., Richland, WA 99352 (United States); Peeler, David; Johnson, Fabienne C.; Hansen, Eric K. [Savannah River National Laboratory, Savannah River Site, 999-W, Aiken, SC 29803 (United States); Soelberg, Nick [Idaho National Laboratory, 2525 Fremont Avenue, Idaho Falls, ID 83415 (United States); Pegg, Ian L.; Gan, Hao [Catholic University of America, 620 Michigan Avenue, N.E., Washington, DC 20064 (United States)

    2012-07-01

    An iron phosphate composition for vitrifying a high sulfate (∼17 wt%) and high alkali (∼80 wt%) Hanford low activity waste (LAW), known as AZ-102 LAW, has been developed for processing in a Joule Heated Melter (JHM) or a Cold Crucible Induction Melter (CCIM). This composition produced a glass waste form, designated as MS26AZ102F-2, with a waste loading of 26 wt% of the AZ-102 which corresponded to a total alkali and sulfate (represented as SO{sub 3}) content of 21 and 4.4 wt%, respectively. A slurry (7 M Na{sup +}) of MS26AZ102F-2 simulant was melted continuously at temperatures between 1030 and 1090 deg. C for 10 days in a small JHM at PNNL and for 70 hours in a CCIM at INL. The as-cast glasses produced in both melters and in trial laboratory experiments along with their canister centerline cooled (CCC) counterparts met the requirements for the Product Consistency Test (PCT) and the Vapor Hydration Test (VHT) responses in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract. These glass waste forms retained up to 77 % of the SO{sub 3} (3.3 wt%), 100% of the Cesium, and 33 to 44% of the rhenium (used as a surrogate for Tc) all of which either exceeded or were comparable to the retention limit for these species in borosilicate glass nuclear waste form. Analyses of commercial K-3 refractory lining and the Inconel 693 metal electrodes used in JHM indicated only minimum corrosion of these components by the iron phosphate glass. This is the first time that an iron phosphate composition was melted continuously in a slurry fed JHM and in the US, thereby, demonstrating that iron phosphate glasses can be used as alternative hosts for vitrifying nuclear waste. The following conclusions are drawn from the results of the present work. (1) An iron phosphate composition, designated as MS26AZ102F-2, containing 26 wt% of the simulated high sulfate (17 wt%), high alkali (80 wt%) Hanford AZ-102 LAW meets all the criteria for processing in a JHM and CCIM. This

  11. Iron phosphate nanoparticles for food fortification: Biological effects in rats and human cell lines.

    Science.gov (United States)

    von Moos, Lea M; Schneider, Mirjam; Hilty, Florentine M; Hilbe, Monika; Arnold, Myrtha; Ziegler, Nathalie; Mato, Diogo Sales; Winkler, Hans; Tarik, Mohamed; Ludwig, Christian; Naegeli, Hanspeter; Langhans, Wolfgang; Zimmermann, Michael B; Sturla, Shana J; Trantakis, Ioannis A

    2017-05-01

    Nanotechnology offers new opportunities for providing health benefits in foods. Food fortification with iron phosphate nanoparticles (FePO 4 NPs) is a promising new approach to reducing iron deficiency because FePO 4 NPs combine high bioavailability with superior sensory performance in difficult to fortify foods. However, their safety remains largely untested. We fed rats for 90 days diets containing FePO 4 NPs at doses at which iron sulfate (FeSO 4 ), a commonly used food fortificant, has been shown to induce adverse effects. Feeding did not result in signs of toxicity, including oxidative stress, organ damage, excess iron accumulation in organs or histological changes. These safety data were corroborated by evidence that NPs were taken up by human gastrointestinal cell lines without reducing cell viability or inducing oxidative stress. Our findings suggest FePO 4 NPs appear to be as safe for ingestion as FeSO 4 .

  12. Thermoanalytical investigation of nanocrystalline iron (II) phosphate obtained by spontaneous precipitation from aqueous solutions

    International Nuclear Information System (INIS)

    Scaccia, Silvera; Carewska, Maria; Di Bartolomeo, Angelo; Prosini, Pier Paolo

    2003-01-01

    Fe 3 (PO 4 ) 2 ·8H 2 O has been precipitated under supersaturation conditions from deaerated Fe(NH 4 ) 2 (SO 4 ) 2 ·6H 2 O and K 2 HPO 4 aqueous, ethanol-water and iso-propanol-water solutions at pH=6.5 and ambient temperature. The precipitates have been characterised by TG/DTG/DTA and DSC techniques, chemical analysis, BET, and X-ray powder diffraction. The presence of ethanol and iso-propanol in the spontaneous precipitation process of ferrous phosphate leads to highly crystalline powder. Thermal treatment at 500 deg. C yields a poorly crystalline dehydrated iron phosphate

  13. Iron and Immunity

    NARCIS (Netherlands)

    Verbon, E.H.|info:eu-repo/dai/nl/413534049; Trapet, P.L.; Stringlis, I.|info:eu-repo/dai/nl/41185206X; Kruijs, Sophie; Bakker, P.A.H.M.|info:eu-repo/dai/nl/074744623; Pieterse, C.M.J.|info:eu-repo/dai/nl/113115113

    2017-01-01

    Iron is an essential nutrient for most life on Earth because it functions as a crucial redox catalyst in many cellular processes. However, when present in excess iron can lead to the formation of harmful hydroxyl radicals. Hence, the cellular iron balance must be tightly controlled. Perturbation of

  14. Electrical properties of phosphate glasses

    International Nuclear Information System (INIS)

    Mogus-Milankovic, A; Santic, A; Reis, S T; Day, D E

    2009-01-01

    Investigation of the electrical properties of phosphate glasses where transition metal oxide such as iron oxide is the network former and network modifier is presented. Phosphate glasses containing iron are electronically conducting glasses where the polaronic conduction is due to the electron hopping from low to high iron valence state. The identification of structural defects caused by ion/polaron migration, the analysis of dipolar states and electrical conductivity in iron phosphate glasses containing various alkali and mixed alkali ions was performed on the basis of the impedance spectroscopy (IS). The changes in electrical conductivity from as-quenched phosphate glass to fully crystallized glass (glass-ceramics) by IS are analyzed. A change in the characteristic features of IS follows the changes in glass and crystallized glass network. Using IS, the contribution of glass matrix, crystallized grains and grain boundary to the total electrical conductivity for iron phosphate glasses was analyzed. It was shown that decrease in conductivity is caused by discontinuities in the conduction pathways as a result of the disruption of crystalline network where two or more crystalline phases are formed. Also, phosphate-based glasses offer a unique range of biomaterials, as they form direct chemical bonding with hard/soft tissue. The surface charges of bioactive glasses are recognized to be the most important factors in determining biological responses. The improved bioactivity of the bioactive glasses as a result of the effects of the surface charges generated by electrical polarization is discussed.

  15. Lead-iron phosophate glass

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1988-01-01

    The lead-iron phosphate nuclear waste glasses (LIPNWG) are the subject of the present chapter. They were discovered in 1984 while the authors were attempting to find a sintering aid for certain types of crystalline monazite ceramic high-level nuclear waste forms. In the present chapter, the term waste glass is synonymous with nuclear waste glass (NWG), and the acronym LIP is often used for lead-iron phosphate. Lead-iron phosphate glasses, like many of the previously studied phosphate glasses, are corrosion resistant in aqueous solutions at temperatures below 100 degrees C, and they can be melted and poured at temperatures that are relatively low in comparison with the processing temperatures required for current silicate glass compositions. Unlike the phosphate glasses investigated previously, however, LIPNWGs do not suffer from alteration due to devitrification during realistic and readily, achievable cooling periods. Additionally, lead-iron phosphate glass melts are not nearly as corrosive as the sodium phosphate melts investigated during the 1960s; and, therefore, they can be melted and processed using crucibles made from a variety of materials

  16. Structural and electrical properties of iron molybdenum phosphate glasses

    International Nuclear Information System (INIS)

    De Oliveira, R.S.; Quixada-Ceara, Univ. Estadual do Ceara; De Paiva, J.A.C.; De Araujo, M.A.B.; Sombra, A. S.B.

    1998-01-01

    iron molybdenum phosphate glasses (xMoO 3 ·(0.6 - x)P 2 O 5 ·0.4Li 2 O) : yFe 2 O 2 with 0≤x≤ 0.6 and y = 0.03 (mol%) prepared in ambient atmosphere using the melt quenching technique were studied by using DC electrical conductivity, 57 Fe Moessbauer and infrared spectroscopies. The Dc conductivity depends on the MoO 3 concentration x. It was observed that, with increasing x, the ratio Fe 2+ /(Fe 3+ + Fe 2+ ) and the Dc conductivity increase. Infrared spectroscopy and X-ray powder diffraction indicate that a Li 2 MoO 4 crystalline phase is present for high MoO 3 content samples (x = 0.5, 0.6)

  17. The EIS investigation of powder polyester coatings on phosphated low carbon steel: The effect of NaNO2 in the phosphating bath

    International Nuclear Information System (INIS)

    Jegdic, B.V.; Bajat, J.B.; Popic, J.P.; Stevanovic, S.I.; Miskovic-Stankovic, V.B.

    2011-01-01

    Highlights: → The effect of NaNO 2 on surface morphology of iron-phosphate coatings were determined. → Better corrosion stability of polyester coating on phosphated steel without NaNO 2 . → EIS results and microscopic examinations correlate well with adhesion measurements. - Abstract: The effect of different type of iron-phosphate coatings on corrosion stability and adhesion characteristic of top powder polyester coating on steel was investigated. Iron-phosphate coatings were deposited on steel in the novel phosphating bath with or without NaNO 2 as an accelerator. The corrosion stability of the powder polyester coating was evaluated by electrochemical impedance spectroscopy (EIS), adhesion by pull-off and NMP test, while surface morphology of phosphate coatings were investigated by atomic force microscopy (AFM). The adhesion and corrosion stability of powder polyester coatings were improved with pretreatment based on iron-phosphate coating deposited from NaNO 2 -free bath.

  18. Reactive oxygen species and associated reactivity of peroxymonosulfate activated by soluble iron species

    Science.gov (United States)

    Watts, Richard J.; Yu, Miao; Teel, Amy L.

    2017-10-01

    The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical + sulfate radical probe, and hexachloroethane as a reductant + nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole > > TCE > PCE > > nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion.

  19. Reactive oxygen species and associated reactivity of peroxymonosulfate activated by soluble iron species.

    Science.gov (United States)

    Watts, Richard J; Yu, Miao; Teel, Amy L

    2017-10-01

    The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical+sulfate radical probe, and hexachloroethane as a reductant+nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole>TCE>PCE >nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion. Published by Elsevier B.V.

  20. Arsenic removal with iron(II) and iron(III) in waters with high silicate and phosphate concentrations.

    Science.gov (United States)

    Roberts, Linda C; Hug, Stephan J; Ruettimann, Thomas; Billah, Morsaline; Khan, Abdul Wahab; Rahman, Mohammad Tariqur

    2004-01-01

    Arsenic removal by passive treatment, in which naturally present Fe(II) is oxidized by aeration and the forming iron(III) (hydr)oxides precipitate with adsorbed arsenic, is the simplest conceivable water treatment option. However, competing anions and low iron concentrations often require additional iron. Application of Fe(II) instead of the usually applied Fe(III) is shown to be advantageous, as oxidation of Fe(II) by dissolved oxygen causes partial oxidation of As(III) and iron(III) (hydr)oxides formed from Fe(II) have higher sorption capacities. In simulated groundwater (8.2 mM HCO3(-), 2.5 mM Ca2+, 1.6 mM Mg2+, 30 mg/L Si, 3 mg/L P, 500 ppb As(III), or As(V), pH 7.0 +/- 0.1), addition of Fe(II) clearly leads to better As removal than Fe(III). Multiple additions of Fe(II) further improved the removal of As(II). A competitive coprecipitation model that considers As(III) oxidation explains the observed results and allows the estimation of arsenic removal under different conditions. Lowering 500 microg/L As(III) to below 50 microg/L As(tot) in filtered water required > 80 mg/L Fe(III), 50-55 mg/L Fe(II) in one single addition, and 20-25 mg/L in multiple additions. With As(V), 10-12 mg/L Fe(II) and 15-18 mg/L Fe(III) was required. In the absence of Si and P, removal efficiencies for Fe(II) and Fe(III) were similar: 30-40 mg/L was required for As(II), and 2.0-2.5 mg/L was required for As(V). In a field study with 22 tubewells in Bangladesh, passive treatment efficiently removed phosphate, but iron contents were generally too low for efficient arsenic removal.

  1. Iron-functionalized Al-SBA-15 for benzene hydroxylation

    NARCIS (Netherlands)

    Li, Y.; Xia, H.; Fan, F.; Feng, Z.; Santen, van R.A.; Hensen, E.J.M.; Li, Can

    2008-01-01

    For the first time an ordered mesoporous silica (Fe–Al-SBA-15) with catalytically active isolated Fe surface species for the hydroxylation of benzene with nitrous oxide is prepared by introduction of Fe3+ in the synthesis gel of Al-SBA-15. Graphical abstract image for this article (ID: b717079c)

  2. A first report of hydroxylated apatite as structural biomineral in Loasaceae - plants’ teeth against herbivores

    Science.gov (United States)

    Ensikat, Hans-Jürgen; Geisler, Thorsten; Weigend, Maximilian

    2016-05-01

    Biomineralization provides living organisms with various materials for the formation of resilient structures. Calcium phosphate is the main component of teeth and bones in vertebrates, whereas especially silica serves for the protection against herbivores on many plant surfaces. Functional calcium phosphate structures are well-known from the animal kingdom, but had not so far been reported from higher plants. Here, we document the occurrence of calcium phosphate biomineralization in the South-American plant group Loasaceae (rock nettle family), which have stinging trichomes similar to those of the well-known stinging nettles (Urtica). Stinging hairs and the smaller, glochidiate trichomes contained nanocrystalline hydroxylated apatite, especially in their distal portions, replacing the silica found in analogous structures of other flowering plants. This could be demonstrated by chemical, spectroscopic, and diffraction analyses. Some species of Loasaceae contained both calcium phosphate and silica in addition to calcium carbonate. The intriguing discovery of structural hydroxylated apatite in plants invites further studies, e.g., on its systematic distribution across the family, the genetic and cellular control of plant biomineralization, the properties and ultrastructure of calcium phosphate. It may prove the starting point for the development of biomimetic calcium phosphate composites based on a cellulose matrix.

  3. Sorption of samarium in iron (II) and (III) phosphates in aqueous systems

    International Nuclear Information System (INIS)

    Diaz F, J.C.

    2006-01-01

    The radioactive residues that are stored in the radioactive confinements its need to stay isolated of the environment while the radioactivity levels be noxious. An important mechanism by which the radioactive residues can to reach the environment, it is the migration of these through the underground water. That it makes necessary the investigation of reactive materials that interacting with those radionuclides and that its are able to remove them from the watery resources. The synthesis and characterization of materials that can be useful in Environmental Chemistry are very important because its characteristics are exposed and its behavior in chemical phenomena as the sorption watery medium is necessary to use it in the environmental protection. In this work it was carried out the sorption study of the samarium III ion in the iron (II) and (III) phosphate; obtaining the sorption isotherms in function of pH, of the phosphate mass and of the concentration of the samarium ion using UV-visible spectroscopy to determine the removal percentage. The developed experiments show that as much the ferrous phosphate as the ferric phosphate present a great affinity by the samarium III, for what it use like reactive material in contention walls can be very viable because it sorption capacity has overcome 90% to pH values similar to those of the underground and also mentioning that the form to obtain these materials is very economic and simple. (Author)

  4. CATALYTIC PERFORMANCES OF Fe2O3/TS-1 CATALYST IN PHENOL HYDROXYLATION REACTION

    Directory of Open Access Journals (Sweden)

    Didik Prasetyoko

    2010-07-01

    Full Text Available Hydroxylation reaction of phenol into diphenol, such as hydroquinone and catechol, has a great role in many industrial applications. Phenol hydroxylation reaction can be carried out using Titanium Silicalite-1 (TS-1 as catalyst and H2O2 as an oxidant. TS-1 catalyst shows high activity and selectivity for phenol hydroxylation reaction. However, its hydrophobic sites lead to slow H2O2 adsorption toward the active site of TS-1. Consequently, the reaction rate of phenol hydroxylation reaction is tends to be low. Addition of metal oxide Fe2O3 enhanced hydrophilicity of TS-1 catalyst. Liquid phase catalytic phenol hydroxylation using hydrogen peroxide as oxidant was carried out over iron (III oxide-modified TS-1 catalyst (Fe2O3/TS-1, that were prepared by impregnation method using iron (III nitrate as precursor and characterized by X-ray diffraction, infrared spectroscopy, nitrogen adsorption, pyridine adsorption, and hydrophilicity techniques. Catalysts 1Fe2O3/TS-1 showed maximum catalytic activity of hydroquinone product. In this research, the increase of hydroquinone formation rate is due to the higher hydrophilicity of Fe2O3/TS-1 catalysts compare to the parent catalyst, TS-1.   Keywords: Fe2O3/TS-1, hydrophilic site, phenol hydroxylation

  5. Phosphate recycling in the phosphorus industry

    NARCIS (Netherlands)

    Schipper, W.J.; Klapwijk, A.; Potjer, A.; Rulkens, W.H.; Temmink, B.G.; Kiestra, F.D.G.; Lijmbach, A.C.M.

    2001-01-01

    The feasibility of phosphate recycling in the white phosphorus production process is discussed. Several types of materials may be recycled, provided they are dry inorganic materials, low in iron, copper and zinc. Sewage sludge ash may be used if no iron is used for phosphate precipitation in the

  6. Secreted glyceraldehye-3-phosphate dehydrogenase is a multifunctional autocrine transferrin receptor for cellular iron acquisition.

    Science.gov (United States)

    Sheokand, Navdeep; Kumar, Santosh; Malhotra, Himanshu; Tillu, Vikas; Raje, Chaaya Iyengar; Raje, Manoj

    2013-06-01

    The long held view is that mammalian cells obtain transferrin (Tf) bound iron utilizing specialized membrane anchored receptors. Here we report that, during increased iron demand, cells secrete the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which enhances cellular uptake of Tf and iron. These observations could be mimicked by utilizing purified GAPDH injected into mice as well as when supplemented in culture medium of model cell lines and primary cell types that play a key role in iron metabolism. Transferrin and iron delivery was evaluated by biochemical, biophysical and imaging based assays. This mode of iron uptake is a saturable, energy dependent pathway, utilizing raft as well as non-raft domains of the cell membrane and also involves the membrane protein CD87 (uPAR). Tf internalized by this mode is also catabolized. Our research demonstrates that, even in cell types that express the known surface receptor based mechanism for transferrin uptake, more transferrin is delivered by this route which represents a hidden dimension of iron homeostasis. Iron is an essential trace metal for practically all living organisms however its acquisition presents major challenges. The current paradigm is that living organisms have developed well orchestrated and evolved mechanisms involving iron carrier molecules and their specific receptors to regulate its absorption, transport, storage and mobilization. Our research uncovers a hidden and primitive pathway of bulk iron trafficking involving a secreted receptor that is a multifunctional glycolytic enzyme that has implications in pathological conditions such as infectious diseases and cancer. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Active sites in Fe/ZSM-5 for nitrous oxide decomposition and benzene hydroxylation with nitrous oxide

    NARCIS (Netherlands)

    Sun, K.; Xia, H.; Feng, Z.; Santen, van R.A.; Hensen, E.J.M.; Li, Can

    2008-01-01

    The effect of the iron content and the pretreatment conditions of Fe/ZSM-5 catalysts on the Fe speciation and the catalytic activities in nitrous oxide decomposition and benzene hydroxylation with nitrous oxide has been investigated. Iron-containing ZSM-5 zeolites with varying iron content (Fe/Al =

  8. Water clustering on nanostructured iron oxide films

    DEFF Research Database (Denmark)

    Merte, Lindsay Richard; Bechstein, Ralf; Peng, G.

    2014-01-01

    , but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer...... islands form on the bare film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous...

  9. Effect of iron II on hydroxyapatite dissolution and precipitation in vitro.

    Science.gov (United States)

    Delbem, A C B; Alves, K M R P; Sassaki, K T; Moraes, J C S

    2012-01-01

    The aim of this study was to evaluate the effect of iron II on the dissolution and precipitation of synthetic hydroxyapatite (HA). HA powder was suspended in solutions of iron (0.84 µg/ml, Fe0.84; 18.0 µg/ml, Fe18; 70.0 µg/ml, Fe70), fluoride (1,100 µg/ml, F1,100), and deionized water and submitted to pH cycling. After pH cycling, the samples were analyzed by infrared spectroscopy and X-ray diffraction. The concentrations of fluoride, calcium, phosphorus, and iron were also analyzed. The data were submitted to ANOVA, and analyzed by Tukey's test (p iron. The intensity of the phosphate bands increased and that of the hydroxyl bands decreased in the group F1,100. It was observed that there was a higher concentration of Ca in the group F1,100, with no significant difference between the groups Fe18 and Fe70 (p > 0.05). There was an increase in Fe concentration in the HA directly related to the Fe concentration of the treatment solutions. Results show that the presence of Fe causes the precipitation of apatite with high solubility. Copyright © 2012 S. Karger AG, Basel.

  10. Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron.

    Science.gov (United States)

    Xenidis, Anthimos; Stouraiti, Christina; Papassiopi, Nymphodora

    2010-05-15

    The chemical immobilization of Pb and As in contaminated soil from Lavrion, Greece, using monocalcium phosphate and ferrous sulfate as stabilizing agents was investigated. Monocalcium phosphate was added to contaminated soil at PO(4) to Pb molar ratios equal to 0, 0.5, 1, 1.5 and 2.5, whereas ferrous sulfate was added at Fe to As molar ratios equal to 0, 2.5, 5, 10 and 20. Phosphates addition to contaminated soil decreased Pb leachability, but resulted in significant mobilization of As. Simultaneous immobilization of Pb and As was obtained only when soil was treated with mixtures of phosphates and ferrous sulfate. Arsenic uptake by plants was also seen to increase when soil was treated only with phosphates, but co-addition of ferrous sulfate was efficient in maintaining As phytoaccumulation at low levels. The addition of at least 1.5M/M phosphates and 10M/M iron sulfate to soil reduced the dissolved levels of Pb and As in the water extracts to values in compliance with the EU drinking water standards. However, both additives contributed in the acidification of soil, decreasing pH from 7.8 to values as low as 5.6 and induced the mobilization of pH sensitive elements, such as Zn and Cd. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  11. Comparison of fluorescence-based techniques for the quantification of particle-induced hydroxyl radicals

    Directory of Open Access Journals (Sweden)

    Cohn Corey A

    2008-02-01

    Full Text Available Abstract Background Reactive oxygen species including hydroxyl radicals can cause oxidative stress and mutations. Inhaled particulate matter can trigger formation of hydroxyl radicals, which have been implicated as one of the causes of particulate-induced lung disease. The extreme reactivity of hydroxyl radicals presents challenges to their detection and quantification. Here, three fluorescein derivatives [aminophenyl fluorescamine (APF, amplex ultrared, and dichlorofluorescein (DCFH] and two radical species, proxyl fluorescamine and tempo-9-ac have been compared for their usefulness to measure hydroxyl radicals generated in two different systems: a solution containing ferrous iron and a suspension of pyrite particles. Results APF, amplex ultrared, and DCFH react similarly to the presence of hydroxyl radicals. Proxyl fluorescamine and tempo-9-ac do not react with hydroxyl radicals directly, which reduces their sensitivity. Since both DCFH and amplex ultrared will react with reactive oxygen species other than hydroxyl radicals and another highly reactive species, peroxynitite, they lack specificity. Conclusion The most useful probe evaluated here for hydroxyl radicals formed from cell-free particle suspensions is APF due to its sensitivity and selectivity.

  12. Interactions of benzoic acid and phosphates with iron oxide colloids using chemical force titration.

    Science.gov (United States)

    Liang, Jana; Horton, J Hugh

    2005-11-08

    Colloidal iron oxides are an important component in soil systems and in water treatment processes. Humic-based organic compounds, containing both phenol and benzoate functional groups, are often present in these systems and compete strongly with phosphate species for binding sites on the iron oxide surfaces. Here, we examine the interaction of benzoate and phenolic groups with various iron oxide colloids using atomic force microscopy (AFM) chemical force titration measurements. Self-assembled monolayers (SAMs) of 4-(12-mercaptododecyloxy)benzoic acid and 4-(12-mercaptododecyloxy)phenol were used to prepare chemically modified Au-coated AFM tips, and these were used to probe the surface chemistry of a series of iron oxide colloids. The SAMs formed were also characterized using scanning tunneling microscopy, reflection-absorption infrared spectroscopy, and X-ray photoelectron spectroscopy. The surface pK(a) of 4-(12- mercaptododecyloxy)benzoic acid has been determined to be 4.0 +/- 0.5, and the interaction between the tip and the sample coated with a SAM of this species is dominated by hydrogen bonding. The chemical force titraton profile for an AFM probe coated with 4-(12- mercaptododecyloxy)benzoic acid and a bare iron oxide colloid demonstrates that the benzoic acid function group interacts with all three types of iron oxide sites present on the colloid surface over a wide pH range. Similar experiments were carried out on colloids precipitated in the presence of phosphoric, gallic, and tannic acids. The results are discussed in the context of the competitive binding interactions of solution species present in soils or in water treatment processes.

  13. Chemically durable iron phosphate glasses for vitrifying sodium bearing waste (SBW) using conventional and cold crucible induction melting (CCIM) techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.W. E-mail: cheol@umr.edu; Ray, C.S.; Zhu, D.; Day, D.E.; Gombert, D.; Aloy, A.; Mogus-Milankovic, A.; Karabulut, M

    2003-11-01

    A simulated sodium bearing waste (SBW) was successfully vitrified in iron phosphate glasses (IPG) at a maximum waste loading of 40 wt% using conventional and cold crucible induction melting (CCIM) techniques. No sulfate segregation or crystalline phases were detectable in the IPG when examined by SEM and XRD. The IPG wasteforms containing 40 wt% SBW satisfy current DOE requirements for aqueous chemical durability as evaluated from their bulk dissolution rate (D{sub R}), product consistency test, and vapor hydration test. The fluid IPG wasteforms can be melted at a relatively low temperature (1000 deg. C) and for short times (<6 h). These properties combined with a significantly higher waste loading, and the feasibility of CCIM melting offer considerable savings in time, energy, and cost for vitrifying the SBW stored at the Idaho National Engineering and Environmental Laboratory in iron phosphate glasses.

  14. Insights Into the Biogeochemical Cycling of Iron, Nitrate, and Phosphate Across a 5,300 km South Pacific Zonal Section (153°E-150°W)

    Science.gov (United States)

    Ellwood, Michael J.; Bowie, Andrew R.; Baker, Alex; Gault-Ringold, Melanie; Hassler, Christel; Law, Cliff S.; Maher, William A.; Marriner, Andrew; Nodder, Scott; Sander, Sylvia; Stevens, Craig; Townsend, Ashley; van der Merwe, Pier; Woodward, E. Malcolm S.; Wuttig, Kathrin; Boyd, Philip W.

    2018-02-01

    Iron, phosphate, and nitrate are essential nutrients for phytoplankton growth, and hence, their supply into the surface ocean controls oceanic primary production. Here we present a GEOTRACES zonal section (GP13; 30-33°S, 153°E-150°W) extending eastward from Australia to the oligotrophic South Pacific Ocean gyre outlining the concentrations of these key nutrients. Surface dissolved iron concentrations are elevated at >0.4 nmol L-1 near continental Australia (west of 165°E) and decreased eastward to ≤0.2 nmol L-1 (170°W-150°W). The supply of dissolved iron into the upper ocean (nitrate concentrations averaged 5 ± 4 nmol L-1 between 170°W and 150°W, while surface water phosphate concentrations averaged 58 ± 30 nmol L-1. The supply of nitrogen into the upper ocean is primarily from deeper waters (24-1647 μmol m-2 d-1) with atmospheric deposition and nitrogen fixation contributing leading to almost quantitative removal of nitrate. The supply stoichiometry for iron and nitrogen relative to phosphate at and above the DCM declines eastward leading to two biogeographical provinces: one with diazotroph production and the other without diazotroph production.

  15. Copper-substituted, lithium rich iron phosphate as cathode material for lithium secondary batteries

    International Nuclear Information System (INIS)

    Lee, S.B.; Cho, S.H.; Heo, J.B.; Aravindan, V.; Kim, H.S.; Lee, Y.S.

    2009-01-01

    Carbon-free, copper-doped, lithium rich iron phosphates, Li 1+x Fe 1-y Cu y PO 4 (0 ≤ x ≤ 0.15, 0 ≤ y ≤ 0.005), have been synthesized by a solid-state reaction method. From the optimization, the Li 1.05 Fe 0.997 Cu 0.003 PO 4 phase showed superior performances in terms of phase purity and high discharge capacity. The structural, morphological, and electrochemical properties were studied and compared to LiFePO 4 , Li 1.05 FePO 4 , LiFe 0.997 Cu 0.003 PO 4 , and materials. X-ray photoelectron spectroscopy (XPS) was conducted to ensure copper doping. Only smooth surface morphologies were observed for lithium rich iron phosphates, namely Li 1.05 FePO 4 and Li 1.05 Fe 0.997 Cu 0.003 PO 4 . The Li/Li 1.05 Fe 0.997 Cu 0.003 PO 4 cell delivered an initial discharge capacity of 145 mAh/g and was 18 mAh/g higher than the Li/LiFePO 4 cell without any carbon coating effect. Cyclic voltammetry revealed excellent reversibility of the Li 1.05 Fe 0.997 Cu 0.003 PO 4 material. High rate capability studies were also performed and showed a capacity retention over 95% during the cycling. We concluded that substituted Li and Cu ions play an important role in enhancing battery performance of the LiFePO 4 material through improving the kinetics of the lithium insertion/extraction reaction on the electrode.

  16. The effects of uranium oxide high-level waste on the structure of iron phosphate glasses

    International Nuclear Information System (INIS)

    Badyal, Y.

    1998-01-01

    Because of their unusually good chemical durability, iron phosphate glasses are a natural candidate for a nuclear waste disposal glass. We have studied the effects of UO 2 high-level waste on the structure of iron phosphate glasses with both neutron and high-energy x-ray diffraction using the GLAD instrument of the Intense Pulsed Neutron Source and the 1-BM bending magnet beamline of the Advanced Photon Source, respectively. The results of neutron scattering, which is mostly sensitive to correlations involving light atoms i.e. O-O, Fe-O and P-O, suggest the main structural features of the base glass are largely unaffected by the addition of UO 2 . The nearest-neighbor P-O, Fe-O and O-O peaks remain at the same position in real space and their intensities scale approximately with concentration. These findings are consistent with the earlier results of Raman scattering and EXAFS on the Fe-K edge wherein both cases the spectra remain similar to the base glass. High-energy x-ray scattering which is sensitive to correlations involving the heavier atoms and thus complements the neutron measurements, is also consistent with uranium occupying interstitial sites in the relatively undisturbed base glass structure. However, important questions remain as to the precise local structure and oxidation state of uranium in these glasses

  17. Zinc phosphate conversion coatings

    Science.gov (United States)

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  18. Strength and fracture mechanism of iron reinforced tricalcium phosphate cermet fabricated by spark plasma sintering.

    Science.gov (United States)

    Tkachenko, Serhii; Horynová, Miroslava; Casas-Luna, Mariano; Diaz-de-la-Torre, Sebastian; Dvořák, Karel; Celko, Ladislav; Kaiser, Jozef; Montufar, Edgar B

    2018-05-01

    The present work studies the microstructure and mechanical performance of tricalcium phosphate (TCP) based cermet toughened by iron particles. A novelty arises by the employment of spark plasma sintering for fabrication of the cermet. Results showed partial transformation of initial alpha TCP matrix to beta phase and the absence of oxidation of iron particles, as well as a lack of chemical reaction between TCP and iron components during sintering. The values of compressive and tensile strength of TCP/Fe cermet were 3.2 and 2.5 times, respectively, greater than those of monolithic TCP. Fracture analysis revealed the simultaneous action of crack-bridging and crack-deflection microstructural toughening mechanisms under compression. In contrast, under tension the reinforcing mechanism was only crack-bridging, being the reason for smaller increment of strength. Elastic properties of the cermet better matched values reported for human cortical bone. Thereby the new TCP/Fe cermet has potential for eventual use as a material for bone fractures fixation under load-bearing conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Atomic force microscopic comparison of remineralization with casein-phosphopeptide amorphous calcium phosphate paste, acidulated phosphate fluoride gel and iron supplement in primary and permanent teeth: An in-vitro study

    Directory of Open Access Journals (Sweden)

    Nikita Agrawal

    2014-01-01

    Full Text Available Context: Demineralization of tooth by erosion is caused by frequent contact between the tooth surface and acids present in soft drinks. Aim: The present study objective was to evaluate the remineralization potential of casein-phosphopeptide-amorphous calcium phosphate (CPP-ACP paste, 1.23% acidulated phosphate fluoride (APF gel and iron supplement on dental erosion by soft drinks in human primary and permanent enamel using atomic force microscopy (AFM. Materials and Methods: Specimens were made from extracted 15 primary and 15 permanent teeth which were randomly divided into three treatment groups: CPP-ACP paste, APF gel and iron supplement. AFM was used for baseline readings followed by demineralization and remineralization cycle. Results and Statistics: Almost all group of samples showed remineralization that is a reduction in surface roughness which was higher with CPP-ACP paste. Statistical analysis was performed using by one-way ANOVA and Mann-Whitney U-test with P < 0.05. Conclusions: It can be concluded that the application of CPP-ACP paste is effective on preventing dental erosion from soft drinks.

  20. Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling.

    Science.gov (United States)

    Perea-García, Ana; Garcia-Molina, Antoni; Andrés-Colás, Nuria; Vera-Sirera, Francisco; Pérez-Amador, Miguel A; Puig, Sergi; Peñarrubia, Lola

    2013-05-01

    Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We characterized a knockout of COPT2, copt2-1, that leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 could play a dual role under iron deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation, possibly to minimize further iron consumption. Second, global expression analyses of copt2-1 versus wild-type Arabidopsis plants indicate that low-phosphate responses increase in the mutant. These results open up new biotechnological approaches to fight iron deficiency in crops.

  1. Immobilization of transition metal ions on zirconium phosphate monolayers

    International Nuclear Information System (INIS)

    Melezhik, A.V.; Brej, V.V.

    1998-01-01

    It is shown that ions of transition metals (copper, iron, vanadyl, titanium) are adsorbed on zirconium phosphate monolayers. The zirconium phosphate threshold capacity corresponds to substitution of all protons of hydroxyphosphate groups by equivalent amounts of copper, iron or vanadyl. Adsorption of polynuclear ions is possible in case of titanium. The layered substance with specific surface up to 300 m 2 /g, wherein ultradispersed titanium dioxide particles are intercalirated between zirconium-phosphate layers, is synthesized

  2. Glasses Containing Iron (II, III) Oxides For Immobilization Of Radioactive Technetium

    International Nuclear Information System (INIS)

    Kruger, A.A.; Heo, J.; Xu, K.; Choi, J.K.; Hrma, P.R.; Um, W.

    2011-01-01

    Technetium-99 (Tc-99) has posed serious environmental threats as US Department of Energy's high-level waste. This work reports the vitrification of Re, as surrogate for Tc-99, by iron-borosilicate and iron-phosphate glasses, respectively. Iron-phosphate glasses can dissolve Re as high as ∼ 1.2 wt. %, which can become candidate waste forms for Tc-99 disposal, while borosilicate glasses can retain less than 0.1 wt. % of Re due to high melting temperature and long melting duration. Vitrification of Re as Tc-99's mimic was investigated using iron-borosilicate and iron-phosphate glasses. The retention of Re in borosilicate glasses was less than 0.1 wt. % and more than 99 wt. % of Re were volatilized due to high melting temperature and long melting duration. Because the retention of Re in iron-phosphate glasses is as high as 1.2 wt. % and the volatilization is reduced down to ∼50 wt. %, iron-phosphate glasses can be one of the glass waste form candidates for Tc (or Re) disposal. The investigations of chemical durability and leaching test of iron-phosphate glasses containing Re are now underway to test the performance of the waste form.

  3. The Juxtaposition of Ribose Hydroxyl Groups: The Root of Biological Catalysis and the RNA World?

    Science.gov (United States)

    Bernhardt, Harold S.

    2015-06-01

    We normally think of enzymes as being proteins; however, the RNA world hypothesis suggests that the earliest biological catalysts may have been composed of RNA. One of the oldest surviving RNA enzymes we are aware of is the peptidyl transferase centre (PTC) of the large ribosomal RNA, which joins amino acids together to form proteins. Recent evidence indicates that the enzymatic activity of the PTC is principally due to ribose 2 '-OHs. Many other reactions catalyzed by RNA and/or in which RNA is a substrate similarly utilize ribose 2 '-OHs, including phosphoryl transfer reactions that involve the cleavage and/or ligation of the ribose-phosphate backbone. It has recently been proposed by Yakhnin (2013) that phosphoryl transfer reactions were important in the prebiotic chemical evolution of RNA, by enabling macromolecules composed of polyols joined by phosphodiester linkages to undergo recombination reactions, with the reaction energy supplied by the phosphodiester bond itself. The almost unique juxtaposition of the ribose 2'-hydroxyl and 3'-oxygen in ribose-containing polymers such as RNA, which gives ribose the ability to catalyze such reactions, may have been an important factor in the selection of ribose as a component of the first biopolymer. In addition, the juxtaposition of hydroxyl groups in free ribose: (i) allows coordination of borate ions, which could have provided significant and preferential stabilization of ribose in a prebiotic environment; and (ii) enhances the rate of permeation by ribose into a variety of lipid membrane systems, possibly favouring its incorporation into early metabolic pathways and an ancestral ribose-phosphate polymer. Somewhat more speculatively, hydrogen bonds formed by juxtaposed ribose hydroxyl groups may have stabilized an ancestral ribose-phosphate polymer against degradation (Bernhardt and Sandwick 2014). I propose that the almost unique juxtaposition of ribose hydroxyl groups constitutes the root of both biological

  4. Titrimetric determination of uranium in tributyl phosphate

    International Nuclear Information System (INIS)

    Sobkowska, A.

    1978-01-01

    The titrimetric method involving the reduction of U(VI) to uranium(IV) by iron(II) in phosphoric acid, selective oxidation of the excess of iron(II) and potentiometric titration with dichromate was directly used for the determination of uranium in tributyl phosphate mixtures. The procedure was applied to solutions containing more than 2 mg of uranium in the sample but the highest precision and accuracy were obtained in the range from 20 to 200 mg of uranium. Dibutyl phosphate and monobutyl phosphate as well as the other radiolysis products of TBP had no influence on the results of determinations. (author)

  5. Long-term effects of the iron-based phosphate binder, sucroferric oxyhydroxide, in dialysis patients.

    Science.gov (United States)

    Floege, Jürgen; Covic, Adrian C; Ketteler, Markus; Mann, Johannes F E; Rastogi, Anjay; Spinowitz, Bruce; Chong, Edward M F; Gaillard, Sylvain; Lisk, Laura J; Sprague, Stuart M

    2015-06-01

    Hyperphosphatemia necessitates the use of phosphate binders in most dialysis patients. Long-term efficacy and tolerability of the iron-based phosphate binder, sucroferric oxyhydroxide (previously known as PA21), was compared with that of sevelamer carbonate (sevelamer) in an open-label Phase III extension study. In the initial Phase III study, hemo- or peritoneal dialysis patients with hyperphosphatemia were randomized 2:1 to receive sucroferric oxyhydroxide 1.0-3.0 g/day (2-6 tablets/day; n = 710) or sevelamer 2.4-14.4 g/day (3-18 tablets/day; n = 349) for 24 weeks. Eligible patients could enter the 28-week extension study, continuing the same treatment and dose they were receiving at the end of the initial study. Overall, 644 patients were available for efficacy analysis (n = 384 sucroferric oxyhydroxide; n = 260 sevelamer). Serum phosphorus concentrations were maintained during the extension study. Mean ± standard deviation (SD) change in serum phosphorus concentrations from extension study baseline to Week 52 end point was 0.02 ± 0.52 mmol/L with sucroferric oxyhydroxide and 0.09 ± 0.58 mmol/L with sevelamer. Mean serum phosphorus concentrations remained within Kidney Disease Outcomes Quality Initiative target range (1.13-1.78 mmol/L) for both treatment groups. Mean (SD) daily tablet number over the 28-week extension study was lower for sucroferric oxyhydroxide (4.0 ± 1.5) versus sevelamer (10.1 ± 6.6). Patient adherence was 86.2% with sucroferric oxyhydroxide versus 76.9% with sevelamer. Mean serum ferritin concentrations increased over the extension study in both treatment groups, but transferrin saturation (TSAT), iron and hemoglobin concentrations were generally stable. Gastrointestinal-related adverse events were similar and occurred early with both treatments, but decreased over time. The serum phosphorus-lowering effect of sucroferric oxyhydroxide was maintained over 1 year and associated with a lower pill burden, compared with sevelamer

  6. Immobilization of {sup 99}Tc (Re) using Iron-Phosphate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jong; Xu, Kai; Um, Woo Yong; Hrma, Pavel [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of)

    2012-05-15

    Technetium-99 ({sup 99}Tc) is a fission product artificially generated during the irradiation of {sup 235}U for commercial power production or {sup 239}Pu for nuclear weapons. Under oxidizing conditions, the dominant species of Tc, the pertechnetate anion (TcO{sub 4} {sup -}), is highly soluble in ground water and thus easily transports through the geologic systems. In addition, because of its high fission yield ({approx}6 %) and long half-life (2.1x10{sup 5} yr), immobilization of {sup 99}Tc has been investigated for decades. Several waste forms such as metallic alloys, sintered titanate ceramics and chemically bonded phosphate ceramics have been proposed to encapsulate {sup 99}Tc. They have not yet been realized in the industrial-scale, mostly either due to the high volatilization of {sup 99}Tc during high temperature process (>1300 .deg. C), or the low {sup 99}Tc loading. Iron-phosphate (FeP) glasses have been developed as alternative waste forms because of their chemical durability equivalent to borosilicate glasses. Additionally, vitrification of radioactive waste by FeP glasses can be done at a relatively low temperature ({approx}1000 .deg. C) and the low-temperature process can reduce the volatilization of {sup 99}Tc significantly. Thus, this work reports the immobilization of {sup 99}Tc by FeP glasses using rhenium (Re) as a surrogate. We also examine the chemical durability of Re-containing FeP glasses using product consistency test (PCT). Experimental results reveal that FeP glass can become a promising candidate for immobilizing {sup 99}Tc

  7. Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions

    Science.gov (United States)

    Valavanidis, Athanasios; Salika, Anastasia; Theodoropoulou, Anna

    Recent epidemiologic studies showed statistical associations between particulate air pollution in urban areas and increased morbidity and mortality, even at levels well within current national air quality standards. Inhalable particulate matter (PM 10) can penetrate into the lower airways where they can cause acute and chronic lung injury by generating toxic oxygen free radicals. We tested inhalable total suspended particulates (TSP) from the Athens area, diesel and gasoline exhaust particles (DEP and GED), and urban street dusts, by Electron Paramagnetic Resonance (EPR). All particulates can generate hydroxyl radicals (HO ṡ), in aqueous buffered solutions, in the presence of hydrogen peroxide. Results showed that oxidant generating activity is related with soluble iron ions. Leaching studies showed that urban particulate matter can release large amounts of Fe 3+ and lesser amounts of Fe 2+, as it was shown from other studies. Direct evidence of HO ṡ was confirmed by spin trapping with DMPO and measurement of DMPO-OH adduct by EPR. Evidence was supported with the use of chelator (EDTA), which increases the EPR signal, and the inhibition of the radical generating activity by desferrioxamine or/and antioxidants ( D-mannitol, sodium benzoate).

  8. Assessment of in situ immobilization of Lead (Pb) and Arsenic (As) in contaminated soils with phosphate and iron: solubility and bioaccessibility

    NARCIS (Netherlands)

    Cui, Y.S.; Du, X.; Weng, L.P.; Riemsdijk, van W.H.

    2010-01-01

    The effect of in situ immobilization of lead (Pb) and arsenic (As) in soil with respectively phosphate and iron is well recognized. However, studies on combined Pb and As-contaminated soil are fewer, and assessment of the effectiveness of the immobilization on mobility and bioaccessibility is also

  9. Prevalence of thalassaemia, iron-deficiency anaemia and glucose-6-phosphate dehydrogenase deficiency among Arab migrating nomad children, southern Islamic Republic of Iran.

    Science.gov (United States)

    Pasalar, M; Mehrabani, D; Afrasiabi, A; Mehravar, Z; Reyhani, I; Hamidi, R; Karimi, M

    2014-12-17

    This study investigated the prevalence of iron-deficiency anaemia, glucose-6-phosphate dehydrogenase (G6PD) deficiency and β-thalassaemia trait among Arab migrating nomad children in southern Islamic Republic of Iran. Blood samples were analysed from 134 schoolchildren aged child had G6PD deficiency. A total of 9.7% of children had HbA2 ≥ 3.5 g/dL, indicating β-thalassaemia trait (10.8% in females and 7.8% in males). Mean serum iron, serum ferritin and total iron binding capacity were similar in males and females. Serum ferritin index was as accurate as Hb index in the diagnosis of iron-deficiency anaemia. A high prevalence of β-thalassaemia trait was the major potential risk factor in this population.

  10. Morphological, structural and electrochemical properties of lithium iron phosphates synthesized by Spray Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, L.S. [Universidad Carlos III de Madrid and IAAB, Avda. de la Universidad, 30, 28911 Leganes, Madrid (Spain); Meatza, I. de [Dpto. Energia, CIDETEC, Po Miramon 196, Parque Tecnologico de San Sebastian, 20009 Donostia-San Sebastian (Spain); Martin, M.I., E-mail: imartin@ietcc.csic.e [Universidad Carlos III de Madrid and IAAB, Avda. de la Universidad, 30, 28911 Leganes, Madrid (Spain); Bengoechea, M. [Dpto. Energia, CIDETEC, Po Miramon 196, Parque Tecnologico de San Sebastian, 20009 Donostia-San Sebastian (Spain); Cantero, I. [Dpto. I-D-i Nuevas Tecnologias, CEGASA, Artapadura, 11, 01013 Vitoria-Gasteiz (Spain); Rabanal, M.E., E-mail: mariaeugenia.rabanal@uc3m.e [Universidad Carlos III de Madrid and IAAB, Avda. de la Universidad, 30, 28911 Leganes, Madrid (Spain)

    2010-03-01

    In the field of materials for lithium ion batteries, the lithium iron phosphate LiFePO{sub 4} has been proven for use as a positive electrode due to its good resistance to thermal degradation and overcharge, safety and low cost. The use of nanostructured materials would improve its efficiency. This work shows the results of the synthesis of nanostructured materials with functional properties for lithium batteries through aerosol techniques. The Spray Pyrolysis method allows synthesizing nanostructured particles with spherical geometry, not agglomerates, with narrow distribution of particle size and homogeneous composition in respect to a precursor solution. Experimental techniques were focused on the morphological (SEM and TEM), structural (XRD and HRTEM-SAED), chemical (EDS) and electrochemical characterization.

  11. Morphological, structural and electrochemical properties of lithium iron phosphates synthesized by Spray Pyrolysis

    International Nuclear Information System (INIS)

    Gomez, L.S.; Meatza, I. de; Martin, M.I.; Bengoechea, M.; Cantero, I.; Rabanal, M.E.

    2010-01-01

    In the field of materials for lithium ion batteries, the lithium iron phosphate LiFePO 4 has been proven for use as a positive electrode due to its good resistance to thermal degradation and overcharge, safety and low cost. The use of nanostructured materials would improve its efficiency. This work shows the results of the synthesis of nanostructured materials with functional properties for lithium batteries through aerosol techniques. The Spray Pyrolysis method allows synthesizing nanostructured particles with spherical geometry, not agglomerates, with narrow distribution of particle size and homogeneous composition in respect to a precursor solution. Experimental techniques were focused on the morphological (SEM and TEM), structural (XRD and HRTEM-SAED), chemical (EDS) and electrochemical characterization.

  12. Charge Localization in the Lithium Iron Phosphate Li3Fe2(PO4)3at High Voltages in Lithium-Ion Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza; Christiansen, Ane Sælland; Loftager, Simon

    2015-01-01

    Possible changes in the oxidation state of the oxygen ion in the lithium iron phosphate Li3Fe2(PO4)3 at high voltages in lithium-ion (Li-ion) batteries are studied using experimental and computational analysis. Results obtained from synchrotron-based hard X-ray photoelectron spectroscopy...

  13. Regioselective hydroxylation of isoflavones by Streptomyces avermitilis MA-4680.

    Science.gov (United States)

    Roh, Changhyun; Seo, Su-Hyun; Choi, Kwon-Young; Cha, Minho; Pandey, Bishnu Prasad; Kim, June-Hyung; Park, Jun-Seong; Kim, Duck Hee; Chang, Ih Seop; Kim, Byung-Gee

    2009-07-01

    Screening of bacterial whole cells was performed for regioselective hydroxylation of daidzein and genistein. Among the strains examined, Streptomyces avermitilis MA-4680 showed high ortho-dihydroxylation activity to produce 3',4',7-trihydroxyisoflavone and 3',4',5,7-tetrahydroxyisoflavone from daidzein (4',7-dihydroxyisoflavone) and genistein (4',5,7-trihydroxyisoflavone), respectively. Using 100 mg cells (wet wt.) and 1% (v/v) Triton X100 in 1 ml of total reaction volume, where 100 microl of the substrate solution (0.5 mM in 10% (v/v) mixed solvent of DMSO:MeOH = 3:7) was added to 900 microl of potassium phosphate buffer (100 mM, pH 7.2), a 16% molar conversion yield of 3',4',7-trihydroxyisoflavone was obtained from 0.5 mM daidzein after 24 h of reaction time at 28 degrees C and 200 rpm. Ketoconazole significantly (ca. 90%) inhibited the ortho-hydroxylation activity of daidzein, suggesting that cytochrome P450 enzymes putatively play roles in regiospecific daidzein hydroxylation. The analysis of the reaction products was determined by gas chromatography/mass spectrometry (GC/MS) and (1)H NMR.

  14. Alteration mineral mapping for iron prospecting using ETM+ data, Tonkolili iron field, northern Sierra Leone

    Science.gov (United States)

    Mansaray, Lamin R.; Liu, Lei; Zhou, Jun; Ma, Zhimin

    2013-10-01

    The Tonkolili iron field in northern Sierra Leone has the largest known iron ore deposit in Africa. It occurs in a greenstone belt in an Achaean granitic basement. This study focused mainly on mapping areas with iron-oxide and hydroxyl bearing minerals, and identifying potential areas for haematite mineralization and banded iron formations (BIFs) in Tonkolili. The predominant mineral assemblage at the surface (laterite duricrust) of this iron field is haematitegoethite- limonite ±magnetite. The mineralization occurs in quartzitic banded ironstones, layered amphibolites, granites, schists and hornblendites. In this study, Crosta techniques were applied on Enhanced Thematic Mapper (ETM+) data to enhance areas with alteration minerals and target potential areas of haematite and BIF units in the Tonkolili iron field. Synthetic analysis shows that alteration zones mapped herein are consistent with the already discovered magnetite BIFs in Tonkolili. Based on the overlaps of the simplified geological map and the remote sensing-based alteration mineral maps obtained in this study, three new haematite prospects were inferred within, and one new haematite prospect was inferred outside the tenement boundary of the Tonkolili exploration license. As the primary iron mineral in Tonkolili is magnetite, the study concludes that, these haematite prospects could also be underlain by magnetite BIFs. This study also concludes that, the application of Crosta techniques on ETM+ data is effective not only in mapping iron-oxide and hydroxyl alterations but can also provide a basis for inferring areas of potential iron resources in Algoma-type banded iron formations (BIFs), such as those in the Tonkolili field.

  15. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-01-01

    The lead-iron-phosphate (Pb-Fe-P) nuclear waste glass developed at Oak Ridge National Laboratory (ORNL) was evaluated for its potential as an improvement over the current reference waste form, borosilicate (B-Si) glass. Vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass. However, severe crystallization leading to deteriorated chemical durability would result if this glass were poured into large canisters, as is presently done with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the performance advantages of the Pb-Fe-P material in a nuclear waste form, it would be necessary to process it so that it is cooled rapidly, thus retaining its vitreous structure

  16. Hydroxylation of benzene to phenol over magnetic recyclable nanostructured CuFe mixed-oxide catalyst

    CSIR Research Space (South Africa)

    Makgwane, PR

    2015-03-01

    Full Text Available A highly active and magnetically recyclable nanostructured copper–iron oxide (CuFe) catalyst has been synthesized for hydroxylation of benzene to phenol under mild reaction conditions. The obtained catalytic results were correlated with the catalyst...

  17. ROLE OF IRON (II, III) HYDROXYCARBONATE GREEN RUST IN ARSENIC REMEDIATION USING ZEROVALENT IRON IN COLUMN TESTS

    Science.gov (United States)

    We examined corrosion products of zerovalent iron (Peerless iron) that was used in three column tests for removing arsenic under dynamic flow conditions with and without added phosphate and silicate. Iron(II, III) hydroxycarbonate and magnetite were major iron corrosion products...

  18. Metal Phosphates as Intermediate Temperature Proton Conducting Electrolytes

    DEFF Research Database (Denmark)

    Huang, Yunjie; Li, Q.F.; Pan, Chao

    2012-01-01

    A series of metal phosphates were synthesized and screened as potential proton conductor electrolytes for fuel cells and electrolysers operational at intermediate temperatures. Among the selected, niobium and bismuth phosphates exhibited a proton conductivity of 10-2 and 10-7 S cm-1, respectively......, under the anhydrous atmosphere at 250 °C, showing close correlation with the presence of hydroxyl groups in the phosphate phases. At the water partial pressure of above 0.6 atm, both phosphates possessed a proton conductivity to a level of above 3 x 10-2 S cm-1. Reasonable stability of the proton...... conductivity was observed under either a constant low water partial pressure or under a humidity cycling test within a period of more than 80 hours....

  19. The Haber Process Made Efficient by Hydroxylated Graphene

    OpenAIRE

    Chaban, Vitaly; Prezhdo, Oleg

    2016-01-01

    The Haber-Bosch process is the main industrial method for producing ammonia from diatomic nitrogen and hydrogen. Very demanding energetically, it uses an iron catalyst, and requires high temperature and pressure. Any improvement of the Haber process will have an extreme scientific and economic impact. We report a significant increase of ammonia production using hydroxylated graphene. Exploiting the polarity difference between N2/H2 and NH3, as well as the universal proton acceptor behavior of...

  20. Nitric oxide induces hypoxia ischemic injury in the neonatal brain via the disruption of neuronal iron metabolism.

    Science.gov (United States)

    Lu, Qing; Harris, Valerie A; Rafikov, Ruslan; Sun, Xutong; Kumar, Sanjiv; Black, Stephen M

    2015-12-01

    We have recently shown that increased hydrogen peroxide (H2O2) generation is involved in hypoxia-ischemia (HI)-mediated neonatal brain injury. H2O2 can react with free iron to form the hydroxyl radical, through Fenton Chemistry. Thus, the objective of this study was to determine if there was a role for the hydroxyl radical in neonatal HI brain injury and to elucidate the underlying mechanisms. Our data demonstrate that HI increases the deposition of free iron and hydroxyl radical formation, in both P7 hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD), and the neonatal rat exposed to HI. Both these processes were found to be nitric oxide (NO) dependent. Further analysis demonstrated that the NO-dependent increase in iron deposition was mediated through increased transferrin receptor expression and a decrease in ferritin expression. This was correlated with a reduction in aconitase activity. Both NO inhibition and iron scavenging, using deferoxamine administration, reduced hydroxyl radical levels and neuronal cell death. In conclusion, our results suggest that increased NO generation leads to neuronal cell death during neonatal HI, at least in part, by altering iron homeostasis and hydroxyl radical generation. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Wastewater engineering applications of BioIronTech process based on the biogeochemical cycle of iron bioreduction and (biooxidation

    Directory of Open Access Journals (Sweden)

    Volodymyr Ivanov

    2014-12-01

    Full Text Available Bioreduction of Fe(III and biooxidation of Fe(II can be used in wastewater engineering as an innovative biotechnology BioIronTech, which is protected for commercial applications by US patent 7393452 and Singapore patent 106658 “Compositions and methods for the treatment of wastewater and other waste”. The BioIronTech process comprises the following steps: 1 anoxic bacterial reduction of Fe(III, for example in iron ore powder; 2 surface renovation of iron ore particles due to the formation of dissolved Fe2+ ions; 3 precipitation of insoluble ferrous salts of inorganic anions (phosphate or organic anions (phenols and organic acids; 4 (biooxidation of ferrous compunds with the formation of negatively, positively, or neutrally charged ferric hydroxides, which are good adsorbents of many pollutants; 5 disposal or thermal regeration of ferric (hydroxide. Different organic substances can be used as electron donors in bioreduction of Fe(III. Ferrous ions and fresh ferrous or ferric hydroxides that are produced after iron bioreduction and (biooxidation adsorb and precipitate diferent negatively charged molecules, for example chlorinated compounds of sucralose production wastewater or other halogenated organics, as well as phenols, organic acids, phosphate, and sulphide. Reject water (return liquor from the stage of sewage sludge dewatering on municipal wastewater treatment plants represents from 10 to 50% of phosphorus load when being recycled to the aeration tank. BioIronTech process can remove/recover more than 90% of phosphorous from this reject water thus replacing the conventional process of phosphate precipitation by ferric/ferrous salts, which are 20–100 times more expensive than iron ore, which is used in BioIronTech process. BioIronTech process can remarkably improve the aerobic and anaerobic treatments of municipal and industrial wastewaters, especially anaerobic digestion of lipid- and sulphate-containing food-processing wastewater. It

  2. Sodium aluminum-iron phosphate glass-ceramics for immobilization of lanthanide oxide wastes from pyrochemical reprocessing of spent nuclear fuel

    Science.gov (United States)

    Stefanovsky, S. V.; Stefanovsky, O. I.; Kadyko, M. I.; Nikonov, B. S.

    2018-03-01

    Sodium aluminum (iron) phosphate glass ceramics containing of up to 20 wt.% rare earth (RE) oxides simulating pyroprocessing waste were produced by melting at 1250 °C followed by either quenching or slow cooling to room temperature. The iron-free glass-ceramics were composed of major glass and minor phosphotridymite and monazite. The iron-bearing glass-ceramics were composed of major glass and minor monazite and Na-Al-Fe orthophosphate at low waste loadings (5-10 wt.%) and major orthophosphate and minor monazite as well as interstitial glass at high waste loadings (15-20 wt.%). Slowly cooled samples contained higher amount of crystalline phases than quenched ones. Monazite is major phase for REs. Leach rates from the materials of major elements (Na, Al, Fe, P) are 10-5-10-7 g cm-2 d-1, RE elements - lower than 10-5 g cm-2 d-1.

  3. Meurigite, a new fibrous iron phosphate resembling kidwellite

    Science.gov (United States)

    Birch, W.D.; Pring, A.; Self, P.G.; Gibbs, R.B.; Keck, E.; Jensen, M.C.; Foord, E.E.

    1996-01-01

    Meurigite is a new hydrated potassium iron phosphate related to kidwellite and with structural similarities to other late-stage fibrous ferric phosphate species. It has been found at four localities so far - the Santa Rita mine, New Mexico, U.S.A.; the Hagendorf-Sud pegmatite in Bavaria, Germany; granite pegmatite veins at Wycheproof, Victoria. Australia; and at the Gold Quarry Mine, Nevada, U.S.A. The Santa Rita mine is the designated type locality. Meurigite occurs as tabular, elongated crystals forming spherical and hemispherical clusters and drusy coatings. The colour ranges from creamy white to pale yellow and yellowish brown. At the type locality, the hemispheres may reach 2 mm across, but the maximum diameter reached in the other occurrences is usually less than 0.5 mm. A wide variety of secondary phosphate minerals accompanies meurigite at each locality, with dufrenite, cyrilovite. beraunite, rockbridgeite and leucophosphite amongst the most common. Vanadates and uranates occur with meurigite at the Gold Quarry mine. Electron microprobe analysis and separate determination of H2O and CO2 on meurigite from the type locality gave a composition for which several empirical formulae could be calculated. The preferred formula, obtained on the basis of 35 oxygen atoms, is (K0.85Na0.03)??0.88(Fe7.013+Al0.16Cu0.02)??7.19 (PO4)5.11(CO3)0.20(OH) 6.7??7-7.25H2O, which simplifies to KFe73+(PO4)5(OH) 7??8H2O. Qualitative analyses only were obtained for meurigite from the other localities, due to the softness and openness of the aggregates. Because of the fibrous nature of meurigite, it was not possible to determine the crystal structure, hence the exact stoichiometry remains uncertain. The lustre of meurigite varies from vitreous to waxy for the Santa Rita mine mineral, to silky for the more open sprays and internal surfaces elsewhere. The streak is very pale yellow to cream and the estimated Mohs hardness is about 3. Cleavage is perfect on {001] and fragments from the

  4. The Effect of Iron Salt on Anaerobic Digestion and Phosphate Release to Sludge Liquor

    Directory of Open Access Journals (Sweden)

    Svetlana Ofverstrom

    2011-12-01

    Full Text Available Iron salts are used at wastewater treatment plants (WWTPs for several reasons: for removing chemical phosphorus, preventing from struvite formation and reducing the content of hydrogen sulfide (H2S in biogas. Anaerobic digestion is a common scheme for sludge treatment due to producing biogas that could be used as biofuel. Laboratory analysis has been carried out using anaerobic digestion model W8 (Armfield Ltd, UK to investigate any possible effect of adding FeCl3 on the anaerobic digestion of primary sludge (PS and waste activated sludge (WAS mixture as well as on releasing phosphates to digested sludge liquor. The obtained results showed that FeCl3 negatively impacted the anaerobic digestion process by reducing the volume of produced biogas. Fe-dosed sludge (max produced 30% less biogas. Biogas production from un-dosed and Fe-dosed sludge (min was similar to the average of 1.20 L/gVSfed. Biogas composition was not measured during the conducted experiments. Phosphorus content in sludge liquor increased at an average of 38% when digesting sludge without ferric chloride dosing. On the contrary, phosphate content in sludge liquor from digested Fe-dosed sludge decreased by approx. 80%.

  5. Enumeration of sugars and sugar alcohols hydroxyl groups by aqueous-based acetylation and MALDI-TOF mass spectrometry

    Science.gov (United States)

    A method is described for enumerating hydroxyl groups on analytes in aqueous media is described, and applied to some common polyalcohols (erythritol, mannitol, and xylitol) and selected carbohydrates. The analytes were derivatized in water with vinyl acetate in presence of sodium phosphate buffer. ...

  6. Phosphate adsorption using modified iron oxide-based sorbents

    Science.gov (United States)

    Phosphate RemovalThis dataset is associated with the following publication:Lalley , J., C. Han , G. RamMohan , T. Speth , J. Garland , M. Nadagouda , and D. Dionysiou. Phosphate Removal using Modified Bayoxide®E33 Adsorption Media. WATER RESEARCH. Elsevier Science Ltd, New York, NY, USA, issue}: 96-107, (2015).

  7. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongkwon [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of); Um, Wooyong, E-mail: wooyong.um@pnnl.gov [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Choung, Sungwook [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of)

    2014-09-15

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl–KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl–KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl–KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl–KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  8. Phosphogenesis in the 2460 and 2728 million-year-old banded iron formations as evidence for biological cycling of phosphate in the early biosphere.

    Science.gov (United States)

    Li, Yi-Liang; Sun, Si; Chan, Lung S

    2012-01-01

    The banded iron formation deposited during the first 2 billion years of Earth's history holds the key to understanding the interplay between the geosphere and the early biosphere at large geological timescales. The earliest ore-scale phosphorite depositions formed almost at ∼2.0-2.2 billion years ago bear evidence for the earliest bloom of aerobic life. The cycling of nutrient phosphorus and how it constrained primary productivity in the anaerobic world of Archean-Palaeoproterozoic eons are still open questions. The controversy centers about whether the precipitation of ultrafine ferric oxyhydroxide due to the microbial Fe(II) oxidation in oceans earlier than 1.9 billion years substantially sequestrated phosphate, and whether this process significantly limited the primary productivity of the early biosphere. In this study, we report apatite radial flowers of a few micrometers in the 2728 million-year-old Abitibi banded iron formation and the 2460 million-year-old Kuruman banded iron formation and their similarities to those in the 535 million-year-old Lower Cambrian phosphorite. The lithology of the 535 Million-year-old phosphorite as a biosignature bears abundant biomarkers that reveal the possible similar biogeochemical cycling of phosphorus in the Later Archean and Palaeoproterozoic oceans. These apatite radial flowers represent the primary precipitation of phosphate derived from the phytoplankton blooms in the euphotic zones of Neoarchean and Palaoeproterozoic oceans. The unbiased distributions of the apatite radial flowers within sub-millimeter bands do not support the idea of an Archean Crisis of Phosphate. This is the first report of the microbial mediated mineralization of phosphorus before the Great Oxidation Event when the whole biosphere was still dominated by anaerobic microorganisms.

  9. Reaction of single-standard DNA with hydroxyl radical generated by iron(II)-ethylenediaminetetraacetic acid

    International Nuclear Information System (INIS)

    Prigodich, R.V.; Martin, C.T.

    1990-01-01

    This study demonstrates that the reaction of Fe(II)-EDTA and hydrogen peroxide with the single-stranded nucleic acids d(pT) 70 and a 29-base sequence containing a mixture of bases results in substantial damage which is not directly detected by gel electrophoresis. Cleavage of the DNA sugar backbone is enhanced significantly after the samples are incubated at 90 degree C in the presence of piperidine. The latter reaction is used in traditional Maxam-Gilbert DNA sequencing to detect base damage, and the current results are consistent with reaction of the hydroxyl radical with the bases in single-stranded DNA (although reaction with sugar may also produce adducts that are uncleaved but labile to cleavage by piperidine). We the authors propose that hydroxyl radicals may react preferentially with the nucleic acid bases in ssDNA and that reaction of the sugars in dsDNA is dominant because the bases are sequestered within the double helix. These results have implications both for the study of single-stranded DNA binding protein binding sites and for the interpretation of experiments using the hydroxyl radical to probe DNA structure or to footprint double-stranded DNA binding protein binding sites

  10. SU-F-T-676: Measurement of Hydroxyl Radicals in Radiolized Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Z; Ngwa, W [University of Massachusetts Lowell, Lowell, MA (United States); Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Strack, G; Sajo, E [University of Massachusetts Lowell, Lowell, MA (United States)

    2016-06-15

    Purpose: Hydroxyl radicals can be produced within tissue by radiation therapy, and they are largely responsible for DNA damage and cell killing. Coumarin-3-carboxylic acid (3-CCA) and crystal violet are reported to react with hydroxyl radicals and can be used for fluorescence and absorbance measurements, respectively. This study assesses the ability of hydroxyl measurement for both 3-CCA and crystal violet in radiolized water systems in order to provide dosimetric information in radiation chemistry and radiation biology experiments. Methods: 3-CCA and crystal violet were both dissolved in phosphate buffered saline (PBS, pH 7.4) with final concentrations 0.5 mg/mL and 0.05 mg/mL. 3-CCA and control solutions (PBS only) were loaded in black bottom 96-well plates. Crystal violet and control solutions were loaded in clear bottom 96-well plates. The prepared solutions were irradiated at 2 Gy using a small animal radiation research platform. Fluorescence reading with 360 nm excitation wavelength and 485 nm emission wavelength was done for 3-CCA, and absorbance reading at wavelength 580 nm was done for crystal violet before and after radiation. Results: 3-CCA showed clear difference in fluorescence before and after radiation, which suggested hydroxyl production during radiation. However, crystal violet absorbance at 580 nm was not changed significantly by radiation. Conclusion: The overall conclusion is that 3-CCA can be used for hydroxyl measurement in radiolized water systems, while crystal violet cannot, although crystal violet is reported widely to react with hydroxyl radicals produced in Fenton reactions. Possible reasons could relate to reaction pH.

  11. Phosphate interference during in situ treatment for arsenic in groundwater.

    Science.gov (United States)

    Brunsting, Joseph H; McBean, Edward A

    2014-01-01

    Contamination of groundwater by arsenic is a problem in many areas of the world, particularly in West Bengal (India) and Bangladesh, where reducing conditions in groundwater are the cause. In situ treatment is a novel approach wherein, by introduction of dissolved oxygen (DO), advantages over other treatment methods can be achieved through simplicity, not using chemicals, and not requiring disposal of arsenic-rich wastes. A lab-scale test of in situ treatment by air sparging, using a solution with approximately 5.3 mg L(-1) ferrous iron and 200 μg L(-1) arsenate, showed removal of arsenate in the range of 59%. A significant obstacle exists, however, due to the interference of phosphate since phosphate competes for adsorption sites on oxidized iron precipitates. A lab-scale test including 0.5 mg L(-1) phosphate showed negligible removal of arsenate. In situ treatment by air sparging demonstrates considerable promise for removal of arsenic from groundwater where iron is present in considerable quantities and phosphates are low.

  12. Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model

    International Nuclear Information System (INIS)

    Omar, Noshin; Monem, Mohamed Abdel; Firouz, Yousef; Salminen, Justin; Smekens, Jelle; Hegazy, Omar; Gaulous, Hamid; Mulder, Grietus; Van den Bossche, Peter; Coosemans, Thierry; Van Mierlo, Joeri

    2014-01-01

    Highlights: • Extended life cycle tests. • Investigation of the battery life cycle at different working conditions. • Investigation of the impact fast charging on the battery performances. • Extraction all required relationship for development of a cycle life model. • Development of a new life cycle model. - Abstract: This paper represents the evaluation of ageing parameters in lithium iron phosphate based batteries, through investigating different current rates, working temperatures and depths of discharge. From these analyses, one can derive the impact of the working temperature on the battery performances over its lifetime. At elevated temperature (40 °C), the performances are less compared to at 25 °C. The obtained mathematical expression of the cycle life as function of the operating temperature reveals that the well-known Arrhenius law cannot be applied to derive the battery lifetime from one temperature to another. Moreover, a number of cycle life tests have been performed to illustrate the long-term capabilities of the proposed battery cells at different discharge constant current rates. The results reveal the harmful impact of high current rates on battery characteristics. On the other hand, the cycle life test at different depth of discharge levels indicates that the battery is able to perform 3221 cycles (till 80% DoD) compared to 34,957 shallow cycles (till 20% DoD). To investigate the cycle life capabilities of lithium iron phosphate based battery cells during fast charging, cycle life tests have been carried out at different constant charge current rates. The experimental analysis indicates that the cycle life of the battery degrades the more the charge current rate increases. From this analysis, one can conclude that the studied lithium iron based battery cells are not recommended to be charged at high current rates. This phenomenon affects the viability of ultra-fast charging systems. Finally, a cycle life model has been developed, which

  13. Phosphorus Retention (32P) by synthetic iron oxides

    International Nuclear Information System (INIS)

    Bittencourt, V.C.; Montanheiro, M.N.S.

    1975-02-01

    The P retention by iron oxides was characterized as a chemical adsorption process followed by a physical adsorption. The former process was very intense with initial amounts of added P but after a certain surface saturation is reached physical interaction occurs. It was supposed that the chemically adsorbed phosphate confers a negative charge on the iron oxides particles, which repels any further physical adsorbtion of the anion. However due to diffusion of phosphate ions into the internal layers of the iron oxides, their surface can retain further amounts of P [pt

  14. Interfacial Precipitation of Phosphate on Hematite and Goethite

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2018-05-01

    Full Text Available Adsorption and subsequent precipitation of dissolved phosphates on iron oxides, such as hematite and goethite, is of considerable importance in predicting the bioavailability of phosphates. We used in situ atomic force microscopy (AFM to image the kinetic processes of phosphate-bearing solutions interacting with hematite or goethite surfaces. The nucleation of nanoparticles (1.0–4.0 nm in height of iron phosphate (Fe(III-P phases, possibly an amorphous phase at the initial stages, was observed during the dissolution of both hematite and goethite at the earliest crystallization stages. This was followed by a subsequent aggregation stage where larger particles and layered precipitates are formed under different pH values, ionic strengths, and organic additives. Kinetic analysis of the surface nucleation of Fe-P phases in 50 mM NH4H2PO4 at pH 4.5 showed the nucleation rate was greater on goethite than hematite. Enhanced goethite and hematite dissolution in the presence of 10 mM AlCl3 resulted in a rapid increase in Fe-P nucleation rates. A low concentration of citrate promoted the nucleation, whereas nucleation was inhibited at higher concentrations of citrate. By modeling using PHREEQC, calculated saturation indices (SI showed that the three Fe(III-P phases of cacoxenite, tinticite, and strengite may be supersaturated in the reacted solutions. Cacoxenite is predicted to be more thermodynamically favorable in all the phosphate solutions if equilibrium is reached with respect to hematite or goethite, although possibly only amorphous precipitates were observed at the earliest stages. These direct observations at the nanoscale may improve our understanding of phosphate immobilization in iron oxide-rich acid soils.

  15. Effect of the addition of Na2O on the thermal properties and chemical durability of glasses of iron and uranium phosphates

    International Nuclear Information System (INIS)

    Arboleda Zuluaga, P.A; Rodriguez, D.S; Gonzalez Oliver, C; Rincon Lopez, J.M; Soldera, F

    2012-01-01

    A series of glass compositions including (54,6-73,5P 2 O 5 .14-22Fe 2 O 3.x Na 2 O.2,8-4,25 UO 2 ) %mol. x=0-28,4 were studied in function of sodium oxide content for the thermal properties and chemical durability. By means differential dilatometer measurements was possible establish the variation of Tg, and α Tsoft and analysis of the kinetics of sintering by means of High Temperature Microscopy (MAT) and dilatometric data of pressed pellets. The presence of modifier oxides in the structure of iron phosphate glasses causes slightly onset sintering anticipation in almost 25 o C The chemical durability was estimated performing the named Product Consistency Test (PCT-B) focused on determining the resistance of glasses for nuclear wastes. These glasses exhibit good chemical durability but it is significant impaired by the addition of x≥6wt%Na 2 O. It is aimed to achieve more stable compositions and get glass matrixes able to contain more uranium oxides allowing evaluating the potential application of these iron phosphate glasses for special, industrial and nuclear waste immobilization

  16. Genesis of apatite in the phosphatized limestones of the western continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Lamboy, M.

    ) and this siliciclastic flux appear to have transported episodically to the shelf for short duration at about 8300 yr B.P. This flux at places is enriched with iron (Table 1). Iron oxides have strong adsorption capacity for phosphate ions (Nriagu, 1976....C. Burnett and S.R. Riggs (Editors), Neogene to Modern Phosphorites. Phosphate Deposits of the World, 3. Cam- bridge University Press, Cambridge. Cayeux, L., 1939. Existence de nombreuses batteries dans les phosphates sedimentaires de tout age...

  17. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals

    International Nuclear Information System (INIS)

    Li Linxiang; Abe, Yoshihiro; Kanagawa, Kiyotada; Shoji, Tomoko; Mashino, Tadahiko; Mochizuki, Masataka; Tanaka, Miho; Miyata, Naoki

    2007-01-01

    Hydroxyl radical formation by Fenton reaction in the presence of an iron-chelating agent such as EDTA was traced by two different assay methods; an electron spin resonance (ESR) spin-trapping method with 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and high Performance liquid chromatography (HPLC)-fluorescence detection with terephthalic acid (TPA), a fluorescent probe for hydroxyl radicals. From the ESR spin-trapping measurement, it was observed that EDTA seemed to suppress hydroxyl radical formation with the increase of its concentration. On the other hand, hydroxyl radical formation by Fenton reaction was not affected by EDTA monitored by HPLC assay. Similar inconsistent effects of other iron-chelating agents such as nitrylotriacetic acid (NTA), diethylenetriamine penta acetic acid (DTPA), oxalate and citrate were also observed. On the addition of EDTA solution to the reaction mixture 10 min after the Fenton reaction started, when hydroxyl radical formation should have almost ceased but the ESR signal of DMPO-OH radicals could be detected, it was observed that the DMPO-OH· signal disappeared rapidly. With the simultaneous addition of Fe(II) solution and EDTA after the Fenton reaction ceased, the DMPO-OH· signal disappeared more rapidly. The results indicated that these chelating agents should enhance the quenching of [DMPO-OH]· radicals by Fe(II), but they did not suppress Fenton reaction by forming chelates with iron ions

  18. From dihydrated iron(III) phosphate to monohydrated ammonium-iron(II) phosphate: Solvothermal reaction mediated by acetone-urea mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso, Belen F., E-mail: mbafernandez@uniovi.es [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain); Trobajo, Camino [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo-CINN, Julian Claveria 8, 33006 Oviedo (Spain); Pique, Carmen [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain); Garcia, Jose R. [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo-CINN, Julian Claveria 8, 33006 Oviedo (Spain); Blanco, Jesus A. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n 33007 Oviedo (Spain)

    2012-12-15

    By reaction between synthetic phosphosiderite FePO{sub 4}{center_dot}2H{sub 2}O, urea (NH{sub 2}){sub 2}CO, and acetone (CH{sub 3}){sub 2}CO, we report a novel solvothermal synthesis of polycrystalline NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O. The preparation of other two individual phases, NH{sub 4}Fe{sub 2}(OH)(PO{sub 4}){sub 2}{center_dot}2H{sub 2}O and NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2}, is also described. The obtained product is a function of the reaction time and the N/P molar ratio in the reagent mixture, and the existence of structural memory in the dissolution-precipitation processes is discussed. Below 25 K, NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O behaves magnetically in a complex way, because both ferromagnetic and antiferromagnetic signals are superimposed, suggesting the existence of a canting of iron(II) magnetic moments. - Graphical abstract: Solvothermal synthesis of polycrystalline NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O is presented. The preparation of other two individual phases, NH{sub 4}Fe{sub 2}(OH)(PO{sub 4}){sub 2}{center_dot}2H{sub 2}O and NH{sub 4}Fe{sub 2}(PO{sub 4}){sub 2} as a function of the N/P molar ratio in the reagent mixture and the reaction time, is also described. Highlights: Black-Right-Pointing-Pointer Solvothermal synthesis of NH{sub 4}FePO{sub 4}{center_dot}H{sub 2}O from an Fe(III) phosphate: reduction process. Black-Right-Pointing-Pointer Formation of two intermediate metastable phases: phase diagram. Black-Right-Pointing-Pointer Thermal decomposition in two steps: mass loss of both water and ammonia. Black-Right-Pointing-Pointer Magnetic behaviour: AF+constant spontaneous magnetization.

  19. Crystal structure and Mössbauer spectroscopy of a new iron phosphate Mg{sub 2.88}Fe{sub 4.12}(PO{sub 4}){sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Y. [UR Matériaux Inorganiques, Faculté des Sciences, 5019 Monastir (Tunisia); Hidouri, M., E-mail: mourad_hidouri@yahoo.fr [UR Matériaux Inorganiques, Faculté des Sciences, 5019 Monastir (Tunisia); Álvarez-Serrano, I.; Veiga, M.L. [Departamento de Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid (Spain); Wattiaux, A. [Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, Université de Bordeaux I, 87 Avenue du Dr. A. Schweitzer, 33608 Pessac-Cedex (France); Amara, Mongi B. [UR Matériaux Inorganiques, Faculté des Sciences, 5019 Monastir (Tunisia)

    2014-01-25

    Highlights: • This study reports the synthesis and characterization of a new iron phosphate. • The cationic distribution is supported by a Mössbauer spectroscopy study. • The magnetic susceptibility results are discussed. -- Abstract: A new mixed valence iron phosphate Mg{sub 2.88}Fe{sub 4.12}(PO{sub 4}){sub 6} has been prepared as single crystals by the flux method and as a powder by solid state reaction and its crystal structure has been determined by X-ray diffraction. This compound crystallises in the triclinic system with space group P1{sup ¯} and a = 6.325(5) Å, b = 7.911(3) Å, c = 9.271(3) Å, α = 104.62(1)°, β = 108.41(1)° and γ = 101.24(1)° and Z = 1. Its structure is similar to that of the mineral howardevansite. It consists of Fe{sub 2}O{sub 10} bioctahedral units and MgO{sub 5} trigonal bipyramids sharing edges to form infinite zigzag chains. Such chains are linked to each other by MO{sub 6} (0.88 Mg{sup 2+} + 0.12 Fe{sup 2+}) octahedra and PO{sub 4} tetrahedra resulting in a 3D covalent framework. Magnetic measurements indicated two successive transitions at 46 K and 22 K. Mössbauer spectroscopy confirmed the mixed valence of iron and gave accurate information about its local environment.

  20. Tracking degradation in lithium iron phosphate batteries using differential thermal voltammetry

    Science.gov (United States)

    Shibagaki, Toshio; Merla, Yu; Offer, Gregory J.

    2018-01-01

    Diagnosing the state-of-health of lithium ion batteries in-operando is becoming increasingly important for multiple applications. We report the application of differential thermal voltammetry (DTV) to lithium iron phosphate (LFP) cells for the first time, and demonstrate that the technique is capable of diagnosing degradation in a similar way to incremental capacity analysis (ICA). DTV has the advantage of not requiring current and works for multiple cells in parallel, and is less sensitive to temperature introducing errors. Cells were aged by holding at 100% SOC or cycling at 1C charge, 6D discharge, both at an elevated temperature of 45 °C under forced air convection. Cells were periodically characterised, measuring capacity fade, resistance increase (power fade), and DTV fingerprints. The DTV results for both cells correlated well with both capacity and power, suggesting they could be used to diagnose SOH in-operando for both charge and discharge. The DTV peak-to-peak capacity correlated well with total capacity fade for the cycled cell, suggesting that it should be possible to estimate SOC and SOH from DTV for incomplete cycles within the voltage hysteresis region of an LFP cell.

  1. Compositional Tuning, Crystal Growth, and Magnetic Properties of Iron Phosphate Oxide

    Science.gov (United States)

    Tarne, Michael

    Iron phosphate oxide, Fe3PO4O 3, is a crystalline solid featuring magnetic Fe3+ ions on a complex lattice composed of closely-spaced triangles. Previous work from our research group on this compound has proposed a helical magnetic structure below T = 163 K attributed to J1 - J2 competing interactions between nearest-neighbor and next-nearest-neighbor iron atoms. This was based on neutron powder diffraction featuring unique broad, flat-topped magnetic reflections due to needle-like magnetic domains. In order to confirm the magnetic structure and origins of frustration, this thesis will expand upon the research focused on this compound. The first chapter focuses on single crystal growth of Fe3PO 4O3. While neutron powder diffraction provides insight to the magnetic structure, powder and domain averaging obfuscate a conclusive structure for Fe3PO4O3 and single crystal neutron scattering is necessary. Due to the incongruency of melting, single crystal growth has proven challenging. A number of techniques including flux growth, slow cooling, and optical floating zone growth were attempted and success has been achieved via heterogenous chemical vapor transport from FePO 4 using ZrCl4 as a transport agent. These crystals are of sufficient size for single crystal measurements on modern neutron diffractometers. Dilution of the magnetic sublattice in frustrated magnets can also provide insight into the nature of competing spin interactions. Dilution of the Fe 3+ lattice in Fe3PO4O3 is accomplished by substituting non-magnetic Ga3+ to form the solid solution series Fe3-xGaxPO4O3 with x = 0, 0.012, 0.06, 0.25, 0.5, 1.0, 1.5. The magnetic susceptibility and neutron powder diffraction data of these compounds are presented. A dramatic decrease of the both the helical pitch length and the domain size is observed with increasing x; for x > 0.5, the compounds lack long range magnetic order. The phases that do exhibit magnetic order show a decrease in helical pitch with increasing x

  2. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-09-01

    The lead-iron-phosphate (Pb-Fe-P) glass developed at Oak Ridge National Laboratory was evaluated for its potential as an improvement over the current reference nuclear waste form, borosilicate (B-Si) glass. The evaluation was conducted as part of the Second Generation HLW Technology Subtask of the Nuclear Waste Treatment Program at Pacific Northwest Laboratory. The purpose of this work was to investigate possible alternatives to B-Si glass as second-generation waste forms. While vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass, severe crystallization or devitrification leading to deteriorated chemical durability would result if this glass were poured into large canisters as is the procedure with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the potential performance advantages of the Pb-Fe-P material in a nuclear waste form, the processing method would have to cool the material rapidly to retain its vitreous structure

  3. Biphasic calcium sulfate dihydrate/iron-modified alpha-tricalcium phosphate bone cement for spinal applications: in vitro study

    International Nuclear Information System (INIS)

    Vlad, M D; Lopez, J; Torres, R; Barraco, M; Fernandez, E; Valle, L J; Poeata, I

    2010-01-01

    In this study, the cytocompatibility of new 'iron-modified/alpha-tricalcium phosphate (IM/α-TCP) and calcium sulfate dihydrate (CSD)' bone cement (IM/α-TCP/CSD-BC) intended for spinal applications has been approached. The objective was to investigate by direct-contact osteoblast-like cell cultures (from 1 to 14 days) the in vitro cell adhesion, proliferation, morphology and cytoskeleton organization of MG-63 cells seeded onto the new cements. The results were as follows: (a) quantitative MTT-assay and scanning electron microscopy (SEM) showed that cell adhesion, proliferation and viability were not affected with time by the presence of iron in the cements; (b) double immunofluorescent labeling of F-actin and α-tubulin showed a dynamic interaction between the cell and its porous substrates sustaining the locomotion phenomenon on the cements' surface, which favored the colonization, and confirming the biocompatibility of the experimental cements; (c) SEM-cell morphology and cytoskeleton observations also evidenced that MG-63 cells were able to adhere, to spread and to attain normal morphology on the new IM/α-TCP/CSD-BC which offered favorable substratum properties for osteoblast-like cells proliferation and differentiation in vitro. The results showed that these new iron-modified cement-like biomaterials have cytocompatible features of interest not only as possible spinal cancellous bone replacement biomaterial but also as bone tissue engineering scaffolds.

  4. Iron induced RNA-oxidation in the general population and in mouse tissue

    DEFF Research Database (Denmark)

    Cejvanovic, Vanja; Kjær, Laura Kofoed; Bergholdt, Helle Kirstine Mørup

    2018-01-01

    Iron promotes formation of hydroxyl radicals by the Fenton reaction, subsequently leading to potential oxidatively generated damage of nucleic acids. Oxidatively generated damage to RNA, measured as 8-oxo-7,8-dihydroguanosine (8-oxoGuo) in urine, is increased in patients with genetic iron overloa...

  5. Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement

    International Nuclear Information System (INIS)

    Deng, Jianjun; Chen, Fei; Fan, Daidi; Zhu, Chenhui; Ma, Xiaoxuan; Xue, Wenjiao

    2013-01-01

    Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b = 23.7 and log K app = 4.57, respectively. The amount of iron (Fe 2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. - Highlights: • The iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared. • One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. • The binding properties could be modulated through alterations in pH and phosphate content presented in HLC. • A novel strategy for preparing iron-binding proteins was provided

  6. The effect of Tricresyl-Phosphate (TCP) as an additive on wear of Iron (Fe)

    Science.gov (United States)

    Ghose, Hiren M.; Ferrante, John; Honecy, Frank C.

    1987-01-01

    The effect of tricresyl phosphate (TCP) as an antiwear additive in lubricant trimethyol propane triheptanoate (TMPTH) was investigated. The objective was to examine step loading wear by use of surface analysis, wetting, and chemical bonding changes in the lubricant. The investigation consisted of steploading wear studies by a pin or disk tribometer, the effects on wear related to wetting by contact angle and surface tension measurements of various liquid systems, the chemical bonding changes between lubricant and TCP chromatographic analysis, and by determining the reaction between the TCP and metal surfaces through wear scar analysis by Auger emission spectroscopy (AES). The steploading curve for the base fluid alone shows rapid increase of wear rate with load. The steploading curve for the base fluid in presence of 4.25 percent by volume TCP under dry air purge has shown a great reduction of wear rate with all loads studied. It has also been found that the addition of 4.25 percent by volume TCP plus 0.33 percent by volume water to the base lubricant under N2 purge also greatly reduces the wear rate with all loads studied. AES surface analysis reveals a phosphate type wear resistant film, which greatly increases load-bearing capacity, formed on the iron disk. Preliminary chromatographic studies suggest that this film forms either because of ester oxidation or TCP degradation. Wetting studies show direct correlation between the spreading coefficient and the wear rate.

  7. Reactions between 52100 steel and tricresyl phosphate neat and mixed with hydrocarbon oil

    International Nuclear Information System (INIS)

    Arezzo, F.; Moore, R.L.

    1987-01-01

    Some of the results from a previous study which showed reactions between iron surfaces (52100 steel) and tricresyl phosphate (TCP) dissolved in hydrocarbon oil are discussed in this paper. This study had shown that microscale oxidation of the hydrocarbon oil and preferential adsorption phenomena within the oil system components may result in a desirable phosphate type of coating. This phosphate is organic and it is converted into iron phosphate on argon ion sputtering. Also discussed in this paper are the results of a more recent work which shows the reactivity of neat TCP with an identical 52100 steel surface. The results of electron spectroscopy for chemical analysis indicate that neat TCP behaves quite differently from TCP diluted in hydrocarbon oil. The phosphate generated on the metal surface by neat TCP yields predominantly a phosphide when subjected to argon ion sputtering. (orig.)

  8. Development of phosphate rock integrated with iron amendment for simultaneous immobilization of Zn and Cr(VI) in an electroplating contaminated soil.

    Science.gov (United States)

    Zhao, Ling; Ding, Zhenliang; Sima, Jingke; Xu, Xiaoyun; Cao, Xinde

    2017-09-01

    This study aims to develop an amendment for simultaneous immobilization of Zn and Cr(VI) in an abandoned electroplating contaminated soil. Nature phosphate rock was first activated with oxalic acid (O-PR) and then combined with FeSO 4 or zero-valent iron (ZVI) for immobilization of Zn and Cr(VI) from aqueous solutions. Finally, the optimized approach showing the highest immobilization ability in solution was applied in an electroplating contaminated soil. The O-PR combined with FeSO 4 was more effective in simultaneously removing Zn and Cr(VI) than the O-PR integrated with ZVI within the tested solution pH range of 5.5-8.5. Both O-PR with FeSO 4 and with ZVI removed over 95% of Zn from the solution; however, only 42-46% of Cr(VI) was immobilized by O-PR with ZVI, while O-PR with FeSO 4 almost precipitated all Cr(VI). Moreover, there were 75-95% Zn and 95-100% Cr(VI) remaining in the exhausted O-PR with FeSO 4 solid after toxicity characteristic leaching test (TCLP) while the exhausted O-PR with ZVI solid only retained 44-83% Zn and 32-72% Cr(VI). Zinc was immobilized mainly via formation of insoluble Fe-Zn phosphate co-precipitates, while iron-induced reduction of Cr(VI) into stable Cr(OH) 3 or Cr x Fe (1-x) (OH) 3 was responsible for Cr(VI) immobilization. Application of the O-PR integrated with FeSO 4 in the electroplating contaminated soil rapidly reduced the TCLP extractable Zn and Cr(VI) to below the standard limits, with decrease by 50% and 94%, respectively. This study revealed that combination of oxalic acid activated phosphate rock with FeSO 4 could be an effective amendment for remediation of Zn and Cr(VI) contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Phytases for Improved Iron Absorption

    DEFF Research Database (Denmark)

    Nielsen, Anne Veller Friis; Nyffenegger, Christian; Meyer, Anne S.

    2014-01-01

    Microbial phytases (EC 3.1.3.8) catalyse dephosphorylation of phytic acid, which is the primary storage compound for phosphorous in cereal kernels. The negatively charged phosphates in phytic acid chelate iron (Fe3+) and thus retards iron bioavailability in humans 1. Supplementation of microbial...... phytase can improve iron absorption from cereal-based diets 2. In order for phytase to catalyse iron release in vivo the phytase must be robust to low pH and proteolysis in the gastric ventricle. Our work has compared the robustness of five different microbial phytases, evaluating thermal stability...

  10. Fate of As(V)-treated nano zero-valent iron: determination of arsenic desorption potential under varying environmental conditions by phosphate extraction.

    Science.gov (United States)

    Dong, Haoran; Guan, Xiaohong; Lo, Irene M C

    2012-09-01

    Nano zero-valent iron (NZVI) offers a promising approach for arsenic remediation, but the spent NZVI with elevated arsenic content could arouse safety concerns. This study investigated the fate of As(V)-treated NZVI (As-NZVI), by examining the desorption potential of As under varying conditions. The desorption kinetics of As from As-NZVI as induced by phosphate was well described by a biphasic rate model. The effects of As(V)/NZVI mass ratio, pH, and aging time on arsenic desorption from As-NZVI by phosphate were investigated. Less arsenic desorption was observed at lower pH or higher As(V)/NZVI mass ratio, where stronger complexes (bidentate) formed between As(V) and NZVI corrosion products as indicated by FTIR analysis. Compared with the fresh As-NZVI, the amount of phosphate-extractable As significantly decreased in As-NZVI aged for 30 or 60 days. The results of the sequential extraction experiments demonstrated that a larger fraction of As was sorbed in the crystalline phases after aging, making it less susceptible to phosphate displacement. However, at pH 9, a slightly higher proportion of phosphate-extractable As was observed in the 60-day sample than in the 30-day sample. XPS results revealed the transformation of As(V) to more easily desorbed As(III) during aging and a higher As(III)/As(V) ratio in the 60-day sample at pH 9, which might have resulted in the higher desorption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Electro-thermal analysis of Lithium Iron Phosphate battery for electric vehicles

    Science.gov (United States)

    Saw, L. H.; Somasundaram, K.; Ye, Y.; Tay, A. A. O.

    2014-03-01

    Lithium ion batteries offer an attractive solution for powering electric vehicles due to their relatively high specific energy and specific power, however, the temperature of the batteries greatly affects their performance as well as cycle life. In this work, an empirical equation characterizing the battery's electrical behavior is coupled with a lumped thermal model to analyze the electrical and thermal behavior of the 18650 Lithium Iron Phosphate cell. Under constant current discharging mode, the cell temperature increases with increasing charge/discharge rates. The dynamic behavior of the battery is also analyzed under a Simplified Federal Urban Driving Schedule and it is found that heat generated from the battery during this cycle is negligible. Simulation results are validated with experimental data. The validated single cell model is then extended to study the dynamic behavior of an electric vehicle battery pack. The modeling results predict that more heat is generated on an aggressive US06 driving cycle as compared to UDDS and HWFET cycle. An extensive thermal management system is needed for the electric vehicle battery pack especially during aggressive driving conditions to ensure that the cells are maintained within the desirable operating limits and temperature uniformity is achieved between the cells.

  12. Electron-beam-induced reduction of Fe3+ in iron phosphate dihydrate, ferrihydrite, haemosiderin and ferritin as revealed by electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Pan, Ying-Hsi; Vaughan, Gareth; Brydson, Rik; Bleloch, Andrew; Gass, Mhairi; Sader, Kasim; Brown, Andy

    2010-01-01

    The effect of high-energy electron irradiation on ferritin/haemosiderin cores (in an iron-overloaded human liver biopsy), its mineral analogue; six-line ferrihydrite (6LFh), and iron phosphate dihydrate (which has similar octahedral ferric iron to oxygen coordination to that in ferrihydrite and ferritin/haemosiderin cores) has been investigated using electron energy-loss spectroscopy (EELS). Fe L 2,3 -ionisation edges were recorded on two types of electron microscope: a 200 keV transmission electron microscope (TEM) and a 100 keV scanning transmission electron microscope (STEM), in order to investigate the damage mechanisms in operation and to establish a methodology for minimum specimen alteration during analytical electron microscopic characterisation. A specimen damage mechanism dominated by radiolysis that results in the preferential loss of iron co-ordinating ligands (O, OH and H 2 O) is discussed. The net result of irradiation is structural re-organisation and reduction of iron within the iron hydroxides. At sufficiently low electron fluence and particularly in the lower incident energy, finer probe diameter STEM, the alteration is shown to be minimal. All the materials examined exhibit damage which as a function of cumulative fluence is best fitted by an inverse power-law, implying that several chemical and structural changes occur in response to the electron beam and we suggest that these are governed by secondary processes arising from the primary ionisation event. This work affirms that electron fluence and current density should be considered when measuring mixed valence ratios with EELS.

  13. FTIR and Mössbauer spectroscopic study of sodium–aluminum–iron phosphate glassy materials for high level waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, S.V., E-mail: serge.stefanovsky@yandex.ru [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Stefanovsky, O.I. [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Remizov, M.B.; Belanova, E.A.; Kozlov, P.V. [FSUE PA Mayak, Central Plant Laboratory, Ozersk, Chelyabinsk Reg. (Russian Federation); Glazkova, Ya.S.; Sobolev, A.V.; Presniakov, I.A. [Lomonosov Moscow State University, Department of Radiochemistry (Russian Federation); Kalmykov, S.N. [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Lomonosov Moscow State University, Department of Radiochemistry (Russian Federation); Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Laboratory of Radiochemistry, Moscow (Russian Federation); Myasoedov, B.F. [Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Laboratory of Radioecology and Radiation Problems, Moscow (Russian Federation); Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Laboratory of Radiochemistry, Moscow (Russian Federation)

    2015-11-15

    Complex sodium-aluminum-iron phosphate glassy materials with various Al{sub 2}O{sub 3} to Fe{sub 2}O{sub 3} ratio containing high level waste (HLW) surrogate were characterized by X-ray diffraction and scanning electron microscopy and studied in details by Fourier transform infrared (FTIR) spectroscopy. The samples with high Al{sub 2}O{sub 3} content and not containing Fe{sub 2}O{sub 3} were predominantly amorphous but subjected to devitrification under annealing. Addition of B{sub 2}O{sub 3} and partial Fe{sub 2}O{sub 3} substitution for Al{sub 2}O{sub 3} in the materials increases their resistance to devitrification whereas further substitution and NiO incorporation significantly increase the tendency to devitrification. FTIR spectra demonstrate changes in the structure of glassy materials caused by both structural variations in the anionic motif and occurrence of crystalline phases in the materials. According to Mössbauer spectroscopy data, iron in the glassy samples is present as octahedrally coordinated Fe{sup 3+} ions while in the partly devitrified samples iron is partitioned among vitreous and crystalline phases entering the vitreous phase mainly as Fe{sup 3+}O{sub 6} units and crystalline phases as major Fe{sup 3+} and minor Fe{sup 2+} ions in a magnetically ordered state and participating in a “fast” electronic exchange.

  14. Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jianjun; Chen, Fei; Fan, Daidi, E-mail: fandaidi@nwu.edu.cn; Zhu, Chenhui; Ma, Xiaoxuan; Xue, Wenjiao

    2013-10-01

    Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n{sub b}) and apparent association constant (K{sub app}) between iron and phosphorylated HLC were measured at n{sub b} = 23.7 and log K{sub app} = 4.57, respectively. The amount of iron (Fe{sup 2+} sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. - Highlights: • The iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared. • One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. • The binding properties could be modulated through alterations in pH and phosphate content presented in HLC. • A novel strategy for preparing iron-binding proteins was provided.

  15. Laboratory and pilot-scale field experiments for application of iron oxide nanoparticle-loaded chitosan composites to phosphate removal from natural water.

    Science.gov (United States)

    Kim, Jae-Hyun; Kim, Song-Bae; Lee, Sang-Hyup; Choi, Jae-Woo

    2018-03-01

    The aim of this study was to apply iron oxide nanoparticle-chitosan (ION-chitosan) composites to phosphate removal from natural water collected from the Seoho Stream in Suwon, Republic of Korea. Laboratory batch experiments showed that phosphate removal by the ION-chitosan composites was not sensitive to pH changes between pH values of 5.0 and 9.0. During six cycles of adsorption-desorption, the composites could be successfully regenerated with 5 mM NaOH solution and reused for phosphate removal. Laboratory fixed-bed column experiments (column height = 10 and 20 cm, inner diameter = 2.5 cm, flow rate = 8.18 and 16.36 mL/min) demonstrated that the composites could be successfully applied for phosphate removal under dynamic flow conditions. A pilot-scale field experiment was performed in a pilot plant, which was mainly composed of chemical reactor/dissolved air flotation and an adsorption tower, built nearby the Seoho Stream. The natural water was pumped from the Seoho Stream into the pilot plant, passed through the chemical reactor/dissolved air flotation process, and then introduced into the adsorption tower (height = 100 cm, inner diameter = 45 cm, flow rate = 7.05 ± 0.18 L/min) for phosphate removal via the composites (composite volume = 80 L, composite weight = 85.74 kg). During monitoring of the adsorption tower (33 days), the influent total phosphorus (T-P) concentration was in the range of 0.020-0.046 mgP/L, whereas the effluent T-P concentration was in the range of 0.010-0.028 mgP/L. The percent removal of T-P in the adsorption tower was 52.3% with a phosphate removal capacity of 0.059 mgP/g.

  16. Steroid hydroxylations: A paradigm for cytochrome P450 catalyzed mammalian monooxygenation reactions

    International Nuclear Information System (INIS)

    Estabrook, Ronald W.

    2005-01-01

    The present article reviews the history of research on the hydroxylation of steroid hormones as catalyzed by enzymes present in mammalian tissues. The report describes how studies of steroid hormone synthesis have played a central role in the discovery of the monooxygenase functions of the cytochrome P450s. Studies of steroid hydroxylation reactions can be credited with showing that: (a) the adrenal mitochondrial enzyme catalyzing the 11β-hydroxylation of deoxycorticosterone was the first mammalian enzyme shown by O 18 studies to be an oxygenase; (b) the adrenal microsomal enzyme catalyzing the 21-hydroxylation of steroids was the first mammalian enzyme to show experimentally the proposed 1:1:1 stoichiometry (substrate:oxygen:reduced pyridine nucleotide) of a monooxygenase reaction; (c) application of the photochemical action spectrum technique for reversal of carbon monoxide inhibition of the 21-hydroxylation of 17α-OH progesterone was the first demonstration that cytochrome P450 was an oxygenase; (d) spectrophotometric studies of the binding of 17α-OH progesterone to bovine adrenal microsomal P450 revealed the first step in the cyclic reaction scheme of P450, as it catalyzes the 'activation' of oxygen in a monooxygenase reaction; (e) purified adrenodoxin was shown to function as an electron transport component of the adrenal mitochondrial monooxygenase system required for the activity of the 11β-hydroxylase reaction. Adrenodoxin was the first iron-sulfur protein isolated and purified from mammalian tissues and the first soluble protein identified as a reductase of a P450; (f) fractionation of adrenal mitochondrial P450 and incubation with adrenodoxin and a cytosolic (flavoprotein) fraction were the first demonstration of the reconstitution of a mammalian P450 monooxygenase reaction

  17. Removal mechanism of phosphate from aqueous solution by fly ash.

    Science.gov (United States)

    Lu, S G; Bai, S Q; Zhu, L; Shan, H D

    2009-01-15

    This work studied the effectiveness of fly ash in removing phosphate from aqueous solution and its related removal mechanism. The adsorption and precipitation of phosphate by fly ash were investigated separately in order to evaluate their role in the removal of phosphate. Results showed that the removal of phosphate by fly ash was rapid. The removal percentage of phosphate in the first 5min reached 68-96% of the maximum removal of phosphate by fly ash. The removal processes of phosphate by fly ash included a fast and large removal representing precipitation, then a slower and longer removal due to adsorption. The adsorption of phosphate on fly ash could be described well by Freundlich isotherm equation. The pH and Ca2+ concentration of fly ash suspension were decreased with the addition of phosphate, which suggests that calcium phosphate precipitation is a major mechanism of the phosphate removal. Comparison of the relative contribution of the adsorption and precipitation to the total removal of phosphate by fly ash showed that the adsorption accounted for 30-34% of the total removal of phosphate, depending on the content of CaO in fly ash. XRD patterns of the fly ash before and after phosphate adsorption revealed that phosphate salt (CaHPO4 x 2H2O) was formed in the adsorption process. Therefore, the removal of phosphate by fly ash can be attributed to the formation of phosphate precipitation as a brushite and the adsorption on hydroxylated oxides. The results suggested that the use of fly ash could be a promising solution to the removal of phosphate in the wastewater treatment and pollution control.

  18. Recovery of uranium from phosphatic rock and its derivatives

    International Nuclear Information System (INIS)

    Romero Guzman, E.T.

    1992-01-01

    The recovery of uranium present in the manufacture process of phosphoric acid and fertilizers has been one interesting field of study in chemistry. It is true that the recovery of uranium it is not very attractive from the commercial point of view, however the phosphatic fertilizers have an important amount of uranium which comes from the starting materials (phosphatic rock), therefore there must be many tons of uranium that are dispersed in the environmental together with the fertilizers used in agriculture every year. They are utilized for the enrichment of the nutrients which are exhausted in the soil. In this work, uranium was identified and quantified in the phosphatic rocks and in inorganic fertilizers using Gamma Spectroscopy, Neutron Activation Analysis, UV/Visible Spectrophotometry, Alpha Spectroscopy. On the other hand, it was done a correlation of the behaviour of uranium with inorganic elements present in the samples such as phosphorus, calcium and iron; which were determined by UV/Visible Spectrophotometry for phosphorus and Atomic Absorption Spectrometry for calcium and iron. The quantity of uranium found in the phosphatic rock, phosphoric acid and fertilizers was considerable (70-200 ppm). The adequate conditions for the recovery of 40% of total of uranium from the phosphatic rock with the addition of leaching solutions were stablished. (Author)

  19. Potential of phytase-mediated iron release from cereal-based foods: a quantitative view

    DEFF Research Database (Denmark)

    Nielsen, Anne Veller Friis; Tetens, Inge; Meyer, Anne S.

    2013-01-01

    The major part of iron present in plant foods such as cereals is largely unavailable for direct absorption in humans due to complexation with the negatively charged phosphate groups of phytate (myo-inositol (1,2,3,4,5,6)-hexakisphosphate). Human biology has not evolved an efficient mechanism...... to naturally release iron from iron phytate complexes. This narrative review will evaluate the quantitative significance of phytase-catalysed iron release from cereal foods. In vivo studies have shown how addition of microbially derived phytases to cereal-based foods has produced increased iron absorption via...... phytate complexes, and (3) the extent of phytate dephosphorylation required for iron release from inositol phosphates is warranted. Phytase-mediated iron release can improve iron absorption from plant foods. There is a need for development of innovative strategies to obtain better effects....

  20. Recovery of uranium from 30 vol % tributyl phosphate solvents containing dibutyl phosphate

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1986-01-01

    A number of solid sorbents were tested for the removal of uranium and dibutyl phosphate (DBP) from 30% tributyl phosphate (TBP) solvent. The desired clean uranium product can be obtained either by removing the DBP, leaving the uranium in the solvent for subsequent stripping, or by removing the uranium, leaving the DBP in the solvent for subsequent treatment. The tests performed show that it is relatively easy to preferentially remove uranium from solvents containing uranium and DBP, but quite difficult to remove DBP preferentially. The current methods could be used by removing the uranium (as by a cation exchange resin) and then using either an anion exchange resin in the hydroxyl form or a conventional treatment with a basic solution to remove the DBP. Treatment of a solvent with a cation exchange resin could be useful for recovery of valuable metals from solvents containing DBP and might be used to remove cations before scrubbing a solvent with a basic solution to minimize emulsion formation. 6 refs., 9 figs

  1. Phosphate adsorption using modified iron oxide-based sorbents

    Data.gov (United States)

    U.S. Environmental Protection Agency — Phosphate Removal. This dataset is associated with the following publication: Lalley , J., C. Han , G. RamMohan , T. Speth , J. Garland , M. Nadagouda , and D....

  2. Effect of bicarbonate on iron-mediated oxidation of low-density lipoprotein

    Science.gov (United States)

    Arai, Hirofumi; Berlett, Barbara S.; Chock, P. Boon; Stadtman, Earl R.

    2005-07-01

    Oxidation of low-density lipoprotein (LDL) may play an important role in atherosclerosis. We studied the effects of bicarbonate/CO2 and phosphate buffer systems on metal ion-catalyzed oxidation of LDL to malondialdehyde (MDA) and to protein carbonyl and MetO derivatives. Our results revealed that LDL oxidation in mixtures containing free iron or heme derivatives was much greater in bicarbonate/CO2 compared with phosphate buffer. However, when copper was substituted for iron in these mixtures, the rate of LDL oxidation in both buffers was similar. Iron-catalyzed oxidation of LDL was highly sensitive to inhibition by phosphate. Presence of 0.3-0.5 mM phosphate, characteristic of human serum, led to 30-40% inhibition of LDL oxidation in bicarbonate/CO2 buffer. Iron-catalyzed oxidation of LDL to MDA in phosphate buffer was inhibited by increasing concentrations of albumin (10-200 μM), whereas MDA formation in bicarbonate/CO2 buffer was stimulated by 10-50 μM albumin but inhibited by higher concentrations. However, albumin stimulated the oxidation of LDL proteins to carbonyl derivatives at all concentrations examined in both buffers. Conversion of LDL to MDA in bicarbonate/CO2 buffer was greatly stimulated by ADP, ATP, and EDTA but only when EDTA was added at a concentration equal to that of iron. At higher than stoichiometric concentrations, EDTA prevented oxidation of LDL. Results of these studies suggest that interactions between bicarbonate and iron or heme derivatives leads to complexes with redox potentials that favor the generation of reactive oxygen species and/or to the generation of highly reactive CO2 anion or bicarbonate radical that facilitates LDL oxidation. Freely available online through the PNAS open access option.Abbreviations: LDL, low-density lipoprotein; MDA, malondialdehyde; MetO, methionine sulfoxide.

  3. Isolation of phosphate solubiliser fungi from Araza rhizosphere

    International Nuclear Information System (INIS)

    Vera, Diana Fernanda; Perez, Hernando; Valencia Hernando

    2002-01-01

    Araza is an eatable plant, original from the Amazon region, which has been described as a promising species for commercialization (Quevedo 1995). This plant has high productivity even in low content phosphate soil but the presence of phosphate solubilizing microorganisms may contribute to increase this element availability. In this study we report the isolation and characterization of solubilizing fungi processed using the soil washing method, from soil samples were araza is cultivated at two regions in Guaviare, Colombia. Eighteen isolates of fungi capable of solubilizing phosphate were obtained from 2 different sources. The most important species that solubilized phosphate from calcium were Trichoderma aureoviride, Aspergillus aculeatus, Trichoderma strain 1 y Trichoderma strain 2 and for phosphate from iron: Aspergillus oryzae, Paecilomyces strain 3, Gongronella butleri and Fusarium oxysporum

  4. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates.

    Science.gov (United States)

    Delaire, Caroline; van Genuchten, Case M; Amrose, Susan E; Gadgil, Ashok J

    2016-10-15

    Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment option for groundwater containing arsenic and bacterial contamination. However, the mechanisms of bacteria attenuation and the impact of major groundwater ions are not well understood. In this work, using the model indicator Escherichia coli (E. coli), we show that physical removal via enmeshment in EC precipitate flocs is the primary process of bacteria attenuation in the presence of HCO3(-), which significantly inhibits inactivation, possibly due to a reduction in the lifetime of reactive oxidants. We demonstrate that the adhesion of EC precipitates to cell walls, which results in bacteria encapsulation in flocs, is driven primarily by interactions between EC precipitates and phosphate functional groups on bacteria surfaces. In single solute electrolytes, both P (0.4 mM) and Ca/Mg (1-13 mM) inhibited the adhesion of EC precipitates to bacterial cell walls, whereas Si (0.4 mM) and ionic strength (2-200 mM) did not impact E. coli attenuation. Interestingly, P (0.4 mM) did not affect E. coli attenuation in electrolytes containing Ca/Mg, consistent with bivalent cation bridging between bacterial phosphate groups and inorganic P sorbed to EC precipitates. Finally, we found that EC precipitate adhesion is largely independent of cell wall composition, consistent with comparable densities of phosphate functional groups on Gram-positive and Gram-negative cells. Our results are critical to predict the performance of Fe-EC to eliminate bacterial contaminants from waters with diverse chemical compositions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A bench-scale study on the removal and recovery of phosphate by hydrous zirconia-coated magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhe; Fang, Wenkan; Xing, Mingchao; Wu, Deyi, E-mail: dywu@sjtu.edu.cn

    2017-02-15

    Owing to the easy magnetic separation from water for reuse, magnetic nanoparticles have drawn great interest as adsorbents. Herein hydrous zirconia-coated magnetite nanoparticles (Fe{sub 3}O{sub 4}@ZrO{sub 2}) were created by a facile method and a bench–scale study was undertaken to evaluate its effectiveness and mechanism to remove phosphate at low concentrations. Results indicated that phosphate removal by Fe{sub 3}O{sub 4}@ZrO{sub 2} was fast (95% of phosphate removal within 10 min) and nearly complete removal could be achieved at the adsorbent dosage >0.6 g/L. In tap water or wastewater where competitive anions coexist, regulation of pH was found to be quite effective to augment the performance of phosphate removal. In pH–lowered adsorption systems, phosphate removal followed a good pattern similarly to pure water, i.e., a continuous high efficiency removal followed by a rapid saturation. Adsorption–desorption–regeneration studies showed that Fe{sub 3}O{sub 4}@ZrO{sub 2} could be repeatedly used for phosphate removal and adsorbed phosphate could be stripped for recovery. The fractionation of adsorbed phosphorus suggested that NaOH-P fraction was dominant. We also found that the adsorption reaction of phosphate with Fe{sub 3}O{sub 4}@ZrO{sub 2} shifted the isoelectric point of Fe{sub 3}O{sub 4}@ZrO{sub 2} from ~9.0 to ~3.0. FTIR measurements further showed the direct coordination of phosphate onto zirconium by replacement of hydroxyl groups. The formation of the monodentate (ZrO)PO{sub 2}(OH) complex was proposed. - Highlights: • Hydrous zirconia–coated magnetite was used for phosphate capture. • Regulation of pH was able to enhance P removal in the presence of coexisting ions. • Phosphate was coordinated onto zirconium by replacement of hydroxyl groups. • The material could be easily separated from water for reuse by a magnet. • Desorption of phosphate from the material could be achieved with NaOH treatment.

  6. Complexation of Flavonoids with Iron: Structure and Optical Signatures

    Science.gov (United States)

    Ren, Jun; Meng, Sheng; Lekka, Ch. E.; Kaxiras, Efthimios

    2008-03-01

    Flavonoids exhibit antioxidant behavior believed to be related to their metal ion chelation ability. We investigate the complexation mechanism of several flavonoids, quercetin, luteolin, galangin, kaempferol and chrysin with iron, the most abundant type of metal ions in the body, through first- principles electronic structure calculations based on Density Functional Theory (DFT). We find that the most likely chelation site for Fe is the 3-hydroxyl-4-carbonyl group, followed by 4- carbonyl-5-hydroxyl group and the 3'-4' hydroxyl (if present) for all the flavonoid molecules studied. Three quercetin molecules are required to saturate the bonds of a single Fe ion by forming six orthogonal Fe-O bonds, though the binding energy per molecule is highest for complexes consisting of two quercetin molecules and one Fe atom, in agreement with experiment. Optical absorption spectra calculated with time- dependent DFT serve as signatures to identify various complexes. For the iron-quercetin complexes, we find a redshift of the first absorbance peak upon complexation in good agreement with experiment; this behavior is explained by the narrowing of the optical gap of quercetin due to Fe(d)--O(p) orbital hybridization.

  7. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode.

    Science.gov (United States)

    Hassoun, Jusef; Bonaccorso, Francesco; Agostini, Marco; Angelucci, Marco; Betti, Maria Grazia; Cingolani, Roberto; Gemmi, Mauro; Mariani, Carlo; Panero, Stefania; Pellegrini, Vittorio; Scrosati, Bruno

    2014-08-13

    We report an advanced lithium-ion battery based on a graphene ink anode and a lithium iron phosphate cathode. By carefully balancing the cell composition and suppressing the initial irreversible capacity of the anode in the round of few cycles, we demonstrate an optimal battery performance in terms of specific capacity, that is, 165 mAhg(-1), of an estimated energy density of about 190 Wh kg(-1) and a stable operation for over 80 charge-discharge cycles. The components of the battery are low cost and potentially scalable. To the best of our knowledge, complete, graphene-based, lithium ion batteries having performances comparable with those offered by the present technology are rarely reported; hence, we believe that the results disclosed in this work may open up new opportunities for exploiting graphene in the lithium-ion battery science and development.

  8. Serum Iron and Haemoglobin Estimation in Oral Submucous Fibrosis and Iron Deficiency Anaemia: A Diagnostic Approach.

    Science.gov (United States)

    Bhardwaj, Divya; Dinkar, Ajit D; Satoskar, Sujata K; Desai, Sapna Raut

    2016-12-01

    Oral Submucous Fibrosis (OSMF) is a premalignant condition with potential malignant behaviour characterized by juxta-epithelial fibrosis of the oral cavity. In the process of collagen synthesis, iron gets utilized, by the hydroxylation of proline and lysine, leading to decreased serum iron levels. The trace element like iron is receiving much attention in the detection of oral cancer and precancerous condition like OSMF as it was found to be significantly altered in these conditions. The aim of this study was to compare the haemoglobin and serum iron values of OSMF subjects with that of iron deficiency anaemia subjects. Total of 120 subjects were included, 40 subjects with the OSMF, 40 with the iron deficiency anemia without tobacco chewing habit, 40 healthy control subjects without OSMF and iron deficiency anaemia. A total of 5ml of venous blood was withdrawn from all the subjects and serum iron and haemoglobin levels were estimated for all the subjects. Estimation of iron was done using Ferrozine method and haemoglobin by Sahli's method. The statistical method applied were Kruskal Wallis, Mann Whitney and Pearson correlation coefficient test. There was a statistically significant difference in serum iron and haemoglobin level in all three groups (pauxillary test in assessment of prognosis of the disease.

  9. Oxidative Stress and the Homeodynamics of Iron Metabolism

    Science.gov (United States)

    Bresgen, Nikolaus; Eckl, Peter M.

    2015-01-01

    Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress. PMID:25970586

  10. Synthesis and characterization of iron (II and III) phosphates by X-ray diffraction and Scanning Electron Microscopy of high vacuum; Sintesis y caracterizacion de fosfatos de hierro (II, III) por difraccion de rayos X y microscopia electronica de barrido de alto vacio

    Energy Technology Data Exchange (ETDEWEB)

    Diaz F, J.C.; Solis M, L.; Garcia R, G.; Romero G, E.T. [Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The XRD and Sem techniques for determining the mineralogical and structural composition of iron II and III phosphates have been used. The mineralogical and structural composition of the materials revealed that they are the ferrous phosphate and the ferric phosphate. The contribution of the synthesis and characterization of these phosphates is that they can be used as components in the geological barriers capable to avoiding the dispersion from the hazardous radioactive materials to the environment. (Author)

  11. Shelf-to-basin iron shuttling enhances vivianite formation in deep Baltic Sea sediments

    Science.gov (United States)

    Reed, Daniel C.; Gustafsson, Bo G.; Slomp, Caroline P.

    2016-01-01

    Coastal hypoxia is a growing and persistent problem largely attributable to enhanced terrestrial nutrient (i.e., nitrogen and phosphorus) loading. Recent studies suggest phosphorus removal through burial of iron (II) phosphates, putatively vivianite, plays an important role in nutrient cycling in the Baltic Sea - the world's largest anthropogenic dead zone - yet the dynamics of iron (II) phosphate formation are poorly constrained. To address this, a reactive-transport model was used to reconstruct the diagenetic and depositional history of sediments in the Fårö basin, a deep anoxic and sulphidic region of the Baltic Sea where iron (II) phosphates have been observed. Simulations demonstrate that transport of iron from shelf sediments to deep basins enhances vivianite formation while sulphide concentrations are low, but that pyrite forms preferentially over vivianite when sulphate reduction intensifies due to elevated organic loading. Episodic reoxygenation events, associated with major inflows of oxic waters, encourage the retention of iron oxyhydroxides and iron-bound phosphorus in sediments, increasing vivianite precipitation as a result. Results suggest that artificial reoxygenation of the Baltic Sea bottom waters could sequester up to 3% of the annual external phosphorus loads as iron (II) phosphates, but this is negligible when compared to potential internal phosphorus loads due to dissolution of iron oxyhydroxides when low oxygen conditions prevail. Thus, enhancing vivianite formation through artificial reoxygenation of deep waters is not a viable engineering solution to eutrophication in the Baltic Sea. Finally, simulations suggest that regions with limited sulphate reduction and hypoxic intervals, such as eutrophic estuaries, could act as important phosphorus sinks by sequestering vivianite. This could potentially alleviate eutrophication in shelf and slope environments.

  12. Radiation damage to human erythrocytes. Relative contribution of hydroxyl and chloride radicals in N2O-saturated buffers

    International Nuclear Information System (INIS)

    Krokosz, Anita; Komorowska, Magdalena A.; Szweda-Lewandowska, Zofia

    2008-01-01

    The erythrocyte suspensions in Na-phosphate buffered isotonic NaCl solution (PBS) or Na-phosphate isotonic buffer (PB) (hematocrit 1%) were irradiated with the dose of 400 Gy under N 2 O. Erythrocytes were incubated in the medium in which the cells were irradiated or in fresh PBS. The level of damage to cells was estimated on the basis of the course of post-radiation hemolysis and hemoglobin (Hb) oxidation. The medium in which the cells were irradiated and incubated influenced the course of the post-radiation hemolysis and Hb oxidation as well as some other parameters. We discussed the contribution of hydroxyl and chloride radicals in the initiation of erythrocyte damage and oxygen modification of these processes

  13. Structure and properties of calcium iron phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Bin [School of Science, Southwest University of Science and Technology, Mianyang 621010 (China); Liang, Xiaofeng, E-mail: xfliangswust@gmail.com [Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Cuiling; Yang, Shiyuan [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2013-11-15

    The structural properties of xCaO–(100 − x) (0.4Fe{sub 2}O{sub 3}–0.6P{sub 2}O{sub 5}) (x = 0, 10, 20, 30, 40, 50 mol%) glasses have been investigated by XRD, DTA, IR and Raman spectroscopy. XRD analysis has confirmed that the majority of samples are X-ray amorphous, and EDS analysis indicates that the glass matrix can accommodate ≈30 mol% CaO. IR and Raman spectra show that the glass structure consists predominantly of pyrophosphate (Q{sup 1}) units. IR spectra indicate that the phosphate network is depolymerized with the addition of CaO content. The density and glass transition temperature (T{sub g}) increase with increasing CaO content for the glasses. This behavior indicates that the addition of CaO improves the strength of the cross-links between the phosphate chains of the glass.

  14. Study of electrochemical phosphate conversion coating of metallic surfaces

    International Nuclear Information System (INIS)

    Gougelin, Patrick

    1985-01-01

    After an overview on phosphate conversion coating processes, on models of iron electrochemical dissolution, on the passivation phenomenon, and on the phosphate conversion coating treatment, this research thesis reports a detailed study of this last process. The author presents the experimental method, reports the study of this process and of passivation under constant polarization. He reports the use of various techniques and conditions: chrono-amperometry, chrono-potentiometry, cyclic volt-amperometry

  15. Phosphate removal from digested sludge supernatant using modified fly ash.

    Science.gov (United States)

    Xu, Ke; Deng, Tong; Liu, Juntan; Peng, Weigong

    2012-05-01

    The removal of phosphate in digested sludge supernatant by modified coal fly ash was investigated in this study. Modification of the fly ash by the addition of sulfuric acid could significantly enhance its immobilization ability. The experimental results also showed that adsorption of phosphate by the modified fly ash was rapid with the removal percentage of phosphate reaching an equilibrium of 98.62% in less than 5 minutes. The optimum pH for phosphate removal was 9 and the removal percentage increased with increasing adsorbent dosage. The effect of temperature on phosphate removal efficiency was not significant from 20 to 40 degrees C. X-ray diffraction and scanning electron microscope analyses showed that phosphate formed an amorphous precipitate with water-soluble calcium, aluminum, and iron ions in the modified fly ash.

  16. Lithium iron phosphate with high-rate capability synthesized through hydrothermal reaction in glucose solution

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Guangchuan; Wang, Li; Ou, Xiuqin; Zhao, Xia; Xu, Shengzhao [Institute of Power Source and Ecomaterials Science, Box 1055, Hebei University of Technology, 300130 Tianjin (China)

    2008-10-01

    Carbon-coated lithium iron phosphate (LiFePO{sub 4}/C) was hydrothermally synthesized from commercial LiOH, FeSO{sub 4} and H{sub 3}PO{sub 4} as raw materials and glucose as carbon precursor in aqueous solution at 180 C for 6 h followed by being fired at 750 C for 6 h. The samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and constant current charge-discharge cycling test. The results show that the synthesized powders are in situ coated with carbon precursor produced from glucose. At ambient temperature (25{+-}2 C), the specific discharge capacities are 154 mAh g{sup -1} at 0.2C and 136 mAh g{sup -1} at 5 C rate, and the cycling capacity retention rate reaches 98% over 90 cycles. The excellent electrochemical performance can be correlated with the in situ formation of carbon precursor/carbon, thus leading to the even distribution of carbon and the enhancement of conductibility of individual grains. (author)

  17. Optimization of Inactive Material Content in Lithium Iron Phosphate Electrodes for High Power Applications

    International Nuclear Information System (INIS)

    Ha, Seonbaek; Ramani, Vijay K.; Lu, Wenquan; Prakash, Jai

    2016-01-01

    The electrochemical performance of lithium iron phosphate (LiFePO 4 ) electrodes has been studied to find the optimum content of inactive materials (carbon black + polyvinylidene difluoride [PVDF] polymer binder) and to better understand electrode performance with variation in electrode composition. Trade-offs between inactive material content and electrochemical performance have been characterized in terms of electrical resistance, rate-capability, area-specific impedance (ASI), pulse-power characterization, and energy density calculations. The ASI and electrical conductivity were found to correlate well with ohmic polarization. The results showed that a 80:10:10 (active material: binder: carbon agents) electrode had a higher pulse-power density and energy density at rates above 1C as compared to 90:5:5, 86:7:7 and 70:15:15 formulations, while the 70:15:15 electrode had the highest electrical conductivity of 0.79 S cm −1 . A CB/PVDF ratio of ca. 1.22 was found to be the optimum formulation of inactive material when the LiFePO 4 composition was 80 wt%.

  18. LiFePO4 Nanostructures Fabricated from Iron(III) Phosphate (FePO4 x 2H2O) by Hydrothermal Method.

    Science.gov (United States)

    Saji, Viswanathan S; Song, Hyun-Kon

    2015-01-01

    Electrode materials having nanometer scale dimensions are expected to have property enhancements due to enhanced surface area and mass/charge transport kinetics. This is particularly relevant to intrinsically low electronically conductive materials such as lithium iron phosphate (LiFePO4), which is of recent research interest as a high performance intercalation electrode material for Li-ion batteries. Many of the reported works on LiFePO4 synthesis are unattractive either due to the high cost of raw materials or due to the complex synthesis technique. In this direction, synthesis of LiFePO4 directly from inexpensive FePO4 shows promise.The present study reports LiFePO4 nanostructures prepared from iron (III) phosphate (FePO4 x 2H2O) by precipitation-hydrothermal method. The sintered powder was characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Inductive coupled plasma-optical emission spectroscopy (ICP-OES), and Electron microscopy (SEM and TEM). Two synthesis methods, viz. bulk synthesis and anodized aluminum oxide (AAO) template-assisted synthesis are reported. By bulk synthesis, micro-sized particles having peculiar surface nanostructuring were formed at precipitation pH of 6.0 to 7.5 whereas typical nanosized LiFePO4 resulted at pH ≥ 8.0. An in-situ precipitation strategy inside the pores of AAO utilizing the spin coating was utilized for the AAO-template-assisted synthesis. The template with pores filled with the precipitate was subsequently subjected to hydrothermal process and high temperature sintering to fabricate compact rod-like structures.

  19. Physical–chemical and biological behavior of an amorphous calcium phosphate thin film produced by RF-magnetron sputtering

    International Nuclear Information System (INIS)

    Santos, Euler A. dos; Moldovan, Simona; Mateescu, Mihaela; Faerber, Jacques; Acosta, Manuel; Pelletier, Hervé; Anselme, Karine; Werckmann, Jacques

    2012-01-01

    This work evaluates the thermal reactivity and the biological reactivity of an amorphous calcium phosphate thin film produced by radio frequency (RF) magnetron sputtering onto titanium substrates. The analyses showed that the sputtering conditions used in this work led to the deposition of an amorphous calcium phosphate. The thermal treatment of this amorphous coating in the presence of H 2 O and CO 2 promoted the formation of a carbonated HA crystalline coating with the entrance of CO 3 2− ions into the hydroxyl HA lattice. When immersed in culture medium, the amorphous and carbonated coatings exhibited a remarkable instability. The presence of proteins increased the dissolution process, which was confirmed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. Moreover, the carbonated HA coating induced precipitation independently of the presence of proteins under dynamic conditions. Despite this surface instability, this reactive calcium phosphate significantly improved the cellular behavior. The cell proliferation was higher on the Ticp than on the calcium phosphate coatings, but the two coatings increased cellular spreading and stress fiber formation. In this sense, the presence of reactive calcium phosphate coatings can stimulate cellular behavior. - Highlights: ► Functionalization of Ti with reactive CaP thin film by RF-magnetron sputtering. ► De-hydroxylation facilitating the insertion of CO 3 2− into the HA lattice. ► High surface reactivity in the presence of culture medium. ► Cell behavior improved by the presence of reactive films.

  20. Electron-beam-induced reduction of Fe{sup 3+} in iron phosphate dihydrate, ferrihydrite, haemosiderin and ferritin as revealed by electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ying-Hsi; Vaughan, Gareth; Brydson, Rik [Institute for Materials Research, SPEME, University of Leeds, Leeds LS2 9JT (United Kingdom); Bleloch, Andrew; Gass, Mhairi [SuperSTEM, Daresbury Laboratories, Warrington WA4 4AD (United Kingdom); Sader, Kasim [Institute for Materials Research, SPEME, University of Leeds, Leeds LS2 9JT (United Kingdom); SuperSTEM, Daresbury Laboratories, Warrington WA4 4AD (United Kingdom); Brown, Andy, E-mail: a.p.brown@leeds.ac.uk [Institute for Materials Research, SPEME, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2010-07-15

    The effect of high-energy electron irradiation on ferritin/haemosiderin cores (in an iron-overloaded human liver biopsy), its mineral analogue; six-line ferrihydrite (6LFh), and iron phosphate dihydrate (which has similar octahedral ferric iron to oxygen coordination to that in ferrihydrite and ferritin/haemosiderin cores) has been investigated using electron energy-loss spectroscopy (EELS). Fe L{sub 2,3}-ionisation edges were recorded on two types of electron microscope: a 200 keV transmission electron microscope (TEM) and a 100 keV scanning transmission electron microscope (STEM), in order to investigate the damage mechanisms in operation and to establish a methodology for minimum specimen alteration during analytical electron microscopic characterisation. A specimen damage mechanism dominated by radiolysis that results in the preferential loss of iron co-ordinating ligands (O, OH and H{sub 2}O) is discussed. The net result of irradiation is structural re-organisation and reduction of iron within the iron hydroxides. At sufficiently low electron fluence and particularly in the lower incident energy, finer probe diameter STEM, the alteration is shown to be minimal. All the materials examined exhibit damage which as a function of cumulative fluence is best fitted by an inverse power-law, implying that several chemical and structural changes occur in response to the electron beam and we suggest that these are governed by secondary processes arising from the primary ionisation event. This work affirms that electron fluence and current density should be considered when measuring mixed valence ratios with EELS.

  1. Vivianite as an important iron phosphate precipitate in sewage treatment plants

    NARCIS (Netherlands)

    Wilfert, P.K.; Mandalidis, A.; Dugulan, A.I.; Goubitz, K.; Korving, L; Temmink, H; Witkamp, G.J.; van Loosdrecht, Mark C.M.

    2016-01-01

    Iron is an important element for modern sewage treatment, inter alia to remove phosphorus from sewage. However, phosphorus recovery from iron phosphorus containing sewage sludge, without incineration, is not yet economical. We believe, increasing the knowledge about iron-phosphorus speciation in

  2. Iron Supplementation Associated With Loss of Phenotype in Autosomal Dominant Hypophosphatemic Rickets.

    Science.gov (United States)

    Kapelari, Klaus; Köhle, Julia; Kotzot, Dieter; Högler, Wolfgang

    2015-09-01

    Autosomal dominant hypophosphatemic rickets (ADHR) is the only hereditary disorder of renal phosphate wasting in which patients may regain the ability to conserve phosphate. Low iron status plays a role in the pathophysiology of ADHR. This study reports of a girl with ADHR, iron deficiency, and a paternal history of hypophosphatemic rickets that resolved without treatment. The girl's biochemical phenotype resolved with iron supplementation. A 26-month-old girl presented with typical features of hypophosphatemic rickets, short stature (79 cm; -2.82 SDS), and iron deficiency. Treatment with elemental phosphorus and calcitriol improved her biochemical profile and resolved the rickets. The girl's father had presented with rickets at age 11 months but never received medication. His final height was reduced (154.3 cm; -3.51 SDS), he had undergone corrective leg surgery and had an adult normal phosphate, fibroblast growth factor 23, and iron status. Father and daughter were found to have a heterozygous mutation in exon 3 of the FGF23 gene (c.536G>A, p.Arg179Gln), confirming ADHR. Withdrawal of rickets medication was attempted off and on iron supplementation. Withdrawal of rickets medication in the girl was unsuccessful in the presence of low-normal serum iron levels at age 5.6 years but was later successful in the presence of high-normal serum iron levels following high-dose iron supplementation. We report an association between iron supplementation and a complete loss of biochemical ADHR phenotype, allowing withdrawal of rickets medication. Experience from this case suggests that reduction and withdrawal of rickets medication should be attempted only after iron status has been optimized.

  3. Niobium phosphates as an intermediate temperature proton conducting electrolyte for fuel cells

    DEFF Research Database (Denmark)

    Huang, Yunjie; Li, Qingfeng; Jensen, Annemette Hindhede

    2012-01-01

    A new proton conductor based on niobium phosphates was synthesized using niobium pentoxide and phosphoric acid as precursors. The existence of hydroxyl groups in the phosphates was confirmed and found to be preserved after heat treatment at 500 °C or higher, contributing to an anhydrous proton co...... are of high interest as potential proton conducting electrolytes for fuel cells operational in an intermediate temperature range....... conductivity of 1.6 × 10−2 S cm−1 at 250 °C. The conductivity increased with water content in the atmosphere and reached 5.8 × 10−2 S cm−1 under pure water vapour at the same temperature. The conductivity showed good stability in the low water partial pressure range of up to 0.05 atm. The metal phosphates...

  4. Low temperature setting iron phosphate ceramics as a stabilization and solidification agent for incinerator ash contaminated with transuranic and RCRA metals

    International Nuclear Information System (INIS)

    Medvedev, P.G.; Hansen, M.; Wood, E.L.; Frank, S.M.; Sidwell, R.W.; Giglio, J.J.; Johnson, S.G.; Macheret, J.

    1997-01-01

    Incineration of combustible Mixed Transuranic Waste yields an ash residue that contains oxides of Resource Conservation and Recovery Act (RCRA) and transuranic metals. In order to dispose of this ash safely, it has to be solidified and stabilized to satisfy appropriate requirements for repository disposal. This paper describes a new method for solidification of incinerator ash, using room temperature setting iron phosphate ceramics, and includes fabrication procedures for these waste forms as well as results of the MCC-1 static leach test, XRD analysis, scanning electron microscopy studies and density measurements of the solidified waste form produced

  5. Prevalence of anemia, iron deficiency, thalassemia and glucose-6-phosphate dehydrogenase deficiency among hill-tribe school children in Omkoi District, Chiang Mai Province, Thailand.

    Science.gov (United States)

    Yanola, Jintana; Kongpan, Chatpat; Pornprasert, Sakorn

    2014-07-01

    The prevalaence of anemia, iron deficiency, thalassemia and glucose-6-phosphate dehydrogenase (G-6-PD) deficiency were examined among 265 hill-tribe school children, 8-14 years of age, from Omkoi District, Chiang Mai Province, Thailand. Anemia was observed in 20 school children, of whom 3 had iron deficiency anemia. The prevalence of G-6-PD deficiency and β-thalassemia trait [codon 17 (A>T), IVSI-nt1 (G>T) and codons 71/72 (+A) mutations] was 4% and 8%, respectively. There was one Hb E trait, and no α-thalassemia-1 SEA or Thai type deletion. Furthermore, anemia was found to be associated with β-thalassemia trait in 11 children. These data can be useful for providing appropriate prevention and control of anemia in this region of Thailand.

  6. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer

    Science.gov (United States)

    Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Böhlke, J.K.

    2017-01-01

    weeks. Additionally, Fe(II)-oxidizing, nitrate-reducing microbial enrichment cultures were obtained from aquifer sediments. Growth experiments with the cultures sequentially produced nitrite and nitrous oxide from nitrate while simultaneously oxidizing Fe(II). Field and culture results suggest that nitrogen oxide reduction and Fe(II) oxidation in the aquifer are a complex interaction of coupled biotic and abiotic reactions. Overall, the results of this study demonstrate that anoxic nitrate-dependent iron oxidation can occur in groundwater; that it could control iron speciation; and that the process can impact the mobility of other chemical species (e.g., phosphate and arsenic) not directly involved in the oxidation–reduction reaction.

  7. Quantitative Mechanistic Description of Natural Radionuclide and Iron Sorption on phosphate Fertilizer Materials

    International Nuclear Information System (INIS)

    Kamel, N.H.M.

    2008-01-01

    The mean activity values of the radionuclide 226 Ra, 238 U and 232 Th decay series, and the radioactive isotopes of 40 K in Bq/kg dry weight of the phosphate ore (Pho-ore), single super phosphate granules, (SSP-G), single super phosphate powder (SSP-P), triple super phosphate (TSP), and phosphogypsum (CaSO 4 ) samples were determined. CaSO 4 sample was found to contain, 300 Bq/kg of radioactive 238 U which is less than the values found in other studied phosphate samples. CaSO 4 sample was found to contain the highest amount of 226 Ra concentration value of 850 Bq/kg. Phosphate fertilizer components are acidic character, therefore, the solid surfaces will in general acquire a surface electric charge when contact with polar solvent such as water. The net electric charge obtained through uptake or release of potential determining ions (e.g, H + or OH - ). Thus the solid surfaces tend to adsorb and/or release of different ions to maintain neutral. The aim of this study is to determine the electric charge and the surface electric potential at the phosphate fertilizer materials

  8. Synthesis, characterization, and in vitro biological evaluation of highly stable diversely functionalized superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Bhattacharya, Dipsikha; Sahu, Sumanta K.; Banerjee, Indranil; Das, Manasmita; Mishra, Debashish; Maiti, Tapas K.; Pramanik, Panchanan

    2011-01-01

    In this article, we report the design and synthesis of a series of well-dispersed superparamagnetic iron oxide nanoparticles (SPIONs) using chitosan as a surface modifying agent to develop a potential T 2 contrast probe for magnetic resonance imaging (MRI). The amine, carboxyl, hydroxyl, and thiol functionalities were introduced on chitosan-coated magnetic probe via simple reactions with small reactive organic molecules to afford a series of biofunctionalized nanoparticles. Physico-chemical characterizations of these functionalized nanoparticles were performed by TEM, XRD, DLS, FTIR, and VSM. The colloidal stability of these functionalized iron oxide nanoparticles was investigated in presence of phosphate buffer saline, high salt concentrations and different cell media for 1 week. MRI analysis of human cervical carcinoma (HeLa) cell lines treated with nanoparticles elucidated that the amine-functionalized nanoparticles exhibited higher amount of signal darkening and lower T 2 relaxation in comparison to the others. The cellular internalization efficacy of these functionalized SPIONs was also investigated with HeLa cancer cell line by magnetically activated cell sorting (MACS) and fluorescence microscopy and results established selectively higher internalization efficacy of amine-functionalized nanoparticles to cancer cells. These positive attributes demonstrated that these nanoconjugates can be used as a promising platform for further in vitro and in vivo biological evaluations.

  9. Metal Phosphate-Supported Pt Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Xiaoshuang Qian

    2014-12-01

    Full Text Available Oxides (such as SiO2, TiO2, ZrO2, Al2O3, Fe2O3, CeO2 have often been used to prepare supported Pt catalysts for CO oxidation and other reactions, whereas metal phosphate-supported Pt catalysts for CO oxidation were rarely reported. Metal phosphates are a family of metal salts with high thermal stability and acid-base properties. Hydroxyapatite (Ca10(PO46(OH2, denoted as Ca-P-O here also has rich hydroxyls. Here we report a series of metal phosphate-supported Pt (Pt/M-P-O, M = Mg, Al, Ca, Fe, Co, Zn, La catalysts for CO oxidation. Pt/Ca-P-O shows the highest activity. Relevant characterization was conducted using N2 adsorption-desorption, inductively coupled plasma (ICP atomic emission spectroscopy, X-ray diffraction (XRD, transmission electron microscopy (TEM, CO2 temperature-programmed desorption (CO2-TPD, X-ray photoelectron spectroscopy (XPS, and H2 temperature-programmed reduction (H2-TPR. This work furnishes a new catalyst system for CO oxidation and other possible reactions.

  10. Pretreatment of Raw Biochar and Phosphate Removal Performance of Modified Granular Iron/Biochar

    Institute of Scientific and Technical Information of China (English)

    Jing Ren; Nan Li; Lin Zhao; Lei Li

    2017-01-01

    Biochar is a potential carrier for nutrients due to its porous nature and abundant functional groups. However, raw biochar has a limited or even negative capacity to adsorb phosphate. To enhance phosphate removal and reduce phos-phate releases, acidic, alkaline, and surfactant pretreatments, followed by granulation and ferric oxide loading, were applied to raw biochar powder (Bp). The alkaline pretreatment proved to be the most effective method and exhibited significant pore expansion and surface oxidation. Bg-OH-FO showed the highest phosphate removal efficiency at 99.2%(initial phos-phate concentration of 20 mg/L) after granulation and ferric oxide loading. Static adsorption results indicated that a pH value of 4 was the most suitable for phosphate adsorption because of the surface properties of Bg-OH-FO and the dis-tribution of P (V) in water. Higher temperatures and a larger initial phosphate concentration led to better adsorption;the adsorption capacity of Bg-OH-FO was 1.91 mg/g at 313 K with an initial phosphate concentration of 50 mg/L. The Bg-OH-FO adsorption process was endothermic in nature. The Freundlich model seemed to be the optimum isotherm model for Bg-OH-FO. Under continuous adsorption, the flow rate and bed depth were changed to optimize the operation con-ditions. The results indicate that a slow flow rate and high bed depth helped increase the removal efficiency (η) of the fixed bed. The breakthrough curves fitted well with the Yoon–Nelson model.

  11. Radiation damage to human erythrocytes. Relative contribution of hydroxyl and chloride radicals in N{sub 2}O-saturated buffers

    Energy Technology Data Exchange (ETDEWEB)

    Krokosz, Anita [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90 237 Lodz (Poland)], E-mail: krokosz@biol.uni.lodz.pl; Komorowska, Magdalena A.; Szweda-Lewandowska, Zofia [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90 237 Lodz (Poland)

    2008-06-15

    The erythrocyte suspensions in Na-phosphate buffered isotonic NaCl solution (PBS) or Na-phosphate isotonic buffer (PB) (hematocrit 1%) were irradiated with the dose of 400 Gy under N{sub 2}O. Erythrocytes were incubated in the medium in which the cells were irradiated or in fresh PBS. The level of damage to cells was estimated on the basis of the course of post-radiation hemolysis and hemoglobin (Hb) oxidation. The medium in which the cells were irradiated and incubated influenced the course of the post-radiation hemolysis and Hb oxidation as well as some other parameters. We discussed the contribution of hydroxyl and chloride radicals in the initiation of erythrocyte damage and oxygen modification of these processes.

  12. Recovery of uranium from wet process by the chloridic leaching of phosphate rocks

    International Nuclear Information System (INIS)

    Santana, A.O.; Paula, H.C.B.; Dantas, C.C.

    1984-01-01

    Uranium was recovered from chloridic leach liquor of phosphate rocks by solvent extraction on a laboratory scale. The extractor system is a mixture of di-(2-ethylhexyl) phosphoric acid (D 2 EHPA) and tributyl-phosphate (TBP) in a varsol diluent. The uranium concentration is 150 ppm in the rocks and 12 ppm in the leach liquor. The phosphate rocks are leached on a semi-industrial scale for dicalcium phosphate production. The recovery process comprises the following steps: extraction, reextraction, iron removal and uranium precipitation. (orig./EF)

  13. Recovery of uranium from wet process by the chloridic leaching of phosphate rocks

    Energy Technology Data Exchange (ETDEWEB)

    Santana, A O; Paula, H C.B.; Dantas, C C

    1984-03-01

    Uranium was recovered from chloridic leach liquor of phosphate rocks by solvent extraction on a laboratory scale. The extractor system is a mixture of di-(2-ethylhexyl) phosphoric acid (D/sub 2/EHPA) and tributyl-phosphate (TBP) in a varsol diluent. The uranium concentration is 150 ppm in the rocks and 12 ppm in the leach liquor. The phosphate rocks are leached on a semi-industrial scale for dicalcium phosphate production. The recovery process comprises the following steps: extraction, reextraction, iron removal and uranium precipitation.

  14. Effects of phosphate addition on biofilm bacterial communities and water quality in annular reactors equipped with stainless steel and ductile cast iron pipes.

    Science.gov (United States)

    Jang, Hyun-Jung; Choi, Young-June; Ro, Hee-Myong; Ka, Jong-Ok

    2012-02-01

    The impact of orthophosphate addition on biofilm formation and water quality was studied in corrosion-resistant stainless steel (STS) pipe and corrosion-susceptible ductile cast iron (DCI) pipe using cultivation and culture-independent approaches. Sample coupons of DCI pipe and STS pipe were installed in annular reactors, which were operated for 9 months under hydraulic conditions similar to a domestic plumbing system. Addition of 5 mg/L of phosphate to the plumbing systems, under low residual chlorine conditions, promoted a more significant growth of biofilm and led to a greater rate reduction of disinfection by-products in DCI pipe than in STS pipe. While the level of THMs (trihalomethanes) increased under conditions of low biofilm concentration, the levels of HAAs (halo acetic acids) and CH (chloral hydrate) decreased in all cases in proportion to the amount of biofilm. It was also observed that chloroform, the main species of THM, was not readily decomposed biologically and decomposition was not proportional to the biofilm concentration; however, it was easily biodegraded after the addition of phosphate. Analysis of the 16S rDNA sequences of 102 biofilm isolates revealed that Proteobacteria (50%) was the most frequently detected phylum, followed by Firmicutes (10%) and Actinobacteria (2%), with 37% of the bacteria unclassified. Bradyrhizobium was the dominant genus on corroded DCI pipe, while Sphingomonas was predominant on non-corroded STS pipe. Methylobacterium and Afipia were detected only in the reactor without added phosphate. PCR-DGGE analysis showed that the diversity of species in biofilm tended to increase when phosphate was added regardless of the pipe material, indicating that phosphate addition upset the biological stability in the plumbing systems.

  15. Isolation and identification of iron ore-solubilising fungus

    Directory of Open Access Journals (Sweden)

    Damase Khasa

    2010-09-01

    Full Text Available Potential mineral-solubilising fungi were successfully isolated from the surfaces of iron ore minerals. Four isolates were obtained and identified by molecular and phylogenetic methods as close relatives of three different genera, namely Penicillium (for isolate FO, Alternaria (for isolates SFC2 and KFC1 and Epicoccum (for isolate SFC2B. The use of tricalcium phosphate (Ca3(PO42in phosphate-solubilising experiments confirmed isolate FO as the only phosphate solubiliser among the isolated fungi. The bioleaching capabilities of both the fungus and its spent liquid medium were tested and compared using two types of iron ore materials, conglomerate and shale, from the Sishen Iron Ore Mine as sources of potassium (K and phosphorus (P. The spent liquid medium removed more K (a maximum of 32.94% removal, from conglomerate, than the fungus (a maximum of 21.36% removal, from shale. However, the fungus removed more P (a maximum of 58.33% removal, from conglomerate than the spent liquid medium (a maximum of 29.25% removal, from conglomerate. The results also indicated a potential relationship between the removal of K or P and the production of organic acids by the fungus. A high production of gluconic acid could be related to the ability of the fungus to reduce K and P. Acetic, citric and maleic acids were also produced by the fungus, but in lower quantities. In addition, particle size and iron ore type were also shown to have significant effects on the removal of potassium and phosphorus from the iron ore minerals. We therefore conclude that the spent liquid medium from the fungal isolate FO can potentially be used for biobeneficiation of iron ore minerals.

  16. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation.

    Science.gov (United States)

    Chang, Cheng-Hsiung; Yang, Shang-Shyng

    2009-02-01

    In order to prepare the multi-functional biofertilizer, thermo-tolerant phosphate-solubilizing microbes including bacteria, actinomycetes, and fungi were isolated from different compost plants and biofertilizers. Except Streptomycesthermophilus J57 which lacked pectinase, all isolates possessed amylase, CMCase, chitinase, pectinase, protease, lipase, and nitrogenase activities. All isolates could solubilize calcium phosphate and Israel rock phosphate; various isolates could solubilize aluminum phosphate, iron phosphate, and hydroxyapatite. During composting, biofertilizers inoculated with the tested microbes had a significantly higher temperature, ash content, pH, total nitrogen, soluble phosphorus content, and germination rate than non-inoculated biofertilizer; total organic carbon and carbon-to-nitrogen ratio showed the opposite pattern. Adding these microbes can shorten the period of maturity, improve the quality, increase the soluble phosphorus content, and enhance the populations of phosphate-solubilizing and proteolytic microbes in biofertilizers. Therefore, inoculating thermo-tolerant phosphate-solubilizing microbes into agricultural and animal wastes represents a practical strategy for preparing multi-functional biofertilizer.

  17. Coprecipitation of arsenate with metal oxides. 3. Nature, mineralogy, and reactivity of iron(III)-aluminum precipitates.

    Science.gov (United States)

    Violante, Antonio; Pigna, Massimo; Del Gaudio, Stefania; Cozzolino, Vincenza; Banerjee, Dipanjan

    2009-03-01

    Coprecipitation involving arsenic with aluminum or iron has been studied because this technique is considered particularly efficient for removal of this toxic element from polluted waters. Coprecipitation of arsenic with mixed iron-aluminum solutions has received scant attention. In this work we studied (i)the mineralogy, surface properties, and chemical composition of mixed iron-aluminum oxides formed at initial Fe/Al molar ratio of 1.0 in the absence or presence of arsenate [As/ Fe+Al molar ratio (R) of 0, 0.01, or 0.1] and at pH 4.0, 7.0, and 10.0 and aged for 30 and 210 days at 50 degrees C and (ii) the removal of arsenate from the coprecipitates after addition of phosphate. The amounts of short-range ordered precipitates (ferrihydrite, aluminous ferrihydrite and/or poorly crystalline boehmite) were greater than those found in iron and aluminum systems (studied in previous works), due to the capacity of both aluminum and arsenate to retard or inhibitthe transformation of the initially formed precipitates into well-crystallized oxides (gibbsite, bayerite, and hematite). As a consequence, the surface areas of the iron-aluminum oxides formed in the absence or presence of arsenate were usually much larger than those of aluminum or iron oxides formed under the same conditions. Arsenate was found to be associated mainly into short-range ordered materials. Chemical composition of all samples was affected by pH, initial R, and aging. Phosphate sorption was facilitated by the presence of short-range ordered materials, mainly those richer in aluminum, but was inhibited by arsenate present in the samples. The quantities of arsenate replaced by phosphate, expressed as percentages of its total amount present in the samples, were particularly low, ranging from 10% to 26%. A comparison of the desorption of arsenate by phosphate from aluminum-arsenate and iron-arsenate (studied in previous works) and iron-aluminum-arsenate coprecipitates evidenced that phosphate has a greater

  18. Availability of native and added phosphates for the soil

    International Nuclear Information System (INIS)

    Scivittaro, W.B.; Boaretto, A.E.; Muraoka, T.

    1995-01-01

    In superficial composite samples of two Red-Yellow Latosols with different physical and chemical properties, analyses were carried out on inorganic form of phosphorus as well as the availability of native and added phosphates. The method applied was soil phosphorus fractionation associated with isotopic dilution technique ( 32 P). The samples were taken from pots containing soils incubated for a month with fluid phosphatic fertilizers (phosphoric acid and 10-30-00 suspension) and solid phosphatic fertilizers (mono ammonium phosphate and triple superphosphate), at the rate of 210 mg P 2 O 5 /kg of soil. A control treatment was included. In both soils the availability of inorganic phosphorus fractions decreased at the following order: H 2 O-P > Al-P > Fe-P > CA-P > occluded-P. The water soluble and aluminium phosphates represented the main source of available P for the newly fertilizer, the iron phosphates were also an important source of available phosphorus. The soil phosphorus fixing capacity influenced the availability of native and added phosphates. (author). 17 refs, 3 tabs

  19. 21 CFR 172.814 - Hydroxylated lecithin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydroxylated lecithin. 172.814 Section 172.814 Food... Multipurpose Additives § 172.814 Hydroxylated lecithin. The food additive hydroxylated lecithin may be safely... obtained by the treatment of lecithin in one of the following ways, under controlled conditions whereby the...

  20. Differences and Comparisons of the Properties and Reactivities of Iron(III)–hydroperoxo Complexes with Saturated Coordination Sphere

    Science.gov (United States)

    Faponle, Abayomi S; Quesne, Matthew G; Sastri, Chivukula V; Banse, Frédéric; de Visser, Sam P

    2015-01-01

    Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)–oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)–hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)–hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)–hydroperoxo reacted directly with substrates or that an initial O–O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)–hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)–hydroperoxo complex with pentadentate ligand system (L52). Direct C–O bond formation by an iron(III)–hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L52)FeIII(OOH)]2+ should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)–hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O–O bond, whereas a heterolytic O–O bond breaking in heme iron(III)–hydroperoxo is found. PMID:25399782

  1. Quantification of hydroxyl radical produced during phacoemulsification.

    Science.gov (United States)

    Gardner, Jonathan M; Aust, Steven D

    2009-12-01

    To quantitate hydroxyl radicals produced during phacoemulsification with various irrigating solutions and conditions used in cataract surgery. Chemistry and Biochemistry Department, Utah State University, Logan, Utah, USA. All experiments were performed using an Infiniti Vision System phacoemulsifier with irrigation and aspiration. Hydroxyl radicals were quantitated using electron spin resonance spectroscopy and a spectrophotometric assay for malondialdehyde, which is formed by the oxidation of deoxyribose by the hydroxyl radical. Hydroxyl radical production increased during longitudinal-stroking phacoemulsification as power levels were increased in a nonlinear, nonexponential fashion. The detection of hydroxyl radical was reduced in irrigating solutions containing organic molecules (eg, citrate, acetate, glutathione, dextrose) and further reduced in Navstel, an irrigating solution containing a viscosity-modifying agent, hydroxypropyl methylcellulose. Hydroxyl radicals produced in settings representative of those used in phacoemulsification cataract surgery were quantitated using the deoxyribose method. Hydroxyl radical production was dependent on the level of ultrasound power applied and the irrigating solution used. Oxidative stress on the eye during phacoemulsification may be minimized by using irrigating solutions that contain organic molecules, including the viscosity-modifying agent hydroxypropyl methylcellulose, that can compete for reaction with hydroxyl radicals.

  2. Prolyl hydroxylation in elastin is not random.

    Science.gov (United States)

    Schmelzer, Christian E H; Nagel, Marcus B M; Dziomba, Szymon; Merkher, Yulia; Sivan, Sarit S; Heinz, Andrea

    2016-10-01

    This study aimed to investigate the prolyl and lysine hydroxylation in elastin from different species and tissues. Enzymatic digests of elastin samples from human, cattle, pig and chicken were analyzed using mass spectrometry and bioinformatics tools. It was confirmed at the protein level that elastin does not contain hydroxylated lysine residues regardless of the species. In contrast, prolyl hydroxylation sites were identified in all elastin samples. Moreover, the analysis of the residues adjacent to prolines allowed the determination of the substrate site preferences of prolyl 4-hydroxylase. It was found that elastins from all analyzed species contain hydroxyproline and that at least 20%-24% of all proline residues were partially hydroxylated. Determination of the hydroxylation degrees of specific proline residues revealed that prolyl hydroxylation depends on both the species and the tissue, however, is independent of age. The fact that the highest hydroxylation degrees of proline residues were found for elastin from the intervertebral disc and knowledge of elastin arrangement in this tissue suggest that hydroxylation plays a biomechanical role. Interestingly, a proline-rich domain of tropoelastin (domain 24), which contains several repeats of bioactive motifs, does not show any hydroxyproline residues in the mammals studied. The results show that prolyl hydroxylation is not a coincidental feature and may contribute to the adaptation of the properties of elastin to meet the functional requirements of different tissues. The study for the first time shows that prolyl hydroxylation is highly regulated in elastin. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Prolyl hydroxylation in elastin is not random

    DEFF Research Database (Denmark)

    Schmelzer, Christian E H; Nagel, Marcus B M; Dziomba, Szymon

    2016-01-01

    BACKGROUND: This study aimed to investigate the prolyl and lysine hydroxylation in elastin from different species and tissues. METHODS: Enzymatic digests of elastin samples from human, cattle, pig and chicken were analyzed using mass spectrometry and bioinformatics tools. RESULTS: It was confirmed...... at the protein level that elastin does not contain hydroxylated lysine residues regardless of the species. In contrast, prolyl hydroxylation sites were identified in all elastin samples. Moreover, the analysis of the residues adjacent to prolines allowed the determination of the substrate site preferences...... of prolyl 4-hydroxylase. It was found that elastins from all analyzed species contain hydroxyproline and that at least 20%-24% of all proline residues were partially hydroxylated. Determination of the hydroxylation degrees of specific proline residues revealed that prolyl hydroxylation depends on both...

  4. One-step synthesis of magnetite core/zirconia shell nanocomposite for high efficiency removal of phosphate from water

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhe; Xing, Mingchao; Fang, Wenkan; Wu, Deyi, E-mail: dywu@sjtu.edu.cn

    2016-03-15

    Graphical abstract: - Highlights: • Magnetite core/zirconia shell nanocomposite was prepared by one-step method. • Fe/Zr molar ratio of 4/1 allowed high magnetization and high adsorption capacity. • The nanocomposite had good selectivity towards phosphate. • Ligand exchange was the adsorption mechanism of phosphate. • Desorption of adsorbed phosphate could be achieved by NaOH treatment. - Abstract: A self-assembled magnetite core/zirconia shell (Fe{sub 3}O{sub 4}@ZrO{sub 2}) nanoparticle material was fabricated by the one-step co-precipitation method to capture phosphate from water. Fe{sub 3}O{sub 4}@ZrO{sub 2} with different Fe/Zr molar ratios were obtained and characterized by XRD, TEM, BET surface area and magnetization. It was shown that, with the decreasing of Fe/Zr molar ratio, magnetization decreased whereas surface area and adsorption capacity of phosphate increased. Fe{sub 3}O{sub 4}@ZrO{sub 2} with the ratio of higher than 4:1 had satisfactory magnetization property (>23.65 emu/g), enabling rapid magnetic separation from water and recycle of the spent adsorbent. The Langmuir adsorption capacity of Fe{sub 3}O{sub 4}@ZrO{sub 2} reached 27.93–69.44 mg/g, and the adsorption was fast (90% of phosphate removal within 20 min). The adsorption decreases with increasing pH, and higher ionic strength caused slight increase in adsorption at pH > about 5.5. The presence of chloride, nitrate and sulfate anions did not bring about significant changes in adsorption. As a result, Fe{sub 3}O{sub 4}@ZrO{sub 2} performed well to remove phosphate from real wastewater. These results were interpreted by the ligand exchange mechanism, i.e., the direct coordination of phosphate onto zirconium by replacement of hydroxyl groups. Results suggested that phosphate reacted mainly with surface hydroxyl groups but diffusion into interior of zirconia phase also contributed to adsorption. The adsorbed phosphate could be desorbed with a NaOH treatment and the regenerated Fe

  5. Isolation of phosphate solubilizer fungi from Araza rhizosphere

    Directory of Open Access Journals (Sweden)

    Diana Fernanda Vera

    2002-01-01

    Full Text Available Araza is an eatable plant, original from the Amazon region which has been describedas a promising species for commercialization (Quevedo 1995. This plant has highproductivity even in low content phosphate soil but the presence of phosphatesolubilizazing microorganisms may contribute to increase this element availability.In this study we report the isolation and characterization of solubilizing fungiprocessed using the soil washing method, from soil samples were Araza is cultivated attwo regions in Guaviare, Colombia. Eighteen isolates of fungi capable of solubilizingphosphate were obtained from 2 different sources. The most importat species that solubilized phosphate from calcium were Trichodermaaureoviride, Aspergillus aculeatus,Trichodermastrain 1 y Trichodermastrain 2 and for phosphate from iron: Aspergillus oryzae,Paecilomycesstrain 3, Gongronella butleri& Fusarium oxysporum

  6. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures.

    Science.gov (United States)

    Montufar, E B; Casas-Luna, M; Horynová, M; Tkachenko, S; Fohlerová, Z; Diaz-de-la-Torre, S; Dvořák, K; Čelko, L; Kaiser, J

    2018-04-01

    In this work alpha tricalcium phosphate (α-TCP)/iron (Fe) composites were developed as a new family of biodegradable, load-bearing and cytocompatible materials. The composites with composition from pure ceramic to pure metallic samples were consolidated by pulsed electric current assisted sintering to minimise processing time and temperature while improving their mechanical performance. The mechanical strength of the composites was increased and controlled with the Fe content, passing from brittle to ductile failure. In particular, the addition of 25 vol% of Fe produced a ceramic matrix composite with elastic modulus much closer to cortical bone than that of titanium or biodegradable magnesium alloys and specific compressive strength above that of stainless steel, chromium-cobalt alloys and pure titanium, currently used in clinic for internal fracture fixation. All the composites studied exhibited higher degradation rate than their individual components, presenting values around 200 μm/year, but also their compressive strength did not show a significant reduction in the period required for bone fracture consolidation. Composites showed preferential degradation of α-TCP areas rather than β-TCP areas, suggesting that α-TCP can produce composites with higher degradation rate. The composites were cytocompatible both in indirect and direct contact with bone cells. Osteoblast-like cells attached and spread on the surface of the composites, presenting proliferation rate similar to cells on tissue culture-grade polystyrene and they showed alkaline phosphatase activity. Therefore, this new family of composites is a potential alternative to produce implants for temporal reduction of bone fractures. Biodegradable alpha-tricalcium phosphate/iron (α-TCP/Fe) composites are promising candidates for the fabrication of temporal osteosynthesis devices. Similar to biodegradable metals, these composites can avoid implant removal after bone fracture healing, particularly in

  7. Potential of Phytase-Mediated Iron Release from Cereal-Based Foods: A Quantitative View

    Science.gov (United States)

    Nielsen, Anne V. F.; Tetens, Inge; Meyer, Anne S.

    2013-01-01

    The major part of iron present in plant foods such as cereals is largely unavailable for direct absorption in humans due to complexation with the negatively charged phosphate groups of phytate (myo-inositol (1,2,3,4,5,6)-hexakisphosphate). Human biology has not evolved an efficient mechanism to naturally release iron from iron phytate complexes. This narrative review will evaluate the quantitative significance of phytase-catalysed iron release from cereal foods. In vivo studies have shown how addition of microbially derived phytases to cereal-based foods has produced increased iron absorption via enzyme-catalysed dephosphorylation of phytate, indicating the potential of this strategy for preventing and treating iron deficiency anaemia. Despite the immense promise of this strategy and the prevalence of iron deficiency worldwide, the number of human studies elucidating the significance of phytase-mediated improvements in iron absorption and ultimately in iron status in particularly vulnerable groups is still low. A more detailed understanding of (1) the uptake mechanism for iron released from partially dephosphorylated phytate chelates, (2) the affinity of microbially derived phytases towards insoluble iron phytate complexes, and (3) the extent of phytate dephosphorylation required for iron release from inositol phosphates is warranted. Phytase-mediated iron release can improve iron absorption from plant foods. There is a need for development of innovative strategies to obtain better effects. PMID:23917170

  8. Phosphate Remediation and Recovery using Iron Oxide-based Adsorbents

    Science.gov (United States)

    E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese and nanoparticles. Characterization was done by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-...

  9. The chemistry of high temperature phosphate solutions in relation to steam generation

    International Nuclear Information System (INIS)

    Broadbent, D.; Lewis, G.G.; Wetton, E.A.M.

    1978-01-01

    The problems associated with the use of phosphate for chemical treatment of the P.W.R. secondary circuit have prompted renewed interest in the physical chemistry of these solutions. Solubility and phase studies have been carried out at 250, 300 and 350 0 C with solutions having sodium to phosphate ratios from 1.0 to above 3.0. A solid phase of ratio about 2.8 exists in equilibrium with a wide range of saturated solution compositions at each temperature. Invariant points at which three phases are in equilibrium have been identified and at the two higher temperatures a region of liquid-liquid immiscibility occurs. Phase diagrams have been constructed for each temperature from which it is possible to predict the compositional changes occurring during the isothermal evaporation process. The corrosivity of these phosphate solutions to a range of steel alloys is being studied, the results reported in the present work, however, are confined to mild steel in the temperature and phosphate composition ranges of the phase studies. The corrosion of mild steel is generally considerably less than in sodium hydroxide solutions of equivalent concentration. The dependence of corrosion rate on sodium and phosphate concentrations in not readily explicable in terms of the solubility and phase studies and it is thought that the solubility of iron in the phosphate solutions is an important rate-determining factor since several complex compounds containing sodium, phosphorus and ferrous iron are present in the corrosion films. (author)

  10. FERRIC CITRATE: AN IRON-BASED ORAL PHOSPHATE BINDER

    Directory of Open Access Journals (Sweden)

    T. Christopher Bond

    2012-06-01

    Based on actual physician behavior in response to ferritin and TSAT increases and ferric citrate clinical trial results, and assuming equivalent pricing to other PBs, there would be cost savings with ferric citrate use through reduced ESA and iron use.

  11. Electro-thermal characterization of Lithium Iron Phosphate cell with equivalent circuit modeling

    International Nuclear Information System (INIS)

    Saw, L.H.; Ye, Y.; Tay, A.A.O.

    2014-01-01

    Highlights: • We modeled the electrical and thermal behavior of the Li-ion battery. • We validated the simulation results with experimental studies. • We studied the thermal response of the battery pack using UDDS and US06 test. • Active cooling system is needed to prolong life cycle of cell. - Abstract: Prediction of the battery performance is important in the development of the electric vehicles battery pack. A battery model that is capable to reproduce I–V characteristic, thermal response and predicting the state of charge of the battery will benefit the development of cell and reduce time to market for electric vehicles. In this work, an equivalent circuit model coupled with the thermal model is used to analyze the electrical and thermal behavior of Lithium Iron Phosphate pouch cell under various operating conditions. The battery model is comprised three RC blocks, one series resistor and one voltage source. The parameters of the battery model are extracted from pulse discharge curve under different temperatures. The simulations results of the battery model under constant current discharge and pulse charge and discharge show a good agreement with experimental data. The validated battery model is then extended to investigate the dynamic behavior of the electric vehicle battery pack using UDDS and US06 test cycle. The simulation results show that an active thermal management system is required to prolong the calendar life and ensure safety of the battery pack

  12. Immobilization of radioactive strontium in contaminated soils by phosphate treatment

    International Nuclear Information System (INIS)

    Kim, K.H.; Ammons, J.T.

    1990-01-01

    The feasibility of in situ phosphate- and metal- (calcium, aluminum, and iron) solution treatment for 90 Sr immobilization was investigated. Batch and column experiments were performed to find optimum conditions for coprecipitation of 90 Sr with Ca-, Al-, and Fe-phosphate compounds in contaminated soils. Separate columns were packed with artificially 85 Sr-contaminated acid soil as well as 90 Sr-contaminated soil from the Oak Ridge Reservation. After metal-phosphate treatment, the columns were then leached successively with either tapwater or 0.001 M CaCl 2 solution. Most of the 85 Sr coprecipitated with the metal phosphate compounds. Immobilization of 85 Sr and 90 Sr was affected by such factors as solution pH, metal and phosphate concentration, metal-to-phosphate ratio, and soil characteristics. Equilibration time after treatments also affected 85 Sr immobilization. Many technology aspects still need to be investigated before field applications are feasible, but these experiments indicate that phosphate-based in situ immobilization should prevent groundwater contamination and will be useful as a treatment technology for 90 Sr-contaminated sites. 15 refs., 3 figs., 1 tab

  13. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free surrogate lung fluid

    Directory of Open Access Journals (Sweden)

    H. Shen

    2011-09-01

    Full Text Available Previous studies have suggested that the adverse health effects from ambient particulate matter (PM are linked to the formation of reactive oxygen species (ROS by PM in cardiopulmonary tissues. While hydroxyl radical (OH is the most reactive of the ROS species, there are few quantitative studies of OH generation from PM. Here we report on OH formation from PM collected at an urban (Fresno and rural (Westside site in the San Joaquin Valley (SJV of California. We quantified OH in PM extracts using a cell-free, phosphate-buffered saline (PBS solution with or without 50 μM ascorbate (Asc. The results show that generally the urban Fresno PM generates much more OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances OH formation from all the samples. Fine PM (PM2.5 generally makes more OH than the corresponding coarse PM (PMcf, i.e. with diameters of 2.5 to 10 μm normalized by air volume collected, while the coarse PM typically generates more OH normalized by PM mass. OH production by SJV PM is reduced on average by (97 ± 6 % when the transition metal chelator desferoxamine (DSF is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary OH, although high

  14. Phytases for improved iron absorption

    DEFF Research Database (Denmark)

    Nielsen, Anne Veller Friis; Meyer, Anne S.

    2016-01-01

    Phytase enzymes present an alternative to iron supplements, because they have been shown to improve iron absorption by means of catalysing the degradation of a potent iron absorption inhibitor: phytic acid. Phytic acid is a hexaphosphate of inositol and is particularly prevalent in cereal grains......, where it serves as a storage molecule for phosphorous. Phytic acid is also associated with minerals. The minerals are bound by chelation to the negatively charged phosphate groups in phytic acid. Phytases catalyse the dephosphorylation of phytic acid, thus releasing bound minerals to make them available...... for absorption. This article presents research on phytase catalysis in gastric conditions and considers potential benefits and drawbacks for using phytases as a food supplement....

  15. Direct voltammetric determination of redox-active iron in carbon nanotubes.

    Science.gov (United States)

    Teo, Wei Zhe; Pumera, Martin

    2014-12-01

    With the advances in nanotechnology over the past decade, consumer products are increasingly being incorporated with carbon nanotubes (CNTs). As the harmful effects of CNTs are suggested to be primarily due to the bioavailable amounts of metallic impurities, it is vital to detect and quantify these species using sensitive and facile methods. Therefore, in this study, we investigated the possibility of quantifying the amount of redox-available iron-containing impurities in CNTs with voltammetric techniques such as cyclic voltammetry. We examined the electrochemistry of Fe3 O4 nanoparticles in phosphate buffer solution and discovered that its electrochemical behavior could be affected by pH of the electrolyte. By utilizing the unique redox reaction between the iron and phosphate species, the redox available iron content in CNTs was determined successfully using voltammetry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The mechanism of stereospecific C-H oxidation by Fe(Pytacn) complexes: bioinspired non-heme iron catalysts containing cis-labile exchangeable sites.

    Science.gov (United States)

    Prat, Irene; Company, Anna; Postils, Verònica; Ribas, Xavi; Que, Lawrence; Luis, Josep M; Costas, Miquel

    2013-05-17

    A detailed mechanistic study of the hydroxylation of alkane C-H bonds using H2O2 by a family of mononuclear non heme iron catalysts with the formula [Fe(II)(CF3SO3)2(L)] is described, in which L is a tetradentate ligand containing a triazacyclononane tripod and a pyridine ring bearing different substituents at the α and γ positions, which tune the electronic or steric properties of the corresponding iron complexes. Two inequivalent cis-labile exchangeable sites, occupied by triflate ions, complete the octahedral iron coordination sphere. The C-H hydroxylation mediated by this family of complexes takes place with retention of configuration. Oxygen atoms from water are incorporated into hydroxylated products and the extent of this incorporation depends in a systematic manner on the nature of the catalyst, and the substrate. Mechanistic probes and isotopic analyses, in combination with detailed density functional theory (DFT) calculations, provide strong evidence that C-H hydroxylation is performed by highly electrophilic [Fe(V)(O)(OH)L] species through a concerted asynchronous mechanism, involving homolytic breakage of the C-H bond, followed by rebound of the hydroxyl ligand. The [Fe(V)(O)(OH)L] species can exist in two tautomeric forms, differing in the position of oxo and hydroxide ligands. Isotopic-labeling analysis shows that the relative reactivities of the two tautomeric forms are sensitively affected by the α substituent of the pyridine, and this reactivity behavior is rationalized by computational methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Anodic Dissolution of Spheroidal Graphite Cast Iron with Different Pearlite Areas in Sulfuric Acid Solutions

    Directory of Open Access Journals (Sweden)

    Yoshikazu Miyata

    2013-01-01

    Full Text Available The rate equation of anodic dissolution reaction of spheroidal graphite cast iron in sulfuric acid solutions at 298 K has been studied. The cast irons have different areas of pearlite. The anodic Tafel slope of 0.043 V decade−1 and the reaction order with respect to the hydroxyl ion activity of 1 are obtained by the linear potential sweep technique. The anodic current density does not depend on the area of pearlite. There is no difference in the anodic dissolution reaction mechanisms between pure iron and spheroidal graphite cast iron. The anodic current density of the cast iron is higher than that of the pure iron.

  18. Phosphate removal by refined aspen wood fiber treated with carboxymethyl cellulose and ferrous chloride

    Science.gov (United States)

    Thomas L. Eberhardt; Soo-Hong Min; James S. Han

    2006-01-01

    Biomass-based filtration media are of interest as an economical means to remove pollutants and nutrients found in stormwater runoff. Refined aspen wood fiber samples treated with iron salt solutions demonstrated limited capacities to remove (ortho)phosphate from test solutions. To provide additional sites for iron complex formation, and thereby impart a greater...

  19. Sorption of samarium in iron (II) and (III) phosphates in aqueous systems; Sorcion de samario en fosfatos de hierro (II) y (III) en sistemas acuosos

    Energy Technology Data Exchange (ETDEWEB)

    Diaz F, J C

    2006-07-01

    The radioactive residues that are stored in the radioactive confinements its need to stay isolated of the environment while the radioactivity levels be noxious. An important mechanism by which the radioactive residues can to reach the environment, it is the migration of these through the underground water. That it makes necessary the investigation of reactive materials that interacting with those radionuclides and that its are able to remove them from the watery resources. The synthesis and characterization of materials that can be useful in Environmental Chemistry are very important because its characteristics are exposed and its behavior in chemical phenomena as the sorption watery medium is necessary to use it in the environmental protection. In this work it was carried out the sorption study of the samarium III ion in the iron (II) and (III) phosphate; obtaining the sorption isotherms in function of pH, of the phosphate mass and of the concentration of the samarium ion using UV-visible spectroscopy to determine the removal percentage. The developed experiments show that as much the ferrous phosphate as the ferric phosphate present a great affinity by the samarium III, for what it use like reactive material in contention walls can be very viable because it sorption capacity has overcome 90% to pH values similar to those of the underground and also mentioning that the form to obtain these materials is very economic and simple. (Author)

  20. Symptomatic hypophosphataemic osteomalacia secondary to the treatment with iron carboxymaltose detected in bone scintigraphy.

    Science.gov (United States)

    Sangrós Sahún, M J; Goñi Gironés, E; Camarero Salazar, A; Estébanez Estébanez, C; Lozano Martínez, M E

    The development of hypophosphataemic osteomalacia has been linked with several treatments, mainly antiretroviral and intravenous iron administration. The frequency of the hypophosphataemia requires monitoring the phosphate after the administration of iron carboxymaltose. We describe a case of a woman with no calcium-phosphorous metabolism disorder, to whom this treatment was prescribed for anaemia due to menorrhagia and intolerance to oral iron. She started with oligoarticular pain, which was spreading with a significant functional loss. The relationship with the administration of intravenous iron was discovered when scintigraphic findings together with laboratory results led to a diagnosis of hypophosphataemic osteomalacia. The patient responded satisfactorily to treatment with phosphate both clinically and in the follow-up bone scintigraphy. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  1. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents

    International Nuclear Information System (INIS)

    Boujelben, N.; Bouzid, J.; Elouear, Z.; Feki, M.; Jamoussi, F.; Montiel, A.

    2008-01-01

    New filtration materials covered with metallic oxides are good adsorbents for both cation and anion forms of pollutants. Sfax is one of the most important industrial towns in Tunisia. Its phosphate manufacture in particular is causing considerable amounts of water pollution. Therefore, there is a need to find out a new way of getting rid of this excessive phosphate from water. This work is aimed to examining the potential of three sorbent materials (synthetic iron oxide coated sand (SCS), naturally iron oxide coated sand (NCS) and iron oxide coated crushed brick (CB)) for removing phosphate ions from aqueous solutions. According to our literature survey CB was not used as adsorbent previously. Phosphate ions are used here as species model for the elimination of other similar pollutants (arsenates, antimonates). Optical microscope and scanning electron microscope (SEM) analyses were used to investigate the surface properties and morphology of the coated sorbents. Infra-red spectroscopy and X-ray diffraction techniques were also used to characterize the sorbent structures. Results showed that iron coated crushed brick possess more micro pores and a higher surface area owing to its clay nature. The comparative sorption of PO 4 3- from aqueous solutions by SCS, CB and NCS was investigated by batch experiments. The estimated optimum pH of phosphate ion retention for the considered sorbents was 5. The equilibrium data were analysed using the Langmuir and Freundlich isotherms. The sorption capacities of PO 4 3- at pH 5 were 1.5 mg/g for SCS, 1.8 mg/g for CB and 0.88 mg/g for NCS. The effect of temperature on sorption phenomenon was also investigated. The results indicated that adsorption is an endothermic process for phosphate ions removal. This study demonstrates that all the considered sorbents can be used as an alternative emerging technology for water treatment without any side effect or treatment process alteration

  2. Synthesis and modifications of heterocyclic derivatives of D-arabinose: potential inhibitors of glucose-6-phosphate isomerase and glucosamine-6-phosphate synthase

    International Nuclear Information System (INIS)

    Viana, Renato Marcio Ribeiro; Prado, Maria Auxiliadora Fontes; Alves, Ricardo Jose

    2008-01-01

    The synthesis of -5-(D-arabino-1,2,3,4-tetrahydroxybutyl)tetrazole and -2-(d-arabino-1,2,3,4-tetra-acetoxybutyl)-5-methyl-1,3,4-oxadiazole from d-arabinose is described. Attempts at removing the protecting groups of the oxadiazole derivative were unsuccessful, leading to products resulting from the opening of the oxadiazole ring. The unprotected tetrazole derivative was selectively phosphorylated at the primary hydroxyl group with diethyl phosphoryl chloride. The resulting 5-[d-arabino-4-(diethylphosphoryloxy)-1,2,3-trihydroxybutyl]tetrazole is a protected form of a potential inhibitor of the enzymes glucose-6-phosphate isomerase and glucosamine synthase. (author)

  3. DNA Binding Hydroxyl Radical Probes.

    Science.gov (United States)

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2012-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different chromophores which produce fluorescent products when hydroxylated. Of these, the coumarin system suffers from the fewest disadvantages. We have therefore examined its behavior when linked to a cationic peptide ligand designed to bind strongly to DNA.

  4. Synthesis of 4-substituted tetrahydropyridines by cross-coupling of enol phosphates

    DEFF Research Database (Denmark)

    Larsen, U.S.; Martiny, L.; Begtrup, M.

    2005-01-01

    Enol phosphates, synthesized from 4-piperidone, react by palladium catalyzed cross-coupling with arylboronic acids and by iron and palladium catalyzed cross-coupling with Grignard reagents to give 4-substituted tetrahydropyridines. (c) 2005 Elsevier Ltd. All rights reserved....

  5. Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenjuan; Mu, Yi; Wang, Bingning; Ai, Zhihui, E-mail: jennifer.ai@mail.ccnu.edu.cn; Zhang, Lizhi

    2017-01-30

    Highlights: • Bimetallic iron-nickel nanoparticles possessed an enhanced performance on aerobic degradation of 4-CP. • Hydroxyl radicals were the major active species contributed to aerobic 4-CP degradation with nZVI. • Superoxide radicals predominated the 4-CP degradation in the nZVIN/Air process. • The 4-CP degradation pathways were dependent on the generated superoxide radicals in the nZVIN/Air process. - Abstract: In this study, we demonstrate that the bimetallic iron-nickel nanoparticles (nZVIN) possessed an enhanced performance in comparison with nanoscale zero-valent iron (nZVI) on aerobic degradation of 4-chlorophenol (4-CP). The 4-CP degradation rate constant in the aerobic nZVIN process (nZVIN/Air) was 5 times that in the classic nZVI counterpart system (nZVI/Air). Both reactive oxygen species measurement and inhibition experimental results suggested that hydroxyl radicals were the major active species contributed to aerobic 4-CP degradation with nZVI, on contrast, superoxide radicals predominated the 4-CP degradation in the nZVIN/Air process. High performance liquid chromatography and gas chromatography-mass spectrometer analysis indicated the intermediates of the nZVI/Air system were p-benzoquinone and hydroquinone, which were resulted from the bond cleavage between the chlorine and carbon atom in the benzene ring by hydroxyl radicals. However, the primary intermediates of 4-CP found in the nZVIN/Air system were phenol via the direct dechlorination by superoxide radicals, accompanying with the formation of chloride ions. On the base of experimental results, a superoxide radicals mediated enhancing mechanism was proposed for the aerobic degradation of 4-CP in the nZVIN/Air system. This study provides new insight into the role of bimetallic nickel on enhancing removal of organic pollutants with nZVI.

  6. Methemoglobinemia Hemotoxicity of Some Antimalarial 8-Aminoquinoline Analogues and Their Hydroxylated Derivatives: Density Functional Theory Computation of Ionization Potentials.

    Science.gov (United States)

    Ding, Yuanqing; Liu, Haining; Tekwani, Babu L; Nanayakkara, N P Dhammika; Khan, Ikhlas A; Walker, Larry A; Doerksen, Robert J

    2016-07-18

    The administration of primaquine (PQ), an essential drug for the treatment and radical cure of malaria, can lead to methemoglobin formation and life-threatening hemolysis for glucose-6-phosphate dehydrogenase deficient patients. The ionization potential (IP, a quantitative measure of the ability to lose an electron) of the metabolites generated by antimalarial 8-aminoquinoline (8-AQ) drugs like PQ has been believed to be correlated in part to this methemoglobinemia hemotoxicity: the lower the IP of an 8-AQ derivative, the higher the concentration of methemoglobin generated. In this work, demethoxylated primaquine (AQ02) was employed as a model, by intensive computation at the B3LYP-SCRF(PCM)/6-311++G**//B3LYP/6-31G** level in water, to study the effects of hydroxylation at various positions on the ionization potential. Compared to the parent AQ02, the IPs of AQ02's metabolites hydroxylated at N1', C5, and C7 were lower by 61, 30, and 19 kJ/mol, respectively, while differences in the IP relative to PQ were small for hydroxylation at all other positions. The C6 position, at which the IP of the hydroxylated metabolite was greater than that of AQ02, by 2 kJ/mol, was found to be unique. Several literature and proposed 8-AQ analogues were studied to evaluate substituent effects on their potential to generate methemoglobin, with the finding that hydroxylations at N1' and C5 contribute the most to the potential hemotoxicity of PQ-based antimalarials, whereas hydroxylation at C7 has little effect. Phenoxylation at C5 in PQ-based 8-AQs can block the hydroxylation at C5 and reduce the potential for methemoglobin generation, while -CF3 and chlorines attached to the phenolic ring can further reduce the risk. The H-shift at N1' during the cationization of hydroxylated metabolites of 8-AQs sharply decreased their IPs, but this effect can be significantly reduced by the introduction of an electron-withdrawing group to the quinoline core. The results and this approach may be

  7. Suitability of the hydrocarbon-hydroxylating molybdenum-enzyme ethylbenzene dehydrogenase for industrial chiral alcohol production.

    Science.gov (United States)

    Tataruch, M; Heider, J; Bryjak, J; Nowak, P; Knack, D; Czerniak, A; Liesiene, J; Szaleniec, M

    2014-12-20

    The molybdenum/iron-sulfur/heme protein ethylbenzene dehydrogenase (EbDH) was successfully applied to catalyze enantiospecific hydroxylation of alkylaromatic and alkylheterocyclic compounds. The optimization of the synthetic procedure involves use of the enzyme in a crude purification state that saves significant preparation effort and is more stable than purified EbDH without exhibiting unwanted side reactions. Moreover, immobilization of the enzyme on a crystalline cellulose support and changes in reaction conditions were introduced in order to increase the amounts of product formed (anaerobic atmosphere, electrochemical electron acceptor recycling or utilization of ferricyanide as alternative electron acceptor in high concentrations). We report here on an extension of effective enzyme activity from 4h to more than 10 days and final product yields of up to 0.4-0.5g/l, which represent a decent starting point for further optimization. Therefore, we expect that the hydrocarbon-hydroxylation capabilities of EbDH may be developed into a new process of industrial production of chiral alcohols. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.

    Science.gov (United States)

    Miot, J; Benzerara, K; Morin, G; Bernard, S; Beyssac, O; Larquet, E; Kappler, A; Guyot, F

    2009-06-01

    In phosphate-rich environments, vivianite (Fe(II)(3)(PO(4))(2), 8H(2)O) is an important sink for dissolved Fe(II) and is considered as a very stable mineral due to its low solubility at neutral pH. In the present study, we report the mineralogical transformation of vivianite in cultures of the nitrate-reducing iron-oxidizing bacterial strain BoFeN1 in the presence of dissolved Fe(II). Vivianite was first transformed into a greenish phase consisting mostly of an amorphous mixed valence Fe-phosphate. This precipitate became progressively orange and the final product of iron oxidation consisted of an amorphous Fe(III)-phosphate. The sub-micrometer analysis by scanning transmission X-ray microscopy of the iron redox state in samples collected at different stages of the culture indicated that iron was progressively oxidized at the contact of the bacteria and at a distance from the cells in extracellular minerals. Iron oxidation in the extracellular minerals was delayed by a few days compared with cell-associated Fe-minerals. This led to strong differences of Fe redox in between these two types of minerals and finally to local heterogeneities of redox within the sample. In the absence of dissolved Fe(II), vivianite was not significantly transformed by BoFeN1. Whereas Fe(II) oxidation at the cell contact is most probably directly catalyzed by the bacteria, vivianite transformation at a distance from the cells might result from oxidation by nitrite. In addition, processes leading to the export of Fe(III) from bacterial oxidation sites to extracellular minerals are discussed including some involving colloids observed by cryo-transmission electron microscopy in the culture medium.

  9. Potent and selective chemical probe of hypoxic signalling downstream of HIF-α hydroxylation via VHL inhibition

    Science.gov (United States)

    Frost, Julianty; Galdeano, Carles; Soares, Pedro; Gadd, Morgan S.; Grzes, Katarzyna M.; Ellis, Lucy; Epemolu, Ola; Shimamura, Satoko; Bantscheff, Marcus; Grandi, Paola; Read, Kevin D.; Cantrell, Doreen A.; Rocha, Sonia; Ciulli, Alessio

    2016-11-01

    Chemical strategies to using small molecules to stimulate hypoxia inducible factors (HIFs) activity and trigger a hypoxic response under normoxic conditions, such as iron chelators and inhibitors of prolyl hydroxylase domain (PHD) enzymes, have broad-spectrum activities and off-target effects. Here we disclose VH298, a potent VHL inhibitor that stabilizes HIF-α and elicits a hypoxic response via a different mechanism, that is the blockade of the VHL:HIF-α protein-protein interaction downstream of HIF-α hydroxylation by PHD enzymes. We show that VH298 engages with high affinity and specificity with VHL as its only major cellular target, leading to selective on-target accumulation of hydroxylated HIF-α in a concentration- and time-dependent fashion in different cell lines, with subsequent upregulation of HIF-target genes at both mRNA and protein levels. VH298 represents a high-quality chemical probe of the HIF signalling cascade and an attractive starting point to the development of potential new therapeutics targeting hypoxia signalling.

  10. Hydroxyl radical reactivity with diethylhydroxylamine

    International Nuclear Information System (INIS)

    Gorse, R.A. Jr.; Lii, R.R.; Saunders, B.B.

    1977-01-01

    Diethylhydroxylamine (DEHA) reacts with gas-phase hydroxyl radicals on every third collision, whereas the corresponding reaction in aqueous solution is considerably slower. The high gas-phase reactivity explains the predicted inhibitory effect of DEHA in atmospheric smog processes. Results from the studies in the aqueous phase are helpful in predicting the mechanism of the reaction of DEHA with hydroxyl radicals

  11. Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement.

    Science.gov (United States)

    Deng, Jianjun; Chen, Fei; Fan, Daidi; Zhu, Chenhui; Ma, Xiaoxuan; Xue, Wenjiao

    2013-10-01

    Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein-iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (nb) and apparent association constant (Kapp) between iron and phosphorylated HLC were measured at nb=23.7 and log Kapp=4.57, respectively. The amount of iron (Fe(2+) sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. © 2013.

  12. Iron control on global productivity: an efficient inverse model of the ocean's coupled phosphate and iron cycles.

    Science.gov (United States)

    Pasquier, B.; Holzer, M.; Frants, M.

    2016-02-01

    We construct a data-constrained mechanistic inverse model of the ocean's coupled phosphorus and iron cycles. The nutrient cycling is embedded in a data-assimilated steady global circulation. Biological nutrient uptake is parameterized in terms of nutrient, light, and temperature limitations on growth for two classes of phytoplankton that are not transported explicitly. A matrix formulation of the discretized nutrient tracer equations allows for efficient numerical solutions, which facilitates the objective optimization of the key biogeochemical parameters. The optimization minimizes the misfit between the modelled and observed nutrient fields of the current climate. We systematically assess the nonlinear response of the biological pump to changes in the aeolian iron supply for a variety of scenarios. Specifically, Green-function techniques are employed to quantify in detail the pathways and timescales with which those perturbations are propagated throughout the world oceans, determining the global teleconnections that mediate the response of the global ocean ecosystem. We confirm previous findings from idealized studies that increased iron fertilization decreases biological production in the subtropical gyres and we quantify the counterintuitive and asymmetric response of global productivity to increases and decreases in the aeolian iron supply.

  13. Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewers.

    Science.gov (United States)

    Lin, Hui-Wen; Kustermans, Caroline; Vaiopoulou, Eleni; Prévoteau, Antonin; Rabaey, Korneel; Yuan, Zhiguo; Pikaar, Ilje

    2017-07-01

    The addition of iron salts is one of the most commonly used dosing strategies for sulfide control in sewers. However, iron salts decrease the sewage pH which not only reduces the effectiveness of sulfide precipitation but also enhances the release of residual sulfide to the sewer atmosphere. Equally important, concentrated iron salt solutions are corrosive and their frequent transport, handling, and on-site storage often come with Occupational Health and Safety (OH&S) concerns. Here, we experimentally demonstrated a novel sulfide control approach using electrochemical systems with parallel placed iron electrodes. This enabled combining anodic dissolved iron species release with cathodic hydroxyl anion production, which alleviates all the aforementioned concerns. A long-term experiment was successfully carried out achieving an average sulfide removal efficiency of 95.4 ± 4.4% at low voltage input of 2.90 ± 0.54 V over the course of 8 weeks. This electrochemical method was demonstrated to successfully achieve efficient sulfide control. In addition, it increases the sewage pH, thereby overcoming the drawbacks associated with the pH decrease in the case of conventional iron salt dosing. Ferrous ions were produced at an overall coulombic efficiency (CE) of 98.2 ± 1.2%, whereas oxygen evolution and direct sulfide oxidation were not observed. Short-term experiments showed that increasing either inter-electrode gap or current density increased the cell voltage associated with the increase in the ohmic drop of the system. Overall, this study highlights the practical potential of in-situ generation of dissolved iron species and simultaneous hydroxyl anion generation for efficient sulfide control in sewers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Cytochrome P450-dependent N-hydroxylation of an aminoguanidine (amidinohydrazone) and microsomal retroreduction of the N-hydroxylated product.

    Science.gov (United States)

    Clement, B; Schultze-Mosgau, M H; Richter, P H; Besch, A

    1994-07-01

    1. The first example of a P450-dependent N-hydroxylation of an aminoguanidine (amidinohydrazone) is reported for 2-amino-5-chlorobenzophenone amidinohydrazone 1 (G 256) as substrate. 2. The N-hydroxylated metabolite 2 (2-amino-5-chlorobenzophenone N-hydroxyamidinohydrazone NOH-G256) and a further metabolite of 1, the phenol 3, were identified by tlc and ms analysis. 3. The microsomal reduction of an N-hydroxyaminoguanidine (N-hydroxy-amidino-hydrazone) was also demonstrated for the transformation of 2 to 1. 4. Both the N-hydroxylation of the aminoguanidine and the retroreduction of the N-hydroxyaminoguanidine were characterized by quantitative hplc analysis. 5. The conversion of the aminoguanidine 1 to N-hydroxyaminoguanidine 2 may be considered as an analogue of the physiological N-hydroxylation of arginine to N-hydroxyarginine by NO synthases.

  15. Iron and genome stability: An update

    International Nuclear Information System (INIS)

    Prá, Daniel; Franke, Silvia Isabel Rech; Henriques, João Antonio Pêgas; Fenech, Michael

    2012-01-01

    Iron is an essential micronutrient which is required in a relatively narrow range for maintaining metabolic homeostasis and genome stability. Iron participates in oxygen transport and mitochondrial respiration as well as in antioxidant and nucleic acid metabolism. Iron deficiency impairs these biological pathways, leading to oxidative stress and possibly carcinogenesis. Iron overload has been linked to genome instability as well as to cancer risk increase, as seen in hereditary hemochromatosis. Iron is an extremely reactive transition metal that can interact with hydrogen peroxide to generate hydroxyl radicals that form the 8-hydroxy-guanine adduct, cause point mutations as well as DNA single and double strand breaks. Iron overload also induces DNA hypermethylation and can reduce telomere length. The current Recommended Dietary Allowances (RDA) for iron, according with Institute of Medicine Dietary Reference Intake (DRI), is based in the concept of preventing anemia, and ranges from 7 mg/day to 18 mg/day depending on life stage and gender. Pregnant women need 27 mg/day. The maximum safety level for iron intake, the Upper Level (UL), is 40–45 mg/day, based on the prevention of gastrointestinal distress associated to high iron intakes. Preliminary evidence indicates that 20 mg/day iron, an intake slightly higher than the RDA, may reduce the risk of gastrointestinal cancer in the elderly as well as increasing genome stability in lymphocytes of children and adolescents. Current dietary recommendations do not consider the concept of genome stability which is of concern because damage to the genome has been linked to the origin and progression of many diseases and is the most fundamental pathology. Given the importance of iron for homeostasis and its potential influence over genome stability and cancer it is recommended to conduct further studies that conclusively define these relationships.

  16. Iron and genome stability: An update

    Energy Technology Data Exchange (ETDEWEB)

    Pra, Daniel, E-mail: daniel_pra@yahoo.com [PPG em Promocao da Saude, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS (Brazil); PPG em Saude e Comportamento, Universidade Catolica de Pelotas, Pelotas, RS (Brazil); Franke, Silvia Isabel Rech [PPG em Promocao da Saude, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS (Brazil); Henriques, Joao Antonio Pegas [Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil); Fenech, Michael [CSIRO Food and Nutritional Sciences, Adelaide, SA (Australia)

    2012-05-01

    Iron is an essential micronutrient which is required in a relatively narrow range for maintaining metabolic homeostasis and genome stability. Iron participates in oxygen transport and mitochondrial respiration as well as in antioxidant and nucleic acid metabolism. Iron deficiency impairs these biological pathways, leading to oxidative stress and possibly carcinogenesis. Iron overload has been linked to genome instability as well as to cancer risk increase, as seen in hereditary hemochromatosis. Iron is an extremely reactive transition metal that can interact with hydrogen peroxide to generate hydroxyl radicals that form the 8-hydroxy-guanine adduct, cause point mutations as well as DNA single and double strand breaks. Iron overload also induces DNA hypermethylation and can reduce telomere length. The current Recommended Dietary Allowances (RDA) for iron, according with Institute of Medicine Dietary Reference Intake (DRI), is based in the concept of preventing anemia, and ranges from 7 mg/day to 18 mg/day depending on life stage and gender. Pregnant women need 27 mg/day. The maximum safety level for iron intake, the Upper Level (UL), is 40-45 mg/day, based on the prevention of gastrointestinal distress associated to high iron intakes. Preliminary evidence indicates that 20 mg/day iron, an intake slightly higher than the RDA, may reduce the risk of gastrointestinal cancer in the elderly as well as increasing genome stability in lymphocytes of children and adolescents. Current dietary recommendations do not consider the concept of genome stability which is of concern because damage to the genome has been linked to the origin and progression of many diseases and is the most fundamental pathology. Given the importance of iron for homeostasis and its potential influence over genome stability and cancer it is recommended to conduct further studies that conclusively define these relationships.

  17. Redox process catalysed by growing crystal-strengite, FePO4,2H2O, crystallizing from solution with iron(II) and hydroxylamine

    Science.gov (United States)

    Lundager Madsen, Hans Erik

    2014-09-01

    In an attempt to grow pure crystals of the iron(II) phosphate vivianite, Fe3(PO4)2,8H2O, from a solution of Mohr's salt, Fe(NH4)2(SO4)2,6H2O, added to a solution of ammonium phosphate, hydroxylammonium chloride, NH3OHCl, was added to the iron(II) stock solution to eliminate oxidation of iron(II) by oxygen from the air. However, the effect turned out to be the opposite of the expected: whereas hydroxylamine reduces iron(III) in bulk solution, it acted as a strong oxidant in the presence of growing iron phosphate crystals, causing the crystallization of the iron(III) phosphate strengite, FePO4,2H2O, as the only solid phase. Evidently the crystal surface catalyses oxidation of iron(II) by hydroxylamine. The usual composite kinetics of spiral growth and surface nucleation was found. The surface-nucleation part yielded edge free energy λ in the range 12-45 pJ/m, virtually independent of temperature and in the range typical for phosphates of divalent metals. The scatter of values for λ presumably arises from contributions from different crystal forms to the overall growth rate. The low mean value points to strong adsorption of iron(II), which is subsequently oxidized at the crystal surface, forming strengite. The state of the system did not tend to thermodynamic equilibrium, but to a metastable state, presumably controlled by the iron(II) rich surface layer of the crystal. In addition to crystal growth, it was possible to measure nucleation kinetics by light scattering (turbidimetry). A point of transition from heterogeneous to homogeneous nucleation was found, and from the results for the homogeneous domain a rather precise value of crystal surface free energy γ=55 mJ/m2 was found. This is a relatively low value as well, indicating that the redox process plays a role already at the nucleation stage.

  18. Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc).

    Science.gov (United States)

    Verma, Pragya; Vogiatzis, Konstantinos D; Planas, Nora; Borycz, Joshua; Xiao, Dianne J; Long, Jeffrey R; Gagliardi, Laura; Truhlar, Donald G

    2015-05-06

    The catalytic properties of the metal-organic framework Fe2(dobdc), containing open Fe(II) sites, include hydroxylation of phenol by pure Fe2(dobdc) and hydroxylation of ethane by its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc). In earlier work, the latter reaction was proposed to occur through a redox mechanism involving the generation of an iron(IV)-oxo species, which is an intermediate that is also observed or postulated (depending on the case) in some heme and nonheme enzymes and their model complexes. In the present work, we present a detailed mechanism by which the catalytic material, Fe0.1Mg1.9(dobdc), activates the strong C-H bonds of ethane. Kohn-Sham density functional and multireference wave function calculations have been performed to characterize the electronic structure of key species. We show that the catalytic nonheme-Fe hydroxylation of the strong C-H bond of ethane proceeds by a quintet single-state σ-attack pathway after the formation of highly reactive iron-oxo intermediate. The mechanistic pathway involves three key transition states, with the highest activation barrier for the transfer of oxygen from N2O to the Fe(II) center. The uncatalyzed reaction, where nitrous oxide directly oxidizes ethane to ethanol is found to have an activation barrier of 280 kJ/mol, in contrast to 82 kJ/mol for the slowest step in the iron(IV)-oxo catalytic mechanism. The energetics of the C-H bond activation steps of ethane and methane are also compared. Dehydrogenation and dissociation pathways that can compete with the formation of ethanol were shown to involve higher barriers than the hydroxylation pathway.

  19. Understanding the nature of the manganese hot dip phosphatizing process of steel

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado M, G.; Fuentes A, J. C.; Salinas R, A.; Rodriguez V, F. J., E-mail: juan.fuentes@cinvestav.edu.mx [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Saltillo, Av. Industria Metalurgica No. 1062, Parque Industrial Ramos Arizpe, 25900 Saltillo, Coahuila (Mexico)

    2013-07-01

    In this work, the phosphatizing process of steel is investigated using open circuit potential and Tafel curves as well as scanning electron microscopy and energy dispersive X-ray spectroscopy. The results reveal that a ph of 2.57 in the phosphatizing solution promotes the dissociation of phosphoric acid which assist the formation of the manganese tertiary salt (Mn{sub 3}(PO{sub 4}){sub 2}), which is deposited on the substrate. It was also observed that an increase in the temperature from 25 to 90 C and the presence of HNO{sub 3} as catalysts enhances the manganese phosphatizing kinetics. On the other hand, the generation of iron phosphates and oxides is predominant at a ph of 1 and 90 C. These observations are supported by species distribution and Pourbaix thermodynamic diagrams. (Author)

  20. Understanding the nature of the manganese hot dip phosphatizing process of steel

    International Nuclear Information System (INIS)

    Alvarado M, G.; Fuentes A, J. C.; Salinas R, A.; Rodriguez V, F. J.

    2013-01-01

    In this work, the phosphatizing process of steel is investigated using open circuit potential and Tafel curves as well as scanning electron microscopy and energy dispersive X-ray spectroscopy. The results reveal that a ph of 2.57 in the phosphatizing solution promotes the dissociation of phosphoric acid which assist the formation of the manganese tertiary salt (Mn 3 (PO 4 ) 2 ), which is deposited on the substrate. It was also observed that an increase in the temperature from 25 to 90 C and the presence of HNO 3 as catalysts enhances the manganese phosphatizing kinetics. On the other hand, the generation of iron phosphates and oxides is predominant at a ph of 1 and 90 C. These observations are supported by species distribution and Pourbaix thermodynamic diagrams. (Author)

  1. Iron Toxicity in the Retina Requires Alu RNA and the NLRP3 Inflammasome

    Directory of Open Access Journals (Sweden)

    Bradley D. Gelfand

    2015-06-01

    Full Text Available Excess iron induces tissue damage and is implicated in age-related macular degeneration (AMD. Iron toxicity is widely attributed to hydroxyl radical formation through Fenton’s reaction. We report that excess iron, but not other Fenton catalytic metals, induces activation of the NLRP3 inflammasome, a pathway also implicated in AMD. Additionally, iron-induced degeneration of the retinal pigmented epithelium (RPE is suppressed in mice lacking inflammasome components caspase-1/11 or Nlrp3 or by inhibition of caspase-1. Iron overload increases abundance of RNAs transcribed from short interspersed nuclear elements (SINEs: Alu RNAs and the rodent equivalent B1 and B2 RNAs, which are inflammasome agonists. Targeting Alu or B2 RNA prevents iron-induced inflammasome activation and RPE degeneration. Iron-induced SINE RNA accumulation is due to suppression of DICER1 via sequestration of the co-factor poly(C-binding protein 2 (PCBP2. These findings reveal an unexpected mechanism of iron toxicity, with implications for AMD and neurodegenerative diseases associated with excess iron.

  2. Uranium recovery in a pilot plant as by product of the phosphate fertilizers

    International Nuclear Information System (INIS)

    Dantas, C.C.; Santos, F.S.M. dos; Paula, H.C.B.; Santana, A.O. de

    1984-01-01

    A process was developed and a piloto plant was installed to recovery uranium from chloridric leach liquor of phosphate rocks. The extractor system is a mixture of di(2-ethylhexyl) phosphoric acid (DEHPA) and tributyl-phosphate (TBP) in a kerosene diluent. The phosphate rocks are leached for dicalcium phosphate (CaHPO 4 ) production, by the reactions: Ca 3 (PO 4 ) 2 + 4 HCl → Ca(H 2 PO 4 ) 2 + CaCl 2 and Ca(H 2 PO 4 ) 2 + Ca(OH) 2 → CaHPO 4 + 2 H 2 O. The uranium recovery process comprises the following steps:extraction, scrubbing, reextraction, iron removal and uranium precipitation. The uranium is precipited as ADU with 80% of U 3 O 8 .(Author) [pt

  3. Preparation and characterization of zirconia-loaded lignocellulosic butanol residue as a biosorbent for phosphate removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Enmin [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000 (China); Liu, Xiaohuan, E-mail: liuxiaohuancaf@163.com [School of Engineering, National Engineering and Technology Research Center of Wood-Based Resources Comprehensive Utilization, and Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, Lin’an 311300 (China); Jiang, Jinhua [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000 (China); Fu, Shenyuan [School of Engineering, National Engineering and Technology Research Center of Wood-Based Resources Comprehensive Utilization, and Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, Lin’an 311300 (China); Chu, Fuxiang [Institute of Chemical Industry of Forestry Products, CAF, Nanjing 210037 (China)

    2016-11-30

    Highlights: • LBR-Zr was evaluated as a novel biosorbent for phosphate removal. • Effects of process factors on phosphate adsorption were studied in detail. • LBR-Zr showed markedly enhanced phosphate adsorption compared to LBR. • The underlying mechanism for phosphate adsorption of LBR-Zr was fully investigated. - Abstract: Zirconium(IV) loaded lignocellulosic butanol residue (LBR-Zr) used for the adsorption of phosphate (P) ions from aqueous solution was synthesized and evaluated. The adsorption isotherms were fitted well with the Freundlich and Temkin modes. Thermodynamic analyses indicated that phosphate adsorption on the LBR-Zr increased with increasing temperature from 298 to 338 K. The kinetic datas were described better by the pseudo-second-order adsorption kinetic rate model. Increasing pH suppressed phosphate adsorption. Coexisting anions study exhibited that the incorporation of CO{sub 3}{sup 2−} anion had the largest influence on the phosphate adsorption capacity. The mechanism of adsorption process on LBR-Zr was analyzed by FTIR (Fourier transform infrared spectroscopy), scanning electron microscope (SEM) with an EDX (energy dispersive X-ray) and X-ray photoelectron spectroscopy (XPS) technologies, respectively. The above results confirmed that surface hydroxyl groups on biosorbent LBR-Zr were replaced by phosphate. The LBR-Zr with good specific affinity towards phosphate was a promising biosorbent for phosphate removal from aqueous solution. The research would be beneficial for developing a promising, eco-friendly phosphate biosorbent from plentiful lignocellulosic butanol residue.

  4. The nanosphere iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these 'Mars-soil analogs' were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxyl mineral such as 'green rust', or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable meaghemite (gamma-Fe203) by mild heat treatment and then to nanophase hematite (aplha-Fe203) by extensive heat treatment. Their chemical reactivity offers a plausible mechanism for the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxide and silicate phase surfaces. The mode of formation of these (nanophase) iron oxides on Mars is still unknown.

  5. DNA Binding Hydroxyl Radical Probes

    OpenAIRE

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2012-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different c...

  6. Layered ordering of vacancies of lead iron phosphate Pb{sub 3}Fe{sub 2}(PO{sub 4}){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Malakho, A.P. [Moscow State Univ., Dept. of Material Science (Russian Federation); Morozov, V.A.; Pokholok, V.; Lazoryak, B.I. [Moscow State Univ., Dept. of Chemisty (Russian Federation); Morozov, V.A.; Van Tendeloo, G. [Antwerp Univ., EMAT (Belgium)

    2005-07-01

    Lead iron phosphate Pb{sub 3}Fe{sub 2}(PO{sub 4}){sub 4} has been synthesized by solid state method and characterized by X-ray powder and electron diffraction, differential scanning calorimetry, Moessbauer and infrared spectroscopy. A structural model for Pb{sub 3}Fe{sub 2}(PO{sub 4}){sub 4} is proposed and is refined by the Rietveld method. The compound crystallizes in the monoclinic space group P2{sub 1}/c with a=9.0065(6) Angstroms, b=9.0574(6) Angstroms, c=9.3057(6) Angstroms, {beta}=116.880(4) degrees, V=677.10(8) (Angstroms){sup 3}, Z=2, R{sub wp}=3.52%, R{sub p}=2.66%. It exhibits a structure with a three-dimensional open framework. The 3D framework is formed by PO{sub 4} tetrahedra and FeO{sub 6} octahedra connected via common vertices. 3/4 of cavities in the framework are occupied by lead and 1/4 are vacant. (authors)

  7. Iron distribution in cancer cells following doxorubicin exposure using proton and X-ray synchrotron radiation microprobes

    International Nuclear Information System (INIS)

    Ortega, R.; Deves, G.; Bohic, S.; Simionovici, A.; Menez, B.; Bonnin-Mosbah, M.

    2001-01-01

    Chemical studies have shown that doxorubicin, a well-established anticancer agent, is a powerful iron chelator and the resultant iron-drug complex is an efficient catalyst of the conversion of hydrogen peroxide to the highly reactive hydroxyl radical. However, the intracellular complexation of doxorubicin with iron is still debated. Using nuclear microprobe analysis (NMPA), we previously observed in human ovarian cancer cells exposed to 20 μM iodo-doxorubicin (IDX) that iodine and iron cellular distributions were spatially correlated, suggesting a mechanism of intracellular iron chelation by the anthracycline compound. Because maximal plasma drug concentrations in patients are expected to be around 5 μM, NMPA and X-ray absorption near edge spectroscopy (XANES) experiments for iron speciation analysis were performed on cultured cells exposed to pharmacological doses of 2 μM IDX or doxorubicin

  8. Recovery of uranium from the Syrian phosphate by solid-liquid method using alkaline solutions

    International Nuclear Information System (INIS)

    Shlewit, H.; Alibrahim, M.

    2007-01-01

    Uranium concentrations were analyzed in the Syrian phosphate deposits. Mean concentrations were found between 50 and 110 ppm. As a consequence, an average phosphate dressing of 22 kg/ha phosphate would charge the soil with 5-20 g/ha uranium when added as a mineral fertilizer. Fine grinding phosphate produced at the Syrian mines was used for uranium recovery by carbonate leaching. The formation of the soluble uranyl tricarbonate anion UO 2 (CO 3 ) 3 4- permits use of alkali solutions of sodium carbonate and sodium bicarbonate salts for the nearly selective dissolution of uranium from phosphate. Separation of iron, aluminum, titanium, etc., from the uranium during leaching was carried out. Formation of some small amounts of molybdates, vanadates, phosphates, aluminates, and some complexes metal was investigated. This process could be used before the manufacture of TSP fertilizer, and the final products would contain smaller uranium quantities. (author)

  9. Iron Modifies Plasma FGF23 Differently in Autosomal Dominant Hypophosphatemic Rickets and Healthy Humans

    Science.gov (United States)

    Peacock, Munro; Gray, Amie K.; Padgett, Leah R.; Hui, Siu L.; Econs, Michael J.

    2011-01-01

    Context: In autosomal dominant hypophosphatemic rickets (ADHR), fibroblast growth factor 23 (FGF23) resists cleavage, causing increased plasma FGF23 levels. The clinical phenotype includes variable onset during childhood or adulthood and waxing/waning of hypophosphatemia. Delayed onset after puberty in females suggests iron status may be important. Objective: Studies were performed to test the hypothesis that plasma C-terminal and intact FGF23 concentrations are related to serum iron concentrations in ADHR. Design and Setting: Cross-sectional and longitudinal studies of ADHR and a cross-sectional study in healthy subjects were conducted at an academic medical center. Participants: Participants included 37 subjects with ADHR mutations from four kindreds and 158 healthy adult controls. Main Outcome Measure: The relationships of serum iron concentrations with plasma C-terminal and intact FGF23 concentrations were evaluated. Results: Serum phosphate and 1,25-dihydroxyvitamin D correlated negatively with C-terminal FGF23 and intact FGF23 in ADHR but not in controls. Serum iron was negatively correlated to both C-terminal FGF23 (r = −0.386; P < 0.05) and intact FGF23 (r = −0.602; P < 0.0001) in ADHR. However, control subjects also demonstrated a negative relationship of serum iron with C-terminal FGF23 (r = −0.276; P < 0.001) but no relationship with intact FGF23. Longitudinally in ADHR subjects, C-terminal FGF23 and intact FGF23 concentrations changed negatively with iron concentrations (P < 0.001 and P = 0.055, respectively), serum phosphate changed negatively with C-terminal FGF23 and intact FGF23 (P < 0.001), and there was a positive relationship between serum iron and phosphate (P < 0.001). Conclusions: Low serum iron is associated with elevated FGF23 in ADHR. However, in controls, low serum iron was also associated with elevated C-terminal FGF23, but not intact FGF23, suggesting cleavage maintains homeostasis despite increased FGF23 expression. PMID:21880793

  10. Iron phosphate glass: a promising matrix for the immobilization of Cs and Mo

    International Nuclear Information System (INIS)

    Hemadevi, V.; Joseph, Kitheri

    2015-01-01

    Presently, borosilicate glass (BSG) is the acceptable vitrification matrix for the immobilization of high level waste. The solubility of Mo in BSG is limited in the presence of Cs. As per the literature, solubility of Mo in BSG is about 2.5 wt. % in the presence of Cs. Hence it is difficult to immobilize nuclear waste rich in Cs and Mo in borosilicate glass. It is observed that the composition of Cs and Mo expressed as oxides are 10.4 and 14.7 wt. % respectively in simulated fast reactor waste. Iron phosphate glass containing 20 wt. % simulated fast reactor waste (referred as IP20FRW) was synthesized and characterized. IP20FRW contains ~ 3 wt. % of molybdenum oxide along with 2 wt. % cesium oxide. IPG is a suitable matrix for the immobilization of Cs and Mo separately. Hence it is essential to understand the glass characteristics of IPG containing both Cs and Mo. This paper explores systematic loading of both Cs and Mo such that the final composition corresponds to 10.5 wt. % Cs 2 O-15 wt. % MoO 3 -31.9 wt. % Fe 2 O 3 -42.6 wt. % P 2 O 5 . In addition to synthesis, the present study also includes understanding the change in glass characteristics of IPG containing both Cs and Mo. The possibility of higher percent loading of both Cs and Mo in IPG demonstrates the better glass forming characteristics of IPG. The synthesis and characterization of Cs-Mo loaded glasses will be discussed in this paper. (author)

  11. Applicability of iron phosphate glass medium for loading NaCl originated from seawater used for cooling the stricken power reactors

    International Nuclear Information System (INIS)

    Amamoto, Ippei; Kobayashi, Hidekazu; Yokozawa, Takuma; Yamashita, Teruo; Nagai, Takayuki; Kitamura, Naoto; Takebe, Hiromichi; Mitamura, Naoki; Tsuzuki, Tatsuya

    2013-01-01

    As the part of investigation for immobilization of the sludge as one of the radioactive wastes arising from the treatment of contaminated water at Fukushima Dai-ichi nuclear power plant, applicability of vitrification method has been evaluated as a candidate technique. The aim of this study is to evaluate the influence of NaCl as one of the main constituents of sludge, on glass formation and glass properties. Two kinds of iron phosphate glass (IPG) media in the xFe 2 O 3 -(100-x)P 2 O 5 , with x=30 and 35 (mol%) were chosen and the glass formation, structure and properties including density, coefficient of thermal expansion, glass transition temperature, onset crystallization temperature and chemical durability of NaCl-loaded IPG were studied. The results are summarized as follows. Sodium chloride, NaCl could be loaded into IPG medium as Na 2 O and Cl contents and their loading ratio could be up to 19 and 15 mol%, respectively. Majority of Cl content of raw material NaCl was thought to be volatilized during glass melting. Loading NaCl into IPG induces to de-polymerize glass network of phosphate chains, leads to decrease both glass transition and onset crystallization temperatures, and to increase coefficient of thermal expansion. NaCl-loaded IPG indicated good chemical durability in case of using 35Fe 2 O 3 - 65P 2 O 5 medium. (authors)

  12. Stress analysis of local blisters coupling Raman spectroscopy and X-ray diffraction. Correlation between experimental results and continuous damage modelling for buckling in an iron oxide/phosphated iron system

    Energy Technology Data Exchange (ETDEWEB)

    Panicaud, B., E-mail: benoit.panicaud@utt.fr [Universite de Technologie de Troyes (UTT), CNRS UMR 6279, 12 rue Marie Curie, 10010 Troyes (France); Grosseau-Poussard, J.L. [LEMMA, Pole Sciences et Technologie, Universite de La Rochelle, Av. M. Crepeau, 17042 La Rochelle Cedex (France)

    2010-12-01

    In this present work, local stress development in the iron oxide layers growing on phosphated {alpha}-Fe at 400 deg. C in ambient air is investigated by Raman spectroscopy. Coupled with X-ray diffraction it enables to obtain directly local stresses' maps in the oxide layers. Use of Raman spectroscopy allows obtaining better accuracy on mechanical behaviour at local scale. This characterisation technique is very useful to study systems developing mechanical heterogeneities on surface, especially in case of buckling phenomenon. Investigations on particular local blisters have been done to measure some characteristic lengths at local scale. From local measurements, we are able to evaluate general effect of buckling from simplified scale transition. So, a macroscopic approach has been performed to calculate global stress evolution of the oxide layer, based on continuous damage mechanics. Consequently, it leads to good comparison between modelling and experimental values (global stresses versus oxidation time) in {alpha}-Fe{sub 2}O{sub 3} oxide.

  13. Studies on 16α-Hydroxylation of Steroid Molecules and Regioselective Binding Mode in Homology-Modeled Cytochrome P450-2C11

    Directory of Open Access Journals (Sweden)

    Hamed I. Ali

    2011-01-01

    Full Text Available We investigated the 16α-hydroxylation of steroid molecules and regioselective binding mode in homology-modeled cytochrome P450-2C11 to correlate the biological study with the computational molecular modeling. It revealed that there was a positive relationship between the observed inhibitory potencies and the binding free energies. Docking of steroid molecules into this homology-modeled CYP2C11 indicated that 16α-hydroxylation is favored with steroidal molecules possessing the following components, (1 a bent A-B ring configuration (5β-reduced, (2 C-3 α-hydroxyl group, (3 C-17β-acetyl group, and (4 methyl group at both the C-18 and C-19. These respective steroid components requirements were defined as the inhibitory contribution factor. Overall studies of the male rat CYP2C11 metabolism revealed that the above-mentioned steroid components requirements were essential to induce an effective inhibition of [3H]progesterone 16α-hydroxylation. As far as docking of homology-modeled CYP2C11 against investigated steroids is concerned, they are docked at the active site superimposed with flurbiprofen. It was also found that the distance between heme iron and C16α-H was between 4 to 6 Å and that the related angle was in the range of 180±45∘.

  14. Dual Role of ROS as Signal and Stress Agents: Iron Tips the Balance in favor of Toxic Effects

    Directory of Open Access Journals (Sweden)

    Elena Gammella

    2016-01-01

    Full Text Available Iron is essential for life, while also being potentially harmful. Therefore, its level is strictly monitored and complex pathways have evolved to keep iron safely bound to transport or storage proteins, thereby maintaining homeostasis at the cellular and systemic levels. These sequestration mechanisms ensure that mildly reactive oxygen species like anion superoxide and hydrogen peroxide, which are continuously generated in cells living under aerobic conditions, keep their physiologic role in cell signaling while escaping iron-catalyzed transformation in the highly toxic hydroxyl radical. In this review, we describe the multifaceted systems regulating cellular and body iron homeostasis and discuss how altered iron balance may lead to oxidative damage in some pathophysiological settings.

  15. X-ray computed tomography comparison of individual and parallel assembled commercial lithium iron phosphate batteries at end of life after high rate cycling

    Science.gov (United States)

    Carter, Rachel; Huhman, Brett; Love, Corey T.; Zenyuk, Iryna V.

    2018-03-01

    X-ray computed tomography (X-ray CT) across multiple length scales is utilized for the first time to investigate the physical abuse of high C-rate pulsed discharge on cells wired individually and in parallel.. Manufactured lithium iron phosphate cells boasting high rate capability were pulse power tested in both wiring conditions with high discharge currents of 10C for a high number of cycles (up to 1200) until end of life (health (SOH) monitoring methods, is diagnosed using CT by rendering the interior current collector without harm or alteration to the active materials. Correlation of CT observations to the electrochemical pulse data from the parallel-wired cells reveals the risk of parallel wiring during high C-rate pulse discharge.

  16. The effects of crystallization and residual glass on the chemical durability of iron phosphate waste forms containing 40 wt% of a high MoO3 Collins-CLT waste

    Science.gov (United States)

    Hsu, Jen-Hsien; Bai, Jincheng; Kim, Cheol-Woon; Brow, Richard K.; Szabo, Joe; Zervos, Adam

    2018-03-01

    The effects of cooling rate on the chemical durability of iron phosphate waste forms containing up to 40 wt% of a high MoO3 Collins-CLT waste simulant were determined at 90 °C using the product consistency test (PCT). The waste form, designated 40wt%-5, meets appropriate Department of Energy (DOE) standards when rapidly quenched from the melt (as-cast) and after slow cooling following the CCC (canister centerline cooling)-protocol, although the quenched glass is more durable. The analysis of samples from the vapor hydration test (VHT) and the aqueous corrosion test (differential recession test) reveals that rare earth orthophosphate (monazite) and Zr-pyrophosphate crystals that form on cooling are more durable than the residual glass in the 40wt%-5 waste form. The residual glass in the CCC-treated samples has a greater average phosphate chain length and a lower Fe/P ratio, and those contribute to its faster corrosion kinetics.

  17. Degradation mechanism of Direct Pink 12B treated by iron-carbon micro-electrolysis and Fenton reaction.

    Science.gov (United States)

    Wang, Xiquan; Gong, Xiaokang; Zhang, Qiuxia; Du, Haijuan

    2013-12-01

    The Direct Pink 12B dye was treated by iron-carbon micro-electrolysis (ICME) and Fenton oxidation. The degradation pathway of Direct Pink 12B dye was inferred by ultraviolet visible (UV-Vis), infrared absorption spectrum (IR) and high performance liquid chromatography-mass spectrometry (HPLC-MS). The major reason of decolorization was that the conjugate structure was disrupted in the iron-carbon micro-electrolysis (ICME) process. However, the dye was not degraded completely because benzene rings and naphthalene rings were not broken. In the Fenton oxidation process, the azo bond groups surrounded by higher electron cloud density were first attacked by hydroxyl radicals to decolorize the dye molecule. Finally benzene rings and naphthalene rings were mineralized to H2O and CO2 under the oxidation of hydroxyl radicals. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  18. Phosphate binding by natural iron-rich colloids in streams

    NARCIS (Netherlands)

    Baken, S.; Moens, C.; Griffioen, J.J.; Smolders, E.

    2016-01-01

    Phosphorus (P) in natural waters may be bound to iron (Fe) bearing colloids. However, the natural variation in composition and P binding strength of these colloids remain unclear. We related the composition of "coarse colloids" (colloids in the 0.1-1.2 μm size range) in 47 Belgian streams to the

  19. Effect of phosphate fertilization on the bioavailability of iron in calcareous soils

    Science.gov (United States)

    Sánchez-Rodríguez, A. R.; del Campillo, M. C.; Barrón, V.; Torrent, J.

    2012-04-01

    Iron (Fe) chlorosis is the most important nutritional problem in sensitive plant species cultivated in calcareous soils, its main symptoms being interveinal yellowing in the younger leaves due to lack of chlorophyll and reduced growth. Fe chlorosis has been related to the content of poorly crystalline Fe oxides in soil. The effect of other nutrients, especially phosphorus (P), is, however, a matter of debate. In this work we examined whether fertilization with P alters the availability of Fe to sensitive plants growing in two different Fe chlorosis-inducing calcareous soils. Phosphate at rates of 0 (control), 25, 50, 100 and 200 mg P kg-1 soil was applied to pots where six-months-old olive trees cv. Arbequina were grown. The experiment lasted three years and took place in a shaded house. Chlorophyll concentration in the young leaves was estimated with the SPAD value (using a Minolta apparatus) three-four times per year. Furthermore, shoot length, dry weight of annual pruning and mineral element concentration were measured at the end of each year. In one of the soils, SPAD and leaf Fe concentration decreased with increasing P dose. However in the other soil, SPAD was not correlated with the rate of applied P. In both soils, potassium and zinc concentrations in plants fertilized with P were lower than those in the control plants. This work was funded by the Spanish Ministry of Science and Innovation, Projects: AGL 2005-06691-C02-01 and AGL 2008-05053-C02-02, and the European Regional Development Funds. ARSR acknowledges the finnancial support from the Spanish Ministry of Education as a fellow of the program "Training of University Teachers" (Formación del Profesorado Universitario, AP2008-04716)

  20. Particle Surface Hydrophobicity and the Dechlorination of Chloro-Compounds by Iron Sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang-Won, E-mail: spark3@uncc.edu; Kim, Sung-Kuk; Kim, Jeong-Bae; Choi, Sung-Woo [Keimyung University, Department of Environmental Science and Engineering (Korea, Republic of); Inyang, Hilary I. [University of North Carolina at Charlotte, Global Institute for Energy and Environmental Systems (United States); Tokunaga, Shuzo [National Institute of Advanced Industrial Science and Technology (Japan)

    2006-02-15

    Halogenated aliphatic compounds (HACs) can be reduced by iron sulfides in aqueous systems. Generally, the thermodynamics and kinetics of dehalogenation reactions are controlled by the mineralogical and particle surface characteristics of the iron sulfide, the composition of the HAC and reaction conditions such as component concentrations, pH and Eh. In this theoretical and experimental investigation of CCl{sub 4} and C{sub 2}Cl{sub 6} reduction by FeS and FeS{sub 2}, the roles of hydrophobic and hydrophilic sites on the iron sulfides were analyzed. Experimental data obtained through zeta potential measurements, were used along with the Gouy-Chapman model and the simple two-layer surface complexation model to relate iron sulfide surface hydroxyl densities to the degree of HAC dehalogenation. The surface hydroxyl site densities of FeS and FeS{sub 2} were found to be 0.11 sites/nm{sup 2} and 0.21 sites/nm{sup 2}, respectively. During the dehalogenation reaction process, CCl{sub 4} was found to decrease to its first intermediate product CHCl{sub 3} within the first 20 hours followed by a slower process of conversion to CH{sub 2}Cl{sub 2}. The results also show that FeS is less hydrated (more hydrophobic) than FeS{sub 2}. For CCl{sub 4} and C{sub 2}Cl{sub 6}, FeS is a better dehalogenator than FeS{sub 2}. These results imply that particle surface hydrophobicity is a critical factor in surface-mediated dehalogenation of chlorinated compounds.

  1. Modeling the Effects of the Cathode Composition of a Lithium Iron Phosphate Battery on the Discharge Behavior

    Directory of Open Access Journals (Sweden)

    Won Il Cho

    2013-10-01

    Full Text Available This paper reports a modeling methodology to predict the effects on the discharge behavior of the cathode composition of a lithium iron phosphate (LFP battery cell comprising a LFP cathode, a lithium metal anode, and an organic electrolyte. A one-dimensional model based on a finite element method is presented to calculate the cell voltage change of a LFP battery cell during galvanostatic discharge. To test the validity of the modeling approach, the modeling results for the variations of the cell voltage of the LFP battery as a function of time are compared with the experimental measurements during galvanostatic discharge at various discharge rates of 0.1C, 0.5C, 1.0C, and 2.0C for three different compositions of the LFP cathode. The discharge curves obtained from the model are in good agreement with the experimental measurements. On the basis of the validated modeling approach, the effects of the cathode composition on the discharge behavior of a LFP battery cell are estimated. The modeling results exhibit highly nonlinear dependencies of the discharge behavior of a LFP battery cell on the discharge C-rate and cathode composition.

  2. Measuring and assessing the effective in-plane thermal conductivity of lithium iron phosphate pouch cells

    International Nuclear Information System (INIS)

    Bazinski, S.J.; Wang, X.; Sangeorzan, B.P.; Guessous, L.

    2016-01-01

    The objective of this research is to experimentally determine the effective in-plane thermal conductivity of a lithium iron phosphate pouch cell. An experimental setup is designed to treat the battery cell as a straight rectangular fin in natural convection. Thermography and heat sensors were used to collect data that yields the temperature distribution and heat transfer rate of the fin, respectively. One-dimensional fin equations were combined with the experimental data to yield the in-plane thermal conductivity through an iterative process that best-fits the data to the model. The experiment was first calibrated using reference plates of different metals. The fin model predicts the thermal conductivity value well with a correction factor of approximately 7%–9%. Using this experimental method, the in-plane thermal conductivity of the pouch cells is measured at different state of charge (SOC) levels. The in-plane thermal conductivity decreases approximately 0.13 Wm"−"1 °C"−"1 per 10% increase in SOC for the LFP cells. This translates to a 4.2% overall decrease in the thermal conductivity as the cell becomes fully charged. - Highlights: • A method is proposed to measure the in-plane thermal conductivity of a pouch cell. • The thermal conductivity decreases slightly with increase in SOC for the LFP cells. • The fin model predicts the thermal conductivity well with a correction factor.

  3. Removal of Phosphate from Synthetic Aqueous Solution by Adsorption with Dolomite from Padalarang

    Directory of Open Access Journals (Sweden)

    Fadjari Lucia Nugroho

    2014-12-01

    Full Text Available The presence of phosphate in wastewaters can cause eutrophication of surface water bodies leading to algal-blooming in the aquatic environment and degradation of water quality. Phosphate removal from wastewaters by conventional biological treatment removes only 10-30% of the phosphate, whilst chemical treatment using precipitants such as calcium or iron salts, although effective, is expensive and produces water-rich sludge which must be further treated. Hence, phosphate removal by adsorption in the form of Ca -phosphate has been proposed as an alternative to the more traditional methods. This study investigated the feasibility of using dolomite–a common sedimentary rock–from Padalarang, West Java, Indonesia as the adsorbent for the removal of phosphate from synthetic aqueous solution. Chemical analysis revealed that the Padalarang dolomite contains 33.6-36.2% CaO. Batch experiments at room temperature indicated that optimum removal of phosphate was achieved at pH 9. At 25°C , where increasing concentrations of phosphate (10–100 mg/L increased phosphate adsorption (2.15-31.3 mg/g by the dolomite. The adsorption of phosphate could be described by the Langmuir isotherm model, with constants Qm= 476.19 mg/g, K L= 0,00106 L/mg and equilibrium parameter (R L: 0.904 – 0.989. Phosphate adsorption by dolomite not only permits its removal but also its potential recovery for reuse.

  4. Modulation of intestinal sulfur assimilation metabolism regulates iron homeostasis

    Science.gov (United States)

    Hudson, Benjamin H.; Hale, Andrew T.; Irving, Ryan P.; Li, Shenglan; York, John D.

    2018-01-01

    Sulfur assimilation is an evolutionarily conserved pathway that plays an essential role in cellular and metabolic processes, including sulfation, amino acid biosynthesis, and organismal development. We report that loss of a key enzymatic component of the pathway, bisphosphate 3′-nucleotidase (Bpnt1), in mice, both whole animal and intestine-specific, leads to iron-deficiency anemia. Analysis of mutant enterocytes demonstrates that modulation of their substrate 3′-phosphoadenosine 5′-phosphate (PAP) influences levels of key iron homeostasis factors involved in dietary iron reduction, import and transport, that in part mimic those reported for the loss of hypoxic-induced transcription factor, HIF-2α. Our studies define a genetic basis for iron-deficiency anemia, a molecular approach for rescuing loss of nucleotidase function, and an unanticipated link between nucleotide hydrolysis in the sulfur assimilation pathway and iron homeostasis. PMID:29507250

  5. Physicochemical Properties of Calcium Phosphate Based Coating on Gutta-Percha Root Canal Filling

    Directory of Open Access Journals (Sweden)

    Afaf Al-Haddad

    2015-01-01

    Full Text Available Dental Gutta-percha (GP is a polymer based standard root canal filling material that has been widely used in dentistry. However, it has an inadequate sealing ability and adhesion to root dentin. The aim of this study is to coat GP with a bioactive material to enhance its sealing ability and adhesion to the root sealer and subsequently to the root dentin. The choice of coating method is limited by the nature of GP as it requires a technique that is not governed by high temperatures or uses organic solvents. In this study, biomimetic coating technique using 1.5 Tas-simulated body fluids (SBF was employed to coat the treated GP cones. The coated samples were characterized using Fourier transform infrared spectroscopy (FTIR, X-ray Diffraction (XRD, and field emission scanning electron microscope (FESEM. The presence of hydroxyl, carbonate, and phosphate groups was detected by FTIR while the formation of hydroxyapatite (HA/calcium phosphate was confirmed with XRD. FESEM revealed uniform, thin, and crystalline HA calcium phosphate coating. The adhesion of the coating to the GP substrate was assessed with microscratch technique. It was viable with cohesive failure mode. In conclusion, Tas-SBF is able to coat pretreated GP cones with a crystalline apatitic calcium phosphate layer.

  6. Hydrogen exchange rate of tyrosine hydroxyl groups in proteins as studied by the deuterium isotope effect on C(zeta) chemical shifts.

    Science.gov (United States)

    Takeda, Mitsuhiro; Jee, Jungoo; Ono, Akira Mei; Terauchi, Tsutomu; Kainosho, Masatsune

    2009-12-30

    We describe a new NMR method for monitoring the individual hydrogen exchange rates of the hydroxyl groups of tyrosine (Tyr) residues in proteins. The method utilizes (2S,3R)-[beta(2),epsilon(1,2)-(2)H(3);0,alpha,beta,zeta-(13)C(4);(15)N]-Tyr, zeta-SAIL Tyr, to detect and assign the (13)C(zeta) signals of Tyr rings efficiently, either by indirect (1)H-detection through 7-8 Hz (1)H(delta)-(13)C(zeta) spin couplings or by direct (13)C(zeta) observation. A comparison of the (13)C(zeta) chemical shifts of three Tyr residues of an 18.2 kDa protein, EPPIb, dissolved in H(2)O and D(2)O, revealed that all three (13)C(zeta) signals in D(2)O appeared at approximately 0.13 ppm ( approximately 20 Hz at 150.9 MHz) higher than those in H(2)O. In a H(2)O/D(2)O (1:1) mixture, however, one of the three signals for (13)C(zeta) appeared as a single peak at the averaged chemical shifts, and the other two appeared as double peaks at exactly the same chemical shifts in H(2)O and D(2)O, in 50 mM phosphate buffer (pH 6.6) at 40 degrees C. These three peaks were assigned to Tyr-36, Tyr-120, and Tyr-30, from the lower to higher chemical shifts, respectively. The results indicate that the hydroxyl proton of Tyr-120 exchanges faster than a few milliseconds, whereas those of Tyr-30 and Tyr-36 exchange more slowly. The exchange rate of the Tyr-30 hydroxyl proton, k(ex), under these conditions was determined by (13)C NMR exchange spectroscopy (EXSY) to be 9.2 +/- 1.1 s(-1). The Tyr-36 hydroxyl proton, however, exchanges too slowly to be determined by EXSY. These profound differences among the hydroxyl proton exchange rates are closely related to their relative solvent accessibility and the hydrogen bonds associated with the Tyr hydroxyl groups in proteins.

  7. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide

    Science.gov (United States)

    Balistrieri, L.S.; Chao, T.T.

    1990-01-01

    This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites

  8. FTIR spectra and properties of iron borophosphate glasses containing simulated nuclear wastes

    Science.gov (United States)

    Liao, Qilong; Wang, Fu; Chen, Kuiru; Pan, Sheqi; Zhu, Hanzhen; Lu, Mingwei; Qin, Jianfa

    2015-07-01

    30 wt.% simulated nuclear wastes were successfully immobilized by B2O3-doped iron phosphate base glasses. The structure and thermal stability of the prepared wasteforms were characterized by Fourier transform infrared spectroscopy and differential thermal analysis, respectively. The subtle structural variations attributed to different B2O3 doping modes have been discussed in detail. The results show that the thermal stability and glass forming tendency of the iron borophosphate glass wasteforms are faintly affected by different B2O3 doping modes. The main structural networks of iron borophosphate glass wasteforms are PO43-, P2O74-, [BO4] groups. Furthermore, for the wasteform prepared by using 10B2O3-36Fe2O3-54P2O5 as base glass, the distributions of Fe-O-P bonds, [BO4], PO43- and P2O74- groups are optimal. In general, the dissolution rate (DR) values of the studied iron borophosphate wasteforms are about 10-8 g cm-2 min-1. The obtained conclusions can offer some useful information for the disposal of high-level radioactive wastes using boron contained phosphate glasses.

  9. Evaluation of iron phosphate (III) as reactive material for removal of uranium in water

    International Nuclear Information System (INIS)

    Solis M, L.

    2004-02-01

    The levels of toxic metals in the atmosphere are topic of growing interest. This has provoked that the legislation is stricter, for that that the industry and centers of investigation has worried and busy of to look for and to develop more effective methods for the control of the contamination, with the purpose of being inside this levels. The phosphate compounds are being investigated for the removal of pollutants of the water and soil. In this work, it was synthesized to the ferric phosphate in a simple way in the laboratory, obtaining high grade of purity and yield. The characterization of this product was in a physicochemical way and of surface, through diverse analytical techniques. In the first place, the physicochemical characterization was carried out for Scanning Electron Microscopy of High Vacuum, X-ray diffraction, Infrared Spectroscopy with Fourier Transform, and Thermal gravimetric Analysis, the surface characterization was carried out for analysis of the surface area, determination of the isoelectric point by potentiometric and of mass titrations. The previous techniques allowed to identify the ferric phosphate synthesized as a compound amorphous beige color, with a relationship of atoms Fe:1, P:1, O:4, which showed connections P-O and went stable to changes of temperature. The surface area it was of 21 g / m 2 , the isoelectric point corresponded to a p H of 1.5, which coincided so much by potentiometric like by mass titration. The number of active sites was of 106 sites /nm 2 . After the characterization of the ferric phosphate the compound was evaluated as reactive material for the removal of uranyl ions through sorption tests. The kinetics of hydration showed that the product requires of 24 hours to saturate the sites capable of to be hydrated. The sorption kinetics required 22 hours of contact to reach the maximum sorption of uranyl ions for the ferric phosphate. The sorption isotherms showed that not significant difference exists when using 0

  10. Use of Ferrihydrite-Coated Pozzolana and Biogenic Green Rust to Purify Waste Water Containing Phosphate and Nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Ruby, Christian; Naille, Sébastien; Ona-Nguema, Georges; Morin, Guillaume; Mallet, Martine; Guerbois, Delphine; Barthélémy, Kévin; Etique, Marjorie; Zegeye, Asfaw; Zhang, Yuhai; Boumaïza, Hella; Al-Jaberi, Muayad; Renard, Aurélien; Noël, Vincent; Binda, Paul; Hanna, Khalil; Despas, Christelle; Abdelmoula, Mustapha; Kukkadapu, Ravi; Sarrias, Joseph; Albignac, Magali; Rocklin, Pascal; Nauleau, Fabrice; Hyvrard, Nathalie; Génin, Jean-Marie

    2016-06-27

    The activated sludge treatments combined to the addition of ferric chloride is commonly used to eliminate nitrate and phosphate from waste water in urban area. These processes that need costly infrastructures are not suitable for rural areas and passive treatments (lagoons, reed bed filters…) are more frequently performed. Reed bed filters are efficient for removing organic matter but are not suitable for treating phosphate and nitrate as well. Passive water treatments using various materials (hydroxyapatite, slag…) were already performed, but those allowing the elimination of both nitrate and phosphate are not actually available. The goal of this work is to identify the most suitable iron based materials for such treatments and to determine their optimal use conditions, in particular in hydrodynamic mode. The reactivity of the iron based minerals was measured either by using free particles in suspension or by depositing these particles on a solid substrate. Pouzzolana that is characterized by a porous sponge-like structure suits for settling a high amount of iron oxides. The experimental conditions enabling to avoid any ammonium formation when green rust encounters nitrate were determined within the framework of a full factorial design. The process is divided into two steps that will be performed inside two separated reactors. Indeed, the presence of phosphate inhibits the reduction of nitrate by green rust and the dephosphatation process must precede the denitrification process. In order to remove phosphate, ferrihydrite coated pouzzolana is the best materials. The kinetics of reaction of green rust with nitrate is relatively slow and often leads to the formation of ammonium. The recommendation of the identified process is to favor the accumulation of nitrite in a first step, these species reacting much more quickly with green rust and do not transform into ammonium.

  11. The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments.

    Science.gov (United States)

    Pantoja, M L; Jones, H; Garelick, H; Mohamedbakr, H G; Burkitbayev, M

    2014-01-01

    Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L(-1)) for an initial concentration of 1,000 μg L(-1). Maximum capacity at pH 4 and 17% iron was 18.12-40.82 mg of arsenic/g of D-Fe and at pH 4 and 10% iron was 18.48-29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10% and 17% iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation.

  12. Effect of Phosphorylation and Copper(II or Iron(II Ions Enrichment on Some Physicochemical Properties of Spelt Starch

    Directory of Open Access Journals (Sweden)

    Jacek Rożnowski

    Full Text Available ABSTRACT: This paper provides an assessment of the effect of saturation of spelt starch and monostarch phosphate with copper or iron ions on selected physicochemical properties of the resulting modified starches. Native and modified spelt starch samples were analyzed for selected mineral element content using Atomic Absorption Spectroscopy (AAS. Thermodynamic properties were measured using DSC, and pasting properties by RVA. Flow curves of 5% pastes were plotted and described using the Herschel-Bulkley model. The structure recovery ratio was measured. AAS analysis established the presence of iron(II and copper(II ions in the samples of modified starches and that potassium and magnesium ions had leached from them. In comparison to unfortified samples, enriching native starch with copper(II ions decreases value of all temperatures of phase transformation about 1.3-2.7 °C, but in case of monostarch phosphates bigger changes (2.8-3.7 °C were observed. Fortified native spelt starch with copper(II ions caused increasing the final viscosity of paste from 362 to 429 mPa·s. However, presence iron(II ions in samples caused reduced its final viscosity by 170 (spelt starch and 103 mPa·s (monostarch phosphate. Furthermore, enriching monostarch phosphate contributed to reduce degree of structure recovery of pastes from 70.9% to 66.6% in case of copper(II ions and to 59.9% in case of iron(II ions.

  13. High-Strength / High Alkaline Resistant Fe-Phosphate Glass Fibers as Concrete Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Mariano Velez

    2008-03-31

    Calcium-iron-phosphate glasses were developed whose chemical durabilities in alkaline solutions (pH 13) were comparable or superior to those of commercial alkaline-resistant (AR) silica-based glasses. However, the tensile strength of Ca-Fe-phosphate fibers, after being exposed to alkaline environments, including wet Portland cement pastes, is lower than that of current AR silicate fibers. Another series of Ca-Fe-phosphate glasses were developed with excellent chemical durability in strong acidic solutions (H2SO4, HF), indicating potential applications where silica-based fibers degrade very quickly, including E-glass. The new Ca-Fe-phosphate glasses can be melted and processed 300 to 500°C lower than silica-based glasses. This offers the possibility of manufacturing glass fibers with lower energy costs by 40-60% and the potential to reduce manufacturing waste and lower gas emissions. It was found that Ca-Fe-phosphate melts can be continuously pulled into fibers depending on the slope of the viscosity-temperature curve and with viscosity ~100 poise, using multi-hole Pt/Rh bushings.

  14. Stimulation of Suicidal Erythrocyte Death by Increased Extracellular Phosphate Concentrations

    Directory of Open Access Journals (Sweden)

    Jakob Voelkl

    2014-02-01

    Full Text Available Background/Aim: Anemia in renal insufficiency results in part from impaired erythrocyte formation due to erythropoietin and iron deficiency. Beyond that, renal insufficiency enhances eryptosis, the suicidal erythrocyte death characterized by phosphatidylserine-exposure at the erythrocyte surface. Eryptosis may be stimulated by increase of cytosolic Ca2+-activity ([Ca2+]i. Several uremic toxins have previously been shown to stimulate eryptosis. Renal insufficiency is further paralleled by increase of plasma phosphate concentration. The present study thus explored the effect of phosphate on erythrocyte death. Methods: Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, and [Ca2+]i from Fluo3-fluorescence. Results: Following a 48 hours incubation, the percentage of phosphatidylserine exposing erythrocytes markedly increased as a function of extracellular phosphate concentration (from 0-5 mM. The exposure to 2 mM or 5 mM phosphate was followed by slight but significant hemolysis. [Ca2+]i did not change significantly up to 2 mM phosphate but significantly decreased at 5 mM phosphate. The effect of 2 mM phosphate on phosphatidylserine exposure was significantly augmented by increase of extracellular Ca2+ to 1.7 mM, and significantly blunted by nominal absence of extracellular Ca2+, by additional presence of pyrophosphate as well as by presence of p38 inhibitor SB203580. Conclusion: Increasing phosphate concentration stimulates erythrocyte membrane scrambling, an effect depending on extracellular but not intracellular Ca2+ concentration. It is hypothesized that suicidal erythrocyte death is triggered by complexed CaHPO4.

  15. Characterization of radiative properties of Nd{sub 2}O{sub 3} doped phosphate and silicate glasses for solid state laser

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, P., E-mail: pnandi@barc.gov.in; Shukla, R., E-mail: pnandi@barc.gov.in; Goswami, M., E-mail: pnandi@barc.gov.in [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Sudarsan, V. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2014-04-24

    Nd{sub 2}O{sub 3} doped calcium aluminium phosphate and calcium aluminium silicate glasses prepared to compare their absorption and emission properties. Radiative lifetime of the excited state {sup 4}F{sub 3/2} derived by Judd-Ofelt theory applied to the absorption spectra. Using the photoluminescence spectrometer the steady state emission and relaxation time from excited energy level recorded under green light excitation. Phosphate glass has higher emission cross-section, higher radiative lifetime but less quantum efficiency due to non-radiative quenching through hydroxyl ions compared to silicate glass for Nd{sup 3+}:{sup 4}F{sub 3/2}→{sup 4}I{sub 9/2} emission.

  16. CHEMICAL INTERACTIONS OF ARSENATE, ARSENITE, PHOSPHATE, AND SILICATE WITH IRON (II, III) HYDROXYCARBONATE GREEN RUST

    Science.gov (United States)

    Granular zerovalent iron has been proposed to be used as a medium in permeable reactive barriers (PRBs) to remove arsenic from contaminated groundwater. Iron(II, III) hydroxycarbonate green rust (carbonate green rust, or CGR) is a major corrosion product of zerovalent iron under ...

  17. Nanocompounds of iron and zinc: their potential in nutrition

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hilty, F.M.

    2011-01-01

    Recent studies suggest nanostructured oxides and phosphates of Fe and atomically mixed Fe/Zn may be useful for nutritional applications. These compounds may have several advantages over existing fortificants, such as ferrous sulfate (FeSO(4)), NaFeEDTA and electrolytic iron. Because of their very

  18. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust.

    Science.gov (United States)

    Longo, Amelia F; Feng, Yan; Lai, Barry; Landing, William M; Shelley, Rachel U; Nenes, Athanasios; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Ingall, Ellery D

    2016-07-05

    Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.

  19. Alkaline resistant phosphate glasses and method of preparation and use thereof

    Science.gov (United States)

    Brow, Richard K.; Reis, Signo T.; Velez, Mariano; Day, Delbert E.

    2010-01-26

    A substantially alkaline resistant calcium-iron-phosphate (CFP) glass and methods of making and using thereof. In one application, the CFP glass is drawn into a fiber and dispersed in cement to produce glass fiber reinforced concrete (GFRC) articles having the high compressive strength of concrete with the high impact, flexural and tensile strength associated with glass fibers.

  20. Structure of octaheme cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens in a complex with phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Trofimov, A. A.; Polyakov, K. M., E-mail: kostya@eimb.relarn.ru [Russian Academy of Sciences, Engelhardt Institute of Molecular Biology (Russian Federation); Boiko, K. M.; Filimonenkov, A. A. [Russian Academy of Sciences, Bach Institute of Biochemistry (Russian Federation); Dorovatovskii, P. V. [Kurchatov Center for Synchrotron Radiation and Nanotechnology (Russian Federation); Tikhonova, T. V.; Popov, V. O. [Russian Academy of Sciences, Bach Institute of Biochemistry (Russian Federation); Koval' chuk, M. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2010-01-15

    Octaheme cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens (TvNiR) catalyzes the reduction of nitrite and hydroxylamine to ammonia. The structures of the free enzyme and of the enzyme in complexes with the substrate (nitrite ion) and the inhibitor (azide ion) have been solved previously. In this study we report the structures of the oxidized complex of TvNiR with phosphate and of this complex reduced by europium(II) chloride (1.8- and 2.0-A resolution, the R factors are 15.9 and 16.7%, respectively) and the structure of the enzyme in the complex with cyanide (1.76-A resolution, the R factor is 16.5%), which was prepared by soaking a crystal of the oxidized phosphate complex of TvNiR. In the active site of the enzyme, the phosphate ion binds to the iron ion of the catalytic heme and to the side chains of the catalytic residues Arg131, Tyr303, and His361. The cyanide ion is coordinated to the heme-iron ion and is hydrogen bonded to the residue His361. In the structure of reduced TvNiR, the phosphate ion is bound in the same manner as in the structure of oxidized TvNiR, and the nine{sub c}oordinated europium ion is located on the surface of one of the crystallographically independent monomers of the enzyme.

  1. Structure of octaheme cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens in a complex with phosphate

    International Nuclear Information System (INIS)

    Trofimov, A. A.; Polyakov, K. M.; Boiko, K. M.; Filimonenkov, A. A.; Dorovatovskii, P. V.; Tikhonova, T. V.; Popov, V. O.; Koval'chuk, M. V.

    2010-01-01

    Octaheme cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens (TvNiR) catalyzes the reduction of nitrite and hydroxylamine to ammonia. The structures of the free enzyme and of the enzyme in complexes with the substrate (nitrite ion) and the inhibitor (azide ion) have been solved previously. In this study we report the structures of the oxidized complex of TvNiR with phosphate and of this complex reduced by europium(II) chloride (1.8- and 2.0-A resolution, the R factors are 15.9 and 16.7%, respectively) and the structure of the enzyme in the complex with cyanide (1.76-A resolution, the R factor is 16.5%), which was prepared by soaking a crystal of the oxidized phosphate complex of TvNiR. In the active site of the enzyme, the phosphate ion binds to the iron ion of the catalytic heme and to the side chains of the catalytic residues Arg131, Tyr303, and His361. The cyanide ion is coordinated to the heme-iron ion and is hydrogen bonded to the residue His361. In the structure of reduced TvNiR, the phosphate ion is bound in the same manner as in the structure of oxidized TvNiR, and the nine c oordinated europium ion is located on the surface of one of the crystallographically independent monomers of the enzyme.

  2. Muconaldehyde formation from 14C-benzene in a hydroxyl radical generating system

    Energy Technology Data Exchange (ETDEWEB)

    Latriano, L.; Zaccaria, A.; Goldstein, B.D.; Witz, G.

    1985-01-01

    It has recently been proposed that muconaldehyde, a six carbon, alpha, beta-unsaturated dialdehyde, may be a hematotoxic metabolite of benzene. The present studies indicate that trans, trans-muconaldehyde is formed from benzene in vitro in a hydroxyl radical (.OH) generating system containing ascorbate, ferrous sulfate and EDTA in phosphate buffer, pH 6.7. Muconaldehyde formed from benzene in the .OH generating system was identified by trapping it with thiobarbituric acid (TBA), which results in the formation of an adduct with a 495 nm absorption maximum and a 510 nm fluorescence emission maximum. These maxima were identical to those observed after reacting authentic trans, trans-muconaldehyde with TBA. This finding was supported by thin layer chromatography and solid phase extraction studies. In those studies benzene-derived muconaldehyde cochromatographed with the muconaldehyde/TBA standard. Analyses of the products from the .OH generating system using high performance liquid chromatography (HPLC) confirm that trans, trans-muconaldehyde is a product of benzene ring fission. Regardless of whether or not TBA was used for trapping, samples from the .OH system incubated with benzene contained a peak which cochromatographed with the muconaldehyde standard. The radioactivity profile of fractions collected during HPLC analysis demonstrates 14C-benzene to be the source of the trans, trans-muconaldehyde. The role of hydroxyl radicals in the formation of muconaldehyde was investigated by using dimethyl sulfoxide, mannitol, and ethanol as .OH scavengers. These scavengers, at concentrations of 10 and 100 mM, were found to cause a dose-dependent decrease in the formation of muconaldehyde.

  3. Antioxidant mechanism of milk mineral-high-affinity iron binding.

    Science.gov (United States)

    Allen, K; Cornforth, D

    2007-01-01

    Milk mineral (MM), a by-product of whey processing, is an effective antioxidant in meat systems, but the antioxidant mechanism has not been established. MM has been postulated to chelate iron and prevent iron-catalysis of lipid oxidation. The objective of this research was to examine this putative mechanism. MM was compared to sodium tripolyphosphate (STPP), calcium phosphate monobasic (CPM), and calcium pyrophosphate (CPP) to determine iron-binding capacity, sample solubility, and eluate soluble phosphorus after treating samples with a ferrous chloride standard. Scanning electron microscopy with energy-dispersive X-ray analysis was used to localize minerals on iron-treated MM particle surfaces. Histochemical staining for calcium was performed on raw and cooked ground beef samples with added MM. MM bound more iron per gram (P compounds, and was much less soluble (P iron across the MM particle surface, directly demonstrating iron binding to MM particles. Unlike other common chelating agents, such as STPP and citrate, histochemical staining demonstrated that MM remained insoluble in ground beef, even after cooking. The ability of MM to bind iron and remain insoluble may enhance its antioxidant effect by removing iron ions from solution. However, MM particles must be small and well distributed in order to adequately bind iron throughout the food system.

  4. Enhancing phosphate adsorption capacity of SDS-based magnetite by surface modification of citric acid

    International Nuclear Information System (INIS)

    Yu, Zhigang; Zhang, Chang; Zheng, Zuhong; Hu, Liang; Li, Xuemei; Yang, Zhongzhu; Ma, Chi; Zeng, Guangming

    2017-01-01

    Highlights: • Citric acid (CA) was used to modify the surface structures of SDS-based magnetite. • Dosage of CA, pH values, ion strength, isotherms and dynamics were analyzed. • High CA dissolved anionic SDS and Fe n+ but increased the stability of magnetite. • 0.05 and 0.1 M CA-modified iron oxide removed about 100% phosphorus. • Precipitation of phosphate and Fe n+ was the main removal mechanism. - Abstract: In this study, citric acid (CA) was employed as a low-molecule organic acid to influence the adsorption performance of phosphorus by as-obtained magnetite. The factors including initial phosphate concentrations, dosage of citric acid, pH value, ion strength, contact time and temperature were examined in detail. Results indicated that the dissolution of anion sodium dodecyl sulfate (SDS) covering on surface of magnetite, a slight decrease of Fe level and a superior structure of magnetite after CA modification occurred. The pH-dependence of phosphate adsorption was impeded and the surface potential of magnetite positively increased at pH > 5.0 when CA was added. Non-linear regression Langmuir-Freundlich model was fitted well in thermodynamics, and the opposite adsorption process as a function of temperatures with or without CA addition was due to the decrease of active energy and active mobility of phosphate ion. Finally, the declining adsorption efficiency with increasing cycles was observed while phosphate removal was approximately finished and had small change with 0.05 and 0.1 M of CA addition. Those improvements of removal efficiency of phosphorus by modified iron oxide were because of the removal of anionic SDS that increased the surface positive charge, and especially the dissolution of element Fe into solution to form precipitate with phosphorus ions. The enhanced stability of magnetite by CA also promoted the high removal efficiency of phosphorus. These implications of CA on phosphate removal can be extended to the field where phosphate

  5. Enhancing phosphate adsorption capacity of SDS-based magnetite by surface modification of citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhigang [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhang, Chang, E-mail: zhangchang@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zheng, Zuhong [College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, Hubei Province (China); Hu, Liang; Li, Xuemei; Yang, Zhongzhu; Ma, Chi; Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2017-05-01

    Highlights: • Citric acid (CA) was used to modify the surface structures of SDS-based magnetite. • Dosage of CA, pH values, ion strength, isotherms and dynamics were analyzed. • High CA dissolved anionic SDS and Fe{sup n+} but increased the stability of magnetite. • 0.05 and 0.1 M CA-modified iron oxide removed about 100% phosphorus. • Precipitation of phosphate and Fe {sup n+} was the main removal mechanism. - Abstract: In this study, citric acid (CA) was employed as a low-molecule organic acid to influence the adsorption performance of phosphorus by as-obtained magnetite. The factors including initial phosphate concentrations, dosage of citric acid, pH value, ion strength, contact time and temperature were examined in detail. Results indicated that the dissolution of anion sodium dodecyl sulfate (SDS) covering on surface of magnetite, a slight decrease of Fe level and a superior structure of magnetite after CA modification occurred. The pH-dependence of phosphate adsorption was impeded and the surface potential of magnetite positively increased at pH > 5.0 when CA was added. Non-linear regression Langmuir-Freundlich model was fitted well in thermodynamics, and the opposite adsorption process as a function of temperatures with or without CA addition was due to the decrease of active energy and active mobility of phosphate ion. Finally, the declining adsorption efficiency with increasing cycles was observed while phosphate removal was approximately finished and had small change with 0.05 and 0.1 M of CA addition. Those improvements of removal efficiency of phosphorus by modified iron oxide were because of the removal of anionic SDS that increased the surface positive charge, and especially the dissolution of element Fe into solution to form precipitate with phosphorus ions. The enhanced stability of magnetite by CA also promoted the high removal efficiency of phosphorus. These implications of CA on phosphate removal can be extended to the field where

  6. Equilibriums of sorption of impurities of 3 d - cations by inorganic sorbents from phosphate and arsenate solutions

    International Nuclear Information System (INIS)

    Filatova, L.N.; Kurdyumova, T.N.; Bagrov, V.M.; Blyum, G.Z.

    1986-01-01

    Present article is devoted to equilibriums of sorption of impurities of 3 d - cations by inorganic sorbents from phosphate and arsenate solutions. Equilibriums of sorption of microquantities of iron, scandium, zink, copper, cobalt and manganese by inorganic sorbents on the basis of titanium and aluminium oxides from phosphate and arsenate solutions are studied. The influence of structural and chemical properties of matrix on sorption properties of oxides in phosphate and arsenate solutions is studied as well. It is defined that in concentrated solutions the sorption value of trace contaminant depends on a character of cation of alkaline metal.

  7. Influence of groundwater composition on subsurface iron and arsenic removal

    KAUST Repository

    Moed, David H.; Van Halem, Doris; Verberk, J. Q J C; Amy, Gary L.; Van Dijk, Johannis C.

    2012-01-01

    Subsurface arsenic and iron removal (SAR/SIR) is a novel technology to remove arsenic, iron and other groundwater components by using the subsoil. This research project investigated the influence of the groundwater composition on subsurface treatment. In anoxic sand column experiments, with synthetic groundwater and virgin sand, it was found that several dissolved substances in groundwater compete for adsorption sites with arsenic and iron. The presence of 0.01 mmol L -1phosphate, 0.2 mmol L -1 silicate, and 1 mmol L -1 nitrate greatly reduced the efficiency of SAR, illustrating the vulnerability of this technology in diverse geochemical settings. SIR was not as sensitive to other inorganic groundwater compounds, though iron retardation was limited by 1.2 mmol L -1 calcium and 0.06 mmol L -1 manganese. © IWA Publishing 2012.

  8. Influence of groundwater composition on subsurface iron and arsenic removal

    KAUST Repository

    Moed, David H.

    2012-06-01

    Subsurface arsenic and iron removal (SAR/SIR) is a novel technology to remove arsenic, iron and other groundwater components by using the subsoil. This research project investigated the influence of the groundwater composition on subsurface treatment. In anoxic sand column experiments, with synthetic groundwater and virgin sand, it was found that several dissolved substances in groundwater compete for adsorption sites with arsenic and iron. The presence of 0.01 mmol L -1phosphate, 0.2 mmol L -1 silicate, and 1 mmol L -1 nitrate greatly reduced the efficiency of SAR, illustrating the vulnerability of this technology in diverse geochemical settings. SIR was not as sensitive to other inorganic groundwater compounds, though iron retardation was limited by 1.2 mmol L -1 calcium and 0.06 mmol L -1 manganese. © IWA Publishing 2012.

  9. Iron and manganese shuttles control the formation of authigenic phosphorus minerals in the euxinic basins of the Baltic Sea

    NARCIS (Netherlands)

    Jilbert, T.|info:eu-repo/dai/nl/304835714; Slomp, C.P.|info:eu-repo/dai/nl/159424003

    2013-01-01

    Microanalysis of epoxy resin-embedded sediments is used to demonstrate the presence of authigenic iron (Fe) (II) phosphates and manganese (Mn)-calcium (Ca)-carbonate-phosphates in the deep euxinic basins of the Baltic Sea. These minerals constitute major burial phases of phosphorus (P) in this area,

  10. Pulse radiolysis and ab initio SCF MO studies of hydroxyl radical reactions with 2,2'-bipyridine and its complexes with transition metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Maliyachel, A C

    1984-01-01

    In the present study, reactions of hydroxyl radical with 2,2'-bipyridine (bpy) and complexes of iron(II) and cobalt(III) containing 2,2'-bipyridine and/or cyanide as ligands have been investigated by pulse radiolysis and also by ab initio self-consistent field, molecular orbital (SCF MO) theoretical techniques for 2,2'-bipyridine and pyridines. In the pulse radiolysis experiments, the nascent products of hydroxyl radical reactions with these compounds have been characterized through their spectral and kinetic properties. All these reactions occur at near diffusion controlled rates to give transient products having absorption in the ultraviolet, visible and, in some cases, near-IR region. The primary reactions of OH are considered to take place by addition mechanisms in the cases of 2,2'-bipyridine, (Fe(bpy)/sub 3/)/sup 2 +/, (Fe(DMbpy)/sub 3/)/sup 2 +/ and (Co(bpy)/sub 3/)/sup 3 +/. With (Fe(pby)/sub 2/(CN)/sub 2/) and (Fe(bpy)(CN)/sub 4/)/sup 2 -/, both addition and charge transfer processes occur. The present study indicates that hydroxyl radical reactions with 2,2'-bipyridine can be considerably altered by complexation with metal ions such as iron(II) and cobalt(III), and the factors associated with this are discussed. In the second part of this work, ab initio SCF MO calculations have been performed for the reactions of OH with pyridine, pyridinium ion and 2,2'-bipyridine. Based on the calculated total energies for the various hydroxy radical products, the relative stability of OH addition products are found to be for pyridine, meta-C > N >> para-C > ortho-C; for pyridinium ion, meta-C >> para-C > ortho-C > N, and for 2,2'- bipyridine, C/sub 5/ > C/sub 6/ > C/sub 3/ > C/sub 4/ > N.

  11. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    Science.gov (United States)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-11-01

    The retention of phosphorus in surface waters through co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from groundwater into surface water in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and surface water, we investigated Fe(II) oxidation kinetics and P immobilization processes. The oxidation rate inferred from our field measurements closely agreed with the general rate law for abiotic oxidation of Fe(II) by O2. Seasonal changes in climatic conditions affected the Fe(II) oxidation process. Lower pH and lower temperatures in winter (compared to summer) resulted in low Fe oxidation rates. After exfiltration to the surface water, it took a couple of days to more than a week before complete oxidation of Fe(II) is reached. In summer time, Fe oxidation rates were much higher. The Fe concentrations in the exfiltrated groundwater were low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into a ditch. While the Fe oxidation rates reduce drastically from summer to winter, P concentrations remained high in the groundwater and an order of magnitude lower in the surface water throughout the year. This study shows very fast immobilization of dissolved P during the initial stage of the Fe(II) oxidation process which results in P-depleted water before Fe(II) is completely depleted. This cannot be explained by surface complexation of phosphate to freshly formed Fe-oxyhydroxides but indicates the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at redox gradients

  12. Structural Diversity Within the Mononuclear and Binuclear Active Sites of N-Acetyl-D-Glucosamine-6-Phosphate Deacetylase

    Energy Technology Data Exchange (ETDEWEB)

    Hall,R.; Brown, S.; Fedorov, A.; Fedorov, E.; Xu, C.; Babbitt, P.; Almo, S.; Raushel, F.

    2007-01-01

    NagA catalyzes the hydrolysis of N-acetyl-D-glucosamine-6-phosphate to D-glucosamine-6-phosphate and acetate. X-ray crystal structures of NagA from Escherichia coli were determined to establish the number and ligation scheme for the binding of zinc to the active site and to elucidate the molecular interactions between the protein and substrate. The three-dimensional structures of the apo-NagA, Zn-NagA, and the D273N mutant enzyme in the presence of a tight-binding N-methylhydroxyphosphinyl-D-glucosamine-6-phosphate inhibitor were determined. The structure of the Zn-NagA confirms that this enzyme binds a single divalent cation at the beta-position in the active site via ligation to Glu-131, His-195, and His-216. A water molecule completes the ligation shell, which is also in position to be hydrogen bonded to Asp-273. In the structure of NagA bound to the tight binding inhibitor that mimics the tetrahedral intermediate, the methyl phosphonate moiety has displaced the hydrolytic water molecule and is directly coordinated to the zinc within the active site. The side chain of Asp-273 is positioned to activate the hydrolytic water molecule via general base catalysis and to deliver this proton to the amino group upon cleavage of the amide bond of the substrate. His-143 is positioned to help polarize the carbonyl group of the substrate in conjunction with Lewis acid catalysis by the bound zinc. The inhibitor is bound in the {alpha}-configuration at the anomeric carbon through a hydrogen bonding interaction of the hydroxyl group at C-1 with the side chain of His-251. The phosphate group of the inhibitor attached to the hydroxyl at C-6 is ion paired with Arg-227 from the adjacent subunit. NagA from Thermotoga maritima was shown to require a single divalent cation for full catalytic activity.

  13. Paracetamol degradation intermediates and toxicity during photo-Fenton treatment using different iron species.

    Science.gov (United States)

    Trovó, Alam G; Pupo Nogueira, Raquel F; Agüera, Ana; Fernandez-Alba, Amadeo R; Malato, Sixto

    2012-10-15

    The photo-Fenton degradation of paracetamol (PCT) was evaluated using FeSO(4) and the iron complex potassium ferrioxalate (FeOx) as iron source under simulated solar light. The efficiency of the degradation process was evaluated considering the decay of PCT and total organic carbon concentration and the generation of carboxylic acids, ammonium and nitrate, expressed as total nitrogen. The results showed that the degradation was favored in the presence of FeSO(4) in relation to FeOx. The higher concentration of hydroxylated intermediates generated in the presence of FeSO(4) in relation to FeOx probably enhanced the reduction of Fe(III) to Fe(II) improving the degradation efficiency. The degradation products were determined using liquid chromatography electrospray time-of-flight mass spectrometry. Although at different concentrations, the same intermediates were generated using either FeSO(4) or FeOx, which were mainly products of hydroxylation reactions and acetamide. The toxicity of the sample for Vibrio fischeri and Daphnia magna decreased from 100% to less than 40% during photo-Fenton treatment in the presence of both iron species, except for D. magna in the presence of FeOx due to the toxicity of oxalate to this organism. The considerable decrease of the sample toxicity during photo-Fenton treatment using FeSO(4) indicates a safe application of the process for the removal of this pharmaceutical. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Intracrystalline fractionation of oxygen isotopes between hydroxyl and non-hydroxyl sites in kaolinite measured by thermal dehydroxylation and partial fluorination

    Science.gov (United States)

    Girard, Jean-Pierre; Savin, Samuel M.

    1996-02-01

    Thermal dehydroxylation and partial fluorination techniques were used to measure intracrystalline fractionation of oxygen isotopes between hydroxyl and non-hydroxyl sites in kaolinite. Several aliquots of a well characterized, fine-grained (rates, and target temperatures. Measured δ18O values of both the liberated water and the dehydroxylated residue are consistent over a wide range of temperatures (550 850°C) when dehydroxylation is performed in a single-step fashion at a rapid heating rate (>50°C/min.). Similar dehydroxylation experiments indicate that brucite dehydroxylation occurs without any significant isotopic fractionation of the oxygen isotopes. By extrapolation we postulate that no significant fractionation occurs during single-step thermal dehydroxylation of fine-grained kaolinite, provided that dehydroxylation is performed under well controlled conditions. In contrast, gibbsite dehydroxylation is accompanied by substantial isotopic fractionation. This is probably the result of the complex, multi-pathway dehydroxylation reaction of this mineral. Similarly, thermal dehydroxylation of coarsegrained (>1 μm) kaolinites and dickites of weathering and hydrothermal origin yield results that are dependent on the temperature of dehydroxylation. We suggest that this effect may be caused by isotopic exchange during diffusion of water molecules through coarse particles. Partial fluorination of fine-grained kaolinite in the presence of excess F2 at low temperatures (rate of reaction of hydroxyl oxygen than of non-hydroxyl oxygen, but examination of the isotopic data as well as XRD and IR analyses of the residues after partial fluorination indicates that the separation between the two types of oxygen is not complete. The results, therefore, do not yield a reliable δ18O value of the hydroxyl oxygen. The results of this study suggest that the thermal dehydroxylation technique may be appropriate for analysis of OH groups in fine-grained kaolinite. The partial

  15. Photochemical decomposition of perfluorooctanoic acid mediated by iron in strongly acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Masaki, E-mail: mohno@hiroshima-u.ac.jp [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Ito, Masataka; Ohkura, Ryouichi [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Mino A, Esteban R. [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Kose, Tomohiro [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Okuda, Tetsuji [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Nakai, Satoshi [Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Kawata, Kuniaki [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Nishijima, Wataru [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan)

    2014-03-01

    Highlights: • Perfluorooctanoic acid (PFOA) was decomposed based on ferric ion performance. • Complete decomposition of PFOA was confirmed in strongly acidic conditions. • Fe{sup 2+} changed to Fe{sup 3+} to restore chemical equilibrium in this condition. • Fe{sup 3+} was only produced from Fe{sup 2+} by hydroxyl radical in weakly acidic conditions. • The Fe{sup 3+} regeneration mechanisms resulted in the performance of Fe{sup 3+} for PFOA. - Abstract: The performance of a ferric ion mediated photochemical process for perfluorooctanoic acid (PFOA) decomposition in strongly acidic conditions of pH 2.0 was evaluated in comparison with those in weakly acidic conditions, pH 3.7 or pH 5.0, based on iron species composition and ferric ion regeneration. Complete decomposition of PFOA under UV irradiation was confirmed at pH 2.0, whereas perfluoroheptanoic acid (PFHpA) and other intermediates were accumulated in weakly acidic conditions. Iron states at each pH were evaluated using a chemical equilibrium model, Visual MINTEQ. The main iron species at pH 2.0 is Fe{sup 3+} ion. Although Fe{sup 3+} ion is consumed and is transformed to Fe{sup 2+} ion by photochemical decomposition of PFOA and its intermediates, the produced Fe{sup 2+} ion will change to Fe{sup 3+} ion to restore chemical equilibrium. Continuous decomposition will occur at pH 2.0. However, half of the iron cannot be dissolved at pH 3.7. The main species of dissolved iron is Fe(OH){sup 2+}. At pH 3.7 or higher pH, Fe{sup 3+} ion will only be produced from the oxidation of Fe{sup 2+} ion by hydroxyl radical produced by Fe(OH){sup 2+} under UV irradiation. These different mechanisms of Fe{sup 3+} regeneration that prevail in strongly and weakly acidic conditions will engender different performances of the ferric ion.

  16. Mössbauer spectroscopy and the understanding of the role of iron in neurodegeneration

    Science.gov (United States)

    Friedman, A.; Galazka-Friedman, J.

    2017-11-01

    The possible role of iron in neurodegeneration may be related to the oxidative stress, triggered by Fenton reaction. In this reaction hydroxyl free radical production is generated by divalent iron. Motor symptoms of Parkinson's disease depend on the destruction of substantia nigra (SN). As the substantive questions were: 1/ what is the concentration of iron in the samples, 2/ what is the proportion of divalent vs. trivalent iron in the samples, and 3/ what is the iron-binding compound, it seemed appropriate to use Mössbauer spectroscopy to answer those questions. We found no difference in the concentration of total iron between PD and control, with the ratio of iron in PD vs. control being 1.00 ± 0.13. The divalent iron could not exceed 5% of the total iron. The main iron-binding compound in SN, both in PD and control is ferritin. Our further studies of ferritin in parkinsonian SN demonstrated a decrease, compared to control, of L-ferritin involved in the storage of iron within ferritin. This could allow an efflux of iron from the ferritin shell and an increase of non-ferritin iron in PD SN, which was confirmed by us. Mössbauer studies in Alzheimer showed slightly higher concentration of iron in hippocampal cortex with significantly higher concentrations of L and H ferritins compared to control. In atypical parkinsonism, progressive supranuclear palsy, higher concentration of iron was found in globus pallidus and SN compared to control. Mössbauer spectroscopy may play crucial role in further studies of human neurodegeneration.

  17. Persulfate activation by iron oxide-immobilized MnO2 composite: identification of iron oxide and the optimum pH for degradations.

    Science.gov (United States)

    Jo, Young-Hoon; Do, Si-Hyun; Kong, Sung-Ho

    2014-01-01

    Iron oxide-immobilized manganese oxide (MnO2) composite was prepared and the reactivity of persulfate (PS) with the composite as activator was investigated for degradation of carbon tetrachloride and benzene at various pH levels. Brunauer-Emmett-Teller (BET) surface area of the composite was similar to that of pure MnO2 while the pore volume and diameter of composite was larger than those of MnO2. Scanning electron microscopy couples with energy dispersive spectroscopy (SEM-EDS) showed that Fe and Mn were detected on the surface of the composite, and X-ray diffraction (XRD) analysis indicated the possibilities of the existence of various iron oxides on the composite surface. Furthermore, the analyses of X-ray photoelectron (XPS) spectra revealed that the oxidation state of iron was identified as 1.74. In PS/composite system, the same pH for the highest degradation rates of both carbon tetrachloride and benzene were observed and the value of pH was 9. Scavenger test was suggested that both oxidants (i.e. hydroxyl radical, sulfate radical) and reductant (i.e. superoxide anion) were effectively produced when PS was activated with the iron-immobilized MnO2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Self-hydroxylation of the splicing factor lysyl hydroxylase, JMJD6

    DEFF Research Database (Denmark)

    Mantri, M.; Webby, C.J.; Loik, N.D.

    2012-01-01

    The lysyl 5S-hydroxylase, JMJD6 acts on proteins involved in RNA splicing. We find that in the absence of substrate JMJD6 catalyses turnover of 2OG to succinate. H-NMR analyses demonstrate that consumption of 2OG is coupled to succinate formation. MS analyses reveal that JMJD6 undergoes self......-hydroxylation in the presence of Fe(ii) and 2OG resulting in production of 5S-hydroxylysine residues. JMJD6 in human cells is also found to be hydroxylated. Self-hydroxylation of JMJD6 may play a regulatory role in modulating the hydroxylation status of proteins involved in RNA splicing. This journal is...

  19. One-year efficacy and safety of the iron-based phosphate binder sucroferric oxyhydroxide in patients on peritoneal dialysis.

    Science.gov (United States)

    Floege, Jürgen; Covic, Adrian C; Ketteler, Markus; Mann, Johannes; Rastogi, Anjay; Spinowitz, Bruce; Rakov, Viatcheslav; Lisk, Laura J; Sprague, Stuart M

    2017-11-01

    Sucroferric oxyhydroxide is a noncalcium, iron-based phosphate binder that demonstrated sustained serum phosphorus control, good tolerability and lower pill burden compared with sevelamer carbonate (sevelamer) in a Phase 3 study conducted in dialysis patients. This subanalysis examines the efficacy and tolerability of sucroferric oxyhydroxide and sevelamer in the peritoneal dialysis (PD) patient population. The initial study (NCT01324128) and its extension (NCT01464190) were multicenter, Phase 3, open-label, randomized (2:1), active-controlled trials comparing sucroferric oxyhydroxide (1.0-3.0 g/day) with sevelamer (2.4-14.4 g/day) in dialysis patients over 52 weeks in total. In the overall study, 84/1055 (8.1%) patients received PD and were eligible for efficacy analysis (sucroferric oxyhydroxide, n = 56; sevelamer, n = 28). The two groups were broadly comparable to each other and to the overall study population. Serum phosphorus concentrations decreased comparably with both phosphate binders by week 12 (mean change from baseline - 0.6 mmol/L). Over 52 weeks, sucroferric oxyhydroxide effectively reduced serum phosphorus concentrations to a similar extent as sevelamer; 62.5% and 64.3% of patients, respectively, were below the Kidney Disease Outcomes Quality Initiative target range (≤1.78 mmol/L). This was achieved with a lower pill burden (3.4 ± 1.3 versus 8.1 ± 3.7 tablets/day) with sucroferric oxyhydroxide compared with sevelamer. Treatment adherence rates were 91.2% with sucroferric oxyhydroxide and 79.3% with sevelamer. The proportion of patients reporting at least one treatment-emergent adverse event was 86.0% with sucroferric oxyhydroxide and 93.1% with sevelamer. The most common adverse events with both treatments were gastrointestinal: diarrhea and discolored feces with sucroferric oxyhydroxide and nausea, vomiting and constipation with sevelamer. Sucroferric oxyhydroxide is noninferior to sevelamer for controlling serum

  20. Dynamic Prediction of Power Storage and Delivery by Data-Based Fractional Differential Models of a Lithium Iron Phosphate Battery

    Directory of Open Access Journals (Sweden)

    Yunfeng Jiang

    2016-07-01

    Full Text Available A fractional derivative system identification approach for modeling battery dynamics is presented in this paper, where fractional derivatives are applied to approximate non-linear dynamic behavior of a battery system. The least squares-based state-variable filter (LSSVF method commonly used in the identification of continuous-time models is extended to allow the estimation of fractional derivative coefficents and parameters of the battery models by monitoring a charge/discharge demand signal and a power storage/delivery signal. In particular, the model is combined by individual fractional differential models (FDMs, where the parameters can be estimated by a least-squares algorithm. Based on experimental data, it is illustrated how the fractional derivative model can be utilized to predict the dynamics of the energy storage and delivery of a lithium iron phosphate battery (LiFePO 4 in real-time. The results indicate that a FDM can accurately capture the dynamics of the energy storage and delivery of the battery over a large operating range of the battery. It is also shown that the fractional derivative model exhibits improvements on prediction performance compared to standard integer derivative model, which in beneficial for a battery management system.

  1. Anodic behaviour of iron electrode in complexing media for a application in coulometric analysis

    International Nuclear Information System (INIS)

    Kostromin, A.I.; Makarova, L.L.

    1977-01-01

    Anodic behaviour is studied of the iron electrode in phosphate solutions (pH 4.88-8.40) in the presence of 0.01 M complexone 3 and in the alcaline environment of triethanolamine with the addition of potassium chloride. The product of anodic dissolution will be iron (2). The d.c. electrogenerated iron (2) was used for the coulometric determination of copper (2), silver (1), VO 2+ , UO 2 2+ in artificial solutions, and also for the determination of silver in motion picture and photographic films of various types

  2. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    Science.gov (United States)

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  3. Characterization, Leaching, and Filtration Testing for Bismuth Phosphate Sludge (Group 1) and Bismuth Phosphate Saltcake (Group 2) Actual Waste Sample Composites

    International Nuclear Information System (INIS)

    Lumetta, Gregg J.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn; Edwards, Matthew K.; Fiskum, Sandra K.; Hallen, Richard T.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.

    2009-01-01

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.() The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups - bismuth phosphate sludge (Group 1) and bismuth phosphate saltcake (Group 2) - are the subjects of this report. The Group 1 waste was anticipated to be high in phosphorus and was implicitly assumed to be present as BiPO4 (however, results presented here indicate that the phosphate in Group 1 is actually present as amorphous iron(III) phosphate). The Group 2 waste was also anticipated to be high in phosphorus, but because of the relatively low bismuth content and higher aluminum content, it was anticipated that the Group 2 waste would contain a mixture of gibbsite, sodium phosphate, and aluminum phosphate. Thus, the focus of the Group 1 testing was on determining the behavior of P removal during caustic leaching, and the focus of the Group 2 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467

  4. Hydroxylation of the herbicide isoproturon by fungi isolated from agricultural soil.

    Science.gov (United States)

    Rønhede, Stig; Jensen, Bo; Rosendahl, Søren; Kragelund, Birthe B; Juhler, René K; Aamand, Jens

    2005-12-01

    Several asco-, basidio-, and zygomycetes isolated from an agricultural field were shown to be able to hydroxylate the phenylurea herbicide isoproturon [N-(4-isopropylphenyl)-N',N'-dimethylurea] to N-(4-(2-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea and N-(4-(1-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea. Bacterial metabolism of isoproturon has previously been shown to proceed by an initial demethylation to N-(4-isopropylphenyl)-N'-methylurea. In soils, however, hydroxylated metabolites have also been detected. In this study we identified fungi as organisms that potentially play a major role in the formation of these hydroxylated metabolites in soils treated with isoproturon. Isolates of Mortierella sp. strain Gr4, Phoma cf. eupyrena Gr61, and Alternaria sp. strain Gr174 hydroxylated isoproturon at the first position of the isopropyl side chain, yielding N-(4-(2-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea, while Mucor sp. strain Gr22 hydroxylated the molecule at the second position, yielding N-(4-(1-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea. Hydroxylation was the dominant mode of isoproturon transformation in these fungi, although some cultures also produced traces of the N-demethylated metabolite N-(4-isopropylphenyl)-N'-methylurea. A basidiomycete isolate produced a mixture of the two hydroxylated and N-demethylated metabolites at low concentrations. Clonostachys sp. strain Gr141 and putative Tetracladium sp. strain Gr57 did not hydroxylate isoproturon but N demethylated the compound to a minor extent. Mortierella sp. strain Gr4 also produced N-(4-(2-hydroxy-1-methylethyl)phenyl)-N'-methylurea, which is the product resulting from combined N demethylation and hydroxylation.

  5. Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: Performance and mechanism.

    Science.gov (United States)

    Xiong, Weiping; Tong, Jing; Yang, Zhaohui; Zeng, Guangming; Zhou, Yaoyu; Wang, Dongbo; Song, Peipei; Xu, Rui; Zhang, Chen; Cheng, Min

    2017-05-01

    Phosphate (P) removal is significant for the prevention of eutrophication in natural waters. In this paper, a novel adsorbent for the removal of P from aqueous solution was synthesized by loading zirconium oxide and iron oxide onto activated carbon nanofiber (ACF-ZrFe) simultaneously. The adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The results showed that P adsorption was highly pH dependent and the optimum pH was found to be 4.0. The isotherm of adsorption could be well described by the Langmuir model and the maximum P adsorption capacity was estimated to be 26.3mgP/g at 25°C. The kinetic data were well fitted to the pseudo-second-order equation, indicating that chemical sorption was the rate-limiting step. Moreover, co-existing ions including sulfate (SO 4 2- ), chloride (Cl - ), nitrate (NO 3 - ) and fluoride (F - ) exhibited a distinct effect on P adsorption with the order of F - >NO 3 - >Cl - >SO 4 2- . Further investigations by FT-IR spectroscopy and pH variations associated with the adsorption process revealed that ligands exchange and electrostatic interactions were the dominant mechanisms for P adsorption. The findings reported in this work highlight the potential of using ACF-ZrFe as an effective adsorbent for the removal of P in natural waters. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Infrared spectroscopy of flavones and flavonols. Reexamination of the hydroxyl and carbonyl vibrations in relation to the interactions of flavonoids with membrane lipids

    Science.gov (United States)

    Baranović, Goran; Šegota, Suzana

    2018-03-01

    Detailed vibrational assignments for twelve flavonoids (seven flavones (flavone, 3- and 5-hydroxyflavone, chrysin, apigenin, fisetin and luteolin) and five flavonols (galangin, kaempferol, quercetin, morin and myricetin)) have been made based on own and reported experimental data and calculations at the B3LYP/6-31 + G(d,p) level of theory. All the molecules are treated in a uniform way by using the same set of redundancy-free set of internal coordinates. A generalized harmonic mode mixing is used to corroborate the vibrational characteristics of this important class of molecules. Each flavonoid molecule can be treated from the vibrational point of view as made of relatively weakly coupled chromone and phenyl part. It has been shown that the strongest band around 1600 cm- 1 need not be attributable to the Cdbnd O stretching. The way the vibrations of any of the hydroxyl groups are mixed with ring vibrations and vibrations of other neighboring hydroxyl groups is rather involved. This imposes severe limitations on any attempt to describe normal modes of a flavonol in terms of hydroxyl or carbonyl group vibrations. The role of water molecules in the appearance of flavonoid IR spectra is emphasized. Knowing for the great affinity of phosphate groups in lipids towards water, the immediate consequence is a reasonable assumption that flavonoid lipid interactions is mediated by water.

  7. THERMODINAMIC PARAMETERS ON THE SORPTION OF PHOSPHATE IONS BY MONTMORILLONITE

    Directory of Open Access Journals (Sweden)

    Ikhsan Jaslin

    2016-04-01

    Full Text Available The sorption of phosphate by montmorillonite at 10, 30, and 50 oC were investigated aiming to mainly determine thermodynamic parameters for the formation of surface complexes in the adsorption of phosphate ions by montmorillonite. Data were collected by adsorption edge experiments investigating the effect of pH, adsorption isotherms enabling the effect of sorbate concentration, and acid-base titration calculating protons released or taken up by adsorption process. Data analysis was carried out using surface complexation model to fit the data collected in this study using the parameters obtained from previous study, as well as to calculate the values of ΔH and ΔS. Previous study reported that phosphate ions formed two outer-sphere surface complexes with active sites of montmorillonite through hydrogen bonding. In the first complex,  [(XH0– H2L─]─, the phosphate was held to permanent-charge X─ sites on the tetrahedral siloxane faces, and the second complex, [[(SO─(SOH]– – [H2L]─] 2─ was formed through the interaction between the phosphate and variable charge surface hydroxyl groups at the edges of montmorillonite crystals and on the octahedral alumina faces. The values of ΔH for the first and second reactions are 39.756 and 3.765x10-7 kJ mol‒1 respectively. Since both reactions have positive enthalpy values, it can be concluded that the reactions are endothermic. Large energy for the first reaction is needed by X─  sites (permanent negatively charge sites of montmorillonite to be partially desolvated, on which K+ or other surface cations are replaced by H+ ions in the surface protonated process, and are then ready to interact phosphate ions in the solution. Small values of ΔH for the second reactions indicates that hydrogen bonds formed by phosphate and SOH sites in the second reaction are easily broken out, and the phosphate can easily desorbed from the surface. The values of ΔS for the first and second reactions are

  8. Technical and Economic Assessment of a 450 W Autonomous Photovoltaic System with Lithium Iron Phosphate Battery Storage

    Directory of Open Access Journals (Sweden)

    João Carriço

    2018-03-01

    Full Text Available This paper presents a study about an autonomous photovoltaic system making use of the novel Lithium Iron Phosphate as a battery pack for isolated rural houses. More particularly, this paper examines the behavior and efficiency of a low-cost isolated photovoltaic system for typical rural houses near Luena in Angola. The proposed system (solar panel, batteries, controller, and inverter has been projected having in mind the required household daily load of 1,300 Wh and available solar irradiance. The initial batteries charging revealed to be essential to not only ensure a long battery life but using a balanced pack it was possible to achieve more stored energy. On-site, the polycrystalline solar panels used showed a daily average efficiency of 10.8%, with the total system having 75% efficiency. This result was adjusted to the average temperature in Angola. This way, it was made an extrapolation to the monthly irradiation values in Angola. The results achieved showed good energy production during almost all year except January and December, which revealed critical production values of 1,356 Wh and 1,311 Wh, respectively. These values are too close to the daily consumed energy and indicate the addition of a 2nd alternative source of energy (wind generator, diesel generator, etc. to be explored further.

  9. Hydroxylated PBDEs induce developmental arrest in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Usenko, Crystal Y., E-mail: Crystal_usenko@baylor.edu; Hopkins, David C.; Trumble, Stephen J., E-mail: Stephen_trumble@baylor.edu; Bruce, Erica D., E-mail: Erica_bruce@baylor.edu

    2012-07-01

    The ubiquitous spread of polybrominated diphenyl ethers (PBDEs) has led to concerns regarding the metabolites of these congeners, in particular hydroxylated PBDEs. There are limited studies regarding the biological interactions of these chemicals, yet there is some concern they may be more toxic than their parent compounds. In this study three hydroxylated PBDEs were assessed for toxicity in embryonic zebrafish: 3-OH-BDE 47, 5-OH-BDE 47, and 6-OH-BDE 47. All three congeners induced developmental arrest in a concentration-dependent manner; however, 6-OH-BDE 47 induced adverse effects at lower concentrations than the other congeners. Furthermore, all three induced cell death; however apoptosis was not observed. In short-term exposures (24–28 hours post fertilization), all hydroxylated PBDEs generated oxidative stress in the region corresponding to the cell death at 5 and 10 ppm. To further investigate the short-term effects that may be responsible for the developmental arrest observed in this study, gene regulation was assessed for embryos exposed to 0.625 ppm 6-OH-BDE 47 from 24 to 28 hpf. Genes involved in stress response, thyroid hormone regulation, and neurodevelopment were significantly upregulated compared to controls; however, genes related to oxidative stress were either unaffected or downregulated. This study suggests that hydroxylated PBDEs disrupt development, and may induce oxidative stress and potentially disrupt the cholinergic system and thyroid hormone homeostasis. -- Highlights: ► OH-PBDEs induce developmental arrest in a concentration-dependent manner. ► Hydroxyl group location influences biological interaction. ► OH-PBDEs induce oxidative stress. ► Thyroid hormone gene regulation was disrupted following exposure. ► To our knowledge, this is the first whole organism study of OH-PBDE toxicity.

  10. The effect of electron irradiation on the structure and iron speciation in sodium aluminum (iron) phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, S.V., E-mail: serge.stefanovsky@yandex.ru [Frumkin Institute of Physical Chemistry and Electrochemistry RAS (Russian Federation); Presniakov, I.A.; Sobolev, A.V.; Glazkova, I.S. [Lomonosov Moscow State University, Department of Chemistry (Russian Federation); Kadyko, M.I.; Stefanovsky, O.I. [Frumkin Institute of Physical Chemistry and Electrochemistry RAS (Russian Federation)

    2016-08-01

    The effect of 8 MeV electron irradiation on the structure of glasses in the series 40 Na{sub 2}O, (20-x) Al{sub 2}O{sub 3}, x Fe{sub 2}O{sub 3}, 40 P{sub 2}O{sub 5} (mol.%) and on the iron speciation in these samples was studied by FTIR and Mössbauer spectroscopic techniques. Irradiation up to a dose of 1.0 MGy has no appreciable effects on the character of the bonds within anionic motif of the glass network. Electron irradiation increases the fraction of aluminum in octahedral coordination. Iron in both unirradiated and irradiated glasses is present mainly as Fe(III) (60–75% of the total amount) in the glasses and partly as Fe(II) and the ratio of two forms remains constant up to a dose of 1.0 MGy.

  11. Evaluation of P availability from Fe and A1 labelled (32P) phosphates

    International Nuclear Information System (INIS)

    Bittencourt, V.S.

    1975-07-01

    Synthetically Fe and A1 labelled phosphates ( 32 P) show a certain amount of available P to the plants when applied to Sao Paulo State soils. This availability decreases from considered amorphous A1-phosphate (A1-P sub(am)) to A1 phosphate with a certain cristalinity grade (A1-P sub(cr)) and than from this to Fe-P sub(am) followed by Fe-P sub(cr), and it is influenced by both the soil characteristics and mainly by the iron constituents of the samples. In this way, one can not expect that the 0,05 N 2 H SO 4 and the CHANG and JACKSON (1957a) solutions can define properly the available P of these soils. The addition of lime to the soils do not drive to a better P absorption by the plants and its effects are dubious

  12. Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization

    International Nuclear Information System (INIS)

    Neri, G.; Visco, A.M.; Galvagno, S.; Donato, A.; Panzalorto, M.

    1999-01-01

    Gold on iron oxides catalysts have been characterized by temperature programmed reduction (TPR) and X-ray diffraction spectroscopy (XRD). The influence of preparation method, gold loading and pretreatment conditions on the reducibility of iron oxides have been investigated. On the impregnated Au/iron oxide catalysts as well as on the support alone the partial reduction of Fe(III) oxy(hydroxides) to Fe 3 O 4 starts in the 550 and 700 K temperature range. On the coprecipitated samples, the temperature of formation of Fe 3 O 4 is strongly dependent on the presence of gold. The reduction temperature is lowered as the gold loading is increased. The reduction of Fe 3 O 4 to FeO occurs at about 900 K and is not dependent on the presence of gold and the preparation method. It is suggested that the effect of gold on the reducibility of the iron oxides is related to an increase of the structural defects and/or of the surface hydroxyl groups. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Hydroxyl radical induced degradation of ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Illés, Erzsébet, E-mail: erzsebet.illes@chem.u-szeged.hu [Institute of Chemistry, Research Group of Environmental Chemistry, University of Szeged, Szeged (Hungary); Institute of Isotopes, Centre for Energy Research, Hungarian Academy of Sciences, Budapest (Hungary); Takács, Erzsébet [Institute of Isotopes, Centre for Energy Research, Hungarian Academy of Sciences, Budapest (Hungary); Dombi, András [Institute of Chemistry, Research Group of Environmental Chemistry, University of Szeged, Szeged (Hungary); Gajda-Schrantz, Krisztina [Institute of Chemistry, Research Group of Environmental Chemistry, University of Szeged, Szeged (Hungary); Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged (Hungary); EMPA, Laboratory for High Performance Ceramics, Duebendorf (Switzerland); Rácz, Gergely; Gonter, Katalin; Wojnárovits, László [Institute of Isotopes, Centre for Energy Research, Hungarian Academy of Sciences, Budapest (Hungary)

    2013-03-01

    Pulse radiolysis experiments were used to characterize the intermediates formed from ibuprofen during electron beam irradiation in a solution of 0.1 mmol dm{sup −3}. For end product characterization {sup 60}Co γ-irradiation was used and the samples were evaluated either by taking their UV–vis spectra or by HPLC with UV or MS detection. The reactions of {sup ·}OH resulted in hydroxycyclohexadienyl type radical intermediates. The intermediates produced in further reactions hydroxylated the derivatives of ibuprofen as final products. The hydrated electron attacked the carboxyl group. Ibuprofen degradation is more efficient under oxidative conditions than under reductive conditions. The ecotoxicity of the solution was monitored by Daphnia magna standard microbiotest and Vibrio fischeri luminescent bacteria test. The toxic effect of the aerated ibuprofen solution first increased upon irradiation indicating a higher toxicity of the first degradation products, then decreased with increasing absorbed dose. Highlights: ► In hydroxyl radical attack on the ring mainly hydroxylated products form ► The hydrated electron attacks the carboxyl group. ► Oxidative conditions are more effective in ibuprofen decomposition than reductive. ► Ecotoxicity of ibuprofen solution first increases then decreases with irradiation.

  14. Hydroxyl radical induced degradation of ibuprofen

    International Nuclear Information System (INIS)

    Illés, Erzsébet; Takács, Erzsébet; Dombi, András; Gajda-Schrantz, Krisztina; Rácz, Gergely; Gonter, Katalin; Wojnárovits, László

    2013-01-01

    Pulse radiolysis experiments were used to characterize the intermediates formed from ibuprofen during electron beam irradiation in a solution of 0.1 mmol dm −3 . For end product characterization 60 Co γ-irradiation was used and the samples were evaluated either by taking their UV–vis spectra or by HPLC with UV or MS detection. The reactions of · OH resulted in hydroxycyclohexadienyl type radical intermediates. The intermediates produced in further reactions hydroxylated the derivatives of ibuprofen as final products. The hydrated electron attacked the carboxyl group. Ibuprofen degradation is more efficient under oxidative conditions than under reductive conditions. The ecotoxicity of the solution was monitored by Daphnia magna standard microbiotest and Vibrio fischeri luminescent bacteria test. The toxic effect of the aerated ibuprofen solution first increased upon irradiation indicating a higher toxicity of the first degradation products, then decreased with increasing absorbed dose. Highlights: ► In hydroxyl radical attack on the ring mainly hydroxylated products form ► The hydrated electron attacks the carboxyl group. ► Oxidative conditions are more effective in ibuprofen decomposition than reductive. ► Ecotoxicity of ibuprofen solution first increases then decreases with irradiation

  15. Geology, mineralogy, geochemistry and origin of phosphates from Jandia, Cansa Perna, Itacupim (Para) and Pirocaua and Trauira (Maranhao)

    International Nuclear Information System (INIS)

    Costa, M. L. da.

    1980-01-01

    The phosphate occurrences of Northeastern Para and Northwestern Maranhao were formed by strong lateritic weathering of phosphorus-rich Precambrian rocks. The rock formation affected by those processes were phyllites and schists of the Gurupi Group in Cansa Perna and Pirocaua, a complex of felsic to mafic and ultramafic rocks metamorphosed in the greenschist facies in Itacupim and Trauira and probably phosphoritic sandstone in Jandia. The geology, the mineralogy of phosphates, oxides, hydroxides and silicates, the geochemistry of element distribution (aluminium, silicon, iron, calcium, etc) and trace elements distribution (strontium, rubidium, barium, rare earths, zirconium, niobium uranium, thorium, etc) and the phosphates origin are studied. (C.G.C.)

  16. Effect of iron supplementation on the erosive potential of carbonated or decarbonated beverage

    Directory of Open Access Journals (Sweden)

    Melissa Thiemi Kato

    2007-02-01

    Full Text Available This study evaluated, in vitro, the effect of iron (previously exposed with enamel powder or added directly to the beverage on the erosive potential of carbonated or decarbonated beverage. Four sets of experiments were done. For groups E1 and E3, a solution containing 30 mmol/L FeSO4 was added to bovine enamel powder (particles between 75-106 mm before exposure to the carbonated or decarbonated beverage (Sprite Zero®, respectively. For groups E2 and E4, 15 mmol/L FeSO4 was added directly to the carbonated or decarbonated beverage, respectively. Control groups were included for comparison. In controls C1 and C3, the experiments E1 and E3 were repeated, but the iron solution was replaced by deionized water. For controls C2 and C4, the carbonated and decarbonated beverage, respectively, was used, without addition of iron. After addition of the beverage to the powdered enamel (40 mg enamel powder/400 mL of final volume, the sample was vortexed for 30 s and immediately centrifuged for 30 s (11,000 rpm. The supernatant was removed after 1 min 40 s. This procedure was repeated in quintuplicate and the phosphate released was analyzed spectrophotometrically. The results were analyzed by Student's t-test (p<0.05. E2 presented the best results with a significant inhibition (around 36% of phosphate released. For E3 and E4 a non-significant inhibition (around 4 and 12%, respectively, was observed. For E1 an increase in phosphate loss was detected. Thus, the protective effect of iron seems to be better when this ion is directly added to the carbonated beverage.

  17. Infrared absorption characteristics of hydroxyl groups in coal tars

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, S A; Chu, C J; Hange, R H; Margrave, J L

    1987-01-01

    Tar evolution was observed over a temperature range of 150-600 C for four coals. Pittsburgh bituminous, Illinois No.6, Rawhide subbituminous, and Texas lignite. Isolation of the evolved tars in a nitrogen matrix at 15 degrees K produced better resolved infrared spectra than those in a coal matrix, thus enhancing structural characterization of the tar molecules. Two distinct hydroxyl functional groups in the tar molecules free of hydrogen bonding were identified for the first time without interference from H/sub 2/O absorptions. These absorptions at 3626.5 cm/sup -1/ have been assigned to phenolic hydroxyls. It is suggested that carboxylic and aliphatic hydroxyl groups do not survive the vaporization process. Tars from Illinois No.6 were found to contain the largest amount of phenolic hydroxyl; Pittsburgh No. 8 tar contains approximately half of that for Illinois No.6 while Rawhide and Texas lignite contain much less phenolic than either of the other coals. 10 references, 6 figures, 1 table.

  18. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    Science.gov (United States)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone

  19. Pyrophosphate synthesis in iron mineral films and membranes simulating prebiotic submarine hydrothermal precipitates

    Science.gov (United States)

    Barge, Laura M.; Doloboff, Ivria J.; Russell, Michael J.; VanderVelde, David; White, Lauren M.; Stucky, Galen D.; Baum, Marc M.; Zeytounian, John; Kidd, Richard; Kanik, Isik

    2014-03-01

    Cells use three main ways of generating energy currency to drive metabolism: (i) conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) by the proton motive force through the rotor-stator ATP synthase; (ii) the synthesis of inorganic phosphate˜phosphate bonds via proton (or sodium) pyrophosphate synthase; or (iii) substrate-level phosphorylation through the direct donation from an active phosphoryl donor. A mechanism to produce a pyrophosphate bond as “energy currency” in prebiotic systems is one of the most important considerations for origin of life research. Baltscheffsky (1996) suggests that inorganic pyrophosphate (PO74-; PPi) may have preceded ATP/ADP as an energy storage molecule in earliest life, produced by an H+ pyrophosphatase. Here we test the hypothesis that PPi could be synthesized in inorganic precipitates simulating hydrothermal chimney structures transected by thermal and/or ionic gradients. Appreciable yields of PPi were obtained via substrate phosphorylation by acetyl phosphate within the iron sulfide/silicate precipitates at temperatures expected for an alkaline hydrothermal system. The formation of PPi only occurred in the solid phase, i.e. when both Pi and the phosphoryl donor were precipitated with Fe-sulfides or Fe-silicates. The amount of Ac-Pi incorporated into the precipitate was a significant factor in the amount of PPi that could form, and phosphate species were more effectively incorporated into the precipitate at higher temperatures (⩾50 to >85 °C). Thus, we expect that the hydrothermal precipitate would be more enriched in phosphate (and especially, Ac-Pi) near the inner margins of a hydrothermal mound where PPi formation would be at a maximum. Iron sulfide and iron silicate precipitates effectively stabilized Ac-Pi and PPi against hydrolysis (relative to hydrolysis in aqueous solution). Thus it is plausible that PPi could accumulate as an energy currency up to useful concentrations for early life in a

  20. Hydrothermal synthesis for new multifunctional materials: A few examples of phosphates and phosphonate-based hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Rueff, Jean-Michel, E-mail: jean-michel.rueff@ensicaen.fr [Laboratoire CRISMAT, CNRS UMR 6508, ENSICAEN, 6 bd du Maréchal Juin, F-14050 Caen Cedex (France); Poienar, Maria [National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str Nr. 1, 300224 Timisoara (Romania); Guesdon, Anne; Martin, Christine; Maignan, Antoine [Laboratoire CRISMAT, CNRS UMR 6508, ENSICAEN, 6 bd du Maréchal Juin, F-14050 Caen Cedex (France); Jaffrès, Paul-Alain [Université de Brest, Université Européenne de Bretagne, CNRS UMR 6521, CEMCA, SFR 148 ScInBios, 6 Avenue Victor Le Gorgeu, 29238 Brest (France)

    2016-04-15

    Novel physical or chemical properties are expected in a great variety of materials, in connection with the dimensionality of their structures and/or with their nanostructures, hierarchical superstructures etc. In the search of new advanced materials, the hydrothermal technique plays a crucial role, mimicking the nature able to produce fractal, hyperbranched, urchin-like or snow flake structures. In this short review including new results, this will be illustrated by examples selected in two types of materials, phosphates and phosphonates, prepared by this method. The importance of the synthesis parameters will be highlighted for a magnetic iron based phosphates and for hybrids containing phosphonates organic building units crystallizing in different structural types. - Graphical abstract: Phosphate dendrite like and phosphonate platelet crystals.

  1. A Novel Grouping Method for Lithium Iron Phosphate Batteries Based on a Fractional Joint Kalman Filter and a New Modified K-Means Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Xiaoyu Li

    2015-07-01

    Full Text Available This paper presents a novel grouping method for lithium iron phosphate batteries. In this method, a simplified electrochemical impedance spectroscopy (EIS model is utilized to describe the battery characteristics. Dynamic stress test (DST and fractional joint Kalman filter (FJKF are used to extract battery model parameters. In order to realize equal-number grouping of batteries, a new modified K-means clustering algorithm is proposed. Two rules are designed to equalize the numbers of elements in each group and exchange samples among groups. In this paper, the principles of battery model selection, physical meaning and identification method of model parameters, data preprocessing and equal-number clustering method for battery grouping are comprehensively described. Additionally, experiments for battery grouping and method validation are designed. This method is meaningful to application involving the grouping of fresh batteries for electric vehicles (EVs and screening of aged batteries for recycling.

  2. Effect of particle size on dc conductivity, activation energy and diffusion coefficient of lithium iron phosphate in Li-ion cells

    Directory of Open Access Journals (Sweden)

    T.V.S.L. Satyavani

    2016-03-01

    Full Text Available Cathode materials in nano size improve the performance of batteries due to the increased reaction rate and short diffusion lengths. Lithium Iron Phosphate (LiFePO4 is a promising cathode material for Li-ion batteries. However, it has its own limitations such as low conductivity and low diffusion coefficient which lead to high impedance due to which its application is restricted in batteries. In the present work, increase of conductivity with decreasing particle size of LiFePO4/C is studied. Also, the dependence of conductivity and activation energy for hopping of small polaron in LiFePO4/C on variation of particle size is investigated. The micro sized cathode material is ball milled for different durations to reduce the particle size to nano level. The material is characterized for its structure and particle size. The resistivities/dc conductivities of the pellets are measured using four probe technique at different temperatures, up to 150 °C. The activation energies corresponding to different particle sizes are calculated using Arrhenius equation. CR2032 cells are fabricated and electrochemical characteristics, namely, ac impedance and diffusion coefficients, are studied.

  3. The stability of the hydroxylated (0001) surface of alpha-Al2O3

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Nørskov, Jens Kehlet; Stoltze, Per

    2003-01-01

    Self-consistent density functional calculations of the hydroxylated (0001) corundum surfaces are presented. It is demonstrated that the hydroxylated surfaces are the most stable under most, but not all, conditions. Hydroxylation significantly lowers the surface free energy of alpha-alumina. The s......Self-consistent density functional calculations of the hydroxylated (0001) corundum surfaces are presented. It is demonstrated that the hydroxylated surfaces are the most stable under most, but not all, conditions. Hydroxylation significantly lowers the surface free energy of alpha......-alumina. The stability of the hydrated surface resolves the discrepancies between the morphology of the alpha-alumina (0001) surface observed under ultra-high vacuum, and at ambient conditions. A method for the calculation of the equilibrium surface stoichiometry is proposed. The proposed approach provides a valuable...

  4. Rieske non-heme iron-dependent oxygenases catalyse diverse reactions in natural product biosynthesis.

    Science.gov (United States)

    Perry, Christopher; de Los Santos, Emmanuel L C; Alkhalaf, Lona M; Challis, Gregory L

    2018-04-13

    Covering: up to the end of 2017The roles played by Rieske non-heme iron-dependent oxygenases in natural product biosynthesis are reviewed, with particular focus on experimentally characterised examples. Enzymes belonging to this class are known to catalyse a range of transformations, including oxidative carbocyclisation, N-oxygenation, C-hydroxylation and C-C desaturation. Examples of such enzymes that have yet to be experimentally investigated are also briefly described and their likely functions are discussed.

  5. Tuning the Slide-Roll Motion Mode of Carbon Nanotubes via Hydroxyl Groups

    Science.gov (United States)

    Li, Rui; Wang, Shiwei; Peng, Qing

    2018-05-01

    Controlling the motion of carbon nanotubes is critical in manipulating nanodevices, including nanorobots. Herein, we investigate the motion behavior of SWCNT (10,10) on Si substrate utilizing molecular dynamics simulations. We show that hydroxyl groups have sensitive effect on the carbon nanotube's motion mode. When the hydroxyl groups' ratio on carbon nanotube and silicon substrate surfaces is larger than 10 and 20%, respectively, the motion of carbon nanotube transforms from sliding to rolling. When the hydroxyl groups' ratio is smaller, the slide or roll mode can be controlled by the speed of carbon nanotube, which is ultimately determined by the competition between the interface potential energy and kinetic energy. The change of motion mode holds true for different carbon nanotubes with hydroxyl groups. The chirality has little effect on the motion behavior, as opposed to the diameter, attributed to the hydroxyl groups' ratio. Our study suggests a new route to control the motion behavior of carbon nanotube via hydroxyl groups.

  6. Evaluation of phosphate fertilizers for the immobilization of Cd in contaminated soils.

    Directory of Open Access Journals (Sweden)

    Yin Yan

    Full Text Available A laboratory investigation was conducted to evaluate the efficiency of four phosphate fertilizers, including diammonium phosphate (DAP, potassium phosphate monobasic (MPP, calcium superphosphateon (SSP, and calcium phosphate tribasic (TCP, in terms of the toxicity and bioavailability of Cd in contaminated soils. The efficiency of immobilization was evaluated on the basis of two criteria: (a the reduction of extractable Cd concentration below the TCLP regulatory level and (b the Cd changes associated with specific operational soil fractions on the basis of sequential extraction data. Results showed that after 50 d immobilization, the extractable concentrations of Cd in DAP, MPP, SSP, and TCP treated soils decreased from 42.64 mg/kg (in the control to 23.86, 21.86, 33.89, and 35.59 mg/kg, respectively, with immobilization efficiency in the order of MPP > DAP > SSP > TCP. Results from the assessment of Cd speciation via the sequential extraction procedure revealed that the soluble exchangeable fraction of Cd in soils treated with phosphate fertilizers, especially TCP, was considerably reduced. In addition, the reduction was correspondingly related to the increase in the more stable forms of Cd, that is, the metal bound to manganese oxides and the metal bound to crystalline iron oxides. Treatment efficiency increased as the phosphate dose (according to the molar ratio of PO4/Cd increased. Immobilization was the most effective under the molar ratio of PO4/Cd at 4:1.

  7. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Saksono, Nelson; Febiyanti, Irine Ayu, E-mail: irine.ayu41@ui.ac.id; Utami, Nissa; Ibrahim [Department of Chemical Engineering, Universitas Indonesia, Depok 16424, Indonesia Phone: +62217863516, Fax: +62217863515 (Indonesia)

    2015-12-29

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H{sub 2}O{sub 2} amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical current throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.

  8. Optimization and experimental validation of a thermal cycle that maximizes entropy coefficient fisher identifiability for lithium iron phosphate cells

    Science.gov (United States)

    Mendoza, Sergio; Rothenberger, Michael; Hake, Alison; Fathy, Hosam

    2016-03-01

    This article presents a framework for optimizing the thermal cycle to estimate a battery cell's entropy coefficient at 20% state of charge (SOC). Our goal is to maximize Fisher identifiability: a measure of the accuracy with which a parameter can be estimated. Existing protocols in the literature for estimating entropy coefficients demand excessive laboratory time. Identifiability optimization makes it possible to achieve comparable accuracy levels in a fraction of the time. This article demonstrates this result for a set of lithium iron phosphate (LFP) cells. We conduct a 24-h experiment to obtain benchmark measurements of their entropy coefficients. We optimize a thermal cycle to maximize parameter identifiability for these cells. This optimization proceeds with respect to the coefficients of a Fourier discretization of this thermal cycle. Finally, we compare the estimated parameters using (i) the benchmark test, (ii) the optimized protocol, and (iii) a 15-h test from the literature (by Forgez et al.). The results are encouraging for two reasons. First, they confirm the simulation-based prediction that the optimized experiment can produce accurate parameter estimates in 2 h, compared to 15-24. Second, the optimized experiment also estimates a thermal time constant representing the effects of thermal capacitance and convection heat transfer.

  9. Phosphate Barriers for Immobilization of Uranium Plumes

    International Nuclear Information System (INIS)

    Burns, Peter C.

    2005-01-01

    Uranium contamination of the subsurface has remained a persistent problem plaguing remedial design at sites across the U.S. that were involved with production, handling, storage, milling, and reprocessing of fissile uranium for both civilian and defense related purposes. Remediation efforts to date have relied upon excavation, pump-and-treat, or passive remediation barriers (PRB's) to remove or attenuate uranium mobility. Documented cases convincingly demonstrate that excavation and pump-and-treat methods are ineffective for a number of highly contaminated sites. There is growing concern that use of conventional PRB?s, such as zero-valent iron, are a temporary solution to a problem that will persist for thousands of years. Alternatives to the standard treatment methods are therefore warranted. The core objective of our research is to demonstrate that a phosphorus amendment strategy will result in a reduction of dissolved uranium to below the proposed drinking water standard. Our hypothesis is that long-chain polyphosphate compounds forestall precipitation of sparingly soluble uranyl phosphate compounds, which is key to preventing fouling of wells at the point of injection. Our other fundamental objective is to synthesize and correctly characterize the uranyl phosphate phases that form in the geochemical conditions under consideration. This report summarizes work conducted at the University of Notre Dame through November of 2003 under DOE grant DE-FG07-02ER63489, which has been funded since September, 2002. The objectives at Notre Dame are development of synthesis techniques for uranyl phosphate phases, together with detailed structural and chemical characterization of the myriad of uranyl phosphate phases that may form under geochemical conditions under consideration

  10. Phosphate Remediation and Recovery from Lake Water using Modified Iron Oxide-based Adsorbents

    Science.gov (United States)

    Adsorption behavior of Bayoxide ® E33 (E33) and three E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese and nanoparticles. Characterization was done by X-ray diffract...

  11. Experimental observation of zinc dialkyl dithiophosphate (ZDDP)-induced iron sulphide formation

    Energy Technology Data Exchange (ETDEWEB)

    Soltanahmadi, Siavash, E-mail: s.soltanahmadi@leeds.ac.uk [Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT (United Kingdom); Morina, Ardian [Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT (United Kingdom); Eijk, Marcel C.P. van; Nedelcu, Ileana [SKF Engineering and Research Centre, 3430 DT Nieuwegein (Netherlands); Neville, Anne [Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT (United Kingdom)

    2017-08-31

    Graphical abstract: Chemical analysis of ZDDP-induced tribofilm under severe boundary lubricated regime in nano and micro-meter scales.▪ - Highlights: • A ZDDP-derived locally formed iron-sulphide layer is detected on the steel surface. • The iron-sulphide is a 5–10 nm thin distinct layer at steel-phosphate interface. • Near the surface-crack site the elemental distribution of the tribofilm is altered. • Sulphur concentration is enhanced in the iron-sulphide layer near the cracked-site. • ZDDP elements are detected inside the crack with a greater contribution of sulphur. - Abstract: Zinc dialkyl dithiophosphate (ZDDP) as a well-known anti-wear additive enhances the performance of the lubricant beyond its wear-protection action, through its anti-oxidant and Extreme Pressure (EP) functionality. In spite of over thirty years of research attempting to reveal the mechanism of action of ZDDP, there are still some uncertainties around the exact mechanisms of its action. This is especially the case with the role of sulphide layer formed in the tribofilm and its impact on surface fatigue. Although iron sulphide on the substrate is hypothesised in literature to form as a separate layer, there has been no concrete experimental observation on the distribution of the iron sulphide as a dispersed precipitate, distinct layer at the steel substrate or both. It remains to be clarified whether the iron sulphide layer homogeneously covers the surface or locally forms at the surface. In the current study a cross section of the specimen after experiment was prepared and has been investigated with Transmission Electron Microscopy (TEM) and Energy-Dispersive X-ray (EDX) elemental analysis. A 5–10 nm iron sulphide layer is visualised on the interface as a separate layer underneath the phosphate layer with an altered distribution of tribofilm elements near the crack site. The iron sulphide interface layer is more visible near the crack site where the concentration of the

  12. Experimental observation of zinc dialkyl dithiophosphate (ZDDP)-induced iron sulphide formation

    International Nuclear Information System (INIS)

    Soltanahmadi, Siavash; Morina, Ardian; Eijk, Marcel C.P. van; Nedelcu, Ileana; Neville, Anne

    2017-01-01

    Graphical abstract: Chemical analysis of ZDDP-induced tribofilm under severe boundary lubricated regime in nano and micro-meter scales.▪ - Highlights: • A ZDDP-derived locally formed iron-sulphide layer is detected on the steel surface. • The iron-sulphide is a 5–10 nm thin distinct layer at steel-phosphate interface. • Near the surface-crack site the elemental distribution of the tribofilm is altered. • Sulphur concentration is enhanced in the iron-sulphide layer near the cracked-site. • ZDDP elements are detected inside the crack with a greater contribution of sulphur. - Abstract: Zinc dialkyl dithiophosphate (ZDDP) as a well-known anti-wear additive enhances the performance of the lubricant beyond its wear-protection action, through its anti-oxidant and Extreme Pressure (EP) functionality. In spite of over thirty years of research attempting to reveal the mechanism of action of ZDDP, there are still some uncertainties around the exact mechanisms of its action. This is especially the case with the role of sulphide layer formed in the tribofilm and its impact on surface fatigue. Although iron sulphide on the substrate is hypothesised in literature to form as a separate layer, there has been no concrete experimental observation on the distribution of the iron sulphide as a dispersed precipitate, distinct layer at the steel substrate or both. It remains to be clarified whether the iron sulphide layer homogeneously covers the surface or locally forms at the surface. In the current study a cross section of the specimen after experiment was prepared and has been investigated with Transmission Electron Microscopy (TEM) and Energy-Dispersive X-ray (EDX) elemental analysis. A 5–10 nm iron sulphide layer is visualised on the interface as a separate layer underneath the phosphate layer with an altered distribution of tribofilm elements near the crack site. The iron sulphide interface layer is more visible near the crack site where the concentration of the

  13. Inhibition of the corrosion of mild steel by phosphate conversion coatings

    International Nuclear Information System (INIS)

    Ashraf, W.; Khalid, S.; Rashid, A.; Arshad, M.

    1993-01-01

    Phosphating is the treatment of a metal surface to provide a coating of insoluble metal phosphate crystals which strongly adhere to the base material. Such coatings affect the appearance, surface hardness, and electrical conductivity of the metal. Phosphating is major industrial importance in the production of iron and steel surfaces, e.g., in automotive and appliance industries. The present article discusses a novel description of process controlling parameters. The process may be termed as hot phosphate (95-100 deg. C) and it employs the use of low cost chemicals and entirely new accelerator. Effective layer thickness is found to be 0.72 mg/cm /sup 2/ and can withstand moist and mild chemical conditions. The thickness of coating depends upon dipping time and temperature of the working bath. It seems to increase with increasing dipping time but then reaches a maxima. Any more dipping causes stripping and uneven coating layers. In our system most appropriate dipping time was found to be 45 minutes. The stability and completeness of coating was tested by Ferro Test and Tape Pull Test and was found to be satisfactory. The quality control parameters, such as free and total acidity have been controlled for optimum coating thickness and stability. (author)

  14. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water

    Energy Technology Data Exchange (ETDEWEB)

    Gui Minghui; Smuleac, Vasile [University of Kentucky, Department of Chemical and Materials Engineering (United States); Ormsbee, Lindell E. [University of Kentucky, Department of Civil Engineering (United States); Sedlak, David L. [University of California at Berkeley, Department of Civil and Environmental Engineering (United States); Bhattacharyya, Dibakar, E-mail: db@engr.uky.edu [University of Kentucky, Department of Chemical and Materials Engineering (United States)

    2012-05-15

    The potential for using hydroxyl radical (OH{sup Bullet }) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H{sub 2}O{sub 2} addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80-100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Moessbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H{sub 2}O{sub 2} by NP surface generated OH{sup Bullet} were investigated. Depending on the ratio of iron and H{sub 2}O{sub 2}, TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.

  15. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water

    International Nuclear Information System (INIS)

    Gui Minghui; Smuleac, Vasile; Ormsbee, Lindell E.; Sedlak, David L.; Bhattacharyya, Dibakar

    2012-01-01

    The potential for using hydroxyl radical (OH • ) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H 2 O 2 addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80–100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Mössbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H 2 O 2 by NP surface generated OH • were investigated. Depending on the ratio of iron and H 2 O 2 , TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.

  16. Simulation of the effects of phosphate on adsorption of arsenite and arsenate on ferrihydrite matrix using a geochemical equilibrium model

    International Nuclear Information System (INIS)

    Kassenga, G.R.

    2005-01-01

    Arsenic is of environmental concern because of its toxicity to plants, animals, and human beings. Iron oxides, including the poorly crystalline (amorphous) iron oxides, e.g., ferrihydrite, have a strong affinity for both arsenite and arsenate (the most toxic species of arsenic). In view of this, adsorption on ferrihydrite matrix is the main process of immobilization of arsenic in groundwater. The presence of phosphate in groundwater may however limit adsorption of arsenic on iron oxides due to competition for adsorption sites, resulting in higher aqueous concentrations in some environments. This paper analyses the effects of phosphate on aqueous concentration of arsenic at different pH using a geochemical equilibrium simulation model. It specifically focuses on arsenite and arsenate, the most toxic forms of arsenic. A general description of the occurrence of arsenic in the environment, its toxicity, and health hazards is first given. The paper discusses sources and geochemical processes that control arsenic mobility in aquifers. Adsorption and desorption reactions of arsenic on ferrihydrite and the factors that affect them are described. Modeling of adsorption/desorption processes is then discussed. Finally, the effects of phosphate on adsorption and desorption processes of arsenic on ferrihydrite as a function of pH are analyzed using PHREEQC Version 2, a computer program for simulating chemical reactions and transport processes in natural and polluted water. The model is applied in a case study formulated on the basis of a realistic hydrogeochemical setting to demonstrate how the use of arsenical pesticides and phosphate fertilizers may pose potential public health problems in areas where groundwater is used for domestic purposes. The modeling results have shown that aqueous concentration of arsenic increases with increasing phosphate-phosphorus concentration for pH values less than 10 assuming that ferrihydrite concentration and other hydrogeochemical conditions

  17. Effect of curcumin against oxidation of biomolecules by hydroxyl radicals.

    Science.gov (United States)

    Borra, Sai Krishna; Mahendra, Jaideep; Gurumurthy, Prema; Jayamathi; Iqbal, Shabeer S; Mahendra, Little

    2014-10-01

    Among various reactive oxygen species, hydroxyl radicals have the strongest chemical activity, which can damage a wide range of essential biomolecules such as lipids, proteins, and DNA. The objective of this study was to investigate the beneficial effects of curcumin on prevention of oxidative damage of biomolecules by hydroxyl radicals generated in in vitro by a Fenton like reaction. We have incubated the serum, plasma and whole blood with H2O2/Cu2+/ Ascorbic acid system for 4 hours at 37 0C and observed the oxidation of biomolecules like albumin, lipids, proteins and DNA. Curcumin at the concentrations of 50,100 and 200 μmoles, prevented the formation of ischemia modified albumin, MDA, protein carbonyls, oxidized DNA and increased the total antioxidant levels and GSH significantly. These observations suggest the hydroxyl radical scavenging potentials of curcumin and protective actions to prevent the oxidation of biomolecules by hydroxyl radicals.

  18. Ammonium iron(III phosphate(V fluoride, (NH40.5[(NH40.375K0.125]FePO4F, with ammonium partially substituted by potassium

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2009-01-01

    Full Text Available The title compound, ammonium potassium iron(III phosphate fluoride, (NH40.875K0.125FePO4F, is built from zigzag chains ∞1{[FeO4F2]7−}, with Fe3+ in a distorted octahedral coordination, extending along both the [011] and [0overline{1}1] directions. These chains are made up of alternating trans-[FeO4F2] and cis-[FeO4F2] octahedra via shared F-atom corners, and are linked by PO4 tetrahedra, resulting in an open-framework structure with channels along the [010] and [100] directions. There are two crystallographically independent ammonium sites: one in the [010] channels and the other, partially substituted by K+ ions, in the [100] channels. The ammonium in the [010] channels is fixed to the framework via eight hydrogen bonds (six N—H...O and two N—H...F.

  19. Iron and thiols as two major players in carcinogenesis: friends or foes?

    Science.gov (United States)

    Toyokuni, Shinya

    2014-01-01

    Iron is the most abundant metal in the human body and mainly works as a cofactor for proteins such as hemoglobin and various enzymes. No independent life forms on earth can survive without iron. However, excess iron is intimately associated with carcinogenesis by increasing oxidative stress via its catalytic activity to generate hydroxyl radicals. Biomolecules with redox-active sulfhydryl function(s) (thiol compounds) are necessary for the maintenance of mildly reductive cellular environments to counteract oxidative stress, and for the execution of redox reactions for metabolism and detoxification. Involvement of glutathione S-transferase and thioredoxin has long attracted the attention of cancer researchers. Here, I update recent findings on the involvement of iron and thiol compounds during carcinogenesis and in cancer cells. It is now recognized that the cystine/glutamate transporter (antiporter) is intimately associated with ferroptosis, an iron-dependent, non-apoptotic form of cell death, observed in cancer cells, and also with cancer stem cells; the former with transporter blockage but the latter with its stabilization. Excess iron in the presence of oxygen appears the most common known mutagen. Ironically, the persistent activation of antioxidant systems via genetic alterations in Nrf2 and Keap1 also contributes to carcinogenesis. Therefore, it is difficult to conclude the role of iron and thiol compounds as friends or foes, which depends on the quantity/distribution and induction/flexibility, respectively. Avoiding further mutation would be the most helpful strategy for cancer prevention, and myriad of efforts are being made to sort out the weaknesses of cancer cells.

  20. Hydroxyl radical reactivity at the air-ice interface

    Directory of Open Access Journals (Sweden)

    T. F. Kahan

    2010-01-01

    Full Text Available Hydroxyl radicals are important oxidants in the atmosphere and in natural waters. They are also expected to be important in snow and ice, but their reactivity has not been widely studied in frozen aqueous solution. We have developed a spectroscopic probe to monitor the formation and reactions of hydroxyl radicals in situ. Hydroxyl radicals are produced in aqueous solution via the photolysis of nitrite, nitrate, and hydrogen peroxide, and react rapidly with benzene to form phenol. Similar phenol formation rates were observed in aqueous solution and bulk ice. However, no reaction was observed at air-ice interfaces, or when bulk ice samples were crushed prior to photolysis to increase their surface area. We also monitored the heterogeneous reaction between benzene present at air-water and air-ice interfaces with gas-phase OH produced from HONO photolysis. Rapid phenol formation was observed on water surfaces, but no reaction was observed at the surface of ice. Under the same conditions, we observed rapid loss of the polycyclic aromatic hydrocarbon (PAH anthracene at air-water interfaces, but no loss was observed at air-ice interfaces. Our results suggest that the reactivity of hydroxyl radicals toward aromatic organics is similar in bulk ice samples and in aqueous solution, but is significantly suppressed in the quasi-liquid layer (QLL that exists at air-ice interfaces.

  1. Hydroxyl-dependent Evolution of Oxygen Vacancies Enables the Regeneration of BiOCl photocatalyst

    KAUST Repository

    Wu, Sujuan

    2017-05-02

    Photoinduced oxygen vacancies (OVs) are widely investigated as a vital point defect in wide-band-gap semiconductors. Still, the formation mechanism of OVs remains unclear in various materials. To elucidate the formation mechanism of photoinduced OVs in bismuth oxychloride (BiOCl), we synthesized two surface hydroxyl discrete samples in light of the discovery of the significant variance of hydroxyl groups before and after UV light exposure. It is noted that OVs can be obtained easily after UV light irradiation in the sample with surface hydroxyl groups, while variable changes were observed in samples without surface hydroxyls. Density functional theory (DFT) calculations reveal that the binding energy of Bi-O is drastically influenced by surficial hydroxyl groups, which is intensely correlated to the formation of photoinduced OVs. Moreover, DFT calculations reveal that the adsorbed water molecules are energetically favored to dissociate into separate hydroxyl groups at the OV sites via proton transfer to a neighboring bridging oxygen atom, forming two bridging hydroxyl groups per initial oxygen vacancy. This result is consistent with the experimental observation that the disappearance of photoinduced OVs and the recovery of hydroxyl groups on the surface of BiOCl after exposed to a H2O(g)-rich atmosphere, and finally enables the regeneration of BiOCl photocatalyst. Here, we introduce new insights that the evolution of photoinduced OVs is dependent on surface hydroxyl groups, which will lead to the regeneration of active sites in semiconductors. This work is useful for controllable designs of defective semiconductors for applications in photocatalysis and photovoltaics.

  2. Radiolytic formation of iron oxyhydroxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, T.; Wren, J.C., E-mail: tsuther4@uwo.ca [The Univ. of Western Ontario, London, ON (Canada)

    2014-07-01

    The formation of iron oxyhydroxide nanoparticles under gamma irradiation of ferrous ion solutions is a process in the infancy of its understanding. Herein we present work to probe the mechanism by which these nanoparticles are formed. These results can be used to better understand the activity transport processes occurring within a reactor environment which may pose both environmental and safety concerns. Initial ferrous concentrations and solution pH were modified and found to have little effect on final particle size and composition. The nanoparticles were formed in the presence of scavengers and it was found that hydroxyl radicals promote the particle formation while solvated electrons diminish it. Post-synthesis heating was found to shift the initially-formed lepidocrocite particles towards a mixture of goethite and maghemite. (author)

  3. Resource Recovery and Reuse: Recycled Magnetically Separable Iron-based Catalysts for Phosphate Recovery and Arsenic Removal

    Science.gov (United States)

    Environmentally friendly processes that aid human and environmental health include recovering, recycling, and reusing limited natural resources and waste materials. In this study, we re-used Iron-rich solid waste materials from water treatment plants to synthesize magnetic iron-o...

  4. Anaerobic Dehalogenation of Hydroxylated Polychlorinated Biphenyls by Desulfitobacterium dehalogenans

    OpenAIRE

    Wiegel, Juergen; Zhang, Xiaoming; Wu, Qingzhong

    1999-01-01

    Ten years after reports on the existence of anaerobic dehalogenation of polychlorinated biphenyls (PCBs) in sediment slurries, we report here on the rapid reductive dehalogenation of para-hydroxylated PCBs (HO-PCBs), the excreted main metabolites of PCB in mammals, which can exhibit estrogenic and antiestrogenic activities in humans. The anaerobic bacterium Desulfitobacterium dehalogenans completely dehalogenates all flanking chlorines (chlorines in ortho position to the para-hydroxyl group) ...

  5. Raman and FTIR spectra of CeO{sub 2} and Gd{sub 2}O{sub 3} in iron phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Yuanming, E-mail: laiyuanming@ipm.com.cn [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106 (China); State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Liang, Xiaofeng; Yang, Shiyuan [State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Liu, Pei; Zeng, Yiming; Hu, Changyi [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106 (China)

    2014-12-25

    Highlights: • The structure of the studied samples has been investigated by Raman and FTIR spectroscopy. • The structure for the all samples has similar features. • The structure consists of predominantly Q{sup 1} with a fraction of Q{sup 0} and Q{sup 2} units. • The Ce and Gd enters in the structure of studied glasses as a network modifier. - Abstract: In the present work, multicomponent oxide samples of composition x(CeO{sub 2} + Gd{sub 2}O{sub 3})–(40 − x)Fe{sub 2}O{sub 3}–60P{sub 2}O{sub 5} (0 ⩽ x ⩽ 8 mol%) were produced by conventional melting method. The samples were investigated to examine the effect of the CeO{sub 2} and Gd{sub 2}O{sub 3} composition on the structure of the iron phosphate glasses system. The X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) for the x ⩽ 6 mol% samples show all the samples formed homogeneous glass, but for the x = 8 mol% samples show the presence of randomly distributed crystalline phase embedded in an amorphous matrix. The x(CeO{sub 2} + Gd{sub 2}O{sub 3})–(40 − x)Fe{sub 2}O{sub 3}–60P{sub 2}O{sub 5} glass containing 8 mol% CeO{sub 2} and Gd{sub 2}O{sub 3} partially crystallized during annealing and Ce/Gd-rich were identified by EDS in the crystalline phase. The structure of the studied samples has been investigated using Raman and Fourier transform infrared spectroscopy (FTIR). The Raman and FTIR spectra for the samples have analogous spectral features. The Raman and FTIR spectra suggest that the structure is mainly constituted by the pyrophosphate glass based structure, with a part proportion of metaphosphate and orthophosphate structure. Raman and FTIR spectra allowed us to identify the structural units which appear in the structural network of these phosphate glasses and also the network modifier role of cerium and gadolinium ions.

  6. Quinolinic Acid - Iron(II) Complexes: Slow Autoxidation, but Enhanced Hydroxyl Radical Production in the Fenton Reaction

    Czech Academy of Sciences Publication Activity Database

    Pláteník, J.; Stopka, Pavel; Vejražka, M.; Štípek, S.

    2001-01-01

    Roč. 34, č. 5 (2001), s. 445-459 ISSN 1071-5762 R&D Projects: GA ČR GA203/97/0642; GA ČR GA309/99/0211 Institutional research plan: CEZ:AV0Z4032918 Keywords : iron chelator * reactive oxygen species * excitotoxicity Subject RIV: CA - Inorganic Chemistry Impact factor: 2.735, year: 2001

  7. Application of encapsulation (pH-sensitive polymer and phosphate buffer macrocapsules): A novel approach to remediation of acidic ground water

    International Nuclear Information System (INIS)

    Aelion, C. Marjorie; Davis, Harley T.; Flora, Joseph R.V.; Kirtland, Brian C.; Amidon, Mark B.

    2009-01-01

    Macrocapsules, composed of a pH-sensitive polymer and phosphate buffer, offer a novel remediation alternative for acidic ground waters. To test their potential effectiveness, laboratory experiments were carried out followed by a field trial within a coal pile runoff (CPR) acidic contaminant plume. Results of traditional limestone and macrocapsule treatments were compared in both laboratory and field experiments. Macrocapsules were more effective than limestone as a passive treatment for raising pH in well water from 2.5 to 6 in both laboratory and field experiments. The limestone treatments had limited impact on pH, only increasing pH as high as 3.3, and armoring by iron was evident in the field trial. Aluminum, iron and sulfate concentrations remained relatively constant throughout the experiments, but phosphate increased (0.15-32 mg/L), indicating macrocapsule release. This research confirmed that macrocapsules may be an effective alternative to limestone to treat highly acidic ground water. - Encapsulated phosphate buffer macrocapsules were more effective than limestone for passive treatment of acidic coal pile runoff (CPR) contaminated ground water, increasing pH from 2.5 to 6 in laboratory and field experiments

  8. Modelling phosphate adsorption to the soil: Application of the non-ideal competitive adsorption model

    International Nuclear Information System (INIS)

    Abou Nohra, Joumana S.; Madramootoo, Chandra A.; Hendershot, William H.

    2007-01-01

    Phosphorus (P) transport in subsurface runoff has increased despite the limited mobility of P in soils. This study investigated the ability of the non-ideal competitive adsorption (NICA) model to describe phosphate (PO 4 ) adsorption for soils in southern Quebec (Canada). We measured the surface charge and PO 4 adsorption capacity for 11 agricultural soils. Using the experimental data and a nonlinear fitting function, we derived the NICA model parameters. We found that the NICA model described accurately the surface charge of these soils with a mean R 2 > 0.99, and described the adsorption data with a mean R 2 = 0.96. We also found that the variable surface charge was distributed over the two binding sites with the low pH sites demonstrating a stronger binding energy for hydroxyl and PO 4 ions. We established that the NICA model is able to describe P adsorption for the soils considered in this study. - The NICA model accurately described the adsorption of phosphate to some southern Quebec soils

  9. Phosphate Remediation and Recovery from Lake Water using Modified Iron Oxide-based Adsorbents - abstract

    Science.gov (United States)

    As a limiting nutrient in most aquatic ecosystems, increased phosphate (PO43-) concentrations can accelerate eutrophication resulting in the proliferation of potentially toxic harmful algal blooms. In addition to environmental impacts of PO43- pollution, overall reserves of this ...

  10. Functionalization of hydroxyl terminated polybutadiene with ...

    Indian Academy of Sciences (India)

    CBDT), has been covalently attached at the terminal carbon atoms of the hydroxyl terminated polybutadiene (HTPB) backbone. The modification of HTPB backbone by CBDT molecule does not affect the unique physico-chemical properties such ...

  11. Potentiometric assessment of iron release during ferritin reduction by exogenous agents.

    Science.gov (United States)

    Vladimirova, Lilia S; Kochev, Valery K

    2010-09-01

    This work studied the possibilities for quantitative determination of iron mobilization in connection with ferritin reduction by ascorbic acid (vitamin C) and sodium dithionite in vitro. The iron storage protein was incubated with an excess of reductant in aerobic conditions in the absence of complexing agents in the medium. The release of Fe(2+) was let to go to completion, and the overall content of Fe(2+) in the solution was evaluated with the aid of potentiometric titration using Ce(4+) as an oxidizing titrant. Results suggest a moderate iron efflux under the influence of the chosen reducing agents. Although such a reduction of the protein mineral core by dihydroxyfumarate contributes greatly to the iron mobilization, ferritin behavior with vitamin C and dithionite seems to be different. Although redox properties of dihydroxyfumarate are determined by hydroxyl groups similar to those of ascorbic acid, the two compounds differ significantly in structure, and this could be the basis for an explanation of the specificities in their interaction with ferritin. As revealed by the study, potentiometric titration promises to be a reliable tool for evaluation of the amount of Fe(2+) present in the solution as a result of the reduction of the ferritin's mineral core. 2010 Elsevier Inc. All rights reserved.

  12. Intravenous Iron Administration and Hypophosphatemia in Clinical Practice

    Directory of Open Access Journals (Sweden)

    S. Hardy

    2015-01-01

    Full Text Available Introduction. Parenteral iron formulations are frequently used to correct iron deficiency anemia (IDA and iron deficiency (ID. Intravenous formulation efficacy on ferritin and hemoglobin level improvement is greater than that of oral formulations while they are associated with lower gastrointestinal side effects. Ferric carboxymaltose- (FCM- related hypophosphatemia is frequent and appears without clinical significance. The aim of this study was to assess the prevalence, duration, and potential consequences of hypophosphatemia after iron injection. Patients and Methods. The medical records of all patients who underwent parenteral iron injection between 2012 and 2014 were retrospectively reviewed. Pre- and postinjection hemoglobin, ferritin, plasma phosphate, creatinine, and vitamin D levels were assessed. Patients who developed moderate (range: 0.32–0.80 mmol/L or severe (<0.32 mmol/L hypophosphatemia were questioned for symptoms. Results. During the study period, 234 patients received iron preparations but 104 were excluded because of missing data. Among the 130 patients included, 52 received iron sucrose (FS and 78 FCM formulations. Among FS-treated patients, 22% developed hypophosphatemia versus 51% of FCM-treated patients, including 13% who developed profound hypophosphatemia. Hypophosphatemia severity correlated with the dose of FCM (p=0.04 but not with the initial ferritin, hemoglobin, or vitamin D level. Mean hypophosphatemia duration was 6 months. No immediate clinical consequence was found except for persistent fatigue despite anemia correction in some patients. Conclusions. Hypophosphatemia is frequent after parenteral FCM injection and may have clinical consequences, including persistent fatigue. Further studies of chronic hypophosphatemia long-term consequences, especially bone assessments, are needed.

  13. Synthesis and characterization of a novel Mg–Al hydrotalcite-loaded kaolin clay and its adsorption properties for phosphate in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Lin, E-mail: denglinlyn@126.com; Shi, Zhou, E-mail: 369329062@qq.com

    2015-07-15

    Highlights: • Kaolin clay was coalesced with Mg–Al hydrotalcite to form composite adsorbent (MKC). • MKC was synthesized through modified co-precipitation method. • MKC gave high adsorption of phosphate over a wide pH range of 2.5–9.5. • MKC is an economical and environmentally friendly adsorbent for phosphate removal and recycling. - Abstract: The mesoporous modified kaolin clay (MKC) was synthesized by loading Mg–Al hydrotalcite onto kaolin clay through coprecipitation method and applied for adsorption of phosphate from aqueous solution. Several techniques, including Brunauer–Emmett–Teller (BET), thermal analysis (TG–DTA), and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the adsorbents. The effects of adsorbent dosage, solution pH, initial phosphate concentration, contact time, temperature, and coexistent anions on phosphate adsorption have been investigated. MKC exhibited a strong uptake affinity to phosphate in a wide pH range of 2.5–9.5, with the maximum adsorptive removal of 98.03%, at adsorbent dosage of 0.2 g/50 mL, pH 7.5, and initial phosphate concentration 25 mg L{sup −1}. The adsorption kinetics followed the pseudo-second-order kinetic model. The Langmuir isothermal model well described the adsorption isotherm data, showing a maximum adsorption capacity for phosphate up to 11.92 mg g{sup −1} at 298 K. The obtained thermodynamic parameters revealed that the adsorption of phosphate onto MKC was an exothermic and spontaneous process. Coexistent chloride, nitrate, and sulfate ions displayed an adverse effect on phosphate adsorption following the order of SO{sub 4}{sup 2−} > NO{sub 3}{sup −} > Cl{sup −}. A mechanism of adsorption that involved (i) electrostatic attraction of hydroxyl groups of the adsorbent with negatively charged phosphate ions, and (ii) anion exchange of NO{sub 3}{sup −} ions that were associated with the surface or interlayer of the adsorbent with anionic phosphate ions in

  14. Synthesis and characterization of a novel Mg–Al hydrotalcite-loaded kaolin clay and its adsorption properties for phosphate in aqueous solution

    International Nuclear Information System (INIS)

    Deng, Lin; Shi, Zhou

    2015-01-01

    Highlights: • Kaolin clay was coalesced with Mg–Al hydrotalcite to form composite adsorbent (MKC). • MKC was synthesized through modified co-precipitation method. • MKC gave high adsorption of phosphate over a wide pH range of 2.5–9.5. • MKC is an economical and environmentally friendly adsorbent for phosphate removal and recycling. - Abstract: The mesoporous modified kaolin clay (MKC) was synthesized by loading Mg–Al hydrotalcite onto kaolin clay through coprecipitation method and applied for adsorption of phosphate from aqueous solution. Several techniques, including Brunauer–Emmett–Teller (BET), thermal analysis (TG–DTA), and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the adsorbents. The effects of adsorbent dosage, solution pH, initial phosphate concentration, contact time, temperature, and coexistent anions on phosphate adsorption have been investigated. MKC exhibited a strong uptake affinity to phosphate in a wide pH range of 2.5–9.5, with the maximum adsorptive removal of 98.03%, at adsorbent dosage of 0.2 g/50 mL, pH 7.5, and initial phosphate concentration 25 mg L −1 . The adsorption kinetics followed the pseudo-second-order kinetic model. The Langmuir isothermal model well described the adsorption isotherm data, showing a maximum adsorption capacity for phosphate up to 11.92 mg g −1 at 298 K. The obtained thermodynamic parameters revealed that the adsorption of phosphate onto MKC was an exothermic and spontaneous process. Coexistent chloride, nitrate, and sulfate ions displayed an adverse effect on phosphate adsorption following the order of SO 4 2− > NO 3 − > Cl − . A mechanism of adsorption that involved (i) electrostatic attraction of hydroxyl groups of the adsorbent with negatively charged phosphate ions, and (ii) anion exchange of NO 3 − ions that were associated with the surface or interlayer of the adsorbent with anionic phosphate ions in solution, was proposed

  15. Estimation of readily-available phosphate in some English Lake District woodland soils

    International Nuclear Information System (INIS)

    Harrison, A.F.

    1975-01-01

    Four chemical extraction methods (2.5 percent acetic acid, Olsen, Truog and Egner) and 5 isotope dilution methods involving short exchange periods (1 inverse dilution, 2 carrier-free and 2 using phosphate carrier) were investigatd for reliability in measurement of readily-available phosphate in widely differing soils from some non-fertilized semi-natural Lake District woodlands. Correlation coefficients between values produced and phosphate uptake during a two-month period from 16 soils (pH range 3.85 to 7.85) by Urtica dioica L., a phosphate-sensitive plant, differed markedly. They were negative for all the extraction procedures, varying from r = -0.079 for the Truog method to -0.518 for the Olsen method. The isotope dilution methods, with the exception of one, all gave positive correlation coefficients, varying from r = -0.676 for the carrier-free method of Talibudeen to r = 0.798 for a modified Amer carrier method. When combined by multiple regression analysis, the results of the isotope dilution methods accounted for 86.4 percent of the variation in phosphate-uptake by the nettle plants, whereas the results of the four extraction methods accounted for only 32.2 percent. Multiple regression analysis of the data showed that there were strong and different interactions between all methods investigated and soil properties, particularly soil pH, organic matter content, extractable iron, C/P and C/N. This clearly indicates that methods must be evaluated for each series of soils to be compared. (author)

  16. Effect of heavy store dressing with rock phosphate on a fine sand soil

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1969-05-01

    Full Text Available Results are reported of a long-term field trial on acid fine sand soil in which the effects of store dressing with rock phosphate in amounts of 0, 4000, 8000, or 12000 kg/ha was studied comparing them with an annual application of 200 kg/ha of superphosphate using the split plot technique. In the first four years, more thoroughly studied, the response to the store dressing with rock phosphate was distinct both in the dry matter yields and the phosphorus content of the cereal and the red clover-timothy hay. The differences between the various rates of rock phosphate treatments were not statistically significant, though there was some tendency to higher results with larger amounts of rock phosphate. The annual applications of superphosphate as surface dressing to the ley did not brought about any significant increase in the dry matter yield of the rock phosphate plots, and although they tended to increase the phosphorus content of hay, the increase was statistically significant only in a few cases. No effect was found on the phosphorus content of barley grain and straw in the ninth experimental year. No differences were found in the calcium, magnesium, or potassium content of the plant samples from the variously treated plots. Nitrogen content of clover and timothy was increased by both rock phosphate and superphosphate, particularly in the first year ley. In this soil, 4000 kg/ha of rock phosphate was effective enough to produce higher dry matter yields of hay, with equal phosphorus content, than the annual application of 200 kg/ha of superphosphate. Soil analyses indicated that this soil represented the extreme pattern of phosphorus retention in which applied phosphate is almost completely retained as aluminium bound forms of the fluoride soluble fraction supposed to be fairly available. It was suggested that in soils which retain the slowly dissolving rock phosphate phosphorus mainly as less available iron bound forms, heavy applications of

  17. Potentiality of Acidithiobacillus thiooxidans in Microbial Solubilization of Phosphate Mine Tailings

    Directory of Open Access Journals (Sweden)

    S Dhakar

    2015-04-01

    Full Text Available This paper deals with the solubilization behavior of the tailings produced by the floatation of a complex low grade phosphate ore. The composition of the tailings was essentially dolomite (52.04% with minor amounts of phosphate, iron and aluminium oxides (10.4 and 0.5% respectively. The presence of these products created uncontrolled land pollution and severely affected groundwater. An initiative has been taken up for utilization of this waste to generate an eco-friendly product. First step towards this panorama is incorporation of suitable microorganisms for the biodegradation of this effluent. Sulphur oxidizing bacteria Acidithiobacillus thiooxidans produces sulphuric acid which neutralizes the dolomitic tailings and convert it into plant available forms. The solubilization activity was tested in sulphur medium with 5, 10, 15 and 20% concentration of tailings. The solubilization is graded on the basis of pH, Electrical conductivity (EC, soluble calcium and magnesium and soluble phosphate. The results from ex-situ experiments showed that the treatment with 15% tailings ended with highest solubilization. The values of pH, EC, soluble calcium and magnesium and soluble phosphate for this treatment were 4.92, 31.6 dS/m, 10.8 mL EDTA and 17.24 µg/mL respectively. Also, the results proved that sulphur oxidizing bacteria Acidithiobacillus thiooxidans is capable of solubilizing dolomitic tailings from the Jhamarkotra mines. Finally, an important factor taken into account was solubilization of residual phosphate along with dolomite in the tailings. This combined action affects the solubilization behaviour of the residue, which was also showed successfully with the assayed laboratory studies.

  18. Thermophysical properties of hydroxyl ammonium ionic liquids

    International Nuclear Information System (INIS)

    Kurnia, K.A.; Wilfred, C.D.; Murugesan, T.

    2009-01-01

    The thermophysical properties of hydroxyl ammonium ionic liquids: density ρ, T = (293.15 to 363.15) K; dynamic viscosity η, T = (298.2 to 348.2) K; and refractive indices n D , T = (293.15 to 333.15) K have been measured. The coefficients of thermal expansion α, values were calculated from the experimental density results using an empirical correlation for T = (293.15 to 363.15) K. The variation of volume expansion of ionic liquids studied was found to be independent of temperature within the range covered in the present work. The thermal decomposition temperature 'T d ' for all the six hydroxyl ammonium ionic liquids is also investigated using thermogravimetric analyzer (TGA)

  19. Oxidation of alpha-tocopherol in micelles and liposomes by the hydroxyl, perhydroxyl, and superoxide free radicals

    International Nuclear Information System (INIS)

    Fukuzawa, K.; Gebicki, J.M.

    1983-01-01

    Rates of oxidation of alpha-tocopherol by the hydroxyl- and superoxide free radicals were measured. The radicals were produced in known yields by radiolysis of aqueous solutions with gamma rays. Two main systems were used to dissolve the tocopherol; micelles, made up from charged and uncharged amphiphiles, and membranes made from dimyristyl phosphatidylcholine which could be charged by addition of stearyl amine or dicetyl phosphate. The HO. radicals were efficient oxidants of alpha-tocopherol in all systems, with up to 83% of radicals generated in micelle and 32% in membrane suspensions initiating the oxidation. The HO 2 radical was an even more effective oxidant, but when most of it was in the O 2 form at neutral or alkaline pH, the oxidation rates became low. Tocopherol held in positively charged micelles or membranes was oxidized at a higher rate by the O 2 than in uncharged or negative particles. Possible biological significance of these results is discussed

  20. The interplay between iron accumulation, mitochondrial dysfunction and inflammation during the execution step of neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Pamela J. Urrutia

    2014-03-01

    Full Text Available A growing set of observations points to mitochondrial dysfunction, iron accumulation, oxidative damage and chronic inflammation as common pathognomonic signs of a number of neurodegenerative diseases that includes Alzheimer's disease, Huntington disease, amyotrophic lateral sclerosis, Friedrich’s ataxia and Parkinson’s disease. Particularly relevant for neurodegenerative processes is the relationship between mitochondria and iron. The mitochondrion upholds the synthesis of iron-sulfur clusters and heme, the most abundant iron-containing prosthetic groups in a large variety of proteins, so a fraction of incoming iron must go through this organelle before reaching its final destination. In turn, the mitochondrial respiratory chain is the source of reactive oxygen species (ROS derived from leaks in the electron transport chain. The co-existence of both iron and ROS in the secluded space of the mitochondrion makes this organelle particularly prone to hydroxyl radical-mediated damage. In addition, a connection between the loss of iron homeostasis and inflammation is starting to emerge; thus, inflammatory cytokines like TNF-alpha and IL-6 induce the synthesis of the divalent metal transporter 1 and promote iron accumulation in neurons and microglia. Here, we review the recent literature on mitochondrial iron homeostasis and the role of inflammation on mitochondria dysfunction and iron accumulation on the neurodegenerative process that lead to cell death in Parkinson’s disease. We also put forward the hypothesis that mitochondrial dysfunction, iron accumulation and inflammation are part of a synergistic self-feeding cycle that ends in apoptotic cell death, once the antioxidant cellular defense systems are finally overwhelmed.

  1. Long-term aerobic exercise increases redox-active iron through nitric oxide in rat hippocampus.

    Science.gov (United States)

    Chen, Qian; Xiao, De-Sheng

    2014-01-30

    Adult hippocampus is highly vulnerable to iron-induced oxidative stress. Aerobic exercise has been proposed to reduce oxidative stress but the findings in the hippocampus are conflicting. This study aimed to observe the changes of redox-active iron and concomitant regulation of cellular iron homeostasis in the hippocampus by aerobic exercise, and possible regulatory effect of nitric oxide (NO). A randomized controlled study was designed in the rats with swimming exercise treatment (for 3 months) and/or an unselective inhibitor of NO synthase (NOS) (L-NAME) treatment. The results from the bleomycin-detectable iron assay showed additional redox-active iron in the hippocampus by exercise treatment. The results from nonheme iron content assay, combined with the redox-active iron content, showed increased storage iron content by exercise treatment. NOx (nitrate plus nitrite) assay showed increased NOx content by exercise treatment. The results from the Western blot assay showed decreased ferroportin expression, no changes of TfR1 and DMT1 expressions, increased IRP1 and IRP2 expression, increased expressions of eNOS and nNOS rather than iNOS. In these effects of exercise treatment, the increased redox-active iron content, storage iron content, IRP1 and IRP2 expressions were completely reversed by L-NAME treatment, and decreased ferroportin expression was in part reversed by L-NAME. L-NAME treatment completely inhibited increased NOx and both eNOS and nNOS expression in the hippocampus. Our findings suggest that aerobic exercise could increase the redox-active iron in the hippocampus, indicating an increase in the capacity to generate hydroxyl radicals through the Fenton reactions, and aerobic exercise-induced iron accumulation in the hippocampus might mainly result from the role of the endogenous NO. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Structures of the multicomponent Rieske non-heme iron toluene 2, 3-dioxygenase enzyme system

    Energy Technology Data Exchange (ETDEWEB)

    Friemann, Rosmarie [Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala (Sweden); Lee, Kyoung [Department of Microbiology, Changwon National University, Changwon, Kyoungnam 641-773 (Korea, Republic of); Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242 (United States); Brown, Eric N. [Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242 (United States); Gibson, David T. [Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242 (United States); Eklund, Hans [Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala (Sweden); Ramaswamy, S., E-mail: s-ramaswamy@uiowa.edu [Department of Biochemistry, The University of Iowa, Iowa City, Iowa 52242 (United States); Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, 751 24 Uppsala (Sweden)

    2009-01-01

    The crystal structures of the three-component toluene 2, 3-dioxygenase system provide a model for electron transfer among bacterial Rieske non-heme iron dioxygenases. Bacterial Rieske non-heme iron oxygenases catalyze the initial hydroxylation of aromatic hydrocarbon substrates. The structures of all three components of one such system, the toluene 2, 3-dioxygenase system, have now been determined. This system consists of a reductase, a ferredoxin and a terminal dioxygenase. The dioxygenase, which was cocrystallized with toluene, is a heterohexamer containing a catalytic and a structural subunit. The catalytic subunit contains a Rieske [2Fe–2S] cluster and mononuclear iron at the active site. This iron is not strongly bound and is easily removed during enzyme purification. The structures of the enzyme with and without mononuclear iron demonstrate that part of the structure is flexible in the absence of iron. The orientation of the toluene substrate in the active site is consistent with the regiospecificity of oxygen incorporation seen in the product formed. The ferredoxin is Rieske type and contains a [2Fe–2S] cluster close to the protein surface. The reductase belongs to the glutathione reductase family of flavoenzymes and consists of three domains: an FAD-binding domain, an NADH-binding domain and a C-terminal domain. A model for electron transfer from NADH via FAD in the reductase and the ferredoxin to the terminal active-site mononuclear iron of the dioxygenase is proposed.

  3. Hydroxyl migration disorders the surface structure of hydroxyapatite nanoparticles

    Science.gov (United States)

    Cheng, Xiajie; Wu, Hong; Zhang, Li; Ma, Xingtao; Zhang, Xingdong; Yang, Mingli

    2017-09-01

    The surface structure of nano-hydroxyapatite (HAP) was investigated using a combined simulated annealing and molecular dynamics method. The stationary structures of nano-HAP with 4-7 nm in diameter and annealed under different temperatures were analyzed in terms of pair distribution function, structural factor, mean square displacement and atomic coordination number. The particles possess different structures from bulk crystal. A clear radial change in their atomic arrangements was noted. From core to surface the structures change from ordered to disordered. A three-shell model was proposed to describe the structure evolution of nano-HAP. Atoms in the core zone keep their arrangements as in crystal, while atoms in the surface shell are in short-range order and long-range disorder, adopting a typically amorphous structure. Atoms in the middle shell have small displacements and/or deflections but basically retain their original locations as in crystal. The disordered shell is about 1 nm in thickness, in agreement with experimental observations. The disordering mainly stems from hydroxyl migration during which hydroxyls move to the surface and bond with the exposed Ca ions, and their left vacancies bring about a rearrangement of nearby atoms. The disordering is to some extent different for particles unannealed under different temperatures, resulting from fewer number of migrated hydroxyls at lower temperatures. Particles with different sizes have similar surface structures, and their surface energy decreases with increasing size. Moreover, the surface energy is reduced by hydroxyl migration because the exposed Ca ions on the surface are ionically bonded with the migrated hydroxyls. Our calculations proposed a new structure model for nano-HAP, which indicates a surface structure with activities different from those without surface reorganization. This is particularly interesting because most bioactivities of biomaterials are dominated by their surface activity.

  4. Influence of phosphates when uranium in solutions obtained by attacking Forez with sulfuric acid is precipitated by the action of lime; Influence des phosphates, lors de la precipitation par la chaux, de l'uranium contenu dans les solutions d'attaque sulfurique du Forez

    Energy Technology Data Exchange (ETDEWEB)

    Brebec, G

    1959-03-01

    Influence of phosphates when uranium in solutions obtained by attacking Forez with sulfuric acid is precipitated by the action of lime was studied. Most of the phosphates were eliminated in the form of ferric phosphates without noticeable losses of uranium: for this it is only necessary to add sufficient ferric sulfate to the solution to be treated so that [Po{sub 4}{sup 3-}]/[Fe{sup 3+}] {approx} 0,4. In these conditions, the preparation of a calcium concentrate rich in uranium takes place in two stages. The first is neutralization at pH 2,7 to 2,8 with elimination of phosphates, sulfates and iron; the second is precipitation of the concentrate at pH 6,5. (author) [French] Nous avons reussi a eliminer la majeure partie des phosphates sous forme de phosphates ferriques, sans pertes sensibles d'uranium. Pour cela, il suffit d'ajouter a la solution a traiter, du sulfate ferrique en quantite telle que: (Po{sub 4}{sup 3-}]/[Fe{sup 3+}] {approx} 0,4. Dans ces conditions, la preparation du concentre calcique, riche en uranium, s'effectue normalement en deux temps: 1) preneutralisation a pH 2,7-2,8: elimination des sulfates, phosphates et fer; 2) precipitation du concentre a pH 6,5. (auteur)

  5. Effect of pore size distribution on iron oxide coated granular activated carbons for phosphate adsorption – Importance of mesopores

    NARCIS (Netherlands)

    Suresh Kumar, P.; Prot, T.J.F.; Korving, Leon; Keesman, Karel J.; Dugulan, A.I.; van Loosdrecht, Mark C.M.; Witkamp, G.J.

    2017-01-01

    Adsorption is often suggested for to reach very low phosphate levels in municipal wastewater effluent and even to recover phosphate. Adsorbent performance is usually associated with surface area but the exact role of the pore size distribution (PSD) is unclear. Here, we show the effect of the PSD

  6. Crystal structure of a silver-, cobalt- and iron-based phosphate with an alluaudite-like structure: Ag1.655Co1.64Fe1.36(PO43

    Directory of Open Access Journals (Sweden)

    Adam Bouraima

    2017-06-01

    Full Text Available The new silver-, cobalt- and iron-based phosphate, silver cobalt iron tris(orthophosphate, Ag1.655Co1.64Fe1.36(PO43, was synthesized by solid-state reactions. Its structure is isotypic to that of Na2Co2Fe(PO43, and belongs to the alluaudite family, with a partial cationic disorder, the AgI atoms being located on an inversion centre and twofold rotation axis sites (Wyckoff positions 4a and 4e, with partial occupancies of 0.885 (2 and 0.7688 (19, respectively. One of the two P atoms in the asymmetric unit completely fills one 4e site while the Co and Fe atoms fill another 4e site, with partial occupancies of 0.86 (5 and 0.14 (5, respectively. The remaining Co2+ and Fe3+ cations are distributed on a general position, 8f, in a 0.39 (4:0.61 (4 ratio. All O atoms and the other P atoms are in general positions. The structure is built up from zigzag chains of edge-sharing [MO6] (M = Fe/Co octahedra stacked parallel to [101]. These chains are linked together through PO4 tetrahedra, forming polyhedral sheets perpendicular to [010]. The resulting framework displays two types of channels running along [001], in which the AgI atoms (coordination number eight are located.

  7. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes

    International Nuclear Information System (INIS)

    Han, Zhenbang; Han, Xu; Zhao, Xiaoming; Yu, Jiantao; Xu, Hang

    2016-01-01

    Iron(II) phthalocyanine was immobilized onto amidoximated polyacrylonitrile fiber to construct a bioinspired catalytic system for oxidizing organic dyes by H 2 O 2 activation. The amidoxime groups greatly helped to anchor Iron(II) phthalocyanine molecules onto the fiber through coordination interaction, which has been confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and UV diffuse reflectance spectroscopy analyses. Electron spin resonance studies indicate that the catalytic process of physically anchored Iron(II) phthalocyanine performed via a hydroxyl radical pathway, while the catalyst bonded Iron(II) phthalocyanine through coordination effect could selectively catalyze the H 2 O 2 decomposition to generate high-valent iron-oxo species. This may result from the amidoxime groups functioning as the axial fifth ligands to favor the heterolytic cleavage of the peroxide O−O bond. This feature also enables the catalyst to only degrade the dyes adjacent to the catalytic active centers and enhances the efficient utilization of H 2 O 2 . In addition, this catalyst could effectively catalyze the mineralization of organic dyes and can be easily recycled without any loss of activity.

  8. Testosterone 15β-hydroxylation by solvent tolerant Pseudomonas putida S12

    NARCIS (Netherlands)

    Ruijssenaars, H.J.; Sperling, E.M.G.M.; Wiegerinck, P.H.G.; Brands, F.T.L.; Wery, J.; Bont, J.A.M.de

    2007-01-01

    A steroid 15β-hydroxylating whole-cell solvent tolerant biocatalyst was constructed by expressing the Bacillus megaterium steroid hydroxylase CYP106A2 in the solvent tolerant Pseudomonas putida S12. Testosterone hydroxylation was improved by a factor 16 by co-expressing Fer, a putative Fe-S protein

  9. [Filamentous and phosphate solubilizing fungi relationships with some edaphic parameters and coffee plantations management].

    Science.gov (United States)

    Posada, Raúl Hernando; Sánchez de Prager, Marina; Sieverding, Ewald; Aguilar Dorantes, Karla; Heredia-Abarca, Gabriela Patricia

    2012-09-01

    Soil properties and the environment have multiple outcomes on fungal communities. Although, the interaction effects between management intensity, pH, available phosphorus, organic carbon, soil texture and different fractions of water stable macro-aggregates on the communities of microscopic filamentous fungi (MFF), iron phosphate solubilizing fungi (PSF-Fe), and iron and calcium phosphate solubilizing fungi (PSF-(Fe+Ca)), have been previously evaluated in field conditions, this has never been performed in terms of their combined effects, neither with phosphate solubilizing fungi. To assess this, we collected 40 composite soil samples from eight Mexican and Colombian coffee plantations, with different management intensities and physico-chemical edaphic parameters, during 2008-2009. We isolated different communities of MFF, PSF-Fe and PSF-(Fe+Ca), by wet sieving and soil particles culture in Potato-Dextrose-Agar from soil samples, and we classified isolates in terms of their phosphate solubilizing ability. Following the principal component analysis results, we decided to analyze fungal communities and abiotic factors interactions for each country separately. Structural Equation Models revealed that organic carbon was positively associated to MFF richness and number of isolates (lambda>0.58), but its relationship with PSF-Fe and PSF-(Fe+Ca) were variable; while the available phosphorus, pH and water stable macro-aggregate fractions did not show a clear pattern. Management intensity was negatively related to PSF-Fe (lambda coffee plantations. We found that the relationships of clay and organic carbon content, and available phosphorus and soil pH, with the species richness and number of isolates of MFF, PSF-Fe and PSF-(Fe+Ca) were highly variable; this made impossible to generalize the responses between saprotrophic fungal groups and geographic zones. The management intensity was not related to species richness and number of isolates of MFF in any coffee areas, while

  10. Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial.

    Science.gov (United States)

    Zhang, Erlin; Chen, Haiyan; Shen, Feng

    2010-07-01

    Biocorrosion properties and blood- and cell compatibility of pure iron were studied in comparison with 316L stainless steel and Mg-Mn-Zn magnesium alloy to reveal the possibility of pure iron as a biodegradable biomaterial. Both electrochemical and weight loss tests showed that pure iron showed a relatively high corrosion rate at the first several days and then decreased to a low level during the following immersion due to the formation of phosphates on the surface. However, the corrosion of pure iron did not cause significant increase in pH value to the solution. In comparison with 316L and Mg-Mn-Zn alloy, the pure iron exhibited biodegradable property in a moderate corrosion rate. Pure iron possessed similar dynamic blood clotting time, prothrombin time and plasma recalcification time to 316L and Mg-Mn-Zn alloy, but a lower hemolysis ratio and a significant lower number density of adhered platelets. MTT results revealed that the extract except the one with 25% 24 h extract actually displayed toxicity to cells and the toxicity increased with the increasing of the iron ion concentration and the incubation time. It was thought there should be an iron ion concentration threshold in the effect of iron ion on the cell toxicity.

  11. CORRELATION OF GALLSTONE FORMATION WITH SERUM IRON LEVELS

    Directory of Open Access Journals (Sweden)

    Rohini Bipin Bhadre

    2016-07-01

    Full Text Available INTRODUCTION Gallstones are one of the most common problem associated with the gallbladder, affecting millions of people throughout the world. Bile is excreted from liver and gallbladder into Duodenum for digestion. After digestion, if the gallbladder is not emptied out completely, the Bile Juice that remains in the gallbladder can become too concentrated with cholesterol leading to gallstone formation. Cholesterol and calcium bilirubinate are the two main substances involved in gallstone formation. Gallstones derived from bile consists of mixture of cholesterol, bilirubin with or without calcium. Based on their chemical composition, gallstones found in the gallbladder are classified as cholesterol, pigmented or mixed stones. Iron deficiency has been shown to alter the activity of several hepatic enzymes, leading to increased gallbladder bile cholesterol saturation and promotion of cholesterol crystal formation. AIMS & OBJECTIVE Attempt to establish a correlation with gallstones and decreased serum iron levels. MATERIAL & METHODS This study was a prospective cohort study which included 100 consecutive patients with imaging studies suggestive of Cholelithiasis. The Gallstone surgically removed was crushed with mortar and pestle and then analysed for cholesterol, calcium, phosphate and bilirubin (pigment. Serum samples were analysed for Cholesterol, iron and iron binding capacity. RESULTS 86% patients had increased cholesterol levels (p=0.04 and 93% had decreased serum Iron levels (p=0.96. The most common type of gallstone was found to be Cholesterol type of gallstone followed by Mixed and Pigment gallstones. CONCLUSION Serum cholesterol levels were found to be raised in majority of the patients and serum iron was found to be low in these majority of the patients indicating iron deficiency may play a role in gallstone formation.

  12. Application of encapsulation (pH-sensitive polymer and phosphate buffer macrocapsules): a novel approach to remediation of acidic ground water.

    Science.gov (United States)

    Aelion, C Marjorie; Davis, Harley T; Flora, Joseph R V; Kirtland, Brian C; Amidon, Mark B

    2009-01-01

    Macrocapsules, composed of a pH-sensitive polymer and phosphate buffer, offer a novel remediation alternative for acidic ground waters. To test their potential effectiveness, laboratory experiments were carried out followed by a field trial within a coal pile runoff (CPR) acidic contaminant plume. Results of traditional limestone and macrocapsule treatments were compared in both laboratory and field experiments. Macrocapsules were more effective than limestone as a passive treatment for raising pH in well water from 2.5 to 6 in both laboratory and field experiments. The limestone treatments had limited impact on pH, only increasing pH as high as 3.3, and armoring by iron was evident in the field trial. Aluminum, iron and sulfate concentrations remained relatively constant throughout the experiments, but phosphate increased (0.15-32 mg/L), indicating macrocapsule release. This research confirmed that macrocapsules may be an effective alternative to limestone to treat highly acidic ground water.

  13. Application of encapsulation (pH-sensitive polymer and phosphate buffer macrocapsules): A novel approach to remediation of acidic ground water

    Energy Technology Data Exchange (ETDEWEB)

    Aelion, C.M.; Davis, H.T.; Flora, J.R.V.; Kirtland, B.C.; Amidon, M.B. [University of Southern Carolina, Columbia, SC (USA). Dept. of Environmental Health Science

    2009-01-15

    Macrocapsules, composed of a pH-sensitive polymer and phosphate buffer, offer a novel remediation alternative for acidic ground waters. To test their potential effectiveness, laboratory experiments were carried out followed by a field trial within a coal pile runoff (CPR) acidic contaminant plume. Results of traditional limestone and macrocapsule treatments were compared in both laboratory and field experiments. Macrocapsules were more effective than limestone as a passive treatment for raising pH in well water from 2.5 to 6 in both laboratory and field experiments. The limestone treatments had limited impact on pH, only increasing pH as high as 3.3, and armoring by iron was evident in the field trial. Aluminum, iron and sulfate concentrations remained relatively constant throughout the experiments, but phosphate increased (0.15-32 mg/L), indicating macrocapsule release. This research confirmed that macrocapsules may be an effective alternative to limestone to treat highly acidic ground water.

  14. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review.

    Science.gov (United States)

    He, Jie; Yang, Xiaofang; Men, Bin; Wang, Dongsheng

    2016-01-01

    The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals (OH) from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH. Hence, it can effectively oxidize refractory organics in water or soils and has become a promising environmentally friendly treatment technology. Due to the complex reaction system, the mechanism behind heterogeneous Fenton reactions remains unresolved but fascinating, and is crucial for understanding Fenton chemistry and the development and application of efficient heterogeneous Fenton technologies. Iron-based materials usually possess high catalytic activity, low cost, negligible toxicity and easy recovery, and are a superior type of heterogeneous Fenton catalysts. Therefore, this article reviews the fundamental but important interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials. OH, hydroperoxyl radicals/superoxide anions (HO2/O2(-)) and high-valent iron are the three main types of reactive oxygen species (ROS), with different oxidation reactivity and selectivity. Based on the mechanisms of ROS generation, the interfacial mechanisms of heterogeneous Fenton systems can be classified as the homogeneous Fenton mechanism induced by surface-leached iron, the heterogeneous catalysis mechanism, and the heterogeneous reaction-induced homogeneous mechanism. Different heterogeneous Fenton systems catalyzed by characteristic iron-based materials are comprehensively reviewed. Finally, related future research directions are also suggested. Copyright © 2015. Published by Elsevier B.V.

  15. Differential effects of collagen prolyl 3-hydroxylation on skeletal tissues.

    Directory of Open Access Journals (Sweden)

    Erica P Homan

    2014-01-01

    Full Text Available Mutations in the genes encoding cartilage associated protein (CRTAP and prolyl 3-hydroxylase 1 (P3H1 encoded by LEPRE1 were the first identified causes of recessive Osteogenesis Imperfecta (OI. These proteins, together with cyclophilin B (encoded by PPIB, form a complex that 3-hydroxylates a single proline residue on the α1(I chain (Pro986 and has cis/trans isomerase (PPIase activity essential for proper collagen folding. Recent data suggest that prolyl 3-hydroxylation of Pro986 is not required for the structural stability of collagen; however, the absence of this post-translational modification may disrupt protein-protein interactions integral for proper collagen folding and lead to collagen over-modification. P3H1 and CRTAP stabilize each other and absence of one results in degradation of the other. Hence, hypomorphic or loss of function mutations of either gene cause loss of the whole complex and its associated functions. The relative contribution of losing this complex's 3-hydroxylation versus PPIase and collagen chaperone activities to the phenotype of recessive OI is unknown. To distinguish between these functions, we generated knock-in mice carrying a single amino acid substitution in the catalytic site of P3h1 (Lepre1(H662A . This substitution abolished P3h1 activity but retained ability to form a complex with Crtap and thus the collagen chaperone function. Knock-in mice showed absence of prolyl 3-hydroxylation at Pro986 of the α1(I and α1(II collagen chains but no significant over-modification at other collagen residues. They were normal in appearance, had no growth defects and normal cartilage growth plate histology but showed decreased trabecular bone mass. This new mouse model recapitulates elements of the bone phenotype of OI but not the cartilage and growth phenotypes caused by loss of the prolyl 3-hydroxylation complex. Our observations suggest differential tissue consequences due to selective inactivation of P3H1 hydroxylase

  16. Presence of hydrogen peroxide, a source of hydroxyl radicals, in acid electrolyzed water.

    Directory of Open Access Journals (Sweden)

    Takayuki Mokudai

    Full Text Available BACKGROUND: Acid electrolyzed water (AEW, which is produced through the electrolysis of dilute sodium chloride (NaCl or potassium chloride solution, is used as a disinfectant in various fields because of its potent antimicrobial activity. The hydroxyl radical, an oxygen radical species, is often suggested as a putative active ingredient for AEW antimicrobial activity. METHODOLOGY/PRINCIPAL FINDINGS: The aim of the present study is to detect hydroxyl radicals in AEW. The hydroxyl radicals in AEW prepared under different conditions were determined using an electron spin resonance (ESR technique. A signal from 5,5-dimethyl-1-pyrroline N-oxide (DMPO-OH, an adduct of DMPO and the hydroxyl radical, was detected in AEW prepared by double or triple electrolyses of 1% NaCl but not of 0.1% NaCl solution. Then the presence of hydrogen peroxide as a proposed source of hydroxyl radicals was examined using a combination of ESR and a Fenton reaction. The DMPO-OH signal was clearly detected, even in AEW prepared by single electrolysis of 0.1% NaCl solution, when ferrous sulfate was added to induce a Fenton reaction, indicating the presence of hydrogen peroxide in the AEW. Since sodium formate, a hydroxyl radical scavenger, did not affect the bactericidal activity of AEW, it is concluded that the radical is unlikely to contribute to the antimicrobial activity of AEW, although a small amount of the radical is produced from hydrogen peroxide. Dimethyl sulfoxide, the other hydroxyl radical scavenger used in the present study, canceled the bactericidal activity of AEW, accompanied by complete depletion of free available chlorine, suggesting that hypochlorous acid is probably a major contributor to the antimicrobial activity. CONCLUSIONS: It is strongly suggested that although hydrogen peroxide is present in AEW as a source of hydroxyl radicals, the antimicrobial activity of AEW does not depend on these radicals.

  17. Chemical thermodynamics of iron - Part 1 - Chemical thermodynamics volume 13a

    International Nuclear Information System (INIS)

    Lemire, Robert J.; Berner, Urs; Musikas, Claude; Palmer, Donald A.; Taylor, Peter; Tochiyama, Osamu; Perrone, Jane

    2013-01-01

    Volume 13a of the 'Chemical Thermodynamics' (TDB) series, is the first of two volumes describing the selection of chemical thermodynamic data for species of iron. Because of the voluminous information in the literature, it has been more efficient to prepare the review in two (unequal) parts. This larger first part contains assessments of data for the metal, simple ions, aqueous hydroxido, chlorido, sulfido, sulfato and carbonato complexes, and for solid oxides and hydroxides, halides, sulfates, carbonates and simple silicates. The second part will provide assessments of data for other aqueous halido species, sulfide solids, and solid and solution species with nitrate, phosphate and arsenate, as well as some aspects of solid solutions in iron-oxide and iron-sulfide systems. The database system developed at the OECD/NEA Data Bank ensures consistency not only within the recommended data sets of iron, but also among all the data sets published in the series. This volume will be of particular interest to scientists carrying out performance assessments of deep geological disposal sites for radioactive waste

  18. Iron Handling in Tumor-Associated Macrophages—Is There a New Role for Lipocalin-2?

    Directory of Open Access Journals (Sweden)

    Michaela Jung

    2017-09-01

    Full Text Available Carcinogenesis is a multistep process. Besides somatic mutations in tumor cells, stroma-associated immunity is a major regulator of tumor growth. Tumor cells produce and secrete diverse mediators to create a local microenvironment that supports their own survival and growth. It is becoming apparent that iron acquisition, storage, and release in tumor cells is different from healthy counterparts. It is also appreciated that macrophages in the tumor microenvironment acquire a tumor-supportive, anti-inflammatory phenotype that promotes tumor cell proliferation, angiogenesis, and metastasis. Apparently, this behavior is attributed, at least in part, to the ability of macrophages to support tumor cells with iron. Polarization of macrophages by apoptotic tumor cells shifts the profile of genes involved in iron metabolism from an iron sequestering to an iron-release phenotype. Iron release from macrophages is supposed to be facilitated by ferroportin. However, lipid mediators such as sphingosine-1-phosphate, released form apoptotic tumor cells, upregulate lipocalin-2 (Lcn-2 in macrophages. This protein is known to bind siderophore-complexed iron and thus, may participate in iron transport in the tumor microenvironment. We describe how macrophages handle iron in the tumor microenvironment, discuss the relevance of an iron-release macrophage phenotype for tumor progression, and propose a new role for Lcn-2 in tumor-associated macrophages.

  19. Functionalization of hydroxyl terminated polybutadiene with ...

    Indian Academy of Sciences (India)

    Administrator

    The hydroxyl terminated polybutadiene (HTPB) used in this work was prepared by free radical polymerization using hydrogen peroxide as initiator and was received from HEMRL Pune, India, as a gift sample. The molecu- lar weight and polydispersity of the HTPB was deter- mined by using gel permeable chromatography ...

  20. An alternative approach to recovering valuable metals from zinc phosphating sludge.

    Science.gov (United States)

    Kuo, Yi-Ming

    2012-01-30

    This study used a vitrification process (with good potential for commercialization) to recover valuable metals from Zn phosphating sludge. The involved vitrification process achieves two major goals: it transformed hazardous Zn phosphating sludge into inert slag and it concentrated Fe (83.5%) and Zn (92.8%) into ingot and fine particulate-phase material, respectively. The Fe content in the ingot was 278,000 mg/kg, making the ingot a potential raw material for iron making. The fine particulate-phase material (collected from flue gas) contained abundant Zn (544,000 mg/kg) in the form of ZnO. The content (67.7%) of ZnO was high, so it can be directly sold to refineries. The recovered coarse particulate-phase material, with insufficient amount of ZnO, can be recycled as a feeding material for Zn re-concentration. Therefore, the vitrification process can not only treat hazardous materials but also effectively recover valuable metals. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Measurement of hydroxyl radical production in ultrasonic aqueous solutions by a novel chemiluminescence method.

    Science.gov (United States)

    Hu, Yufei; Zhang, Zhujun; Yang, Chunyan

    2008-07-01

    Measurement methods for ultrasonic fields are important for reasons of safety. The investigation of an ultrasonic field can be performed by detecting the yield of hydroxyl radicals resulting from ultrasonic cavitations. In this paper, a novel method is introduced for detecting hydroxyl radicals by a chemiluminescence (CL) reaction of luminol-hydrogen peroxide (H2O2)-K5[Cu(HIO6)2](DPC). The yield of hydroxyl radicals is calculated directly by the relative CL intensity according to the corresponding concentration of H2O2. This proposed CL method makes it possible to perform an in-line and real-time assay of hydroxyl radicals in an ultrasonic aqueous solution. With flow injection (FI) technology, this novel CL reaction is sensitive enough to detect ultra trace amounts of H2O2 with a limit of detection (3sigma) of 4.1 x 10(-11) mol L(-1). The influences of ultrasonic output power and ultrasonic treatment time on the yield of hydroxyl radicals by an ultrasound generator were also studied. The results indicate that the amount of hydroxyl radicals increases with the increase of ultrasonic output power (< or = 15 W mL(-1)). There is a linear relationship between the time of ultrasonic treatment and the yield of H2O2. The ultrasonic field of an ultrasonic cleaning baths has been measured by calculating the yield of hydroxyl radicals.

  2. Environmental Risks of Nano Zerovalent Iron for Arsenate Remediation: Impacts on Cytosolic Levels of Inorganic Phosphate and MgATP2- in Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Weilan; Lo, Irene M C; Hu, Liming; Voon, Chia Pao; Lim, Boon Leong; Versaw, Wayne K

    2018-04-03

    The use of nano zerovalent iron (nZVI) for arsenate (As(V)) remediation has proven effective, but full-scale injection of nZVI into the subsurface has aroused serious concerns for associated environmental risks. This study evaluated the efficacy of nZVI treatment for arsenate remediation and its potential hazards to plants using Arabidopsis thaliana grown in a hydroponic system. Biosensors for inorganic phosphate (Pi) and MgATP 2- were used to monitor in vivo Pi and MgATP 2- levels in plant cells. The results showed that nZVI could remove As(V) from growth media, decrease As uptake by plants, and mitigate As(V) toxicity to plants. However, excess nZVI could cause Pi starvation in plants leading to detrimental effects on plant growth. Due to the competitive adsorption of As(V) and Pi on nZVI, removing As(V) via nZVI treatment at an upstream site could relieve downstream plants from As(V) toxicity and Pi deprivation, in which case 100 mg/L of nZVI was the optimal dosage for remediation of As(V) at a concentration around 16.13 mg/L.

  3. Structure of short-range-ordered iron(III)-precipitates formed by iron(II) oxidation in water containing phosphate, silicate, and calcium

    Science.gov (United States)

    Voegelin, A.; Frommer, J.; Vantelon, D.; Kaegi, R.; Hug, S. J.

    2009-04-01

    The oxidation of Fe(II) in water leads to the formation of Fe(III)-precipitates that strongly affect the fate of nutrients and contaminants in natural and engineered systems. Examples include the cycling of As in rice fields irrigated with As-rich groundwater or the treatment of drinking water for As removal. Knowledge of the types of Fe(III)-precipitates forming in such systems is essential for the quantitative modeling of nutrient and contaminant dynamics and for the optimization of water purification techniques on the basis of a mechanistic understanding of the relevant biogeochemical processes. In this study, we investigated the local coordination of Fe, P, and Ca in Fe(III)-precipitates formed by aeration of synthetic Fe(II)-containing groundwater with variable composition (pH 7, 2-30 mg/L Fe(II), 2-20 mg/L phosphate-P, 2-20 mg/L silicate-Si, 8 mM Na-bicarbonate or 2.5 mM Ca-&1.5 mM Mg-bicarbonate). After 4 hours of oxidation, Fe(III)-precipitates were collected on 0.2 µm nylon filters and dried. The precipitates were analyzed by Fe K-edge EXAFS (XAS beamline, ANKA, Germany) and by P and Ca K-edge XANES spectroscopy (LUCIA beamline, SLS, Switzerland). The Fe K-edge EXAFS spectra indicated that local Fe coordination in the precipitates systematically shifted with water composition. As long as water contained P, mainly short-range-ordered Fe(III)-phosphate formed (with molar P/Fe ~0.5). In the absence of P, Fe(III) precipitated as hydrous ferric oxide at high Si/Fe>0.5, as ferrihydrite at intermediate Si/Fe, and mainly as lepidocrocite at Si/Fe<0.2. Analysis of the EXAFS by shell-fitting indicated that Fe(III)-phosphates mainly contained mono- or oligomeric (edge- or corner-sharing) Fe and that the linkage between neighboring Fe(III)-octahedra changed from predominantly edge-sharing in Si-rich hydrous ferric oxide to edge- and corner-sharing in ferrihydrite. Electron microscopic data showed that changes in local precipitate structure were systematically

  4. Iron mediates N-methyl-D-aspartate receptor-dependent stimulation of calcium-induced pathways and hippocampal synaptic plasticity.

    Science.gov (United States)

    Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T

    2011-04-15

    Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-D-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP.

  5. Mechanism of aromatic hydroxylation of lidocaine at a Pt electrode under acidic conditions

    International Nuclear Information System (INIS)

    Gul, Turan; Bischoff, Rainer; Permentier, Hjalmar P.

    2017-01-01

    Aromatic hydroxylation reactions, which are mainly catalyzed by cytochrome P450 (CYP) enzymes in vivo, are some of the most important reactions of Phase I metabolism, because insertion of a hydroxyl group into a lipophilic drug compound increases its hydrophilicity and prepares it for subsequent Phase II metabolic conjugation reactions as a prerequisite to excretion. Aromatic hydroxylation metabolites of pharmaceuticals may be obtained through various synthetic and enzymatic methods Electrochemical oxidation is an alternative with advantages in terms of mild reaction conditions and less hazardous chemicals. In the present study, we report that aromatic hydroxylation metabolites of lidocaine can be readily obtained electrochemically under aqueous acidic conditions at platinum electrodes. Our results show that the dominant N-dealkylation reaction can be suppressed by decreasing the solution pH below 0.5 resulting in selective 3-hydroxylidocaine, which is an in vivo metabolite of lidocaine. Experiments in 18 O labelled water indicated that water is the primary source of oxygen, while dissolved molecular oxygen contributes to a minor extent to the hydroxylation reaction.

  6. The influence of phosphorus on the corrosion of iron in calcium nitrate

    International Nuclear Information System (INIS)

    Windisch, C.F. Jr.; Baer, D.R.; Jones, R.H.; Engelhard, M.H.

    1992-01-01

    This paper reports that intergranular stress corrosion cracking (IGSCC) of metallic alloys including iron is strongly influenced by the presence of grain boundary impurities such as phosphorus. In this study to determine how phosphorus affects the corrosion of ion, electrochemical polarization methods were used in conjunction with surface analyses employing ultrahigh vacuum transfer. Specifically, these methods were used to examine the corrosion of iron, iron/phosphorus alloys, and iron implanted with phosphorus in deaerated 55 weight percent Ca(NO 3 ) 2 solutions at 60 degrees C. The presence of phosphorus in iron accelerated corrosion in both the active and passive regions, with the effect being more pronounced in the passive region. In the active region, the phosphorus was oxidized to phosphate which, in turn, appeared to assist the dissolution of the semiprotective Fe 3 O 4 . In the passive region, the phosphorus (when unoxidized) accelerated corrosion by some other mechanism. The FePO 4 that formed in the passive region did not inhibit passivation by, rather, was incorporated in the passive film. The chemical transformations would appear to explain, at least partly, the high IGSCC rates observed for ion containing phosphorus segregated at grain boundaries

  7. The hydroxyl species and acid sites on diatomite surface: a combined IR and Raman study

    Science.gov (United States)

    Yuan, P.; Wu, D. Q.; He, H. P.; Lin, Z. Y.

    2004-04-01

    Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), Raman spectroscopy of adsorbed pyridine molecules (Py-Raman) and in situ Py-IR have been used to investigate the hydroxyl species and acid sites on diatomite surfaces. The Lewis (L) and Brønsted (B) acid sites, and various hydroxyl species, including isolated hydroxyl groups, H-bonded hydroxyl groups and physically adsorbed water, are identified. The L acid sites in diatomite samples are resulted from the clay impurities, and the B acid sites are resulted from some moderate strength H-bonded hydroxyl groups. At room temperature, both of the isolated and H-bonded silanols associate with the physically adsorbed water by hydrogen bond. After calcination treatment, physically adsorbed water will be desorbed from the silanols, and the silanols will condense with the increase of temperature. Generally, the H-bonded silanols condense more easily than the isolated ones. The properties of surface hydroxyl species of diatomaceous silica are more similar to precipitated silica rather than fumed silica.

  8. The hydroxylation of passive oxide films on X-70 steel by dissolved hydrogen studied by nuclear reaction analysis, Auger electron spectroscopy, X-ray photoelectron spectroscopy and secondary ion mass spectroscopy

    International Nuclear Information System (INIS)

    Zhang Chunsi; Luo Jingli; Munoz-Paniagua, David; Norton, Peter R.

    2006-01-01

    Dissolved hydrogen is known to reduce the corrosion resistance of a passive oxide film on iron and its alloys, especially towards pitting corrosion. Electrochemical techniques have been used to show that the passive films are changed by dissolved hydrogen in an alloy substrate, but direct confirmation of the chemical and compositional profiles and changes has been missing. In this paper we report the direct profiling and compositional analysis of the 4 nm passive film on X-70 steel by Auger electron spectroscopy (AES), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS) and nuclear reaction analysis (NRA) while hydrogen (deuterium) is charged into the alloy samples from the reverse, unpassivated side. The only route for D to the passive film is therefore by dissolution and diffusion. We show that the original duplex structure of the passive film is converted to a more continuous film containing hydroxyl groups, by reaction with the dissolved hydrogen. This conversion of the oxide ions to hydroxyl groups can lead to more rapid reaction and replacement with (e.g.) Cl - , which is known to enhance pitting. These results are entirely consistent with previous electrochemical studies and provide the first direct confirmation of models on the formation and role of hydroxyl groups derived from these earlier studies

  9. Use characterisation of a diatomite catalyst impregnated with iron in the heterogeneous catalytic ozonization process

    International Nuclear Information System (INIS)

    Garcia Herrera, Walter

    2014-01-01

    Advanced oxidation processes have had a promising option in the treatment of wastewater, mainly in the presence of emerging and persistent pollutants. Among these processes have highlighted the catalytic ozonization, which has showed positive results in water treatment. Heterogeneous catalytic ozonization was characterized using diatomite impregnated with iron at the Universidad de Costa Rica. Contaminant degradation model was quantified (spectrophotometrically) for ozonization process and catalytic ozonization with the catalyst studied (1.000 g / L) at three different pH 4, 7 and 10. The effect of the catalyst concentration in the solution (0.250, 0.500, 1000, 1500 and 2.000 g/L) was determined under the conditions of pH with better performance of the catalyst. Runs in the presence of tert-butyl alcohol (TBA), known hydroxyl radical scavenger were performed to evaluate the effect on ozone indirect reactions. The degree of mineralization obtained was measured in the catalytic process.The variation of the COD of the solution was quantified under the best working conditions obtained. Finally, the performance of the catalyst in 4 cycles of reuse was studied by monitoring the leached iron of the catalyst, which has turned out to be 12%. Most degradation of contaminant model in ozonization process was obtained at pH 10, in accordance with the above theory (Buhler, Stachelin, & Hoigne, 1984). In contrast, at pH 4 the catalyst has presented the best efficiency, to the 3 minutes the noncatalytic process was curettaged 35% of dye, while the catalytic process by 60% in the same time. The degradation of the contaminant was improved even in the case of noncatalytic process at pH 10, which the 3 minutes was degradated to 44%. The presence of the catalyst at initial pH of 7 and 10, has showed without significant improvements in the process. The solution concentration of catalyst has presented the best efficiency of degradation has been 2,000 g/L, which has increased 70% to 3

  10. Importance of iron complexation for Fenton-mediated hydroxyl radical production at circumneutral pH

    Directory of Open Access Journals (Sweden)

    Christopher J. Miller

    2016-08-01

    Full Text Available The reaction between Fe(II and H2O2 to yield hydroxyl radicals (HO•, the Fenton reaction, is of interest due to its role in trace metal and natural organic matter biogeochemistry, its utility in water treatment and its role in oxidative cell degradation and associated human disease. There is significant dispute over whether HO•, the most reactive of the so-called reactive oxygen species, is formed in this reaction, particularly under circumneutral conditions relevant to natural systems. In this work we have studied the oxidation kinetics of Fe(II complexed by L = citrate, ethylenediaminetetraacetic acid (EDTA and diethylenetriaminepentaacetic acid (DTPA and also measured HO• production using phthalhydrazide as a probe compound at pH 8.2. It is shown that HO• is the sole product of the Fe(IIL-H2O2 reaction for L = EDTA and DTPA, with kinetic modelling of the full reaction pathway utilized to confirm this finding. Quantitative HO• production also appears likely for L = citrate, although uncertainties with the speciation of Fe(II-citrate complexes as well as difficulties in modelling the oxidation kinetics of these complexes has prevented a definitive conclusion. In the absence of ligands at circumneutral pH, inorganic Fe(II reacts with H2O2 to yield a species other than HO•, contrary to the well-established production of HO• from inorganic Fe(II at low pH. Our results suggest that at high pH Fe(II must be complexed for HO• production to occur.

  11. Structure and Dynamics of Hydroxyl-Functionalized Protic Ammonium Carboxylate Ionic Liquids.

    Science.gov (United States)

    Thummuru, Dhileep Nagi Reddy; Mallik, Bhabani S

    2017-10-26

    We performed classical molecular dynamics simulations to investigate the structure and dynamics of protic ionic liquids, 2-hydroxy ethylammonium acetate, ethylammonium hydroxyacetate, and 2-hydroxyethylammonium hydroxyacetate at ambient conditions. Structural properties such as density, radial distribution functions, spatial distribution functions, and structure factors have been calculated. Dynamic properties such as mean square displacements, as well as residence and hydrogen bond dynamics have also been calculated. Hydrogen bond lifetimes and residence times change with the addition of hydroxyl groups. We observe that when a hydroxyl group is present on the cation, dynamics become very slow and it forms a strong hydrogen bond with carboxylate oxygen atoms of the anion. The hydroxyl functionalized ILs show more dynamic diversity than structurally similar ILs.

  12. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NARCIS (Netherlands)

    Van Der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; Van Der Velde, Y.

    2014-01-01

    The retention of phosphorus in surface waters through co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from

  13. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water.

    NARCIS (Netherlands)

    Grift, van der B.; Rozemeijer, J.C.; Griffioen, J.; Velde, van der Y.

    2014-01-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and 5 P immobilization along the flow-path

  14. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NARCIS (Netherlands)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-01-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from

  15. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O.

    Science.gov (United States)

    Li, Shuping; Matthews, Jamie; Sinha, Amitabha

    2008-03-21

    Hydroxyl radicals are often called the "detergent" of the atmosphere because they control the atmosphere's capacity to cleanse itself of pollutants. Here, we show that the reaction of electronically excited nitrogen dioxide with water can be an important source of tropospheric hydroxyl radicals. Using measured rate data, along with available solar flux and atmospheric mixing ratios, we demonstrate that the tropospheric hydroxyl contribution from this source can be a substantial fraction (50%) of that from the traditional O(1D) + H2O reaction in the boundary-layer region for high solar zenith angles. Inclusion of this chemistry is expected to affect modeling of urban air quality, where the interactions of sunlight with emitted NOx species, volatile organic compounds, and hydroxyl radicals are central in determining the rate of ozone formation.

  16. Degradation of cellulose at the wet-dry interface. II. Study of oxidation reactions and effect of antioxidants.

    Science.gov (United States)

    Jeong, Myung-Joon; Dupont, Anne-Laurence; de la Rie, E René

    2014-01-30

    To better understand the degradation of cellulose upon the formation of a tideline at the wet-dry interface when paper is suspended in water, the production of chemical species involved in oxidation reactions was studied. The quantitation of hydroperoxides and hydroxyl radicals was carried out in reverse phase chromatography using triphenylphosphine and terephthalic acid, respectively, as chemical probes. Both reactive oxygen species were found in the tideline immediately after its formation, in the range of micromoles and nanomoles per gram of paper, respectively. The results indicate that hydroxyl radicals form for the most part in paper before the tideline experiment, whereas hydroperoxides appear to be produced primarily during tideline formation. Iron sulfate impregnation of the paper raised the production of hydroperoxides. After hygrothermal aging in sealed vials the hydroxyl radical content in paper increased significantly. When aged together in the same vial, tideline samples strongly influenced the degradation of samples from other areas of the paper (multi-sample aging). Different types of antioxidants were added to the paper before the tideline experiment to investigate their effect on the oxidation reactions taking place. In samples treated with iron sulfate or artificially aged, the addition of Irgafos 168 (tris(2,4-ditert-butylphenyl) phosphate) and Tinuvin 292 (bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate) reduced the concentration of hydroperoxides and hydroxyl radicals, respectively. Tinuvin 292 was also found to considerably lower the rate of cellulose chain scission reactions during hygrothermal aging of the paper. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Direct and indirect photodegradation of estriol in the presence of humic acid, nitrate and iron complexes in water solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yong [Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747 (United States); School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Kai [Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747 (United States); Zuo, Yuegang, E-mail: yzuo@umassd.edu [Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747 (United States)

    2013-10-01

    The photochemical behavior of a natural estrogen estriol (E3) was investigated in the presence of the natural photoreactive constituents including nitrate, iron(III), and humic acid (HA). The direct photodegradation of E3 increased with increasing incident light intensity, decreasing initial concentration of E3 and increasing pH in the range of 6.0 to 10.0. The direct photodegradation of the deprotonated speciation of E3 was much faster than that of its protonated form. The presence of NO{sub 3}{sup −} and iron(III) promoted the photochemical loss of E3 in the aqueous solutions. The quenching experiments verified that hydroxyl radicals were predominantly responsible for the indirect photodegradation of E3. HA could act as photosensitizer, light screening agent and free radical quencher. For the first time, the enhancement or inhibition effect of HA on photodegradation was found to depend on the irradiation light intensity. HA enhanced the photodegradation of E3 under sunlight or weak irradiation of simulated sunlight. In contrast, under high irradiation light intensity, HA inhibited the photodegradation. The hydroxylation photoproducts were identified using GC-MS and the photodegradation pathway of E3 was proposed. - Highlights: • Direct and indirect photodegradation of estriol (E3) were first investigated. • The direct photodegradation of E3 increased with increasing pH of the solutions. • The light intensity affected the photosensitization effect of humic acid. • Nitrate and iron(III) promoted the photodecomposition of estriol in water. • The ·OH oxidation products of E3 was first determined.

  18. Hydroxyl-dependent Evolution of Oxygen Vacancies Enables the Regeneration of BiOCl photocatalyst

    KAUST Repository

    Wu, Sujuan; Xiong, Jiawei; Sun, Jianguo; Hood, Zachary D.; Zeng, Wen; Yang, Zhenzhong; Gu, Lin; Zhang, Xixiang; Yang, Shize

    2017-01-01

    irradiation in the sample with surface hydroxyl groups, while variable changes were observed in samples without surface hydroxyls. Density functional theory (DFT) calculations reveal that the binding energy of Bi-O is drastically influenced by surficial

  19. Iron Fertilization of the Southern Ocean: Regional Simulation and Analysis of C-Sequestration in the Ross Sea

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Arrigo

    2012-03-13

    A modified version of the dynamic 3-dimensional mesoscale Coupled Ice, Atmosphere, and Ocean model (CIAO) of the Ross Sea ecosystem has been used to simulate the impact of environmental perturbations upon primary production and biogenic CO2 uptake. The Ross Sea supports two taxonomically, and spatially distinct phytoplankton populations; the haptophyte Phaeocystis antarctica and diatoms. Nutrient utilization ratios predict that P. antarctica and diatoms will be driven to nitrate and phosphate limitation, respectively. Model and field data have confirmed that the Ross Sea is iron limited with only two-thirds of the macronutrients consumed by the phytoplankton by the end of the growing season. In this study, the CIAO model was improved to simulate a third macronutrient (phosphate), dissolved organic carbon, air-sea gas exchange, and the carbonate system. This enabled us to effectively model pCO2 and subsequently oceanic CO2 uptake via gas exchange, allowing investigations into the affect of alleviating iron limitation on both pCO2 and nutrient drawdown.

  20. Environmental implications of element emissions from phosphate-processing operations in southeastern Idaho

    Science.gov (United States)

    Severson, R.C.; Gough, L.P.

    1979-01-01

    In order to assess the contribution to plants and soils of certain elements emitted by phosphate processing, we sampled sagebrush, grasses, and A- and C-horizon soils along upwind and downwind transects at Pocatello and Soda Springs, Idaho. Analyses for 70 elements in plants showed that, statistically, the concentration of 7 environmentally important elements, cadmium, chromium, fluorine, selenium, uranium, vanadium, and zinc, were related to emissions from phosphate-processing operations. Two additional elements, lithium and nickel, show probable relationships. The literature on the effects of these elements on plant and animal health is briefly surveyed. Relations between element content in plants and distance from the phosphate-processing operations were stronger at Soda Springs than at Pocatello and, in general, stronger in sagebrush than in the grasses. Analyses for 58 elements in soils showed that, statistically, beryllium, fluorine, iron, lead, lithium, potassium, rubidium, thorium, and zinc were related to emissions only at Pocatello and only in the A horizon. Moreover, six additional elements, copper, mercury, nickel, titanium, uranium, and vanadium, probably are similarly related along the same transect. The approximate amounts of elements added to the soils by the emissions are estimated. In C-horizon soils, no statistically significant relations were observed between element concentrations and distance from the processing sites. At Soda Springs, the nonuniformity of soils at the sampling locations may have obscured the relationship between soil-element content and emissions from phosphate processing.

  1. Refinement of adsorptive coatings for fluorescent riboflavin-receptor-targeted iron oxide nanoparticles.

    Science.gov (United States)

    Tsvetkova, Yoanna; Beztsinna, Nataliia; Jayapaul, Jabadurai; Weiler, Marek; Arns, Susanne; Shi, Yang; Lammers, Twan; Kiessling, Fabian

    2016-01-01

    Flavin mononucleotide (FMN) is a riboflavin derivative that can be exploited to target the riboflavin transporters (RFTs) and the riboflavin carrier protein (RCP) in cells with high metabolic activity. In this study we present the synthesis of different FMN-coated ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) and their efficiency as targeting contrast agents. Since FMN alone cannot stabilize the nanoparticles, we used adenosine phosphates--AMP, ADP and ATP--as spacers to obtain colloidally stable nanoparticles. Nucleotides with di- and triphosphate groups were intended to increase the USPIO charge and thus improve zeta potential and stability. However, all nanoparticles formed negatively charged clusters with similar properties in terms of zeta potential (-28 ± 2 mV), relaxivity (228-259 mM(-1) s(-1) at 3 T) and hydrodynamic radius (53-85 nm). Molecules with a higher number of phosphate groups, such as ADP and ATP, have a higher adsorption affinity towards iron oxide, which, instead of providing more charge, led to partial desorption and replacement of FMN. Hence, we obtained USPIOs carrying different amounts of targeting agent, which significantly influenced the nanoparticles' uptake. The nanoparticles' uptake by different cancer cells and HUVECs was evaluated photometrically and with MR relaxometry, showing that the cellular uptake of the USPIOs increases with the FMN amount on their surface. Thus, for USPIOs targeted with riboflavin derivatives the use of spacers with increasing numbers of phosphate groups does not improve either zeta potential or the particles' stability, but rather detaches the targeting moieties from their surface, leading to lower cellular uptake. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Proline-hydroxylated hypoxia-inducible factor 1α (HIF-1α upregulation in human tumours.

    Directory of Open Access Journals (Sweden)

    Cameron E Snell

    Full Text Available The stabilisation of HIF-α is central to the transcriptional response of animals to hypoxia, regulating the expression of hundreds of genes including those involved in angiogenesis, metabolism and metastasis. HIF-α is degraded under normoxic conditions by proline hydroxylation, which allows for recognition and ubiquitination by the von-Hippel-Lindau (VHL E3 ligase complex. The aim of our study was to investigate the posttranslational modification of HIF-1α in tumours, to assess whether there are additional mechanisms besides reduced hydroxylation leading to stability. To this end we optimised antibodies against the proline-hydroxylated forms of HIF-1α for use in formalin fixed paraffin embedded (FFPE immunohistochemistry to assess effects in tumour cells in vivo. We found that HIF-1α proline-hydroxylated at both VHL binding sites (Pro402 and Pro564, was present in hypoxic regions of a wide range of tumours, tumour xenografts and in moderately hypoxic cells in vitro. Staining for hydroxylated HIF-1α can identify a subset of breast cancer patients with poorer prognosis and may be a better marker than total HIF-1α levels. The expression of unhydroxylated HIF-1α positively correlates with VHL in breast cancer suggesting that VHL may be rate-limiting for HIF degradation. Our conclusions are that the degradation of proline-hydroxylated HIF-1α may be rate-limited in tumours and therefore provides new insights into mechanisms of HIF upregulation. Persistence of proline-hydroxylated HIF-1α in perinecrotic areas suggests there is adequate oxygen to support prolyl hydroxylase domain (PHD activity and proline-hydroxylated HIF-1α may be the predominant form associated with the poorer prognosis that higher levels of HIF-1α confer.

  3. Laser-assisted one-pot fabrication of calcium phosphate-based submicrospheres with internally crystallized magnetite nanoparticles through chemical precipitation.

    Science.gov (United States)

    Nakamura, Maki; Oyane, Ayako; Sakamaki, Ikuko; Ishikawa, Yoshie; Shimizu, Yoshiki; Kawaguchi, Kenji

    2015-04-14

    In this paper, we have further developed our simple (one-pot) and rapid (short irradiation time) laser fabrication process of submicrometer spheres composed of amorphous calcium iron phosphate. In our previous process, laser irradiation was applied to a calcium phosphate (CaP) reaction mixture supplemented with ferric ions (Fe(3+)) as a light-absorbing agent. Because the intention of the present study was to fabricate magnetite-encapsulated CaP-based submicrometer spheres, ferrous ions (Fe(2+)) were used as a light-absorbing agent rather than ferric ions. The ferrous ions served as a light-absorbing agent and facilitated the fabrication of submicrometer and micrometer spheres of amorphous calcium iron phosphate. The sphere formation and growth were better promoted by the use of ferrous ions as compared with the use of ferric ions. The chemical composition of the spheres was controllable through adjustment of the experimental conditions. By the addition of sodium hydroxide to the CaP reaction mixture supplemented with ferrous ions, fabrication of CaP-based magnetic submicrometer spheres was successfully achieved. Numerous magnetite and wüstite nanoparticles were coprecipitated or segregated into the CaP-based spherical amorphous matrix via light-material interaction during the CaP precipitation process. The magnetic properties of the magnetite and wüstite formed in the CaP-based spheres were investigated by magnetization measurements. The present process and the resulting CaP-based spheres are expected to have great potential for biomedical applications.

  4. Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility

    Directory of Open Access Journals (Sweden)

    Nieto Pamela A

    2008-11-01

    Full Text Available Abstract Background Iron is an essential nutrient but can be toxic at high intracellular concentrations and organisms have evolved tightly regulated mechanisms for iron uptake and homeostasis. Information on iron management mechanisms is available for organisms living at circumneutral pH. However, very little is known about how acidophilic bacteria, especially those used for industrial copper bioleaching, cope with environmental iron loads that can be 1018 times the concentration found in pH neutral environments. This study was motivated by the need to fill this lacuna in knowledge. An understanding of how microorganisms thrive in acidic ecosystems with high iron loads requires a comprehensive investigation of the strategies to acquire iron and to coordinate this acquisition with utilization, storage and oxidation of iron through metal responsive regulation. In silico prediction of iron management genes and Fur regulation was carried out for three Acidithiobacilli: Acidithiobacillus ferrooxidans (iron and sulfur oxidizer A. thiooxidans and A. caldus (sulfur oxidizers that can live between pH 1 and pH 5 and for three strict iron oxidizers of the Leptospirillum genus that live at pH 1 or below. Results Acidithiobacilli have predicted FeoB-like Fe(II and Nramp-like Fe(II-Mn(II transporters. They also have 14 different TonB dependent ferri-siderophore transporters of diverse siderophore affinity, although they do not produce classical siderophores. Instead they have predicted novel mechanisms for dicitrate synthesis and possibly also for phosphate-chelation mediated iron uptake. It is hypothesized that the unexpectedly large number and diversity of Fe(III-uptake systems confers versatility to this group of acidophiles, especially in higher pH environments (pH 4–5 where soluble iron may not be abundant. In contrast, Leptospirilla have only a FtrI-Fet3P-like permease and three TonB dependent ferri-dicitrate siderophore systems. This paucity of iron

  5. Ball milled bauxite residue as a reinforcing filler in phosphate-based intumescent system

    Directory of Open Access Journals (Sweden)

    Adiat Ibironke Arogundade

    2018-01-01

    Full Text Available Bauxite residue (BR is an alumina refinery waste with a global disposal problem. Of the 120 MT generated annually, only 3 MT is disposed via utilization. One of the significant challenges to sustainable utilization has been found to be the cost of processing. In this work, using ball milling, we achieved material modification of bauxite residue. Spectrometric imaging with FESEM showed the transformation from an aggregate structure to nano, platy particulates, leading to particle size homogeneity. BET analysis showed surface area was increased by 23%, while pH was reduced from 10.8 to 9.1 due to collapsing of the hydroxyl surface by the fracturing action of the ball mill. Incorporation of this into a phosphate-based fire retardant, intumescent formulation led to improved material dispersion and the formation of reinforcing heat shielding char nodules. XRD revealed the formation of ceramic metal phosphates which acted as an additional heat sink to the intumescent system, thereby reducing char oxidation and heat transfer to the substrate. Steel substrate temperature from a Bunsen burner test reduced by 33%. Therefore, ball milling can serve as a simple, low-cost processing route for the reuse of bauxite residue in intumescent composites.

  6. Sphaerotilus natans, a neutrophilic iron-related filamentous bacterium : mechanisms of uranium scavenging

    International Nuclear Information System (INIS)

    Seder-Colomina, Marina

    2014-01-01

    Heavy metals and radionuclides are present in some ecosystems worldwide due to natural contaminations or anthropogenic activities. The use of microorganisms to restore those polluted ecosystems, a process known as bioremediation, is of increasing interest, especially under near-neutral pH conditions. Iron minerals encrusting neutrophilic iron-related bacteria, especially Bacterio-genic Iron Oxides (BIOS), have a poorly crystalline structure, which in addition to their large surface area and reactivity make them excellent scavengers for inorganic pollutants. In this PhD work we studied the different mechanisms of uranium scavenging by the neutrophilic bacterium Sphaerotilus natans, chosen as a model bacterium for iron-related sheath-forming filamentous microorganisms. S. natans can grow as single cells and filaments. The latter were used to investigate U(VI) bio-sorption and U(VI) sorption onto BIOS. In addition, uranium sorption onto the abiotic analogues of such iron minerals was assessed. In order to use S. natans filaments for U(VI) scavenging, it was necessary to identify factors inducing S. natans filamentation. The influence of oxygen was ascertained by using molecular biology techniques and our results revealed that while saturated oxygen conditions resulted in single cell growth, a moderate oxygen depletion to ∼ 3 mg O 2 .L -1 led to the desired filamentous growth of S. natans. BIOS attached to S. natans filaments as well as the abiotic analogues were analysed by XAS at Fe K-edge. Both materials were identified as amorphous iron(III) phosphates with a small component of Fe(II), with a high reactivity towards scavenging of inorganic pollutants. In addition, EXAFS at the U LIII-edge revealed a common structure for the O shells, while those for P, Fe and C were different for each sorbent. An integrated approach combining experimental techniques and speciation calculations made it possible to describe U(VI) adsorption isotherms by using a surface complexation

  7. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Zhenbang, E-mail: hzbang@aliyun.com [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Key Laboratory of Advanced Textile Composite Materials, Ministry of Education of China, Tianjin 300387 (China); Han, Xu [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Xiaoming, E-mail: zhaoxiaoming@tjpu.edu.cn [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Key Laboratory of Advanced Textile Composite Materials, Ministry of Education of China, Tianjin 300387 (China); Yu, Jiantao; Xu, Hang [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China)

    2016-12-15

    Iron(II) phthalocyanine was immobilized onto amidoximated polyacrylonitrile fiber to construct a bioinspired catalytic system for oxidizing organic dyes by H{sub 2}O{sub 2} activation. The amidoxime groups greatly helped to anchor Iron(II) phthalocyanine molecules onto the fiber through coordination interaction, which has been confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and UV diffuse reflectance spectroscopy analyses. Electron spin resonance studies indicate that the catalytic process of physically anchored Iron(II) phthalocyanine performed via a hydroxyl radical pathway, while the catalyst bonded Iron(II) phthalocyanine through coordination effect could selectively catalyze the H{sub 2}O{sub 2} decomposition to generate high-valent iron-oxo species. This may result from the amidoxime groups functioning as the axial fifth ligands to favor the heterolytic cleavage of the peroxide O−O bond. This feature also enables the catalyst to only degrade the dyes adjacent to the catalytic active centers and enhances the efficient utilization of H{sub 2}O{sub 2}. In addition, this catalyst could effectively catalyze the mineralization of organic dyes and can be easily recycled without any loss of activity.

  8. Large-Scale Synthesis of Single-Crystalline Iron Oxide Magnetic Nanorings

    DEFF Research Database (Denmark)

    Jia, Chun-Jiang; Sun, Ling-Dong; Luo, Feng

    2008-01-01

    We present an innovative approach to the production of single-crystal iron oxide nanorings employing a solution-based route. Single-crystal hematite (alpha-Fe2O3) nanorings were synthesized using a double anion-assisted hydrothermal method (involving phosphate and sulfate ions), which can...... an intriguing three-dimensional magnetic configuration. This work provides an easily scaled-up method for preparing tailor-made iron oxide nanorings that could meet the demands of a variety of applications ranging from medicine to magnetoelectronics....... able to control the size, morphology, and surface architecture to produce a variety of three-dimensional hollow nanostructures. These can then be converted to magnetite (Fe3O4) and maghemite (gamma-Fe2O3) by a reduction or reduction-oxidation process while preserving the same morphology. The structures...

  9. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Stoehr, Andrea; Yang, Yanqin; Patel, Sajni; Evangelista, Alicia M; Aponte, Angel; Wang, Guanghui; Liu, Poching; Boylston, Jennifer; Kloner, Philip H; Lin, Yongshun; Gucek, Marjan; Zhu, Jun; Murphy, Elizabeth

    2016-06-01

    Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein-protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. This study provides the first extensive

  10. Hydroxyl radical induced degradation of salicylates in aerated aqueous solution

    International Nuclear Information System (INIS)

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Rácz, Gergely; Takács, Erzsébet; Wojnárovits, László

    2014-01-01

    Ionizing radiation induced degradation of acetylsalicylic acid, its hydrolysis product salicylic acid and a salicylic acid derivative 5-sulpho-salicylic acid, was investigated in dilute aqueous solutions by UV–vis spectrophotometry, HPLC separation and diode-array or MS/MS detection, chemical oxygen demand, total organic carbon content and by Vibrio fischeri toxicity measurements. Hydroxyl radicals were shown to degrade these molecules readily, and first degradation products were hydroxylated derivatives in all cases. Due to the by-products, among them hydrogen peroxide, the toxicity first increased and then decreased with the absorbed dose. With prolonged irradiation complete mineralization was achieved. - Highlights: • In OH induced reactions of salicylates first products are hydroxylated derivatives. • With prolonged irradiation dihydroxy derivatives also form. • In aerated solutions the one-electron oxidant OH induces 3–4 oxidations. • Toxicity first increases and then decreases with dose mainly due to H 2 O 2 formation. • The toxicity in tap water is smaller than in pure water

  11. Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone of the northern Arabian Sea

    NARCIS (Netherlands)

    Kraal, P.; Slomp, C.P.; Reed, D.C.; Reichart, G.-J.; Poulton, S.W.

    2012-01-01

    In this study, we investigate phosphorus (P) and iron (Fe) cycling in sediments along a depth transect from within to well below the oxygen minimum zone (OMZ) in the northern Arabian Sea (Murray Ridge). Pore-water and solid-phase analyses show that authigenic formation of calcium phosphate minerals

  12. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease.

    Science.gov (United States)

    Wolf, Myles; White, Kenneth E

    2014-07-01

    High levels of fibroblast growth factor 23 (FGF23) cause the rare disorders of hypophosphatemic rickets and are a risk factor for cardiovascular disease and death in patients with chronic kidney disease (CKD). Despite major advances in understanding FGF23 biology, fundamental aspects of FGF23 regulation in health and in CKD remain mostly unknown. Autosomal dominant hypophosphatemic rickets (ADHR) is caused by gain-of-function mutations in FGF23 that prevent its proteolytic cleavage, but affected individuals experience a waxing and waning course of phosphate wasting. This led to the discovery that iron deficiency is an environmental trigger that stimulates FGF23 expression and hypophosphatemia in ADHR. Unlike osteocytes in ADHR, normal osteocytes couple increased FGF23 production with commensurately increased FGF23 cleavage to ensure that normal phosphate homeostasis is maintained in the event of iron deficiency. Simultaneous measurement of FGF23 by intact and C-terminal assays supported these breakthroughs by providing minimally invasive insight into FGF23 production and cleavage in bone. These findings also suggest a novel mechanism of FGF23 elevation in patients with CKD, who are often iron deficient and demonstrate increased FGF23 production and decreased FGF23 cleavage, consistent with an acquired state that mimics the molecular pathophysiology of ADHR. Iron deficiency stimulates FGF23 production, but normal osteocytes couple increased FGF23 production with increased cleavage to maintain normal circulating levels of biologically active hormone. These findings uncover a second level of FGF23 regulation within osteocytes, failure of which culminates in elevated levels of biologically active FGF23 in ADHR and perhaps CKD.

  13. Rate constant for reaction of hydroxyl radicals with bicarbonate ions

    International Nuclear Information System (INIS)

    Buxton, G.V.; Elliot, A.J.

    1986-01-01

    The rate constant for reaction of hydroxyl radicals with the bicarbonate ion has been determined to be 8.5 x 10 6 dm 3 mol -1 s -1 . This value was calculated from: the measured rate of formation of the CO 3 - radical in pulsed electron irradiation of bicarbonate solutions over the pH range 7.0 to 9.4; the pK for the equilibrium HCO 3 - = CO 3 2- + H + ; and the rate constant for hydroxyl radicals reacting with the carbonate ion. (author)

  14. Interactions between iron(III)-hydroxide polymaltose complex and commonly used medications / laboratory studies in rats.

    Science.gov (United States)

    Funk, Felix; Canclini, Camillo; Geisser, Peter

    2007-01-01

    Simple iron salts, such as iron sulphate, often interact with food and other medications reducing bioavailability and tolerability. Iron(III)-hydroxide polymaltose complex (IPC, Maltofer) provides a soluble form of non-ionic iron, making it an ideal form of oral iron supplementation. The physicochemical properties of IPC predict a low potential for interactions. The effects of co-administration with aluminium hydroxide (CAS 21645-51-2), acetylsalicylic acid (CAS 50-78-2), bromazepam (CAS 1812-30-2), calcium acetate (CAS 62-54-4), calcium carbonate (CAS 471-34-1), auranofin (CAS 34031-32-8), magnesium-L-aspartate hydrochloride (CAS 28184-71-6), methyldopa sesquihydrate (CAS 41372-08-1), paracetamol (CAS 103-90-2), penicillamine (CAS 52-67-5), sulfasalazine (CAS 599-79-1), tetracycline hydrochloride (CAS 64-75-5), calcium phosphate (CAS 7757-93-9) in combination with vitamin D3 (CAS 67-97-0), and a multi-vitamin preparation were tested in rats fed an iron-deficient diet. Uptake of iron from radiolabelled IPC with and without concomitant medications was compared. None of the medicines tested had a significant effect on iron uptake. Iron-59 retrieval from blood and major storage organs was 64-76% for IPC alone compared with 59-85% following co-administration with other medications. It is concluded that, under normal clinical conditions, IPC does not interact with these medications.

  15. 11 µ-Hydroxylation of cortexolone using immobilized ...

    African Journals Online (AJOL)

    Transformation of cortexolone to cortisol and prednisolone by the filamentous fungus Cunninghamella elegans protoplasts as a research tool was studied. The immobilized protoplasts of the fungus hydroxylated cortexolone at 11β -position had significantly higher activity than the free protoplasts. Sucrose as an osmotic ...

  16. Monkey liver cytochrome P450 2C19 is involved in R- and S-warfarin 7-hydroxylation.

    Science.gov (United States)

    Hosoi, Yoshio; Uno, Yasuhiro; Murayama, Norie; Fujino, Hideki; Shukuya, Mitsunori; Iwasaki, Kazuhide; Shimizu, Makiko; Utoh, Masahiro; Yamazaki, Hiroshi

    2012-12-15

    Cynomolgus monkeys are widely used as primate models in preclinical studies. However, some differences are occasionally seen between monkeys and humans in the activities of cytochrome P450 enzymes. R- and S-warfarin are model substrates for stereoselective oxidation in humans. In this current research, the activities of monkey liver microsomes and 14 recombinantly expressed monkey cytochrome P450 enzymes were analyzed with respect to R- and S-warfarin 6- and 7-hydroxylation. Monkey liver microsomes efficiently mediated both R- and S-warfarin 7-hydroxylation, in contrast to human liver microsomes, which preferentially catalyzed S-warfarin 7-hydroxylation. R-Warfarin 7-hydroxylation activities in monkey liver microsomes were not inhibited by α-naphthoflavone or ketoconazole, and were roughly correlated with P450 2C19 levels and flurbiprofen 4-hydroxylation activities in microsomes from 20 monkey livers. In contrast, S-warfarin 7-hydroxylation activities were not correlated with the four marker drug oxidation activities used. Among the 14 recombinantly expressed monkey P450 enzymes tested, P450 2C19 had the highest activities for R- and S-warfarin 7-hydroxylations. Monkey P450 3A4 and 3A5 slowly mediated R- and S-warfarin 6-hydroxylations. Kinetic analysis revealed that monkey P450 2C19 had high V(max) and low K(m) values for R-warfarin 7-hydroxylation, comparable to those for monkey liver microsomes. Monkey P450 2C19 also mediated S-warfarin 7-hydroxylation with V(max) and V(max)/K(m) values comparable to those for recombinant human P450 2C9. R-warfarin could dock favorably into monkey P450 2C19 modeled. These results collectively suggest high activities for monkey liver P450 2C19 toward R- and S-warfarin 6- and 7-hydroxylation in contrast to the saturation kinetics of human P450 2C9-mediated S-warfarin 7-hydroxylation. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Synthesis of hydroxyl liquid polybutadiene by photochemical decomposition of hydrogen peroxide

    International Nuclear Information System (INIS)

    Moutinho, Marcus Tadeu Moura

    1995-01-01

    The synthesis of hydroxyl terminated polybutadienes (HTPB) by photochemical decomposition (λ=254 nm) of hydrogen peroxide (H 2 O 2 ) in alcoholic medium was studied. The influence of reaction time, H 2 O 2 and alcohol concentrations, type of alcohol and radiation intensity on the polymerization rate was determined. Higher polymerization rates were attained when t-butyl alcohol was used as the compatibilizing agent (19% conversion after 8 hours). The HTPBs were characterized by hydroxyl content (acetylation), functionality, IR microstructure and types of hydroxyl groups ( 1 H-NMR and 13 C-NMR), 2-vinyl cyclohexene (VCH) content and viscosity. The polymers showed molecular weights (Mn) in the range of 458 to 1,099, molecular weight distribution (Mw/Mn) in the range of 1.20 to 1.46 and functionality between 1.2 and 3.2 depending on the alcohol used. NMR results 1 H and 13 C) revealed low cis content for the polybutadienes and identified primary and secondary hydroxyl groups, depending on the alcohol employed as compatibilizing agent. The incorporation of alcohol in polymer chain ends was evidenced. The produced HTPBs presented viscosities in the range of 850 to 1,250 cP (at 25 deg C) and were VCH free. (author)

  18. Synthesis of 5-hydroxyectoine from ectoine: crystal structure of the non-heme iron(II and 2-oxoglutarate-dependent dioxygenase EctD.

    Directory of Open Access Journals (Sweden)

    Klaus Reuter

    2010-05-01

    Full Text Available As a response to high osmolality, many microorganisms synthesize various types of compatible solutes. These organic osmolytes aid in offsetting the detrimental effects of low water activity on cell physiology. One of these compatible solutes is ectoine. A sub-group of the ectoine producer's enzymatically convert this tetrahydropyrimidine into a hydroxylated derivative, 5-hydroxyectoine. This compound also functions as an effective osmostress protectant and compatible solute but it possesses properties that differ in several aspects from those of ectoine. The enzyme responsible for ectoine hydroxylation (EctD is a member of the non-heme iron(II-containing and 2-oxoglutarate-dependent dioxygenases (EC 1.14.11. These enzymes couple the decarboxylation of 2-oxoglutarate with the formation of a high-energy ferryl-oxo intermediate to catalyze the oxidation of the bound organic substrate. We report here the crystal structure of the ectoine hydroxylase EctD from the moderate halophile Virgibacillus salexigens in complex with Fe(3+ at a resolution of 1.85 A. Like other non-heme iron(II and 2-oxoglutarate dependent dioxygenases, the core of the EctD structure consists of a double-stranded beta-helix forming the main portion of the active-site of the enzyme. The positioning of the iron ligand in the active-site of EctD is mediated by an evolutionarily conserved 2-His-1-carboxylate iron-binding motif. The side chains of the three residues forming this iron-binding site protrude into a deep cavity in the EctD structure that also harbours the 2-oxoglutarate co-substrate-binding site. Database searches revealed a widespread occurrence of EctD-type proteins in members of the Bacteria but only in a single representative of the Archaea, the marine crenarchaeon Nitrosopumilus maritimus. The EctD crystal structure reported here can serve as a template to guide further biochemical and structural studies of this biotechnologically interesting enzyme family.

  19. Mechanism of aromatic hydroxylation of lidocaine at a Pt electrode under acidic conditions

    NARCIS (Netherlands)

    Gul, Turan; Bischoff, Rainer; Permentier, Hjalmar P.

    2017-01-01

    Aromatic hydroxylation reactions, which are mainly catalyzed by cytochrome P450 (CYP) enzymes in vivo, are some of the most important reactions of Phase I metabolism, because insertion of a hydroxyl group into a lipophilic drug compound increases its hydrophilicity and prepares it for subsequent

  20. Study of hydroxylation of benzene and toluene using a micro-DBD plasma reactor

    International Nuclear Information System (INIS)

    Sekiguchi, H; Ando, M; Kojima, H

    2005-01-01

    The hydroxylation behaviour of benzene and toluene were studied using a micro-plasma reactor, where an atmospheric non-thermal plasma was generated by a dielectric barrier discharge (DBD). The results indicated that oxidation products primarily consisted of phenol and C 4 -compounds for benzene hydroxylation, whereas cresol, benzaldehyde, benzylalcohol and C 4 -compounds were detected for toluene hydroxylation. By taking into consideration the reaction mechanism in the plasma reactor, these products were classified into (1) oxidation of the aromatic ring and functional group on the ring and (2) cleavage of the aromatic ring or dissociation of the functional group on the ring

  1. Hydroxylation of the Herbicide Isoproturon by Fungi Isolated from Agricultural Soil

    OpenAIRE

    Rønhede, Stig; Jensen, Bo; Rosendahl, Søren; Kragelund, Birthe B.; Juhler, René K.; Aamand, Jens

    2005-01-01

    Several asco-, basidio-, and zygomycetes isolated from an agricultural field were shown to be able to hydroxylate the phenylurea herbicide isoproturon [N-(4-isopropylphenyl)-N′,N′-dimethylurea] to N-(4-(2-hydroxy-1-methylethyl)phenyl)-N′,N′-dimethylurea and N-(4-(1-hydroxy-1-methylethyl)phenyl)-N′,N′-dimethylurea. Bacterial metabolism of isoproturon has previously been shown to proceed by an initial demethylation to N-(4-isopropylphenyl)-N′-methylurea. In soils, however, hydroxylated metaboli...

  2. Hydroxyl-radical induced dechlorination of pentachlorophenol in water

    International Nuclear Information System (INIS)

    He Yongke; Wu Jilan; Fang Xingwang; Sonntag, C. von

    1998-01-01

    The hydroxyl-radical induced dechlorination of pentachlorophenol (PCP) in water has been investigated pulse radiolytically. Hydroxyl radicals react with PCP by both electron transfer and addition. The former process results in pentachlorophenoxyl radicals (PCP-O), the latter process followed by rapid HCl elimination gives birth to deprotonated hydroxytetrachlorophenoxyl radicals ( - O-TCP-O). These phenoxyl radicals exhibit maximum absorption around 452 nm, which hinders the proper estimation of the ratio of the two processes. However, these two processes cause different changes in conductivity. In basic solution, the electron transfer causes a conductivity increase due to the formation of OH - whereas an addition followed by HCl elimination results in a conductivity decrease. The concurrence of these two processes reduces the relative variation in conductivity, from which about 53% electron transfer is deduced

  3. On the reaction of iron oxides and oxyhydroxides with tannic and phosphoric acid and their mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, J. J., E-mail: jjbj08@yahoo.com; Novegil, F. J.; Garcia, K. E.; Barrero, C. A. [Universidad de Antioquia, Sede de Investigacion Universitaria, Grupo de Estado Solido, Instituto de Fisica (Colombia)

    2010-01-15

    The actions of tannic acid, phosphoric acid and their mixture on lepidocrocite, goethite, superparamagnetic goethite, akaganeite, magnetite, hematite and maghemite for 1 day and 1 month were explored. It was found that these acids form iron tannates and phosphates. Lepidocrocite and magnetite were the iron phases more easily transformed with the mixture of the acids after 1 month of reaction, whereas hematite was the most resistant phase. In the case of goethite, our results suggest that in order to understand properly the action of these acids, we have to take into account its stoichiometry, surface area and degree of crystallinity.

  4. Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils

    International Nuclear Information System (INIS)

    Thawornchaisit, Usarat; Polprasert, Chongrak

    2009-01-01

    The efficiency of three phosphate fertilizers including triple superphosphate (TSP), diammonium phosphate (DAP), and phosphate rock (PR) as stabilizing agents of cadmium-contaminated soils has been assessed in this study. Two types of assessment criteria, (a) the reduction of leachable cadmium concentration; and (b) the changes in Cd association with specific operational soil fraction based on the sequential extraction data, are used in the evaluation of stabilization performance of each fertilizer. Results of the study showed that after the 60-day stabilization, the leachable concentrations of Cd in PR-, DAP- and TSP- treated soils reduced from 306 mg/kg (the control) to 140, 34, and 12 mg/kg with the stabilization efficiency as TSP>DAP>PR. Results from the assessment of Cd speciation via sequential extraction procedure revealed that the soluble-exchangeable fraction and the surface adsorption fraction of Cd in the soils treated with PO 4 fertilizers, especially with TSP, have been reduced considerably. In addition, it is found that the reduction was correspondingly related with the increase of more stable forms of cadmium: the metal bound to manganese oxides and the metal bound to crystalline iron oxides. Treatment efficiency increased as the phosphate dose (based on the molar ratio of PO 4 /Cd) increased. In addition, it was observed that stabilization was most effective when using the molar ratio of PO 4 /Cd at 2:1 and at least 21-day and 28-day stabilization time for TSP and DAP, respectively.

  5. Electrocoagulation Process for Treatment of Detergent and Phosphate

    Directory of Open Access Journals (Sweden)

    Afshin Takdastan

    2017-01-01

    Full Text Available Background & Aims of the Study: Detergent and phosphate are one of the main and vital threats (eutrophication phenomenon and production of synthetic foam for the source of drinking water, agriculture and industrial uses in the Ahvaz, Iran that threaten human health. The aim of this study is the evaluation of the efficiency of the electrocoagulation (EC process in the removal of detergent and phosphate from car wash effluent. Materials & Methods: In this experimental study, we used a glass tank with a volume of 2-4 liters (effective volume of 2 liters containing 4 electrode-plate iron and aluminum (AL-AL, AL-Fe, Fe-Fe. Bipolar method was used to convert alternative electricity to direct; electrodes were connected to a power supply. Daily samples were collected from different car washes sewage. Initial PHs of samples was from 7 to 9. At first, different tests were performed on primary samples. Reaction times were set for 90, 60 and 30 minutes with middle intervals of 2 cm. Results: According to the result of this study, percentage of phosphate removal in the EC with Al-Fe electrode, with an optimum pH = 7, has been from 34 % (in the 10 Volt to 78% (in the 30 Volt. Percentage of detergent removal in the EC with AL electrode, with an optimum pH = 7, has been from 68 % (in the 10 Volt to 94% (in the 30 Volt. Conclusions: Altogether, it was found that this method can be used as a confident and convenient method for treating car wash effluent and according to the highest removal efficiency of the process, effluent can be discharged safely into the environment.

  6. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Ruzicka, Alex M.; Haack, Henning; Chabot, Nancy L.

    2017-01-01

    By far most of the melted and differentiated planetesimals that have been sampled as meteorites are metal-rich iron meteorites or stony iron meteorites. The parent asteroids of these meteorites accreted early and differentiated shortly after the solar system formed, producing some of the oldest...... and interpretations for iron and stony iron meteorites (Plate 13.1). Such meteorites provide important constraints on the nature of metal-silicate separation and mixing in planetesimals undergoing partial to complete differentiation. They include iron meteorites that formed by the solidification of cores...... (fractionally crystallized irons), irons in which partly molten metal and silicates of diverse types were mixed together (silicate-bearing irons), stony irons in which partly molten metal and olivine from cores and mantles were mixed together (pallasites), and stony irons in which partly molten metal...

  7. Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite.

    Science.gov (United States)

    Yagi, Shintaro; Fukushi, Keisuke

    2012-10-15

    The sorption behavior and mechanism of phosphate on monohydrocalcite (CaCO(3)·H(2)O: MHC) were examined using batch sorption experiments as a function of phosphate concentrations, ionic strengths, temperatures, and reaction times. The mode of PO(4) sorption is divisible into three processes depending on the phosphate loading. At low phosphate concentrations, phosphate is removed by coprecipitation of phosphate during the transformation of MHC to calcite. The sorption mode at the low-to-moderate phosphate concentrations is most likely an adsorption process because the sorption isotherm at the conditions can be fitted reasonably with the Langmuir equation. The rapid sorption kinetics at the conditions is also consistent with the adsorption reaction. The adsorption of phosphate on MHC depends strongly on ionic strength, but slightly on temperature. The maximum adsorption capacities of MHC obtained from the regression of the experimental data to the Langmuir equation are higher than those reported for stable calcium carbonate (calcite or aragonite) in any conditions. At high phosphate concentrations, the amount of sorption deviates from the Langmuir isotherm, which can fit the low-to-moderate phosphate concentrations. Speciation-saturation analyses of the reacted solutions at the conditions indicated that the solution compositions which deviate from the Langmuir equation are supersaturated with respect to a certain calcium phosphate. The obtained calcium phosphate is most likely amorphous calcium phosphate (Ca(3)(PO(4))(2)·xH(2)O). The formation of the calcium phosphate depends strongly on ionic strength, temperature, and reaction times. The solubility of MHC is higher than calcite and aragonite because of its metastability. Therefore, the higher solubility of MHC facilitates the formation of the calcium phosphates more than with calcite and aragonite. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Oral administration of iron-saturated bovine lactoferrin-loaded ceramic nanocapsules for breast cancer therapy and influence on iron and calcium metabolism.

    Science.gov (United States)

    Mahidhara, Ganesh; Kanwar, Rupinder K; Roy, Kislay; Kanwar, Jagat R

    2015-01-01

    We determined the anticancer efficacy and internalization mechanism of our polymeric-ceramic nanoparticle system (calcium phosphate nanocores, enclosed in biodegradable polymers chitosan and alginate nanocapsules/nanocarriers [ACSC NCs]) loaded with iron-saturated bovine lactoferrin (Fe-bLf) in a breast cancer xenograft model. ACSC-Fe-bLf NCs with an overall size of 322±27.2 nm were synthesized. In vitro internalization and anticancer efficacy were evaluated in the MDA-MB-231 cells using multicellular tumor spheroids, CyQUANT and MTT assays. These NCs were orally delivered in a breast cancer xenograft mice model, and their internalization, cytotoxicity, biodistribution, and anticancer efficacy were evaluated. Chitosan-coated calcium phosphate Fe-bLf NCs effectively (59%, P≤0.005) internalized in a 1-hour period using clathrin-mediated endocytosis (P≤0.05) and energy-mediated pathways (P≤0.05) for internalization; 3.3 mg/mL of ACSC-Fe-bLf NCs completely disintegrated (~130-fold reduction, P≤0.0005) the tumor spheroids in 72 hours and 96 hours. The IC50 values determined for ACSC-Fe-bLf NCs were 1.69 mg/mL at 10 hours and 1.62 mg/mL after 20 hours. We found that Fe-bLf-NCs effectively (P≤0.05) decreased the tumor size (4.8-fold) compared to the void NCs diet and prevented tumor recurrence when compared to intraperitoneal injection of Taxol and Doxorubicin. Receptor gene expression and micro-RNA analysis confirmed upregulation of low-density lipoprotein receptor and transferrin receptor (liver, intestine, and brain). Several micro-RNAs responsible for iron metabolism upregulated with NCs were identified. Taken together, orally delivered Fe-bLf NCs offer enhanced antitumor activity in breast cancer by internalizing via low-density lipoprotein receptor and transferrin receptor and regulating the micro-RNA expression. These NCs also restored the body iron and calcium levels and increased the hematologic counts.

  9. On the spatial coincidence of hydroxyl and methanol masers

    Science.gov (United States)

    Hartquist, T. W.; Menten, K. M.; Lepp, S.; Dalgarno, A.

    1995-01-01

    We argue that purely gas-phase chemical models for the production of OH in hydroxyl masers around ultracompact H II regions such as W3(OH) cannot account for the CH_3OH in the methanol masers that are found to coincide with the hydroxyl masers in these sources. We suggest that the CH_3OH in the masers is injected into the gas phase by evaporation of the grain mantles, the grains being heated by the passage of weak shocks. Gas evaporation also injects H_2O into the gas. Photodissociation of H_2O, CH_3OH and OH occur at similar rates, and substantial abundances of CH_3OH and OH coexist.

  10. Recent studies of uranium recovery from wet-process phosphoric acid with octylphenyl acid phosphate

    International Nuclear Information System (INIS)

    Arnold, W.D.

    1978-01-01

    Commercial OPAP is a complex mixture that contains at least 11 components. Octyl phenol is the principal impurity. Commercial OPAP contains readily-hydrolyzable material. The concentrations of octyl phenol and an unidentified impurity increase in the hydrolyzed product. Uranium extraction power is decreased slightly by hydrolysis of the reagent. Four major problems were encountered in continuous stability tests: (1) Microemulsion or micelle formation--loss of organic phase into phosphoric acid. We do not have a solution to this problem at this time. It could involve alteration of the organic, e.g., adding a modifier, changing the reagent structure, or changing the diluent. (2) Reagent poisoning--reduction of uranium extraction and interference with organic titrations by material extracted from the acid. Additional work is needed to identify the poisoning material or materials. It can then be removed if it originates in the phosphate rock, or avoided if it originates in chemicals added during processing. (3) Crystallization with iron--loss of both major components of the reagent as a complex with ferric iron. We believe this problem can be controlled by controlling the ferric iron concentration in the phosphoric acid. (4) MOPPA distribution loss--a selective loss to the aqueous phase. We believe this can be minimized by controlling the iron concentration of the phosphoric acid. The iron concentration will need to be kept low enough to avoid reagent crystallization and high enough to avoid MOPPA distribution loss. 15 figs

  11. EPR detection of hydroxyl radical generation and its interaction with antioxidant system in Carassius auratus exposed to pentachlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yi [Key Laboratory of Pollution Processes and Environmental Criteria (Nankai University), Ministry of Education, College of Environmental Sciences and Engineering, Nankai University, Tianjin 300071 (China); Wang Xiaorong, E-mail: yiyluo@gmail.com [State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Ji Liangliang; Su Yan [State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210093 (China)

    2009-11-15

    In the present study, direct evidence of hydroxyl radical production in livers of Carassius auratus exposed to pentachlorophenol (PCP) was provided using electron paramagnetic resonance (EPR) with spin-trapping. A dose-effect relationship was obtained between hydroxyl radical intensities and PCP exposure. It was observed that hydroxyl radical was significantly induced by 0.001 mg l{sup -1} (below the criteria for Chinese fishery water quality) of PCP exposure. A strong positive correlation (r = 0.9581, p < 0.001) was observed between PCP liver concentrations and hydroxyl radical intensities within 7 d of PCP exposure, which suggests that hydroxyl radical are mainly produced from PCP itself. However, no correlation was observed between PCP liver concentrations and hydroxyl radical intensities after 7 d, and a higher intensity of hydroxyl radical could still be observed when the PCP liver concentrations decreased to a lower level, which suggests that other mechanisms may possibly contribute to hydroxyl radical production after 7 d. The glutathione/oxidized glutathione (GSH/GSSG) ratio decreased below that of the control level during the entire period of PCP exposure (0.05 mg l{sup -1}), which suggested oxidative stress occurred.

  12. Ferrous ammonium phosphate (FeNH₄PO₄) as a new food fortificant: iron bioavailability compared to ferrous sulfate and ferric pyrophosphate from an instant milk drink.

    Science.gov (United States)

    Walczyk, Thomas; Kastenmayer, Peter; Storcksdieck Genannt Bonsmann, Stefan; Zeder, Christophe; Grathwohl, Dominik; Hurrell, Richard F

    2013-06-01

    The main purpose of this study was to establish bioavailability data in humans for the new (Fe) fortification compound ferrous ammonium phosphate (FAP), which was specially developed for fortification of difficult-to-fortify foods where soluble Fe compounds cannot be used due to their negative impact on product stability. A double-blind, randomized clinical trial with cross-over design was conducted to obtain bioavailability data for FAP in humans. In this trial, Fe absorption from FAP-fortified full-cream milk powder was compared to that from ferric pyrophosphate (FPP) and ferrous sulfate. Fe absorption was determined in 38 young women using the erythrocyte incorporation dual stable isotope technique (⁵⁷Fe, ⁵⁸Fe). Geometric mean Fe absorption from ferrous sulfate, FAP and FPP was 10.4, 7.4 and 3.3 %, respectively. Fe from FAP was significantly better absorbed from milk than Fe from FPP (p soluble reference compound (p = 0.0002). Absorption ratios of FAP and FPP relative to ferrous sulfate as a measure of relative bioavailability were 0.71 and 0.32, respectively. The results of the present studies show that replacing FPP with FAP in full-cream milk could significantly improve iron bioavailability.

  13. Progress modelling of aqueous electrons and hydroxyl radicals in RAIM code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A Yeong; Kim, Han-Chul; Lee, Jongseong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, the RAIM code was revised minutely with regards to aqueous electrons and hydroxyl radicals, and simulated the P10T2 test. The recent study indicated that the RAIM had the potential for improvement of simulating the iodine behavior influenced by water radiolysis products such as aqueous electrons and hydroxyl radicals. In the existing RAIM modelling, it was considered that aqueous electrons only interacted with oxygen as a consumption reaction, but the reaction with hydrogen peroxide also could be major contributor to the iodine behavior as well as the consumption reaction of aqueous electrons. In case of hydroxyl radicals, RAIM took no notice of the pH impact. In other words, it dealt with the consumption reaction constants but not as a variable of pH. In this communication, the procedures to develop the model related to aqueous electrons and hydroxyl radicals in RAIM will be addressed. And the upgraded RAIM (RAIM-1, 2, 3) codes were applied to OECD-BIP P10T2 test which showed the effect of pH on the iodine behavior and compared with the existing RAIM1.8.3 code. Comparing with the existing RAIM, the improvement reduced the difference about 10%. However, the absolute difference values that is about one order at pH 10 could not be reduced by this approach.

  14. Regioselective alkane hydroxylation with a mutant CYP153A6 enzyme

    Science.gov (United States)

    Koch, Daniel J.; Arnold, Frances H.

    2013-01-29

    Cytochrome P450 CYP153A6 from Myobacterium sp. strain HXN1500 was engineered using in-vivo directed evolution to hydroxylate small-chain alkanes regioselectively. Mutant CYP153A6-BMO1 selectively hydroxylates butane and pentane at the terminal carbon to form 1-butanol and 1-pentanol, respectively, at rates greater than wild-type CYP153A6 enzymes. This biocatalyst is highly active for small-chain alkane substrates and the regioselectivity is retained in whole-cell biotransformations.

  15. Phosphate-a poison for humans?

    Science.gov (United States)

    Komaba, Hirotaka; Fukagawa, Masafumi

    2016-10-01

    Maintenance of phosphate balance is essential for life, and mammals have developed a sophisticated system to regulate phosphate homeostasis over the course of evolution. However, due to the dependence of phosphate elimination on the kidney, humans with decreased kidney function are likely to be in a positive phosphate balance. Phosphate excess has been well recognized as a critical factor in the pathogenesis of mineral and bone disorders associated with chronic kidney disease, but recent investigations have also uncovered toxic effects of phosphate on the cardiovascular system and the aging process. Compelling evidence also suggests that increased fibroblastic growth factor 23 and parathyroid hormone levels in response to a positive phosphate balance contribute to adverse clinical outcomes. These insights support the current practice of managing serum phosphate in patients with advanced chronic kidney disease, although definitive evidence of these effects is lacking. Given the potential toxicity of excess phosphate, the general population may also be viewed as a target for phosphate management. However, the widespread implementation of dietary phosphate intervention in the general population may not be warranted due to the limited impact of increased phosphate intake on mineral metabolism and clinical outcomes. Nonetheless, the increasing incidence of kidney disease or injury in our aging society emphasizes the potential importance of this issue. Further work is needed to more completely characterize phosphate toxicity and to establish the optimal therapeutic strategy for managing phosphate in patients with chronic kidney disease and in the general population. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  16. THE EFFECT OF PH, PHOSPHATE AND OXIDANT TYPE ON THE REMOVAL OF ARSENIC FROM DRINKING WATER DURING IRON REMOVAL

    Science.gov (United States)

    In many regions of the United States, groundwaters that contain arsenic (primarily As[III]) also contain significant amounts of iron (Fe[II]). Arsenic removal will most likely be achieved by iron removal in many of those cases which will consist of oxidization followed by filtra...

  17. A phase III study of the efficacy and safety of a novel iron-based phosphate binder in dialysis patients.

    Science.gov (United States)

    Floege, Jürgen; Covic, Adrian C; Ketteler, Markus; Rastogi, Anjay; Chong, Edward M F; Gaillard, Sylvain; Lisk, Laura J; Sprague, Stuart M

    2014-09-01

    Efficacy of PA21 (sucroferric oxyhydroxide), a novel calcium-free polynuclear iron(III)-oxyhydroxide phosphate binder, was compared with that of sevelamer carbonate in an open-label, randomized, active-controlled phase III study. Seven hundred and seven hemo- and peritoneal dialysis patients with hyperphosphatemia received PA21 1.0-3.0 g per day and 348 received sevelamer 4.8-14.4 g per day for an 8-week dose titration, followed by 4 weeks without dose change, and then 12 weeks maintenance. Serum phosphorus reductions at week 12 were -0.71 mmol/l (PA21) and -0.79 mmol/l (sevelamer), demonstrating non-inferiority of, on average, three tablets of PA21 vs. eight of sevelamer. Efficacy was maintained to week 24. Non-adherence was 15.1% (PA21) vs. 21.3% (sevelamer). The percentage of patients that reported at least one treatment-emergent adverse event was 83.2% with PA21 and 76.1% with sevelamer. A higher proportion of patients withdrew owing to treatment-emergent adverse events with PA21 (15.7%) vs. sevelamer (6.6%). Mild, transient diarrhea, discolored feces, and hyperphosphatemia were more frequent with PA21; nausea and constipation were more frequent with sevelamer. After 24 weeks, 99 hemodialysis patients on PA21 were re-randomized into a 3-week superiority analysis of PA21 maintenance dose in 50 patients vs. low dose (250 mg per day (ineffective control)) in 49 patients. The PA21 maintenance dose was superior to the low dose in maintaining serum phosphorus control. Thus, PA21 was effective in lowering serum phosphorus in dialysis patients, with similar efficacy to sevelamer carbonate, a lower pill burden, and better adherence.

  18. Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery

    International Nuclear Information System (INIS)

    Deng, Zhongwei; Yang, Lin; Cai, Yishan; Deng, Hao; Sun, Liu

    2016-01-01

    The key technology of a battery management system is to online estimate the battery states accurately and robustly. For lithium iron phosphate battery, the relationship between state of charge and open circuit voltage has a plateau region which limits the estimation accuracy of voltage-based algorithms. The open circuit voltage hysteresis requires advanced online identification algorithms to cope with the strong nonlinear battery model. The available capacity, as a crucial parameter, contributes to the state of charge and state of health estimation of battery, but it is difficult to predict due to comprehensive influence by temperature, aging and current rates. Aim at above problems, the ampere-hour counting with current correction and the dual adaptive extended Kalman filter algorithms are combined to estimate model parameters and state of charge. This combination presents the advantages of less computation burden and more robustness. Considering the influence of temperature and degradation, the data-driven algorithm namely least squares support vector machine is implemented to predict the available capacity. The state estimation and capacity prediction methods are coupled to improve the estimation accuracy at different temperatures among the lifetime of battery. The experiment results verify the proposed methods have excellent state and available capacity estimation accuracy. - Highlights: • A dual adaptive extended Kalman filter is used to estimate parameters and states. • A correction term is introduced to consider the effect of current rates. • The least square support vector machine is used to predict the available capacity. • The experiment results verify the proposed state and capacity prediction methods.

  19. Triphenyl phosphate allergy from spectacle frames

    DEFF Research Database (Denmark)

    Carlsen, L; Andersen, K E; Egsgaard, Helge

    1986-01-01

    A case of triphenyl phosphate allergy from spectacle frames is reported. Patch tests with analytical grade triphenyl phosphate, tri-m-cresyl phosphate, and tri-p-cresyl phosphate in the concentrations 5%, 0.5% and 0.05% pet. showed positive reactions to 0.05% triphenyl phosphate and 0.5% tri......-m-cresyl phosphate, but no reaction to tri-p-cresyl phosphate. Gas chromatography of the tricresyl phosphate 5% pet. patch test material supplied from Trolab showed that it contained a mixture of a wide range of triaryl phosphates, including 0.08% triphenyl phosphate which is above the threshold for detecting...

  20. Comparative study on precipitation methods of yellow-cake from acid leachate of rock phosphate and Its purification

    International Nuclear Information System (INIS)

    Abow Slama, E. H. Y.

    2009-05-01

    This study was carried-out to leach uranium from rock phosphate using sulphuric acid in presences of potassium chlorate as an oxidant and to investigate the relative purity of different forms of yellow cakes produced with ammonia ((NH 4 ) 2 U 2 O 7 ), magnesia (UO 3 .xH 2 O) and sodium hydroxide (Na 2 U 2 O 7 ) as precipitants, as well as purification of the products with TBP extraction and matching its impurity levels with specification of the commercial products. Alpha-particle spectrometry was for used for determination of activity concentration of uranium isotopes (''2''3''4U and ''2''3''8U) in rock phosphate, resulting green phosphoric acid solution, and in different forms of the yellow cake from which the equivalent mass concentration of uranium was deduced. Likewise, AAS was used for determination of impurities (Pb, Ni, Cd, Fe, Zn, Mn, and Cu). On the average, the activity concentration of uranium in the rock phosphate was 1468±979 Bq/Kg (119.38±79.66 ppm), and 711±252 Bq/L (57.85±20.46 ppm) in the resulting green solution with corresponding percent of dissolution amounting to 48% which is considered low indicating that the experimental conditions (i.e. dissolution container, temperature, PH, retention time) were not optimal. However, the isotopic ratio (''2''3''4U, ''2''3''8U) in all stages of hydrometallurgical process was not much different from unity indicating lack of fractionation. Crude yellow cakes (hydrate uranium trioxide, ammonium diuranate and sodium diuranate) were precipitated from the green solutions prior to separation of iron and once after iron separation. Although, iron was tested using bipyridine and SCN, it was found in all types of crude samples analyzed this might be attributed to either the quality of the reagent used or inhibition of Fe present in the solution by stronger complexing agent. Uranium mass concentration in crude yellow cakes precipitated before iron separation was found following the order: UO 3 .xH 2 O

  1. A Novel Absorbent of Nano-Fe Loaded Biomass Char and Its Enhanced Adsorption Capacity for Phosphate in Water

    Directory of Open Access Journals (Sweden)

    Hongguang Zhou

    2013-01-01

    Full Text Available A novel composite adsorbent of Fe loaded biomass char (Fe-BC was fabricated to treat phosphorus in water. Fe-BC was prepared by a procedure including metal complex anion incorporation and precipitation with the pyrolysis char of corn straw as supporting material. The abundant porous structures of the as-prepared sample can be easily observed from its scanning electron microscopy (SEM images. Observations by X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS analyses show that inorganic nanoiron oxides deposited in the composite could be amorphous hydrous iron oxide α-FeOOH. Adsorption of phosphate onto the Fe-BC composite and its precursor (BC from aqueous solutions were investigated and discussed. The equilibrium adsorption data of phosphate was described by Langmuir and Freundlich models, and Langmuir isotherm was found to be better fitted than Freundlich isotherm. The maximum phosphate adsorption capacity for phosphate of Fe-BC was as high as 35.43 mg/g, approximately 2.3 times of BC at 25°C. The adsorption kinetics data were better fitted by pseudo-second-order model and intraparticle diffusion model, indicating that the adsorption process was complex. The Fe-BC composite has been proved as an effective adsorbent of phosphate from aqueous solutions owing to its unique porous structures and the greater Lewis basicity of the α-FeOOH.

  2. Actinides and rare earths complexation with adenosine phosphate nucleotides

    International Nuclear Information System (INIS)

    Mostapha, Sarah

    2013-01-01

    demonstrated that the dominant interaction is between the cations and the phosphate groups of the ligands. Complexes with monophosphate ligands (AMP-Lu, Lu-Th-AEP and AMP) show similar organizations with bridging phosphates indicating that the organic part does not have a significant effect on their structure. ADP and ATP solid state complexes (with two spheroid metal ions: Lu and Th) show several similarities in terms of local environment indicating that the occurrence of a third phosphate group has no significant effect on the local organization of the complex. However, despite the theoretical approaches that have been conducted, the right structure of these complexes has not been accurately determined. Complexes of lanthanides and actinide(III) (Am) with ATP behave similarly at macroscopic level suggesting an identical structure at the molecular level for these complexes. With uranyl, U-AMP complex synthesized at acidic pH show different behaviour at molecular level than that observed at alkaline pH but the same coordination sites (phosphates and hydroxyls ribose groups) have been demonstrated for both complexes. (author) [fr

  3. Novel denture-cleaning system based on hydroxyl radical disinfection.

    Science.gov (United States)

    Kanno, Taro; Nakamura, Keisuke; Ikai, Hiroyo; Hayashi, Eisei; Shirato, Midori; Mokudai, Takayuki; Iwasawa, Atsuo; Niwano, Yoshimi; Kohno, Masahiro; Sasaki, Keiichi

    2012-01-01

    The purpose of this study was to evaluate a new denture-cleaning device using hydroxyl radicals generated from photolysis of hydrogen peroxide (H2O2). Electron spin resonance analysis demonstrated that the yield of hydroxyl radicals increased with the concentration of H2O2 and light irradiation time. Staphylococcus aureus, Pseudomonas aeruginosa, and methicillin-resistant S aureus were killed within 10 minutes with a > 5-log reduction when treated with photolysis of 500 mM H2O2; Candida albicans was killed within 30 minutes with a > 4-log reduction with photolysis of 1,000 mM H2O2. The clinical test demonstrated that the device could effectively reduce microorganisms in denture plaque by approximately 7-log order within 20 minutes.

  4. Determination of the pKa value of the hydroxyl group in the alpha-hydroxycarboxylates citrate, malate and lactate by 13C NMR: implications for metal coordination in biological systems.

    Science.gov (United States)

    Silva, Andre M N; Kong, XiaoLe; Hider, Robert C

    2009-10-01

    Citric acid is an important metal chelator of biological relevance. Citric acid helps solubilizing metals, increasing their bioavailability for plants and microbes and it is also thought to be a constituent of both the extracellular and cytoplasmic low molecular iron pools occurring in plants and vertebrates. Metal coordination by citric acid involves coordination both by the carboxylate and hydroxyl groups, of particular interest is its alpha-hydroxycarboxylate function. This structural feature is highly conserved in siderophores produced by evolutionarily distant species and seems to confer specificity toward Fe(III) binding. In order to understand the mechanism of metal coordination by alpha-hydroxycarboxylates and correctly evaluate the respective complex stability constants, it is essential to improve the knowledge about the ionisation of the alcohol group in these compounds. We have evaluated the hydroxyl pKa value of citric, malic and lactic acids with the objective of understanding the influence of alpha-carbon substitution. Studies at high pH values, utilizing (13)C NMR, permitted estimation of the pKa values for the three acids. The pKa (alcohol) values (14.4 for citric acid, 14.5 for malic acid, and 15.1 for lactic acid) are considerably higher than the previously reported value for citric acid (11.6) but still lower than the value of 15.5 for methanol. A comparative analysis of the three compounds indicates that different substitutions on the alpha-carbon introduce changes to the inductive effect experienced by the hydroxyl group thereby modulating its ionisation behaviour. Comparison with the siderophore rhizoferrin, which pKa (alcohol) values were confirmed to be 10 and 11.3, suggests that intra-molecular hydrogen bonding may also aid in the hydroxyl ionisation by stabilizing the resulting anion. Studies of metal coordination by alpha-hydroxycarboxylates should take these factors into account.

  5. Organic acids production by rhizosphere microorganisms isolated from a Typic Melanudands and its effects on the inorganic phosphates solubilization

    Directory of Open Access Journals (Sweden)

    Eduardo José Serna Posso

    2017-04-01

    Full Text Available It has been established that organic acid secretion by rhizosphere microorganisms is one of the mechanisms to solubilize the phosphorus (P attached to insoluble mineral compounds in soil. This action is an important biotechnological alternative, especially in those soils where high fixation of this nutrient occurs, a very common situation in the tropics. This research evaluated the ability performed by five bacterial and five fungal isolates from Typic Melanudands soil to produce organic acids and generate available phosphorus from insoluble P sources. Given these concerns, the selected microorganisms were replicated for 7 days in liquid medium Pikovskaya (PVK modified sources tricalcium phosphate (P-Ca, aluminum phosphate (P-Al and iron phosphate (P-Fe. The results indicated that phosphorus availability in the media, correlates positively with the organic acids production in each of the sources used (P-Ca (0.63, P-Al (0.67 and P-Fe (0.63. In turn, the chemical processes linked to the phosphates solubilization (e.g., Ca availability affected the development of the microorganisms tested. Both, fungi and bacteria varied in their ability production and type of metabolized organic acids, the most frequent were as follows: citric and gluconic acid.

  6. Occurrence of uranium in the itabiritic iron ore of Morro Agudo on the NE border of the iron Quadrangle/Minas Gerais, Brasilien

    International Nuclear Information System (INIS)

    Guba, I.

    1982-01-01

    The precambrian itabirites and hematite ores of the Morro Agudo iron ore mine on the NE border of the Quadrilatero Ferrifero in Minas Gerais/Brazil contain uranium-bearing minerals and rare-earth elements. In association with phosphates they occupy planes of joints, fractures and cleavage in the area of amphibolitic schist which is intercalated in the s 1 -planes of the itabirites and hematite ores. Preliminary analyses of the uranium-bearing minerals were made by energy dispersive X-ray spectrometry and electron microscopy. The results are presented in connection with the lithologic and tectonic features of the Morro Agudo mine. (orig.) [de

  7. Synthesis and characterization of ferrous phosphate (vivianite) and its behavior in aqueous media

    International Nuclear Information System (INIS)

    Diaz F, J.C.

    2003-01-01

    The synthesis and characterization of materials that can be useful in Environmental Chemistry is very important because their characteristics are exposed and its behavior in chemical phenomena as the sorption in aqueous media is understand to use it in the human being benefit. With the object of using, in a future, the octa hydrated ferrous phosphate (vivianite) as a potential candidate for matrix confinement in contention walls for the storage of radioactive waste of long half life, it was synthesized and it characterized physico chemically and their properties of surface of this compound were evaluated. Presently work was carried out the synthesis and structural characterization of the iron phosphate II by infrared spectroscopy with having Fourier transform, high vacuum scanning electron microscopy, X-ray diffraction, thermal gravimetric analysis, the BET multipoint surface area and Moessbauer spectroscopy; as well as, the determination between aqueous media of the isoelectric point and the density of sites of surface of the compound. The octa hydrated ferrous phosphate was obtained pure. The results indicate that the product corresponds to the prospective mineral, the vivianite. The thermal gravimetric analysis demonstrated that the ferrous phosphate is a stable salt after the lost of water. The isoelectric point is since an important parameter because allows to know the behavior of the surface of the material in aqueous systems, in this case the isoelectric point, of the octa hydrated ferrous phosphate, in distilled water is of pH 4.20 and in solution of potassium nitrate 0.5 M is of pH = 3.75. This indicates that the material has an amphoteric surface depending on the pH. On the other hand, the density of active sites of surface obtained by titrations acid-base is of 20 sites by nm 2 . (Author)

  8. Uranium Sequestration by Aluminum Phosphate Minerals in Unsaturated Soils

    International Nuclear Information System (INIS)

    Jerden, James L. Jr.

    2007-01-01

    A mineralogical and geochemical study of soils developed from the unmined Coles Hill uranium deposit (Virginia) was undertaken to determine how phosphorous influences the speciation of uranium in an oxidizing soil/saprolite system typical of the eastern United States. This paper presents mineralogical and geochemical results that identify and quantify the processes by which uranium has been sequestered in these soils. It was found that uranium is not leached from the saturated soil zone (saprolites) overlying the deposit due to the formation of a sparingly soluble uranyl phosphate mineral of the meta-autunite group. The concentration of uranium in the saprolites is approximately 1000 mg uranium per kg of saprolite. It was also found that a significant amount of uranium was retained in the unsaturated soil zone overlying uranium-rich saprolites. The uranium concentration in the unsaturated soils is approximately 200 mg uranium per kg of soil (20 times higher than uranium concentrations in similar soils adjacent to the deposit). Mineralogical evidence indicates that uranium in this zone is sequestered by a barium-strontium-calcium aluminum phosphate mineral of the crandallite group (gorceixite). This mineral is intimately inter-grown with iron and manganese oxides that also contain uranium. The amount of uranium associated with both the aluminum phosphates (as much as 1.4 weight percent) has been measured by electron microprobe micro-analyses and the geochemical conditions under which these minerals formed has been studied using thermodynamic reaction path modeling. The geochemical data and modeling results suggest the meta-autunite group minerals present in the saprolites overlying the deposit are unstable in the unsaturated zone soils overlying the deposit due to a decrease in soil pH (down to a pH of 4.5) at depths less than 5 meters below the surface. Mineralogical observations suggest that, once exposed to the unsaturated environment, the meta-autunite group

  9. Glutathione--hydroxyl radical interaction: a theoretical study on radical recognition process.

    Directory of Open Access Journals (Sweden)

    Béla Fiser

    Full Text Available Non-reactive, comparative (2 × 1.2 μs molecular dynamics simulations were carried out to characterize the interactions between glutathione (GSH, host molecule and hydroxyl radical (OH(•, guest molecule. From this analysis, two distinct steps were identified in the recognition process of hydroxyl radical by glutathione: catching and steering, based on the interactions between the host-guest molecules. Over 78% of all interactions are related to the catching mechanism via complex formation between anionic carboxyl groups and the OH radical, hence both terminal residues of GSH serve as recognition sites. The glycine residue has an additional role in the recognition of OH radical, namely the steering. The flexibility of the Gly residue enables the formation of further interactions of other parts of glutathione (e.g. thiol, α- and β-carbons with the lone electron pair of the hydroxyl radical. Moreover, quantum chemical calculations were carried out on selected GSH/OH(• complexes and on appropriate GSH conformers to describe the energy profile of the recognition process. The relative enthalpy and the free energy changes of the radical recognition of the strongest complexes varied from -42.4 to -27.8 kJ/mol and from -21.3 to 9.8 kJ/mol, respectively. These complexes, containing two or more intermolecular interactions, would be the starting configurations for the hydrogen atom migration to quench the hydroxyl radical via different reaction channels.

  10. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    OpenAIRE

    Lili Zhang; Xinxin Yu; Hongrui Hu; Yang Li; Mingzai Wu; Zhongzhu Wang; Guang Li; Zhaoqi Sun; Changle Chen

    2015-01-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4?7H2O. By adjusting reaction temperature, ?-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from ?-Fe2O3 to Fe3O4 via ?-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide ...

  11. Uranium Removal from Groundwater by Permeable Reactive Barrier with Zero-Valent Iron and Organic Carbon Mixtures: Laboratory and Field Studies

    Directory of Open Access Journals (Sweden)

    Borys Kornilovych

    2018-06-01

    Full Text Available Zhovty Vody city, located in south-central Ukraine, has long been an important center for the Ukrainian uranium and iron industries. Uranium and iron mining and processing activities during the Cold War resulted in poorly managed sources of radionuclides and heavy metals. Widespread groundwater and surface water contamination has occurred, which creates a significant risk to drinking water supplies. Hydrogeologic and geochemical conditions near large uranium mine tailings storage facility (TSF were characterized to provide data to locate, design and install a permeable reactive barrier (PRB to treat groundwater contaminated by leachate infiltrating from the TSF. The effectiveness of three different permeable reactive materials was investigated: zero-valent iron (ZVI for reduction, sorption, and precipitation of redox-sensitive oxyanions; phosphate material to transform dissolved metals to less soluble phases; and organic carbon substrates to promote bioremediation processes. Batch and column experiments with Zhovty Vody site groundwater were conducted to evaluate reactivity of the materials. Reaction rates, residence time and comparison with site-specific clean-up standards were determined. Results of the study demonstrate the effectiveness of the use of the PRB for ground water protection near uranium mine TSF. The greatest decrease was obtained using ZVI-based reactive media and the combined media of ZVI/phosphate/organic carbon combinations.

  12. Phosphate Adsorption using Modified Iron Oxide-based Sorbents in Lake Water: Kinetics, Equilibrium, and Column Tests

    Science.gov (United States)

    Adsorption behavior of Bayoxide ® E33 (E33) and three E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese (E33/Mn) and silver (E33/AgI and E33/AgII) nanoparticles. Adso...

  13. V color centers in electrolytically colored hydroxyl-doped sodium chloride crystals

    International Nuclear Information System (INIS)

    Gu Hongen; Song Cuiying; Han Li

    2006-01-01

    Hydroxyl-doped sodium chloride crystals were successfully colored electrolytically by using pointed anode and flat cathode at various temperatures and under various electric field strengths. V 2 and V 3 color centers were produced in the colored crystals. Current-time curves for the electrolytic colorations were given, and activation energy for the V 2 and V 3 color center migration was determined. Production of the V 2 and V 3 color centers and formation of current zones for the electrolytic colorations of the hydroxyl-doped sodium chloride crystals are explained

  14. Hydroxylation of the Herbicide Isoproturon by Fungi Isolated from Agricultural soil

    DEFF Research Database (Denmark)

    Rønhede, S.; Jensen, Bo; Rosendahl, Søren

    2005-01-01

    Several asco-, basidio-, and zygomycetes isolated from an agricultural field were shown to be able to hydroxylate the phenylurea herbicide isoproturon [N-(4-isopropylphenyl)-N',N'-dimethylurea] to N-(4-(2-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea and N-(4-(1-hydroxy-1-methylethyl)phenyl)-N......Several asco-, basidio-, and zygomycetes isolated from an agricultural field were shown to be able to hydroxylate the phenylurea herbicide isoproturon [N-(4-isopropylphenyl)-N',N'-dimethylurea] to N-(4-(2-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea and N-(4-(1-hydroxy-1-methylethyl...

  15. Performance of pineapple slips inoculated with diazotrophic phosphate-solubilizing bacteria and rock phosphate

    Directory of Open Access Journals (Sweden)

    Lílian Estrela Borges Baldotto

    2014-06-01

    Full Text Available Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i to select and characterize diazotrophs able to solubilize phosphates in vitro and (ii evaluate the initial performance of the pineapple cultivars Imperial and Pérola in response to inoculation with selected bacteria in combination with rock phosphate. The experiments were conducted at Universidade Estadual do Norte Fluminense Darcy Ribeiro, in 2009. In the treatments with bacteria the leaf contents of N, P and K were higher than those of the controls, followed by an increase in plant growth. These results indicate that the combined application of diazotrophic phosphate-solubilizing bacteria Burkholderia together with Araxá rock phosphate can be used to improve the initial performance of pineapple slips.

  16. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism.

    Science.gov (United States)

    Ezawa, Tatsuhiro; Saito, Katsuharu

    2018-04-27

    Contents Summary I. Introduction II. Foraging for phosphate III. Fine-tuning of phosphate homeostasis IV. The frontiers: phosphate translocation and export V. Conclusions and outlook Acknowledgements References SUMMARY: Arbuscular mycorrhizal fungi form symbiotic associations with most land plants and deliver mineral nutrients, in particular phosphate, to the host. Therefore, understanding the mechanisms of phosphate acquisition and delivery in the fungi is critical for full appreciation of the mutualism in this association. Here, we provide updates on physical, chemical, and biological strategies of the fungi for phosphate acquisition, including interactions with phosphate-solubilizing bacteria, and those on the regulatory mechanisms of phosphate homeostasis based on resurveys of published genome sequences and a transcriptome with reference to the latest findings in a model fungus. For the mechanisms underlying phosphate translocation and export to the host, which are major research frontiers in this field, not only recent advances but also testable hypotheses are proposed. Lastly, we briefly discuss applicability of the latest tools to gene silencing in the fungi, which will be breakthrough techniques for comprehensive understanding of the molecular basis of fungal phosphate metabolism. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  17. Formulation of single super phosphate fertilizer from rock phosphate of Hazara, Pakistan

    Directory of Open Access Journals (Sweden)

    Matiullah Khan

    2012-05-01

    Full Text Available Phosphorus deficiency is wide spread in soils of Pakistan. It is imperative to explore the potential and economics of indigenous Hazara rock phosphate for preparation of single super phosphate fertilizer. For the subject study rock phosphate was collected from Hazara area ground at 160 mesh level with 26% total P2O5 content for manual preparation of single super phosphate fertilizer. The rock phosphate was treated with various concentrations of sulfuric acid (98.9%, diluted or pure in the field. The treatments comprised of 20 and 35% pure acid and diluted with acid-water ratios of 1:5, 1:2, 1:1 and 2:1 v/v for acidulation at the rate of 60 liters 100 kg-1 rock phosphate. The amount was prior calculated in the laboratory for complete wetting of rock phosphate. A quantity of 150 kg rock phosphate was taken as treatment. The respective amount of acid was applied with the spray pump of stainless steel or poured with bucket. After proper processing, chemical analysis of the products showed a range of available P2O5 content from 9.56 to 19.24% depending upon the amount of acid and its dilution. The results reveal at that 1:1 dilutions gave the highest P2O5 content (19.24%, lowest free acid (6 % and 32% weight increase. The application of acid beyond or below this combination either pure or diluted gave hygroscopic product and higher free acids. The cost incurred upon the manual processing was almost half the prevailing rates in the market. These results lead to conclude that application of sulfuric acid at the rate of 60 liters 100 kg-1 with the dilution of 50% (v/v can yield better kind of SSP from Hazara rock phosphate at lower prices.

  18. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.

    2014-01-01

    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...... to that continuing on Earth – although on much smaller length- and timescales – with melting of the metal and silicates; differentiation into core, mantle, and crust; and probably extensive volcanism. Iron and stony-iron meteorites are our only available analogues to materials found in the deep interiors of Earth...

  19. Novel Applications for Oxalate-Phosphate-Amine Metal-Organic-Frameworks (OPA-MOFs): Can an Iron-Based OPA-MOF Be Used as Slow-Release Fertilizer?

    Science.gov (United States)

    Anstoetz, Manuela; Rose, Terry J.; Clark, Malcolm W.; Yee, Lachlan H.; Raymond, Carolyn A.; Vancov, Tony

    2015-01-01

    A porous iron-based oxalate-phosphate-amine metal-organic framework material (OPA-MOF) was investigated as a microbially-induced slow-release nitrogen (N) and phosphorus (P) fertilizer. Seedling growth, grain yields, nutrient uptake of wheat plants, and soil dynamics in incubated soil, were investigated using OPA-MOF vs standard P (triple-superphosphate) and N (urea) fertilizers in an acidic Ferralsol at two application rates (equivalent 120 and 40 kg N ha-1). While urea hydrolysis in the OPA-MOF treatment was rapid, conversion of ammonium to nitrate was significantly inhibited compared to urea treatment. Reduced wheat growth in OPA-MOF treatments was not caused by N-deficiency, but by limited P-bioavailability. Two likely reasons were slow P-mobilisation from the OPA-MOF or rapid P-binding in the acid soil. P-uptake and yield in OPA-MOF treatments were significantly higher than in nil-P controls, but significantly lower than in conventionally-fertilised plants. OPA-MOF showed potential as enhanced efficiency N fertilizer. However, as P-bioavailability was insufficient to meet plant demands, further work should determine if P-availability may be enhanced in alkaline soils, or whether central ions other than Fe, forming the inorganic metal-P framework in the MOF, may act as a more effective P-source in acid soils. PMID:26633174

  20. Influence of attrition variables on iron ore flotation

    Directory of Open Access Journals (Sweden)

    Fabiana Fonseca Fortes

    Full Text Available Abstract The presence of slimes is harmful to the flotation process: the performance and consumption of reagents are negatively affected. Traditionally, the desliming stage has been responsible for removing slimes. However, depending on the porosity of the mineral particles, desliming may not be sufficient to maximize the concentration results. An attrition process before the desliming operation can improve the removal of slime, especially when slimes cover the surface and/or are confined to the cavities/pores of the mineral particles. Attrition is present in the flowcharts of the beneficiation process of phosphate and industrial sand (silica sand. Research has been undertaken for its application to produce pre-concentrates of zircon and iron ore. However, there is still little knowledge of the influence of the attrition variables on the beneficiation process of iron ore. This study presents a factorial design and analysis of the effects of these variables on the reverse flotation of iron ore. The standard of the experimental procedures for all tests included the attrition of pulp, under the conditions of dispersion, desliming and flotation. The parameter analysed (variable response was the metallurgical recovery in reverse flotation tests. The planning and analysis of the full factorial experiment indicated that with 95% reliability, the rotation speed of the attrition cell impeller was the main variable in the attrition process of the iron ore. The percentage of solid variables in the pulp and the time of the attrition, as well as their interactions, were not indicated to be significant.

  1. Integrated assessment of the phosphate industry

    International Nuclear Information System (INIS)

    Ryan, M.T.; Cotter, S.J.

    1980-05-01

    The phosphate industry in the United States includes three major activities, namely, mining and milling of phosphate rock, phosphate product manufacture, and phosphate product use. Phosphatic materials contain uranium, thorium, and their decay products in greater than background amounts. This assessment of the radiological impacts associated with the redistribution of radioactive components of phosphate materials may provide insight into the effects of uranium extraction from phosphate materials for use in the nuclear fuel cycle

  2. Role of Phosphate Transport System Component PstB1 in Phosphate Internalization by Nostoc punctiforme.

    Science.gov (United States)

    Hudek, L; Premachandra, D; Webster, W A J; Bräu, L

    2016-11-01

    In bacteria, limited phosphate availability promotes the synthesis of active uptake systems, such as the Pst phosphate transport system. To understand the mechanisms that facilitate phosphate accumulation in the cyanobacterium Nostoc punctiforme, phosphate transport systems were identified, revealing a redundancy of Pst phosphate uptake systems that exists across three distinct operons. Four separate PstB system components were identified. pstB1 was determined to be a suitable target for creating phenotypic mutations that could result in the accumulation of excessive levels of phosphate through its overexpression or in a reduction of the capacity to accumulate phosphate through its deletion. Using quantitative real-time PCR (qPCR), it was determined that pstB1 mRNA levels increased significantly over 64 h in cells cultured in 0 mM added phosphate and decreased significantly in cells exposed to high (12.8 mM) phosphate concentrations compared to the level in cells cultured under normal (0.8 mM) conditions. Possible compensation for the loss of PstB1 was observed when pstB2, pstB3, and pstB4 mRNA levels increased, particularly in cells starved of phosphate. The overexpression of pstB1 increased phosphate uptake by N. punctiforme and was shown to functionally complement the loss of PstB in E. coli PstB knockout (PstB - ) mutants. The knockout of pstB1 in N. punctiforme did not have a significant effect on cellular phosphate accumulation or growth for the most part, which is attributed to the compensation for the loss of PstB1 by alterations in the pstB2, pstB3, and pstB4 mRNA levels. This study provides novel in vivo evidence that PstB1 plays a functional role in phosphate uptake in N. punctiforme IMPORTANCE: Cyanobacteria have been evolving over 3.5 billion years and have become highly adept at growing under limiting nutrient levels. Phosphate is crucial for the survival and prosperity of all organisms. In bacteria, limited phosphate availability promotes the

  3. Synergistic effect of PANI-ZrO2 composite as antibacterial, anti-corrosion, and phosphate adsorbent material: synthesis, characterization and applications.

    Science.gov (United States)

    Masim, Frances Camille P; Tsai, Cheng-Hsien; Lin, Yi-Feng; Fu, Ming-Lai; Liu, Minghua; Kang, Fei; Wang, Ya-Fen

    2017-11-03

    The increasing number of bacteria-related problems and presence of trace amounts of phosphate in treated wastewater effluents have become a growing concern in environmental research. The use of antibacterial agents and phosphate adsorbents for the treatment of wastewater effluents is of great importance. In this study, the potential applications of a synthesized polyaniline (PANI)-zirconium dioxide (ZrO 2 ) composite as an antibacterial, phosphate adsorbent and anti-corrosion material were systematically investigated. The results of an antibacterial test reveal an effective area of inhibition of 14 and 18 mm for the Escherichia coli and Staphylococcus aureus bacterial strains, respectively. The antibacterial efficiency of the PANI-ZrO 2 composite is twice that of commercial ZrO 2 . In particular, the introduction of PANI increased the specific surface area and roughness of the composite material, which was beneficial to increase the contact area with bacterial and phosphate. The experimental results demonstrated that phosphate adsorption studies using 200 mg P/L phosphate solution showed a significant phosphate removal efficiency of 64.4%, and the maximum adsorption capacity of phosphate on the solid surface of PANI-ZrO 2 is 32.4 mg P/g. Furthermore, PANI-ZrO 2 coated on iron substrate was tested for anti-corrosion studies by a natural salt spray test (7.5% NaCl), which resulted in the formation of no rust. To the best of our knowledge, no works have been reported on the synergistic effects of the PANI-ZrO 2 composite as an antibacterial, anti-corrosion, and phosphate adsorbent material. PANI-ZrO 2 composite is expected to be a promising comprehensive treatment method for water filters in the aquaculture industry and for use in water purification applications.

  4. Modeling the thermostability of surface functionalisation by oxygen, hydroxyl, and water on nanodiamonds.

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S

    2011-06-01

    Understanding nanodiamond functionalisation is of great importance for biological and medical applications. Here we examine the stabilities of oxygen, hydroxyl, and water functionalisation of the nanodiamonds using the self-consistent charge density functional tight-binding simulations. We find that the oxygen and hydroxyl termination are thermodynamically favourable and form strong C–O covalent bonds on the nanodiamond surface in an O2 and H2 gas reservoir, which confirms previous experiments. Yet, the thermodynamic stabilities of oxygen and hydroxyl functionalisation decrease dramatically in a water vapour reservoir. In contrast, H2O molecules are found to be physically adsorbed on the nanodiamond surface, and forced chemical adsorption results in decomposition of H2O. Moreover, the functionalisation efficiency is found to be facet dependent. The oxygen functionalisation prefers the {100} facets as opposed to alternative facets in an O2 and H2 gas reservoir. The hydroxyl functionalisation favors the {111} surfaces in an O2 and H2 reservoir and the {100} facets in a water vapour reservoir, respectively. This facet selectivity is found to be largely dependent upon the environmental temperature, chemical reservoir, and morphology of the nanodiamonds.

  5. Electrolytic coloration and spectral properties of hydroxyl-doped potassium chloride single crystals

    International Nuclear Information System (INIS)

    Gu Hongen; Wu Yanru

    2011-01-01

    Hydroxyl-doped potassium chloride single crystals are colored electrolytically at various temperatures and voltages using a pointed cathode and a flat anode. Characteristic OH - spectral band is observed in the absorption spectrum of uncolored single crystal. Characteristic O - , OH - , U, V 2 , V 3 , O 2- -V a + , F, R 2 and M spectral bands are observed simultaneously in absorption spectra of colored single crystals. Current-time curve for electrolytic coloration of hydroxyl-doped potassium chloride single crystal and its relationship with electrolytic coloration process are given. Production and conversion of color centers are explained. - Highlights: → Expanded the traditional electrolysis method. → Hydroxyl-doped potassium chloride crystals were colored electrolytically for the first time. → Useful V, F and F-aggregate color centers were produced in colored crystals. → V color centers were produced directly and F and F-aggregate color centers indirectly.

  6. Effects of education on low-phosphate diet and phosphate binder intake to control serum phosphate among maintenance hemodialysis patients: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Eunsoo Lim

    2018-03-01

    Full Text Available Background : For phosphate control, patient education is essential due to the limited clearance of phosphate by dialysis. However, well-designed randomized controlled trials about dietary and phosphate binder education have been scarce. Methods : We enrolled maintenance hemodialysis patients and randomized them into an education group (n = 48 or a control group (n = 22. We assessed the patients' drug compliance and their knowledge about the phosphate binder using a questionnaire. Results : The primary goal was to increase the number of patients who reached a calcium-phosphorus product of lower than 55. In the education group, 36 (75.0% patients achieved the primary goal, as compared with 16 (72.7% in the control group (P = 0.430. The education increased the proportion of patients who properly took the phosphate binder (22.9% vs. 3.5%, P = 0.087, but not to statistical significance. Education did not affect the amount of dietary phosphate intake per body weight (education vs. control: -1.18 ± 3.54 vs. -0.88 ± 2.04 mg/kg, P = 0.851. However, the dietary phosphate-to-protein ratio tended to be lower in the education group (-0.64 ± 2.04 vs. 0.65 ± 3.55, P = 0.193. The education on phosphate restriction affected neither the Patient-Generated Subjective Global Assessment score (0.17 ± 4.58 vs. -0.86 ± 3.86, P = 0.363 nor the level of dietary protein intake (-0.03 ± 0.33 vs. -0.09 ± 0.18, P = 0.569. Conclusion : Education did not affect the calcium-phosphate product. Education on the proper timing of phosphate binder intake and the dietary phosphate-to-protein ratio showed marginal efficacy.

  7. Application of Moessbauer spectroscopy to the study of tannins inhibition of iron and steel corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Jaen, Juan A., E-mail: jjaen@ancon.up.ac.pa [Universidad de Panama, CITEN, Depto. de Quimica Fisica (Panama); Obaldia, J. De; Rodriguez, M. V. [Universidad de Panama, Escuela de Quimica, Facultad de Ciencias Naturales, Exactas y Tecnologia (Panama)

    2011-11-15

    The inhibitory effect of tannins was investigated using, among others, potentiodynamic polarizations and Moessbauer spectroscopy. These techniques confirmed that the nature, pH and concentration of tannic solution are of upmost importance in the inhibitory properties of the solutions. It is observed that at low tannin concentration or pH, both, hydrolizable and condensed tannins, effectively inhibit iron corrosion, due to the redox properties of tannins. At pH Almost-Equal-To 0, Moessbauer spectra of the frozen aqueous solutions of iron(III) with the tannin solutions showed that iron is in the form of a monomeric species [Fe(H{sub 2}O){sub 6}]{sup 3 + }, without coordination with the functional hydroxyl groups of the tannins. The suspended material consisted of amorphous ferric oxide and oxyhydroxides, though with quebracho tannin partly resulted in complex formation and in an iron (II) species from a redox process. Other tannins, such as chestnut hydrolysable tannins, do not complex iron at this low pH. Tannins react at high concentrations or pH (3 and 5) to form insoluble blue-black amorphous complexes of mono-and bis-type tannate complexes, with a relative amount of the bis-ferric tannate generally increasing with pH. Some Fe{sup 2 + } in the form of hydrated polymeric ferrous tannate could be obtained. At pH 7, a partially hydrolyzed ferric tannate complex was also formed. The latter two phases do not provide corrosion protection. Tannin solutions at natural pH react with electrodeposited iron films (approx. 6 {mu}m) to obtain products consisting only on the catecholate mono-complex of ferric tannate. Some aspects of the mechanism of tannins protection against corrosion are discussed.

  8. FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1.

    Directory of Open Access Journals (Sweden)

    Carsten C Scholz

    2016-01-01

    Full Text Available The asparagine hydroxylase, factor inhibiting HIF (FIH, confers oxygen-dependence upon the hypoxia-inducible factor (HIF, a master regulator of the cellular adaptive response to hypoxia. Studies investigating whether asparagine hydroxylation is a general regulatory oxygen-dependent modification have identified multiple non-HIF targets for FIH. However, the functional consequences of this outside of the HIF pathway remain unclear. Here, we demonstrate that the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1 is a substrate for hydroxylation by FIH on N22. Mutation of N22 leads to a profound change in the interaction of OTUB1 with proteins important in cellular metabolism. Furthermore, in cultured cells, overexpression of N22A mutant OTUB1 impairs cellular metabolic processes when compared to wild type. Based on these data, we hypothesize that OTUB1 is a target for functional hydroxylation by FIH. Additionally, we propose that our results provide new insight into the regulation of cellular energy metabolism during hypoxic stress and the potential for targeting hydroxylases for therapeutic benefit.

  9. - Hydroxylated Anthraquinones Produced by Geosmithia species

    Czech Academy of Sciences Publication Activity Database

    Stodůlková, Eva; Kolařík, Miroslav; Křesinová, Zdena; Kuzma, Marek; Šulc, Miroslav; Man, Petr; Novák, Petr; Maršík, Petr; Landa, Přemysl; Olšovská, Jana; Chudíčková, Milada; Pažoutová, Sylvie; Černý, J.; Bella, J.; Flieger, Miroslav

    2009-01-01

    Roč. 54, č. 3 (2009), s. 179-187 ISSN 0015-5632 R&D Projects: GA AV ČR KAN200200651; GA MŠk LC07017; GA MŠk 1M0506; GA ČR GP203/05/P575 Grant - others:CZ(CZ) 205/2004 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50380511 Keywords : hydroxylated anthraquinones * staphylococcus aureus * mammalian cell lines Subject RIV: EE - Microbiology, Virology Impact factor: 0.978, year: 2009

  10. Hydrotreating of compounds and mixtures of compounds having mercapto and hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Viljava, T.R.; Krause, A.O.I. [Helsinki University of Technology, Espoo (Finland)

    1997-07-01

    Simultaneous hydrodesulfurization (HDS) and hydrodeoxygenation (HDO) of mercapto and hydroxyl group containing benzenes was studied using a commercial presulfided CoMo/{gamma}- Al{sub 2}O{sub 3} catalyst under hydrotreating conditions (150-280 deg C, 7 MPa). Mercaptobenzene, phenol and 4-mercaptophenol were used as model compounds, and CS{sub 2} was used as precursor for H{sub 2}S. The HDS rate of a mercapto group in the presence of a hydroxyl substituent in the para position was higher than that for the molecule containing only a mercapto group. When the hydroxyl group was present as phenol, the HDS rate of the mercapto group was about 30% lower than that for mercaptobenzene without an oxygen-containing additive. The decrease in the HDS rate was independent of the initial molar ratio of sulfur and oxygen within the ratios studied (5:1-1:1). The HDO rate of a hydroxyl group was suppressed by the mercapto group present either in the same or in a separate molecule. HDO reactions did not start until HDS conversion was almost complete. CS{sub 2} also decreased the HDO rate of phenol. When compared to the reactions of phenol alone, the rate of the hydrogenolysis route to benzene was decreased in the presence of a sulfur additive more than the hydrogenolysis- hydrogenation route to cyclohexane. 19 refs.

  11. Chemical stabilisation of lead in shooting range soils with phosphate and magnesium oxide: Synchrotron investigation

    International Nuclear Information System (INIS)

    Sanderson, Peter; Naidu, Ravi; Bolan, Nanthi; Lim, Jung Eun; Ok, Yong Sik

    2015-01-01

    Highlights: • Quantitative speciation of Pb by XAS as a result of Phosphate and MgO treatment revealed Pb converted to pyromorphite was limited. • Subsequent MgO addition increased pyromorphite formation. • Pb was precipitated on the surface of MgO as PbO. • Bioaccessibility of Pb decreased with P treatments, but not with MgO only. - Abstract: Three Australian shooting range soils were treated with phosphate and magnesium oxide, or a combination of both to chemically stabilize Pb. Lead speciation was determined after 1 month ageing by X-ray absorption spectroscopy combined with linear combination fitting in control and treated soils. The predominant Pb species in untreated soils were iron oxide bound Pb, humic acid bound Pb and the mineral litharge. Treatment with phosphate resulted in substantial pyromorphite formation in two of the soils (TV and PE), accounting for up to 38% of Pb species present, despite the addition of excess phosphate. In MgO treated soils only, up to 43% of Pb was associated with MgO. Litharge and Pb hydroxide also formed as a result of MgO addition in the soils. Application of MgO after P treatment increased hydroxypyromorphite/pyromorphite formation relative to soils teated with phosphate only. X-ray diffraction and Scanning electron microscopy revealed PbO precipitate on the surface of MgO. Soil pH, (5.3–9.3) was an important parameter, as was the solubility of existing Pb species. The use of direct means of determination of the stabilisation of metals such as by X-ray absorption spectroscopy is desirable, particularly in relation to understanding long term stability of the immobilised contaminants.

  12. Chemical stabilisation of lead in shooting range soils with phosphate and magnesium oxide: Synchrotron investigation

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, Peter [Centre for Environmental Risk Assessment and Remediation and CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of South Australia, University Parade, 5095 Mawson Lakes (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [Centre for Environmental Risk Assessment and Remediation and CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of South Australia, University Parade, 5095 Mawson Lakes (Australia); Bolan, Nanthi [Centre for Environmental Risk Assessment and Remediation and CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of South Australia, University Parade, 5095 Mawson Lakes (Australia); Lim, Jung Eun; Ok, Yong Sik [Korea Biochar Research Center & Department of Biological Environment, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2015-12-15

    Highlights: • Quantitative speciation of Pb by XAS as a result of Phosphate and MgO treatment revealed Pb converted to pyromorphite was limited. • Subsequent MgO addition increased pyromorphite formation. • Pb was precipitated on the surface of MgO as PbO. • Bioaccessibility of Pb decreased with P treatments, but not with MgO only. - Abstract: Three Australian shooting range soils were treated with phosphate and magnesium oxide, or a combination of both to chemically stabilize Pb. Lead speciation was determined after 1 month ageing by X-ray absorption spectroscopy combined with linear combination fitting in control and treated soils. The predominant Pb species in untreated soils were iron oxide bound Pb, humic acid bound Pb and the mineral litharge. Treatment with phosphate resulted in substantial pyromorphite formation in two of the soils (TV and PE), accounting for up to 38% of Pb species present, despite the addition of excess phosphate. In MgO treated soils only, up to 43% of Pb was associated with MgO. Litharge and Pb hydroxide also formed as a result of MgO addition in the soils. Application of MgO after P treatment increased hydroxypyromorphite/pyromorphite formation relative to soils teated with phosphate only. X-ray diffraction and Scanning electron microscopy revealed PbO precipitate on the surface of MgO. Soil pH, (5.3–9.3) was an important parameter, as was the solubility of existing Pb species. The use of direct means of determination of the stabilisation of metals such as by X-ray absorption spectroscopy is desirable, particularly in relation to understanding long term stability of the immobilised contaminants.

  13. Phosphate removal and recovery from water using nanocomposite of immobilized magnetite nanoparticles on cationic polymer.

    Science.gov (United States)

    Abo Markeb, Ahmad; Alonso, Amanda; Dorado, Antonio David; Sánchez, Antoni; Font, Xavier

    2016-08-01

    A novel nanocomposite (NC) based on magnetite nanoparticles (Fe3O4-NPs) immobilized on the surface of a cationic exchange polymer, C100, using a modification of the co-precipitation method was developed to obtain magnetic NCs for phosphate removal and recovery from water. High-resolution transmission electron microscopy-energy-dispersive spectroscopy, scanning electron microscopy , X-ray diffraction, and inductively coupled plasma optical emission spectrometry were used to characterize the NCs. Continuous adsorption process by the so-called breakthrough curves was used to determine the adsorption capacity of the Fe3O4-based NC. The adsorption capacity conditions were studied under different conditions (pH, phosphate concentration, and concentration of nanoparticles). The optimum concentration of iron in the NC for phosphate removal was 23.59 mgFe/gNC. The sorption isotherms of this material were performed at pH 5 and 7. Taking into account the real application of this novel material in real water, the experiments were performed at pH 7, achieving an adsorption capacity higher than 4.9 mgPO4-P/gNC. Moreover, Freundlich, Langmuir, and a combination of them fit the experimental data and were used for interpreting the influence of pH on the sorption and the adsorption mechanism for this novel material. Furthermore, regeneration and reusability of the NC were tested, obtaining 97.5% recovery of phosphate for the first cycle, and at least seven cycles of adsorption-desorption were carried out with more than 40% of recovery. Thus, this work described a novel magnetic nanoadsorbent with properties for phosphate recovery in wastewater.

  14. Comparison of 2-Octanol and Tributyl Phosphate in Recovery of Tungsten from Sulfuric-Phosphoric Acid Leach Solution of Scheelite

    Science.gov (United States)

    Liao, Yulong; Zhao, Zhongwei

    2018-04-01

    Tungsten was recovered from sulfuric-phosphoric acid leach solution of scheelite using 2-octanol and tributyl phosphate (TBP). Approximately 76% of the tungsten and less than 6.2% of the iron were extracted when using 70% 2-octanol, showing good selectivity for tungsten over iron; the tungsten extraction could not be significantly enhanced using a three-stage countercurrent simulation test. Moreover, more than 99.2% of the W and 91.0% of the Fe were extracted when using 70% TBP, showing poor selectivity, but after pretreating the leach solution with iron powder, less than 5.5% of the Fe was extracted. The loaded phases were stripped using deionized water and ammonia solution. The maximum stripping rate of tungsten from loaded 2-octanol was 45.6% when using water, compared with only 13.1% from loaded TBP. Tungsten was efficiently stripped from loaded phases using ammonia solution without formation of Fe(OH)3 precipitate. Finally, a flow sheet for recovery of tungsten with TBP is proposed.

  15. Removing organic contaminants with bifunctional iron modified rectorite as efficient adsorbent and visible light photo-Fenton catalyst

    International Nuclear Information System (INIS)

    Zhao, Xiaorong; Zhu, Lihua; Zhang, Yingying; Yan, Jingchun; Lu, Xiaohua; Huang, Yingping; Tang, Heqing

    2012-01-01

    Highlights: ► Rectorite was modified by ultrasonic-assisted ion-exchange and hydrolysis. ► The pillaring increased the layer-to-layer spacing of rectorite. ► The iron-modified rectorite was found to be an excellent adsorbent. ► The iron-modified rectorite showed good visible light photocatalytic ability. ► FeR was highly chemically stable with a wide operating range of pH. - Abstract: Iron-modified rectorite (FeR) was prepared as both adsorbent and catalyst. The iron modification increased layer-to-layer spacing and surface area of rectorite, leading to much increased adsorption of Rhodamine B (RhB) on rectorite. The maximum adsorption capacity of RhB on FeR reached 101 mg g −1 at pH 4.5, being 11 folds of that on the unmodified one. The iron modification also enabled rectorite to have efficient visible light photocatalytic ability. The apparent rate constant for the degradation of RhB (80 μM) at 298 K and pH 4.5 in the presence of H 2 O 2 (6.0 mM) and FeR (0.4 g L −1 ) was evaluated to be 0.0413 min −1 under visible light and 0.122 min −1 under sunlight, respectively. The analysis with electron spin resonance spin-trapping technique supported that the iron modified rectorite effectively catalyzed the decomposition of H 2 O 2 into hydroxyl radicals. On the basis of the characterization and analysis, the new bifunctional material was well clarified as both adsorbent and photocatalyst in the removing of organic pollutants.

  16. Hemodialysis for near-fatal sodium phosphate toxicity in a child receiving sodium phosphate enemas.

    Science.gov (United States)

    Becknell, Brian; Smoyer, William E; O'Brien, Nicole F

    2014-11-01

    This study aimed to demonstrate the importance of considering hemodialysis as a treatment option in the management of sodium phosphate toxicity. This is a case report of a 4-year-old who presented to the emergency department with shock, decreased mental status, seizures, and tetany due to sodium phosphate toxicity from sodium phosphate enemas. Traditional management of hyperphosphatemia with aggressive hydration and diuretics was insufficient to reverse the hemodynamic and neurological abnormalities in this child. This is the first report of the use of hemodialysis in a child without preexisting renal failure for the successful management of near-fatal sodium phosphate toxicity. Hemodialysis can safely be used as an adjunctive therapy in sodium phosphate toxicity to rapidly reduce serum phosphate levels and increase serum calcium levels in children not responding to conventional management.

  17. In-situ high temperature XRD of calcium phosphate biomaterial using DEHPA as the starting material

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Masliana Muslim

    2009-01-01

    A process to produce calcium phosphate biomaterial was done using an organic based phosphoric acid (DEHPA) as its starting material. The gel obtained from this reaction was used to study calcium phosphate transformation using in-situ XRD with temperature ranges from room temperature to 1300 degree C. The results obtained from this analysis show the following phase transformation: Gel β-Ca 2 P 2 O 7 β-TCP + HA α-TCP + HA, β-Ca 2 P 2 O 7 forms at 400 degree C and as we heat the sample at 1000 degree C peaks belonging to β- TCP and HA appears showing the transformation of the β-Ca 2 P 2 O 7 phase. When the sample is heated up further to 1200 degree C, β-TCP is transform into α-TCP. In the cold in-situ study, XRD analysis was performed on the sample from room temperature to -140 degree C. At room the XRD diffractogram shows the sample as an amorphous material and as the temperature was further lowered sharp peaks begins to form indicating that the material had becomes crystalline. The peaks were identified to be that calcium hydrogen phosphate (Ca(H 2 PO 4 ) 2 ) and this indicates that there is no hydroxyl group removal during the cooling process. The relative crystallinity values obtained for the different cooling temperatures show a slow exponential increase on the initial cooling of 0 to -100 degree C and at further cooling temperatures resulted fast and linear process. Also unlike the in-situ XRD analysis performs at high temperature no phase transformation occurred at this low temperature. (Author)

  18. Apoptosis of THP-1 derived macrophages induced by sonodynamic therapy using a new sonosensitizer hydroxyl acetylated curcumin.

    Directory of Open Access Journals (Sweden)

    Longbin Zheng

    Full Text Available Curcumin is extracted from the rhizomes of the traditional Chinese herb Curcuma longa. Our previous study indicated curcumin was able to function as a sonosensitizer. Hydroxyl acylated curcumin was synthesized from curcumin to eliminate the unstable hydroxy perssad in our group. The potential use of Hydroxyl acylated curcumin as a sonosensitizer for sonodynamic therapy (SDT requires further exploration. This study investigated the sonodynamic effect of Hydroxyl acylated curcumin on THP-1 macrophage. THP-1 macrophages were cultured with Hydroxyl acylated curcumin at a concentration of 5.0 μg/mL for 4 hours and then exposed to pulse ultrasound irradiation (0.5 W/cm2 with 1.0 MHz for 5 min, 10 min and 15 min. Six hours later, cell viability decreased significantly by CCK-8 assay. After ultrasound irradiation, the ratio of apoptosis and necrosis in SDT group was higher than that in control, Hydroxyl acylated curcumin alone and ultrasound alone. Moreover, the apoptotic rate was higher than necrotic rate with the flow cytometry analysis. Furthermore, Hydroxyl acylated curcumin-SDT induced reactive oxygen species (ROS generation in THP-1 macrophages immediately after the ultrasound treatment while ROS generation was reduced significantly with the scavenger of singlet oxygen Sodium azide (NaN3. Hydroxyl acylated curcumin-SDT led to a conspicuous loss of mitochondrial membrane potential (MMP compared with other groups, while MMP was increased significantly with the scavenger of singlet oxygen Sodium azide (NaN3, ROS inhibitor N-acetyl cysteine (NAC and Mitochondrial Permeability Transition Pore (MPTP inhibitor Cyclosporin A (CsA. The cytochrome C, cleaved-Caspase-9, cleaved-Caspase-3 and cleaved-PARP upregulated after SDT through Western blotting. These findings suggested that Hydroxyl acylated curcumin under low-intensity ultrasound had sonodynamic effect on THP-1 macrophages via generation of intracellular singlet oxygen and mitochondria

  19. Phosphate transporter mediated lipid accumulation in Saccharomyces cerevisiae under phosphate starvation conditions.

    Science.gov (United States)

    James, Antoni W; Nachiappan, Vasanthi

    2014-01-01

    In the current study, when phosphate transporters pho88 and pho86 were knocked out they resulted in significant accumulation (84% and 43%) of triacylglycerol (TAG) during phosphate starvation. However in the presence of phosphate, TAG accumulation was only around 45% in both pho88 and pho86 mutant cells. These observations were confirmed by radio-labeling, fluorescent microscope and RT-PCR studies. The TAG synthesizing genes encoding for acyltransferases namely LRO1 and DGA1 were up regulated. This is the first report for accumulation of TAG in pho88Δ and pho86Δ cells under phosphate starvation conditions. Copyright © 2013. Published by Elsevier Ltd.

  20. Reactivity of glycyl-amino acids toward hydroxyl radical in neutral aqueous solutions

    International Nuclear Information System (INIS)

    Masuda, Takahiro; Iwashita, Naomi; Shinohara, Hiroyuki; Kondo, Masaharu

    1978-01-01

    Rate constants for reactions of hydroxyl radicals with several glycyl-amino acids were determined by a competition method using p-nitrosodimethylailine as a reference compound. For glycyl-aliphatic amino acids, the enhancement of reactivity was observed as compared with the corresponding free amino acids. The reactivity was explained qualitatively in terms of partial reactivities assigned to each C-H bond of the dipeptides. For glycyl-aromatic amino acids, the rate constants were found to be almost equal to those of the corresponding free amino acids. The reactivity of a protein toward hydroxyl radical was well understood by summation of the rate constants, corrected by steric factors, of amino acid residues located on surface of the protein. The enhanced reactivity of the aliphatic peptides was interpreted in terms of the difference in interaction energy between NH 2 - and NH 3 + -forms of an aliphatic amino acid, which was calculated for the system including glycine and hydroxyl radical according to CNDO/2 method. (auth.)

  1. Electrolytic coloration and spectral properties of hydroxyl-doped potassium bromide single crystals

    International Nuclear Information System (INIS)

    Qi, Lan; Song, Cuiying; Gu, Hongen

    2013-01-01

    Hydroxyl-doped potassium bromide single crystals are colored electrolytically at various temperatures and voltages by using a pointed cathode and a flat anode. The characteristic OH − spectral band is observed in absorption spectrum of uncolored single crystal. The characteristic O − , OH − , U, V 2 , O 2− −V a + , M L1 , F and M spectral bands are observed simultaneously in absorption spectra of colored single crystals. Current–time curve for electrolytic coloration of hydroxyl-doped potassium bromide single crystal and its relationship with electrolytic coloration processes are given. Production and conversion of color centers are explained. - Highlights: ► We expanded the traditional electrolysis method. ► Hydroxyl-doped potassium bromide crystals were colored electrolytically for the first time. ► Useful V, F and F-aggregate color centers were produced in colored crystals. ► V color centers were produced directly and F as well as F-aggregate color centers indirectly.

  2. Trimeric Hydrogen Bond in Geometrically Frustrated Hydroxyl Cobalt Halogenides

    International Nuclear Information System (INIS)

    Xiao-Dong, Liu; Masato, Hagihala; Xu-Guang, Zheng; Dong-Dong, Meng; Wan-Jun, Tao; Sen-Lin, Zhang; Qi-Xin, Guo

    2011-01-01

    The mid-infrared absorption spectra of geometrically frustrated hydroxyl cobalt halogenides Co 2 (OH) 3 Cl and Co 2 (OH) 3 Br are measured by FTIR spectrometers, and the stretching vibrational modes of hydroxyl groups are found to be 3549cm −1 and 3524cm −1 respectively. Through finding their true terminal O-H group stretching vibration frequencies, we obtain 107cm −1 and 99cm −1 red shift caused by the corresponding O-H···Cl and O-H···Br hydrogen bonds. Rarely reported trimeric hydrogen bonds (Co 3 ≡O-H) 3 ···Cl/Br are pointed out to demonstrate the relative weakness of this kind of hydrogen bond which may have a critical effect on the lattice symmetry and magnetic structures. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. 21 CFR 137.175 - Phosphated flour.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Phosphated flour. 137.175 Section 137.175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Related Products § 137.175 Phosphated flour. Phosphated flour, phosphated white flour, and phosphated...

  4. Oral administration of iron-saturated bovine lactoferrin–loaded ceramic nanocapsules for breast cancer therapy and influence on iron and calcium metabolism

    Directory of Open Access Journals (Sweden)

    Mahidhara G

    2015-06-01

    Full Text Available Ganesh Mahidhara, Rupinder K Kanwar, Kislay Roy, Jagat R Kanwar Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Molecular and Medical Research Strategic Research Centre, Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia Abstract: We determined the anticancer efficacy and internalization mechanism of our polymeric–ceramic nanoparticle system (calcium phosphate nanocores, enclosed in biodegradable polymers chitosan and alginate nanocapsules/nanocarriers [ACSC NCs] loaded with iron-saturated bovine lactoferrin (Fe-bLf in a breast cancer xenograft model. ACSC-Fe-bLf NCs with an overall size of 322±27.2 nm were synthesized. In vitro internalization and anticancer efficacy were evaluated in the MDA-MB-231 cells using multicellular tumor spheroids, CyQUANT and MTT assays. These NCs were orally delivered in a breast cancer xenograft mice model, and their internalization, cytotoxicity, biodistribution, and anticancer efficacy were evaluated. Chitosan-coated calcium phosphate Fe-bLf NCs effectively (59%, P≤0.005 internalized in a 1-hour period using clathrin-mediated endocytosis (P≤0.05 and energy-mediated pathways (P≤0.05 for internalization; 3.3 mg/mL of ACSC-Fe-bLf NCs completely disintegrated (~130-fold reduction, P≤0.0005 the tumor spheroids in 72 hours and 96 hours. The IC50 values determined for ACSC-Fe-bLf NCs were 1.69 mg/mL at 10 hours and 1.62 mg/mL after 20 hours. We found that Fe-bLf-NCs effectively (P≤0.05 decreased the tumor size (4.8-fold compared to the void NCs diet and prevented tumor recurrence when compared to intraperitoneal injection of Taxol and Doxorubicin. Receptor gene expression and micro-RNA analysis confirmed upregulation of low-density lipoprotein receptor and transferrin receptor (liver, intestine, and brain. Several micro-RNAs responsible for iron metabolism upregulated with NCs were identified. Taken together, orally delivered Fe-bLf NCs

  5. Sorption of phosphate and zinc onto hematite and magnetite as mechanism of attenuation of contamination in agricultural soils

    OpenAIRE

    Martínez Martínez, María del Rosario; Martí, Vicens; Giménez Izquierdo, Francisco Javier

    2014-01-01

    Excess of natural and synthetic fertilizers applied to agricultural soils is a well-known source of contamination of nitrates and potential source of contamination of metals (copper and zinc) and phosphates (Alloway 2010). Mineral phases such as iron oxides, are present in agricultural soils and they might play a main role in the retardation of the transport of different contaminants (Giménez et al. 2007). The present communication shows the experimental study of sorption of phosp...

  6. Studies on iron absorption and retention in malnourished Indian subjects, using Fe-59 and whole-body counting

    International Nuclear Information System (INIS)

    Gopalan, C.; Srikantia, S.G.

    1975-12-01

    The gastrointestinal absorption of iron under various conditions in representatives of the Indian population, and several related matters, have been investigated. Percentage absorption was determined by whole-body counting of 59Fe, or by measuring the concentration of 55Fe in the blood, at about two weeks after administration of the respective tracer. It was confirmed or established that: (1) food or supplemental iron, if available at all, tends to be absorbed from the intestines as if present there in one of two alternative pools: heme and non heme; (2) 30%-50% of iron measured chemically in Indian foods appears to be in an unavailable form, for example as a contaminant in adventitiously present dust; (3) fortification of the diet with iron may be feasible by adding FePO 4 + 2 molar NaHSO 4 to common salt under suitable conditions; (4) monkeys appear to be sufficiently similar to humans in their iron absorption characteristics that they may be the best available non-human model for preliminary experimental investigations of iron absorption; and (5) a promising preparative method for liquid scintillation counting of 55Fe present in blood is to extract it into toluene in the presence of di (2-ethyl-hexyl) phosphate (HDEHP)

  7. The Influence of Hydroxylated Carbon Nanotubes on Epoxy Resin Composites

    Directory of Open Access Journals (Sweden)

    Jiaoxia Zhang

    2012-01-01

    Full Text Available Hydroxylated multiwall carbon nanotubes (MWNTs/epoxy resin nanocomposites were prepared with ultrasonic dispersion and casting molding. The effect of hydroxylated MWNTs content on reactive activity of composites is discussed. Then the flexural and electrical properties were studied. Transmission electron microscope was employed to characterize the microstructure of nanocomposites. As a result, the reactive activity of nanocomposites obtained increases with the increasing content of MWNTs. When MWNTs content of the composites is 1 wt%, as compared to neat resin, the flexural strength increases from 143 Mpa to 156 MPa, the modulus increases from 3563 Mpa to 3691 MPa, and the volume and surface resistance of nanocomposites decrease by two orders of magnitude, respectively.

  8. Steroid Hydroxylation by Basidiomycete Peroxygenases: a Combined Experimental and Computational Study

    Science.gov (United States)

    Babot, Esteban D.; del Río, José C.; Cañellas, Marina; Sancho, Ferran; Lucas, Fátima; Guallar, Víctor; Kalum, Lisbeth; Lund, Henrik; Gröbe, Glenn; Scheibner, Katrin; Ullrich, René; Hofrichter, Martin; Martínez, Angel T.

    2015-01-01

    The goal of this study is the selective oxyfunctionalization of steroids under mild and environmentally friendly conditions using fungal enzymes. With this purpose, peroxygenases from three basidiomycete species were tested for the hydroxylation of a variety of steroidal compounds, using H2O2 as the only cosubstrate. Two of them are wild-type enzymes from Agrocybe aegerita and Marasmius rotula, and the third one is a recombinant enzyme from Coprinopsis cinerea. The enzymatic reactions on free and esterified sterols, steroid hydrocarbons, and ketones were monitored by gas chromatography, and the products were identified by mass spectrometry. Hydroxylation at the side chain over the steroidal rings was preferred, with the 25-hydroxyderivatives predominating. Interestingly, antiviral and other biological activities of 25-hydroxycholesterol have been reported recently (M. Blanc et al., Immunity 38:106–118, 2013, http://dx.doi.org/10.1016/j.immuni.2012.11.004). However, hydroxylation in the ring moiety and terminal hydroxylation at the side chain also was observed in some steroids, the former favored by the absence of oxygenated groups at C-3 and by the presence of conjugated double bonds in the rings. To understand the yield and selectivity differences between the different steroids, a computational study was performed using Protein Energy Landscape Exploration (PELE) software for dynamic ligand diffusion. These simulations showed that the active-site geometry and hydrophobicity favors the entrance of the steroid side chain, while the entrance of the ring is energetically penalized. Also, a direct correlation between the conversion rate and the side chain entrance ratio could be established that explains the various reaction yields observed. PMID:25862224

  9. Iron Refractory Iron Deficiency Anaemia: A Rare Cause of Iron Deficiency Anaemia

    LENUS (Irish Health Repository)

    McGrath, T

    2018-01-01

    We describe the case of a 17-month-old boy with a hypochromic microcytic anaemia, refractory to oral iron treatment. After exclusion of dietary and gastrointestinal causes of iron deficiency, a genetic cause for iron deficiency was confirmed by finding two mutations in the TMPRSS6 gene, consistent with a diagnosis of iron-refractory iron deficiency anaemia (IRIDA).

  10. Tritium gettering from air with hydrogen uranyl phosphate

    International Nuclear Information System (INIS)

    Souers, P.C.; Uribe, F.S.; Stevens, C.G.; Tsugawa, T.T.

    1985-08-01

    The managers of all tritium facilities now worry about their emissions into the atmosphere. The only method for cleaning tritium out of air is to catalyze the formation of tritiated water which is adsorbed, along with the overwhelming bulk of naturally occurring water vapor, on a zeolite molecular sieve. This method generally costs several million dollars for a small system, because of the necessary steel ducting, compressors and holding tanks. We have long had the dream of finding another getter that might be cheaper to use and would, hopefully, not make tritiated water (HTO). In a previous paper, we discovered that hydrogen uranyl phosphate (HUP, with the formula HUO 2 PO 4 x 4H 2 O) getters 1 ppM of tritium gas out of moist air. This makes HUP the first known ''direct'' tritium getter to work in air. However, the tritium enters a hydroxyl network within the HUP, so that it is effectively still in ''water'' form within the HUP. Worse yet, we found up to 10% tritiated water formed during the previous gettering experiments. HUP is unusual in possessing the exceptionally low vapor pressure of 0.6 torr water vapor at 298 0 K. This allows HUP to be used in fairly dry environments. 14 refs., 3 figs., 2 tabs

  11. Development of an iron-selective antioxidant probe with protective effects on neuronal function.

    Directory of Open Access Journals (Sweden)

    Olimpo García-Beltrán

    Full Text Available Iron accumulation, oxidative stress and calcium signaling dysregulation are common pathognomonic signs of several neurodegenerative diseases, including Parkinson´s and Alzheimer's diseases, Friedreich ataxia and Huntington's disease. Given their therapeutic potential, the identification of multifunctional compounds that suppress these damaging features is highly desirable. Here, we report the synthesis and characterization of N-(1,3-dihydroxy-2-(hydroxymethylpropan-2-yl-2-(7-hydroxy-2-oxo-2H-chromen-4-ylacetamide, named CT51, which exhibited potent free radical neutralizing activity both in vitro and in cells. CT51 bound Fe2+ with high selectivity and Fe3+ with somewhat lower affinity. Cyclic voltammetric analysis revealed irreversible binding of Fe3+ to CT51, an important finding since stopping Fe2+/Fe3+ cycling in cells should prevent hydroxyl radical production resulting from the Fenton-Haber-Weiss cycle. When added to human neuroblastoma cells, CT51 freely permeated the cell membrane and distributed to both mitochondria and cytoplasm. Intracellularly, CT51 bound iron reversibly and protected against lipid peroxidation. Treatment of primary hippocampal neurons with CT51 reduced the sustained calcium release induced by an agonist of ryanodine receptor-calcium channels. These protective properties of CT51 on cellular function highlight its possible therapeutic use in diseases with significant oxidative, iron and calcium dysregulation.

  12. Hydroformylation of propene and 1-hexene catalysed by a alpha-zirconium phosphate supported rhodium-phosphine complex

    DEFF Research Database (Denmark)

    Karlsson, Magnus; Andersson, C; Hjortkjær, Jes

    2001-01-01

    The reaction of the amphiphilic ligand {4-[bis(diethylaminoethyl)aminomethyl]diphenyl}phosphine with alpha -zirconium phosphate, of intermediate surface area (24m(2) g(-1)), provided a phosphine functionalised support in which electrostatic interaction between ammonium groups on the ligand and de......-protonated surface hydroxyl groups on the support provided the binding force. The X-ray powder diffractogram of the material showed that the binding lowers the crystallinity of the carrier and that the ligand is not intercalated but bound at the outer surface and at the entrances to the interlamellar space. Reaction...... of the phosphine functionalised support with Rh(CO)(2)(acac) led to CO-phosphine exchange and formation of an immobilised complex of the composition LRh(CO)(acac) (L = surface bound phosphine). When applied as catalyst in continuous gas-phase hydroformylation of propene and in liquid phase hydroformylation of 1...

  13. Tertiary structural changes and iron release from human serum transferrin.

    Science.gov (United States)

    Mecklenburg, S L; Donohoe, R J; Olah, G A

    1997-08-01

    Iron release from human serum transferrin was investigated by comparison of the extent of bound iron, measured by charge transfer absorption band intensity (465 nm), with changes observed by small-angle solution X-ray scattering (SAXS) for a series of equilibrated samples between pH 5.69 and 7.77. The phosphate buffers used in this study promote iron release at relatively high pH values, with an empirical pK of 6.9 for the convolved release from the two sites. The spectral data reveal that the N-lobe release is nearly complete by pH 7.0, while the C-lobe remains primarily metal-laden. Conversely, the radius of gyration, Rg, determined from the SAXS data remains constant between pH 7.77 and 7.05, and the evolution of Rg between its value observed for the diferric protein at pH 7.77 (31.2+/-0.2 A) and that of the apo protein at pH 5.69 (33.9+/-0.4 A) exhibits an empirical pK of 6.6. While Rg is effectively constant in the pH range associated with iron release from the N-lobe, the radius of gyration of cross-section, Rc, increases from 16.9+/-0.2 A to 17.6+/-0.2 A. Model simulations suggest that two different rotations of the NII domain relative to the NI domain about a hinge deep in the iron-binding cleft of the N-lobe, one parallel with and one perpendicular to the plane of the iron-binding site, can be significantly advanced relative to their holo protein positions while yielding constant Rg and increased Rc values consistent with the scattering data. Rotation of the CII domain parallel with the C-lobe iron-binding site plane can partially account for the increased Rg values measured at low pH; however, no reasonable combined repositioning of the NII and CII domains yields the experimentally observed increase in Rg.

  14. Formation of Hydroxylamine from Ammonia and Hydroxyl Radicals

    Science.gov (United States)

    Krim, Lahouari; Zins, Emilie-Laure

    2014-06-01

    In the interstellar medium, as well as in icy comets, ammonia may be a crucial species in the first step toward the formation of amino-acids and other prebiotic molecules such as hydroxylamine (NH2OH). It is worth to notice that the NH3/H2 ratio in the ISM is 3 10-5 compared the H2O/H2 one which is only 7 10-5. Using either electron-UV irradiations of water-ammonia ices or successive hydrogenation of solid nitric oxide, laboratory experiments have already shown the feasibility of reactions that may take place on the surface of ice grains in molecular clouds, and may lead to the formation of this precursor. Herein is proposed a new reaction pathway involving ammonia and hydroxyl radicals generated in a microwave discharge. Experimental studies, at 3 and 10 K, in solid phase as well as in neon matrix have shown that this reaction proceed via a hydrogen abstraction, leading to the formation of NH2 radical, that further recombine with hydroxyl radical to form hydroxylamine, under non-energetic conditions.

  15. Thyroid hormone-like and estrogenic activity of hydroxylated PCBs in cell culture

    International Nuclear Information System (INIS)

    Kitamura, Shigeyuki; Jinno, Norimasa; Suzuki, Tomoharu; Sugihara, Kazumi; Ohta, Shigeru; Kuroki, Hiroaki; Fujimoto, Nariaki

    2005-01-01

    The thyroid hormone-disrupting activity of hydroxylated PCBs was examined. 4-Hydroxy-2,2',3,4',5,5'-hexachlorobiphenyl (4-OH-2,2',3,4',5,5'-HxCB), 4-hydroxy-3,3',4',5-tetrachlorobiphenyl (4-OH-3,3',4',5-TCB) and 4,4'-dihydroxy-3,3',5,5'-tetrachlorobiphenyl (4,4'-diOH-3,3',5,5'-TCB), which have been detected as metabolites of PCBs in animals and humans, and six other 4-hydroxylated PCBs markedly inhibited the binding of triiodothyronine (1 x 10 -10 M) to thyroid hormone receptor (TR) in the concentration range of 1 x 10 -6 to 1 x 10 -4 M. However, 4-hydroxy-2',4',6'-trichlorobiphenyl (4-OH-2',4',6'-TCB), 3-hydroxy-2,2',5,5'-tetrachlorobiphenyl, 4-hydroxy-2,2',5,5'-tetrachlorobiphenyl, 4-hydroxy-2,3,3',4'-tetrachlorobiphenyl, 2,3',5,5'-tetrachlorobiphenyl and 2,3',4',5,5'-pentachlorodiphenyl did not show affinity for TR. The thyroid hormonal activity of PCBs was also examined using rat pituitary cell line GH3 cells, which grow and release growth hormone in a thyroid hormone-dependent manner. 4-OH-2,2',3,4',5,5'-HxCB, 4,4'-diOH-3,3',5,5'-TCB and 4-OH-3,3',4',5-TCB enhanced the proliferation of GH3 cells and stimulated their production of growth hormone in the concentration range of 1 x 10 -7 to 1 x 10 -4 M, while PCBs which had no affinity for thyroid hormone receptor were inactive. In contrast, only 4-OH-2',4',6'-TCB exhibited a significant estrogenic activity using estrogen-responsive reporter assay in MCF-7 cells. However, the 3,5-dichloro substitution of 4-hydroxylated PCBs markedly decreased the estrogenic activity. These results suggest that, at least for the 17 PCB congeners and hydroxylated metabolites tested, a 4-hydroxyl group in PCBs is essential for thyroid hormonal and estrogenic activities, and that 3,5-dichloro substitution favors thyroid hormonal activity, but not estrogenic activity

  16. Attenuation of iron-binding proteins in ARPE-19 cells reduces their resistance to oxidative stress.

    Science.gov (United States)

    Karlsson, Markus; Kurz, Tino

    2016-09-01

    Oxidative stress-related damage to retinal pigment epithelial (RPE) cells is an important feature in the development of age-related macular degeneration. Iron-catalysed intralysosomal production of hydroxyl radicals is considered a major pathogenic factor, leading to lipofuscin formation with ensuing depressed cellular autophagic capacity, lysosomal membrane permeabilization and apoptosis. Previously, we have shown that cultured immortalized human RPE (ARPE-19) cells are extremely resistant to exposure to bolus doses of hydrogen peroxide and contain considerable amounts of the iron-binding proteins metallothionein (MT), heat-shock protein 70 (HSP70) and ferritin (FT). According to previous findings, autophagy of these proteins depresses lysosomal redox-active iron. The aim of this study was to investigate whether up- or downregulation of these proteins would affect the resistance of ARPE-19 cells to oxidative stress. The sensitivity of ARPE-19 cells to H2 O2 exposure was tested following upregulation of MT, HSP70 and/or FT by pretreatment with ZnSO4 , heat shock or FeCl3 , as well as siRNA-mediated downregulation of the same proteins. Upregulation of MT, HSP70 and FT did not improve survival following exposure to H2 O2 . This was interpreted as existence of an already maximal protection. Combined siRNA-mediated attenuation of both FT chains (H and L), or simultaneous downregulation of all three proteins, made the cells significantly more susceptible to oxidative stress confirming the importance of iron-binding proteins. The findings support our hypothesis that the oxidative stress resistance exhibited by RPE cells may be explained by a high autophagic influx of iron-binding proteins that would keep levels of redox-active lysosomal iron low. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  17. New fluorescent probes of the hydroxyl radical: characterisation and modelization of the reactivity of coumarin derivatives with HO

    International Nuclear Information System (INIS)

    Louit, G.

    2005-10-01

    The hydroxyl radical is involved in a wide range of different fields, from oxidative stress to atmospheric chemistry. In addition to the study of oxidative damage in biological media, the hydroxyl radical detection allows to perform a dosimetry when it is produced by ionising radiation. The aims of this work have been double: - to improve the detection of the hydroxyl radical by the design of new probes - to improve knowledge on the reactive pathways in which the hydroxyl radical is involved. We have studied the coumarin molecule, as well as 6 derivatives that we have synthesised, as fluorescent probes of the hydroxyl radical. Firstly, fluorescence spectroscopy and HPLC chromatography have allowed the evaluation of the sensibility and selectivity of detection of the probes. Consequently to this study, two applications have been developed, concerning the determination of rate constants by competition kinetics and bidimensional dosimetry. Secondly, we have studied the reactivity of the hydroxyl radical through the regioselectivity of its addition on the aromatic cycle. This problem was addressed by the combined use of experimental methods such as time resolved kinetics and HPLC along with interpretation from classical and ab initio modelization. (author)

  18. Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron and manganese in the Gulf of Finland, Baltic Sea

    NARCIS (Netherlands)

    Almroth, E.; Tengberg, A.; Andersson, J.H.; Pakhomova, S.; Hall, P.O.J.

    2009-01-01

    The effect of resuspension on benthic fluxes of oxygen (O2), ammonium (NH4+), nitrate (NO3-), phosphate (PO43-), silicate (Si(OH)4), dissolved inorganic carbon (DIC), total dissolved iron (Fe) and total dissolved manganese (Mn) was studied at three different stations in the Gulf of Finland (GoF),

  19. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.; Guirado-López, R. A., E-mail: guirado@ifisica.uaslp.mx [Instituto de Física “Manuel Sandoval Vallarta,” Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí (Mexico); Gámez-Corrales, R. [Departamento de Física, Universidad de Sonora, Apartado Postal 5-088, 83190, Hermosillo, Sonora (Mexico)

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ∼2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage θ∼0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.

  20. Synthesis and properties evaluation of sulfobetaine surfactant with double hydroxyl

    Science.gov (United States)

    Zhou, Ming; Luo, Gang; Zhang, Ze; Li, Sisi; Wang, Chengwen

    2017-09-01

    A series of sulfobetaine surfactants {N-[(3-alkoxy-2-hydroxyl)propoxy] ethyl-N,N-dimethyl-N-(2-hydroxyl)propyl sulfonate} ammonium chloride were synthesized with raw materials containing linear saturated alcohol, N,N-dimethylethanolamine, sodium 3-chloro-2-hydroxyl propane sulfonic acid and epichlorohydrin. The molecule structures of sulfobetaine surfactants were characterized by FTIR, 1HNMR and elemental analysis. Surface tension measurements can provide us information about the surface tension at the CMC (γCMC), pC20, Γmax and Amin. The pC20 values of sulfobetaine surfactants increase with the hydrophobic chain length increasing. Amin values of the surfactants decrease with increasing hydrophobic chain length from 10 to 14. The critical micelle concentration (CMC) and surface tension (γCMC) values of the sulfobetaine surfactants decrease with increasing hydrophobic chain length from 10 to 16. The lipophilicity of surfactant was enhanced with the increase of the carbon chain, however, the ability of anti-hard water was weakened. The minimum oil/water interfacial tension of four kinds of sulfobetaine surfactants is 10-2-10-3 mN/m magnitude, which indicates that the synthesized bis-hydroxy sulfobetaine surfactants have a great ability to reduce interfacial tension in the surfactant flooding system. The surface tension (γCMC) values of synthesized surfactants were lower compared with conventional anionic surfactant sodium dodecyl sulfonate.