WorldWideScience

Sample records for iron garnet yig

  1. Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrites prepared by microemulsion method

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Majid Niaz, E-mail: majidniazakhtar@ciitlahore.edu.pk [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bakar Sulong, Abu [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Khan, Muhammad Azhar [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Ahmad, Mukhtar [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Murtaza, Ghulam [Centre for Advanced Studies in Physics, G.C. University, Lahore, Pakistan" f Department of Mechanical Engineering, COMSATS Institute of Information Technology Sahiwal Pakistan (Pakistan); Raza, M.R. [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Mechanical Engineering, COMSATS Institute of Information Technology Sahiwal (Pakistan); Raza, R.; Saleem, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Kashif, M. [Department of Physics, Govt. College University Faisalabad (Pakistan)

    2016-03-01

    Yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrite samples were synthesized by microemulsion method. The effect of sintering was examined by heating the samples at 900, 1000, and 1100 °C. The YIG and YAIG samples were then characterized using X-ray diffraction and field-emission scanning electron microscopy. Static and dynamic magnetic properties were measured by evaluating initial permeability, Q factor, and vibrating sample magnetometry properties of YIG and YAIG samples. YIG samples sintered at 1100 °C showed higher initial permeability and Q factor compared with YAIG samples. However, hysteresis loops also showed variations in the saturation magnetization, remanence, and coercivity of YIG and YAIG samples sintered at 900, 1000, and 1100 °C. The observed magnetic parameter such as saturation magnetization, coercivity and initial permeability are strongly affected by increasing temperature. The saturation magnetization and coercivity of YIG and YAIG nanoferrites were found in the range 11.56–19.92 emu/g and 7.30–87.70 Oe respectively. Furthermore, the decreasing trends in the static and magnetic properties of YAIG samples may be due to the introduction of Al ions in the YIG crystal lattice. Thus, YIG and YAIG sintered at 1100 °C can be used for wide-ranging frequency applications. - Highlights: • Static and dynamic magnetic properties of YIG and YAIG nanoferrites were determined. • Saturation magnetization, Q and initial permeability increased in YIG nanoferites. • Possible use of these nanoferrites for sensing and switching applications.

  2. Subthermal-magnon-driven longitudinal spin Seebeck effect in yttrium iron garnets (YIG)

    Science.gov (United States)

    Jin, Hyungyu; Boona, Stephen; Yang, Zihao; Myers, Roberto; Heremans, Joseph

    2015-03-01

    Since its discovery in 2008, the spin Seebeck effect (SSE) has intrigued many interesting research all around the world, which has led to the birth of a new field of research, called ``spin-caloritronics''. Of the two different experimental configurations used for detecting SSE, the longitudinal geometry (LSSE) seems to be generally accepted. The yttrium iron garnet (YIG) / Pt bilayer structure has been most commonly used for LSSE experiments because absence of electrons in YIG excludes contaminations from other thermomagnetic effects. The dependence of the LSSE on YIG film thickness and on temperature have been reported, but not yet both together. Here we present experimental data on the temperature dependence of LSSE in Pt/YIG below room temperature in systems in which the thickness of YIG varies. Detailed discussion is given on the experimental results, with emphasis on the role of subthermal-magnons in the temperature dependence of LSSE in the YIG/Pt system. Work supported by the AFOSR-MURI #FA9550-10-1-0533 and the ARO-MURI #W911NF-14-1-0016.

  3. Thermally induced transparency for short spin wave pulses in yttrium iron garnet (YIG) films

    Science.gov (United States)

    Ordonez Romero, Cesar Leonardo; Kolokoltsev, Oleg; Gomez Arista, Ivan; Qureshi, Naser; Monsiváis Galindo, Guillermo; Vargas Hernández, Hesiquio

    2014-03-01

    The compensation of spin wave propagation losses plays a very important role in the development of novel magnonic devices. Up to now, however, most of the known amplification methods present relative narrow frequency bandwidths due to their resonant nature. In this work, we present compensation of the propagation losses or pseudo-amplification of travelling spin waves by tailoring the bias magnetic field profile. The thermally-induced non-uniform profile of the magnetization introduced on an Yttrium Iron Garnet (YIG) thin film by a localized spot of a cw argon-ion laser creates the conditions to observe the complete compensation of the spin wave propagation losses. The spin wave evolution was mapped with a time and spaced resolved inductive magneto-dynamic prove system. The experiment was carried out using a uniform sample of single-crystal YIG film grown on a gallium-gadolinium garnet (GGG) substrate. The 2mm-wide, 20mm-long and 6microns-thick YIG strip was saturated with an external magnetic field enabling the set up for the propagation of magneto-static surface waves. This work was supported by the UNAM-DGAPA-PAPIIT IA100413.

  4. Synthesis and characterization of yttrium iron garnet (YIG nanoparticles - Microwave material

    Directory of Open Access Journals (Sweden)

    Vinay Sharma

    2017-05-01

    Full Text Available Magnetic Yttrium Iron Garnet (YIG nanoparticles (NPs were prepared by sol–gel (SG and solid-state (SS reaction methods to elucidate the nanoscale size on the magnetic behavior of NPs. It is found that YIG prepared by these two methods are different in many ways. The average NP sizes prepared by SG and SS methods were calculated by Scherrer formula from XRD data. SEM images show the change in grain size for both types of NPs. The sintering temperature required to form pure garnet phase is 750°C for SG and 1000°C for SS NPs. The saturation magnetizations (Ms were 1070 Oe for SG and 1125 Oe for SS NPs, respectively. The coercivity (Hc of SS NPs are twice larger than SG NPs. This is due to the larger crystal sizes of the SS NPs, hence more crystal boundaries. Dynamic properties were studied by ferromagnetic resonance (FMR technique in field-sweep and frequency-sweep mode at different fixed frequencies and at different fixed magnetic fields, respectively. Resonance field (Hr observed to increase linearly with frequency both for SS and SG NPs. The stop-band bandwidth (frequency linewidth is narrower for SG NPs in comparison to SS NPs. Microwave absorption property make this material as a strong candidate for microwave device applications.

  5. HIGH TEMPERATURE RESONANCE LOSSES IN SILICON-DOPED YTTRIUM-IRON GARNET (YIG)

    DEFF Research Database (Denmark)

    Epstein, D. J.; Tocci, L.

    1967-01-01

    The ferrimagnetic resonance linewidth of silicon-doped YIG, measured as a function of temperature at 13.4 kMHz, is found to show a pronounced peak at 105°C. The anisotropic behavior of this peak is in good agreement with the four-level valence-exchange model proposed by Clogston. The model yields...... for the electron ordering energy a value 5 × 10-4 eV which agrees closely with the energy deduced from magnetic anneal studies. The activation energy for electron transfer (0.25 eV) is virtually identical with values reported in investigations of electrical conductivity and acoustic loss. ©1967 The American...

  6. The Effect of Chelating Copolymer Additive on the Yttrium Iron Garnet Nanoparticle Formation

    Institute of Scientific and Technical Information of China (English)

    Wang; Cheng-chien

    2007-01-01

    1 Results Yttrium iron garnet (YIG) is a well-known ferromagnetic garnet material and has widely used in electronic devices[1].A new acrylic chelating polymer was developed to act as the additive of the preparation of YIG precursor in our previous study[2].The sintering temperature of YIG nanocrystal obtained by this YIG precursor (ACP) was magnificently descended from 1 000 to 600 ℃.In this study,we were further to study the effect of amount of chelating polymer and the compositions of chelating polyme...

  7. Spin valve effect of the interfacial spin accumulation in yttrium iron garnet/platinum bilayers

    Science.gov (United States)

    Jin, Lichuan; Zhang, Dainan; Zhang, Huaiwu; Tang, Xiaoli; Bai, Feiming; Zhong, Zhiyong; Fan, Xin; Xiao, John Q.

    2014-09-01

    We report the spin valve effect in yttrium iron garnet/platinum (YIG/Pt) bilayers. The spin Hall effect (SHE) generates spin accumulation at the YIG/Pt interface and can be opened/closed by magnetization switching in the electrical insulator YIG. The interfacial spin accumulation was measured in both YIG/Pt and YIG/Cu/Pt structures using a planar Hall configuration. The spin valve effect remained, even after a 2 nm thick Cu layer was inserted between the YIG and Pt layers, which aimed to exclude the induced magnetization at the YIG/Pt interface. The transverse Hall voltage and switching field were dependent on the applied charge current density. The origin of this behavior can be explained by the SHE induced torque exerted on the domain wall, caused by the transfer of the spin angular momentum from the spin-polarized current to the YIG magnetic moment.

  8. Nonlinear FMR spectra in yttrium iron garnet

    Directory of Open Access Journals (Sweden)

    Yu.M. Bunkov, P.M. Vetoshko, I.G. Motygullin, T.R. Safin, M.S. Tagirov, N.A. Tukmakova

    2015-12-01

    Full Text Available Results of demagnetizing effect studies in yttrium iron garnet Y3Fe5O12 thin films are reported. Experiments were performed on X-Band of electron paramagnetic resonance spectrometer at room temperature. The ferromagnetic resonance (FMR spectra were obtained for one-layer single crystal YIG films for different values of the applied microwave power. Nonlinear FMR spectra transformation by the microwave power increasing in various directions of magnetic field sweep was observed. It is explained by the influence of the demagnetization action of nonequilibrium magnons.

  9. Thermal Spin Dynamics of Yttrium Iron Garnet

    Science.gov (United States)

    Barker, Joseph; Bauer, Gerrit E. W.

    2016-11-01

    The magnetic insulator yttrium iron garnet can be grown with near perfection and is therefore and ideal conduit for spin currents. It is a complex material with 20 magnetic moments in the unit cell. In spite of being a ferrimagnet, YIG is almost always modeled as a simple ferromagnet with a single spin wave mode. We use the method of atomistic spin dynamics to study the temperature evolution of the full spin wave spectrum, in quantitative agreement with neutron scattering experiments. The antiferromagnetic or optical mode is found to suppress the spin Seebeck effect at room temperature and beyond due to thermally pumped spin currents with opposite polarization to the ferromagnetic mode.

  10. Bonding mechanism of a yttrium iron garnet film on Si without the use of an intermediate layer

    Energy Technology Data Exchange (ETDEWEB)

    Pantzas, Konstantinos, E-mail: konstantinos.pantzas@lpn.cnrs.fr [CNRS-LPN, Route de Nozay, F-91460 Marcoussis (France); Institut P' , CNRS-Université de Poitiers - ENSMA - UPR 3346, SP2MI - Téléport 2 Bd Marie Pierre Curie, B.P. 30179, F-86962, Futuroscope Chasseneuil Cedex (France); Patriarche, Gilles; Talneau, Anne [CNRS-LPN, Route de Nozay, F-91460 Marcoussis (France); Youssef, Jamal Ben [Laboratoire de Magnetisme de Bretagne, 6 avenue Le Gorgeu, 29238 Brest Cedex 3 (France)

    2014-10-06

    Direct bonding of yttrium iron garnet (YIG) on silicon without the use of an intermediate bonding layer is demonstrated and characterized using scanning transmission electron microscopy and energy-dispersive x-ray spectroscopy. During the bonding experiment, the garnet is reduced in the presence of oxide-free silicon. As a result, a 5 nm thick SiO{sub 2}/amorphous-YIG bilayer is formed and welds the garnet to silicon.

  11. A nonreciprocal racetrack resonator based on vacuum-annealed magnetooptical cerium-substituted yttrium iron garnet.

    Science.gov (United States)

    Goto, Taichi; Onbasli, Mehmet C; Kim, Dong Hun; Singh, Vivek; Inoue, M; Kimerling, Lionel C; Ross, C A

    2014-08-11

    Vacuum annealed polycrystalline cerium substituted yttrium iron garnet (CeYIG) films deposited by radio frequency magnetron sputtering on non-garnet substrates were used in nonreciprocal racetrack resonators. CeYIG annealed at 800°C for 30 min provided a large Faraday rotation angle, close to the single crystal value. Crystallinity, magnetic properties, refractive indices and absorption coefficients were measured. The resonant transmission peak of the racetrack resonator covered with CeYIG was non-reciprocally shifted by applying an in-plane magnetic field.

  12. Magnetophotonic crystal with cerium substituted yttrium iron garnet and enhanced Faraday rotation angle.

    Science.gov (United States)

    Yoshimoto, Takuya; Goto, Taichi; Isogai, Ryosuke; Nakamura, Yuichi; Takagi, Hiroyuki; Ross, C A; Inoue, M

    2016-04-18

    Magnetophotonic crystals (MPCs) comprising cerium-substituted yttrium iron garnet (CeYIG) sandwiched by two Bragg mirrors were fabricated by vacuum annealing. CeYIG was deposited on Bragg mirrors at room temperature and annealed in 5 Pa of residual air. No ceria or other non-garnet phases were detected. Cerium 3 + ions substituted on the yttrium sites and no cerium 4 + ions were found. The Faraday rotation angle of the MPC was -2.92° at a wavelength of λ = 1570 nm was 30 times larger than that of the CeYIG film. These results showed good agreement with calculated values derived using a matrix approach.

  13. Influence of yttrium iron garnet thickness and heater opacity on the nonlocal transport of electrically and thermally excited magnons

    NARCIS (Netherlands)

    Shan, Juan; Cornelissen, Ludo J.; Vlietstra, Nynke; Ben Youssef, Jamal; Kuschel, Timo; Duine, Rembert; Van Wees, Bart J.

    2016-01-01

    We studied the nonlocal transport behavior of both electrically and thermally excited magnons in yttrium iron garnet (YIG) as a function of its thickness. For electrically injected magnons, the nonlocal signals decrease monotonically as the YIG thickness increases. For the nonlocal behavior of the t

  14. Valence Control of Ce Ions in Cerium-substituted Yttrium Iron Garnet

    Institute of Scientific and Technical Information of China (English)

    SONG Fengbing; LI Qiang; ZHONG Zhifeng

    2005-01-01

    Cerium-substituted yttrium iron garnet(CexY3-xFe5O12, Ce∶YIG) was prepared via coprecipitation. The structure, morphology, valence state and constituent of Ce ions were investigated respectively. X-ray powder diffraction(XRD) analysis shows that Ce∶YIG was of single cubic YIG phase. The result of X-ray photoelectron spectroscopy(XPS) indicates the Ce ions in Ce∶YIG were in the state of trivalence. Scanning electron microscope(SEM) demonstrates the conglobation of Ce∶YIG particles about 0.2μm scale.The magnetic properties were studied by a vibrating sample magnetometer(VSM) and the result exhibits that substitution of Ce3+ changes the magnetic parameters of YIG. The effects of doping content of Ce ions and synthesis temperature on valence control were discussed in detail.

  15. Influence of growth temperature on the magnetic and optical properties of liquid-phase-epitaxial(LPE)-grown lanthanum- and gallium-substituted yttrium iron garnet ((La, Ga):YIG) films and their application to waveguides

    Science.gov (United States)

    Sugimoto, Naoto; Tate, Akiyuki; Mino, Shinji; Shibukawa, Atsushi

    1992-05-01

    The growth temperature dependence is measured of the magnetic and optical properties of lanthanum- and gallium-substituted yttrium iron garnet films deposited on gadolinium gallium garnet substrates by the liquid-phase-epitaxial-growth method for use as integrated optical waveguides. The magnetization of the film can be saturated in the film plane by a weak external-magnetic field. The refractive index is controlled in a range of 2.192 to 2.204 by the growth temperature, which ranges from 893 to 835 C. Rib waveguides with low propagation loss are also fabricated.

  16. Observation of a cubical-like microstructure of strontium iron garnet and yttrium iron garnet prepared via sol-gel technique.

    Science.gov (United States)

    Nasir, Nadeem; Yahya, Noorhana; Kashif, Muhammad; Daud, Hanita; Akhtar, Majid Niaz; Zaid, Hasnah Mohd; Shafie, Afza; Teng, Lee Chaw

    2011-03-01

    This is our initial response towards preparation of nano-inductors garnet for high operating frequencies strontium iron garnet (Sr3Fe5O12) denoted as SrIG and yttrium iron garnet (Y3Fe5O12) denoted as YIG. The garnet nano crystals were prepared by novel sol-gel technique. The phase and crystal structure of the prepared samples were identified by using X-ray diffraction analysis. SEM images were done to reveal the surface morphology of the samples. Raman spectra was taken for yttrium iron garnet (Y3Fe5O12). The magnetic properties of the samples namely initial permeability (micro), relative loss factor (RLF) and quality factor (Q-Factor) were done by using LCR meter. From the XRD profile, both of the Y3Fe5O12 and Sr3Fe5O12 samples showed single phase garnet and crystallization had completely occurred at 900 degrees C for the SrIG and 950 degrees C for the YIG samples. The YIG sample showed extremely low RLF value (0.0082) and high density 4.623 g/cm3. Interesting however is the high Q factor (20-60) shown by the Sr3Fe5O12 sample from 20-100 MHz. This high performance magnetic property is attributed to the homogenous and cubical-like microstructure. The YIG particles were used as magnetic feeder for EM transmitter. It was observed that YIG magnetic feeder with the EM transmitter gave 39% higher magnetic field than without YIG magnetic feeder.

  17. Thermographic measurements of the spin Peltier effect in metal/yttrium-iron-garnet junction systems

    Science.gov (United States)

    Daimon, Shunsuke; Uchida, Ken-ichi; Iguchi, Ryo; Hioki, Tomosato; Saitoh, Eiji

    2017-07-01

    The spin Peltier effect (SPE), heat-current generation due to spin-current injection, in various metal (Pt, W, and Au single layers and Pt/Cu bilayer)/ferrimagnetic insulator [yttrium-iron-garnet (YIG)] junction systems has been investigated by means of a lock-in thermography (LIT) method. The SPE is excited by a spin current across the metal/YIG interface, which is generated by applying a charge current to the metallic layer via the spin Hall effect. The LIT method enables the thermal imaging of the SPE free from the Joule-heating contribution. Importantly, we observed spin-current-induced temperature modulation not only in the Pt/YIG and W/YIG systems, but also in the Au/YIG and Pt/Cu/YIG systems, excluding the possible contamination by anomalous Ettingshausen effects due to proximity-induced ferromagnetism near the metal/YIG interface. As demonstrated in our previous study, the SPE signals are confined only in the vicinity of the metal/YIG interface; we buttress this conclusion by reducing a spatial blur due to thermal diffusion in an infrared-emission layer on the sample surface used for the LIT measurements. We also found that the YIG-thickness dependence of the SPE is similar to that of the spin Seebeck effect measured in the same Pt/YIG sample, implying the reciprocal relation between them.

  18. Spin Seebeck effect and spin Hall magnetoresistance at high temperatures for a Pt/yttrium iron garnet hybrid structure

    Science.gov (United States)

    Wang, Shuanhu; Zou, Lvkuan; Zhang, Xu; Cai, Jianwang; Wang, Shufang; Shen, Baogen; Sun, Jirong

    2015-10-01

    Based on unique experimental setups, the temperature dependences of the longitudinal spin Seebeck effect (LSSE) and spin Hall magnetoresistance (SMR) of the Pt/yttrium iron garnet (Pt/YIG) hybrid structure are determined in a wide temperature range up to the Curie temperature of YIG. From a theoretical analysis of the experimental relationship between the SMR and temperature, the spin mixing conductance of the Pt/YIG interface is deduced as a function of temperature. Adopting the deduced spin mixing conductance, the temperature dependence of the LSSE is well reproduced based on the magnon spin current theory. Our research sheds new light on the controversy about the theoretical models for the LSSE.

  19. Laser MBE-grown yttrium iron garnet films on GaN: characterization of the crystal structure and magnetic properties

    Science.gov (United States)

    Kaveev, A. K.; Bursian, V. E.; Gastev, S. V.; Krichevtsov, B. B.; Suturin, S. M.; Volkov, M. P.; Sokolov, N. S.

    2016-07-01

    Yttrium iron garnet (YIG) films were grown on GaN substrates using the laser molecular beam epitaxy method. X-ray diffraction data showed polycrystalline YIG layers without additional structural modifications. The magnetic properties of the YIG films were studied at room temperature with the aid of a vibration sample magnetometer, the magneto-optical Kerr effect and ferromagnetic resonance methods. ‘Easy-plane’-type magnetic anisotropy was found in the films. The gyromagnetic ratio and 4 πMS value were calculated.

  20. Influence of yttrium iron garnet thickness and heater opacity on the nonlocal transport of electrically and thermally excited magnons

    Science.gov (United States)

    Shan, Juan; Cornelissen, Ludo J.; Vlietstra, Nynke; Ben Youssef, Jamal; Kuschel, Timo; Duine, Rembert A.; van Wees, Bart J.

    2016-11-01

    We studied the nonlocal transport behavior of both electrically and thermally excited magnons in yttrium iron garnet (YIG) as a function of its thickness. For electrically injected magnons, the nonlocal signals decrease monotonically as the YIG thickness increases. For the nonlocal behavior of the thermally generated magnons, or the nonlocal spin Seebeck effect (SSE), we observed a sign reversal which occurs at a certain heater-detector distance, and it is influenced by both the opacity of the YIG/heater interface and the YIG thickness. Our nonlocal SSE results can be qualitatively explained by the bulk-driven SSE mechanism together with the magnon diffusion model. Using a two-dimensional finite element model (2D-FEM), we estimated the bulk spin Seebeck coefficient of YIG at room temperature. The quantitative disagreement between the experimental and modeled results indicates more complex processes going on in addition to magnon diffusion and relaxation, especially close to the contacts.

  1. Reflection and Transmission Coefficient of Yttrium Iron Garnet Filled Polyvinylidene Fluoride Composite Using Rectangular Waveguide at Microwave Frequencies

    Science.gov (United States)

    Soleimani, Hassan; Abbas, Zulkifly; Yahya, Noorhana; Shameli, Kamyar; Soleimani, Hojjatollah; Shabanzadeh, Parvaneh

    2012-01-01

    The sol-gel method was carried out to synthesize nanosized Yttrium Iron Garnet (YIG). The nanomaterials with ferrite structure were heat-treated at different temperatures from 500 to 1000 °C. The phase identification, morphology and functional groups of the prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The YIG ferrite nanopowder was composited with polyvinylidene fluoride (PVDF) by a solution casting method. The magnitudes of reflection and transmission coefficients of PVDF/YIG containing 6, 10 and 13% YIG, respectively, were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in X-band frequencies. The results indicate that the presence of YIG in polymer composites causes an increase in reflection coefficient and decrease in transmission coefficient of the polymer. PMID:22942718

  2. Reflection and transmission coefficient of yttrium iron garnet filled polyvinylidene fluoride composite using rectangular waveguide at microwave frequencies.

    Science.gov (United States)

    Soleimani, Hassan; Abbas, Zulkifly; Yahya, Noorhana; Shameli, Kamyar; Soleimani, Hojjatollah; Shabanzadeh, Parvaneh

    2012-01-01

    The sol-gel method was carried out to synthesize nanosized Yttrium Iron Garnet (YIG). The nanomaterials with ferrite structure were heat-treated at different temperatures from 500 to 1000 °C. The phase identification, morphology and functional groups of the prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The YIG ferrite nanopowder was composited with polyvinylidene fluoride (PVDF) by a solution casting method. The magnitudes of reflection and transmission coefficients of PVDF/YIG containing 6, 10 and 13% YIG, respectively, were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in X-band frequencies. The results indicate that the presence of YIG in polymer composites causes an increase in reflection coefficient and decrease in transmission coefficient of the polymer.

  3. Highly Sensitive Fiber-Optic Faraday-Effect Magnetic Field Sensor Based on Yttrium Iron Garnet

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The principle and performance of a fiber-optic Faraday-effect magnetic-field sensor based on an yttrium iron garnet (YIG) and two flux concentrations are described. A single polarization maintaining optical fiber links the sensor head to the source and detection system, in which the technique of phase shift cancellation is used to cancel the phase shift that accumulate in the optical fiber. Flux concentrators were exploited to enhance the YIG crystal magneto optic sensitivity .The sensor system exhibited a noise-equivalent field of 8 and a 3 dB bandwidth of ~10 MHz.

  4. Induced magnetism in exfoliated graphene via proximity effect with yttrium iron garnet thin films

    Science.gov (United States)

    Amado, Mario; Li, Yang; di Bernardo, Angelo; Lombardo, Antonio; Ferrari, Andrea C.; Robinson, Jason

    The recent discovery of the quantum anomalous Hall effect (QAHE) in magnetically doped topological insulators cooled below in the milikelvin regime represents breakthrough in the field of spintronics. Theoretically, the QAHE should occur in graphene proximity coupled to a ferromagnetic insulato but with the promise of much higher operating temperatures for practical applications. Hints of proximity-induced magnetism in graphene coupled to yttrium iron garnet (YIG) films have been reported although the QAHE remains unobserved; the lack of a fully developed plateau in graphene/YIG devices can be attributed to poor interfacial coupling and therefore a dramatically reduced magnetic proximity effect. Here we report the deposition and characterisation of epitaxial thin-films of YIG on lattice-matched gadolinium gallium garnet substrates by pulsed laser deposition. Pristine exfoliated graphene flakes transferred mechanically onto the YIG are reported alongside results that correlate the effects of YIG morphology on the electronic and crystal properties of graphene by electrical (low temperature magnetoresistance measurements in Hall-bar-like configuration) and optical (Raman) means.

  5. Sign of inverse spin Hall voltages generated by ferromagnetic resonance and temperature gradients in yttrium iron garnet platinum bilayers

    NARCIS (Netherlands)

    Schreier, Michael; Bauer, Gerrit E. W.; Vasyuchka, Vitaliy I.; Flipse, Joost; Uchida, Ken-ichi; Lotze, Johannes; Lauer, Viktor; Chumak, Andrii V.; Serga, Alexander A.; Daimon, Shunsuke; Kikkawa, Takashi; Saitoh, Eiji; van Wees, Bart J.; Hillebrands, Burkard; Gross, Rudolf; Goennenwein, Sebastian T. B.

    2015-01-01

    We carried out a concerted effort to determine the absolute sign of the inverse spin Hall effect voltage generated by spin currents injected into a normal metal. We focus on yttrium iron garnet (YIG)vertical bar platinum bilayers at room temperature, generating spin currents by microwaves and temper

  6. Hybrid yttrium iron garnet-ferromagnet structures for spin-wave devices

    Energy Technology Data Exchange (ETDEWEB)

    Papp, A., E-mail: apapp@nd.edu [Center for Nano Science and Technology and Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Pázmány Péter Catholic University, Faculty of Information Technology, Budapest 1088 (Hungary); Porod, W., E-mail: porod@nd.edu; Csaba, G., E-mail: gcsaba@nd.edu [Center for Nano Science and Technology and Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-05-07

    We study coupled ferromagnetic layers, which could facilitate low loss, sub 100 nm wavelength spin-wave propagation and manipulation. One of the layers is a low-loss garnet film (such as yttrium iron garnet (YIG)) that enables long-distance, coherent spin-wave propagation. The other layer is made of metal-based (Permalloy, Co, and CoFe) magnetoelectronic structures that can be used to generate, manipulate, and detect the spin waves. Using micromagnetic simulations, we analyze the interactions between the spin waves in the YIG and the metallic nanomagnet structures and demonstrate the components of a scalable spin-wave based signal processing device. We argue that such hybrid-metallic ferromagnet structures can be the basis of potentially high-performance, ultra low-power computing devices.

  7. Growth of high-quality nanometre-thick yittrium iron garnet by sputtering and their magnetic properties

    Science.gov (United States)

    Mitra, Arpita; Cespedes, Oscar; Ali, Mannan; Hickey, B. J.; University Of Regensburg Collaboration

    2015-03-01

    Observation of Spin Seebeck effect(SSE) in magnetic insulators has led to dramatic advances in spin currents research and its applications for thermo-spintronics devices. Here we report deposition of high quality nm-thick yittrium iron garnet(YIG) film on gadolinium gallium garnet(GGG) by RF magnetron sputtering. The morphology and magnetic properties of the films were studied by using AFM and SQUID VSM respectively. 10-60 nm thick films have surface roughness of 1-3Å,and (111) orientation. Our results show that magnetic properties of YIG depend strongly on thickness: magnetic moment has linear dependence at room temperature. The saturation magnetization and coercive field observed in thick films are 136 emu/cc and 0.50 Oe, respectively. Temperature dependence of magnetization of nm-thick YIG films has revealed an interesting result,which can be attributed to an additional magnetic phase at the YIG/GGG interface. The reduction in magnetization at low temperatures up to now has not been reported, but has significant relevance to the spin hall magnetoresistance(SMR) at low temperature.Our results on the temperature dependence of Gilbert damping factor of YIG and YIG/Pt films will lead to new physics, to understand its effect on spin mixing conductance and SMR in magnetic insulators

  8. Magnetic properties of pulsed laser ablated YIG thin films on different substrates

    Science.gov (United States)

    Kumar, Naresh; Misra, D. S.; Venkataramani, N.; Prasad, Shiva; Krishnan, R.

    2004-05-01

    Thin films of yttrium iron garnet (YIG) were deposited on single crystals of gadolinium gallium garnet (GGG) (111) and Si (100) substrates by pulsed laser deposition (PLD). The films deposited at substrate temperature (Ts) of 750°C on GGG substrates show textured YIG phase. However, films deposited on Si substrates at Ts of 600-750°C, show YFeO3 phase along with one YIG (400) peak. For a Ts of 850°C only one peak of very low intensity is observed which is close to (820) of YIG and (231) of YFeO3.

  9. Spin-Hall magnetoresistance in platinum on yttrium iron garnet : Dependence on platinum thickness and in-plane/out-of-plane magnetization

    NARCIS (Netherlands)

    Vlietstra, N.; Shan, J.; Castel, V.; van Wees, B. J.; Ben Youssef, J.

    2013-01-01

    The occurrence of spin-Hall magnetoresistance (SMR) in platinum (Pt) on top of yttrium iron garnet (YIG) has been investigated, for both in-plane and out-of-plane applied magnetic fields and for different Pt thicknesses [3, 4, 8, and 35 nm]. Our experiments show that the SMR signal directly depends

  10. Magnetodielectric coupling in multiferroic holmium iron garnets

    Science.gov (United States)

    Malar Selvi, M.; Chakraborty, Deepannita; Venkateswaran, C.

    2017-02-01

    Single phase magneto-electric multiferroics require a large magnetic or electric field for producing magneto-electric (ME) and magnetodielectric (MD) effects. For utilizing these effects in devices investigations on the room temperature and low field MD studies are necessary. Recently, efforts have been largely devoted to the investigation of rare earth iron garnets. In the physical method, the preparation of rare earth iron garnet requires high sintering temperature and processing time. To solve these problems, ball milling assisted microwave sintering technique is used to prepare nanocrystalline holmium iron garnets (Ho3Fe5O12). Magnetic and dielectric properties of the prepared sample are investigated. These properties get enhanced in nanocrystalline form when compared to the bulk. The MD coupling of the prepared sample is evident from the anomaly in the temperature dependent dielectric constant plot and the ME coupling susceptibility is derived from the room temperature MD measurements.

  11. Nonlinear dynamics of three-magnon process driven by ferromagnetic resonance in yttrium iron garnet

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, R. O. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Centro Interdisciplinar de Ciências da Natureza, Universidade Federal da Integração Latino-Americana, 85867-970 Foz do Iguaçu, PR (Brazil); Holanda, J.; Azevedo, A.; Rezende, S. M., E-mail: rezende@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Vilela-Leão, L. H. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, 55002-970 Caruaru, PE (Brazil); Rodríguez-Suárez, R. L. [Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago (Chile)

    2015-05-11

    We report an investigation of the dynamics of the three-magnon splitting process associated with the ferromagnetic resonance (FMR) in films of the insulating ferrimagnet yttrium iron garnet (YIG). The experiments are performed with a 6 μm thick YIG film close to a microstrip line fed by a microwave generator operating in the 2–6 GHz range. The magnetization precession is driven by the microwave rf magnetic field perpendicular to the static magnetic field, and its dynamics is observed by monitoring the amplitude of the FMR absorption peak. The time evolution of the amplitude reveals that if the frequency is lowered below a critical value of 3.3 GHz, the FMR mode pumps two magnons with opposite wave vectors that react back on the FMR, resulting in a nonlinear dynamics of the magnetization. The results are explained by a model with coupled nonlinear equations describing the time evolution of the magnon modes.

  12. Giant Zeeman shifts in the optical transitions of yttrium iron garnet thin films

    Science.gov (United States)

    Vidyasagar, R.; Alves Santos, O.; Holanda, J.; Cunha, R. O.; Machado, F. L. A.; Ribeiro, P. R. T.; Rodrigues, A. R.; Mendes, J. B. S.; Azevedo, A.; Rezende, S. M.

    2016-09-01

    We report the observation of giant Zeeman shifts in the optical transitions of high-quality very thin films of yttrium iron garnet (YIG) grown by rf sputtering on gadolinium gallium garnet substrates. The optical absorption profile measured with magneto-optical absorption spectroscopy shows dual optical transition in the UV-visible frequency region attributed to transitions from the O-2p valence band to the Fe-3d conduction band and from the O-2p valence band to Fe-2p53d6 excitonic states at the Γ-symmetry point of the YIG band structure. The application of a static magnetic field of only 0.6 kOe produces giant Zeeman shifts of ˜100 meV in the YIG band structure and ˜60 meV in the excitonic states corresponding to effective g-factors on the order of 104. The giant Zeeman effects are attributed to changes in energy levels by the large exchange fields of the Fe-3d orbitals during the magnetization process.

  13. Non-local detection of spin dynamics via spin rectification effect in yttrium iron garnet/SiO2/NiFe trilayers near simultaneous ferromagnetic resonance

    Science.gov (United States)

    Soh, Wee Tee; Peng, Bin; Ong, C. K.

    2015-08-01

    The spin rectification effect (SRE), a phenomenon that generates dc voltages from ac microwave fields incident onto a conducting ferromagnet, has attracted widespread attention due to its high sensitivity to ferromagnetic resonance (FMR) as well as its relevance to spintronics. Here, we report the non-local detection of yttrium iron garnet (YIG) spin dynamics by measuring SRE voltages from an adjacent conducting NiFe layer up to 200 nm thick. In particular, we detect, within the NiFe layer, SRE voltages stemming from magnetostatic surface spin waves (MSSWs) of the adjacent bulk YIG which are excited by a shorted coaxial probe. These non-local SRE voltages within the NiFe layer that originates from YIG MSSWs are present even in 200 nm-thick NiFe films with a 50 nm thick SiO2 spacer between NiFe and YIG, thus strongly ruling out the mechanism of spin-pumping induced inverse spin Hall effect in NiFe as the source of these voltages. This long-range influence of YIG dynamics is suggested to be mediated by dynamic fields generated from YIG spin precession near YIG/NiFe interface, which interacts with NiFe spins near the simultaneous resonance of both spins, to generate a non-local SRE voltage within the NiFe layer.

  14. Non-local detection of spin dynamics via spin rectification effect in yttrium iron garnet/SiO2/NiFe trilayers near simultaneous ferromagnetic resonance

    Directory of Open Access Journals (Sweden)

    Wee Tee Soh

    2015-08-01

    Full Text Available The spin rectification effect (SRE, a phenomenon that generates dc voltages from ac microwave fields incident onto a conducting ferromagnet, has attracted widespread attention due to its high sensitivity to ferromagnetic resonance (FMR as well as its relevance to spintronics. Here, we report the non-local detection of yttrium iron garnet (YIG spin dynamics by measuring SRE voltages from an adjacent conducting NiFe layer up to 200 nm thick. In particular, we detect, within the NiFe layer, SRE voltages stemming from magnetostatic surface spin waves (MSSWs of the adjacent bulk YIG which are excited by a shorted coaxial probe. These non-local SRE voltages within the NiFe layer that originates from YIG MSSWs are present even in 200 nm-thick NiFe films with a 50 nm thick SiO2 spacer between NiFe and YIG, thus strongly ruling out the mechanism of spin-pumping induced inverse spin Hall effect in NiFe as the source of these voltages. This long-range influence of YIG dynamics is suggested to be mediated by dynamic fields generated from YIG spin precession near YIG/NiFe interface, which interacts with NiFe spins near the simultaneous resonance of both spins, to generate a non-local SRE voltage within the NiFe layer.

  15. Non-local detection of spin dynamics via spin rectification effect in yttrium iron garnet/SiO{sub 2}/NiFe trilayers near simultaneous ferromagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Wee Tee, E-mail: a0046479@u.nus.edu; Ong, C. K. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Peng, Bin [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-08-15

    The spin rectification effect (SRE), a phenomenon that generates dc voltages from ac microwave fields incident onto a conducting ferromagnet, has attracted widespread attention due to its high sensitivity to ferromagnetic resonance (FMR) as well as its relevance to spintronics. Here, we report the non-local detection of yttrium iron garnet (YIG) spin dynamics by measuring SRE voltages from an adjacent conducting NiFe layer up to 200 nm thick. In particular, we detect, within the NiFe layer, SRE voltages stemming from magnetostatic surface spin waves (MSSWs) of the adjacent bulk YIG which are excited by a shorted coaxial probe. These non-local SRE voltages within the NiFe layer that originates from YIG MSSWs are present even in 200 nm-thick NiFe films with a 50 nm thick SiO{sub 2} spacer between NiFe and YIG, thus strongly ruling out the mechanism of spin-pumping induced inverse spin Hall effect in NiFe as the source of these voltages. This long-range influence of YIG dynamics is suggested to be mediated by dynamic fields generated from YIG spin precession near YIG/NiFe interface, which interacts with NiFe spins near the simultaneous resonance of both spins, to generate a non-local SRE voltage within the NiFe layer.

  16. Electrodynamic study of YIG filters and resonators

    Science.gov (United States)

    Krupka, Jerzy; Salski, Bartlomiej; Kopyt, Pawel; Gwarek, Wojciech

    2016-01-01

    Numerical solutions of coupled Maxwell and Landau-Lifshitz-Gilbert equations for a magnetized yttrium iron garnet (YIG) sphere acting as a one-stage filter are presented. The filter is analysed using finite-difference time-domain technique. Contrary to the state of the art, the study shows that the maximum electromagnetic power transmission through the YIG filter occurs at the frequency of the magnetic plasmon resonance with the effective permeability of the gyromagnetic medium μr ≈ −2, and not at a ferromagnetic resonance frequency. Such a new understanding of the YIG filter operation, makes it one of the most commonly used single-negative plasmonic metamaterials. The frequency of maximum transmission is also found to weakly depend on the size of the YIG sphere. An analytic electromagnetic analysis of resonances in a YIG sphere is performed for circularly polarized electromagnetic fields. The YIG sphere is situated in a free space and in a large spherical cavity. The study demonstrates that both volume resonances and magnetic plasmon resonances can be solutions of the same transcendental equations. PMID:27698467

  17. Non-local thermal spin injection to study spin diffusion in yttrium iron garnet

    Science.gov (United States)

    Giles, Brandon; Yang, Zihao; Jamison, John; Myers, Roberto

    Understanding the generation, detection, and manipulation of spin current is critical for the development of devices that depend on spin transport for information processing and storage. Recent studies have shown that spin transport over long distances is possible in the magnetic insulator yttrium iron garnet (YIG) through the diffusion of non-equilibrium magnons. Electrically excited magnons have been shown to diffuse up to 40um at room temperature, while thermally injected magnons were detected at ranges greater than 125um at 23K. However, much work is still required to fully understand the processes responsible for magnon diffusion. Here, we present an in-depth study of the diffusion of magnons in YIG. By using the non-local thermal spin detection method, we analyze spin transport as a function of temperature. Spin diffusion maps, which can be used to experimentally determine the spin diffusion length in YIG as a function of temperature, are presented Work supported by the Army Research Office MURI W911NF-14-1-0016.

  18. Epitaxial yttrium iron garnet films grown by pulsed laser deposition

    Science.gov (United States)

    Dorsey, P. C.; Bushnell, S. E.; Seed, R. G.; Vittoria, C.

    1993-07-01

    Epitaxial Y3Fe5O12 (YIG) films have been grown by the pulsed laser deposition (PLD) technique on (111) gadolinium gallium garnet substrates. The effect of substrate temperature and oxygen partial pressure on the structure, composition, and magnetic properties of the films was investigated and compared to liquid phase epitaxy YIG films. The results demonstrated that epitaxial YIG films could be prepared under a wide range of deposition conditions, but narrow linewidth (ΔH≂1 Oe) films were producible only at low oxygen partial pressures (O2temperatures (Ts≳800 °C). Since the linewidth of single-crystal YIG is dominated by surface and volume defects and/or impurities, the narrow linewidth indicated that PLD is a viable technique for producing high-quality ferrite films for microwave device applications. In addition, under all deposition conditions (50-1000 mTorr and 700-850 °C) there is a uniaxial axis perpendicular to the film plane. However, at low oxygen pressure the uniaxial anisotropy energy constant Ku is negative while at high oxygen pressure Ku is positive.

  19. Unconventional Superfluidity in Yttrium Iron Garnet Films

    Science.gov (United States)

    Sun, Chen; Nattermann, Thomas; Pokrovsky, Valery L.

    2016-06-01

    We argue that the magnon condensate in yttrium iron garnet may display experimentally observable superfluidity at room temperature despite the 100 times dominance of the normal density over superfluid ones. The superfluidity has a more complicated nature than in known superfluids since the U(1) symmetry of the global phase shift is violated by the dipolar interaction leading to the exchange of spin moment between the condensate and the crystal lattice. It produces periodic inhomogeneity in the stationary superfluid flow. We discuss the manner of observation and possible applications of magnon superfluidity. It may strongly enhance the spin-torque effects and reduce the energy consumption of the magnonic devices.

  20. Novel Bi-substituted Yttrium Iron Garnet Film/Crystal Composite for Magneto-optical Applications

    Institute of Scientific and Technical Information of China (English)

    HUANG Min; XU Zhi-cheng; ZHOU Wei-zhen

    2004-01-01

    The novel Bi-substituted rare-earth iron garnet films were grown by the modified liquid phase epitaxy (LPE) technique for use as a 45° Faraday rotator in optical isolators. First, single crystals of Y3 Fe5 O12(YIG), with a lattice constant of 1. 237 8 nm, were grown by means of the Czochralski method. Using the seed crystal of YIG instead of the conventional non-magnetic garnet of Gd3Ga5O12 (GGG) as a substrate,a film of BiYbIG was grown by means of the LPE method from Bi2O3 - B2O3 fluxes. The structural, magnetic and magneto-optical properties of BiYbIG LPE film/YIG crystal composite have been investigated using directional X-ray diffraction (XRD), electron probe microanalysis (EPMA), vibrating sample magnetometer (VMS) and near-infrared transmission spectrometry. The saturation magnetization 4πMs has been estimated to be about 1.2×10 6 A/m. The Faraday rotation spectrum was measured by the method of rotating analyzer ellipsometry (RAE) with the wavelength varied from 800 nm to 1 700 nm. The resultant Bi0.37 Yb2.63 Fe5 O12LPE film/YIG crystal composite showed an increased Faraday rotation coefficient due to doping Bi3+ ions into the dodecahedral sites of the magnetic garnet without increasing absorption loss, therefore a good magnetooptic figure of merit,defined by the ratio of Faraday rotation and optical absorption loss, has been achieved of 21.5 and 30.2 (°)/dB at 1 300 and 1 550 nm wavelengths respectively and room temperature. Since Yb3+ and Y3+ ions provide the opposite contribution to the wideband and temperature characteristics of Faraday rotation,the values of Faraday rotation wavelength and temperature coefficients were reduced to 0.06 %/nm and 0.007(°)/℃ at 1 550 nm wavelength, respectively.

  1. Laser-Induced Forward Transfer-printing of focused ion beam pre-machined crystalline magneto-optic yttrium iron garnet micro-discs.

    Science.gov (United States)

    Sones, C L; Feinaeugle, M; Sposito, A; Gholipour, B; Eason, R W

    2012-07-02

    We present femtosecond laser-induced forward transfer of focused ion beam pre-machined discs of crystalline magneto-optic yttrium iron garnet (YIG) films. Debris-free circular micro-discs with smooth edges and surface uniformity have been successfully printed. The crystalline nature of the printed micro-discs has not been altered by the LIFT printing process, as was confirmed via micro-Raman measurements.

  2. Brillouin light scattering study of transverse mode coupling in confined yttrium iron garnet/barium strontium titanate multiferroic

    Energy Technology Data Exchange (ETDEWEB)

    Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Bublikov, K. V.; Grishin, S. V.; Sheshukova, S. E.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)

    2015-11-28

    Using the space-resolved Brillouin light scattering spectroscopy we study the transformation of dynamic magnetization patterns in a bilayer multiferroic structure. We show that in the comparison with a single yttrium iron garnet (YIG) film magnetization distribution is transformed in the bilayer structure due to the coupling of waves propagating both in an YIG film (magnetic layer) and in a barium strontium titanate slab (ferroelectric layer). We present a simple electrodynamic model using the numerical finite element method to show the transformation of eigenmode spectrum of confined multiferroic. In particular, we demonstrate that the control over the dynamic magnetization and the transformation of spatial profiles of transverse modes in magnetic film of the bilayer structure can be performed by the tuning of the wavevectors of transverse modes. The studied confined multiferroic stripe can be utilized for fabrication of integrated dual tunable functional devices for magnonic applications.

  3. Separation of spin Seebeck effect and anomalous Nernst effect in Co/Cu/YIG

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Dai [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Li, Yufan; Qu, D.; Chien, C. L., E-mail: clchien@jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Jin, Xiaofeng [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China)

    2015-05-25

    The spin Seebeck effect (SSE) and Anomalous Nernst effect (ANE) have been observed in Co/Cu/YIG (yttrium iron garnet) multi-layer structure, where the ferromagnetic insulator YIG acts as the pure spin injector and the ferromagnetic metal Co layer acts as the spin current detector. With the insertion of 5 nm Cu layer, the two ferromagnetic layers are decoupled, thus allowing unambiguous separation of the SSE and ANE contributions under the same experimental conditions in the same sample.

  4. Separation of spin Seebeck effect and anomalous Nernst effect in Co/Cu/YIG

    Science.gov (United States)

    Tian, Dai; Li, Yufan; Qu, D.; Jin, Xiaofeng; Chien, C. L.

    2015-05-01

    The spin Seebeck effect (SSE) and Anomalous Nernst effect (ANE) have been observed in Co/Cu/YIG (yttrium iron garnet) multi-layer structure, where the ferromagnetic insulator YIG acts as the pure spin injector and the ferromagnetic metal Co layer acts as the spin current detector. With the insertion of 5 nm Cu layer, the two ferromagnetic layers are decoupled, thus allowing unambiguous separation of the SSE and ANE contributions under the same experimental conditions in the same sample.

  5. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, N. S., E-mail: nsokolov@fl.ioffe.ru; Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Bursian, V. E.; Lutsev, L. V. [Ioffe Physical-Technical Institute of Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Maksimova, K. Yu.; Grunin, A. I. [Immanuel Kant Baltic Federal University, Kaliningrad 236041 (Russian Federation); Tabuchi, M. [Synchrotron Radiation Research Center, Nagoya University, Nagoya 464-8603 (Japan)

    2016-01-14

    Pulsed laser deposition has been used to grow thin (10–84 nm) epitaxial layers of Yttrium Iron Garnet Y{sub 3}Fe{sub 5}O{sub 12} (YIG) on (111)–oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films.

  6. Localized excitation of magnetostatic surface spin waves in yttrium iron garnet by shorted coaxial probe detected via spin pumping and rectification effect

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Wee Tee, E-mail: a0046479@u.nus.edu; Ong, C. K. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Peng, Bin [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-04-21

    We demonstrate the localized excitation and dc electrical detection of magnetostatic surface spin waves (MSSWs) in yttrium iron garnet (YIG) by a shorted coaxial probe. Thin films of NiFe and Pt are patterned at different regions onto a common bulk YIG substrate. A shorted coaxial probe is used to excite spin precession locally near various patterned regions. The dc voltages across the corresponding regions are recorded. For excitation of the Pt regions, the dc voltage spectra are dominated by the spin pumping of MSSWs from YIG, where various modes can be clearly distinguished. For the NiFe region, it is also found that spin pumping from MSSWs generated in YIG dominated the spectra, indicating that the spin pumped currents are dissipated into charge currents via the inverse Spin Hall effect (ISHE) in NiFe. For all regions, dc signals from YIG MSSWs are observed to be much stronger than the ferromagnetic resonance (FMR) uniform mode, likely due to the nature of the microwave excitation. The results indicate the potential of this probe for microwave imaging via dc detection of spin dynamics in continuous and patterned films.

  7. Effect of the magnon dispersion on the longitudinal spin Seebeck effect in yttrium iron garnets

    Science.gov (United States)

    Jin, Hyungyu; Boona, Stephen R.; Yang, Zihao; Myers, Roberto C.; Heremans, Joseph P.

    2015-08-01

    We study the temperature dependence of the longitudinal spin Seebeck effect (LSSE) in an yttrium iron garnet Y3F e5O12 (YIG)/Pt system for samples of different thicknesses. In this system, the thermal spin torque is magnon driven. The LSSE signal peaks at a specific temperature that depends on the YIG sample thickness. We also observe freeze-out of the LSSE signal at high magnetic fields, which we attribute to the opening of an energy gap in the magnon dispersion. We observe partial freeze-out of the LSSE signal even at room temperature, where kBT is much larger than the gap. This suggests that a subset of the magnon population with an energy below kBTC (TC˜40 K ) contributes disproportionately to the LSSE; at temperatures above TC, we label these magnons subthermal magnons. The T dependence of the LSSE at temperatures below the maximum is interpreted in terms of an empirical model that ascribes most of the temperature dependence to that of the thermally driven magnon flux, which is related to the details of the magnon dispersion.

  8. Yttrium Iron Garnet Thin Films with Very Low Damping Obtained by Recrystallization of Amorphous Material.

    Science.gov (United States)

    Hauser, Christoph; Richter, Tim; Homonnay, Nico; Eisenschmidt, Christian; Qaid, Mohammad; Deniz, Hakan; Hesse, Dietrich; Sawicki, Maciej; Ebbinghaus, Stefan G; Schmidt, Georg

    2016-02-10

    We have investigated recrystallization of amorphous Yttrium Iron Garnet (YIG) by annealing in oxygen atmosphere. Our findings show that well below the melting temperature the material transforms into a fully epitaxial layer with exceptional quality, both structural and magnetic. In ferromagnetic resonance (FMR) ultra low damping and extremely narrow linewidth can be observed. For a 56 nm thick layer a damping constant of α = (6.15 ± 1.50) · 10(-5) is found and the linewidth at 9.6 GHz is as small as 1.30 ± 0.05 Oe which are the lowest values for PLD grown thin films reported so far. Even for a 20 nm thick layer a damping constant of α = (7.35 ± 1.40) · 10(-5) is found which is the lowest value for ultrathin films published so far. The FMR linewidth in this case is 3.49 ± 0.10 Oe at 9.6 GHz. Our results not only present a method of depositing thin film YIG of unprecedented quality but also open up new options for the fabrication of thin film complex oxides or even other crystalline materials.

  9. Spatial evolution of multipeaked microwave magnetic envelope solitons in yttrium iron garnet thin films

    Science.gov (United States)

    Wu, Mingzhong; Kraemer, Michael A.; Scott, Mark M.; Patton, Carl E.; Kalinikos, Boris A.

    2004-08-01

    The spatial evolution of multi-peaked microwave magnetic envelope solitons in a thin yttrium iron garnet (YIG) film has been measured and analyzed. The experiments were done on a long and narrow 5-μm -thick single-crystal YIG film strip. Double-peaked and triple-peaked magnetostatic backward volume wave soliton pulses were excited at a nominal carrier frequency of 7.0GHz . The measurements utilized a movable inductive magnetodynamic probe detection system. The formation of these multi-peaked soliton (MPS) pulses is a two step process. First, an initial single large amplitude pulse gradually separates into two or more nonsolitonic peaks. After a certain propagation time, these nonsolitonic peaks evolve, in sequence, into solitonic peaks with constant phase (CP) and an overall stair-like profile. Typically, the larger amplitude peaks lead in time and become solitonic first. As the MPS signals propagate and decay, the peaks lose their CP character in reverse sequence. The region of existence for the “fully formed” MPS pulses for which all the individual peaks have CP character is extremely narrow, typically on the order of a few tenths of a millimeter. The velocities of the individual peaks scale linearly with the peak powers. A nonlinear response analysis of the peak velocity based on the method of envelopes gives a reasonable match to the data.

  10. Improvement of the multilayer morphology (alumina/Cu/YIG/Cu) to characterize YIG thin film

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Ismail; Siblini, Ali; Chatelon, Jean Pierre; Blanc-Mignon, Marie Francoise; Rousseau, Jean Jacques [Universite de Saint Etienne, Jean Monnet, 42023 Saint Etienne (France); Universite de Lyon (France)

    2011-07-15

    The aim of our study is to characterize yttrium iron garnet (YIG) thin film for its applications in the microwaves and magneto-optical domains. For this purpose, we have manufactured a microinductor by deposition of YIG film between two copper layers on an alumina substrate. Multilayers have been deposited by radio-frequency magnetron sputtering technique. Thin films of YIG are amorphous after deposition; a post-thermal annealing at 740 C for 2 h is necessary to obtain satisfactory magnetic properties. In this work, we have studied the effects of different parameters concerning the substrate surface state, deposition and post-thermal treatment of YIG and copper thin films on their structure and morphological properties. We have come against several mechanical and electrical problems: crack formation, detachment of YIG or Cu films from the substrate, deterioration of Cu films, open or short circuits. The roughness of alumina substrate and the annealing mode play an important role on the quality of the microinductor prototype. After several tests by varying different parameters, we have established a protocol permitting to manufacture a prototype of good quality. This prototype is characterized using: profilometry, scanning electron microscopy, X-ray diffraction, vibrating sample magnetometry, and a precision LCR meter. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Swift heavy ion-beam induced amorphization and recrystallization of yttrium iron garnet.

    Science.gov (United States)

    Costantini, Jean-Marc; Miro, Sandrine; Beuneu, François; Toulemonde, Marcel

    2015-12-16

    Pure and (Ca and Si)-substituted yttrium iron garnet (Y3Fe5O12 or YIG) epitaxial layers and amorphous films on gadolinium gallium garnet (Gd3Ga5O12, or GGG) single crystal substrates were irradiated by 50 MeV (32)Si and 50 MeV (or 60 MeV) (63)Cu ions for electronic stopping powers larger than the threshold value (~4 MeV μm(-1)) for amorphous track formation in YIG crystals. Conductivity data of crystalline samples in a broad ion fluence range (10(11)-10(16) cm(-2)) are modeled with a set of rate equations corresponding to the amorphization and recrystallization induced in ion tracks by electronic excitations. The data for amorphous layers confirm that a recrystallization process takes place above ~10(14) cm(-2). Cross sections for both processes deduced from this analysis are discussed in comparison to previous determinations with reference to the inelastic thermal-spike model of track formation. Micro-Raman spectroscopy was also used to follow the related structural modifications. Raman spectra show the progressive vanishing and randomization of crystal phonon modes in relation to the ion-induced damage. For crystalline samples irradiated at high fluences (⩾10(14) cm(-2)), only two prominent broad bands remain like for amorphous films, thereby reflecting the phonon density of states of the disordered solid, regardless of samples and irradiation conditions. The main band peaked at ~660 cm(-1) is assigned to vibration modes of randomized bonds in tetrahedral (FeO4) units.

  12. Characterization of Erbium Substituted Yttrium Iron Garnet Films Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Ramadan E. Shaiboub

    2014-01-01

    Full Text Available Yttrium iron garnet (YIG thin films substituted erbium ions (Er+3 Er0.4Y2.6Fe5O12 films were prepared by a sol-gel method at different temperatures which varied from 800 to 1000°C for 2 hours in air. Magnetic and microstructural properties of the films were characterized with X-ray diffraction (XRD, the field emission scanning electron microscopy (FESEM, and vibrating sample magnetometer (VSM. The XRD patterns of the sample have only peaks of the garnet structure. The lattice constants decrease, while the particle size increases from 51 to 85 nm as the annealing temperature increases with average in thickness of 300 nm. The saturation magnetization and the coercivity of the samples increased from 26 (emu/cc and 28 Oe for the film annealed at 800°C to 76 (emu/cc and 45 Oe for film annealed at 1000°C, respectively.

  13. The synthesis of single-phase yttrium iron garnet doped zinc and some structural and magnetic properties

    Science.gov (United States)

    Peña-Garcia, R.; Delgado, A.; Guerra, Y.; Duarte, G.; Gonçalves, L. A. P.; Padrón-Hernández, E.

    2017-01-01

    This work presents the single phase formation of yttrium iron garnet (YIG) doped with divalent Zn ions in samples fabricated by the sol–gel method and heat treated at 900 °C. We used stoichiometric amounts according to the formula Y3(Fe1‑x Zn x )5O12, (x  =  0, 0.01, 0.03 and 0.05). The x-ray diffraction data show the single phase formation with the lattice parameter increasing with the Zn concentration. The scanning electron microscopy images showed nanoparticles with a rod format, crowding more as the doping increased. Energy dispersive x-ray spectroscopy results confirmed the presence of Zn in the YIG structure. The Raman spectroscopy measurements show characteristic peaks of the YIG structure, and some characteristic peaks increasing with the Zn concentration. This confirms our successful result doping the YIG structure with the divalent Zn ion replacing the Fe positions. Magnetic measurements show coercive field values dominated by the shape and agglomeration of nanoparticles. For low doping we have a value of 88.50 Oe attributed to the particles’ morphology, and for the highest Zn concentrations the effects of agglomeration diminish the coercivity to 50 Oe. The total magnetic moment for low Zn concentrations increases slightly due to the replacement of Fe by Zn. For higher Zn concentrations, we can see a diminution of the magnetic saturation which is due to the growth of the crystal lattice parameter and thus a weakening of the exchange interactions between the magnetic sub-lattices in the Y3(Fe1‑x Zn x )5O12 ferrimagnetic compound. Changes in the magnetic moment do not have large values, showing the possibility of doping without a drastic change in this quantity.

  14. From optimization to dielectric resonator antenna (DRA) application of YIG: Synthesis approach

    Energy Technology Data Exchange (ETDEWEB)

    Wan Ali, Wan Fahmin Faiz [Structural Materials Niche Area, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Othman, Mohamadariff; Ain, Mohd Fadzil [School of Electrical and Electronics Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Abdullah, Norazharuddin Shah [Structural Materials Niche Area, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Ahmad, Zainal Arifin, E-mail: srzainal@usm.my [Structural Materials Niche Area, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia)

    2015-10-05

    Highlights: • 99.2% of the YIG purity was optimized using ANOVA-statistical approach. • The optimized YIG has shown a strong frequency resonant at 12.501 GHz. • Less than 1% error indicated the optimized YIG is suitable to be used as a DRA. • A stable radiation pattern of optimized YIG was also observed stable. - Abstract: The efficacy of yttrium iron garnet (YIG) as magneto-dielectric ceramic, depends heavily on its purity. The presence of undesirable phase(s) such as yttrium iron perovskite (YIP) has led to performance deterioration, which is critical especially in wireless communication devices. This work presents the use of an ANOVA-statistical approach to improve and optimize the YIG’s purity. Effects of particle sizes (5, 50 and 100 μm), reactant concentration (excess Fe{sub 2}O{sub 3} in standard YIG formulation – 0, 10, and 20 wt%), and formation temperatures (1150, 1200, and 1250 °C), on the purity of YIG were investigated. The results indicated that the obtained statistical model adequately represented the experimental data, as reflected in the 3D contour plot. It was also discovered that the concentration of Fe{sub 2}O{sub 3} reactant (up to 8 wt%) and formation temperature (1240 °C), significantly affects the formation of high-purity YIG while variation of the reactant’s particle sizes is seen insignificant. Finally, a possible application of the optimized YIG (OPYIG) in dielectric resonator antenna (DRA) application is demonstrated. It was found that OPYIG was resonating at 12.50 GHz with a stable and bi-directional radiation pattern. This optimization process is successfully produced 99.2% YIG and could be suitable for DRA application.

  15. Micromorphology, microstructure and magnetic properties of sputtered garnet multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Marcelli, R. [CNR, Roma (Italy). Ist. di Elettronica dello Stato Solido; Padeletti, G.; Gambacorti, N.; Simeone, M.G.; Fiorani, D. [CNR, Monterotondo Stazione (Italy). Ist. di Chimica dei Materiali

    1998-12-31

    The growth technique, the micromorphological and microstructural characterization by means of atomic force microscopy (AFM) and secondary ions mass spectrometry (SIMS) as well as the magnetic properties of a novel class of magnetic multilayers, based on radio frequency (RF) sputtered thin amorphous garnet films, are presented. One, three and five thin film multilayers composed by amorphous pure yttrium iron garnet (a:YIG) and amorphous gadolinium gallium garnet (a:GGG) have been grown on GGG single crystal substrates. The multilayer interfaces have been found to be comparable in both, the three and five-layers structure. Low field susceptibility measurements, showed a paramagnetic behavior for the single layer YIG film. For the three and five layers samples, irreversibility effects were observed, giving evidence of magnetic clusters at the interface YIG/GGG.

  16. Structure and thermodynamics of uranium-containing iron garnets

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.; Engelhard, Mark H.; Lanzirotti, Antonio; Newville, Matthew; Ilton, Eugene S.; Sutton, Stephen R.; Xu, Hongwu

    2016-09-01

    Use of crystalline garnet as a waste form phase appears to be advantageous for accommodating actinides from nuclear waste. Previous studies show that large amounts of uranium (U) and its analogues such as cerium (Ce) and thorium (Th) can be incorporated into the garnet structure. In this study, we synthesized U loaded garnet phases, Ca3UxZr2-xFe3O12 (x = 0.5 - 0.7), along with the endmember phase, Ca3(Zr2)SiFe3+2O12, for comparison. The oxidation states of U were determined by X-ray photoelectron and absorption spectroscopies, revealing the presence of mixed pentavalent and hexavalent uranium in the phases with x = 0.6 and 0.7. The oxidation states and coordination environments of Fe were measured using transmission 57Fe-Mössbauer spectroscopy, which shows that all iron is tetrahedrally coordinated Fe3+ (x = 0 and substituted sample), U substitution had a significant effect on local environments, the extent of U isubstitution within this range had a minimal effect on the structure, and unlike in the x = 0 sample, Fe exists in two different environments in the substituted garnets. The enthalpies of formation of garnet phases from constituent oxides and elements were determined by high temperature oxide melt solution calorimetry. The results indicate that these substituted garnets are thermodynamically stable under reducing conditions. Our structural and thermodynamic analysis further provides explanation for the formation of natural uranium garnet, elbrusite-(Zr), and supports the potential use of Ca3UxZr2-xFe3O12 as viable waste form phases for U and other actinides.

  17. Structure and thermodynamics of uranium-containing iron garnets

    Science.gov (United States)

    Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.; Engelhard, Mark H.; Lanzirotti, Antonio; Newville, Matthew; Ilton, Eugene S.; Sutton, Stephen R.; Xu, Hongwu

    2016-09-01

    Use of crystalline garnet as a waste form phase appears to be advantageous for accommodating actinides from nuclear waste. Previous studies show that large amounts of uranium (U) and its analogues such as cerium (Ce) and thorium (Th) can be incorporated into the garnet structure. In this study, we synthesized U loaded garnet phases, Ca3UxZr2-xFe3O12 (x = 0.5-0.7), along with the endmember phase, Ca3(Zr2)SiFe3+2O12, for comparison. The oxidation states of U were determined by X-ray photoelectron and absorption spectroscopies, revealing the presence of mixed pentavalent and hexavalent uranium in the phases with x = 0.6 and 0.7. The oxidation states and coordination environments of Fe were measured using transmission 57Fe-Mössbauer spectroscopy, which shows that all iron is tetrahedrally coordinated Fe3+. U substitution had a significant effect on local environments, the extent of U substitution within this range had a minimal effect on the structure, and unlike in the x = 0 sample, Fe exists in two different environments in the substituted garnets. The enthalpies of formation of garnet phases from constituent oxides and elements were first time determined by high temperature oxide melt solution calorimetry. The results indicate that these substituted garnets are thermodynamically stable under reducing conditions. Our structural and thermodynamic analysis further provides explanation for the formation of natural uranium garnet, elbrusite-(Zr), and supports the potential use of Ca3UxZr2-xFe3O12 as viable waste form phases for U and other actinides.

  18. Influence of static and dynamic dipolar fields in bulk YIG/thin film NiFe systems probed via spin rectification effect

    Science.gov (United States)

    Soh, Wee Tee; Tay, Z. J.; Yakovlev, N. L.; Peng, Bin; Ong, C. K.

    2017-03-01

    The characteristics of the static and dynamic components of the dipolar fields originating from a bulk polycrystalline yttrium iron garnet (YIG) substrate are probed by depositing a NiFe (Permalloy) layer on it, which acts as a detector. By measuring dc voltages generated via spin rectification effect (SRE) within the NiFe layer under microwave excitation, we characterize the influence of dipolar fields from bulk YIG on the NiFe layer. It is found that the dynamic YIG dipolar fields modify the self-SRE of NiFe, driving its own rectification voltages within the NiFe layer, an effect we term as non-local SRE. This non-local SRE only occurs near the simultaneous resonance of both YIG and NiFe. On the other hand, the static dipolar field from YIG manifests itself as a negative anisotropy in the NiFe layer which shifts the latter's ferromagnetic resonance frequency.

  19. Enhancement of magnetic circular dichroism in bi-layered ZnO-Bi:YIG thin films

    Directory of Open Access Journals (Sweden)

    Shinichiro Mito

    2017-05-01

    Full Text Available Bi-layered zinc oxide (ZnO and bismuth substituted yttrium iron garnet (Bi:YIG was fabricated and magneto-optically investigated. Enhancement of Faraday rotation and magnetic circular dichroism (MCD was observed. The wavelength of MCD enhancement was in good agreement with exciton wavelength of ZnO. This enhancement was only observed in the bi-layer, and implies that the exciton generated in ZnO interacted with Bi:YIG. Because the exciton wavelength of ZnO can be controlled by electro-optic effect, this result has the potential for realizing voltage control of magneto-optic effect.

  20. Synthesis of nanocrystalline yttrium iron garnet by low temperature solid state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Yu Hongtao, E-mail: yuhongtao@swust.edu.cn; Zeng Liwen; Lu Chao; Zhang Wenbo; Xu Guangliang

    2011-04-15

    In this work, nanocrystalline yttrium iron garnet powders were produced by low temperature solid state reaction. The phase evolution during the procedure was determined from the thermogravimetric and differential thermal analysis, and the x-ray diffraction patterns. The results of transmission electron microscopy indicated that the prepared powders exhibited grain size at the nano-level of 20 {approx} 40 nm. Dense ceramics with a theoretical density of around 98% were obtained from the prepared powders after sintering at 1280 deg. C, a relative low sintering temperature compared with conventional ceramic processes, and the saturation magnetizations of sintered samples were also determined. - Research Highlights: {yields}No sol or gel form during the synthesis processing using nitrates and citric acid as raw materials. {yields}The synthesis method needs a low heating temperature (700 deg. C) compared with conventional solid state reaction. {yields}The product is a single phase with homogeneous size distribution and nano grains (20 {approx} 40 nm) confirmed by TEM. {yields}Dense YIG ceramic can be sintered at a low temperature (1280 deg. C) compared with that in conventional processing.

  1. Microstructure and hysteresis curves of samarium-holmium-iron garnet synthesized by coprecipitation

    Directory of Open Access Journals (Sweden)

    Caffarena Valeska da Rocha

    2003-01-01

    Full Text Available An investigation was made into the synthesis and magnetic properties of Sm(3-xHo xFe5O12 (samarium-holmium-iron garnet ferrite, as yet absent from the literature. The material in question was synthesized by co-precipitation, starting from hydrated chlorides of rare-earth elements and ferrous sulfate, and the mixed hydroxide co-precipitate was calcined at 1000 °C. Using PVA as a binder, rectangular cross section-shaped compacts were produced by means of steel-die pressing, drying and sintering from 1200 to 1450 °C. The main conclusions of this study were that the coercive force decreases as the sintering temperature increases, and that the effect of substituting holmium for samarium in SmIG is entirely different from that provided by replacing yttrium by gadolinium in YIG, which is the most important result of this work. An in-depth investigation will be necessary to determine the correlation between microstructure/magnetic properties and ceramic processing variables.

  2. Optical constants of yttrium-iron garnet single-crystal film structures

    Science.gov (United States)

    Sobol, V. R.; Volchik, T. V.; Arabei, S. M.; Korzun, B. V.; Kalanda, N. A.

    2009-03-01

    Light-attenuation spectra of yttrium-iron garnet single-crystal film structures grown on a gallium-gadolinium garnet substrate by liquid-phase epitaxy from the undercooled solution in the melt have been studied and compared with those of bulk yttrium-iron garnet samples. The calculated optical constants are discussed taking into account the influence of crystal field on the splitting of the energy states of iron ions in the film samples.

  3. Ferroelectricity of domain walls in rare earth iron garnet films.

    Science.gov (United States)

    Popov, A I; Zvezdin, K A; Gareeva, Z V; Mazhitova, F A; Vakhitov, R M; Yumaguzin, A R; Zvezdin, A K

    2016-11-16

    In this paper, we report on electric polarization arising in a vicinity of Bloch-like domain walls in rare-earth iron garnet films. The domain walls generate an intrinsic magnetic field that breaks an antiferroelectric structure formed in the garnets due to an exchange interaction between rare earth and iron sublattices. We explore 180° domain walls whose formation is energetically preferable in the films with perpendicular magnetic anisotropy. Magnetic and electric structures of the 180° quasi-Bloch domain walls have been simulated at various relations between system parameters. Singlet, doublet ground states of rare earth ions and strongly anisotropic rare earth Ising ions have been considered. Our results show that electric polarization appears in rare earth garnet films at Bloch domain walls, and the maximum of magnetic inhomogeneity is not always linked to the maximum of electric polarization. A number of factors including the temperature, the state of the rare earth ion and the type of a wall influence magnetically induced electric polarization. We show that the value of polarization can be enhanced by the shrinking of the Bloch domain wall width, decreasing the temperature, and increasing the deviations of magnetization from the Bloch rotation that are regulated by impacts given by magnetic anisotropies of the films.

  4. Magnetic anisotropies in ultrathin bismuth iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Elena, E-mail: popova@physique.uvsq.fr [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS/Université de Versailles-Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles (France); Franco Galeano, Andres Felipe [Laboratoire PROcédés, Matériaux et Energie Solaire (PROMES), CNRS/Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France); Deb, Marwan [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS/Université de Versailles-Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles (France); Warot-Fonrose, Bénédicte [Centre d' Elaboration de Matériaux et d' Etudes Structurales (CEMES), CNRS, 29 rue Jeanne Marvig, 31055 Toulouse (France); Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS–Universidad de Zaragoza (Spain); Kachkachi, Hamid [Laboratoire PROcédés, Matériaux et Energie Solaire (PROMES), CNRS/Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France); Gendron, François [Institut des NanoSciences de Paris (INSP), CNRS/Université Pierre et Marie Curie-Paris 6, 4 place Jussieu, Boîte courrier 840, 75252 Paris Cedex 05 (France); Ott, Frédéric [Laboratoire Léon Brillouin (LLB), CNRS/CEA, Bâtiment 563, CEA Saclay, 91191 Gif sur Yvette Cedex (France); and others

    2013-06-15

    Ultrathin bismuth iron garnet Bi{sub 3}Fe{sub 5}O{sub 12} films were grown epitaxially on (001)-oriented gadolinium gallium garnet substrates. Film thickness varied from two to three dozens of unit cells. Bi{sub 3}Fe{sub 5}O{sub 12} films grow pseudomorphically on substrates up to a thickness of 20 nm, and then a lattice relaxation occurs. Magnetic properties of the films were studied as a function of bismuth iron garnet thickness. The magnetization and cubic anisotropy decrease with decreasing film thickness. The uniaxial magnetocrystalline anisotropy is constant for all film thicknesses. For two unit cell thick films, the easy magnetization axis changes from in-plane to perpendicular to the plane direction. Such a reorientation takes place as a result of the competition of constant uniaxial perpendicular anisotropy with weakening film magnetization. - Highlights: ► Ultrathin Bi{sub 3}Fe{sub 5}O{sub 12} films were grown epitaxially on structure-matching substrates. ► Magnetic properties of Bi{sub 3}Fe{sub 5}O{sub 12} were studied down to the thickness of 2.5 nm. ► Reorientation of easy magnetization axis as a function of film thickness was observed.

  5. Ferroelectricity of domain walls in rare earth iron garnet films

    Science.gov (United States)

    Popov, A. I.; Zvezdin, K. A.; Gareeva, Z. V.; Mazhitova, F. A.; Vakhitov, R. M.; Yumaguzin, A. R.; Zvezdin, A. K.

    2016-11-01

    In this paper, we report on electric polarization arising in a vicinity of Bloch-like domain walls in rare-earth iron garnet films. The domain walls generate an intrinsic magnetic field that breaks an antiferroelectric structure formed in the garnets due to an exchange interaction between rare earth and iron sublattices. We explore 180° domain walls whose formation is energetically preferable in the films with perpendicular magnetic anisotropy. Magnetic and electric structures of the 180° quasi-Bloch domain walls have been simulated at various relations between system parameters. Singlet, doublet ground states of rare earth ions and strongly anisotropic rare earth Ising ions have been considered. Our results show that electric polarization appears in rare earth garnet films at Bloch domain walls, and the maximum of magnetic inhomogeneity is not always linked to the maximum of electric polarization. A number of factors including the temperature, the state of the rare earth ion and the type of a wall influence magnetically induced electric polarization. We show that the value of polarization can be enhanced by the shrinking of the Bloch domain wall width, decreasing the temperature, and increasing the deviations of magnetization from the Bloch rotation that are regulated by impacts given by magnetic anisotropies of the films.

  6. Spin Seebeck measurements of current-induced switching in YIG

    Science.gov (United States)

    Bartell, Jason; Jermain, Colin; Aradhya, Sriharsha; Wang, Hailong; Buhrman, Robert; Yang, Fengyuan; Ralph, Daniel; Fuchs, Gregory

    Quantifying spin torques generated at the interface between a normal metal (NM) and a ferromagnetic insulator (FI) is an important step in understanding the spin hall effect without charge transport. Measuring magnetization in NM/FI devices is challenging, however, because both magnetoresistive and magneto-optical signals are tiny in thin-film bilayers. We show that a promising alternative measurement approach is the use of picosecond thermal gradients to study spin torques in Pt/Yttrium Iron Garnet (YIG) bilayers. Recently, we demonstrated the application of heat to stroboscopically transduce a local magnetic moment into an electrical signal via the time resolved anomalous Nernst effect (TRANE) in ferromagnetic metals. Using a similar geometry the spin Seebeck effect of YIG combined with the inverse spin Hall effect of Pt enables measurement of local magnetization. Here we describe our study using this technique to study current-induced switching in Pt/YIG with sub-10 nm thick YIG films We acknowledge support from AFOSR.

  7. Strongly Frequency-dependent Photoinduced Magnetic Disaccommodation in YIG: 0.001 Ca

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    By measuring frequency dependence of photoinduced double peaks of disaccommodation, DA as a function of temperature was observed at very Iow frequency: 0.07~0.30 kHz, in a single crystal of yttrium iron garnet, YIG with small amounts of Ca: 0.001, while only single peak existed at the higher frequency 0.5 kHz. The behavior is explained based on theoretical approach on a domain wall dynamics.

  8. New ferrimagnetic biocomposite film based in collagen and yttrium iron garnet

    Directory of Open Access Journals (Sweden)

    2010-12-01

    Full Text Available In recent years a great interest in the study of the association of magnetic with biological material for bioapplications has been observed in the literature. This work analyses the development of new magnetic biocomposite films from a magnetic ferrite and a biopolymer. Magnetic and dielectric properties of Y3Fe5O12 (YIG/collagen composite films were studied as a function of the YIG concentration. This biocomposite was also characterized by Infrared Spectroscopy (IR, Thermal Analysis (DSC and TG and scanning electron microspcopic (SEM methods. The magnetization and dielectric measurements were performed at room temperature. The results demonstrated that ferrimagnetic garnet (YIG and collagen (Col can be used to obtain a homogeneous composite. All the composite films showed a ferromagnetic behavior and they were characterized as a soft magnet material. These results show that Col-YIG biocomposites are biological films with magnetic properties that can be employed as a versatile performance materials, due to their flexible dielectric and magnetic features. They could be used as electronic devices in biological applications.

  9. Spin Seebeck effect in YIG-based systems

    Science.gov (United States)

    Siegel, Gene; Prestgard, Megan; Teng, Shiang; Tiwari, Ashutosh

    2015-03-01

    Recently, the use of magnetic insulators (yttrium iron garnet, YIG) in conjunction with platinum has sparked interest in spintronics research. This is due to the existence of the spin Seebeck effect which could potentially be a source of pure spin current for spintronic devices. Furthermore, these coatings could potentially show the versatility of spintronics by acting as a spin-based thermoelectric generator, thereby providing a new method of transforming heat into power. However, there remain questions regarding the origins and legitimacy of the spin Seebeck effect. Moreover, recent publications claim that the observed effects are a manifestation of magnetic proximity effects in platinum and not a true SSE signal. Because of these concerns, we are providing supporting evidence that the voltages observed in the YIG/Pt films are truly SSE voltages. We are reaffirming claims that magnon transport theory provides an accurate basis for explaining SSE behavior. Finally, we illustrate the advantages of pulsed laser deposition, as these YIG films possess a large SSE voltage compared to those films grown using liquid phase deposition techniques.

  10. Investigation of the timescale of the spin-Seebeck effect in yttrium iron garnet from pico to nanoseconds

    Science.gov (United States)

    Jamison, John; Yang, Zihao; Myers, Roberto

    We investigate the timescale of the spin-Seebeck effect (SSE) in yttrium iron garnet (YIG) by exciting transient thermal gradients with 150-fs laser heating pulses. The transient thermal gradient generates a spin current which is measured by a Pt top contact via the inverse spin Hall-effect (ISHE). A pulse selection system is used to lower the repetition rate of the laser to low frequencies (e.g. 10 kHz) such that the transient thermal gradient decays completely before the arrival of the next pulse. Lock-in detection, referenced at the laser repetition rate, is used to measure ISHE as a function of magnetic field, verifying that SSE is generated from the individual ultrafast laser pulses. Next, utilizing an optical delay line we vary the time delay between two equal fluence pulses. The correlated ISHE signal is measured with lock-in detection as a function of delay time with 0.1 ps resolution out to 1 ns to examine the characteristic decay times of the ultrafast laser pulse induced spin-Seebeck effect. Work supported by ARO MURI W911NF-14-1-0016.

  11. Bose–Einstein condensation and superfluidity of magnons in yttrium iron garnet films

    Science.gov (United States)

    Sun, Chen; Nattermann, Thomas; Pokrovsky, Valery L.

    2017-04-01

    A brief review of the theory of quasi-equilibrium Bose–Einstein condensation and superfluidity of magnons in a film of yttrium iron garnet is presented. The Bose–Einstein condensation of magnons in YIG film at room temperature under rf pumping was discovered in 2006 by the Münster experimental team led by Demokritov. There are two symmetric minima in the magnon spectrum of a ferromagnetic film, and therefore two condensates. In 2012 the same experimental group discovered the interference of these two condensates, thus proving their coherence. The reviewed theory that explains these experimental observations predicts that the reflection symmetry of the magnon gas is spontaneously violated at Bose–Einstein condensation in thick films. In thin films the condensate is symmetric at low magnetic field and transits to the non-symmetric state at higher field. Dipolar interaction energy depends on the phase of the condensate wave function. In quasi-equilibrium it traps the phase. All these features are due to the interaction between magnons Since the magnon condensate is coherent, a logical question is whether the condensate is superfluid. Two obstacles for superfluidity are the dominance of the normal magnon density over the condensate (approximately 100-fold) and the phase trapping. We show that the velocity of the superfluid part is by 5–7 decimal orders larger than that of the normal part at typical values of the field gradients. Thus, the spin current is mainly superfluid. The phase trapping violates the U(1) symmetry, reducing it to a discrete symmetry. Stationary superfluid flow is still possible, but it becomes inhomogeneous. In 1-d stationary flow at low kinetic energy the condensate phase over long intervals of length remains close to the trapped values and changes by 2π within comparatively short intervals (phase solitons). The current and number of magnons are conserved globally but not locally, since they transfer spin momentum to the lattice. These

  12. Properties of rare-earth iron garnets from first principles

    Science.gov (United States)

    Nakamoto, Ryan; Xu, Bin; Xu, Changsong; Xu, Hu; Bellaiche, L.

    2017-01-01

    Structural and magnetic properties of rare-earth iron garnets (RIG), which contain 160 atoms per unit cell, are systematically investigated for rare-earth elements varying from La to Lu (and including Y), by performing spin polarized density-functional calculations. The effects of 4 f electrons (as core or as valence electrons) on the lattice constant, internal coordinates, and bond lengths are found to be rather small, with these predicted structural properties agreeing rather well with available experiments. On the other hand, treating such electrons as valence electrons is essential to interpret the total magnetization measured in some RIG at low temperature, the different orientation and magnitude of the magnetizations that Fe and rare-earth ions can adopt and to also explain why some RIG have a compensation temperature while others do not. The magnetic exchange couplings and orbital-projected density of states are also reported for two representative materials, namely Gd3Fe5O12 and Nd3Fe5O12 , when accounting for their 4 f electrons.

  13. Longitudinal Spin Seebeck Effect in Bi-substituted Neodymium Iron Garnet on Gadolinium Gallium Garnet Substrate Prepared by MOD Method

    Science.gov (United States)

    Asada, H.; Kuwahara, A.; Sueyasu, K.; Ishibashi, T.; Liu, Q.; Lou, G.; Kishimoto, K.; Koyanagi, T.

    Bi-substituted Neodymium Iron Garnet (Nd3-xBixFe5O12, Bi:NIG) thin films with the Bi composition x=0-1.0 are prepared on both the (001) and (111) oriented gadolinium gallium garnet (GGG) substrates by a metal organic decomposition method. Crystalline qualities and magnetic properties of these films are examined by X-ray diffraction, atomic force microscopy and vibrating sample magnetometer. Longitudinal spin Seebeck effects (LSSEs) are investigated by means of the inverse spin Hall effect in a Pt film. The increase of LSSE voltage in Bi:NIG(x=0-1.0)/Pt bilayers on GGG(001) is observed with the increase of Bi composition. In the case of GGG(111), the LSSE voltage for Bi:NIG(x=1.0) is also larger than that for NIG.

  14. Low temperature spin reorientation in dysprosium iron garnet

    Energy Technology Data Exchange (ETDEWEB)

    Lahoubi, M; Younsi, W; Soltani, M L [Department of Physics, Badji-Mokhtar University, BP-12 Annaba, 23000 (Algeria); Voiron, J; Schmitt, D, E-mail: mlahoubi@gmail.co [Louis Neel Laboratory, CNRS-UJF, BP-166, 38042 Grenoble Cedex 9 (France)

    2009-03-01

    The spin reorientation (SR) phase transition in dysprosium iron garnet (Dy{sub 3}Fe{sub 5}O{sub 12} or DyIG) have been studied by specific heat C{sub p}(T) and high field magnetisation measurements M{sub T}(H) and M{sub H}(T) on single crystals at low temperature. A first order SR is observed with a sharp jump at T{sub SR} = 14.5+-0.5 K in the C{sub p}(T) curve which corresponds to a spontaneous change from the high temperature (HT) easy direction (111) to an (uuw) angular low temperature (LT) phases. Above T{sub SR}, the magnetic structure is described by the irreducible representation (IR) A{sub 2g} of the rhombohedral space group R 3 c. Below T{sub SR}, the magnetic structure changes in the monoclinic the space group C2/c with the IR A{sub g}. When the field H is kept aligned along the hard symmetry directions (100) and (110), we obtain respectively the variation of the angular positions theta(T) and theta'(T) from the total spontaneous magnetisation down to 1.5 K (theta = 39.23 deg. and theta' = 30.14 deg.) and the results are in good agreement with the previous observations in low fields. When the sample is allowed to rotate freely on itself, the critical field H{sub c}(T) between the HT(111) and the LT(uuw) angular phases permits us to precise the transition line up to 15 T and 40 K between the so called canted field induced (FI) and the associated collinear magnetic phases. The experimental magnetic phase diagram (MPD) is precisely determined in the (H{sub c}-T) plane and the domains of the existence and the stability of the two magnetic phases are specified.

  15. Anisotropic magnetic properties of dysprosium iron garnet (DyIG)

    Energy Technology Data Exchange (ETDEWEB)

    Lahoubi, M; Younsi, W; Soltani, M-L [Department of Physics, Badji-Mokhtar University, BP 12 - 23000 Annaba (Algeria); Ouladdiaf, B, E-mail: mlahoubi@gmail.co [Institut Laue Langevin, BP 156 - 38042 Grenoble Cedex 9 (France)

    2010-01-01

    The magnetic properties of dysprosium iron garnet (DyIG) have been studied by performing high resolution powder neutron diffraction experiments and high dc fields magnetizations on single crystals. Among all the reflections (hkl) indexed in the nuclear cubic space group (CSG) Ia 3-bar d with h+k+l=2n and k=[000], the superstructure lines (hkl)* forbidden by the symmetry (222)* and (622)* are not observed in the patterns at all temperatures. The pattern at 130 K is well interpreted within the magnetic modes F belonging to the irreducible representation (IR) T{sub 1g} of the CSG and identified to the room temperature ferrimagnetic Neel model. The high magnetic field behavior of the spontaneous collinear magnetic structure (MS) along the easy axis (EA) <111> is isotropic. Below 130 K, the patterns exhibit additional magnetic superstructure lines. They are associated to the appearance of the spontaneous non collinear MS which is described in the subgroup of the CSG, R 3-bar c within the IR A{sub 2g}. A strong magnetization anisotropy (MA) is observed at 1.5 K in the low symmetry phases were the spin reorientation transition (SR) occur at T{sub RS}=14.5 K. The onset of MA is detected below two characteristic temperatures, Ta{sub 1}=125 K and Ta{sub 2}=75 K respectively to the hard axis (HA) <100> and <110>. Symmetry arguments are used in the framework of the theory of representation analysis (RA) applied to the subgroup of R 3-bar c, C2/c within the IR A{sub g}. It seems that this MA results essentially from the difference between the spontaneous non collinear MS and the field induced (FI) configurations. All results are discussed with previous neutrons studies.

  16. Surface sensitivity of the spin Seebeck effect in the Pt/YIG system

    Science.gov (United States)

    Aqeel, Aisha; Vera-Marun, Ivan J.; van Wees, Bart J.; Palstra, Thomas T. M.

    2015-03-01

    It is well-known that the surface plays an important role in the spin Seebeck effect (SSE). However the effect of mechanical treatment on the SSE has not been systematically studied yet. Here, we have investigated the influence of the interface quality on the SSE in a bilayer system of platinum and yttrium iron garnet (Pt/YIG). The surfaces of the YIG crystals are modified by different types of mechanical polishing before Pt deposition for different samples. We observed that the magnitude and magnetic field dependence of the SSE is strongly influenced by mechanical treatment of the YIG surface. No definite relation has been found between the SSE response and the sample roughness. However, we observe a direct correlation between the saturation magnetic field (Hsat) of the SSE and the roughness of sample, as the former increases by moving from soft toward coarse particle polishing. The change in the magnitude of Hsat can be attributed to the presence of a perpendicular magnetic anisotropy due to the treatment induced surface strain or shape anisotropy in the Pt/YIG system.

  17. Synthesis of Dense, Fine-Grained YIG Ceramics by Two-Step Sintering

    Science.gov (United States)

    Li, X. X.; Zhou, J. J.; Deng, J. X.; Zheng, H.; Zheng, L.; Zheng, P.; Qin, H. B.

    2016-10-01

    A two-step sintering (TSS) process has been used to fabricate yttrium iron garnet (YIG) ceramics with high density and fine grain size. The densification, microstructure, and magnetic properties were investigated. The sample prepared by the TSS process with first-step sintering temperature ( T 1) of 1350°C, second-step sintering temperature ( T 2) of 1300°C, and holding time of 18 h had density above 99% of theoretical and exhibited uniform microstructure with small average grain size (2.4 μm). The saturation magnetization ( M S) of this sample reached 27.4 emu/g. These results indicate that the TSS process can effectively suppress grain-boundary migration while maintaining active grain-boundary diffusion to obtain dense, fine-grained YIG ceramics with appropriate magnetic properties.

  18. Tunable Optical Nanocavity of Iron-garnet with a Buried Metal Layer

    Directory of Open Access Journals (Sweden)

    Alexey N. Kuz'michev

    2015-05-01

    Full Text Available We report on the fabrication and characterization of a novel magnetophotonic structure designed as iron garnet based magneto-optical nanoresonator cavity constrained by two noble metal mirrors. Since the iron garnet layer requires annealing at high temperatures, the fabrication process can be rather challenging. Special approaches for the protection of metal layers against oxidation and morphological changes along with a special plasma-assisted polishing of the iron garnet layer surface were used to achieve a 10-fold enhancement of the Faraday rotation angle (up to 10.8\\(^{\\circ}/\\mu\\m within a special resonance peak of 12 nm (FWHM linewidth at a wavelength of 772 nm, in the case of a resonator with two silver mirrors. These structures are promising for tunable nanophotonics applications, in particular, they can be used as magneto-optical (MO metal-insulator-metal waveguides and modulators.

  19. Thermally excited magnonic spin currents probed by the longitudinal spin-Seebeck effect in YIG

    Energy Technology Data Exchange (ETDEWEB)

    Kehlberger, Andreas; Roeser, Rene; Jakob, Gerhard; Klaeui, Mathias [Institute of Physics, Johannes Gutenberg-University Mainz, 55099 Mainz (Germany); Jungfleisch, Benjamin; Hillebrands, Burkard; Nowak, Ulrich [Department of Physics, Institute of Technology Kaiserslautern, 67663 Kaiserslautern (Germany); Ritzmann, Ulrike; Hinzke, Denise [Department of Physics, University of Konstanz, 78457 Konstanz (Germany); Kim, Dong Hun; Ross, Caroline [Department of Materials Science and Engineering, MIT, Cambridge, MA 02139 (United States)

    2013-07-01

    In the research field of spin caloric transport one of most the prominent and still not understood effects is the spin-Seebeck effect (SSE) in magnetic insulators. Many explanations consider thermally excited magnons as the underling mechanism, for which direct evidence is missing so far. We present a systematic study of the SSE in Yttrium Iron Garnet (YIG) films of different thicknesses. From the thickness dependence of the measured inverse spin Hall effect we can unambiguously identify the SSE effect. Corresponding simulations on atomistic length scales allow us to deduce the propagation length of the thermally excited magnons, which could be used to manipulate domain walls.

  20. The nature of photoinduced changes in the magnetostriction of yttrium-iron garnet single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vorob' eva, N. V., E-mail: vnv@anrb.ru [Russian Academy of Sciences, Institute of Molecular and Crystals Physics (Russian Federation)

    2011-05-15

    A model of the occurrence of photoinduced changes in linear magnetostriction is proposed based on a complex experimental study of magnetostrictive strains in yttrium-iron garnets Y{sub 3}Fe{sub 5}O{sub 12} with low contents of different impurities. Analytical expressions for calculating the magnetostriction in yttrium-iron garnet single crystals with different types of doping are presented. The correlation of the photoinduced change in the magnetostriction with the crystallographic features of the samples is demonstrated. The changes in the magnetostriction constants are analyzed quantitatively for samples prepared in different ways.

  1. Data consistencies of swift heavy ion induced damage creation in yttrium iron garnet analyzed by different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Meftah, A., E-mail: ameftah@hotmail.fr [LRPCSI, Faculté des Sciences, Université 20 août 1955-Skikda, BP 26, Route d’El-Hadaïek, 21000 Skikda (Algeria); Benhacine, H. [LRPCSI, Faculté des Sciences, Université 20 août 1955-Skikda, BP 26, Route d’El-Hadaïek, 21000 Skikda (Algeria); Benyagoub, A. [CIMAP (CEA-CNRS-ENSICAEN-Université de Caen Basse Normandie), BP 5133, 14070 Caen Cedex 5 (France); Grob, J.J. [InESS, CNRS, Université de Strasbourg, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Izerrouken, M. [CRND, BP 43, Sebbala, Draria, Algiers (Algeria); Kadid, S. [LRPCSI, Faculté des Sciences, Université 20 août 1955-Skikda, BP 26, Route d’El-Hadaïek, 21000 Skikda (Algeria); Khalfaoui, N. [CIMAP (CEA-CNRS-ENSICAEN-Université de Caen Basse Normandie), BP 5133, 14070 Caen Cedex 5 (France); Stoquert, J.P. [InESS, CNRS, Université de Strasbourg, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Toulemonde, M. [CIMAP (CEA-CNRS-ENSICAEN-Université de Caen Basse Normandie), BP 5133, 14070 Caen Cedex 5 (France); Trautmann, C. [GSI, Helmholtz Zentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt (Germany); Technische Universität Darmstadt, Petersenstraße 23, 64287 Darmstadt (Germany)

    2016-01-01

    Pronounced swelling is observed when single crystals of yttrium iron garnet Y{sub 3}Fe{sub 5}O{sub 12} (YIG) are irradiated in the electronic energy loss regime with various swift heavy ions. The out-of-plane swelling was measured by scanning across the border line between an irradiated and a virgin area of the sample surface with the tip of a profilometer. The step height varied between 20 and 600 nm depending on fluence, electronic energy loss and total range of the ions. The step height divided by the ion range as a function of the ion fluence exhibits a linear increase in the initial phase and saturates at high fluences leading to a density decrease of around 1.7%. With complementary channeling-Rutherford-backscattering experiments (c-RBS), the damage fraction and the corresponding damage cross section were extracted and compared to the cross section deduced from swelling measurements. Irradiation effects were also characterized by scanning force microscopy (SFM). A threshold for damage creation as deduced from all the present physical characterizations is 5.5 ± 1.0 keV/nm. The value is in full agreement with previous measurements confirming that swelling and SFM characterizations can provide information concerning the electronic energy loss threshold for track formation. In contrast, track radii deduced from swelling measurements are smaller and radii from SFM are larger than deduced from c-RBS analysis. The results of Y{sub 3}Fe{sub 5}O{sub 12} of this work are compared with data obtained for other crystalline oxides and for ionic crystals.

  2. YIG based broad band microwave absorber: A perspective on synthesis methods

    Science.gov (United States)

    Sharma, Vinay; Saha, J.; Patnaik, S.; Kuanr, Bijoy K.

    2017-10-01

    The fabrication of a thin layer of microwave absorber that operates over a wide band of frequencies is still a challenging task. With recent advances in nanostructure synthesis techniques, considerable progress has been achieved in realizations of thin nanocomposite layer designed for full absorption of incident electromagnetic (EM) radiation covering S to K band frequencies. The primary objective of this investigation is to achieve best possible EM absorption with a wide bandwidth and attenuation >10 dB for a thin absorbing layer (few hundred of microns). Magnetic yttrium iron garnet (Y3Fe5O12; in short YIG) nanoparticles (NPs) were prepared by sol-gel (SG) as well as solid-state (SS) reaction methods to elucidate the effects of nanoscale finite size on the magnetic behavior of the particles and hence their microwave absorption capabilities. It is found that YIG prepared by these two methods are different in many ways. Magnetic properties investigated using vibrating sample magnetometry (VSM) exhibit that the coercivity (Hc) of solid-state NPs is much larger (72 Oe) than the sol-gel NPs (31 Oe). Microwave absorption properties were studied by ferromagnetic resonance (FMR) technique in field sweep mode at different fixed frequencies. A thin layer (∼300 μm) of YIG film was deposited using electrophoretic deposition (EPD) technique over a coplanar waveguide (CPW) transmission line made on copper coated RT/duroid® 5880 substrates. Temperature dependent magnetic properties were also investigated using VSM and FMR techniques. Microwave absorption properties were investigated at high temperatures (up to 300 °C) both for sol-gel and solid-state synthesized NPs and are related to skin depth of YIG films. It is observed that microwave absorption almost vanishes when the temperature reached the Néel temperature of YIG.

  3. Bismuth Substituted Yttrium Iron Garnet Single Crystal Films Prepared by Sol-gel Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Magneto-optic Faraday rotation effect and the amount of bismuth substituted in yttrium iron garnet single crystal films prepared by gel-coating on modified gadolinium-gallium garnet substrates are investigated, where the gel is synthesized by a sol-gel reaction of nitrates and ethylene glycol. The coated gel is annealed in air at temperatures up to 660℃ for 4h, which is about 300℃ lower than that of liquid-phase epitaxy. The maximum amount of Bi substitution is x=2.7 and the crystallization temperature of garnet phase decreases with the increase of x down to 520℃ for x=2.7. In this film, a huge Faraday rotation of -8.1×104 (°)/cm at λ=0.633μm is obtained.

  4. Investigation of nanostructural, thermal and magnetic properties of yttrium iron garnet synthesized by mechanochemical method

    Science.gov (United States)

    Karami, M. A.; Shokrollahi, H.; Hashemi, B.

    2012-09-01

    This paper focuses on the magnetic, structural and thermal properties of mechanically alloyed Y2O3/α-Fe2O3 mixed powders and investigates the effects of the mechanical milling and heat treatment on the synthesis of yttrium iron garnet from the primary materials. The morphological and structural studies were carried out by scanning electron microscope and X-ray diffraction, respectively. The thermal activities were measured by differential thermal analysis. The magnetic properties were studied by vibrating sample magnetometer. The results showed that high-energy milling does not lead to the garnet formation and even does not decrease the temperature of the garnet formation. Furthermore, the orthoferrite phase can be achieved slightly during the milling process (up to 96 h) and completely by the heat treatment at lower temperatures (850 °C).

  5. Dynamic performance of magneto-optical Bi-substituted rare-earth iron garnet

    Institute of Scientific and Technical Information of China (English)

    Shiguang Li; Changxi Yang; Enyao Zhang; Guofan Jin

    2005-01-01

    @@ The dynamic performances of magneto-optical Bi-substituted rare-earth iron garnet (BIG) under different external magnetic fields and at different frequencies are experimentally studied. The measurement data indicate that the Faraday rotation angle is almost proportional to the external magnetic field when the garnet is far less saturated, while there is good switch performance when it is saturated. The higher the working frequency is, the larger the saturation magnetic field and the phase delay of Faraday angle relative to the field. The saturation fields and the phase delays at different frequencies are measured. The dynamic performance of the BIG determines the performance of BIG-based optical devices. To get the better performance of such devices, the garnets with small dampness and large stiffness should be chosen elaborately.

  6. Investigation of nanostructural, thermal and magnetic properties of yttrium iron garnet synthesized by mechanochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Karami, M.A. [Materials Science and Engineering Department, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Shokrollahi, H., E-mail: shokrollahi@sutech.ac.ir [Electroceramics Group, Materials Science and Engineering Department, Shiraz University of Technology, 71555-313 Shiraz (Iran, Islamic Republic of); Hashemi, B. [Materials Science and Engineering Department, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2012-09-15

    This paper focuses on the magnetic, structural and thermal properties of mechanically alloyed Y{sub 2}O{sub 3}/{alpha}-Fe{sub 2}O{sub 3} mixed powders and investigates the effects of the mechanical milling and heat treatment on the synthesis of yttrium iron garnet from the primary materials. The morphological and structural studies were carried out by scanning electron microscope and X-ray diffraction, respectively. The thermal activities were measured by differential thermal analysis. The magnetic properties were studied by vibrating sample magnetometer. The results showed that high-energy milling does not lead to the garnet formation and even does not decrease the temperature of the garnet formation. Furthermore, the orthoferrite phase can be achieved slightly during the milling process (up to 96 h) and completely by the heat treatment at lower temperatures (850 Degree-Sign C). - Highlights: Black-Right-Pointing-Pointer The results showed that high energy milling did not lead to the garnet formation. Black-Right-Pointing-Pointer The milling process did not decrease the temperature of the garnet formation. Black-Right-Pointing-Pointer The orthoferrite phase can be achieved slightly during the mechanical milling. Black-Right-Pointing-Pointer The milling process can lower the temperature of orthoferrite formation. Black-Right-Pointing-Pointer The milled powder for 96 h completely transforms to orthoferrite below 700 Degree-Sign C.

  7. Temperature dependence of spin Hall magnetoresistance in thin YIG/Pt films

    Science.gov (United States)

    Marmion, S. R.; Ali, M.; McLaren, M.; Williams, D. A.; Hickey, B. J.

    2014-06-01

    We report on the temperature dependence of the recently discovered spin Hall magnetoresistance in a yttrium iron garnet (YIG)/platinum (Pt) thin film. The YIG/Pt layers are an ideal choice as the combination of an insulating magnetic material and the high spin-orbit interaction in Pt gives a relatively large magnetoresistance and no electrical conduction occurs in the YIG. The temperature dependence of the magnetoresistance was measured between 1.4 K and 280 K from which the temperature dependence of the spin diffusion length in Pt has been extracted. We found that the best agreement between our data and the recently published [Chen et al., Phys. Rev. B 87, 144411 (2013), 10.1103/PhysRevB.87.144411] theory of the spin Hall magnetoresistance is given by an assumed Elliot-Yafet mechanism of spin relaxation with temperature-independent spin Hall angle and spin mixing conductance. The best estimate for the spin diffusion length returns values between 0.57 and 3.85 nm.

  8. Robust longitudinal spin-Seebeck effect in Bi-YIG thin films.

    Science.gov (United States)

    Siegel, Gene; Prestgard, Megan Campbell; Teng, Shiang; Tiwari, Ashutosh

    2014-03-21

    In recent years, the coupling of magnetic insulators (bismuth-doped yttrium iron garnet, Bi-YIG) with platinum has garnered significant interest in spintronics research due to applicability as spin-current-driven thermoelectric coatings. These coatings bridge the gap between spintronics technologies and thermoelectric materials, providing a novel means of transforming waste heat into electricity. However, there remain questions regarding the origins of the spin-Seebeck effect (SSE) as well as claims that observed effects are a manifestation of magnetic proximity effects, which would induce magnetic behavior in platinum. Herewith we provide support that the voltages observed in the Bi-YIG/Pt films are purely SSE voltages. We reaffirm claims that magnon transport theory provides an ample basis for explaining SSE behavior. Finally, we illustrate the advantages of pulsed-laser deposition, as these Bi-YIG films possess large SSE voltages (even in absence of an external magnetic field), as much as twice those of films fabricated via solution-based methods.

  9. Magnetic moments in a gadolinium iron garnet studied by soft-X-ray magnetic circular dichroism

    NARCIS (Netherlands)

    Rudolf, P.; Sette, F.; Tjeng, L.H.; Meigs, G.; Chen, C.T.

    1992-01-01

    The magnetic moments of Gd and Fe in gadolinium iron garnet (Gd3Fe5O12) were probed at 77 and 300 K by soft-X-ray magnetic circular dichroism (SXMCD) measurements at the GdMa4,5 and at the FeL2,3 absorption edges. The SXMCD signal at each edge allows one to independently determine the magnetic order

  10. Observation of spin rectification in Pt/yttrium iron garnet bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Jinwei; Fan, Xiaolong, E-mail: fanxiaolong@lzu.edu.cn; Zhou, Hengan; Zhao, Xiaobing; Zhao, Jing; Zhang, Fengzhen; Xue, Desheng [The Key Lab for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Ma, Li; Zhou, Shiming [Shanghai Key Laboratory of Special Artificial Microstructure and Technology and Pohl Institute of Solid State Physics and School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China)

    2015-05-07

    We used the ferromagnetic resonance (FMR) to study the dc voltage generation in Pt 20 nm layer deposited on yttrium iron garnet. Although the main contribution to the FMR voltage comes from the inverse spin Hall effect associated with spin pumping, the spin rectification would also contribute the resonance signal via the “new” magnetoresistance effect in Pt layer. Based on a symmetry consideration, we can separate those two effects through angular dependent resonance amplitude.

  11. Properties of epitaxial (210) iron garnet films exhibiting the magnetoelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Arzamastseva, G. V. [Russian Academy of Sciences, Kotelnikov Institute of Radio Engineering and Electronics, Fryazino Branch (Russian Federation); Balbashov, A. M. [Moscow Power Institute (Russian Federation); Lisovskii, F. V., E-mail: lisf@rambler.ru; Mansvetova, E. G.; Temiryazev, A. G.; Temiryazeva, M. P. [Russian Academy of Sciences, Kotelnikov Institute of Radio Engineering and Electronics, Fryazino Branch (Russian Federation)

    2015-04-15

    The properties of epitaxial magnetic (LuBi){sub 3}(FeGa){sub 5}O{sub 12} iron garnet films grown on (210) substrates, which exhibit the magnetoelectric effect, are experimentally studied. The induced anisotropy and the behavior of the domain structure in the films are investigated in uniform and nonuniform external fields. The existing hypotheses about the nature of the magnetoelectric coupling in such films are critically analyzed.

  12. Properties of epitaxial (210) iron garnet films exhibiting the magnetoelectric effect

    Science.gov (United States)

    Arzamastseva, G. V.; Balbashov, A. M.; Lisovskii, F. V.; Mansvetova, E. G.; Temiryazev, A. G.; Temiryazeva, M. P.

    2015-04-01

    The properties of epitaxial magnetic (LuBi)3(FeGa)5O12 iron garnet films grown on (210) substrates, which exhibit the magnetoelectric effect, are experimentally studied. The induced anisotropy and the behavior of the domain structure in the films are investigated in uniform and nonuniform external fields. The existing hypotheses about the nature of the magnetoelectric coupling in such films are critically analyzed.

  13. Iron implantation in gadolinium gallium garnet studied by conversion-electron Moessbauer spectroscopy

    CERN Document Server

    Szucs, I; Fetzer, C; Langouche, G

    1998-01-01

    Gadolinium gallium garnet single crystals were implanted with doses of sup 5 sup 7 Fe ions in the range 8x10 sup 1 sup 5 - 6x10 sup 1 sup 6 atoms cm sup - sup 2. Depending on the dose, iron with Fe sup 2 sup + or Fe sup 3 sup + charge states was found to have formed after the implantation. After a subsequent annealing in air, the iron oxidized to Fe sup 3 sup +. The Moessbauer and channelling measurements showed lattice recrystallization taking place at 600 deg. C. After recrystallization, the iron was found to have substituted for gallium ions both at the octahedral and at the tetrahedral positions. The relative concentration of the two types of iron at the two sites shifted towards the equilibrium distribution upon high-temperature annealing. (author)

  14. Magnetic nanosized rare earth iron garnets R3Fe5O12: Sol-gel fabrication, characterization and reinspection

    Science.gov (United States)

    Opuchovic, Olga; Kareiva, Aivaras; Mazeika, Kestutis; Baltrunas, Dalis

    2017-01-01

    The magnetic nanosized rare earth iron garnets (R3Fe5O12, where R=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were prepared by an aqueous sol-gel method. Herein we present, that all these garnets can be obtained by this effective synthesis method simply by changing the temperature of the final annealing. It was also demonstrated, that a different annealing temperature leads to a different particle size distribution of the final product. The SEM analysis results revealed that the smallest particles were formed in the range of 75-130 nm. The phase purity and structure of the rare earth iron garnets were estimated using XRD analysis and Mössbauer spectroscopy. Magnetic properties were determined by magnetization measurements. The relation between the particle size, composition and magnetic properties of the sol-gel derived garnets were also discussed in this study.

  15. Nano- and micro-scale Bi-substituted iron garnet films for photonics and magneto-optic eddy current defectoscopy

    Science.gov (United States)

    Berzhansky, V. N.; Karavainikov, A. V.; Mikhailova, T. V.; Prokopov, A. R.; Shaposhnikov, A. N.; Shumilov, A. G.; Lugovskoy, N. V.; Semuk, E. Yu.; Kharchenko, M. F.; Lukienko, I. M.; Kharchenko, Yu. M.; Belotelov, V. I.

    2017-10-01

    Synthesis technology of nano-scale Bi-substituted iron garnets films with high magneto-optic activity for photonics and plasmonics applications were proposed. The micro-scale single-crystal garnet films with different types of magnetic anisotropy as a magneto-optic sensors were synthesized. It was shown that easy-axis anisotropy films demonstrated the best results for visualization of redistribution eddy current magnetic field near defects.

  16. Faraday effect of bismuth iron garnet thin film prepared by mist CVD method

    Science.gov (United States)

    Yao, Situ; Sato, Takafumi; Kaneko, Kentaro; Murai, Shunsuke; Fujita, Koji; Tanaka, Katsuhisa

    2015-06-01

    Metastable bismuth iron garnet (BIG, an abbreviation of Bi3Fe5O12), one kind of garnet-type ferrites, is known to manifest very large Faraday rotation as well as low optical absorption in the visible to infrared region. We report on successful synthesis of thin film composed of single-phase BIG epitaxially grown on single-crystalline gadolinium gallium garnet (Gd3Ga5O12, GGG) substrate by using mist chemical vapor deposition (CVD) method, which is an emerging technique for preparation of thin films. The crystal structure, surface morphology, and magnetic, optical and magneto-optical properties of the resultant thin films have been explored. The BIG thin film has a relatively flat surface free from roughness compared to those prepared by other vapor deposition methods. Saturation magnetization is about 1620 G at room temperature, which is close to that expected from the ideal magnetic structure of BIG. The maximum value of Faraday rotation angle reaches 54.3 deg/µm at a wavelength of 424 nm. This value is rather large when compared with those reported for BIG thin films prepared by other techniques. The wavelength dependence of Faraday rotation angle is analyzed well in terms of the crystal electric field (CEF) level schema. Our result suggests that the mist CVD method is a simple and effective technique to synthesize BIG thin film with excellent magneto-optical properties.

  17. Ultrafast optical control of magnetization dynamics in polycrystalline bismuth doped iron garnet thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deb, Marwan, E-mail: marwan.deb@ipcms.unistra.fr; Vomir, Mircea; Rehspringer, Jean-Luc; Bigot, Jean-Yves [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, CNRS, Université de Strasbourg, BP 43, 23 rue du Loess, 67034 Strasbourg Cedex 02 (France)

    2015-12-21

    Controlling the magnetization dynamics on the femtosecond timescale is of fundamental importance for integrated opto-spintronic devices. For industrial perspectives, it requires to develop simple growth techniques for obtaining large area magneto-optical materials having a high amplitude ultrafast Faraday or Kerr response. Here we report on optical pump probe studies of light induced spin dynamics in high quality bismuth doped iron garnet polycrystalline film prepared by the spin coating method. We demonstrate an ultrafast non-thermal optical control of the spin dynamics using both circularly and linearly polarized pulses.

  18. Magnetooptics of single and microresonator iron-garnet films at low temperatures

    Science.gov (United States)

    Shaposhnikov, A. N.; Prokopov, A. R.; Berzhansky, V. N.; Mikhailova, T. V.; Karavainikov, A. V.; Kharchenko, M. F.; Belotelov, V. I.; Lukienko, I. M.; Miloslavskaya, O. V.; Kharchenko, Yu. M.

    2016-02-01

    We have investigated the low-temperature behavior of the optical and magneto-optical properties of (Bi, Gd, Al)-substituted yttrium iron-garnet films that are either single or microresonator, i.e. sandwiched between two dielectric Bragg mirrors. It was shown that the magneto-optical properties of the microresonators with a magnetic film core are mainly determined by the properties of the constituent magnetic films. Special attention was paid to the compositions possessing magnetic compensation temperatures. The phenomenon of the temperature hysteresis was found and discussed for several samples. This testifies the fact that the magnetic moment reorientation in a magnetic field occurs by the full cycle of the first-order phase transitions "collinear phase - non-collinear phase - collinear phase". The Faraday hysteresis curves at around magnetic compensation temperatures are demonstrated to be very informative concerning composition of a sample. In particular, the hysteresis curves measured for the magnetic films on the garnet substrates showed bursts that indicates formation of a transition layer.

  19. Flux-gate magnetic field sensor based on yttrium iron garnet films for magnetocardiography investigations

    Science.gov (United States)

    Vetoshko, P. M.; Gusev, N. A.; Chepurnova, D. A.; Samoilova, E. V.; Syvorotka, I. I.; Syvorotka, I. M.; Zvezdin, A. K.; Korotaeva, A. A.; Belotelov, V. I.

    2016-08-01

    A new type of f lux-gate vector magnetometer based on epitaxial yttrium iron garnet films has been developed and constructed for magnetocardiography (MCG) investigations. The magnetic field sensor can operate at room temperature and measure MCG signals at a distance of about 1 mm from the thoracic cage. The high sensitivity of the sensor, better than 100 fT/Hz1/2, is demonstrated by the results of MCG measurements on rats. The main MCG pattern details and R-peak on a level of 10 pT are observed without temporal averaging, which allows heart rate anomalies to be studied. The proposed magnetic sensors can be effectively used in MCG investigations.

  20. Faraday effect of polycrystalline bismuth iron garnet thin film prepared by mist chemical vapor deposition method

    Science.gov (United States)

    Yao, Situ; Kamakura, Ryosuke; Murai, Shunsuke; Fujita, Koji; Tanaka, Katsuhisa

    2017-01-01

    We have synthesized polycrystalline thin film composed of a single phase of metastable bismuth iron garnet, Bi3Fe5O12, on a fused silica substrate, one of the most widely utilized substrates in the solid-state electronics, by using mist chemical vapor deposition (mist CVD) method. The phase purity and stoichiometry are confirmed by X-ray diffraction and Rutherford backscattering spectrometry. The resultant thin film shows a small surface roughness of 3.251 nm. The saturation magnetization at room temperature is 1200 G, and the Faraday rotation angle at 633 nm reaches -5.2 deg/μm. Both the magnetization and the Faraday rotation angles are somewhat higher than those of polycrystalline BIG thin films prepared by other methods.

  1. Peculiarities of the inverse Faraday effect induced in iron garnet films by femtosecond laser pulses

    Science.gov (United States)

    Kozhaev, M. A.; Chernov, A. I.; Savochkin, I. V.; Kuz'michev, A. N.; Zvezdin, A. K.; Belotelov, V. I.

    2016-12-01

    The inverse Faraday effect in iron garnet films subjected to femtosecond laser pulses is experimentally investigated. It is found that the magnitude of the observed effect depends nonlinearly on the energy of the optical pump pulses, which is in contradiction with the notion that the inverse Faraday effect is linear with respect to the pump energy. Thus, for pump pulses with a central wavelength of 650 nm and an energy density of 1 mJ/cm2, the deviation from a linear dependence is as large as 50%. Analysis of the experimental data demonstrates that the observed behavior is explained by the fact that the optically induced normal component of the magnetization is determined, apart from the field resulting from the inverse Faraday effect, by a decrease in the magnitude of the precessing magnetization under the influence of the femtosecond electromagnetic field.

  2. Systematic control of stress-induced anisotropy in pseudomorphic iron garnet thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, M., E-mail: Masashi.Kubota@dsn.rohm.co.jp [Correlated Electron Research Group (CERG) and Cross-Correlated Materials Research Group (CMRG), RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Power Electronics R and D Unit, ROHM Co., Ltd., Kyoto 615-8585 (Japan); Shibuya, K.; Tokunaga, Y. [Correlated Electron Research Group (CERG) and Cross-Correlated Materials Research Group (CMRG), RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Kagawa, F. [Department of Applied Physics and Quantum Phase Electronics Center (QPEC), University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); CREST, Japan Science and Technology Agency, Bunkyo, Tokyo 113-8656 (Japan); Tsukazaki, A. [Department of Applied Physics and Quantum Phase Electronics Center (QPEC), University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); PRESTO, Japan Science and Technology Agency, Bunkyo, Tokyo 113-8656 (Japan); Tokura, Y.; Kawasaki, M. [Correlated Electron Research Group (CERG) and Cross-Correlated Materials Research Group (CMRG), RIKEN Advanced Science Institute, Wako, Saitama 351-0198 (Japan); Department of Applied Physics and Quantum Phase Electronics Center (QPEC), University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan)

    2013-08-15

    Iron garnets are one of the most well-studied magnetic materials that enabled magnetic bubble memories and magneto-optical devices employing films with a perpendicular easy axis. However, most studies have been conducted on rather thick films (>1 μm), and it has not been elucidated whether it is possible to align the magnetic easy axis perpendicular to the film plane for much thinner (<100 nm) films by overcoming shape anisotropy. We studied the effects of epitaxial strain and film composition on the magnetic properties of 50-nm-thick garnet thin films grown by pulsed-laser deposition. Y{sub 3}Fe{sub 5}O{sub 12} was selected as the most prototypical garnet and Sm{sub 3−x}Tm{sub x}Fe{sub 5}O{sub 12} (x=1, 2, 3) was selected in view of its negatively large magnetostriction constants. We employed (111) planes of single crystalline Gd{sub 3}Ga{sub 5}O{sub 12} and (CaGd){sub 3}(MgGaZr){sub 5}O{sub 12} substrates to tune the epitaxial strain. Thin films with a pseudomorphic structure were fabricated with the in-plane strain (ε{sub //}) ranging from −1.5% to +0.5%, corresponding to the stress-induced anisotropy field (H{sub A}) ranging from −40 kOe to +25 kOe, respectively. The magnetization ratio of the out-of-plane to in-plane component (M{sub ⊥}/M{sub //}) systematically varied in accord with H{sub A}, yielding M{sub ⊥}/M{sub //} >1 for thin films with H{sub A} values larger than 20 kOe. Among the films grown, Tm{sub 3}Fe{sub 5}O{sub 12} on Gd{sub 3}Ga{sub 5}O{sub 12} showed the largest ε{sub //} and H{sub A} values of +0.5% and +25 kOe, respectively, to realize an apparently perpendicular easy axis, confirmed by a large M{sub ⊥}/M{sub //} value of 7.8. Further, magnetic force microscope images showed a maze pattern typical of a perpendicularly magnetized film. These results reveal a method for tailoring the magnetic anisotropy of garnet ultrathin films by utilizing epitaxial strain. These thin films may be utilized to obtain nanoscale magnetic bubbles

  3. Preparation and properties of yttrium iron garnet microcrystal in $P_{2}O_{5}-MgO$ glass

    CERN Document Server

    Chen, G J; Chang, Y S; Lee, H M; Lin, Y J; 10.1016/j.jallcom.2004.07.041

    2005-01-01

    The fabrication of phosphorus-based glasses containing Y/sub 3/Fe/sub 5/O/sub 12/ crystals by the incorporation method was studied. From transmission electron microscopy observation, there is only one rod- like crystalline phase identified as Y/sub 3/Fe/sub 5/O/sub 12/ existing in the glass matrix. When the content of YIG is 30wt.%, the as-cast sample shows a Faraday rotation of 85 degrees /cm and a magnetization of 0.4emu/g in a field of 14kOe. After heat treatment, the magnetic and optical properties of the glass ceramic changed owing to the thermal diffusion of iron ions into the glass matrix.

  4. Reply to the comment by L Helseth on "Bismuth-induced increase of the magneto-optical effects in iron garnets"

    CERN Document Server

    Zenkov, A V

    2003-01-01

    The discussion concerns the origin of the giant Faraday rotation in bismuth- and lead-doped iron garnets. It is convincingly shown that this effect is due to the covalent admixture of Bi(Pb)6p-wavefunctions to oxygen 2p-orbitals in octahedral and tetrahedral Fe-O clusters of iron garnets. The crucial role of the quantum-chemical computation of electronic structure of such clusters is emphasized. (reply)

  5. Pressure-dependent compatibility of iron in garnet: Insights into the origin of ferropicritic melt

    Science.gov (United States)

    Zhang, JunBo; Liu, YongSheng; Ling, WenLi; Gao, Shan

    2017-01-01

    Iron-rich silicate melts in the Earth's deep mantle have been seismologically and geochemically inferred in recent years. The origin of local enrichments in iron and low-velocity seismic anomalies that have been detected in dense mantle domains are critical to understanding the mantle's evolution, which has been canonically explained by long-term chemical reactions between the Earth's silicate mantle and its liquid iron outer core. However, the Pleistocene alkaline ferropicrites (∼0.73 Ma) from Wudi, North China, show chemical and Sr-Nd-Os isotopic features that suggest derivation from the preferential melting of silica-deficient eclogite, a lithology of delaminated mafic lower continental crust that had stagnated at mid-upper mantle depths during the Mesozoic decratonization of the North China block. These rocks are characterized by substantial enrichment in iron (14.9-15.2 wt% Fe2O3), relative depletion in silica (40-41 wt% SiO2) and decoupled Y and heavy rare earth element (HREE) compositions. These ferropicrites have particularly higher Y/Yb ratios than the other Cenozoic basalts from North China. The pressure-dependent compatibility of Fe, Y and Yb in eclogitic garnet can adequately explain the Fe-enrichment and Y-HREE decoupling of the Wudi ferropicrites and indicates that the eclogites were melted at pressures of 5-8 GPa, as also constrained by previous high-P-T experiments. This melting depth ties together a seismically imaged high-velocity anomaly that extends from 150 km to 350 km in depth under the study area, which has been commonly interpreted as evidence for the stagnation of the missing, delaminated continental lithosphere. Our findings provide an alternative mechanism to produce an extremely iron-rich mantle reservoir in addition to core-mantle interaction. Iron-rich silicate melts that form by this process are likely to be denser than the ambient mantle peridotite (and therefore drive flow downward) and may play a more significant role in the

  6. Comment on "Bismuth-induced increase of the magneto-optical effects in iron garnets", 14, 6957 (2002)

    CERN Document Server

    Helseth, L E

    2003-01-01

    In a recent paper, Zenkov and Moskvin (2002 J. Phys.: Condens. Matter 14 6957) analysed the influence of bismuth on magneto-optical effects in iron garnets, questioning the validity of previous approaches (Dionne and Allen 1993 J. Appl. Phys. 73 6127; 1994 J. Appl. Phys. 75 6372, Allen and Dionne 1993 J. Appl. Phys. 73 1630, Helseth et al2001 Phys. Rev. 64 174406). In this comment I point out that these claims apparently have no foundation. (comment)

  7. Detection of spin pumping from YIG by spin-charge conversion in a Au /Ni80Fe20 spin-valve structure

    Science.gov (United States)

    Vlietstra, N.; van Wees, B. J.; Dejene, F. K.

    2016-07-01

    Many experiments have shown the detection of spin currents driven by radio-frequency spin pumping from yttrium iron garnet (YIG), by making use of the inverse spin-Hall effect, which is present in materials with strong spin-orbit coupling, such as Pt. Here we show that it is also possible to directly detect the resonance-driven spin current using Au|permalloy (Py, Ni80Fe20 ) devices, where Py is used as a detector for the spins pumped across a YIG|Au interface. This detection mechanism is equivalent to the spin-current detection in metallic nonlocal spin-valve devices. By finite element modeling we compare the pumped spin current from a reference Pt strip with the detected signals from the Au|Py devices. We find that for one series of Au|Py devices the calculated spin pumping signals mostly match the measurements, within 20%, whereas for a second series of devices additional signals are present which are up to a factor 10 higher than the calculated signals from spin pumping. We also identify contributions from thermoelectric effects caused by the resonant (spin-related) and nonresonant heating of the YIG. Thermocouples are used to investigate the presence of these thermal effects and to quantify the magnitude of the spin-(dependent-)Seebeck effect. Several additional features are observed, which are also discussed.

  8. Microwave Magnetoelectric Effects in Single Crystal YIG/PMN-PT Bilayers

    Science.gov (United States)

    Shastry, S.; Srinivasan, G.; Mantese, J. V.

    2004-03-01

    Layered magnetostrictive/piezoelectric structures are multifunctional due to mechanical force mediated electromagnetic coupling. This study is concerned with microwave magnetoelectric (ME) interactions in layered ferrite-piezoelectric oxides. Ferromagnetic resonance (FMR) is a powerful tool for such studies. An electric field E applied to the composite produces a mechanical deformation in PZT that in turn is coupled to the ferrite, resulting in a shift in the resonance field. Information on the nature of high frequency ME coupling could therefore be obtained from data on field shift vs E. Since the measurement accuracy depends very much on the FMR line width, bilayers consisting of single crystal or epitaxial low-loss ferrites are ideal for the investigations. Studies were performed at 9.4 GHz on bilayers consisting of (100), (110) or (111) epitaxial yttrium iron garnet (YIG) films (1-130 micron) and (100) lead magnesium niobate-lead titanate (PMN-PT). The samples were positioned outside a hole at the bottom or side of a TE102-reflection type cavity. Resonance absorption vs bias magnetic field H were obtained as a function of E = 0-8 kV/cm for both in-plane and out-of-plane H. Important results are as follows. (i) The ME coupling is stronger for H perpendicular to the bilayer than for in-plane H. (ii) The coupling strength is maximum for E and H along in YIG. (iii) The ME constant varies from a maximum of 6 Oe cm/kV for bilayers with 4 micron YIG to a minimum of 3 Oe cm/kV for 110 micron YIG. (iv) The variation of resonance field shift with the volume ratio for the two phases is in agreement with theory [1,2]. 1. M. I. Bichurin, I. A. Kornev, V. M. Petrov, A. S. Tatarenko, Yu. V. Kiliba, and G. Srinivasan, Phys. Rev. B 64, 094409 (2001). 2. M. I. Bichurin, V. M. Petrov, Yu. V. Kiliba, G. Srinivasan, Phys. Rev. B 66, 134404 (2002). This work was supported by a grant from the National Science Foundation (DMR-0322254)

  9. Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M; Nur-E-Alam, M; Alameh, K [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027 (Australia); Premchander, P; Lee, Y T [Department of Information and Communications, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712 (Korea, Republic of); Kotov, V A [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 11 Mohovaya St, Moscow, 125009 (Russian Federation); Lee, Y P, E-mail: m.vasiliev@ecu.edu.au [Quantum Photonic Science Research Center, Department of Physics, Hanyang University, 133-791 (Korea, Republic of)

    2011-02-23

    We investigate the magneto-optic properties, crystal structure and annealing behaviour of nano-composite media with record-high magneto-optic quality exceeding the levels reported so far in sputtered iron-garnet films. Bi-substituted dysprosium-gallium iron-garnet films having excess bismuth oxide content are deposited using RF co-sputtering, and a range of garnet materials are crystallized using conventional oven-annealing processes. We report, for the first time ever, the results of optimization of thermal processing regimes for various high-performance magneto-optic iron-garnet compositions synthesized and describe the evolution of the optical and magneto-optical properties of garnet-Bi-oxide composite-material films occurring during the annealing processes. The crystallization temperature boundaries of the system (BiDy){sub 3}(FeGa){sub 5}O{sub 12} : Bi{sub 2}O{sub 3} are presented. We also report the results of x-ray diffraction and energy-dispersive x-ray spectroscopy studies of this recently developed class of high-performance magneto-optic composites. Our hypothesis of iron oxides being the cause of excess optical absorption in sputtered Bi-iron-garnet films is confirmed experimentally.

  10. Thermalization of magnons in yttrium-iron garnet: nonequilibrium functional renormalization group approach

    Energy Technology Data Exchange (ETDEWEB)

    Hick, Johannes; Rueckriegel, Andreas; Kopietz, Peter [Institut fuer Theoretische Physik, Goethe Universitaet Frankfurt am Main (Germany); Kloss, Thomas [Laboratoire de Physique et Modelisation des Milieux Condense, CNRS and Universite Joseph Fourier, Grenoble (France)

    2013-07-01

    Using a nonequilibrium functional renormalization group (FRG) approach we calculate the time evolution of the momentum distribution of a magnon gas in contact with a thermal phonon bath. As a cutoff for the FRG procedure we use a hybridization parameter Λ giving rise to an artificial damping of the phonons. Within our truncation of the FRG flow equations the time evolution of the magnon distribution is obtained from a rate equation involving cutoff-dependent nonequilibrium self-energies, which in turn satisfy FRG flow equations depending on cutoff-dependent transition rates. Our approach goes beyond the Born collision approximation and takes the feedback of the magnons on the phonons into account. We use our method to calculate the thermalization of a quasi two-dimensional magnon gas in the magnetic insulator yttrium-iron garnet after a highly excited initial state has been generated by an external microwave field. In this material interactions which do not conserve the magnon particle number are present and are considered in our approach.

  11. Magnetic and structural properties of Zn-doped yttrium iron garnet nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Garcia, R.; Delgado, A.; Guerra, Y.; Farias, B.V.M.; Martinez, D. [Pos Graduacao em Ciencia de Materiais, Universidade Federal de Pernambuco, Recife, PE (Brazil); Skovroinski, E. [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Recife, PE (Brazil); Galembeck, A. [Pos Graduacao em Ciencia de Materiais, Universidade Federal de Pernambuco, Recife, PE (Brazil); Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Recife, PE (Brazil); Padron-Hernandez, E. [Pos Graduacao em Ciencia de Materiais, Universidade Federal de Pernambuco, Recife, PE (Brazil); Departamento de Fisica, Universidade Federal de Pernambuco, Recife, PE (Brazil)

    2016-09-15

    Zn-doped YIG was prepared using the sol-gel method with TGA measurements showing the phase formation between 900 and 1000 C. XRD analysis showed close to 1100 C the formation of Franklinite phase, coexisting with the cubic YIG. Y{sub 3}(Fe{sub 1-x}Zn{sub x}){sub 5}O{sub 12} samples with different Zn concentrations (x = 0, 0.01, 0.03, and 0.05) were prepared and analyzed for a magnetic study. A decrease in magnetic moment of the samples was confirmed on increasing the concentration of Zn ions. This decrease is due to the substitution of Fe ions by Zn. This also confirmed the results of XRD showing the linear increase in the lattice parameter. Fittings by Bloch's law shows results compared with those already reported in the literature. The exponent and constant for the Bloch law presented similar values to those reported for YIG doped with other ions. We obtained the parameter α ∝10{sup -6} K{sup -n} with n close to 1.9 for all samples. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Anomalous magnetic reordering in magnetodielectric terbium iron garnet at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lahoubi, Mahieddine, E-mail: mlahoubi@hotmail.fr [Department of Physics, Laboratory L.P.S., Faculty of Sciences, Badji Mokhtar-Annaba University, PO Box -12, 23000 Annaba (Algeria); Ouladdiaf, Bachir [Institut Laue Langevin, BP 156, F-38042 Grenoble Cedex 9 (France)

    2015-01-01

    The paper deals with five topics: i) the single three-dimensional irreductible representation (Γ{sub 4g}=T{sub 1g}) of the paramagnetic space group Ia3{sup ¯}d No. 230 is chosen according to the representation analysis of Bertaut for the interpretation of the neutron powder diffraction experiments performed on terbium iron garnet (Tb{sub 3}Fe{sub 5}O{sub 12}); ii) the use of the method of the “symmetry lowering device” of Bertaut in order to select the appropriate rhombohedral subgroup of Ia3{sup ¯}d which allows to deal with the case where the cubic description provides an incomplete answer to the changes observed below 160 K in the ferrimagnetic structure around the [1 1 1] axis from the Néel model toward the “double umbrella” observed at 13 K; iii) the magnetic modes belonging to the one-dimensional irreductible representation A{sub 2g} of the highest rhombohedral subgroup R3{sup ¯}c No. 167 are able to describe the occurrence of its anisotropic character which steeply increases below 160 K due to the concomitant anisotropic effects; iv) the broad anomaly observed near 54 K in the temperature dependences of the components of both sublattices of the Tb{sup 3+} ions in the Wyckoff positions (6e) and (6e′) is explained partially on the basis of the concept of Belov of the strong paraprocess which has been termed “exchange-enhanced paramagnetism” at the so-called “low-temperature point” (T{sub B}); v) the results are related to the magnetodielectric effect in low magnetic field and to the significant coupling between exchange magnons and ligand-field excitations reported recently in this compound. - Highlights: • We examine the changes of the “double umbrella” in TbIG using neutron diffraction. • Symmetry arguments of Bertaut clarify suitable rhombohedral space group at 13 K. • Its opening leads to an increasing of anisotropy of the Tb components below 160 K. • The “low-temperature point” of Belov explains partly its intricate

  13. Magnetization reversal in coupled magneto-optical BiDy-iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Kucera, M. E-mail: kucera@karlov.mff.cuni.cz; Gerber, R.; Teggart, B.J

    2000-09-01

    New magneto-optical properties of (BiDy){sub 3}(FeGa){sub 5}O{sub 12} garnet films prepared by pulsed laser deposition are reported. Double-layer films of fine granular microstructure have been prepared by varying oxygen pressure during the deposition process. The individual layers exhibited different magnetic compensation temperatures. The magneto-optical hysteresis loops confirmed that the layers are magnetically coupled. Such a coupling, described here and observed in the granular oxide garnet materials for the first time, represents a new switching system as an alternative to exchange-coupled magnetic metallic thin layers.

  14. Charge-coupled Substituted Garnets (Y3-xCa0.5xM0.5x)Fe5O12 (M = Ce, Th): Structure and Stability as Crystalline Nuclear Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaofeng; Kukkadapu, Ravi K.; Lanzirotti, Anthony; Newville, Mathew; Engelhard, Mark H.; Sutton , Steven R.; Navrotsky, Alexandra

    2015-04-20

    The garnet structure has been proposed as a potential crystalline nuclear waste form for accommodation of actinide elements, especially uranium (U). In this study, yttrium iron garnet (YIG) as a model garnet host was studied for the incorporation of U analogs, cerium (Ce), and thorium (Th), incorporated by a charge-coupled substitution with calci-um (Ca) for yttrium (Y) in YIG, namely 2Y3+ = Ca2+ + M4+, where M4+ = Ce4+ or Th4+. Single phase garnets Y3-xCa0.5xM0.5xFe5O12, synthesized by the citrate-nitrate combustion method, were obtained up to x = 0.7. Ce was confirmed to be tetravalent by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. X-ray diffraction and 57Fe-Mössbauer spectroscopy indicated that the samples are single phase, M4+ and Ca2+ cations are restricted to the c-site, the nature of M4+ has only a minor effect on the structure, and the local environments of both the tetrahedral and octahedral Fe3+ are systematically affected by the extent of substitution, especially on the tetrahedral sublattice. The charge coupled substitution has advantages in incorporating Ce/Th and in stabilizing the substituted phases, compared to a single substitution strategy. Enthalpies of formation of garnets were obtained by high temperature oxide melt solution calorimetry, and the enthalpies of substitution of Ce and Th were determined. The thermodynamic analysis demonstrates that the substituted garnets are entropically rather than energetically stabilized. This suggests that such garnets may form and persist in repositories at high temperature but might decompose near room temperature. These structural and thermodynamic findings shed light on possible incorporation of U in this garnet system.

  15. Simultaneous detection of the spin-Hall magnetoresistance and the spin-Seebeck effect in platinum and tantalum on yttrium iron garnet

    NARCIS (Netherlands)

    Vlietstra, N.; Shan, J.; van Wees, B. J.; Isasa, M.; Casanova, F.; Ben Youssef, J.

    2014-01-01

    The spin-Seebeck effect (SSE) in platinum (Pt) and tantalum (Ta) on yttrium iron garnet has been investigated by both externally heating the sample (using an on-chip Pt heater on top of the device) and by current-induced heating. For SSE measurements, external heating is the most common method to ob

  16. Platinum thickness dependence of the inverse spin-Hall voltage from spin pumping in a hybrid yttrium iron garnet/platinum system

    NARCIS (Netherlands)

    Castel, V.; Vlietstra, N.; Ben Youssef, J.; van Wees, B. J.

    2012-01-01

    We show the experimental observation of the platinum thickness dependence in a hybrid yttrium iron garnet/platinum system of the inverse spin-Hall effect from spin pumping, over a large frequency range and for different radio-frequency powers. From the measurement of the voltage at the resonant cond

  17. Temperature dependence of the magnon spin diffusion length and magnon spin conductivity in the magnetic insulator yttrium iron garnet

    Science.gov (United States)

    Cornelissen, L. J.; Shan, J.; van Wees, B. J.

    2016-11-01

    We present a systematic study of the temperature dependence of diffusive magnon spin transport using nonlocal devices fabricated on a 210-nm yttrium iron garnet film on a gadolinium gallium garnet substrate. In our measurements, we detect spin signals arising from electrical and thermal magnon generation, and we directly extract the magnon spin diffusion length λm for temperatures from 2 to 293 K. Values of λm obtained from electrical and thermal generation agree within the experimental error with λm=9.6 ±0.9 μ m at room temperature to a minimum of λm=5.5 ±0.7 μ m at 30 K. Using a two-dimensional finite element model to fit the data obtained for electrical magnon generation we extract the magnon spin conductivity σm as a function of temperature, which is reduced from σm=3.7 ±0.3 ×105S /m at room temperature to σm=0.9 ±0.6 ×104S /m at 5 K. Finally, we observe an enhancement of the signal originating from thermally generated magnons for low temperatures where a maximum is observed around T =7 K . An explanation for this low-temperature enhancement is however still missing and requires additional investigation.

  18. Low-damping sub-10-nm thin films of lutetium iron garnet grown by molecular-beam epitaxy

    Science.gov (United States)

    Jermain, C. L.; Paik, H.; Aradhya, S. V.; Buhrman, R. A.; Schlom, D. G.; Ralph, D. C.

    2016-11-01

    We analyze the structural and magnetic characteristics of (111)-oriented lutetium iron garnet (Lu3Fe5O12) films grown by molecular-beam epitaxy, for films as thin as 2.8 nm. Thickness-dependent measurements of the in- and out-of-plane ferromagnetic resonance allow us to quantify the effects of two-magnon scattering, along with the surface anisotropy and the saturation magnetization. We achieve effective damping coefficients of 11.1 (9 )×10-4 for 5.3 nm films and 32 (3 )×10-4 for 2.8 nm films, among the lowest values reported to date for any insulating ferrimagnetic sample of comparable thickness.

  19. Spin transport in as-grown and annealed thulium iron garnet/platinum bilayers with perpendicular magnetic anisotropy

    Science.gov (United States)

    Avci, Can Onur; Quindeau, Andy; Mann, Maxwell; Pai, Chi-Feng; Ross, Caroline A.; Beach, Geoffrey S. D.

    2017-03-01

    We characterize the spin Hall magnetoresistance (SMR), spin Seebeck effect (SSE), and dampinglike spin-orbit torque (SOT) in thulium iron garnet/platinum bilayers with perpendicular magnetic anisotropy by using harmonic Hall effect measurements. By consecutive annealing steps followed by measurements on a single device, we reveal that the spin-dependent effects gradually decrease in amplitude as the annealing temperature increases. We attribute this behavior primarily to the changes in the spin-mixing conductance, which sensitively depends on the interface quality. However, further analysis demonstrates that although the SSE scales closely with the SMR, the dampinglike SOT shows a significantly different trend upon annealing, contrary to theoretical expectations. By comparing the dampinglike SOT with the field-induced Hall effect, we found evidence that scattering from Fe impurities in the Pt at the interface might be responsible for the distinct annealing temperature dependence of the dampinglike SOT.

  20. Charge-coupled substituted garnets (Y3-xCa0.5xM0.5x)Fe5O12 (M = Ce, Th): structure and stability as crystalline nuclear waste forms.

    Science.gov (United States)

    Guo, Xiaofeng; Kukkadapu, Ravi K; Lanzirotti, Antonio; Newville, Matthew; Engelhard, Mark H; Sutton, Stephen R; Navrotsky, Alexandra

    2015-04-20

    The garnet structure has been proposed as a potential crystalline nuclear waste form for accommodation of actinide elements, especially uranium (U). In this study, yttrium iron garnet (YIG) as a model garnet host was studied for the incorporation of U analogs, cerium (Ce) and thorium (Th), incorporated by a charge-coupled substitution with calcium (Ca) for yttrium (Y) in YIG, namely, 2Y(3+) = Ca(2+) + M(4+), where M(4+) = Ce(4+) or Th(4+). Single-phase garnets Y3-xCa0.5xM0.5xFe5O12 (x = 0.1-0.7) were synthesized by the citrate-nitrate combustion method. Ce was confirmed to be tetravalent by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. X-ray diffraction and (57)Fe-Mössbauer spectroscopy indicated that M(4+) and Ca(2+) cations are restricted to the c site, and the local environments of both the tetrahedral and the octahedral Fe(3+) are systematically affected by the extent of substitution. The charge-coupled substitution has advantages in incorporating Ce/Th and in stabilizing the substituted phases compared to a single substitution strategy. Enthalpies of formation of garnets were obtained by high temperature oxide melt solution calorimetry, and the enthalpies of substitution of Ce and Th were determined. The thermodynamic analysis demonstrates that the substituted garnets are entropically rather than energetically stabilized. This suggests that such garnets may form and persist in repositories at high temperature but might decompose near room temperature.

  1. Combined Brillouin light scattering and microwave absorption study of magnon-photon coupling in a split-ring resonator/YIG film system

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, S., E-mail: stefan.klingler@wmi.badw.de; Maier-Flaig, H.; Weiler, M. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Gross, R.; Huebl, H.; Goennenwein, S. T. B. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), 80799 Munich (Germany); Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T2N2 (Canada)

    2016-08-15

    Microfocused Brillouin light scattering (BLS) and microwave absorption (MA) are used to study magnon-photon coupling in a system consisting of a split-ring microwave resonator and an yttrium iron garnet (YIG) film. The split-ring resonator is defined by optical lithography and loaded with a 1 μm-thick YIG film grown by liquid phase epitaxy. BLS and MA spectra of the hybrid system are simultaneously recorded as a function of the applied magnetic field magnitude and microwave excitation frequency. Strong coupling of the magnon and microwave resonator modes is found with a coupling strength of g{sub eff} /2π = 63 MHz. The combined BLS and MA data allow us to study the continuous transition of the hybridized modes from a purely magnonic to a purely photonic mode by varying the applied magnetic field and microwave frequency. Furthermore, the BLS data represent an up-conversion of the microwave frequency coupling to optical frequencies.

  2. Ultra high sensitivity, room temperature magneto-optic field sensor made of ferromagnetic bismuth rare-earth iron garnet thick films

    Science.gov (United States)

    Wu, Dong Ho; Garzarella, Anthony; Fratello, Vince

    2011-03-01

    The ferrimagnetic bismuth rare-earth iron garnet (BiGdLu)3 (FeGa)5 O12 thick film has a specific Faraday rotation θS of 0.09 °/mm at 1550 nm and excellent transparency at infrared wavelengths. Using the thick film we recently have demonstrated a magneto-optic (MO) field sensor with a sensitivity of about 10-14 T/ Hz 1/2 , comparable with SQUID. The sensor is made of all dielectric materials including the bismuth rare-earth iron garnet and optical fibers, and is operated at room temperature without any cooling requirement. The MO field sensor is capable to measure a magnetic field over a very large dynamic range (from a very weak field to a very high magnetic field exceeding several hundred Tesla) and over a very wide frequency range, which may be from DC to a few hundred GHz. However, presently, our MO sensor's frequency range is limited from DC to 2 GHz. We think that this limited frequency range is due to the presence of magnetic domains in the bismuth rare-earth iron garnet film. In this presentation we will report our experimental results obtained from this MO field sensor as well as the effect of magnetic domains.

  3. The prospects for a new search for the electron electric dipole moment in solid Gadolinium iron garnet ceramics

    CERN Document Server

    Sushkov, A O; Lamoreaux, S K

    2008-01-01

    We address a number of issues regarding solid state electron electric dipole moment (EDM) experiments, focusing on gadolinium iron garnet (abbreviated GdIG, chemical formula Gd$_3$Fe$_5$O$_{12}$) as a possible sample material. GdIG maintains its high magnetic susceptibility down to 4.2 K, which enhances the EDM-induced magnetization of a sample placed in an electric field. We estimate that lattice polarizability gives rise to an EDM enhancement factor of approximately 20. We also calculate the effect of the demagnetizing field for various sample geometries and permeabilities. Measurements of intrinsic GdIG magnetization noise are presented, and the fluctuation-dissipation theorem is used to compare our data with the measurements of the imaginary part of GdIG permeability at 4.2 K, showing good agreement above frequencies of a few hertz. We also observe how the demagnetizing field suppresses the noise-induced magnetic flux, confirming our calculations. The statistical sensitivity of an EDM search based on a so...

  4. Growth and characterization of Bi, Pr- and Bi, Sc-substituted lutetium iron garnet films with planar magnetization for magneto-optic visualization

    Science.gov (United States)

    Syvorotka, Igor M.; Ubizskii, Sergii B.; Kucera, Miroslav; Kuhn, Marcus; Vértesy, Zofia

    2001-04-01

    The series of epitaxial garnet films of general composition Lu3-x-yBixPryFe5- zAlzO12 and Lu3-xBixFe5-y- zScyAlzO12 were grown on (111) oriented GGG (gadolinium gallium garnet) substrates by the liquid phase epitaxy. Their magnetic and magneto-optical properties were studied using both experimental techniques and modelling. All obtained films demonstrated generally a magnetic anisotropy close to the easy-plane type. The Pr-containing films exhibited large negative uniaxial anisotropy and significant cubic anisotropy. The latter causes a distortion of magnetization curves in samples magnetized in a direction normal to the film plane, especially at low temperatures. The large negative uniaxial anisotropy of Pr-substituted iron garnets allows us to increase the saturation field up to 0.5 T at liquid nitrogen temperature. The Sc-doped films displayed small positive uniaxial anisotropy that did not exceed the shape anisotropy. The magnetization curves of these films did not show any distortion due to the cubic anisotropy. The suitability of Pr- and Sc-doped garnets that meet the requirements for indicator layers for magneto-optic visualization at liquid nitrogen temperature is discussed.

  5. Charge-Coupled Substituted Garnets (Y3-xCa0.5xM0.5x)Fe5O12 (M = Ce, Th): Structure and Stability as Crystalline Nuclear Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaofeng; Kukkadapu, Ravi K.; Lanzirotti, Antonio; Newville, Matthew; Engelhard, Mark H.; Sutton, Stephen R.; Navrotsky, Alexandra [UCD; (UC); (PNNL)

    2015-06-08

    The garnet structure has been proposed as a potential crystalline nuclear waste form for accommodation of actinide elements, especially uranium (U). In this study, yttrium iron garnet (YIG) as a model garnet host was studied for the incorporation of U analogs, cerium (Ce) and thorium (Th), incorporated by a charge-coupled substitution with calcium (Ca) for yttrium (Y) in YIG, namely, 2Y3+ = Ca2+ + M4+, where M4+ = Ce4+ or Th4+. Single-phase garnets Y3–xCa0.5xM0.5xFe5O12 (x = 0.1–0.7) were synthesized by the citrate–nitrate combustion method. Ce was confirmed to be tetravalent by X-ray absorption spectroscopy and X-ray photoelectron spectroscopy. X-ray diffraction and 57Fe–Mössbauer spectroscopy indicated that M4+ and Ca2+ cations are restricted to the c site, and the local environments of both the tetrahedral and the octahedral Fe3+ are systematically affected by the extent of substitution. The charge-coupled substitution has advantages in incorporating Ce/Th and in stabilizing the substituted phases compared to a single substitution strategy. Enthalpies of formation of garnets were obtained by high temperature oxide melt solution calorimetry, and the enthalpies of substitution of Ce and Th were determined. The thermodynamic analysis demonstrates that the substituted garnets are entropically rather than energetically stabilized. This suggests that such garnets may form and persist in repositories at high temperature but might decompose near room temperature.

  6. Garnet polycrystals

    Science.gov (United States)

    Whitney, Donna; Seaton, Nca

    2010-05-01

    Electron backscattered diffraction (EBSD) studies have revealed complex microstructures in garnet, including features developed during crystal growth and/or deformation. New data show that garnets commonly grow as clusters of grains (polycrystals) juxtaposed by high-angle boundaries. Garnet polycrystals may form at any stage of metamorphism following nucleation of garnet: polycrystals may form early as a result of close spacing of nuclei, or later via impingement of larger grains. EBSD analysis of garnets in metamorphic rocks from 9 localities in the US, Canada, Turkey, Iran, and Colombia detected polycrystals at every site. Evidence for internal deformation of garnet was observed in only one sample, a calc-pelite dominated by plagioclase; all other samples are mica schists. Three sites displayed garnet shape-preferred orientation, but none had a crystallographic preferred orientation of garnet. In some samples, polycrystals comprise ~20-30% of garnets analyzed. Some early-coalescing polycrystals exhibit growth zoning concentric about the geometric center of the polycrystal; i.e., zoning is unrelated to the location of internal grain boundaries. In other polycrystals, Fe-Mn-Mg zoning has a different pattern than that of Ca. Some polycrystals are characterized by high-angle misorientation boundaries in special orientations, indicating that these polycrystals are not random clusters of grains. Special boundaries were detected in 0-60% of garnets analyzed. Polycrystal formation may relate to the presence of chemical or textural heterogeneities (e.g. precursor phases, deformation features) that allowed close spacing of garnet nuclei. It is important to recognize polycrystals because internal grain boundaries may affect diffusion pathways and length scales and may facilitate communication of garnet interiors with matrix phases, thereby influencing reaction history and garnet composition and zoning.

  7. The influence of the iron content on the reductive decomposition of A3-xFexAl2Si3O12 garnets (A = Mg, Mn; 0.47 ≤ x ≤ 2.85)

    Science.gov (United States)

    Aparicio, Claudia; Filip, Jan; Mashlan, Miroslav; Zboril, Radek

    2014-10-01

    Thermally-induced reductive decomposition of natural iron-bearing garnets of the almandine-pyrope and almandine-spessartine series were studied at temperatures up to 1200 °C (heating rate of 10 °C/min) under atmosphere of forming gas (10% of H2 in N2). Crystallochemical formula of the studied garnet was calculated as VIII( A3-xFex2+)VI( Al , Fe3+)2Si3O12, where the amount of Fe3+ in the octahedral sites is negligible with the exception of pyrope, A = Mg, Mn, and 0.47 ≤ x ≤ 2.85. The observed decomposition temperature, determined from differential scanning calorimetry and thermogravimetry, is greater than 1000 °C in all cases and showed almost linear dependence on the iron content in the dodecahedral sites of the studied garnets, with the exception of garnet with a near-pyrope composition (Prp80Alm20). The initial garnet samples and decomposition products were characterized in details by means of X-ray powder diffraction and 57Fe Mössbauer spectroscopy. We found that all studied garnets have common decomposition products such as metallic iron (in general, rounded particles below 4 μm) and Fe-spinel; the other identified decomposition products depend on starting chemical composition of the garnet: Fe-cordierite, olivine (fayalite or tephroite), cristobalite, pyroxene (enstatite or pigeonite), and anorthite. Anorthite and pigeonite were only present in garnets with Ca in the dodecahedral site. All the identified phases were usually well crystallized.

  8. Mean field analysis of the high temperature magnetic properties of terbium iron garnet in strong DC fields

    Energy Technology Data Exchange (ETDEWEB)

    Lahoubi, Mahieddine, E-mail: mlahoubi@hotmail.fr [Department of Physics, Laboratory L.P.S., Faculty of Sciences, Badji Mokhtar-Annaba University, PO Box-12, 23000 Annaba (Algeria); Wang, Wei, E-mail: wangwei@mail.buct.edu.cn [Department of Physics and Electronics, Beijing University of Chemical Technology, Beijing 100029 (China); Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2015-11-01

    This paper is devoted to the description of the magnetic phase diagrams (MPD) together with a special interest to the determination of more precise values of some reliable parameters at the compensation point, T{sub comp}=243.5±0.5 K of the terbium iron garnet, Tb{sub 3}Fe{sub 5}O{sub 12} or TbIG. Using isothermal magnetizations performed on single crystal in strong DC magnetic fields up to 200 kOe applied along the 〈111〉, 〈110〉 and 〈100〉 directions within the temperature range 128–295 K, field-induced phase transitions between collinear and canted phases are observed in the vicinity of T{sub comp} at critical fields, H{sub c2}. In comparison with the measurement at zero external magnetic field, the specific heat, C{sub p}(T) at 80 kOe along 〈111〉 shows an excess around T{sub comp} characterized by an anomaly which has a width in the boundaries of the canted phase and a maximum at 252 K, the more accurate value of the critical temperature, T{sub C}{sup ⁎} of the MPD in the (H{sub c2}–T) plane. Better determinations of the molecular field coefficients which represent the magnetic interactions on the Tb sublattice are obtained by an improved molecular field model based on the saturation effects of the Tb sublattice and the differential susceptibility contribution due to the Fe sublattices to the total magnetic susceptibility of TbIG. The results are discussed in terms of the previous theoretical studies of the MPD predicted for weakly anisotropic ferrimagnets. - Highlights: • High-T magnetizations are made on single crystal of TbIG in strong DC magnetic fields. • FIPTs are observed in the vicinity of T{sub comp}=243.5 K at critical fields, H{sub c2}. • MPD are determined in the (H{sub c2}–T ) plane for H along the main crystallographic directions. • The critical temperature T{sub C}{sup ⁎} is well estimated by the C{sub p}(T ) data at H{sub ex}=80 kOe along 〈111〉. • The results are analyzed using a high-field method and a mean

  9. Intrinsic spin Seebeck effect in Au/YIG.

    Science.gov (United States)

    Qu, D; Huang, S Y; Hu, Jun; Wu, Ruqian; Chien, C L

    2013-02-08

    The acute magnetic proximity effects in Pt/YIG compromise the suitability of Pt as a spin current detector. We show that Au/YIG, with no anomalous Hall effect and a negligible magnetoresistance, allows the measurements of the intrinsic spin Seebeck effect with a magnitude much smaller than that in Pt/YIG. The experiment results are consistent with the spin polarized density functional calculations for Pt with a sizable and Au with a negligible magnetic moment near the interface with YIG.

  10. High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque

    Energy Technology Data Exchange (ETDEWEB)

    Evelt, M.; Demidov, V. E., E-mail: demidov@uni-muenster.de [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, 48149 Muenster (Germany); Bessonov, V. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Yekaterinburg 620041 (Russian Federation); Demokritov, S. O. [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, 48149 Muenster (Germany); M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Yekaterinburg 620041 (Russian Federation); Prieto, J. L. [Instituto de Sistemas Optoelectrónicos y Microtecnologa (UPM), Ciudad Universitaria, Madrid 28040 (Spain); Muñoz, M. [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), PTM, E-28760 Tres Cantos, Madrid (Spain); Ben Youssef, J. [Laboratoire de Magnétisme de Bretagne CNRS, Université de Bretagne Occidentale, 29285 Brest (France); Naletov, V. V. [Service de Physique de l' État Condensé, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Institute of Physics, Kazan Federal University, Kazan 420008 (Russian Federation); Loubens, G. de [Service de Physique de l' État Condensé, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Klein, O. [INAC-SPINTEC, CEA/CNRS and Univ. Grenoble Alpes, 38000 Grenoble (France); Collet, M.; Garcia-Hernandez, K.; Bortolotti, P.; Cros, V.; Anane, A. [Unité Mixte de Physique CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, 91767 Palaiseau (France)

    2016-04-25

    We study experimentally with submicrometer spatial resolution the propagation of spin waves in microscopic waveguides based on the nanometer-thick yttrium iron garnet and Pt layers. We demonstrate that by using the spin-orbit torque, the propagation length of the spin waves in such systems can be increased by nearly a factor of 10, which corresponds to the increase in the spin-wave intensity at the output of a 10 μm long transmission line by three orders of magnitude. We also show that, in the regime, where the magnetic damping is completely compensated by the spin-orbit torque, the spin-wave amplification is suppressed by the nonlinear scattering of the coherent spin waves from current-induced excitations.

  11. Probing current-induced magnetic fields in Au|YIG heterostructures with low-energy muon spin spectroscopy

    Science.gov (United States)

    Aqeel, A.; Vera-Marun, I. J.; Salman, Z.; Prokscha, T.; Suter, A.; van Wees, B. J.; Palstra, T. T. M.

    2017-02-01

    We investigated the depth dependence of current-induced magnetic fields in a bilayer of a normal metal (Au) and a ferrimagnetic insulator (Yttrium Iron Garnet—YIG) by using low energy muon spin spectroscopy (LE-μSR). This allows us to explore how these fields vary from the Au surface down to the buried Au|YIG interface, which is relevant to study physics like the spin-Hall effect. We observed a maximum shift of 0.4 G in the internal field of muons at the surface of Au film which is in close agreement with the value expected for Oersted fields. As muons are implanted closer to the Au|YIG interface, the shift is strongly suppressed, which we attribute to the dipolar fields present at the Au|YIG interface. Combining our measurements with modeling, we show that dipolar fields caused by the finite roughness of the Au|YIG interface consistently explain our observations. Our results, therefore, gauge the limits on the spatial resolution and the sensitivity of LE-μSR to the roughness of the buried magnetic interfaces, a prerequisite for future studies addressing current induced fields caused by the spin-accumulations due to the spin-Hall effect.

  12. Differential Resonant Ring YIG Tuned Oscillator

    Science.gov (United States)

    Parrott, Ronald A.

    2010-01-01

    A differential SiGe oscillator circuit uses a resonant ring-oscillator topology in order to electronically tune the oscillator over multi-octave bandwidths. The oscillator s tuning is extremely linear, because the oscillator s frequency depends on the magnetic tuning of a YIG sphere, whose resonant frequency is equal to a fundamental constant times the DC magnetic field. This extremely simple circuit topology uses two coupling loops connecting a differential pair of SiGe bipolar transistors into a feedback configuration using a YIG tuned filter creating a closed-loop ring oscillator. SiGe device technology is used for this oscillator in order to keep the transistor s 1/f noise to an absolute minimum in order to achieve minimum RF phase noise. The single-end resonant ring oscillator currently has an advantage in fewer parts, but when the oscillation frequency is greater than 16 GHz, the package s parasitic behavior couples energy to the sphere and causes holes and poor phase noise performance. This is because the coupling to the YIG is extremely low, so that the oscillator operates at near the unloaded Q. With the differential resonant ring oscillator, the oscillation currents are just in the YIG coupling mechanisms. The phase noise is even better, and the physical size can be reduced to permit monolithic microwave integrated circuit oscillators. This invention is a YIG tuned oscillator circuit making use of a differential topology to simultaneously achieve an extremely broadband electronic tuning range and ultra-low phase noise. As a natural result of its differential circuit topology, all reactive elements, such as tuning stubs, which limit tuning bandwidth by contributing excessive open loop phase shift, have been eliminated. The differential oscillator s open-loop phase shift is associated with completely non-dispersive circuit elements such as the physical angle of the coupling loops, a differential loop crossover, and the high-frequency phase shift of the n

  13. Garnet composite films with Au particles fabricated by repetitive formation for enhancement of Faraday effect

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, H; Nakai, Y [Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, 35-1 Yagiyama-Kasumi, Taihaku, Sendai, Miyagi 982-8577 (Japan); Mizutani, Y; Inoue, M [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580 (Japan); Fedyanin, A A, E-mail: uchida_hn@tohtech.ac.jp [Faculty of Physics, Moscow State University, Moscow 119992 (Russian Federation)

    2011-02-16

    To prepare garnet (Bi : YIG) composite films with Au particles, we used a repetitive formation method to increase the number density of particles. On increasing the number of repetitions, the diameter distribution of the particles changed. After five repetitions using 5 nm Au films, the diameter distribution separated into two size groups. Shift of wavelength-excited localized surface plasmon resonance is discussed relative to the diameter distribution. In the composite films, enhancement of Faraday rotation associated with surface plasmons was observed. With six repetitions, a maximum enhanced rotation of -1.2{sup 0} was obtained, which is 20 times larger than that of a single Bi : YIG film. The figures of merit for the composite films are discussed. The thickness of a Bi : YIG composite film working for enhanced Faraday rotation was examined using an ion milling method.

  14. Synthesis of mono and multidomain YIG particles by chemical coprecipitation or ceramic procedure

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Garcia, L. [Departamento de Materiales Nanoestructurados, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Suarez, M., E-mail: m.suarez@cinn.e [Departamento de Materiales Nanoestructurados, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Menendez, J.L. [Departamento de Materiales Nanoestructurados, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo -UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain)

    2010-04-09

    Yttrium iron garnet powders have been synthesized by chemical coprecipitation using two different precursors, nitrates and chlorides, and by an oxides mixture route. It is shown that depending on the precursors and synthesis conditions used pure yttrium iron garnet powders can be obtained with a mono or multidomain magnetic behaviour. The yttrium iron garnet crystalline structure, as studied by Raman spectroscopy, was already formed after calcination at temperatures as low as 800 {sup o}C when the nitrate precursors were used. However, calcination temperatures of up to 1100 {sup o}C were required to obtain yttrium iron garnet powders when the precursors were chlorides or when the oxides mixture route was chosen. The saturation magnetization of the powders correlates well with the structural characterization: when nitrate precursors were used, the saturation magnetization was already close to the bulk value, 26.8 emu/cm{sup 3}, after calcination at 800 {sup o}C. However, the saturation magnetization of the powders obtained by the chlorides and oxides mixture routes was close to zero up to calcination temperatures of 1100 {sup o}C. Finally, both the chlorides and the oxides mixture routes yield multidomain micron sized yttrium iron garnet powders, whereas the nitrates route led to monodomain submicron sized powders.

  15. Mössbauer Spectral Properties of Yttrium Iron Garnet, Y3Fe5O12, and its Isovalent and Nonisovalent Yttrium-Substituted Solid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Long, Gary J.; Grandjean, Fernande; Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.

    2016-03-21

    Several high-resolution Mössbauer spectra of yttrium iron garnet, Y3Fe5O12, have been fit as a function of temperature with a new model based on a detailed analysis of the spectral changes that result from a reduction from the cubic Ia–3d space group to the trigonal R–3 space group. These spectral fits, which are all statistically identical, indicate that the magnetic sextet arising from the 16a site in cubic symmetry is subdivided into three sextets arising from the 6f, and the 3d, 3d, and the 1a, 1b, and 2c sites in rhombohedral-axis trigonal symmetry. The 24d site in cubic symmetry is subdivided into four sextets arising from four different 6f sites in R–3 rhombohedral-axis trigonal symmetry, sites that differ only by the angles between the principal axis of the electric field gradient tensor and the magnetic hyperfine field assumed to be parallel with the magnetic easy axis. This analysis, when applied to the potential nuclear waste storage compounds, Y3-xCa0.5xTh0.5xFe5O12 and Y3- xCa0.5xCe0.5xFe5O12, indicates virtually no perturbation of the structural, electronic, and magnetic properties upon substitution of small amounts of calcium(II) and thorium(IV) or cerium(IV) onto the yttrium(III) 24c site as compared with Y3Fe5O12. The observed broadening of the four different 6f sites derived from the 24d site results from the substitution of yttrium(III) by calcium(II) and thorium(IV) or cerium(IV) cations on the next-nearest neighbor 24c site. In contrast, the same analysis, when applied to Y2.8Ce0.2Fe5O12, indicates a local perturbation of the magnetic exchange pathways as a result of the presence of cerium(IV) in the 24c next-nearest neighbor site of the iron(III) 24d site.

  16. Study of iron valence state and position in sub-site by Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Lim, Jae Cheong; KIm, Chul Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Son, Kwang Jae [Kookmin Univ., Seoul (Korea, Republic of)

    2014-05-15

    The magnetic ordering temperature and the magnitude of the magnetic fields at the iron sites of YIG can be influenced by substituting, either partially or totally, the Fe{sup 3+} ions at the octahedral and/or the tetrahedral sites with magnetic or diamagnetic ions, and/or by substitution the Y{sup 3+} ions at the dodecahedral sites with magnetic rare earth ions. It has been known for some time that Moessbauer spectroscopy is a powerful method by which iron-containing garnets can be studied. We report here on the synthesis of the compounds with garnet-related structures of composition Y{sub 3}Fe{sub 4.5}Cr{sub 0.5}O{sub 12} and its examination by {sup 57}Fe Moessbauer spectroscopy. The chromium in compounds of the Y{sub 3}Fe{sub 4.5}Cr{sub 0.5}O{sub 12} is distributed at an octahedral site. The Moessbauer spectra can be analyzed using 3 or 4 sets of six Lorentzians with increasing amount of Cr{sup 3+} compounds in this system. It results from the distribution ({sub 4}C{sub n}) of Fe{sup 3+} and Cr{sup 3+} at an octahedral site. A comparative study of ferrous tablets of Dynabi was carried out using Moessbauer spectroscopy. The obtained results revealed the presence of ferrous (Fe{sup 2+}) gluconate and ferrous fumarate in a sample. This observation is important to better control the iron state in such medicaments because their pharmaceutical effect in the body is related to the form and valence of iron. The Cr-containing yttrium iron garnet (YIG), and the exchange interactions and site distributions were studied using {sup 57}Fe Moessbauer spectroscopy. The obtained results revealed the presence of ferrous (Fe{sup 2+}) gluconate and ferrous fumarate in the sample. This observation is important better control the iron state in such medicaments because their pharmaceutical effect in the body is related to the form and valence of iron.

  17. The influence of the iron content on the reductive decomposition of A{sub 3−x}Fe{sub x}Al{sub 2}Si{sub 3}O{sub 12} garnets (A = Mg, Mn; 0.47 ≤ x ≤ 2.85)

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, Claudia, E-mail: claudia.aparicio@upol.cz; Filip, Jan, E-mail: claudia.aparicio@upol.cz; Mashlan, Miroslav, E-mail: claudia.aparicio@upol.cz; Zboril, Radek, E-mail: claudia.aparicio@upol.cz [Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 77146 Olomouc (Czech Republic)

    2014-10-27

    Thermally-induced reductive decomposition of natural iron-bearing garnets of the almandine-pyrope and almandine-spessartine series were studied at temperatures up to 1200 °C (heating rate of 10 °C/min) under atmosphere of forming gas (10% of H{sub 2} in N{sub 2}). Crystallochemical formula of the studied garnet was calculated as {sup VIII}(A{sub 3−x}Fe{sub x}{sup 2+}){sup VI}(Al,Fe{sup 3+}){sub 2}Si{sub 3}O{sub 12}, where the amount of Fe{sup 3+} in the octahedral sites is negligible with the exception of pyrope, A = Mg, Mn, and 0.47 ≤ x ≤ 2.85. The observed decomposition temperature, determined from differential scanning calorimetry and thermogravimetry, is greater than 1000 °C in all cases and showed almost linear dependence on the iron content in the dodecahedral sites of the studied garnets, with the exception of garnet with a near-pyrope composition (Prp{sub 80}Alm{sub 20}). The initial garnet samples and decomposition products were characterized in details by means of X-ray powder diffraction and {sup 57}Fe Mössbauer spectroscopy. We found that all studied garnets have common decomposition products such as metallic iron (in general, rounded particles below 4 μm) and Fe-spinel; the other identified decomposition products depend on starting chemical composition of the garnet: Fe-cordierite, olivine (fayalite or tephroite), cristobalite, pyroxene (enstatite or pigeonite), and anorthite. Anorthite and pigeonite were only present in garnets with Ca in the dodecahedral site. All the identified phases were usually well crystallized.

  18. Preparation of Magneto-Optic Ce:YIG Thin Films for Integrated Optical Isolator

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper presents the growth of cerium substituted YIG (Ce1 YIG) thin films on silica substrate.The large Faraday rotation coefficient and strong in-plane anisotropy were observed. The film is desirable for waveguide configuration isolator application.

  19. Comparative study of structure and magnetic properties of micro- and nano-sized GdxY3-xFe5O12 garnet

    Science.gov (United States)

    Sattar, A. A.; Elsayed, H. M.; Faramawy, A. M.

    2016-08-01

    Gadolinium Yttrium Iron garnet (GdYIG) samples with the chemical formula (GdxY3-xFe5O12) (x=0.0, 0.25, 0.5, 0.75, and 1.0) were prepared via two different methods, the standard ceramic method (SC) and the co-precipitation method (CP). The effect of preparation conditions and Gd3+ ion substitution on the phase formation, crystal structure, morphology and magnetic properties were studied. Moreover, the initial permeability μi and Curie temperature Tc were measured for all investigated samples. It was found that, the lattice parameter increases on addition of Gd3+ ion while the porosity decreases for both systems of samples. The crystallite sizes of the samples prepared by the (CP) method are smaller than those prepared by (SC) method. The magnetization Ms decreases while the coercivity Hc increases by increasing the Gd+3 concentration in both systems of samples. For the samples prepared by the (SC) method the values of Ms are higher than those prepared by (CP) method. Also, it was found that the initial permeability μi and Curie temperature Tc are higher in samples prepared by (SC) method than those prepared by (CP) method. Moreover the magnetic loss (the rate of temperature raise (ΔT/Δt) in an AC magnetic field) was measured for all investigated samples, which increased with increasing Gd concentration. Furthermore, it was found that the samples prepared by (SC) method have magnetic loss higher than those prepared by (CP) method. It was concluded that the preparation method has great effects on the magnetic properties of GdYIG ferrite. The obtained results were explained in the light of Neel's model.

  20. Low temperature spark plasma sintering of YIG powders

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Garcia, L. [Department of Nanostructured Materials, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN). Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Suarez, M., E-mail: m.suarez@cinn.e [Department of Nanostructured Materials, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN). Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Fundacion ITMA, Parque Tecnologico de Asturias, 33428, Llanera (Spain); Menendez, J.L. [Department of Nanostructured Materials, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN). Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain)

    2010-07-16

    A transition from a low to a high spin state in the magnetization saturation between 1000 and 1100 {sup o}C calcination temperature is observed in YIG powders prepared by oxides mixture. Spark plasma sintering of these powders between 900 and 950 {sup o}C leads to dense samples with minimal formation of YFeO{sub 3}, opening the way to co-sintering of YIG with metals or metallic alloys. The optical properties depend on the sintering stage: low (high) density samples show poor (bulk) optical absorption.

  1. Absence of anomalous Nernst effect in spin Seebeck effect of Pt/YIG

    Science.gov (United States)

    Miao, B. F.; Huang, S. Y.; Qu, D.; Chien, C. L.

    2016-01-01

    The Pt/YIG structure has been widely used to study spin Seebeck effect (SSE), inverse spin Hall effect, and other pure spin current phenomena. However, the magnetic proximity effect in Pt when in contact with YIG, and the potential anomalous Nernst effect (ANE) may compromise the spin current phenomena in Pt/YIG. By inserting a Cu layer of various thicknesses between Pt and YIG, we have separated the signals from the SSE and that of the ANE. It is demonstrated that the thermal voltage in Pt/YIG mainly comes from spin current due to the longitudinal SSE with negligible contribution from the ANE.

  2. Absence of anomalous Nernst effect in spin Seebeck effect of Pt/YIG

    Energy Technology Data Exchange (ETDEWEB)

    Miao, B. F., E-mail: bfmiao@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Huang, S. Y. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Qu, D.; Chien, C. L., E-mail: clchien@jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2016-01-15

    The Pt/YIG structure has been widely used to study spin Seebeck effect (SSE), inverse spin Hall effect, and other pure spin current phenomena. However, the magnetic proximity effect in Pt when in contact with YIG, and the potential anomalous Nernst effect (ANE) may compromise the spin current phenomena in Pt/YIG. By inserting a Cu layer of various thicknesses between Pt and YIG, we have separated the signals from the SSE and that of the ANE. It is demonstrated that the thermal voltage in Pt/YIG mainly comes from spin current due to the longitudinal SSE with negligible contribution from the ANE.

  3. Absence of anomalous Nernst effect in spin Seebeck effect of Pt/YIG

    Directory of Open Access Journals (Sweden)

    B. F. Miao

    2016-01-01

    Full Text Available The Pt/YIG structure has been widely used to study spin Seebeck effect (SSE, inverse spin Hall effect, and other pure spin current phenomena. However, the magnetic proximity effect in Pt when in contact with YIG, and the potential anomalous Nernst effect (ANE may compromise the spin current phenomena in Pt/YIG. By inserting a Cu layer of various thicknesses between Pt and YIG, we have separated the signals from the SSE and that of the ANE. It is demonstrated that the thermal voltage in Pt/YIG mainly comes from spin current due to the longitudinal SSE with negligible contribution from the ANE.

  4. Sol–gel derived Tb{sub 3}Fe{sub 5}O{sub 12} and Y{sub 3}Fe{sub 5}O{sub 12} garnets: Synthesis, phase purity, micro-structure and improved design of morphology

    Energy Technology Data Exchange (ETDEWEB)

    Opuchovic, Olga, E-mail: olga.opuchovic@chf.vu.lt; Beganskiene, Aldona; Kareiva, Aivaras

    2015-10-25

    Yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}; YIG) and terbium iron garnet (Tb{sub 3}Fe{sub 5}O{sub 12}; TbIG) were prepared by an aqueous sol–gel method using two different complexing agents (1,2-ethanediol and glycerol). For the synthesis of Tb{sub 3}Fe{sub 5}O{sub 12} two different molar ratios of complexing agent (1:1 and 3:1) to the total metal ions were used. Thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) were performed to study the thermal behaviour of the prepared Y–Fe–O and Tb–Fe–O precursor gels. The effects of synthesis parameters on the garnet phase formation were studied by X-ray powder diffraction (XRD) analysis and scanning electron microscopy (SEM). Interestingly, the XRD data indicated that single-phase Y{sub 3}Fe{sub 5}O{sub 12} garnet can be prepared only with 1,2-ethanediol at lowest 1000 °C temperature. While Tb{sub 3}Fe{sub 5}O{sub 12} garnet can be obtained at lower temperatures depending on the nature and amount of complexing agent. The SEM results showed that parameters of sol–gel processing influence the morphological features of garnets considerably. For comparison, the conventional solid-state reaction method at 1000 °C was also used for the fabrication of both Y{sub 3}Fe{sub 5}O{sub 12} and Tb{sub 3}Fe{sub 5}O{sub 12} garnets. - Highlights: • Y{sub 3}Fe{sub 5}O{sub 12} and Tb{sub 3}Fe{sub 5}O{sub 12} were prepared by aqueous sol–gel route. • Single-phase Y{sub 3}Fe{sub 5}O{sub 12} can be prepared with 1,2-ethanediol at 1000 °C temperature. • Tb{sub 3}Fe{sub 5}O{sub 12} can be obtained at lower temperatures depending on complexing agent.

  5. Tuning the composition and magnetostructure of dysprosium iron garnets by Co-substitution: An XRD, FT-IR, XPS and VSM study

    Energy Technology Data Exchange (ETDEWEB)

    Tholkappiyan, R.; Vishista, K., E-mail: raovishista@gmail.com

    2015-10-01

    Graphical abstract: - Highlights: • Garnet type Dy{sub 3}Fe{sub 5−x}Co{sub x}O{sub 12} (x = 0–0.06) nanoparticles were synthesized by glycine assisted combustion method. • To investigate and confirm the phases in the synthesized ferrite nanoparticles by FT-IR and XRD analysis. • To investigate the compositional and oxidation state of the samples by X-ray photoelectron spectroscopy. • The detailed core level spectra of Dy 4d, Fe 2p, Co 2p and O 1s were analyzed using XPS. • The magnetic property was studied by VSM technique. - Abstract: We report the Co-substituting on the synthesis and properties of garnet type dysprosium ferrite nanoparticles by basic composition Dy{sub 3}Fe{sub 5−x}Co{sub x}O{sub 12} (x = 0–0.06) synthesized through glycine assisted combustion method. A possible formation mechanism of synthesized Dy{sub 3}Fe{sub 5−x}Co{sub x}O{sub 12} samples by controlling the synthesis process has been proposed. XRD, FT-IR, XPS and VSM studies were used to investigate the compositional and magnetostructural properties of the prepared nanoparticles. XRD results confirm that all the samples are single-phase cubic garnet structure with mean crystallite size of 97–105 nm obtained from Scherrer method and 95–102 nm from W–H method. FT-IR analysis shows the presence of three expected bands in the frequency limit of 450–600 cm{sup −1} attributed to metal–O stretching vibration in tetrahedral site of garnet structure. A typical survey spectrum from XPS results confirmed the presence of Dy, Fe, Co and O elements in the samples. This study also to characterize the different oxidation states of the samples by fitting the parameters of high resolution Dy 4d, Fe 2p, Co 2p and O 1s XPS spectra. The XPS data of Dy 4d spectrum show that Dy{sup 3+} ion occupy in dodecahedral (D) site. The XPS analysis of Fe 2p and Co 2p data suggests that (Fe{sup 3+} and Fe{sup 2+}), (Co{sup 3+} and Co{sup 2+}) are distributed in tetrahedral and octahedral sites

  6. Wide frequencies range of spin excitations in a rare-earth Bi-doped iron garnet with a giant Faraday rotation

    Science.gov (United States)

    Parchenko, Sergii; Stupakiewicz, Andrzej; Yoshimine, Isao; Satoh, Takuya; Maziewski, Andrzej

    2013-10-01

    Ultrafast magnetization dynamics of a rare-earth Bi-doped garnet were studied using an optical pump-probe technique via the inverse Faraday effect. We observed a wide range of frequency modes of the magnetization precession, covering two orders of magnitude. The excitation efficiency of low-frequency precessions in the GHz range, together with a significant beating effect, strongly depended on the amplitude of the external magnetic field. On the contrary, high-frequency precession was independent of the external magnetic field. The obtained results may be exploited in the development of wide class of microwave and magneto-optical devices.

  7. Perovskites and garnets

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, C.P.; Wang, F.F.Y.

    1976-01-01

    The preparation and properties of perovskites and garnets are reviewed. Data and information are presented on crystal chemistry, crystal structure, phase equilibria, electrical properties, optical properties, and mechanical properties. (JRD)

  8. Non-local magnetoresistance in YIG/Pt nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Goennenwein, Sebastian T. B., E-mail: goennenwein@wmi.badw.de; Pernpeintner, Matthias; Gross, Rudolf; Huebl, Hans [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Schlitz, Richard; Ganzhorn, Kathrin [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Althammer, Matthias [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany)

    2015-10-26

    We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characteristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [“Long-distance transport of magnon spin information in a magnetic insulator at room temperature,” Nat. Phys. (published online 14 September 2015)]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails.

  9. Bolometric detection of ferromagnetic resonance in YIG slab

    Science.gov (United States)

    Tu, Sa; Białek, Marcin; Zhang, Youguang; Zhao, Weisheng; Yu, Haiming; Ansermet, Jean-Philippe

    2017-10-01

    The resistance of the Pt bar deposited on the YIG slab was monitored while the magnetic field was ramped through the ferromagnetic resonance with the YIG slab facing a coplanar waveguide resonator excited at 4.3 GHz excitation. The resistance change provides detection of the ferromagnetic resonance with a high signal-to-noise ratio. It is ascribed to a change in the temperature of the Pt bars. The thermal origin of the signal is confirmed by the observation that the signal vanishes when field modulation is applied at frequencies above 6 Hz. The spin pumping effect was vanishingly small, and the anisotropic magnetoresistance of the Pt bar, though quite easily observed, would imply a rectification voltage that is much smaller than the bolometric effect.

  10. Effect of mechanical milling on the magnetic properties of garnets

    Energy Technology Data Exchange (ETDEWEB)

    Joseyphus, R.J. [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600 025 (India); Narayanasamy, A. [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600 025 (India)]. E-mail: ansuom@yahoo.co.in; Nigam, A.K. [Department of Physics, Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Krishnan, R. [Laboratoire de Magnetisme et d' Optique, de Versailles, 45 Avenue des Etat-Unis 78035-Versailles Cedex (France)

    2006-01-15

    Rare earth garnets after milling to nanosizes are found to decompose into rare earth orthoferrite and other rare earth and iron oxide phases. The magnetization for the yttrium iron garnet decreases in the nano state due to the formation of antiferromagnetic phases. But for the gadolinium iron garnet when milled up to 25 h, the room temperature magnetization increases despite the formation of antiferromagnetic and non-magnetic phases. This is attributed to the uncompensated moments of the sublattices because of the weakening of the superexchange interaction due to change in bond angles and the breaking of some superexchange bonds on account of the defects and oxygen vacancies introduced on milling. For the 10 h milled gadolinium iron garnet at 5 K, after correcting for the non-magnetic phases present, there is an increase in the magnetic moment of about 10% as compared to the value for the as-prepared garnet. The magnetic hyperfine fields corresponding to the various phases were measured using {sup 57}Fe Moessbauer spectroscopy at 16 K. The isomer shift values indicate the loss of oxygen for the samples milled for larger duration.

  11. Peculiarities of spin reorientation in a thin YIG film.

    Energy Technology Data Exchange (ETDEWEB)

    Bazaliy, Ya. B.; Tsymbal, L. T.; Linnik, A. I.; Dan' shin, N. K.; Izotov, A. I.; Wigen, P. E.

    2002-06-28

    The issue of magnetic orientation transitions in thin films combines interesting physics and importance for applications. We study the magnetic transition and phase diagram of a 0.1{micro}m thick (YLaGd){sub 3}(FeGa){sub 5}O{sub 12} films grown on GGG substrate by liquid phase epitaxy. Observed transitions are compared with those in BiGa:TmIG thin films, studied in previous work by one of the authors. A general picture of orientation transitions in thin films of substituted YIG is discussed.

  12. Peculiarities of spin reorientation in a thin YIG film

    Energy Technology Data Exchange (ETDEWEB)

    Bazaliy, Ya.B.; Tsymbal, L.T.; Linnik, A.I.; Dan' shin, N.K.; Izotov, A.I.; Wigen, P.E

    2003-05-01

    The issue of magnetic orientation transitions in thin films combines interesting physics and importance for applications. We study the magnetic transition and phase diagram of a 0.1 {mu}m thick (YLaGd){sub 3}(FeGa){sub 5}O{sub 12} films grown on GGG substrate by liquid phase epitaxy. Observed transitions are compared with those in BiGa:TmIG thin films, studied in previous work by one of the authors. A general picture of orientation transitions in thin films of substituted YIG is discussed.

  13. The effect of Ce doping on the structure, surface morphology and magnetic properties of Dy doped-yttrium iron garnet films prepared by a sol-gel method

    Science.gov (United States)

    Arsad, A. Z.; Ibrahim, N. B.

    2016-07-01

    Cerium substitute Y2.8-xDy0.2CexFe5O12 (x=0, 0.2, 0.25, 0.3, 0.35) films have been prepared on quartz substrates by a simple sol-gel method and followed by a spin-coating technique. The crystalline structures, surface and magnetic properties of the films has been investigated by an X-ray diffractometer (XRD), a field emission scanning electron microscope (FESEM), an atomic force microscope (AFM) and a vibrating sample magnetometer (VSM). The XRD analysis revealed that the films have garnet structure. The lattice parameter increased as Ce content was increased up to 0.25 due to the Ce3+ ions completely substituted for Y3+ ions. For films x≥0.3, the lattice parameter decreased. The FESEM results showed that the average grains were small, ranging from 11 to 14 nm and the thickness of films increased with the increment of Ce contents. VSM results for both in and out-plane magnetic measurement showed the film with x=0 has the highest saturation magnetization (Ms) values. With the increment of Ce contents, the Ms of films decreased due to the substitution of Ce3+, Dy3+ ions in the c-site. For films x≥0.3 the reduction of Ms values was due to the presence of CeO2 in the film. The films with x=0-0.25 exhibited increases in Hc values. The improvement of coercivity value, small grain size and high crystalline structure of film with x=0.25 has a potential to be used in magneto optical (MO) memory storage applications.

  14. Physical Properties and Behaviour of Highly Bi-Substituted Magneto-Optic Garnets for Applications in Integrated Optics and Photonics

    Directory of Open Access Journals (Sweden)

    Mohammad Nur-E-Alam

    2011-01-01

    Full Text Available Rare-earth and Bi-substituted iron garnet thin film materials exhibit strong potential for application in various fields of science and frontier optical technologies. Bi-substituted iron garnets possess extraordinary optical and MO properties and are still considered as the best MO functional materials for various emerging integrated optics and photonics applications. However, these MO garnet materials are rarely seen in practical photonics use due to their high optical losses in the visible spectral region. In this paper, we report on the physical properties and magneto-optic behaviour of high-performance RF sputtered highly bismuth-substituted iron garnet and garnet-oxide nanocomposite films of generic composition type (Bi, Dy/Lu3(Fe, Ga/Al5O12. Our newly synthesized garnet materials form high-quality nanocrystalline thin film layers which demonstrate excellent optical and MO properties suitable for a wide range of applications in integrated optics and photonics.

  15. Transverse Spin Seebeck Effect on YIG/Pt

    Science.gov (United States)

    Prakash, Arati; Boona, Stephen; Jin, Hyungyu; Heremans, Joseph

    2015-03-01

    The existence of the longitudinal spin-Seebeck effect (LSSE) is well established and supported by theory. Much more controversial is the nature of the signals observed in the transverse spin-Seebeck (TSSE) geometry, where the heat current (x) is orthogonal to the direction of spin current propagation (y). TSSE has been described as simply non-local thermal spin-injection, but questions remain about the fact that the effect is observed at macroscopic length scales. To explore possible explanations for the observed TSSE signals, we report data from new TSSE measurements on the YIG/Pt system. The system studied has multiple Pt strips deposited in series upon bulk single crystals of YIG. We investigate the TSSE coefficient as a function of four variables: (1) sample temperature; (2) magnitude of the temperature gradient; (3) position of Pt strips along x; and (4) width of Pt strips along x. We consider nonlinear effects and the role of magnon density in the interpretation of our results. Work supported by the ARO- MURI Grant W911NF-14-1-0016 and NSF MRSEC program, Grant No. DMR 1420451.

  16. Ferromagnetic resonance of a YIG film in the low frequency regime

    Science.gov (United States)

    Ketterson, John; Grudichak, Scott; Sklenar, Joseph; Tsai, C. C.; Jang, Moongyu; Yang, Qinghui; Zhang, Huaiwu; Lee, Seongjae

    An improved method for characterizing the magnetic anisotropy of films with cubic symmetry is described and is applied to an yttrium iron garnet (111) film. Analysis of the FMR spectra performed both in-plane and out-of-plane from 0.7 to 8 GHz yielded the magnetic anisotropy constants as well as the saturation magnetization. The field at which FMR occurs is sensitive to anisotropy constants in the low frequency (Sciences, Materials Science and Engineering Division under Grant Number DE-SC0014424. The film growth was supported by the National Natural Science Foundation of China (NSFC) under Grants 51272036 and 51002021 and 51472046.

  17. Compression gain of spin wave signals in a magnonic YIG waveguide with thermal non-uniformity

    Science.gov (United States)

    Kolokoltsev, O.; Gómez-Arista, Ivan; Qureshi, N.; Acevedo, A.; Ordóñez-Romero, César L.; Grishin, A.

    2015-03-01

    We report on the observation of the compression gain of the signals carried by surface spin waves (MSSWs) in yittrium iron garnet films as a result of non-uniform optical heating of the spin wave medium. Efficient gain takes place if a frequency downshift of the spin wave spectrum induced by the heating is compensated by the corresponding non-uniformity of the bias magnetic field. It is proposed that the effect can be understood in part as an interaction between spin waves and a thermally induced potential well in the sample.

  18. Determination of the easy axis of magnetization in terbium–yttrium iron garnet Tb{sub 1}Y{sub 2}Fe{sub 5}O{sub 12} at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lahoubi, Mahieddine, E-mail: mlahoubi@hotmail.fr [Badji Mokhtar-Annaba University, Faculty of Sciences, Department of Physics, Laboratory L.P.S., PO-Box 12, 23000 Annaba (Algeria); Wang, Wei, E-mail: wangwei@mail.buct.edu.cn [Beijing University of Chemical Technology, Department of Physics and Electronics, Beijing 100029 (China); University of Texas at Arlington, Department of Physics, Arlington, TX 76019 (United States); Pu, Shengli [University of Shanghai for Science and Technology, College of Science, Shanghai 200093 (China)

    2015-11-01

    Experimental investigations have been carried out on a spherical single crystal of terbium yttrium iron garnet (Tb{sub 1}Y{sub 2}Fe{sub 5}O{sub 12}) by means of magnetization measurements in strong dc magnetic fields up to 200 kOe applied along the <111>, <110> and <100> crystallographic directions at low temperatures (T<20 K) with a high degree of resolution both in field and temperature. The strong anisotropic magnetic behavior which appears at 4.2 K is due to the competition between <111> and <100> directions to be the easy axis of spontaneous magnetization while the <110> direction remains the more difficult axis. The magnetization measurement at 4.2 K leaving the sample to rotate freely on itself suggests that the easy axis of spontaneous magnetization is along the <100> direction. However, due to the magnetic anisotropy energies associated with both <100> and <111> directions which are close to each other, the phase <111> becomes more stable as soon as the magnetic field exceeds 10 kOe or the temperature is higher than 10 K. The results are compared with previous works. - Highlights: • High field magnetizations M{sub T}(H) were made on Tb{sub 1}Y{sub 2}Fe{sub 5}O{sub 12} single crystal from 4.2 to 20 K. • Field-induced phase transitions (FIPTs) are observed at critical fields for H along <111>, <110> and <100> directions. • <111> and <100> appear as the easy axes (EAs) of spontaneous magnetization while <110> remains the hard axis. • By leaving the spherical sample to rotate freely on itself, the phase <100> appears to be the EA direction and FIPTs occur. • Anisotropy energies of the EAs are close to each over , the phase <111> becomes more stable as soon as H>10 kOe or T>10 K.

  19. Design of integrated YIG-based isolators and high-speed modulators

    Science.gov (United States)

    Firby, C. J.; Elezzabi, A. Y.

    2016-03-01

    In this work, we present the design of integrable magnetoplasmonic isolators and modulators, based on a longrange magnetoplasmonic waveguide structure. With the addition of magnetized cerium-substituted yttrium iron garnet waveguides and planar samarium-cobalt biasing magnets to a Mach-Zehnder interferometer (MZI), we show that an efficient isolator architecture can be implemented with insertion loss of 2.51 dB and an isolation of 22.82 dB within a small footprint of 6:4 x 10-3 mm2. Additionally, employing bismuth-substituted yttrium iron garnet in a MZI and transient magnetic fields from nearby transmission lines, we propose a high-speed electrical-to-optical clock multiplier. Such a device exhibits a modulation depth of 16.26 dB, and an output modulation frequency of 279.9 MHz. Thus, input clock signals can be multiplied by factors of 2:1 x 103. These devices are envisioned as fundamental constituents of future integrated nanoplasmonic circuits.

  20. Phase stable rare earth garnets

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, Joshua D.; Cherepy, Nerine J.; Roberts, Jeffery J.; Payne, Stephen A.

    2013-06-11

    A transparent ceramic according to one embodiment includes a rare earth garnet comprising A.sub.hB.sub.iC.sub.jO.sub.12, where h is 3.+-.10%, i is 2.+-.10%, and j is 3.+-.10%. A includes a rare earth element or a mixture of rare earth elements, B includes at least one of aluminum, gallium and scandium, and C includes at least one of aluminum, gallium and scandium, where A is at a dodecahedral site of the garnet, B is at an octahedral site of the garnet, and C is at a tetrahedral site of the garnet. In one embodiment, the rare earth garment has scintillation properties. A radiation detector in one embodiment includes a transparent ceramic as described above and a photo detector optically coupled to the rare earth garnet.

  1. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  2. Iron

    Science.gov (United States)

    ... of iron stored in the body become low, iron deficiency anemia sets in. Red blood cells become smaller and ... from the lungs throughout the body. Symptoms of iron deficiency anemia include tiredness and lack of energy, GI upset, ...

  3. Mineral chemistry of garnet in pegmatite and metamorphic rocks in the Hamedan area

    Directory of Open Access Journals (Sweden)

    Ahmad Ahmadi Khalaji

    2015-10-01

    Full Text Available Introduction The area of this study is located near Hamadan within the Sanandaj - Sirjan tectonic zone. In the Hamadan area, consisting mainly of Mesozoic plutonic and metamorphic rocks, aplites and pegmatites locally contain garnets.(Baharifar et al., 2004, Amidi and Majidi, 1977; Torkian, 1995. Garnet-bearing schists and hornfelses in the area are products of regional metamorphism shown by slate and phyllite (Baharifar, 2004. In this investigation the distribution of elements in garnet in different rock type was studied to determine their mineral types and conditions of formation. Garnet samples from igneous and metamorphic rocks were analyzed by electron microprobe (EMPA, the results of which are presented in this article. Materials and methods Thirty-five samples were selected for thin section preparation and twenty thin-polished sections were prepared for mineralogical and microprobe analysis. Thin sections of garnet-bearing igneous (pegmatite and metamorphic rocks (schist and hornfels were studied by polarizing microscope. Chemical analysis was performed on the garnets (38 points using a Caimeca SX100 electron microprobe at an acceleration voltage of 15 kV and electric current of 15 nA in the Mineral Processing Research Center, Iran. Separation of iron (II and Fe (III was calculated by Droop’s method (1987 and the structural formulas of the garnets were calculated using 24 oxygens to determine the relative proportions of the end-members using the mineral spreadsheet software of Preston and Still (2001. Results Based on the analyses, almandine (Fe - Al garnet and spessartine (Mn - Al garnet are the principal types of the (Kamari metamorphic and (Abaro pegmatitic garnets, that belong to the well-known pyralspite garnet group. Chemical zoning patterns of the garnets in the metamorphic rocks (schists differ from those in the igneous rocks (pegmatite, showing different compositions from core to rim. Petrographic evidence such as: co

  4. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic......, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present...... and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...

  5. Chapter L: U.S. Industrial Garnet

    Science.gov (United States)

    Evans, James G.; Moyle, Phillip R.

    2006-01-01

    The United States presently consumes about 16 percent of global production of industrial garnet for use in abrasive airblasting, abrasive coatings, filtration media, waterjet cutting, and grinding. As of 2005, domestic garnet production has decreased from a high of 74,000 t in 1998, and imports have increased to the extent that as much as 60 percent of the garnet used in the United States in 2003 was imported, mainly from India, China, and Australia; Canada joined the list of suppliers in 2005. The principal type of garnet used is almandite (almandine), because of its specific gravity and hardness; andradite is also extensively used, although it is not as hard or dense as almandite. Most industrial-grade garnet is obtained from gneiss, amphibolite, schist, skarn, and igneous rocks and from alluvium derived from weathering and erosion of these rocks. Garnet mines and occurrences are located in 21 States, but the only presently active (2006) mines are in northern Idaho (garnet placers; one mine), southeastern Montana (garnet placers; one mine), and eastern New York (unweathered bedrock; two mines). In Idaho, garnet is mined from Tertiary and (or) Quaternary sedimentary deposits adjacent to garnetiferous metapelites that are correlated with the Wallace Formation of the Proterozoic Belt Supergroup. In New York, garnet is mined from crystalline rocks of the Adirondack Mountains that are part of the Proterozoic Grenville province, and from the southern Taconic Range that is part of the northern Appalachian Mountains. In Montana, sources of garnet in placers include amphibolite, mica schist, and gneiss of Archean age and younger granite. Two mines that were active in the recent past in southwestern Montana produced garnet from gold dredge tailings and saprolite. In this report, we review the history of garnet mining and production and describe some garnet occurrences in most of the Eastern States along the Appalachian Mountains and in some of the Western States where

  6. Highly sensitive sensors based on magneto-optical surface plasmon resonance in Ag/CeYIG heterostructures

    Directory of Open Access Journals (Sweden)

    Jun Qin

    2015-01-01

    Full Text Available In this paper we present a new magneto-optical surface plasmon resonance (MOSPR sensor using a dielectric magneto-optical thin film of Ce1Y 2Fe5O12 (CeYIG and a metallic film of Ag. We demonstrate that by combining the low optical loss of Ag (ε =-62.485+4.331i and the strong magneto-optical effect of CeYIG (ΦF = 2 × 104 deg/cm at ∼1000 nm wavelength, a high figure of merit (FoM for index sensing can be achieved. The device shows a factor of 20 improvement in the index resolution in comparison with ferromagnetic metal based MOSPR sensors at the same wavelength. By carrying out both analytical and numerical simulations, an optimized Ag/CeYIG MOSPR structure with the highest index sensitivity is achieved at the incident light wavelength of 1160 nm and the CeYIG thickness of 25 nm. The enhanced resolution of the DMOSPR sensor has been attributed to both the field enhancement at the sensing interface due to the high index of CeYIG films and, the high magneto-optical figure of merit of the CeYIG near infrared wavelength range.

  7. Chemical characterization of garnets from Garnet Ridge, northern Arizona in the Colorado Plateau

    Science.gov (United States)

    Itaru, K.; Ogasawara, Y.

    2011-12-01

    Garnet crystals with diverse chemistries and their origins have occurred at Garnet Ridge in northern Arizona, Colorado Plateau. The garnet grains occur as small grains (2-5mm φ) scattering on weathered late Jurassic red mudstone, very large grained single crystal (1 to several cm), and major constituent minerals of eclogite and other garnet-bearing xenoliths in kimberlitic diatreme. The important discovery of coesite-bearing lawsonite eclogite, which is one of the source rocks of garnets, has been reported by Usui et al. (2005), and their zircon ages (81 to 33 Ma) suggest that the lawsonite eclogite was a product of subduction of the Fallaron plate underneath the Colorado Plateau. We collected several kinds of garnet grains with various origins and of xenoliths, and clarified the chemical characteristics of these garnets with an electron microprobe (JXA-8900 WDS mode). The garnet samples were classified into 6 groups: (A) scattered grains of reddish to purplish garnet (2-5 mm φ), (B) large-grained reddish brown garnet, (C) garnet in an eclogite xenolith. (D) garnet in unknown xenolith A, (E) garnet in unknown xenolith B, (F) garnet in garnet-clinopyroxene rock xenolith (strongly altered). The results of microprobe analyses showed the large difference in each garnet type on Prp-Alm-Grs triangular diagram. The garnet chemistries were as follows: (1) Type A garnets were relatively Prp-rich but have a wide range in Prp component. The Cr2O3 contents (max. 4 wt.%) divided this type into two groups. (2) Type-B garnets were plotted near the center of the triangle and did not show clear chemical zonation. (3) Type-C garnets have Alm-rich composition and were low in Prp. They show chemical zonation of Pyr and Grs components (MgO:1.4 to 5.4 wt.%, and CaO: 14.0 to 5.6 wt.% both from core to rim). Clinopyroxene is omphacite. (4) Type D garnets were plotted on Alm-Grs join (Grs61-71Alm23-35And5-7). (5) Type E garnets are characterized by very low Grs-components and were

  8. Compression gain of spin wave signals in a magnonic YIG waveguide with thermal non-uniformity

    Energy Technology Data Exchange (ETDEWEB)

    Kolokoltsev, O.; Gómez-Arista, Ivan; Qureshi, N.; Acevedo, A. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, CU 04510 D.F. (Mexico); Ordóñez-Romero, César L. [Instituto de Física, Universidad Nacional Autónoma de México, CU 04510 D.F. (Mexico); Grishin, A. [Condensed Matter Physics, Royal Institute of Technology, SE-164 40 Stockholm, Kista (Sweden)

    2015-03-01

    We report on the observation of the compression gain of the signals carried by surface spin waves (MSSWs) in yittrium iron garnet films as a result of non-uniform optical heating of the spin wave medium. Efficient gain takes place if a frequency downshift of the spin wave spectrum induced by the heating is compensated by the corresponding non-uniformity of the bias magnetic field. It is proposed that the effect can be understood in part as an interaction between spin waves and a thermally induced potential well in the sample. - Highlights: • In this manuscript we describe the case when thermal control of the magnetization profile leads to significant improvement of characteristics of a spin wave delay line element. • We believe that this technology can be used to realize reconfigurable magnonic crystals or waveguiding structures induced in the ferromagnets by scanning optic systems integrated with a semiconductor lasers. • It should be noted, in metallic systems thermal response times are of order of picoseconds.

  9. Observation of the Spin Peltier Effect for Magnetic Insulators

    NARCIS (Netherlands)

    Flipse, J.; Dejene, F.K.; Wagenaar, D.; Bauer, G.E.W.; Ben Youssef, J.; Van Wees, B.J.

    2014-01-01

    We report the observation of the spin Peltier effect (SPE) in the ferrimagnetic insulator yttrium iron garnet (YIG), i.e., a heat current generated by a spin current flowing through a platinum (Pt)|YIG interface. The effect can be explained by the spin transfer torque that transforms the spin curren

  10. Surface sensitivity of the spin Seebeck effect

    NARCIS (Netherlands)

    Aqeel, Aisha; Vera Marun, Ivan; van Wees, Bart; Palstra, Thomas

    2014-01-01

    We have investigated the influence of the interface quality on the spin Seebeck effect (SSE) of the bilayer system yttrium iron garnet (YIG)-platinum (Pt). The magnitude and shape of the SSE is strongly influenced by mechanical treatment of the YIG single crystal surface. We observe that the saturat

  11. YIG: Bi2O3 Nanocomposite Thin Films for Magnetooptic and Microwave Applications

    Directory of Open Access Journals (Sweden)

    M. Nur-E-Alam

    2015-01-01

    Full Text Available Y3Fe5O12-Bi2O3 composite thin films are deposited onto Gd3Ga5O12 (GGG substrates and their annealing crystallization regimes are optimized (in terms of both process temperatures and durations to obtain high-quality thin film layers possessing magnetic properties attractive for a range of technological applications. The amount of bismuth oxide content introduced into these nanocomposite-type films is controlled by adjusting the RF power densities applied to both Y3Fe5O12 and Bi2O3 sputtering targets during the cosputtering deposition processes. The measured material properties of oven-annealed YIG-Bi2O3 films indicate that cosputtering of YIG-Bi2O3 composites can provide the flexibility of application-specific YIG layers fabrication of interest for several existing, emerging, and also frontier technologies. Experimental results demonstrate large specific Faraday rotation (of more than 1°/µm at 532 nm, achieved simultaneously with low optical losses in the visible range and very narrow peak-to-peak ferromagnetic resonance linewidth of around ΔHpp= 6.1 Oe at 9.77 GHz.

  12. Isochemical breakdown of garnet in orogenic garnet peridotite and its implication to reaction kinetics

    OpenAIRE

    Obata, Masaaki; Ozawa , Kazuhito; Naemura, Kosuke; Miyake, Akira

    2013-01-01

    An isochemical kelyphite (orthopyroxene+spinel+plagioclase) that has nearly the same bulk chemical composition as the precursor garnet was found within a matrix of ordinary kelyphites (orthopyroxene+clinopyroxene+spinel±amphibole) in garnet peridotites from the Czech part of the Moldanubian Zone. It was shown that the kelyphitization of garnet took place in three stages: (1) the garnet-olivine reaction, accompanied by a long-range material transfer across the reaction zone, and (2) the isoche...

  13. Formation of Garnet Granulite in the Lower Crust of a paleo-Island Arc

    Science.gov (United States)

    Garrido, Carlos J.; Padrón-Navarta, José Alberto; López Sánchez-Vizcaíno, Vicente; Bodinier, Jean-Louis; Bosch, Delphine; Marchesi, Claudio; Hidas, Károly

    2016-04-01

    The Jijal complex (Kohistan paleo-island arc complex, NW Pakistan) is a unique occurrence of high-pressure (HP), mafic, opx-free, garnet granulite formed in the lower crust of an island arc. The upper part of the Jijal Granulitic Gabbro Unit (GGU) records the arrested transformation of hornblende gabbronorite to garnet granulite, involving the coeval breakdown of amphibole and orthopyroxene, and the formation of garnet and quartz. Close to the transformation front (2-3 cm), clinopyroxene from the granulite displays a strong Ca-tschermak zoning with lower Al-contents at rims. REE zoning of clinopyroxene and pseudosection diagrams indicate that only clinopyroxene rims reflect chemical equilibrium with garnet in the reaction front (P = 1.1 ± 0.1 GPa, T = 800 ± 50 °C), whereas the cores retained high-Al contents inherited from precursor gabbronorite clinopyroxene and remained in chemical disequilibrium within a few centimeters of the garnet granulite assemblage. Clinopyroxene of garnet granulites from the Jijal lower GGU are completely re-equilibrated with garnet (P = 1.5 ± 0.1 GPa, T = 800 ± 50 °C). If ferric iron corrections are disregarded, equilibration pressure and temperature are highly overestimated yielding exceedingly high pressures for an island arc setting. The pressure difference between the upper and lower Jijal GGU granulites (~0.4 GPa) and its current thickness (granulite, the equilibrium assemblage is orthopyroxene-free and amphibole-free garnet granulite coexisting with melt or a fluid phase, depending on the water activity at the onset of amphibole breakdown. Pseudosections indicate that hornblende gabbronorite assemblages are highly metastable at lower arc crust depths. The transformation to garnet granulite was therefore substantially overstepped in terms of pressure and temperature. Substantial compression from 0.5 GPa to 1.1 GPa may account for the transformation of the hornblende gabbronorite assemblage to high-pressure garnet granulite

  14. An experimental study of the system FeO-Fe$_{2}$O$_{3}$-SiO$_{2}$ at high pressures and temperatures : Garnet, perovskite and post-perovskite phases

    OpenAIRE

    Ismailova, Leyla

    2016-01-01

    Garnets are important minerals in the Earth’s upper-mantle and transition zone, and materials with the garnet structure are essential for many industrial applications. At lower mantle conditions, garnets transform into silicate perovskite (bridgmanite) and eventually into post-perovskite (CaIrO3-structured) silicate. Incorporation of iron into the structures of these phases can strongly affect chemical and physical properties of the Earth’s mantle, as well as its dynamics and evolution. In or...

  15. Comparison of two Q-switched lasers and a short-pulse erbium-doped yttrium aluminum garnet laser for treatment of cosmetic tattoos containing titanium and iron in an animal model.

    Science.gov (United States)

    Wang, Chia-Chen; Huang, Chuen-Lin; Yang, An-Hang; Chen, Chih-Kang; Lee, Shao-Chen; Leu, Fur-Jiang

    2010-11-01

    Cosmetic tattoos contain titanium and ferric oxide and darken through reduction after Q-switched laser irradiation. The optimal treatment for removing these pigments remains unknown. To compare the effects of two Q-switched lasers and a short-pulse erbium-doped yttrium aluminum garnet (SP Er:YAG) laser to remove cosmetic tattoos in an animal model. Rats were tattooed using white, flesh-colored, and brown inks (4 bands of each color) on their backs. For each color, one band was left untreated, and one each was treated with a Q-switched neodymium-doped YAG laser, a Q-switched alexandrite laser, and a SP Er:YAG laser every 3 weeks until the pigments were clear. The two Q-switched lasers were equally effective; all three pigments darkened initially and then resolved gradually. Up to 20, 18, and 10 sessions were required to remove white, flesh-colored, and brown tattoos, respectively. Only six sessions were required with the SP Er:YAG laser. Minimal scarring was observed with all lasers. Skin biopsies confirmed pigment granule fragmentation after Q-switched laser treatment and a decrease in the amount of pigment after SP Er:YAG laser treatment. The SP Er:YAG laser was superior to the Q-switched lasers for removing cosmetic tattoos. © 2010 by the American Society for Dermatologic Surgery, Inc.

  16. Quantitative investigation of the inverse Rashba-Edelstein effect in Bi/Ag and Ag/Bi on YIG

    Science.gov (United States)

    Matsushima, Masasyuki; Ando, Yuichiro; Dushenko, Sergey; Ohshima, Ryo; Kumamoto, Ryohei; Shinjo, Teruya; Shiraishi, Masashi

    2017-02-01

    The inverse Rashba-Edelstein effect (IREE) is a spin conversion mechanism that recently attracts attention in spintronics and condensed matter physics. In this letter, we report an investigation of the IREE in Bi/Ag by using ferrimagnetic insulator yttrium iron garnet. We prepared two types of samples with opposite directions of the Rashba field by changing a stacking order of Bi and Ag. An electric current generated by the IREE was observed from both stacks, and an efficiency of spin conversion—characterized by the IREE length—was estimated by taking into account a number of contributions left out in previous studies. This study provides a further insight into the IREE spin conversion mechanism: important step towards achieving efficient spin-charge conversion devices.

  17. Design of an Ultra Broad Band YIG-Tuned FET Oscillator Operating within -45~+65℃

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, the design of an ultra broad band YIG-Tuned FET oscillator is briefly presented. These performances of the superior linearity, the pure spectrum and the ultra broad band tuned oscillation have been realized by a common source circuit topology and a dual coupling YIG resonator. Using a BeO substrate and a buffering amplification stage made up of monolithic MIC traveling wave amplifier, the RF output power has been obtained above 13 dBm in the range from 4 to 16.5 GHz; By means of YIG heater and the temperature compensation of the magnetic circuit, the broad temperature operation performance of YTO has been realized within -45~+65℃.

  18. Anisotropy Characteristics of Magnetostatic Surface Wave Propagating in YIG/Dielectric/Metal Layered Structure

    Institute of Scientific and Technical Information of China (English)

    Qing-Hui Yang; Huai-Wu Zhang; Ying-Li Liu

    2007-01-01

    The anisotropy of magnetostatic surface wave (MSSW) propagating in finite width YIG/dielectric/metal layered structure is analyzed. This problem is solved by finding the rigorous solution of each layer from Maxwell equation and the appropriate transmission Green's function matrix (G). From the relationship of Green's function matrixes of dielectric layer and ferrite layer, the dispersion equation is obtained.The MSSW filter is designed to verify the dispersion characteristics. The experiment results are in good agreement with the calculating data from the model.

  19. Characterization of integrated inductors with one and two YIG layers for low-power converters (1 W

    Directory of Open Access Journals (Sweden)

    Yaya D.D.

    2014-07-01

    Full Text Available These last years, the miniaturization of electronic components allows to increase the number of equipment. Consequently, the realization of integrated inductors with high inductance and low-cost manufacturing is highly desirable. The objective of our work is the characterization of inductors with one or two magnetic layers in order to integrate these components in low-power converters (1W. Extracted parameters show a strong increase of the inductance either by simulation or by measurement according to the magnetic thickness layer. For inductance with two magnetic layers, inductance value is higher when the bottom YIG layer thickness is higher than the top YIG layer thickness.

  20. Magnetic properties of epitaxial bismuth ferrite-garnet mono- and bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Semuk, E.Yu.; Berzhansky, V.N.; Prokopov, A.R.; Shaposhnikov, A.N.; Karavainikov, A.V. [Taurida National V.I. Vernadsky University, Vernadsky Avenue, 4, 95007 Simferopol (Ukraine); Salyuk, O.Yu. [Institute of Magnetism NASU and MESU, 36-B Vernadsky Blvd., 03142 Kiev (Ukraine); Golub, V.O., E-mail: golub@imag.kiev.ua [Institute of Magnetism NASU and MESU, 36-B Vernadsky Blvd., 03142 Kiev (Ukraine)

    2015-11-15

    Magnetic properties of Bi{sub 1.5}Gd{sub 1.5}Fe{sub 4.5}Al{sub 0.5}O{sub 12} (84 nm) and Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} (180 nm) films epitaxially grown on gallium-gadolinium garnet (GGG) single crystal (111) substrate as well as Bi{sub 1.5}Gd{sub 1.5}Fe{sub 4.5}Al{sub 0.5}O{sub 12}/Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} bilayer were investigated using ferromagnetic resonance technique. The mismatch of the lattice parameters of substrate and magnetic layers leads to formation of adaptive layers which affect on the high order anisotropy constant of the films but practically do not affect on uniaxial perpendicular magnetic anisotropy The magnetic properties of the bilayer film were explained in supposition of strong exchange coupling between magnetic layers taking into account film-film and film-substrate elastic interaction. - Highlights: • Magnetic parameters of epitaxial Bi-YIG films and bilayers on GGG substrate. • Adaptive layers affect on high order magnetic anisotropy. • Magnetic properties of bilayers are result of strong exchange interaction.

  1. Evaluation of garnet discrimination diagrams using geochemical data of garnets derived from various host rocks

    Science.gov (United States)

    Krippner, Anne; Meinhold, Guido; Morton, Andrew C.; von Eynatten, Hilmar

    2014-06-01

    This work is an attempt to evaluate six different garnet discrimination diagrams (one binary diagram and five ternary diagrams) commonly used by many researchers. The mineral chemistry of detrital garnet is a useful tool in sedimentary provenance studies, yet there is no clear-cut understanding of what garnet type originates from which host lithology. Several discrimination diagrams exist for garnet showing distinct compositional fields, separated by strict boundaries that are thought to reflect specific types of source rocks. For this study, a large dataset was compiled (N = 3532) encompassing major element compositions of garnets derived from various host lithologies, including metamorphic, igneous, and mantle-derived rocks, in order to test the applicability of the various discrimination schemes. The dataset contains mineral chemical data collected from the literature complemented with some new data (N = 530) from garnet-bearing metamorphic and ultramafic rocks in Austria and Norway. Discrimination of the tested diagrams only works for a small group of garnets derived from mantle rocks, granulite-facies metasedimentary rocks, and felsic igneous rocks. For other garnet types, the assignment to a certain type of host rock remains ambiguous. This is considered insufficient and therefore the evaluated diagrams should be used with great care. We further apply compositional biplot analysis to derive some hints towards future perspectives in detrital garnet discrimination.

  2. Experimental Constraints on the Partitioning and Valence of V and Cr in Garnet and Coexisting Glass

    Science.gov (United States)

    Righter, K.; Sutton, S.; Berthet, S.; Newville, M.

    2008-01-01

    A series of experiments with garnet and coexisting melt have been carried out across a range of oxygen fugacities (near hematite-magnetite (HM) to below the iron-wustite (IW) buffers) at 1.7 GPa to study the partitioning and valence of Cr and V in both phases. Experiments were carried out in a non end loaded piston cylinder apparatus, and the run products were analyzed with electron microprobe and xray absorption near edge structure (XANES) analysis at beamline 13-ID at the Advanced Photon Source of Argonne National Lab. The valence of vanadium and chromium were determined using the position and intensity of the Ka pre-edge peaks, calibrated on a series of Cr and Vbearing standard glasses. This technique has been applied to V and Cr in glasses and V in spinels previously, and in these isotropic phases there are no orientational effects on the XANES spectra (Righter et al., 2006, Amer. Mineral. 91, 1643-1656). We also now demonstrate this to be true for V and Cr in garnet. Also, previous work has shown that V has a higher valence in the glass (or melt) than in the coexisting spinel. This is also true for V in garnet-glass pairs in this study. Vanadium valence in garnets varies from 2.7 below the IW buffer to 3.7 near HM, and for coexisting glass it varies from 3.2 to 4.3. Vanadium valence measured in some natural garnets from mantle localities indicates V in the more reduced range at 2.5. Comparisons will be made between fO2 estimated from V valence and other methods for garnet-bearing mantle samples. In contrast, Cr valence measured in garnet and coexisting glass for all experimental and natural samples is 2.9- 3.0, suggesting that the valence of Cr does not vary within either phase across a large fO2 range. These results demonstrate that while V varies from 2+ to 3+ to 4+ in garnet-melt systems, Cr does not, and this will ultimately affect the partitioning behavior of these two elements in natural systems. Garnet/melt D(Cr) are between 12 and 17 across this range

  3. Divalent metal ion differentially regulates the sequential nicking reactions of the GIY-YIG homing endonuclease I-BmoI.

    Directory of Open Access Journals (Sweden)

    Benjamin P Kleinstiver

    Full Text Available Homing endonucleases are site-specific DNA endonucleases that function as mobile genetic elements by introducing double-strand breaks or nicks at defined locations. Of the major families of homing endonucleases, the modular GIY-YIG endonucleases are least understood in terms of mechanism. The GIY-YIG homing endonuclease I-BmoI generates a double-strand break by sequential nicking reactions during which the single active site of the GIY-YIG nuclease domain must undergo a substantial reorganization. Here, we show that divalent metal ion plays a significant role in regulating the two independent nicking reactions by I-BmoI. Rate constant determination for each nicking reaction revealed that limiting divalent metal ion has a greater impact on the second strand than the first strand nicking reaction. We also show that substrate mutations within the I-BmoI cleavage site can modulate the first strand nicking reaction over a 314-fold range. Additionally, in-gel DNA footprinting with mutant substrates and modeling of an I-BmoI-substrate complex suggest that amino acid contacts to a critical GC-2 base pair are required to induce a bottom-strand distortion that likely directs conformational changes for reaction progress. Collectively, our data implies mechanistic roles for divalent metal ion and substrate bases, suggesting that divalent metal ion facilitates the re-positioning of the GIY-YIG nuclease domain between sequential nicking reactions.

  4. Influence of Thickness and Interface on the Low-Temperature Enhancement of the Spin Seebeck Effect in YIG Films

    Science.gov (United States)

    Guo, Er-Jia; Cramer, Joel; Kehlberger, Andreas; Ferguson, Ciaran A.; MacLaren, Donald A.; Jakob, Gerhard; Kläui, Mathias

    2016-07-01

    The temperature-dependent longitudinal spin Seebeck effect (LSSE) in heavy metal (HM )/Y3Fe5O12 (YIG) hybrid structures is investigated as a function of YIG film thickness, magnetic field strength, and different HM detection materials. The LSSE signal shows a large enhancement with reductions in temperature, leading to a pronounced peak at low temperatures. We find that the LSSE peak temperature strongly depends on the film thickness as well as on the magnetic field. Our result can be well explained in the framework of magnon-driven LSSE by taking into account the temperature-dependent effective propagation length of thermally excited magnons in the bulk of the material. We further demonstrate that the LSSE peak is significantly shifted by changing the interface coupling to an adjacent detection layer, revealing a more complex behavior beyond the currently discussed bulk effect. By direct microscopic imaging of the interface, we correlate the observed temperature dependence with the interface structure between the YIG and the adjacent metal layer. Our results highlight the role of interface effects on the temperature-dependent LSSE in HM/YIG system, suggesting that the temperature-dependent spin current transparency strikingly relies on the interface conditions.

  5. Magnetic volumetric hologram memory with magnetic garnet.

    Science.gov (United States)

    Nakamura, Yuichi; Takagi, Hiroyuki; Lim, Pang Boey; Inoue, Mitsuteru

    2014-06-30

    Holographic memory is a promising next-generation optical memory that has a higher recording density and a higher transfer rate than other types of memory. In holographic memory, magnetic garnet films can serve as rewritable holographic memory media by use of magneto-optical effect. We have now demonstrated that a magnetic hologram can be recorded volumetrically in a ferromagnetic garnet film and that the signal image can be reconstructed from it for the first time. In addition, multiplicity of the magnetic hologram was also confirmed; the image could be reconstructed from a spot overlapped by other spots.

  6. EsrE-A yigP Locus-Encoded Transcript-Is a 3′ UTR sRNA Involved in the Respiratory Chain of E. coli

    Directory of Open Access Journals (Sweden)

    Hui Xia

    2017-08-01

    Full Text Available The yigP locus is widely conserved among γ-proteobacteria. Mutation of the yigP locus impacts aerobic growth of Gram-negative bacteria. However, the underlying mechanism of how the yigP locus influences aerobic growth remains largely unknown. Here, we demonstrated that the yigP locus in Escherichia coli encodes two transcripts; the mRNA of ubiquinone biosynthesis protein, UbiJ, and the 3′ untranslated region small regulatory RNA (sRNA, EsrE. EsrE is an independent transcript that is transcribed using an internal promoter of the yigP locus. Surprisingly, we found that both the EsrE sRNA and UbiJ protein were required for Q8 biosynthesis, and were sufficient to rescue the growth defect ascribed to deletion of the yigP locus. Moreover, our data showed that EsrE targeted multiple mRNAs involved in several cellular processes including murein biosynthesis and the tricarboxylic acid cycle. Among these targets, sdhD mRNA that encodes one subunit of succinate dehydrogenase (SDH, was significantly activated. Our findings provided an insight into the important function of EsrE in bacterial adaptation to various environments, as well as coordinating different aspects of bacterial physiology.

  7. Systematic hardness measurements on some rare earth garnet crystals

    Indian Academy of Sciences (India)

    D B Sirdeshmukh; L Sirdeshmukh; K G Subhadra; K Kishan Rao; S Bal Laxman

    2001-10-01

    Microhardness measurements were undertaken on twelve rare earth garnet crystals. In yttrium aluminium garnet and gadolinium gallium garnet, there was no measurable difference in the hardness values of pure and nominally Nd-doped crystals. The hardness values were correlated with the lattice and elastic constants. An analysis of hardness data in terms of the interatomic binding indicated a high degree of covalency.

  8. Hydrous Na-garnet from Garnet Ridge; products of mantle metasomatism underneath the Colorado Plateau

    Science.gov (United States)

    Sakamaki, Kunihiko; Sato, Yuto; Ogasawara, Yoshihide

    2016-12-01

    This is the first report on amphibole exsolution in pyrope from the Colorado Plateau. Pyrope crystals delivered from mantle depths underneath the Colorado Plateau by kimberlitic volcanism at 30 Ma were collected at Garnet Ridge, northern Arizona. The garnet grains analyzed in this study occur as discrete crystals (without adjacent rock matrix) and are classified into two major groups, Cr-rich pyrope and Cr-poor pyrope. The Cr-poor pyrope group is divided into four subgroups based on exsolved phases: amphibole lamella type, ilmenite lamella type, dense lamellae type, and clinopyroxene/amphibole lamellae type. Exsolved amphibole occurs in amphibole lamella type, dense lamellae type, and clinopyroxene/amphibole lamellae type of Cr-poor pyrope. The amphibole crystals tend to have preferred orientations in their garnet hosts and occur as monomineralic hexagonal or rhombic prisms and tablets, and as multimineralic needles or blades with other exsolved phases. Exsolved amphibole has pargasitic compositions (Na2O up to 1.6 apfu based on 23 oxygen). Garnet host crystals that have undergone amphibole exsolution have low OH contents (2-42 ppmw H2O) compared to garnets that do not have amphibole lamellae (up to 115 ppmw H2O). The low OH contents of garnets hosting amphibole lamellae suggest loss of OH from garnet during amphibole exsolution. Amphibole exsolution from pyrope resulted from breakdown of a precursor "hydrous Na-garnet" composition (Mg,Na+ x)3(Al2 - x, Mgx)2Si3O12 - 2x(OH)2x. Exsolution of amphibole and other phases probably occurred during exhumation to depths shallower than 100 km prior to volcanic eruption.

  9. A generalized garnet-forming reaction for metaigneous rocks in the Adirondacks

    Science.gov (United States)

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    A generalized reaction is presented to account for garnet formation in a variety of Adirondack metaigneous rocks. This reaction, which is the sum of five partial reactions written in aluminum-fixed frames of reference, is given by: 4(y+1+w)Anorthite+4 k(y+1+2 w)Olivine +4(1-k)(y+1+2 w)Fe-oxide+(8(y+1) -4 k(y+1+2 w))Orthopyroxene = 2(y+1)Garnet +2(y+1+2 w)Clinopyroxene+4 wSpinel where y is a function of plagioclase composition, k refers to the relative amounts of olivine and Fe-oxide participating in the reaction, and w is a measure of silicon mobility. When mass balanced for Mg and Fe, this reaction is found to be consistent with analyzed mineral compositions in a wide range of Adirondack metaigneous rocks. The reaction applies equally well whether the garnets were formed directly from the rectants given above or went through an intermadiate stage involving the formation of spinel, orthopyroxene, and clinopyroxene. The actual reactions which have produced garnet in both undersaturated and quartz-bearing rocks are special cases of the above general reaction. The most important special cases appear to be those in which the reactants include either olivine alone (k=1) or Fe-oxide alone (k=0). Silicon is relatively immobile (w =2) in olivine bearing, magnesium-rich rocks (k???1), and this correlates with the increased intensity in spinel clouding of plagioclase in these rocks. Silicon mobility apparently increases in the more iron-rich rocks, which also tend to contain clear or lightly clouded plagioclase. In all the rocks studied the most common composition of metamorphic plagioclase is close to An33 (i.e., y=1). Plagioclase of lower anorthite content may be too sodic to participate in garnet formation at the P-T conditions involved. ?? 1980 Springer-Verlag.

  10. Gate-voltage controlled spin pumping effects: spin injection from YIG and Co into metal and graphene based 2 D materials

    Science.gov (United States)

    Kalitsov, Alan; Chshiev, Mairbek; Mryasov, Oleg

    2015-03-01

    Spin current injection into nonmagnetic metals, semiconductors and oxides is crucial component of spintronics. The spin pumping mechanism free from the impedance mismatch is a promising way to inject spin current into nonmagnetic materials. Here we present theory of spin current injected into non-magnetic films which arises from magnetization precession. We apply this theory to two cases (i) insulating yttrium iron garnet ferromagnet/nonmagnetic metal interfaces and (ii) hcp-Co/single layer graphene interface. The electron transport calculations are based on the non-equilibrium Green Function formalism within the tight binding Hamiltonian model. We show that magnitude of the pumped spin current can be efficiently controlled by the gate voltage.

  11. Growth of Y3Fe5O12/GaN layers by laser molecular-beam epitaxy and characterization of their structural and magnetic properties

    Science.gov (United States)

    Kaveev, A. K.; Bursian, V. E.; Gastev, S. V.; Krichevtsov, B. B.; Suturin, S. M.; Volkov, M. P.; Sokolov, N. S.

    2016-12-01

    Laser molecular-beam epitaxy has been employed to obtain layers of yttrium-iron garnet (YIG) Y3Fe5O12 on gallium nitride substrates. It was found that there exists a polycrystalline YIG phase without admixtures of other structural phases. A magnetic anisotropy of films of the "easy-magnetic plane" type was found. The gyromagnetic ratio and the demagnetizing field 4π M S were calculated.

  12. Magnetic properties of Y3 - x - yPrxLuyFe5O12 garnet films

    Science.gov (United States)

    Azevedo, A.; Cinbis, C.; Kryder, M. H.

    1994-05-01

    In this work we report on the magnetic and low-field ferromagnetic resonance properties of iron garnet films of general composition Y3-x-yPrxLuyFe5O12 for 0≤x≤0.3 and 0≤y≤0.7. The films were grown onto [111] gadolinium gallium garnet substrates by liquid phase epitaxy. Both growth-induced and cubic anisotropies were investigated by means of torque magnetometry and ferromagnetic resonance at room temperature. The growth-induced anisotropy constant Ku and the first order magnetocrystalline cubic constant K1 exhibit a linear dependence with the praseodymium content. The addition of Lu with Pr enhances both Ku and K1 dependence on the doping, yielding ΔKu/x˜-2.4×105 erg/cm3 and ΔK1/x˜-1.1×105 erg/cm3. The addition of praseodymium in the garnet films significantly improves the soft magnetic properties. In-plane coercivity is about 0.1 Oe and there is a negligible anisotropy in the plane of the film. The effect of the doping by praseodymium and lutetium on the saturation magnetization is insignificant at room temperature.

  13. Studying Kittel-like modes in a 3D YIG disk using Torque-mixing Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Fani Sani, Fatemeh; Losby, Joseph; Grandmont, Dylan; Diao, Zhu; Belov, Miro; Burgess, Jacob; Compton, Shawn; Hiebert, Wayne; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory; Thomson, Douglas; Freeman, Mark

    We report a study of ferrimagnetic resonance in a mesoscopic, single-crystalline YIG disk using torque-mixing magnetic resonance spectroscopy (TMRS). The Kittel model for magnetic resonance is a touchstone in measuring fundamental magnetic properties for magnetic films, which does not significantly depend on the film size. In 3D structures, ladders of confined resonance modes are observed, and these can exhibit the non-monotonic evolution of frequency with field familiar from Kittel modes. TMRS is a tool uniquely suited for observing this physics in individual 3D structures, on account of its combination of high sensitivity and broadband capability coupled with fine frequency resolution.

  14. Precise revision of the garnet-muscovite geothermometer

    Institute of Scientific and Technical Information of China (English)

    WU; Chunming; (吴春明); ZHAO; Yingjun; (赵英俊)

    2002-01-01

    The garnet-muscovite geothermometer was refined through empirical calibration by using natural rocks metamorphosed under the physical conditions of 238—1306 MPa and 490—700℃. Input temperatures and pressures were determined through simultaneously applying the garnet-biotite geothermometer and the garnet-biotite-plagioclase-quartz barometer, assuming that all FeO in muscovite and garnet be ferrous. Garnet was treated as the asymmetric quaternary solid solution, and muscovite as the symmetric binary solid solution. Input muscovite compositions include Fe atoms between 0.03—0.19 and Mg atoms between 0.04—0.16 on the basis of 11 oxygen atoms, and input garnet compositions include spessartine fractions between 0.01—0.289, grossular fractions between 0.028—0.273, and the Fe/Mg ratio between 3.387-18.986. The resulting garnet-muscovite geothermometer reproduces temperatures within (50℃ compared with the garnet-biotite thermometer. Total random error of ±37℃ of the new thermometer may stem from the pressure uncertainty of ±200 MPa, and uncertainties of ±5% of Fe and Mg components in muscovite, and ±5% of Fe, Mg, Mn and Ca components in garnet, altogether. When there exist 10%, 20%, 30%, 40% and 50% Fe3+ in muscovite, respectively, the computed garnet-muscovite temperatures will be 1—6℃, 2—12℃, 3—16℃, 5—24℃ and 7—29℃, respectively, lower than those obtained when assuming that all FeO be ferrous. The new garnet-muscovite geothermometer can efficiently reflect temperature change of typical prograde sequences and contact aureole rocks, and may be applied to low- to high-grade and low- to high-pressure metamorphic rocks.

  15. Interface Engineering of Garnet Solid Electrolytes

    Science.gov (United States)

    Cheng, Lei

    Solid lithium ion conductors represent a promising class of materials for next generation high energy density batteries, with the potential for enabling use of high capacity Li metal anodes and providing opportunities for novel lithium-free cathode materials. However, highly resistive interfaces stymie their practical use. This urgent scientific challenge requires mechanistic understanding of ion transport at interfaces, as well as development of novel processes to achieve low interfacial resistances. The goal of this PhD dissertation was to generate fundamental understandings of garnet-structured Al substituted Li7La3Zr2O 12 (LLZO) electrolyte surfaces and interfaces with lithium metal electrodes. Specifically in this research, the topmost surface microstructure, local chemical environment, and surface chemistry were carefully studied. The ceramic processing of garnet is discussed and ways to control the sintering behavior and microstructures were explored and successfully demonstrated. Factors contributing to high interfacial resistance were systematically studied. The source of the high interfacial impedance has been traced to the presence of Li2CO 3 on pellet surfaces resulting from air exposure after processing. In addition, it was discovered that surface grain boundaries are surprisingly fast ion transport pathways and surface microstructure is critically important to lithium ion transport at interfaces. Complex homo- and heterostructured LLZO solid electrolytes with controllable surface and bulk microstructures were successfully fabricated, which allowed the comparison and separation of the contribution from the surface and the bulk. Engineered pellet surfaces allowed us to achieve the lowest interfacial resistance ever reported for this composition, resulting in significantly improved cycling behavior. Lastly, it was found that LLZO surfaces can be effectively stabilized under air exposure conditions, preventing Li2CO3 formation and maintaining low

  16. Elastic moduli of pyrope rich garnets

    Science.gov (United States)

    Pandey, B. K.; Pandey, A. K.; Singh, C. K.

    2013-06-01

    The elastic properties of minerals depend on its composition, crystal structure, temperature and level of defects. The elastic parameters are important for the interpretation of the structure and composition of the garnet rich family. In present work we have calculated the elastic moduli such as isothermal bulk modulus, Young's modulus and Shear modulus over a wide range of temperature from 300 K to 1000 K by using Birch EOS and Poirrier Tarantola equation of state. The obtained results are compared with the experimental results obtained by measuring the elastic moduli of single crystal. The calculated results show that the logarithmic isothermal EOS does not cooperate well with experimental results.

  17. Observation of the spin Peltier effect

    OpenAIRE

    Flipse, J.; Dejene, F. K.; Wagenaar, D.; Bauer, G. E. W.; Youssef, J. Ben; van Wees, B. J.

    2013-01-01

    We report the observation of the spin Peltier effect (SPE) in the ferrimagnetic insulator Yttrium Iron Garnet (YIG), i.e. a heat current generated by a spin current flowing through a Platinum (Pt)|YIG interface. The effect can be explained by the spin torque that transforms the spin current in the Pt into a magnon current in the YIG. Via magnon-phonon interactions the magnetic fluctuations modulate the phonon temperature that is detected by a thermopile close to the interface. By finite-eleme...

  18. Observation of the Spin Peltier Effect for Magnetic Insulators

    OpenAIRE

    Flipse, J.; Dejene, F. K.; Wagenaar, D.; Bauer, G. E. W.; Ben Youssef, J.; van Wees, B. J.

    2014-01-01

    We report the observation of the spin Peltier effect (SPE) in the ferrimagnetic insulator yttrium iron garnet (YIG), i.e., a heat current generated by a spin current flowing through a platinum (Pt)|YIG interface. The effect can be explained by the spin transfer torque that transforms the spin current in the Pt into a magnon current in the YIG. Via magnon-phonon interactions the magnetic fluctuations modulate the phonon temperature that is detected by a thermopile close to the interface. By fi...

  19. Plastic mechanism of deformation of garnet-- Water weakening

    Institute of Scientific and Technical Information of China (English)

    SU; Wen(苏文); CONG; Bolin(从柏林); YOU; Zhendong(游振东); ZHONG; Zengqiu(钟增球); CHEN; Daizhang(陈代章)

    2002-01-01

    The strongly deformed eclogites are well developed in ultra-high pressure jadeite-quartzite zone of the Dabie Mountains, Eastern China, and garnets had been deformed strongly. Observations by transmission electron microscopy identified not only structure of plastic deformation occurring as free dislocation, dislocation loops and dislocation walls, but also clusters of water molecules present in the deformed garnet. Using infrared spectroscopy, two types of hydrous components are identified as the hydroxyl and free-water in the garnet. Based on analysis of microstructure mechanism of deformation in garnets, and experimental data of petrology, the clusters of water molecules were considered to lead strong plastic deformation of garnet by dislocations because of mechanical weakening.

  20. Configuration of the catalytic GIY-YIG domain of intron endonuclease I-TevI: coincidence of computational and molecular findings.

    Science.gov (United States)

    Kowalski, J C; Belfort, M; Stapleton, M A; Holpert, M; Dansereau, J T; Pietrokovski, S; Baxter, S M; Derbyshire, V

    1999-05-15

    I-TevI is a member of the GIY-YIG family of homing endonucleases. It is folded into two structural and functional domains, an N-terminal catalytic domain and a C-terminal DNA-binding domain, separated by a flexible linker. In this study we have used genetic analyses, computational sequence analysis andNMR spectroscopy to define the configuration of theN-terminal domain and its relationship to the flexible linker. The catalytic domain is an alpha/beta structure contained within the first 92 amino acids of the 245-amino acid protein followed by an unstructured linker. Remarkably, this structured domain corresponds precisely to the GIY-YIG module defined by sequence comparisons of 57 proteins including more than 30 newly reported members of the family. Although much of the unstructured linker is not essential for activity, residues 93-116 are required, raising the possibility that this region may adopt an alternate conformation upon DNA binding. Two invariant residues of the GIY-YIG module, Arg27 and Glu75, located in alpha-helices, have properties of catalytic residues. Furthermore, the GIY-YIG sequence elements for which the module is named form part of a three-stranded antiparallel beta-sheet that is important for I-TevI structure and function.

  1. Genes ycfR, sirA and yigG contribute to the surface attachment of Salmonella enterica Typhimurium and Saintpaul to fresh produce.

    Directory of Open Access Journals (Sweden)

    Joelle K Salazar

    Full Text Available Salmonella enterica is a frequent contaminant of minimally-processed fresh produce linked to major foodborne disease outbreaks. The molecular mechanisms underlying the association of this enteric pathogen with fresh produce remain largely unexplored. In our recent study, we showed that the expression of a putative stress regulatory gene, ycfR, was significantly induced in S. enterica upon exposure to chlorine treatment, a common industrial practice for washing and decontaminating fresh produce during minimal processing. Two additional genes, sirA involved in S. enterica biofilm formation and yigG of unknown function, were also found to be differentially regulated under chlorine stress. To further characterize the roles of ycfR, sirA, and yigG in S. enterica attachment and survival on fresh produce, we constructed in-frame deletions of all three genes in two different S. enterica serovars, Typhimurium and Saintpaul, which have been implicated in previous disease outbreaks linked to fresh produce. Bacterial attachment to glass and polystyrene microtiter plates, cell aggregation and hydrophobicity, chlorine resistance, and surface attachment to intact spinach leaf and grape tomato were compared among wild-type strains, single-gene deletion mutants, and their respective complementation mutants. The results showed that deletions of ycfR, sirA, and yigG reduced bacterial attachment to glass and polystyrene as well as fresh produce surface with or without chlorine treatment in both Typhimurium and Saintpaul. Deletion of ycfR in Typhimurium significantly reduced bacterial chlorine resistance and the attachment to the plant surfaces after chlorinated water washes. Deletions of ycfR in Typhimurium and yigG in Saintpaul resulted in significant increase in cell aggregation. Our findings suggest that ycfR, sirA, and yigG collectively contribute to S. enterica surface attachment and survival during post-harvest minimal processing of fresh produce.

  2. Genes ycfR, sirA and yigG contribute to the surface attachment of Salmonella enterica Typhimurium and Saintpaul to fresh produce.

    Science.gov (United States)

    Salazar, Joelle K; Deng, Kaiping; Tortorello, Mary Lou; Brandl, Maria T; Wang, Hui; Zhang, Wei

    2013-01-01

    Salmonella enterica is a frequent contaminant of minimally-processed fresh produce linked to major foodborne disease outbreaks. The molecular mechanisms underlying the association of this enteric pathogen with fresh produce remain largely unexplored. In our recent study, we showed that the expression of a putative stress regulatory gene, ycfR, was significantly induced in S. enterica upon exposure to chlorine treatment, a common industrial practice for washing and decontaminating fresh produce during minimal processing. Two additional genes, sirA involved in S. enterica biofilm formation and yigG of unknown function, were also found to be differentially regulated under chlorine stress. To further characterize the roles of ycfR, sirA, and yigG in S. enterica attachment and survival on fresh produce, we constructed in-frame deletions of all three genes in two different S. enterica serovars, Typhimurium and Saintpaul, which have been implicated in previous disease outbreaks linked to fresh produce. Bacterial attachment to glass and polystyrene microtiter plates, cell aggregation and hydrophobicity, chlorine resistance, and surface attachment to intact spinach leaf and grape tomato were compared among wild-type strains, single-gene deletion mutants, and their respective complementation mutants. The results showed that deletions of ycfR, sirA, and yigG reduced bacterial attachment to glass and polystyrene as well as fresh produce surface with or without chlorine treatment in both Typhimurium and Saintpaul. Deletion of ycfR in Typhimurium significantly reduced bacterial chlorine resistance and the attachment to the plant surfaces after chlorinated water washes. Deletions of ycfR in Typhimurium and yigG in Saintpaul resulted in significant increase in cell aggregation. Our findings suggest that ycfR, sirA, and yigG collectively contribute to S. enterica surface attachment and survival during post-harvest minimal processing of fresh produce.

  3. Garnet peridotites from Pohorje: Petrography, geothermobarometry and metamorphic evolution

    Directory of Open Access Journals (Sweden)

    Mirijam Vrabec

    2010-06-01

    Full Text Available Ultrahigh-pressure (UHP metamorphism has been recorded in Eo-Alpine garnet peridotites from the PohorjeMts., Slovenia, belonging to the Eastern Alps. The garnet peridotite bodies are found within serpentinized metaultrabasitesin the SE edge of Pohorje and are closely associated with UHP kyanite eclogites. These rocks belongto the Lower Central Austroalpine basement unit of the Eastern Alps, exposed in the proximity of the Periadriaticfault system.Garnet peridotites show signs of a complex four-stage metamorphic history. The protolith stage is represented bya low-P high-T assemblage of olivine + Al-rich orthopyroxene + Al-rich clinopyroxene + Cr-spinel. Due to metamorphism,primary clinopyroxene shows exsolutions of garnet, orthopyroxene, amphibole, Cr-spinel and ilmenite. TheUHP metamorphic stage is defined by the assemblage garnet + olivine + Al-poor orthopyroxene + clinopyroxene +Cr-spinel. Subsequent decompression and final retrogression stage resulted in formation of kelyphitic rims aroundgarnet and crystallization of tremolite, chlorite, serpentine and talc.Pressure and temperature estimates indicate that garnet peridotites reached the peak of metamorphism at 4 GPaand 900 °C, that is well within the UHP stability field. Garnet peridotites in the Pohorje Mountains experiencedUHP metamorphism during the Cretaceous orogeny and thus record the highest-pressure conditions of all Eo-Alpinemetamorphism in the Alps.

  4. Two modes of occurrence of garnets from the Tonaru metagabbro mass in the Sambagawa metamorphic belt, central Shikoku, Japan

    OpenAIRE

    蔵谷, 樹; 高須, 晃; カビール, エムデイ ファズレー

    2015-01-01

    Garnet epidote amphibolite from the central part of the Tonaru metagabbro mass consists mainly of garnet, epidote and amphibole (ferro-hornblende), with small amounts of quartz, plagioclase (albite and oligoclase) and paragonite. Rutile, apatite, hematite, calcite and chlorite occur occasionally. Garnets in the garnet epidote amphibolites exhibit two modes of occurrence. Garnet 1 (Grt 1) occurs as porphyroblast, and garnet 2 (Grt 2) is found as fine grain in the matrix. Porphyroblastic garnet...

  5. Garnet polycrystals and the significance of clustered crystallization

    Science.gov (United States)

    Whitney, Donna L.; Seaton, Nicholas C. A.

    2010-10-01

    Polycrystalline garnets are common in metamorphic rocks and may form as a result of close spacing of nuclei (if clustering is early) or impingement of larger grains (if clustering occurs later in the growth history). The timing of clustering relative to garnet growth is relevant to understanding the formation and evolution of porphyroblasts and evaluating the significance (if any) of clustering. Electron backscattered diffraction (EBSD) analysis of garnet-bearing metamorphic rocks reveals the presence of polycrystalline garnet in nine localities examined in this study: the northern Appalachians (Vermont, Maine, New York, USA); North American Cordillera (North Cascades Range, Washington; Snake Range, Nevada, USA); western Rocky Mountains (British Columbia, Canada); southern Menderes Massif (Turkey); Santander Massif (Colombia); and the Sanandaj-Sirjan zone (Hamadan, Iran). In some samples, polycrystals comprise ~20-30% of garnets analyzed, and chemical and textural evidence suggests that early coalescence of garnet polycrystals is common. Some early-coalescing polycrystals exhibit growth zoning that is concentric about the geometric center of the polycrystal. In thin section, these garnets may be undetectable as polycrystals based on morphology or zoning. In some polycrystals, zoning is unrelated to the location of internal grain boundaries; in others, Fe-Mn-Mg zoning has a different pattern than that of Ca; zoning patterns may vary on the scale of a single thin section. In addition, some polycrystals are characterized by high-angle misorientation boundaries that may be in special (non-random) orientations, an observation that indicates that these polycrystals are not random clusters of grains. The presence of internal grain boundaries may affect diffusion pathways and length scales, and may facilitate communication of porphyroblast interiors with matrix phases, thereby influencing reaction history of the rock and the composition/zoning of garnet.

  6. Garnets from the Camafuca-Camazambo kimberlite (Angola

    Directory of Open Access Journals (Sweden)

    Correia Eugénio A.

    2006-01-01

    Full Text Available This work presents a geochemical study of a set of garnets, selected by their colors, from the Camafuca-Camazambo kimberlite, located on northeast Angola. Mantle-derived garnets were classified according to the scheme proposed by Grütter et al. (2004 and belong to the G1, G4, G9 and G10 groups. Both sub-calcic (G10 and Ca-saturated (G9 garnets, typical, respectively, of harzburgites and lherzolites, were identified. The solubility limit of knorringite molecule in G10D garnets suggests they have crystallized at a minimum pressure of about 40 to 45 kbar (4-4.5 GPa. The occurrence of diamond stability field garnets (G10D is a clear indicator of the potential of this kimberlite for diamond. The chemistry of the garnets suggests that the source for the kimberlite was a lherzolite that has suffered a partial melting that formed basaltic magma, leaving a harzburgite as a residue.

  7. Multistep sintering to synthesize fast lithium garnets

    Science.gov (United States)

    Xu, Biyi; Duan, Huanan; Xia, Wenhao; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-01-01

    A multistep sintering schedule is developed to synthesize Li7La3Zr2O12 (LLZO) doped with 0.2 mol% Al3+. The effect of sintering steps on phase, relative density and ionic conductivity of Al-doped LLZO has been evaluated using powder X-Ray diffraction (XRD), scanning electron microscopy (SEM), 27Al magic spinning nuclear magnetic resonance (NMR) spectroscopy and electrochemical impedance spectroscopy (EIS). The results show that by holding the sample at 900 °C for 6 h, the mixture of tetragonal and cubic garnet phases are obtained; by continuously holding at 1100 °C for 6 h, the tetragonal phase completely transforms into cubic phase; by holding at 1200 °C, the relative density increases without decomposition of the cubic phase. The Al-LLZO pellets after multistep sintering exhibit cubic phase, relative density of 94.25% and ionic conductivity of 4.5 × 10-4 S cm-1 at room temperature. Based on the observation, a sintering model is proposed and discussed.

  8. Enhancement of the transverse magneto-optical Kerr effect via resonant tunneling in Au/Ce:YIG/Au trilayers and its application

    Science.gov (United States)

    Li, Jie; Tang, Tingting; Zhang, Yanfen; Luo, Li

    2017-02-01

    We propose a new structure to enhance the transverse magneto-optical Kerr effect (TMOKE) via resonant photon tunneling. In trilayer structures with a magnetic dielectric layer sandwiched between non-magnetic metal layers, an enhanced TMOKE can be observed. The TMOKE in Au/Ce:YIG/Au trilayers with different widths of magnetic dielectric layers are calculated using a 4  ×  4 transfer-matrix method, in which the maximum absolute value reaches 0.7. Based on the enhanced TMOKE, we apply the structure proposed above in magnetic field sensing, and TMOKE values are calculated when the external magnetic field intensity is increasing. Compared with other magnetic field sensing methods, the Au/Ce:YIG/Au trilayer possesses a very simple structure and shows high sensitivity to magnetic field variation, which is promising as a highly integrated and sensitive magneto-optical device.

  9. THERIA_G: a software program to numerically model prograde garnet growth

    Science.gov (United States)

    Gaidies, F.; de Capitani, C.; Abart, R.

    2008-05-01

    We present the software program THERIA_G, which allows for numerical simulation of garnet growth in a given volume of rock along any pressure-temperature-time ( P- T- t) path. THERIA_G assumes thermodynamic equilibrium between the garnet rim and the rock matrix during growth and accounts for component fractionation associated with garnet formation as well as for intracrystalline diffusion within garnet. In addition, THERIA_G keeps track of changes in the equilibrium phase relations, which occur during garnet growth along the specified P- T- t trajectory. This is accomplished by the combination of two major modules: a Gibbs free energy minimization routine is used to calculate equilibrium phase relations including the volume and composition of successive garnet growth increments as P and T and the effective bulk rock composition change. With the second module intragranular multi-component diffusion is modelled for spherical garnet geometry. THERIA_G allows to simulate the formation of an entire garnet population, the nucleation and growth history of which is specified via the garnet crystal size frequency distribution. Garnet growth simulations with THERIA_G produce compositional profiles for the garnet porphyroblasts of each size class of a population and full information on equilibrium phase assemblages for any point along the specified P- T- t trajectory. The results of garnet growth simulation can be used to infer the P- T- t path of metamorphism from the chemical zoning of garnet porphyroblasts. With a hypothetical example of garnet growth in a pelitic rock we demonstrate that it is essential for the interpretation of the chemical zoning of garnet to account for the combined effects of the thermodynamic conditions of garnet growth, the nucleation history and intracrystalline diffusion.

  10. Analysis of garnets from the archaeological sites in Slovenia

    Science.gov (United States)

    Šmit, Ž.; Fajfar, H.; Jeršek, M.; Knific, T.; Lux, J.

    2014-06-01

    Garnets (62 individual stones) originating from the Migration Period cemeteries and hilltop settlements in Slovenia were analyzed by the combined PIXE/PIGE method for their chemical composition. Typologically, the analyzed stones may be classified as almandines originating from the sites in India, belonging to types I and II according to Calligaro. A smaller group of pyraldines intermediate between almandines and pyropes was also determined; identified as type III, their source is most likely in Sri Lanka. No garnets from Bohemia (Czech Republic) have been discovered, which may be related to important political changes in the 7th c. AD, induced by Slavic and Avaric migrations.

  11. RF magnetron sputtered (BiDy)3(FeGa)5O12:Bi2O3 composite garnet-oxide materials possessing record magneto-optic quality in the visible spectral region.

    Science.gov (United States)

    Vasiliev, Mikhail; Alam, Mohammad Nur-E; Kotov, Viacheslav A; Alameh, Kamal; Belotelov, Vladimir I; Burkov, Vladimir I; Zvezdin, Anatoly K

    2009-10-26

    Bismuth-substituted iron garnets are considered to be the most promising magneto-optical materials because of their excellent optical transparency and very high magneto-optical figures of merit in the near-infrared spectral region. However, the practical application of garnets in the visible and short-wavelength infrared parts of spectrum is currently limited, due to their very high optical absorption (especially in sputtered films) in these spectral regions. In this paper, we identify the likely source of excess absorption observed in sputtered garnet films in comparison with epitaxial layers and demonstrate (Bi,Dy)(3)(Fe,Ga)(5)O(12): Bi(2)O(3) composites possessing record MO quality in the visible region.

  12. Observation of the spin Peltier effect for magnetic insulators.

    Science.gov (United States)

    Flipse, J; Dejene, F K; Wagenaar, D; Bauer, G E W; Ben Youssef, J; van Wees, B J

    2014-07-11

    We report the observation of the spin Peltier effect (SPE) in the ferrimagnetic insulator yttrium iron garnet (YIG), i.e., a heat current generated by a spin current flowing through a platinum (Pt)|YIG interface. The effect can be explained by the spin transfer torque that transforms the spin current in the Pt into a magnon current in the YIG. Via magnon-phonon interactions the magnetic fluctuations modulate the phonon temperature that is detected by a thermopile close to the interface. By finite-element modeling we verify the reciprocity between the spin Peltier and spin Seebeck effect. The observed strong coupling between thermal magnons and phonons in YIG is attractive for nanoscale cooling techniques.

  13. Observation of the Spin Peltier Effect for Magnetic Insulators

    Science.gov (United States)

    Flipse, J.; Dejene, F. K.; Wagenaar, D.; Bauer, G. E. W.; Youssef, J. Ben; van Wees, B. J.

    2014-07-01

    We report the observation of the spin Peltier effect (SPE) in the ferrimagnetic insulator yttrium iron garnet (YIG), i.e., a heat current generated by a spin current flowing through a platinum (Pt)|YIG interface. The effect can be explained by the spin transfer torque that transforms the spin current in the Pt into a magnon current in the YIG. Via magnon-phonon interactions the magnetic fluctuations modulate the phonon temperature that is detected by a thermopile close to the interface. By finite-element modeling we verify the reciprocity between the spin Peltier and spin Seebeck effect. The observed strong coupling between thermal magnons and phonons in YIG is attractive for nanoscale cooling techniques.

  14. Static Magnetic Properties of AL800 Garnet Material

    Energy Technology Data Exchange (ETDEWEB)

    Kuharik, J. [Fermilab; Madrak, R. [Fermilab; Makarov, A. [Fermilab; Pellico, W. [Fermilab; Sun, S. [Fermilab; Tan, C. Y. [Fermilab; Terechkine, I. [Fermilab

    2017-05-17

    A second harmonic tunable RF cavity is being devel-oped for the Fermilab Booster. This device, which prom-ises reduction of the particle beam loss at the injection, transition, and extraction stages, employs perpendicularly biased garnet material for frequency tuning. The required range of the tuning is significantly wider than in previously built and tested tunable RF devices. As a result, the mag-netic field in the garnet comes fairly close to the gyromag-netic resonance line at the lower end of the frequency range. The chosen design concept of a tuner for the cavity cannot ensure uniform magnetic field in the garnet mate-rial; thus, it is important to know the static magnetic prop-erties of the material to avoid significant increase in the lo-cal RF loss power density. This report summarizes studies performed at Fermilab to understand variations in the mag-netic properties of the AL800 garnet material used to build the tuner of the cavity.

  15. Fragmentation of wall rock garnets during deep crustal earthquakes

    Science.gov (United States)

    Austrheim, Håkon; Dunkel, Kristina G.; Plümper, Oliver; Ildefonse, Benoit; Liu, Yang; Jamtveit, Bjørn

    2017-01-01

    Fractures and faults riddle the Earth’s crust on all scales, and the deformation associated with them is presumed to have had significant effects on its petrological and structural evolution. However, despite the abundance of directly observable earthquake activity, unequivocal evidence for seismic slip rates along ancient faults is rare and usually related to frictional melting and the formation of pseudotachylites. We report novel microstructures from garnet crystals in the immediate vicinity of seismic slip planes that transected lower crustal granulites during intermediate-depth earthquakes in the Bergen Arcs area, western Norway, some 420 million years ago. Seismic loading caused massive dislocation formations and fragmentation of wall rock garnets. Microfracturing and the injection of sulfide melts occurred during an early stage of loading. Subsequent dilation caused pervasive transport of fluids into the garnets along a network of microfractures, dislocations, and subgrain and grain boundaries, leading to the growth of abundant mineral inclusions inside the fragmented garnets. Recrystallization by grain boundary migration closed most of the pores and fractures generated by the seismic event. This wall rock alteration represents the initial stages of an earthquake-triggered metamorphic transformation process that ultimately led to reworking of the lower crust on a regional scale.

  16. Ultrahigh pressure (>7 GPa) gneissic K-feldspar (-bearing) garnet clinopyroxenite in the Altyn Tagh, NW China: Evidence from clinopyroxene exsolution in garnet

    Institute of Scientific and Technical Information of China (English)

    LIU; Liang; CHEN; Danling; ZHANG; Anda; SUN; Yong; WANG; Ya

    2005-01-01

    The exsolution of clinopyroxene and rutile in coarse-grain garnet is found in the gneissic K-feldspar(-bearing) garnet clinopyroxenite from Yinggelisayi in the Altyn Tagh, NW China. The maximum content of the exsolved clinopyroxene in the garnet is up to >5% by volume.The reconstructed precursor garnet (Grt1) before exsolution has a maximum Si content of 3.061 per formula uint, being of supersilicic or majoritic garnet. The peak-stage metamorphic pressure of >7 GPa is estimated using the geobarometer for volume percentage of exsolved pyroxene in garnet and the Si-(Al+Cr) geobarometer for majoritic garnet, and the temperature of about 1000℃ using the ternary alkali-feldspar geothermometer and the experimental data of ilmenite-magnetite solid solution. The protoliths of the rocks are intra-plate basic and intermediate igneous rocks, of which the geochemical features indicate that they are probably the products of the evolution of basic magma deriving from the continental lithosphere mantle. The rocks are in outcrops associated with ultrahigh pressure garnet-bearing Iherzolite and ultrahigh pressure garnet granitoid gneiss. All of these data suggest that the ultrahigh pressure metamorphic rocks in the Altyn Tagh are the products of deep-subduction of the continental crust, and such deepsubduction probably reaches to >200 km in depth. This may provide new evidence for further discussion of the dynamic mechanism of the formation and evolvement of the Altyn Tagh and the other collision orogenic belts in western China.

  17. Garnet-filled trails associated with carbonaceous matter mimicking microbial filaments in Archean basalt.

    Science.gov (United States)

    Lepot, K; Philippot, P; Benzerara, K; Wang, G-Y

    2009-09-01

    The study of the earliest traces of life on Earth can be complicated by abiotically formed biomorphs. We report here the finding of clustered micrometer-sized filaments of iron- and calcium-rich garnets associated with carbonaceous matter in an agate amygdale from a 2.7-billion-year-old basalt of the Maddina Formation, Western Australia. The distribution of carbonaceous matter and the mineral phases composing the filaments were analyzed using a combination of confocal laser scanning microscopy, laser-Raman micro-spectroscopy, focused ion beam sectioning and transmission electron microscopy. The results allow consideration of possible biogenic and abiotic processes that produced the filamentous structures. The filaments have a range of sizes, morphologies and distributions similar to those of certain modern iron-mineralized filamentous bacteria and some ancient filamentous structures interpreted as microfossils. They also share a high morphological similarity with tubular structures produced by microbial boring activity. However, the microstructures and the distribution of carbonaceous matter are more suggestive of an abiotic origin for the filaments. They are characteristic features of trails produced by the displacement of inclusions associated with local dissolution of their silica matrix. Organic compounds found in kerogen or bitumen inclusions may have contributed significantly to the dissolution of the quartz (or silica gel) matrix driving filamentous growth. Discriminating the products of such abiotic organic-mediated processes from filamentous microfossils or microbial borings is important to the interpretation of the scarce Precambrian fossil record and requires investigation down to the nanoscale.

  18. Kinetics of garnet formation in In{sup 3+}-substituted systems

    Energy Technology Data Exchange (ETDEWEB)

    Sztaniszlav, Anna E-mail: sztanisz@tki.hu; Farkas-Jahnke, M.; Balla, M

    2000-06-02

    Kinetics of solid-state reactions were investigated in Fe{sub 2}O{sub 3}-Y{sub 2}O{sub 3}-In{sub 2}O{sub 3} system from 700 to 1400 deg. C by X-ray and by DTG/M/ methods. Mutual diffusion of iron and indium ions into each others oxide lattices was the first interaction, resulting in a gradual expansion or contraction of the two oxide lattices, respectively. On increasing the temperature the Y{sub 2}O{sub 3} reacted with the indium-containing Fe{sub 2}O{sub 3} and formed garnet through orthoferrite intermediates with a continuous incorporation of the indium below 1200 deg. C. Significant differences appeared in the feature of the solid-state reactions above 1200 deg. C depending on the stoichiometry because of the stabilizing effect of the iron ion diffusion in the In{sub 2}O{sub 3} lattice.

  19. Configuration of the catalytic GIY-YIG domain of intron endonuclease I-TevI: coincidence of computational and molecular findings.

    OpenAIRE

    Kowalski, J C; Belfort, M; Stapleton, M A; Holpert, M; Dansereau, J T; Pietrokovski, S; Baxter, S M; Derbyshire, V

    1999-01-01

    I-TevI is a member of the GIY-YIG family of homing endonucleases. It is folded into two structural and functional domains, an N-terminal catalytic domain and a C-terminal DNA-binding domain, separated by a flexible linker. In this study we have used genetic analyses, computational sequence analysis andNMR spectroscopy to define the configuration of theN-terminal domain and its relationship to the flexible linker. The catalytic domain is an alpha/beta structure contained within the first 92 am...

  20. Origin of Garnet zoning in the contact metamorphic areole of Hassan-Abaad intrusion, southwest of Taft

    OpenAIRE

    Samira Zandifar; Mohammad Ali Valizadeh; Mohammad Ali Barghi

    2009-01-01

    In the contact metamorphic aureole of the next to the granodiorite intrusive body in the Hassan-Abaad village of Yazd, high frequency garnet in different metamorphic zones is notable, which some contain garnet crystal with obvious zoning. Obtained data from core to rim of garnet by SEM point analysis, show that garnet crystals belong to grandite series, and sharp variation of Al and Fe from center to rim indicates garnet zoning formed during crystal growth, but the zoning has been disturbed b...

  1. Unraveling the history of complex zoned garnets from the North Motagua Mélange (Guatemala)

    Science.gov (United States)

    Barickman, M. H.; Martin, C.; Flores, K. E.; Harlow, G. E.; Bonnet, G.

    2016-12-01

    The Guatemala Suture Zone (GSZ) is situated in central Guatemala, between the North American and Caribbean plates. Two serpentinite mélanges straddle the Motagua Fault system: the North Motagua Mélange (NMM) and the South Motagua Mélange (SMM). In this study, chemically zoned garnet grains from four eclogite blocks from the NMM were analyzed by EMPA for major elements and LA-ICP-MS for trace elements to unravel the geological history of the eclogites. These eclogites typically consist of euhedral to subhedral garnets, partly retrogressed omphacite grains, and accessory minerals such as phengite and epidote as inclusions in garnet. EBSD was employed to examine apparent garnet inclusions in garnet. The garnet grains in NMM eclogites display complex chemical zonations: all grains roughly show a spessartine-rich core, an almandine-rich core and/or intermediate zone, and a pyrope and grossular-rich rim. Additionally, crystal resorption can be observed between the different zones, and the pyrope-grossular rim can display oscillatory zoning. Finally, grossular-rich zones (crystallographically syntactic) within garnet are present in all studied samples. REE and spider diagrams do not show any significant difference in the patterns of the different zones within the garnet, or indicating that the chemical environment from which each garnet zone grew was broadly the same. The lack of significant variation in LILE content indicates that a fluid influx during garnet growth is unlikely. Consequently, we interpret that garnet grains grew in a largely closed system; however, the presence of the grossular-rich zones, argues for occasional excursions into conditions when either two garnets crystallized or Ca-rich overgrowths that were largely resorbed prior to subsequent continued garnet growth.

  2. Distribution of trace elements in spinel and garnet peridotites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The distribution of trace elements in the upper mantle has been discussed on the basis of the trace element abundances in bulk rocks and constituent minerals of two spinel and garnet facies peridotite xenoliths in alkali basalts from eastern China.The data presented are consistent with the suggestion that highly incompatible elements (Rb,Ba,Th,U,Sr,Nb,Ta) mainly reside in intergranular components,and to a lesser extent in fluid inclusions in minerals.The LILE composition in olivine and orthopyroxene can be seriously affected by the presence of fluid inclusions.Consequently the subsolidus partitioning of the LILE cannot be used to infer the olivine-melt and orthopyroxene-melt partition coefficients for these elements.There is a significant difference in (Opx/Cpx)HREE ratios for spinel and garnet peridotites,suggesting a P-T control on equilibrium partition coefficients.

  3. Distribution of trace elements in spinel and garnet peridotites

    Institute of Scientific and Technical Information of China (English)

    徐义刚

    2000-01-01

    The distribution of trace elements in the upper mantle has been discussed on the basis of the trace element abundances in bulk rocks and constituent minerals of two spinel and garnet facies peridotite xenoliths in alkali basalts from eastern China. The data presented are consistent with the suggestion that highly incompatible elements (Rb, Ba, Th, U, Sr, Nb, Ta) mainly reside in intergranular components, and to a lesser extent in fluid inclusions in minerals. The LILE composition in olivine and orthopyroxene can be seriously affected by the presence of fluid inclusions. Consequently the subsolidus partitioning of the LILE cannot be used to infer the olivine-melt and orthopyroxene-melt partition coefficients for these elements. There is a significant difference in (Opx/Cpx)HREE ratios for spinel and garnet peridotites, suggesting a P-T control on equilibrium partition coefficients.

  4. Resonant magnetic properties of gadolinium-gallium garnet single crystals

    Science.gov (United States)

    Bedyukh, A. R.; Danilov, V. V.; Nechiporuk, A. Yu.; Romanyuk, V. F.

    1999-03-01

    The results of experimental investigations of resonant magnetic properties of gadolinium-gallium garnet (GGG) single crystals at temperatures 4.2-300 K in the frequency range 1.6-9.3 GHz are considered. It is found that magnetic losses in GGG are determined by the initial splitting of energy levels for gadolinium ions in the garnet crystal lattice and by the dipole broadening. The width and shape of the electron paramagnetic resonance (EPR) line in the GGG crystal, whose asymmetry is manifested most strongly at low frequencies, can be explained by the influence of these factors. Magnetic losses in GGG increase with frequency and upon cooling. It is found that the EPR linewidth increases considerably with decreasing temperature due to the presence of rapidly relaxing impurities.

  5. Garnet growth interruptions during high- and ultra high-pressure metamorphism constrained by thermodynamic forward models

    Science.gov (United States)

    Konrad-Schmolke, M.; Schildhauer, H.

    2013-12-01

    Growth and chemical composition of garnet in metamorphic rocks excellently reflect thermodynamic as well kinetic properties of the host rock during garnet growth. This valuable information can be extracted from preserved compositional growth zoning patterns in garnet. However, metamorphic rocks often contain multiple garnet generations that commonly develop as corona textures with distinct compositional core-overgrowth features. This circumstance can lead to a misinterpretation of information extracted from such grains if the age- and metamorphic relations between different garnet generations are unclear. Especially garnets from high-pressure (HP) and ultra high-pressure (UHP) rocks often preserve textures that show multiple growth stages reflected in core-overgrowth differences both in main and trace element composition and in the inclusion assemblage. Distinct growth zones often have sharp boundaries with strong compositional gradients and/or inclusion- and trace-element-enriched zones. Such growth patterns indicate episodic garnet growth as well as growth interruptions during the garnet evolution. A quantitative understanding of these distinct growth pulses enables the relationship between reaction path, age determinations in spatially controlled garnet domains or temperature-time constraints to be fully characterised. In this study we apply thermodynamic forward models to simulate garnet growth along a series of HP and UHP P-T paths, representative for subducted oceanic crust. We study garnet growth in different basaltic rock compositions and under different element fractionation scenarios in order to detect path-dependent P-T regions of limited or ceased garnet growth. Modeled data along P-T trajectories involving fractional crystallisation are assembled in P-T diagrams reflecting garnet growth in a changing bulk rock composition. Our models show that in all investigated rock compositions garnet growth along most P-T trajectories is discontinuous, pulse

  6. Upconversion luminescence in Yb 3+-doped yttrium aluminum garnets

    Science.gov (United States)

    Xu, Xiaodong; Zhao, Zhiwei; Song, Pingxin; Jiang, Benxue; Zhou, Guoqing; Xu, Jun; Deng, Peizhen; Bourdet, Gilbert; Christophe Chanteloup, Jean; Zou, Ji-Ping; Fulop, Annabelle

    2005-03-01

    In this paper, we present results on upconversion luminescence performed on Yb 3+-doped yttrium aluminum garnets under 940 nm excitation. The upconversion luminescence was ascribed to Yb 3+ cooperative luminescence and the presence of rare earth impurity ions. The cooperative luminescence spectra as a function of Yb concentration were measured and the emission intensity variation with Yb concentration was discussed. Yb 3+ energy migration quenched the cooperative luminescence of Yb:YAG crystals with doping level over 15 at%.

  7. Intercalibration of FTIR and SIMS for Hydrogen Measurements in Garnets

    Science.gov (United States)

    Huang, Y.; Rossman, G.; Guan, Y.; Ma, C.

    2008-12-01

    The importance of understanding the hydrogen incorporated in nominally anhydrous minerals (NAMs) that influences their physical and chemical properties significantly is well accepted, however, quantitatively experimental constraints between hydrogen concentration and physical and chemical properties are only meaningful if hydrogen concentration can be accurately determined. Fourier Transform Infrared Spectroscopy (FTIR) may be the most powerful technique since it provides information about both bulk concentration and local bonding environments, while Secondary Ion Mass Spec-trometry (SIMS) has held promise as an ideal method for hydrogen analyses for its advantages of high spatial resolution and insensitivity to crystal orientation. Great efforts have been made to establish experimental standards for these two techniques since they have no rigorous self-calibration. We here present new Fourier Transform Infrared Spectroscopy (FTIR) and Secondary Ion Mass Spectrometry (SIMS) analyses of 1H in 11 natural garnets (grossular, spessartite and pyrope). This set of garnets extends to a wider range of H2O contents (~4 to 6790 wt. ppm H2O) than previous studies and can be more reliable if more garnets can be investigated. We routinely achieve a less than 5 ppm by weight H2O with high vacuum quality, the use of a Cs+ primary beam, and carefully prepared samples using a resin-free mounting technique (described in Aubaud C. et al., 2007. Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals. American Mineralogist, 92, 811-828). Although some scatter is observed, the straight line with a slope of 0.0722 defined by all garnets in a plot of (H)FTIR vs. (H+/Si+)SIMS* (SiO2)EMP suggests small matrix effects, while some previous efforts demonstrated the existence of such matrix effects. Discrepancies between FTIR and SIMS measurements can be partially distributed to the impurities, which have different hydrogen concentration as the

  8. Measurement of magnetostriction coefficients of epitaxial garnet films.

    Science.gov (United States)

    Vella-Coleiro, G P

    1979-09-01

    A technique for measuring the magnetostriction coefficients of epitaxial garnet films on 50-mm-diam wafers is described. The measurement is based on the shift of the microwave ferrimagnetic resonance produced by stressing the film, which is achieved by supporting the wafer around its circumference and reducing the atmospheric pressure on one side. A simple, nonresonant transmission microwave spectrometer which is well suited for measurements on large wafers is also described.

  9. Lattice and Magnetic Effects on Multiferroic Transitions in Garnets

    Science.gov (United States)

    Louca, Despina; Kamazawa, K.; Proffen, T.

    2007-03-01

    The possible presence of ferroelectricity in a magnetically ordered state has attracted considerable attention particularly in ABO3 and AB2O5 systems with B = Mn. Evidence for strong coupling of the two order parameters has been provided in the so-called multiferroics, where the field-induced polarization leads to a giant magnetoelectric effect and a magneto-dielectric effect. It was recently shown that the ferrimagnetic garnet crystal of Tb3Fe5O12 exhibits a large magnetodielectric response as well when a very small magnetic field is applied (1). To understand the origin of the high sensitivity of the dielectric effect in garnets, we investigated the crystal and magnetic structures of Tb3(Fe/Ga)5O12 using pulsed neutron diffraction. The garnet crystal appears to be very close to a lattice instability and high-resolution diffraction showed that the lattice gradually changes symmetry from cubic to rhombohedral with cooling over a wide temperature range. At the same time, magnetic diffuse scattering is observed that goes away by 15 K. The role of the lattice and of local distortions in the magnetic polarization and the coupling of the magnetostriction to the dielectric effect will be discussed. (1) N. Hur et al, Appl. Phys. Lett. 87, 042901 (2005).

  10. Wear performance of garnet aluminium composites at high contact pressure

    Science.gov (United States)

    Sharma, Anju; Arora, Rama; Kumar, Suresh; Singh, Gurmel; Pandey, O. P.

    2016-05-01

    To satisfy the needs of the engineering sector, researchers and material scientists in this area adopted the development of composites with tailor made properties to enhance efficiency and cost savings in the manufacturing sector. The technology of the mineral industry is shaping the supply and demand of minerals derived materials. The composites are best classified as high performance materials have high strength-to-weight ratios, and require controlled manufacturing environments for optimum performance. Natural mineral garnet was used as the reinforcement of composite because of satisfactory mechanical properties as well as an attractive ecological alternative to others ceramics. For this purpose, samples have been prepared with different sizesof the garnet reinforcement using the mechanical stirring method to achieve the homogeneously dispersed strengthening phase. A systematic study of the effect of high contact pressure on the sliding wear behaviour of garnet reinforced LM13 alloy composites is presented in this paper. The SEM analysis of the worn samples and debris reveals the clues about the wear mechanism. The drastic improvement in the wear resistance of the composites at high contact pressure shows the high potential of the material to be used in engineering applications.

  11. Lu-Hf and Sm-Nd garnet geochronology

    DEFF Research Database (Denmark)

    Smit, Matthijs Arjen; Scherer, Erik E.; Mezger, Klaus

    2013-01-01

    are similar among grains having radii larger than 1.3 mm (weighted mean: 2714±6 Ma2714±6 Ma; 2 s.d.) and up to 20 Myr younger for finer fractions. In contrast, Sm–Nd dates are equal to or younger than the 2641–2637 Ma age of peak metamorphism. The roles of concurrently digested inclusions and core–rim Lu......To investigate the systematics of the 176Lu–176Hf and 147Sm–143Nd garnet chronometers, we performed REE and isotope analyses on garnet crystals of different size (0.55–3.1 mm radius) from a single granulite specimen (Archean Pikwitonei Granulite Domain, Manitoba, Canada). The Lu–Hf dates....../Sm fractionation are quantitatively evaluated and excluded as causes for the observed age heterogeneity. Instead, the isotope dates are interpreted to reflect partial loss of radiogenic 176Hf and 143Nd, and are used to constrain the systematics of the garnet chronometers at high temperature. The data constrain...

  12. Iron Test

    Science.gov (United States)

    ... as: Serum Iron; Serum Fe Formal name: Iron, serum Related tests: Ferritin ; TIBC, UIBC and Transferrin ; Hemoglobin ; Hematocrit ; Complete Blood Count ; Reticulocyte Count ; Zinc Protoporphyrin ; Iron Tests ; Soluble Transferrin Receptor ... I should know? How is it used? Serum iron, total iron-binding capacity (TIBC) , and/or ...

  13. Garnet nuclear waste forms – Solubility at repository conditions

    Energy Technology Data Exchange (ETDEWEB)

    Caporuscio, F.A., E-mail: floriec@lanl.gov [EES-14, Los Alamos National Laboratory, NM 87545 (United States); Scott, B.L. [MPA-MSID, Los Alamos National Laboratory, NM 87545 (United States); Xu, H. [EES-14, Los Alamos National Laboratory, NM 87545 (United States); Feller, R.K. [Effect Materials Research Group, BASF Corporation, 500 White Plains Road, Tarrytown, NY 10591 (United States)

    2014-01-15

    Highlights: • Rare-earth elements are a significant waste stream produced by nuclear fuel cycles. • Suitability of garnets as potential waste forms. • Single-crystal X-ray structural refinements for grossular, LuAG and YAG. • Garnets have low solubility, flexible crystal structure to take on large cations. • Demonstrate garnets are potentially robust waste forms for radioactive REE. -- Abstract: Radioactive rare-earth elements (REEs) constitute a significant waste stream produced from modified open and full nuclear fuel cycles. Immobilization of these REE radionuclides is thus important for sustainable nuclear energy growth. In this work, we investigated the suitability of garnets as potential waste forms for REEs by measuring their aqueous stability at repository conditions. Three garnet samples, including one natural grossular (Ca{sub 3}Al{sub 2}Si{sub 3}O{sub 12}) and two synthetic phases (LuAG – Lu{sub 3}Al{sub 5}O{sub 12} and YAG – Y{sub 3}Al{sub 5}O{sub 12}), were studied. Single-crystal X-ray structural refinements show that the unit-cell volumes increase from 1657.19 Å{sup 3} for grossular to 1679.8 Å{sup 3} for LuAG and to 1721.7 Å{sup 3} for YAG. This trend is due to increases in ionic radii in both the 8-coordinated X (from Ca to Lu to Y) and 4-coordinated Z (from Si to Al) cations. Hydrothermal experiments of the three samples were performed at 200 °C and 150 bar for 4 weeks using water and brine solutions to evaluate their solubility. The natural grossular sample exhibited Al leach rates ranging from 2.5 × 10{sup −4} to 6.43 × 10{sup −5} g/L·day and Ca leach rates from 1.39 × 10{sup −3} to 4.57 × 10{sup −3} g/L·day, indicating incongruent nature of the cation dissolution. The LuAG sample exhibited Lu leach rates of 3.73 × 10{sup −4} to 2.19 × 10{sup −4} g/L·day, and the YAG sample had Y leach rates of 1.29 × 10{sup −4} to 5.64 × 10{sup −5} g/L·day. Although these samples are generally more soluble in

  14. Understanding garnet variability: Application of geometallurgy to diamonds and exploration

    Science.gov (United States)

    Hoal, K. O.; Appleby, S. K.; Stammer, J. G.

    2009-05-01

    Peridotitic and eclogitic garnets are a fundamental component in understanding mantle petrology, diamond petrogenesis, and the ascent of mantle materials in kimberlites. They are also critical in exploration programs, as the presence of mantle garnets at the earth's surface provides an indication of dispersion from a deeply derived magmatic carrier. The composition of these garnets further is used as an indicator of diamond prospectivity, on the basis of comparison with garnet compositions known to be in some degree of equilibrium with diamonds. For mantle xenoliths and kimberlites, optical microscopy, electron microprobe analysis (EPMA), and scanning electron microscopy (SEM) are the main tools used for understanding key mineralogical and textural variability relationships. Mineralogy and texture reflect diamond genesis, metasomatic alteration, fluid migration and manifestation, volcanological processes, peridotite disaggregation, and other manifestations of mantle processes that are observable, describable, and applicable in exploration and mining. Mineralogy and texture studies lead to further questions that are better addressed by higher resolution chemical analysis of isotopes and rare earth elements, or luminescence. Understanding mineralogical and textural variability is the primary geological input for geometallurgy (geomet), the field integrating the earth sciences with the extractive industries. The framework for geomet encompasses geology, mineralogy, deposit modeling and extraction methods for the optimum value return of resources, and it relies on the fact that the mineralogy and texture of rocks influence subsequent interpretation and downstream applications. Developments in this area have been made possible by the new generation of high-speed SEM-based quantitative mineralogical instruments, enabling the statistical assessment of thousands of grains or particles, or samples, and their application to models for exploration, ore deposits, or geomet

  15. Coupled isomorphic substitution and exsolution of pyroxene, rutile, apatite and quartz in supersilicic garnet

    Institute of Scientific and Technical Information of China (English)

    YANG Jiaxi; LIU Liang

    2004-01-01

    Dissolution of pyroxene in garnet at ultrahigh pressures produces supersilicic garnet with the coupled substitutions of SiⅥ + MⅥ= AlⅥ + AlⅥ and SiⅥ + NaⅧ=AlⅥ + MⅧ, which are enhanced by rising pressure. The supersilicic garnet and exsolution of pyroxene, rutile, apatite and quartz in garnet during decompression were found in natural rocks, pointing to the importance in studying mantle-derived rocks and ultrahigh pressure metamorphism related to plate deep subduction. Ti, P, K and H2O enters garnet via the substitutions of Ti = Si, PⅣ+NaⅧ = SiⅣ+ CaⅧ, SiⅥ+KⅧ = AlⅥ+MⅧ, and [(OH)4]4- = [SiO4]4- or [4H]4+ = Si4+ respectively. The possible entering of Eskola pyroxene component M0.5AlSi2O6 in clinopyroxene, together with the common pyroxene component M2Si2O6, into garnet can lead to the presence of the substitution of SiⅥ + 0.5□Ⅷ= AlⅥ + 0.5MⅧ in garnet structure, which plays a key role in the exsolution of rutile, apatite and quartz in garnet. Two new breakdown reactions are thus proposed on the basis of the new coupled substitution, which can be regarded as a theoretical model for the exsolution of the 3 minerals in garnet. The real exsolution may be a combination of several breakdown reactions.

  16. Kinetic characteristics of the luminescence decay for industrial yttrium-gadolinium-aluminium garnet based phosphors

    OpenAIRE

    Lisitsyn, Viktor Mikhailovich; Stepanov, Sergey Aleksandrovich; Valiev, Damir Talgatovich; Vishnyakova, E. A.; Abdullin, H. A.; Marhabaeva, A. A.; Tulegenova, A. T.

    2016-01-01

    The spectral and decay kinetic characteristics of pulse cathodoluminescence and photoluminescence of phosphors based on yttrium-gadolinium-aluminum garnet were investigated using pulsed optical time resolved spectroscopy.

  17. Prograde garnet growth along complex P T t paths: results from numerical experiments on polyphase garnet from the Wölz Complex (Austroalpine basement)

    Science.gov (United States)

    Gaidies, F.; de Capitani, C.; Abart, R.; Schuster, R.

    2008-06-01

    Garnet in metapelites from the Wölz Complex of the Austroalpine crystalline basement east of the Tauern Window characteristically consists of two growth phases, which preserve a comprehensive record of the geothermal history during polymetamorphism. From numerical modelling of garnet formation, detailed information on the pressure temperature time ( P T t) evolution during prograde metamorphism is obtained. In that respect, the combined influences of chemical fractionation associated with garnet growth, modification of the original growth zoning through intragranular diffusion and the nucleation history on the chemical zoning of garnet as P and T change during growth are considered. The concentric chemical zoning observed in garnet and the homogenous rock matrix, which is devoid of chemical segregation, render the simulation of garnet growth through successive equilibrium states reliable. Whereas the first growth phase of garnet was formed at isobaric conditions of ˜3.8 kbar at low heating/cooling rates, the second growth phase grew along a Barrovian P T path marked with a thermal peak of ˜625°C at ˜10 kbar and a maximum in P of ˜10.4 kbar at ˜610°C. For the heating rate during the growth of the second phase of garnet, average rates faster than 50°C Ma-1 are obtained. From geochronological investigations the first growth phase of garnet from the Wölz Complex pertains to the Permian metamorphic event. The second growth phase grew in the course of Eo-Alpine metamorphism during the Cretaceous.

  18. A Calorimetric Study of Almandine: Are the Thermodynamic Properties of the End-Member Aluminosilicate Garnets Finally Known Quantitatively?

    Science.gov (United States)

    Dachs, E.; Geiger, C. A.; Benisek, A.

    2012-12-01

    The aluminosilicate garnets (E3Al2Si3O12 with E = Fe2+, Mn2+, Ca, Mg) form an important rock-forming mineral group. Much study has been directed toward determining their thermodynamic properties. The iron end-member almandine (Fe3Al2Si3O12) is a key phase in many petrologic investigations. As part of an ongoing calorimetric and thermodynamic study of the aluminosilicate garnets, the heat capacity of three synthetic well-characterized polycrystalline almandine garnets and one natural almandine-rich single crystal was measured. The various garnets were characterized by optical microscopy, electron-microprobe analysis, X-ray powder diffraction and 57Fe Mössbauer spectroscopy. Heat capacity measurements were performed in the temperature range 3 to 300 K using relaxation calorimetry and between 282 and 764 K using DSC methods. From the former, So values between 336.7 ± 0.8 and 337.8 ± 0.8 J/molK are calculated for the different samples. The smaller value is considered the best So for end-member stoichiometric almandine, because it derives from the "best" Fe3+-free synthetic sample. The Cp behavior for almandine at T > 298 K is given by the polynomial (in J/molK): Cp = 649.06(±4) - 3837.57(±122)T-0.5 - 1.44682(±0.06)107T-2 + 1.94834(±0.09)109T-3, which is calculated using DSC data together with one published heat-content datum determined by transposed-drop calorimetry along with a new determination that gives H1181K - H302K = 415.0 ± 3.2 kJ/mole. Almandine shows a λ-type heat-capacity anomaly at low temperatures resulting from a paramagnetic-antiferromagnetic phase transition at about 9 K. The lattice heat capacity was calculated using the single-parameter phonon dispersion model of Komada and Westrum (1997), which allows the non-lattice heat capacity (Cex) behavior to be modelled. An analysis shows the presence of an electronic heat-capacity contribution (Cel - Schottky anomaly) around 17 K that is superimposed on a larger magnetic heat-capacity effect (Cmag

  19. Variation of the temperature coefficient of collapse field in bismuth-based bubble garnets

    Science.gov (United States)

    Fratello, V. J.; Pierce, R. D.; Brandle, C. D.

    1985-01-01

    An approximation to the collapse-field formula is used to show its dependence on magnetization and wall energy and the effect of additions of Gd, Sm, and Eu on 1-micron Bi:YIG bubble materials. The collapse field, magnetization, and wall energy are fitted to quadratic functions of temperature from -50 to 150 C. It is shown that the addition of the various classes of rare earths reduces the temperature derivative of the collapse field in Bi:YIG. Gd influences the collapse field through the magnetization, Sm affects it through the domain wall energy, and Eu does both. The singular magnetic properties of Eu result in the most nearly constant temperature dependence of the collapse field and the best match to a barium-ferrite bias magnite.

  20. The compression mechanism of garnets based on in situ observations

    Science.gov (United States)

    Dymshits, Anna; Sharygin, Igor; Litasov, Konstantin; Shatskiy, Anton

    2014-05-01

    Previously it was showed that the bulk modulus of garnet is strongly affected by the bulk modulus of the dodecahedra, while compressibility of other individual polyhedra displays no correlation with the compressibility of the structure as a whole (Milman et al., 2001). If so, Na-majorite (Na-maj) would have the smallest bulk modulus of all silicate garnets, as a phase with a predicted dodecahedral bulk modulus of approximately 70 GPa (Hazen et al., 1994). In fact Na-maj has the largest bulk modulus among the silicate garnets. This behavior must reflect the all-mineral framework of Na-maj with very small cell volume and silicon in the octahedral position. Thus, we conclude that not only the dodecahedral sites, but also the behavior of the garnet framework and relative sizes of the 8- and 6-coordinated cations, control garnet compression. The octahedral site in Na-maj is quite small (1.79 Å) and contains only silicon in comparison to the pyrope (1.85 Å) or majorite (1.88 Å). The small and highly charged octahedra shares four edges with the dodecahedra and thus restrict the volume of the large and low charged dodecahedra. In spite Na-maj has a large average X-cation radius (RNa = 1.07 Å) its dodecahedral volume is relatively small (V = 21.23 and 21.26 Å3). Pacalo et al. (1992) suggested that XO8 polyhedra act as braces and controls the amount of rotation between tetrahedra and octahedra within the corner-linked chains. In case of pyrope XO8 cite is not filled up and polyhedra within the corner-linked chains can rotate freely to accommodate applied stress. In case of Na-maj the dodecahedral site is filled up and rotational freedom is minimized. The dodecahedral site in knorringite (Knr) contains cation with a small radius (Mg-O = 2.22 and 2.34 Å), so XO8 polyhedra is not filled up and can rotate freely to accommodate applied stress. In case of uvarovite not only octahedral but the dodecahedral site is also large (Ca-O = 2.35 and 2.51 Å), so the rotational

  1. Native iron in the continental lower crust: petrological and geophysical implications.

    Science.gov (United States)

    Haggerty, S E; Toft, P B

    1985-08-16

    Lower crustal granulite xenoliths recovered from a kimberlite pipe in western Africa contain native iron (Fe(0)) as a decomposition product of garnet and ilmenite. Magnetic measurements show that less than 0.1 percent (by volume) of iron metal is present. Data from geothermometry and oxygen geobarometry indicate that the oxide and metal phases equilibrated between iron-wüstite and magnetite-wüstite buffers, which may represent the oxidation state of the continental lower crust, and the depleted lithospheric upper mantle. Ferromagnetic native iron could be stable to a depth of approximately 95 kilometers and should be considered in the interpretation of long-wavelength static magnetic anomalies.

  2. Tibetan garnet records early Eocene initiation of thickening in the Himalaya

    DEFF Research Database (Denmark)

    Smit, Matthijs Arjen; Hacker, Bradley; Lee, Jeffrey

    2014-01-01

    Tectonic reconstructions of the Himalayan orogeny depend on the age at which crustal thickening commenced. To investigate this age, we analyzed garnet from middle crustal rocks exposed in the north Himalayan Mabja and Kangmar gneiss domes of Tibet using Lu-Hf geochronology. Garnet yielded Lu-Hf a...

  3. Raman microspectrometry, FT-IR and inclusion characteristics of gem garnets from Tanzania and Madagascar

    Institute of Scientific and Technical Information of China (English)

    Sang-kon Kim; Maeng-eon Park; Seung-gyun Baek; Kyu-youl Sung; Sun-ok Kim; Hee-yul Park

    2004-01-01

    Chemical composition, Raman microspectrometry, and Fourier transform infrared (FT-IR) and SEM-CL (Cathodluminescence) analyses are carried out for Tanzania and Madagascar garnets for locality identification. Inclusion study was sustained after electron probe microanalysis (EPMA). Needle-like illmenites, apatites and zircons were the most common solid inclusions in Tanzania garnets. Madagascar garnets revealed rutile needles and apatites were also observed, but differences in size, shape and distribution patterns were noticed compared to Tanzania garnets. Tanzania garnets exhibited all types of observable fluid inclusions such as "fingerprint" pattern, called Type Ⅰ-A, liquid-only (L) single phase fluid inclusion, called Type Ⅰ-B and Type Ⅱ-A (L + S), Type Ⅱ-B (L + V) and Type Ⅲ-A (L + Sylvite +S), Type Ⅲ-B (L+S+V), while no more than two phase fluid inclusions found in both Madagascar and Korea garnets even if all examined garnets from three localities retained "fingerprint" features, so called, partially healed fractures, in common. Chemical composition, Raman microspectrometry and Fourier transform infrared (FT-IR) analysis taken turned out to be useful methods for the purpose of this study. Using consequences of SEM-CL and inclusion study, accordingly,the locality identification of gem-quality garnets is capable of being available in further application for other kinds of gemstones.

  4. Negating interfacial impedance in garnet-based solid-state Li metal batteries

    Science.gov (United States)

    Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin); He, Xingfeng; Hitz, Gregory T.; Dai, Jiaqi; Pearse, Alex; Liu, Boyang; Wang, Howard; Rubloff, Gary; Mo, Yifei; Thangadurai, Venkataraman; Wachsman, Eric D.; Hu, Liangbing

    2017-05-01

    Garnet-type solid-state electrolytes have attracted extensive attention due to their high ionic conductivity, approaching 1 mS cm-1, excellent environmental stability, and wide electrochemical stability window, from lithium metal to ~6 V. However, to date, there has been little success in the development of high-performance solid-state batteries using these exceptional materials, the major challenge being the high solid-solid interfacial impedance between the garnet electrolyte and electrode materials. In this work, we effectively address the large interfacial impedance between a lithium metal anode and the garnet electrolyte using ultrathin aluminium oxide (Al2O3) by atomic layer deposition. Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) is the garnet composition of choice in this work due to its reduced sintering temperature and increased lithium ion conductivity. A significant decrease of interfacial impedance, from 1,710 Ω cm2 to 1 Ω cm2, was observed at room temperature, effectively negating the lithium metal/garnet interfacial impedance. Experimental and computational results reveal that the oxide coating enables wetting of metallic lithium in contact with the garnet electrolyte surface and the lithiated-alumina interface allows effective lithium ion transport between the lithium metal anode and garnet electrolyte. We also demonstrate a working cell with a lithium metal anode, garnet electrolyte and a high-voltage cathode by applying the newly developed interface chemistry.

  5. Nanogranitoids in garnet clinopyroxenites of the Granulitgebirge (Bohemian Massif): evidence for metasomatism and partial melting?

    Science.gov (United States)

    Borghini, Alessia; Ferrero, Silvio; Wunder, Bernd; O'Brien, Patrick J.; Ziemann, Martin A.

    2017-04-01

    Primary nanogranitoids occur in garnet from the garnet clinopyroxenites of the Granulitgebirge, Bohemian Massif. They form clusters in the inner part of the garnet, and may occur both as polycrystalline and glassy inclusions with size from 5 to 20 µm. Because of their random distribution in garnet these inclusions are interpreted as primary inclusions, thus formed during the growth of the garnet. Garnet does not show any major element zoning. Nanogranitoids were identified in garnet clinopyroxenites from two different locations and show slightly different mineral assemblages. Kumdykolite or albite, phlogopite, osumilite, kokchetavite and a variable amount of quartz occur in both locations. However, osumilite is more abundant in one locality and kokchetavite in the other. All these phases are identified using Raman Spectroscopy. Both assemblages are consistent with the origin of these inclusions as former droplets of melt. Nanogranitoids from one locality have been re-homogenized at 1000°C and 22 kbar to a hydrous glass of granodioritic/quartz-monzonitic composition in a piston cylinder apparatus. The chosen experimental conditions correspond to the formation of the host garnet (O'Brien & Rötzler, 2003) and thus of melt entrapment. Nanogranitoid-bearing garnet clinopyroxenites occur in bodies of serpentinized peridotites, hosted in turn in felsic granulites. The garnet clinopyroxenites show granoblastic texture dominated by garnet and clinopyroxene porphyroblasts with a variable amount of interstitial plagioclase, biotite, two generations of amphiboles (brown and green) and rutile and opaque minerals as accessories. The bulk rock composition is basic to intermediate, and the garnet chemistry varies from 24% Alm, 65% Prp and 11% Grs to 38% Alm, 36% Prp and 26 % Grs between one outcrop and the other. The origin of the investigated inclusions could be due to different processes: localized melting of metasomatized mafic rocks with simultaneous production of garnet or

  6. Timing and duration of garnet granulite metamorphism in magmatic arc crust, Fiordland, New Zealand

    Science.gov (United States)

    Stowell, H.; Tulloch, A.; Zuluaga, C.; Koenig, A.

    2010-01-01

    Pembroke Granulite from Fiordland, New Zealand provides a window into the mid- to lower crust of magmatic arcs. Garnet Sm-Nd and zircon U-Pb ages constrain the timing and duration of high-P partial melting that produced trondhjemitic high Sr/Y magma. Trace element zoning in large, euhedral garnet is compatible with little post growth modification and supports the interpretation that garnet Sm-Nd ages of 126.1??2.0 and 122.6??2.0. Ma date crystal growth. Integration of the garnet ages with U-Pb zircon ages elucidates a history of intrusion(?) and a protracted period of high-temperature metamorphism and partial melting. The oldest zircon ages of 163 to 150. Ma reflect inheritance or intrusion and a cluster of zircon ages ca. 134. Ma date orthopyroxene-bearing mineral assemblages that may be magmatic or metamorphic in origin. Zircon and garnet ages from unmelted gneiss and garnet reaction zones record garnet granulite facies metamorphism at 128 to 126. Ma. Peritectic garnet and additional zircon ages from trondhjemite veins and garnet reaction zones indicate that garnet growth and partial melting lasted until ca. 123. Ma. Two single fraction garnet ages and young zircon ages suggest continued high-temperature re-equilibration until ca. 95. Ma. Phase diagram sections constrain orthopyroxene assemblages to growth. Results demonstrate the utility of integrated U-Pb zircon and Sm-Nd garnet ages, and phase diagram sections for understanding the nature, duration, and conditions of deep crustal metamorphism and melting. Geochronologic and thermobarometric data for garnet granulite indicate that thickening of arc crust, which caused high-pressure metamorphism in northern Fiordland, must have occurred prior to 126. Ma, that loading occurred at a rate of ca. 0.06. GPa/m.y., and that garnet granulite metamorphism lasted 3-7m.y. Locally-derived partial melts formed and crystallized in considerably less than 10 and perhaps as little as 3m.y. ?? 2010 Elsevier B.V.

  7. Radiation effects in Zr and Hf containing garnets

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, Karl R. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB1, Menai, NSW 2234 (Australia); Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Blackford, Mark G.; Smith, Katherine L. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB1, Menai, NSW 2234 (Australia); Zaluzec, Nestor J. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Weyland, Matthew [Monash Centre for Electron Microscopy, Monash University, Victoria 3800 (Australia); Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Lumpkin, Gregory R. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB1, Menai, NSW 2234 (Australia)

    2015-07-15

    Garnets have been considered as host phases for the safe immobilisation of high-level nuclear waste, as they have been shown to accommodate a wide range of elements across three different cation sites, such as Ca, Y, Mn on the a-site, Fe, Al, U, Zr, and Ti on the b-site, and Si, Fe, Al on the c-site. Garnets, due to their ability to have variable composition, make ideal model materials for the examination of radiation damage and recovery in nuclear materials, including as potential waste forms. Kimzeyite, Ca{sub 3}Zr{sub 2}FeAlSiO{sub 12}, has been shown naturally to contain up to 30 wt% Zr, and has previously been examined to elucidate both the structure and ordering within the lattice. This study examines the effects of radiation damage and recovery using in-situ ion beam irradiation with 1 MeV Kr ions at the IVEM-TANDEM facility, Argonne National Laboratory. The complementary Hf containing system Ca{sub 3}Hf{sub 2}FeAlSiO{sub 12} was also examined, and found to have a different response to irradiation damage. A sample of irradiated Ca{sub 3}Zr{sub 2}FeAlSiO{sub 12}, at 1000 K, was characterised using aberration corrected (S)TEM and found to contain discreet, nano-sized, crystalline Fe rich particles, indicating a competing process during recovery is occurring.

  8. An Artificially Garnet Crystal Materials Using In Terahertz Waveguide

    Institute of Scientific and Technical Information of China (English)

    YANG Qing-Hui; ZHANG Huai-Wu; LIU Ying-Li; WEN Qi-Ye; ZHA Jie

    2008-01-01

    A hypothesis is brought forward that the materials with low propagation loss in both optical and microwave band may exhibit good performance in terahertz (THz) band because THz wave band interspaces those two wavebands. For the purpose of exploring a kind of low-loss material for THz waveguide, Lu2.1Bio.9FesO12(LuBiIG)garnet films are prepared by liquid phase epitaxy (LPE) method on a gadolinium gallium garnet (GGG) substrate from lead-free flux because of the good properties in both optical and microwave bands. In microwave band, the ferromagnetic resonance (FMR) linewidth of the film 2△H = 2.8-5.1 Oe; in optical band, the optical absorption coefficient is 600cm-1 at visible range and about 100-170cm-l when the wavelength is longer than 80Onm. In THz range, our hypothesis is well confirmed by a THz-TDS measurement which shows that the absorbance of the film for THz wave is 0.05-0.3 cm- 1 and the minimum value appears at 2.3 THz. This artificial ferromagnetic material holds a great promise for magnetic field tunable THz devices such as wavegnide, modulator or switch.

  9. Thermal Decomposition of Almandine Garnet: Mössbauer Study

    Science.gov (United States)

    Barcova, K.; Mashlan, M.; Zboril, R.; Martinec, P.; Kula, P.

    2001-07-01

    The thermal decomposition of almandine garnet from Zoltye Vody, Ukraine, has been studied using57Fe Mössbauer spectroscopy. Room temperature Mössbauer spectrum of the initial powdered sample is characterised by one doublet corresponding to Fe2+ in dodecahedral position 24c. In the room temperature spectra of all heated almandine samples, a doublet corresponding to γ-Fe2O3 nanoparticles appeared. Depending on experimental conditions (heating temperature and time), the additional spectral lines of α-Fe2O3 and ɛ-Fe2O3 were observed in Mössbauer spectra. It is obvious that the thermal transformation of almandine garnet in air is related to the primary formation of γ-Fe2O3 superparamagnetic nanoparticles. γ-Fe2O3 nanoparticles are transformed into ɛ-Fe2O3 and consequently into α-Fe2O3 at higher temperatures. The mechanism and kinetics of the individual structural transformations depend on experimental conditions — mainly on the heating temperature and size of the particles.

  10. Spin Seebeck effect through antiferromagnetic NiO

    Science.gov (United States)

    Prakash, Arati; Brangham, Jack; Yang, Fengyuan; Heremans, Joseph P.

    2016-07-01

    We report temperature-dependent spin Seebeck measurements on Pt/YIG bilayers and Pt/NiO/YIG trilayers, where YIG (yttrium iron garnet, Y3F e5O12 ) is an insulating ferrimagnet and NiO is an antiferromagnet at low temperatures. The thickness of the NiO layer is varied from 0 to 10 nm. In the Pt/YIG bilayers, the temperature gradient applied to the YIG stimulates dynamic spin injection into the Pt, which generates an inverse spin Hall voltage in the Pt. The presence of a NiO layer dampens the spin injection exponentially with a decay length of 2 ± 0.6 nm at 180 K. The decay length increases with temperature and shows a maximum of 5.5 ± 0.8 nm at 360 K. The temperature dependence of the amplitude of the spin Seebeck signal without NiO shows a broad maximum of 6.5 ± 0.5 μV/K at 20 K. In the presence of NiO, the maximum shifts sharply to higher temperatures, likely correlated to the increase in decay length. This implies that NiO is most transparent to magnon propagation near the paramagnet-antiferromagnet transition. We do not see the enhancement in spin current driven into Pt reported in other papers when 1-2 nm NiO layers are sandwiched between Pt and YIG.

  11. Iron deficiency.

    Science.gov (United States)

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world.

  12. Nano metric particles of yttrium ferrite; Particulas nanometricas de ferritas de itrio

    Energy Technology Data Exchange (ETDEWEB)

    Godoi, Ricardo H.M.; Jafelicci Junior, Miguel; Marques, Rodrigo F.C.; Varanda, Laudemir C. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Fisico-Quimica; Lima, Roberto C. [Instituto de Pesquisas da Marinha, Rio de Janeiro, RJ (Brazil)

    1999-12-01

    Nanoparticles of yttrium iron garnet (YIG) were obtained by coprecipitation. The particles were prepared by hydrolysis in acid medium with addition of ammonia or urea, for homogeneous nucleation, at 90 deg C. Different compositions and spherical morphologies were achieved by changing reactants concentrations and precipitation agent. X-ray diffractometry, transmission electron microscopy, differential thermal analysis and electrophoretic mobility were carried out on these particles to investigate the obtained phase, phase transition temperature, morphology, particle size and zeta potential, respectively. (author)

  13. Magnetic Insulator Thin Films and Induced Magneto-Transport Effect at Normal Metal / Magnetic Insulator Interface

    OpenAIRE

    2013-01-01

    The discipline of spintronics with magnetic insulators (MI) has attracted extensive attention in both research and application interests. Yttrium iron garnet (YIG) is a ferrimagnetic insulator which is called the spin Seebeck insulator, for its supports of pure spin currents generation. Non-magnetic metals (NM) with strong spin-orbit interaction (e.g. Pd, Pt), are used as either spin current generator or detector based on the spin Hall effect (SHE) or the inverse spin Hall effect (ISHE). The ...

  14. P- and S-wave velocities of the lowermost crustal rocks from the Kohistan arc: Implications for seismic Moho discontinuity attributed to abundant garnet

    Science.gov (United States)

    Kono, Yoshio; Ishikawa, Masahiro; Harigane, Yumiko; Michibayashi, Katsuyoshi; Arima, Makoto

    2009-03-01

    P- (Vp) and S-wave (Vs) velocities of garnet-free (two-pyroxene granulite) and garnet-bearing (garnet granulite and garnet pyroxenite) lowermost crustal rocks collected from the Kohistan arc, northern Pakistan, were measured at 0.1-1.0 GPa and 25-400 °C. Garnet granulite had higher Vp (+ 0.31 km/s) and Vs (+ 0.27 km/s) than two-pyroxene granulite. Although Vp and Vs increased with increasing volume percent of garnet, plagioclase-free garnet pyroxenite showed significantly higher Vp and Vs than plagioclase-rich garnet granulite mainly due to the low Vp and Vs of plagioclase. In contrast, we observed two quasi-linear relationships between Vp (Vs) and SiO 2 content for the garnet-bearing and garnet-free rocks. The garnet-bearing rocks had relatively higher Vp and Vs and stronger SiO 2 dependences than the garnet-free rocks. The stronger SiO 2 dependences of Vp and Vs in the garnet-bearing rocks suggest that the garnet formation in mafic to ultramafic rocks (e.g., pyroxenite and hornblendite), having relatively lower SiO 2, leads to more pronounced increases in Vp and Vs than that of relatively felsic rocks (e.g., felsic-to-mafic granulite). Indeed, the Vp and Vs of the garnet pyroxenite were significantly higher than those of garnet granulite but comparable to those of dunite. The significantly high Vp and Vs of the garnet pyroxenite yielded high reflection coefficients between the garnet granulite and garnet pyroxenite of up to 0.13 for P-waves and 0.14 for S-waves, comparable to values expected for Moho reflection. Thus the lithological boundary between plagioclase-rich garnet granulite and plagioclase-free garnet pyroxenite in the lowermost crust of the Kohistan arc corresponds to the seismic Moho discontinuity.

  15. Implications of micro-compositions of garnet and biotite from high-grade meta-pelites

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on detailed studies on the compositional zoning of garnet and biotite in pelitic rocks from the Jingshan group of granulite facies in north Jiaodong, P-T pseudosections with isopleths of Fe/(Fe + Ms) in garnet and biotite were calculated in the KFMASH system for two representative rocks of sillimanite-garnet-cordierite-biotite gneiss (Vbi/Vs > 1 ) and sillimanite-garnet gneiss ( Vbi/Vg< 0.2) using the software THERMOCALC and the internally consistent thermodynamic dataset. With a comparison of the calculated Fe/(Fe + Mg) values in garnet and biotite in the peak P-T fields constrained by peak mineral assemblages with the measured ones,it is concluded that the coarse garnet crystals with diffusion zoning from high grade meta-pelites can preserve their peak compositions even when they have experienced a cooling event, and that biotite crystals surrounded by felsic minerals in biotite-rich rocks with Vbi/Vs> 1 can nearly preserve their peak compositions, and biotites in garnet-rich rocks with Vbi/Vg< 0.2 cannot preserve their peak compositions due to the influence of grain-boundary fluid.

  16. Garnet-Perovskite transformation in CaGeO3

    Science.gov (United States)

    Ono, S.

    2012-04-01

    The phase transitions and physical properties of the garnet and the perovskite structure at high P-T conditions have attracted attention to understand the dynamics of the Earth's interior because major compositions (MgSiO3 or CaSiO3) have these structures in the Earth's mantle. It is known that some ABO3 compounds are excellent analogues of MgSiO3 or CaSiO3. Calcium germinate (CaGeO3) exhibits a sequence of phase transitions from a pyroxenoid to a tetragonal garnet phase, and subsequently to an orthorhombic perovskite phase. The phase boundaries in CaGeO3 have been also used as a pressure calibration point at high temperatures in high-pressure experiments, such as for SiO2 and Mg2SiO4. Therefore, the precise phase boundary of CaGeO3 needs to be determined. The transition pressure of CaGeO3 has been investigated in static high-pressure experiments using quench [1] and in situ methods [2]. According to previous high-pressure experiments, the transition pressure is ~6 GP and this boundary had a negative slope. In contrast, Ross et al. [1] also estimated the value of dP/dT slope of this transition using calorimetry data, and calculated the slope to be 2-3 times more negative than the value determined from high-pressure experiments. Therefore, we reinvestigated the dP/dT slope of garnet-perovskite transition in CaGeO3 using the high-pressure experiments. In this study, the use of a multi-anvil high-pressure system combined with a synchrotron radiation source made it possible to acquire precise data from samples under high-pressure and high-temperature conditions [3]. After reaching the required pressure and temperature, we performed in situ measurements using the synchrotron X-rays. The duration of heating was 0.5-2.0 hours. At the end of the experimental runs, the sample was quenched by cutting off the electrical power. This heating procedure was the same as that used in typical quench experiments. We performed approximately 30 experimental runs, and the boundary

  17. Transparent garnet ceramic scintillators for gamma-ray detection

    Science.gov (United States)

    Wang, Yimin; Baldoni, Gary; Rhodes, William H.; Brecher, Charles; Shah, Ananya; Shirwadkar, Urmila; Glodo, Jarek; Cherepy, Nerine; Payne, Stephen

    2012-10-01

    Lanthanide gallium/aluminum-based garnets have a great potential as host structures for scintillation materials for medical imaging. Particularly attractive features are their high density, chemical radiation stability and more importantly, their cubic structure and isotropic optical properties, which allow them to be fabricated into fully transparent, highperformance polycrystalline optical ceramics. Lutetium/gadolinium aluminum/gallium garnets (described by formulas ((Gd,Lu)3(Al,Ga)5O12:Ce, Gd3(Al,Ga)5O12:Ce and Lu3Al5O12:Pr)) feature high effective atomic number and good scintillation properties, which make them particularly attractive for Positron Emission Tomography (PET) and other γ- ray detection applications. The ceramic processing route offers an attractive alternative to single crystal growth for obtaining scintillator materials at relatively low temperatures and at a reasonable cost, with flexibility in dimension control as well as activator concentration adjustment. In this study, optically transparent polycrystalline ceramics mentioned above were prepared by the sintering-HIP approach, employing nano-sized starting powders. The properties and microstructures of the ceramics were controlled by varying the processing parameters during consolidation. Single-phase, high-density, transparent specimens were obtained after sintering followed by a pressure-assisted densification process, i.e. hot-isostatic-pressing. The transparent ceramics displayed high contact and distance transparency as well as high light yield as high as 60,000-65,000 ph/MeV under gamma-ray excitation, which is about 2 times that of a LSO:Ce single crystal. The excellent scintillation and optical properties make these materials promising candidates for medical imaging and γ-ray detection applications.

  18. Effects of Iron and Aluminum on Phase Boundaries at 600-800 km Depths

    Science.gov (United States)

    Shim, Sang-Heon; Ye, Yu; Prakapenka, Vitali; Meng, Yue

    2014-05-01

    High-resolution seismic studies have reported complex discontinuity structures at 600-800 km depths. However, the origin of the structures have not been well understood. In order to understand compositional effects, we have measured the post-spinel, post-garnet, and post-ilmenite phase boundaries in MgO-Al2O3-SiO2 (iron free) and CaO-MgO-Al2O3-SiO2-FeO (iron bearing) systems with pyrolitic oxide ratios. In-situ X-ray diffraction measurements were performed at 20-30 GPa and 1500-2300 K in the laser-heated diamond-anvil cell at the GSECARS and HPCAT sectors of the Advanced Photon Source. We use the Pt and Au pressure scales for the iron-free and iron-bearing compositions, respectively. The Pt and Au scales were calibrated with respect to each other in separate experiments. In most experiments, Ar was cryogenically loaded in the sample chamber as a thermal insulation and pressure transmitting medium, except for a few experiments where a KCl medium was used. At temperatures above 1900 K, the post-garnet transition occurs at higher pressures than the post-spinel transition in both the iron-free and iron-bearing systems. At lower temperatures, while the post-ilmenite transition occurs at nearly same pressures as the post-spinel transition in the iron-bearing system, the post-ilmenite transition occurs at slightly higher pressure (1 GPa) than the post-spinel transitions in the iron-free system. In the iron-free system, akimotoite is stable to much higher temperature (2300 K) than previously thought. In the iron-bearing system, the stability of akimotoite is limited to 2050 K. Our data indicate that Al partitions more into akimotoite than garnet in the iron-free system, which is the opposite to what has been found in iron-bearing systems. The high Al content in akimotoite seems to be responsible for the high-temperature stability of akimotoite in the iron-free system. The Clapeyron slope of the post-garnet boundary is greater by a factor of 2.5 in the iron-bearing system

  19. Native iron

    DEFF Research Database (Denmark)

    Brooks, Charles Kent

    2015-01-01

    , a situation unique in the Solar System. In such a world, iron metal is unstable and, as we all know, oxidizes to the ferric iron compounds we call 'rust'. If we require iron metal it must be produced at high temperatures by reacting iron ore, usually a mixture of ferrous (Fe2+) and ferric (Fe3+) oxides (Fe2O3......, hematite, or FeO.Fe2O3, magnetite), with carbon in the form of coke. This is carried out in a blast furnace. Although the Earth's core consists of metallic iron, which may also be present in parts of the mantle, this is inaccessible to us, so we must make our own. In West Greenland, however, some almost...... unique examples of iron metal, otherwise called 'native iron' or 'telluric iron', occur naturally....

  20. High temperature garnet growth in New England: regional temperature-time trends revealed

    Science.gov (United States)

    Sullivan, N.; Ostwald, C.; Chu, X.; Baxter, E. F.; Ague, J. J.; Eckert, J. O.

    2013-12-01

    A series of localized ultrahigh-temperature (UHT)/high-temperature (HT) granulite facies regions have been identified within the regional amphibolite facies metamorphic zone of the Central Maine Terrane stretching from north-central New Hampshire, through central Massachusetts, and into northeastern Connecticut. Here, we aim to constrain the age and peak temperature of metamorphism at three localities within this region: Bristol, NH, Phillipston, MA and Willington, CT. Garnet-forming reactions are linked directly to peak metamorphic temperatures through thermodynamic modeling and/or Zr-in-rutile thermometry. Precise garnet geochronology allows us to identify the timing of these peak temperatures, as well as the duration of garnet growth. Geochronologic and thermodynamic work was done on 12 samples collected throughout a ~5 km2 metamorphic 'hotspot' previously identified in Bristol, NH (Chamberlain and Rumble, 1988; Journal of Petrology). The highest temperature assemblage within this hotspot is characterized by the presence of garnet + sillimanite + K-feldspar + cordierite and reached temperatures >820οC. The lowest temperature periphery of the hotspot is characterized by sillimanite + muscovite + K-feldspar + minor garnet and reached a maximum temperature of 650οC. Bulk garnet ages from samples within the hotspot range significantly from at least 400.0 × 2.5 Ma to 352.7 × 1.8 Ma with the youngest ages associated with the lower temperature samples. This collection of ages indicates a prolonged period (~50 Ma) of >650οC temperatures interspersed by period(s) of garnet growth. Zoned garnet geochronology will help reveal whether garnet growth and related heating was continuous or episodic. Further south, in Phillipston, MA, zoned garnet geochronology performed on a 2.5 cm diameter garnet porphyroblast indicates garnet growth spanning 389 - 363 Ma, reaching peak temperatures at the end of that time span of 920-940οC, followed by a younger event recorded in

  1. Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films.

    Science.gov (United States)

    Janantha, P A Praveen; Sprenger, Patrick; Hoefer, Mark A; Wu, Mingzhong

    2017-07-14

    The formation and properties of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear waves in a magnetic film are studied. Experiments involve the excitation of a spin wave step pulse in a low-loss magnetic Y_{3}Fe_{5}O_{12} thin film strip, in which the spin wave amplitude increases rapidly, realizing the canonical Riemann problem of shock theory. Under certain conditions, the envelope of the spin wave pulse evolves into a DSW that consists of an expanding train of nonlinear oscillations with amplitudes increasing from front to back, terminated by a black soliton. The onset of DSW self-cavitation, indicated by a point of zero power and a concomitant 180° phase jump, is observed for sufficiently large steps, indicative of the bidirectional dispersive hydrodynamic nature of the DSW. The experimental observations are interpreted with theory and simulations of the nonlinear Schrödinger equation.

  2. Effect of Sn doping on the room temperature magnetodielectric properties of yttrium iron garnet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhizhi; Chen, Fu; Li, Junnan; Feng, Zekun; Nie, Yan, E-mail: nieyan@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan (China)

    2015-10-21

    The structures, magnetic properties, permittivity spectra, and magnetodielectric (MD) effects of polycrystalline Y{sub 3}Fe{sub 5−x}Sn{sub x}O{sub 12} compounds prepared by solid state reactions were systematically investigated. The substitution of Sn{sup 4+} leads to lattice expansion and the donation of excess electrons in ceramics, which affects the concentration of Fe{sup 2+}, space charge, and electric dipole. As a result, as the amount of Sn dopant increases, so does saturation magnetization and permittivity in the low frequency band. The MD coefficient ([ε{sub r}(H) − ε{sub r}(0)]/ε{sub r}(0)) of lightly doped samples (x ≤ 0.05) is negative in the entire frequency band, reaching −2.3% at 350 MHz and 0.6 T for Y{sub 3}Fe{sub 4.95}Sn{sub 0.05}O{sub 12} ceramics. The MD coefficient of heavily doped samples (x > 0.05) is positive in the low frequency band, reaching 0.83% at 10 MHz and 0.6 T for Y{sub 3}Fe{sub 4.925}Sn{sub 0.075}O{sub 12} ceramics, and then decreasing with the increasing frequency, gradually becoming negative in the high frequency band. A detailed explanation is provided based on the origin of permittivity. This study provides a new methodology according to which the MD materials may be designed in order to satisfy the requirements of engineering applications.

  3. Exchange magnon spintronics in the magnetic insulator yttrium iron garnet (Conference Presentation)

    Science.gov (United States)

    Cornelissen, Ludo J.; Liu, Jing; Duine, Rembert A.; Ben-Youssef, Jamal; van Wees, Bart J.

    2016-10-01

    In magnetic insulators, transport of charge is prohibited due to the large bandgap. Spin can still be transported however by spin waves (magnons), the excitations of magnetic systems. The field that studies the properties of spin waves in magnetic insulators is known as magnon spintronics [1]. In the past years, research in the field has been focused on dipolar magnons, which are low-energy spin waves. We have shown [2] that magnons with energy comparable to the thermal energy (exchange magnons) can also transport spin over long distances, characterized by a spin diffusion length λ ≈ 9.5 μm. We have developed a non-local measurement scheme in which exchange magnons are excited and detected making use of the spin Hall- and inverse spin Hall-effect, respectively. This enables the conversion from electronic charge, to electron spin current, to magnonic spin current and vice-versa, using DC electronic signals. This provides a direct interface with conventional electronics and opens up new magnonic device functionalities. Additionally, it allows us to gain insight in the transport of magnons by studying the non-local signal as a function of various parameters, such as an external magnetic field [3] or sample temperature. Finally, studying the long-distance transport of thermal magnons can increase our understanding of the spin Seebeck effect in both the longitudinal and the non-local geometry. [1] A.V. Chumak et al., Nat. Phys. 11, 453-461 (2015) [2] L.J. Cornelissen et al., Nat. Phys. 11, 1022-1026 (2015) [3] L.J. Cornelissen and B.J. van Wees, Phys. Rev. B 93, 020403(R) (2016)

  4. Investigation of the magnetic properties of insulating thin films using the longitudinal spin Seebeck effect

    Energy Technology Data Exchange (ETDEWEB)

    Kehlberger, A., E-mail: kehlberg@uni-mainz.de; Jakob, G.; Kläui, M. [Institute of Physics, University of Mainz, 55099 Mainz (Germany); Onbasli, M. C.; Kim, D. H.; Ross, C. A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-05-07

    The longitudinal spin Seebeck effect is used as a detector for the magnetic properties and switching characteristics of magnetic thin insulating films. We use a 300 nm and a 20 nm thick Yttrium Iron Garnet (YIG, Y{sub 3}Fe{sub 5}O{sub 12}) film prepared by pulsed laser deposition and afterwards coated by platinum for the detection of the thermally excited magnons by the inverse spin Hall effect. The inverse spin Hall signals reveal a magnetic uniaxial anisotropy along the direction of the platinum stripe in the thicker film. For the thin film we find a more isotropic behavior, which is complementarily observed using the magnetoresistance occurring at the platinum/YIG interface. We explain our results on the basis of x-ray diffraction data, which reveal a miscut of the substrate and film surface and an expansion of the YIG lattice. Both findings favor a growth-induced magnetic anisotropy that we observe.

  5. Surface sensitivity of the spin Seebeck effect

    Energy Technology Data Exchange (ETDEWEB)

    Aqeel, A.; Vera-Marun, I. J.; Wees, B. J. van; Palstra, T. T. M., E-mail: t.t.m.palstra@rug.nl [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2014-10-21

    We have investigated the influence of the interface quality on the spin Seebeck effect (SSE) of the bilayer system yttrium iron garnet (YIG)–platinum (Pt). The magnitude and shape of the SSE is strongly influenced by mechanical treatment of the YIG single crystal surface. We observe that the saturation magnetic field (H{sub sat}{sup SSE}) for the SSE signal increases from 55.3 mT to 72.8 mT with mechanical treatment. The change in the magnitude of H{sub sat}{sup SSE} can be attributed to the presence of a perpendicular magnetic anisotropy due to the treatment induced surface strain or shape anisotropy in the Pt/YIG system. Our results show that the SSE is a powerful tool to investigate magnetic anisotropy at the interface.

  6. Using NV centers to probe magnetization dynamics in normal metal/magnetic insulator hybrid system at the nanoscale

    Science.gov (United States)

    Zhang, Huiliang; Ku, Mark J. H.; Han, Minyong; Casola, Francesco; van der Sar, Toeno; Yacoby, Amir; Walsworth, Ronald L.

    2016-05-01

    Understanding magnetization dynamics induced by electric current is of great interest for both fundamental and practical reasons. Great endeavor has been dedicated to spin-orbit torques (SOT) in metallic structures, while quantitative study of analogous phenomena in magnetic insulators remains challenging where transport measurements are not feasible. Recently we have developed techniques using nitrogen vacancy (NV) centers in diamond to probe few-nanometre-scale correlated-electron magnetic excitations (i.e., spin waves). Here we demonstrate how this powerful tool can be implemented to study magnetization dynamics inside ferromagnetic insulator, Yttrium iron garnet (YIG) with spin injection from electrical current through normal metal (Platinum in our case). Particularly our work will focus on NV magnetic detection, imaging, and spectroscopy of coherent auto-oscillations in Pt/YIG microdisc. Magnetic fluctuations and local temperature measurements, both with nearby NV centers, will also be interesting topics relevant to SOT physics in Pt/YIG hybrid system.

  7. Effects of heat current on magnetization dynamics

    Science.gov (United States)

    Vetro, Francesco Antonio; Brechet, Sylvain; Ansermet, Jean-Philippe

    The work is aimed at investigating the interplay between spin dynamics and heat currents in single-crystal Yttrium Iron Garnet (YIG). The irreversible thermodynamics for a continuous medium predicts that a thermal gradient, in the presence of magnetization waves, produces a magnetic induction field, thus a magnetic analog of the well-known Seebeck effect. Time-resolved transmission measurements revealed a change in the attenuation of magnetization waves propagating along the thermal gradient when the gradient is reversed. This magnetic damping change can be accounted for by the Magnetic Seebeck effect. In order to characterize this effect further, we have conducted studies on magnetization dynamic in YIG single crystal samples placed in various geometrical configurations, e.g. with YIG disks in which magnetic vortices might be present. Various magnetic resonance schemes were used, e.g. local probes and cavities.

  8. Spin-current injection and detection in κ-(BEDT-TTF2Cu[N(CN2]Br

    Directory of Open Access Journals (Sweden)

    Z. Qiu

    2015-05-01

    Full Text Available Spin-current injection into an organic semiconductor κ-(BEDT-TTF2Cu[N(CN2]Br film induced by the spin pumping from an yttrium iron garnet (YIG film. When magnetization dynamics in the YIG film is excited by ferromagnetic or spin-wave resonance, a voltage signal was found to appear in the κ-(BEDT-TTF2Cu[N(CN2]Br film. Magnetic-field-angle dependence measurements indicate that the voltage signal is governed by the inverse spin Hall effect in κ-(BEDT-TTF2Cu[N(CN2]Br. We found that the voltage signal in the κ-(BEDT-TTF2Cu[N(CN2]Br/YIG system is critically suppressed around 80 K, around which magnetic and/or glass transitions occur, implying that the efficiency of the spin-current injection is suppressed by fluctuations which critically enhanced near the transitions.

  9. Optical manipulation of a magnon-photon hybrid system

    CERN Document Server

    Braggio, C; Guarise, M; Ortolan, A; Ruoso, G

    2016-01-01

    We demonstrate an all-optical method for manipulating the magnetization in a 1-mm YIG (yttrium-iron-garnet) sphere placed in a $\\sim0.17\\,$T uniform magnetic field. An harmonic of the frequency comb delivered by a multi-GHz infrared laser source is tuned to the Larmor frequency of the YIG sphere to drive magnetization oscillations, which in turn give rise to a radiation field used to thoroughly investigate the phenomenon. The radiation damping issue that occurs at high frequency and in the presence of highly magnetizated materials, has been overcome by exploiting magnon-photon strong coupling regime in microwave cavities. Our findings demonstrate an effective technique for ultrafast control of the magnetization vector in optomagnetic materials via polarization rotation and intensity modulation of an incident laser beam. We eventually get a second-order susceptibility value of $\\sim10^{-7}$ cm$^2$/MW for single crystal YIG.

  10. Efficient spin transport through polyaniline

    Science.gov (United States)

    Mendes, J. B. S.; Alves Santos, O.; Gomes, J. P.; Assis, H. S.; Felix, J. F.; Rodríguez-Suárez, R. L.; Rezende, S. M.; Azevedo, A.

    2017-01-01

    By using the spin pumping process, we show that it is possible to transport a pure spin current across layers of conducting polyaniline (PANI) with several hundred nanometers sandwiched between a film of the ferrimagnetic insulator yttrium iron garnet (YIG) and a thin layer of platinum. The spin current generated by microwave-driven ferromagnetic resonance of the YIG film, injected through the YIG/PANI interface, crosses the whole PANI layer and then is injected into the Pt layer. By means of the inverse spin Hall effect in the Pt, the spin current is converted into charge current and electrically detected as a dc voltage. We measured a spin diffusion length in PANI of 590 ± 40 nm, which is very large compared with normal metals, demonstrating that PANI can be used as an efficient spin current conductor and poor charge current conductor, opening the path towards spintronics applications based in this very attractive material.

  11. Iron Homeostasis and Nutritional Iron Deficiency123

    OpenAIRE

    2011-01-01

    Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins enc...

  12. Promise and Pitfalls of Lu/Hf-Sm/Nd Garnet Geochronology

    Science.gov (United States)

    King, R. L.; Vervoort, J. D.; Kohn, M. J.; Zirakparvar, N. A.; Hart, G. L.; Corrie, S. L.; Cheng, H.

    2007-12-01

    Our ability to routinely measure Lu-Hf and Sm-Nd isotopes in garnet allows broad new applications in geochronology, petrology, and tectonics. However, applications of these data can be limited by challenges in interpreting the petrologic record and preparing garnets for analysis. Here, we examine petrologic and chemical pitfalls encountered in garnet geochronology. Petrologic factors influencing trace element compositions in garnet include reactions that modify REE availability and partitioning (1,2), kinetically limited transfer of REEs to garnet (3), and bulk compositional heterogeneities (4). Interpreting the effects of these processes on Sm/Nd and Lu/Hf ages requires characterizing REE zonation prior to isotope analysis and age interpretation. Because garnet fractions are traditionally picked from crushed samples without regard to intracrystalline origins or chemistries, isochrons will represent mixtures derived to varying degrees from all periods of garnet growth. While measured zoning might generally indicate what garnet portion dominates the Lu/Hf or Sm/Nd budget, traditional mineral separation will rarely realize the chronologic potential afforded by high precision Hf and Nd isotope measurements. The potential use of alternative techniques, such as microsampling, necessitates selective digestion and/or leaching to eliminate inclusions within garnet. For Sm/Nd geochronology, H2SO4 leaching removes LREE-rich phosphates (e.g. apatite), but not silicates (e.g. epidote), precluding Sm-Nd dating of some rocks. For Lu/Hf geochronology, ubiquitous zircon microinclusions (c. 1 μm) can significantly disrupt age determinations. Microinclusions cannot be detected optically or separated physically, requiring selective chemical digestion. If complete digestion methods, such as bomb digestion, are used for garnet fractions, then "common Hf" from zircon will be contained in final solutions. These mixed analyses are of dubious utility and will fall into one of two

  13. Heterogeneity of water in UHP eclogites from Bixiling in Dabieshan:Evidence from garnet

    Institute of Scientific and Technical Information of China (English)

    SHENG Yingming; XIA Qunke; YANG Xiaozhi

    2004-01-01

    Garnets in ultrahigh pressure (UHP) eclogites from Bixiling in Dabieshan were investigated by Fourier transform infrared spectrometer (FTIR). The results demonstrate that all garnets contain structural water which occurs as hydroxyl (OH), with contents ranging from 164 to 2034ppm (H2O wt.) and mostly higher than 500 ppm. Like omphacite which is another major OH-rich mineral in eclogites,garnet is an important carrier that can recycle the surface water into deep mantles. Heterogeneity of water in garnets exists not only among different samples of the same outcrop (~150 m), but also among different crystals of the same sample (~1 cm). This indicates that the mobility of fluids during UHP metamorphism is very limited (possibly on centimeter scales), and that both subduction and exhumation Processes of UHP rocks are very fast.

  14. Fluorian garnets from the host rocks of the Skaergaard intrusion: implications for metamorphic fluid composition

    Science.gov (United States)

    Manning, C.E.; Bird, D.K.

    1990-01-01

    Zoned, silica-deficient, calcic garnets containing up to 5 mol% F substitution for O formed during contact metamorphism of basalts by the Skaergaard intrusion in East Greenland. Fluorian calcic garnets occur as a retrograde alteration of prograde wollastonite and clinopyroxene that fills vesicles and vugs in lavas 30-70 m from the intrusion. The F content of garnet is extremely sensitive to minor changes in fluid composition. The calculations show that a decrease in pH or an increase in log aF- of 0.3 at constant pressure and temperature will decrease the F concentration in garnet from 5 to 0 mol%. The results of this study show that fluorian hydrous grandites provide a mineralogical record of the activities of F species in coexisting metamorphic and hydrothermal fluids. -from Authors

  15. Different origins of garnet in high pressure to ultrahigh pressure metamorphic rocks

    Science.gov (United States)

    Xia, Qiong-Xia; Zhou, Li-Gang

    2017-09-01

    Garnet in high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic rocks in subduction zone commonly shows considerable zonation in major and trace elements as well as mineral inclusions, which bears information on its growth mechanism via metamorphic or peritectic reactions in coexistence with relic minerals and metamorphic fluids or anatectic melts at subduction-zone conditions. It provides an important target to retrieve physicochemical changes in subduction-zone processes, including those not only in pressure and temperature but also in the durations of metamorphism and anatexis. Garnet from different compositions of HP to UHP metamorphic rocks may show different types of major and trace element zonation, as well as mineral inclusions. Discrimination between the different origins of garnet provides important constraints on pressure and temperature and the evolution history for the HP to UHP metamorphic rocks. Magmatic garnet may occur as relics in granitic gneisses despite metamorphic modification at subduction-zone conditions, with spessartine-increasing or flat major element profiles from inner to outer core and exceptionally higher contents of trace elements than metamorphic mantle and rim. Metamorphic garnet can grow at different metamorphic stages during prograde subduction and retrograde exhumation, with spessartine-decreasing from core to rim if the intracrystalline diffusion is not too fast. The compositional profiles of metamorphic garnet in the abundances of grossular, almandine and pyrope are variable depending on the composition of host rocks and co-existing minerals. Peritectic garnet grows through peritectic reactions during partial melting of HP to UHP rocks, with the composition of major elements to be controlled by anatectic P-T conditions and the compositions of parental rocks and anatectic melts. Trace element profiles in garnet with different origins are also variable depending on the coexisting mineral assemblages, the garnet

  16. Classical Heisenberg antiferromagnet on a garnet lattice: a Monte Carlo simulation

    OpenAIRE

    2000-01-01

    We have studied a classical antiferromagnet on a garnet lattice by means of Monte Carlo simulations in an attempt to examine the role of geometrical frustration in Gadolinium Gallium Garnet, Gd3Ga5O12 (GGG). Low-temperature specific heat, magnetisation, susceptibility, the autocorrelation function A(t) and the neutron scattering function S(Q) have been calculated for several models including different types of magnetic interactions and with the presence of an external magnetic field applied a...

  17. Growth of metamorphic and peritectic garnets in ultrahigh-pressure metagranite during continental subduction and exhumation in the Dabie orogen

    Science.gov (United States)

    Xia, Qiong-Xia; Wang, Hao-Zheng; Zhou, Li-Gang; Gao, Xiao-Ying; Zheng, Yong-Fei; Van Orman, James Ashton; Xu, Haijun; Hu, Zhaochu

    2016-12-01

    Two generations of garnet are recognized in ultrahigh-pressure (UHP) metagranite from the Dabie orogen by a combined study of petrography, major and trace element profiles in garnet, and phase equilibrium modeling for metagranite. The results enable distinction between metamorphic and peritectic garnet on the basis of BSE images, and major and trace element compositions. Our research provides new insights into the growth of anatectic garnet due to dehydration melting of UHP metamorphic rocks during exhumation from mantle depths. The first generation of garnet (Grt-I) occurs as a broad domain in the center, which is related to metamorphic growth during prograde subduction. This garnet is dark in BSE images, rich in grossular and poor in almandine and pyrope. The chondrite-normalized rare earth element (REE) patterns show LREE depletion and flat MREE-HREE patterns. The second generation of garnet (Grt-II) occurs as a rim of euhedral garnet, or as patches in Grt-I domains, recrystallized after dissolution of preexisting metamorphic garnet in the presence of anatectic melts during exhumation. It is bright in BSE images, poor in grossular, and rich in almandine and pyrope contents. Trace element analyses on Grt-II domains yield high contents of Sc, Cr, Y and HREE and low contents of Ti and MREE. The chondrite-normalized REE patterns exhibit LREE depletion, and steep MREE-HREE patterns. Based on REE partitioning between garnet and zircon/titanite, the last growth times for metamorphic and anatectic garnets are constrained by zircon and titanite U-Pb ages to be 240 Ma and 220 Ma, respectively. Based on anatectic microstructures and a modeled P-T pseudosection, it is suggested that dehydration melting occurred at 2.0-2.5 GPa during exhumation. Melting occurred through the breakdown of phengite via the peritectic reaction: garnet (I) + phengite + plagioclase + quartz → garnet (II) + biotite + K-feldspar + melt.

  18. Constituting Canon and Community in Eleventh Century Tibet: The Extant Writings of Rongzom and His Charter of Mantrins (sngags pa’i bca’ yig

    Directory of Open Access Journals (Sweden)

    Dominic Sur

    2017-03-01

    Full Text Available This paper explores some of the work of Rongzom Chökyi Zangpo (hereafter Rongzom and attempts to situate his pedagogical influence within the “Old School” or Nyingma (rnying ma tradition of Tibetan Buddhism.1 A survey of Rongzom’s extant writings indicates that he was a seminal exegete and a particularly important philosopher and interpreter of Buddhism in Tibet. He was an influential intellectual flourishing in a period of cultural rebirth, when there was immense skepticism about Tibetan compositions. His work is thereby a source of insight into the indigenous Tibetan response to the transformations of a renaissance-era in which Indian provenance became the sine qua none of religious authority. Rongzom’s “charter” (bca’ yig, the primary focus of the essay, is an important document for our understanding of Old School communities of learning. While we know very little of the social realities of Old School communities in Rongzom’s time, we do know that they were a source of concern for the emerging political and religious authorities in Western Tibet. As such, the review below argues that the production of the charter should be seen, inter alia, as an effort at maintaining autonomy in the face of a rising political power. The analysis also provides insights into the nature of the social obligations operant within Rongzom’s community—constituted as it was by a combination of ritually embodied and discursive philosophical modes of learning.

  19. MAGNETO-OPTICAL PROPERTIES OF NANOMETER SCALE Bi:YIG FILMS%Bi:YIG纳米薄膜的磁光特性

    Institute of Scientific and Technical Information of China (English)

    杨青慧; 张怀武; 刘颖力; 文岐业

    2007-01-01

    用射频磁控溅射和快速退火方法制备了纳米量级的Bi:YIG薄膜,研究了薄膜的磁光特性.当晶粒尺寸从150 nm降到80 nm时,透射率和Faraday角的值分别从75%和3.6°变成了80%和4.0°.结果表明:高的透射率和大Faraday角可以在晶粒尺寸为纳米量级的薄膜中共存.%Nanometer scale Bi:YIG films have been obtained by the radio frequency magnetron sputtering method and the rapid thermal annealing method. The magneto-optical properties of the films were investigated. The transmittance and Faraday angle increased from 75% and 3.6° to 80% and 4.0°, respectively, while the grain size decreased from 150nm to 80nm. The results show that the high transmittance property and large Faraday angle can co-exist when the crystalline grain size of the film is on a nanometer scale.

  20. High-pressure and high-temperature studies on oxide garnets

    Science.gov (United States)

    Hua, Hong; Mirov, Sergey; Vohra, Yogesh K.

    1996-09-01

    We report high-pressure and high-temperature studies on a series of oxide garnets of chemical composition A3B2C3O12. The members of this family investigated are gadolinium scandium gallium garnet (GSGG), gadolinium gallium garnet (GGG), and yttrium aluminum garnet (YAG). The GSGG and GGG are doped with both neodymium and chromium while the YAG is doped only with neodymium. Photoluminescence, synchrotron x-ray-diffraction, and laser heating studies were carried out in a diamond-anvil cell. Variety of optical sensors (ruby, Sm-doped YAG) and x-ray pressure marker (copper) were employed for pressure measurement. Pressure-induced amorphization was observed in GSGG at 58+/-3 GPa and GGG at 84+/-4 GPa by x-ray-diffraction studies. The photoluminescence studies show only gradual broadening of emission bands through the amorphization transition. On increasing pressure beyond amorphization, very broad and featureless emission bands were observed in the fluorescence spectra at 77+/-2 GPa for GSGG and at 88+/-2 GPa for GGG. Laser heating of the pressure-induced amorphous phase in GSGG caused recrystallization to the stable cubic phase. High-pressure x-ray study on YAG shows that it retains cubic phase up to 101+/-4 GPa. A pressure-volume relation for each member of the oxide garnet at ambient temperatures is presented, structural transformation mechanisms, and application of oxide garnets as pressure sensors are also discussed.

  1. Raman imaging of fluid inclusions in garnet from UHPM rocks (Kokchetav massif, Northern Kazakhstan).

    Science.gov (United States)

    Korsakov, Andrey V; Dieing, Thomas; Golovin, Aleksandr V; Toporski, Jan

    2011-10-01

    Confocal Raman imaging of fluid inclusions in garnet porphyroblasts from diamond-grade metamorphic calc-silicate rocks from the Kumdy-Kol microdiamond deposit (Kokchetav Massif, Northern Kazakhstan) reveals that these fluid inclusions consist of almost pure water with different step-daughter phases (e.g., calcite, mica and rare quartz). These fluid inclusions are characterized by negative crystal shape of the host-garnet and they exclusively occur within the core of garnet porphyroblasts. These observations are consistent with their primary origin, most likely at ultrahigh-pressure (UHP) metamorphic conditions. The euhedral newly formed garnet, different in color and composition, was found to be associated with these fluid inclusions. It is proposed that newly formed garnet and water fluid inclusions appear by reaction between the hydrous fluid and the garnet-host. These fluid inclusions provide an unequivocal record of almost pure H(2)O fluids, indicating water-saturated conditions within subducted continental crust during prograde stage and/or ultrahigh-P metamorphism.

  2. REE Zonation in Garnet: new insights from combined Thermodynamic and Diffusion Modelling

    Science.gov (United States)

    Witte, C.; Konrad-Schmolke, M.

    2013-12-01

    Compositional variation in garnet provides an excellent record of element transport within their host rocks, as it precisely reflects the interplay between thermodynamically-controlled nutrient demand and kinetically-constrained element availability during growth. Element availability is controlled by (1) the thermodynamically controlled element distribution among co-existing phases and (2) by matrix transport properties. Our task is to distinguish between factors controlling the availability of major- and trace-elements and to quantify their diffusion length scales but this is hindered by the fact that the interplay of different rate-limiting factors on garnet growth and composition are not fully understood. These processes comprise: (1) fractional garnet crystallisation, which continuously changes the effective, i.e. reacting, bulk rock chemistry (EBC), which in turn influences garnet proportion, growth rate and composition; (2) kinetically-controlled element availability, such that grain boundary diffusion in the host rock's interconnecting transport matrix (ITM) or surface processes in reacting phases cannot keep pace with the material required for garnet nucleation and growth in homogeneous thermodynamic equilibrium with the coexisting phase assemblage and (3) reaction-controlled trace element availability in the host rock, which is often reflected in discontinuous trace element zoning patterns in garnet. A 1D diffusion and reaction model was developed to investigate REE distribution patterns in garnet. It combines PERPLEX thermodynamic forward modelling for a bulk rock composition along a P-T-path with control of diffusion rates in the matrix fluid which acts as a transport medium in the intergranular space. Initial REE distribution is controlled by standard distribution coefficients. Reactant phases are the source of REE and product minerals fractionate REE from the transport medium. Thus the uptake of REE in garnet is regulated by: (1) thermodynamically

  3. Amphiboles from the kyanite-garnet amphibolite in the Tonaru metagabbro mass, Sambagawa metamorphic belt, central Shikoku, Japan

    OpenAIRE

    カビール, エムデイ ファズレー; 高須, 晃; 松浦, 弘明; 蔵谷, 樹

    2016-01-01

    The Tonaru metagabbro mass occurs as a large lenticular body in the highest-grade (oligoclase-biotite zone) portions of the Sambagawa schists in the Besshi district. The Tonaru mass consists of diopside amphibolite and garnet-epidote amphibolite accompanied by small amounts of eclogite and marble. Kyanite-garnet amphibolites from the Tonaru metagabbro mass are composed of amphibole (calcic-amphibole; magnesiohornblende, actinolite, tremolite and tschermakite), zoisite, kyanite, garnet, phengi...

  4. A new interpretation for the garnet zoning in metapelitic rocks of the silgará formation, southwestern santander massif, colombia

    OpenAIRE

    Ríos Reyes Carlos Alberto; Castellanos Alarcón Oscar Mauricio; Takasu Akira

    2011-01-01

    A Barrovian sequence of the Silgará Formation at the southwestern Santander Massif, Colombian Andes, contains zoned garnets in which major and trace element zoning correlates with distribution of mineral inclusions, which may indicate that garnet growth rate varied through time and affected both composition and texture ofgarnets, although different garnet producing reactions have also played an important role in the chemical zoning of garent. However, a local metasomatism process associated t...

  5. A NEW INTERPRETATION FOR THE GARNET ZONING IN METAPELITIC ROCKS OF THE SILGARÁ FORMATION, SOUTHWESTERN SANTANDER MASSIF, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Ríos Reyes Carlos Alberto

    2008-06-01

    Full Text Available A Barrovian sequence of the Silgará Formation at the southwestern Santander Massif, Colombian Andes, contains zoned garnets in which major and trace element zoning correlates with distribution of mineral inclusions, which may indicate that garnet growth rate varied through time and affected both composition and texture ofgarnets, although different garnet producing reactions have also played an important role in the chemical zoning of garent. However, a local metasomatism process associated to the action of late magmatic fluids associated to the emplacement of the Pescadero Pluton (external forcing mechanism would be also considered. In particular, Ca, Mn and Y zoning patterns in some garnets correspond with inclusion-rich vs. inclusion-free zones, althoughthe distribution of inclusions does not correlate with chemical zoning (i.e., the same inclusions are found in Ca-rich and Ca-poor zones of the garnet. There is a similar lack of correlation with accessory phases (apatite, monazite, xenotime, ilmenite or rutile. In a garnet from the garnet-staurolite zone, a high Mn core containsabundant and randomly oriented apatite, monazite and ilmenite inclusions, while a euhedral low Ca mantle zone is inclusion-free and the high Ca / low Mn rim zone contains apatite, monazite and ilmenite aligned parallel to the margins of the garnet. Inclusions in garnet can also represent mineral phases were not completely consumed during garnet growth. Association of garnet zoning trends and patterns with inclusion distribution may help differentiatebetween processes that identically affect major-element zoning but that produced variable textures in the garnet.

  6. Iron load

    Directory of Open Access Journals (Sweden)

    Filippo Cassarà

    2013-03-01

    Full Text Available Recent research addressed the main role of hepcidin in the regulation of iron metabolism. However, while this mechanism could be relevant in causing iron load in Thalassemia Intermedia and Sickle-Cell Anemia, its role in Thalassemia Major (TM is marginal. This is mainly due to the high impact of transfusional requirement into the severe increase of body iron. Moreover, the damage of iron load may be worsened by infections, as HCV hepatitis, or liver and endocrinological damage. One of the most relevant associations was found between splenectomy and increase of risk for mortality due,probably, to more severe iron load. These issues suggest as morbidity and mortality of this group of patients they do not depend only by our ability in controlling heart damage but even in preventing or treating particular infections and complications. This finding is supported by the impairment of survival curves in patients with complications different from heart damage. However, because, during recent years different direct and indirect methods to detect iron overload in patients affected by secondary hemochromatosis have been implemented, our ability to maintain under control iron load is significantly improved. Anyway, the future in iron load management remains to be able to have an iron load map of our body for targeting chelation and other medical treatment according to the single organ damage.

  7. Study on magnetic role of Bi{sup 3+} ion by random cation distribution model in Bi–YIG system

    Energy Technology Data Exchange (ETDEWEB)

    Niyaifar, Mohammad, E-mail: md.niyaifar@gmail.com; Mohammadpour, Hory

    2015-12-15

    The ambiguous role of bismuth in magnetization behaviour of Bi{sub x}Y{sub 3−x}Fe{sub 5}O{sub 12} motivated us to study its structure, magnetic and hyperfine parameters by use of Fourier transform infrared spectroscopy (Far-FTIR), Vibrating sample magnetometer (VSM) and Mössbauer spectroscopy. The dependence of hyperfine parameters with the numbers of bismuth ions in the vicinity of iron ion are investigated by a random cation distribution model. The change in vibrational bands broadening in Far-FTIR spectra are studied. - Highlights: • A sol–gel method is used to synthesis Bi{sub x}Y{sub 3−x}Fe{sub 5}O{sub 12} (x=0.0, 0.2, 0.3 and 0.4) system. • The variation of magnetic properties of the samples are explained by increase of exchange interactions and deviation of each sub-lattice direction. • The increase in exchange interaction is attributed to the magnetic role of Bi{sup 3+}. This role is explained by consider the hybridization of Bi 6p in Fe 3d. • The hyperfine parameters are studied by a random cation distribution model which is based on the variation of the nearest neighbor of ions.

  8. Characterisation of a garnet population from the Sikkim Himalaya: insights into the rates and mechanisms of porphyroblast crystallisation

    Science.gov (United States)

    George, F. R.; Gaidies, F.

    2017-07-01

    The compositional zoning of a garnet population contained within a garnet-grade metapelitic schist from the Lesser Himalayan Sequence of Sikkim (India) provides insight into the rates and kinetic controls of metamorphism, and the extent of chemical equilibration during porphyroblast crystallisation in the sample. Compositional profiles across centrally sectioned garnet crystals representative of the observed crystal size distribution indicate a strong correlation between garnet crystal size and core composition with respect to major end-member components. Systematic steepening of compositional gradients observed from large to small grains is interpreted to reflect a progressive decrease in the growth rate of relatively late-nucleated garnet as a result of an increase in interfacial energies during progressive crystallisation. Numerical simulation of garnet nucleation and growth using an equilibrium approach accounting for chemical fractionation associated with garnet crystallisation reproduces both the observed crystal size distribution and the chemical zoning of the entire garnet population. Simulation of multicomponent intracrystalline diffusion within the population indicates rapid heating along the pressure-temperature path, in excess of 100°C Myr^{-1}. Radial garnet growth is correspondingly rapid, with minimum rates of 1.4 mm Myr^{-1}. As a consequence of such rapid crystallisation, the sample analysed in this study provides a close to primary record of the integrated history of garnet nucleation and growth. Our model suggests that nucleation of garnet occurred continuously between incipient garnet crystallisation at ˜520°C, 4.5 kbar and peak metamorphic conditions at ˜565°C, 5.6 kbar. The good fit between the observed and predicted garnet growth zoning suggests that the departure from equilibrium associated with garnet nucleation and growth was negligible, despite the particularly fast rates of metamorphic heating. Consequently, rates of major element

  9. Experimental Determination of Trace Element Partition Coefficients Between Zircon, Garnet and Melt

    Science.gov (United States)

    Taylor, R. J.; Harley, S. L.; Hinton, R. W.; Elphick, S.

    2007-12-01

    The problem of relating ages, as calculated by zircon U-Pb geochronology, to processes and hence geoological events is central to understanding mountain building and crustal evolution. Accurate P-T-t paths can only be produced if zircon growth can be linked to specific rock and mineral processes used to establish pressure and temperature values for metamorphic episodes. As a major metamorphic mineral in crustal events, garnet is widely used as a thermobarometric tool, and linking garnet growth to zircon formation could be used to refine the interpretation of U-Pb ages. Attempts to resolve this issue have focussed on REE partitioning between zircon and garnet, both of which strongly incorporate the HREE into their structure, and so it is possible there is a distinct REE partitioning signature which will highlight whether the two minerals have grown in equilibrium. There are two complementary methods to obtaining this information, empirical and experimental. Empirical methods of determining this signature using carefully selected rocks have proved troublesome, with a wide range of partitioning signatures found. This work has used experimental techniques to produce zircon-melt, garnet-melt and zircon-garnet-melt partition coefficients at a range of P-T conditions using synthetic materials. Zircon and garnet are grown in trace element equilibrium with a water-undersaturated granitic melt, which represents partial melts formed in the lower crust during anatexis. Temperature ranges from 850°C to 1000°C at a pressure of 5Kbar were produced using internally heated gas apparatus. Trace element concentrations were measured using SIMS analysis at the Ion Microprobe Facility at the University of Edinburgh. The experimental data produced will be applied to interpret chemical signatures in zircon in garnet-bearing metamorphic rocks, and will provide an objective basis for interpretation of the timing of growth or recrystallisation of zircon in many high-grade terrains.

  10. Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite

    Science.gov (United States)

    Grove, Timothy L.; Holbig, Eva S.; Barr, Jay A.; Till, Christy B.; Krawczynski, Michael J.

    2013-01-01

    Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.

  11. Iron refractory iron deficiency anemia

    OpenAIRE

    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

    2013-01-01

    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in ad...

  12. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  13. Lithium Behavior during Growth of Metasedimentary Garnets from the Cignana UHP Locality, Italy

    Science.gov (United States)

    Bebout, G. E.; Tsujimori, T.; Ota, T.; Shimaki, Y.; Kunihiro, T.; Carlson, W. D.; Nakamura, E.

    2014-12-01

    We investigated major and trace element concentrations and δ7Li in garnets in Lago di Cignana metasedimentary rocks (peak conditions ~550˚C, 2.5-3.0 GPa), following the EPMA-SIMS approach of Tsujimori et al. (2014; IMA conference abstract). Previous work on the devolatilization history of these rocks (Bebout et al., 2013; Cook-Kollars et al., 2014; both in Chemical Geology) provides a petrologic and geochemical context for this study. Lithium is of interest as a tracer of fluid-rock interactions and because of its potential to isotopically fractionate during diffusional processes. All garnets are almandine-rich with strongly decreasing MnO and increasing MgO toward rims. HREEs, Y, and Li also show strong zoning, with elevated concentrations in cores (15-50 ppm Li) and marked high-concentration anomalies (up to 117 ppm Li, 5500 ppm Y), with little or no major element shift, as growth annuli at which some garnets have elevated δ7Li. In all garnets, rutile inclusions appear abruptly at annuli and outward toward rims, accompanied by inclusions of a Ca- and LREE-rich phase and decreased Nb concentrations in garnet. These relationships appear to reflect prograde garnet-forming reaction(s) that in part involved titanite breakdown to stabilize rutile, which resulted in delivery of more abundant Y and HREEs at surfaces of growing garnets to produce growth annuli. The co-enrichment of Li and Y+REEs is attributed to their mutual incorporation via a charge-coupled substitution (Carlson et al., 2014; American Mineralogist); thus the increased Li uptake is a passive consequence of the elevated concentrations of Y+REEs. Distributions of δ7Li are complex, with most garnets showing only subtle core-to-rim variation other than at Y+REE annuli. At annuli, some garnets display elevated δ7Li (by up to 8‰), while others in the same rock do not. Small-scale fluctuations in δ7Li may correlate with abrupt shifts in major and trace element concentrations, suggesting that changes in

  14. Experimental study of spinel-garnet phase transition in upper mantle and its significance

    Institute of Scientific and Technical Information of China (English)

    樊祺诚; 刘若新; 谢鸿森; 张月明; 徐平; 林卓然

    1997-01-01

    Experimental study of spinel-garnet phase transition was carried out using natural mineral and rock specimens from xenolith of mantle rocks in Cenozoic basalt as starting materials. From the result it was found that the condition of spinel lherzolite-garnet lherzolite phase transition ( T = 1100℃ and P = 1.8-2.0 GPa) is consistent with the P-T equilibrium condition of the five-phase assemblage spinel/garnet Iherzolite in eastern China, suggesting that there may exist a spinel-garnet Iherzolite phase transition zone with the thickness of a few km to several ten km at the depth of 55-70 km in the continental upper mantle of eastern China. The depth of phase transition from spinel pyrox-enite to garnet pyroxenite is found to be less than 55 km. Experiment results also show that water promotes metasomatism on one hand but suppresses phase transition on the other. Zoning of mineral composition was also discussed.

  15. Rare-earth garnets and perovskites for space-based ADR cooling at high T and low H

    Science.gov (United States)

    King, T. T.; Rowlett, B. A.; Ramirez, R. A.; Shirron, P. J.; Canavan, E. R.; Dipirro, M. J.; Panek, J. S.; Tuttle, J. G.; Shull, R. D.; Fry, R. A.

    2002-05-01

    Future NASA satellite detector systems must be cooled to the 0.1 K temperature range to meet the stringent energy resolution and sensitivity requirements demanded by mid-term astronomy missions. The development of adiabatic demagnetization refrigeration (ADR) materials that can efficiently cool from the passive radiative cooling limit of ~30 K down to sub-Kelvin under low magnetic fields (Hperovskites. Various compositions within the gadolinium gallium iron garnet solid solution series (GGIG, Gd3Ga5-XFeXO12, 0.00perovskite (GAP, GdAlO3) have been synthesized via an organometallic complex approach and confirmed with powder x-ray diffraction. The magnetization of the GGIG and GAP materials has been measured as a function of composition (0.005 K. For GAP, ΔSmag was similar to that of GGIG, X=0.00, both in terms of magnitude and temperature dependence at T>10 K. However, the ΔSmag of GAP at T<10 K was less than the endmember GGIG composition, X=0.00, and exhibited maximum ~5 K. .

  16. Giant Faraday rotation in Bi(x)Ce(3-x)Fe5O12 epitaxial garnet films.

    Science.gov (United States)

    Chandra Sekhar, M; Singh, Mahi R; Basu, Shantanu; Pinnepalli, Sai

    2012-04-23

    Thin films of Bi(x)Ce(3-x)Fe(5)O(12) with x = 0.7 and 0.8 compositions were prepared by using pulsed laser deposition. We investigated the effects of processing parameters used to fabricate these films by measuring various physical properties such as X-ray diffraction, transmittance, magnetization and Faraday rotation. In this study, we propose a phase diagram which provides a suitable window for the deposition of Bi(x)Ce(3-x)Fe(5)O(12) epitaxial films. We have also observed a giant Faraday rotation of 1-1.10 degree/µm in our optimized films. The measured Faraday rotation value is 1.6 and 50 times larger than that of CeYIG and YIG respectively. A theoretical model has been proposed for Faraday rotation based on density matrix method and an excellent agreement between experiment and theory is found.

  17. Solidus and liquidus temperatures and mineralogies for anhydrous garnet-lherzolite to 15 GPa

    Science.gov (United States)

    Herzberg, C. T.

    1983-01-01

    Strong convergence is noted, in experimental data for systems pertaining to anhydrous fertile garnet-lherzolite in the 6.5-15 GPa range, either to a common temperature or to temperatures differing by only about 100 C. The major element composition of magmas generated by even minor degrees of partial melting may be similar to the composition of the primordial, bulk silicate earth in an upper mantle stratigraphic column more than 160 km deep. Whether or not the solidus and liquidus intersect, the liquidus mineralogy for undepleted garnet-lherzolite compositions is found to change from olivine, at low pressures, to pyroxene, garnet, or a solid solution of both, at pressures greater than 10-15 GPa.

  18. Fluorine-bearing grossular-rich garnet - an indicator for UHP - LT metamorphism of metagranitoids.

    Science.gov (United States)

    Burchard, M.

    2002-12-01

    Melting experiments on biotite-phengite-gneiss at pressures of 1.5 to 4.5 GPa and temperatures of 675°C to 1000°C were performed to clarify the phase assemblages of S-type metagranitoids at high pressures. The starting material used was S-type granitic biotite-phengite-gneiss, which represents the country rock for the pyrope-quarztites from the Dora-Maira-Massif, Western Italy. These pyrope-quarztites contain the silicate ellenbergerite, which, together with the growth of pyrope, indicates P and T of more than 3 GPa and 700°C. Experimental evidence confirms that the presence of ellenbergerite indicates high water activities. For this reason all experiments were performed with a water fraction of 1.9 to 9.9 wt.%. The most important phases in the run products are melt, K-feldspar / K-felspar-hydrate, coesite / quartz, phengite, jadeite-rich clinopyroxene, almandine-grossular garnet, epidote, rutile and sphene. At pressures between 3.5 and 4.5 GPa and T of less than 675°C or 775°C, respectively, small, rare crystals of grossular garnets were observed. These grs-rich garnets form corona structures around the alm-grs garnets of the starting material. EMP-analysis shows that these garnets contain up to 1.2 wt.% F at 700°C, decreasing with temperature to 0.4 wt.% at 750°C. A garnet analysis from a run at 4 GPa and 700°C yields 69% grossular, 8% hydrogrossular, 6% fluorgrossular, 6% almandine, 2% spessartine and 3% andradite. The coexistence of such garnets with sphene and epidote in HP experiments shows that the high-pressure reaction sph + zoi -> grs + coe + H2O suggested by Chopin et al (1991) is not relevant at these conditions. From Chopin et al (1991) and Schertl at al (1991) it is known that there are extremely rare inclusions of grs-rich garnet in plagioclase and alm-grs garnet in the original rock, but these authors unfortunately did not analyze the F content. During a reinvestigation of the biotite-phengite gneiss grs inclusions in sph were found that

  19. Characteristics of Polycrystalline Garnets in Micaschists From the Southern Menderes Massif (Turkey) and the Solitude Range (BC, Canada)

    Science.gov (United States)

    Anderson, C.; Whitney, D. L.; Seaton, N.

    2008-12-01

    Electron backscatter diffraction (EBSD) analysis of garnets in metamorphic rocks has revealed the presence of grain boundaries within what appear, based on morphology, to be single crystals. There have only been a few previous studies that have described these types of polycrystals in nature. In this study we analyzed garnets from two suites of metamorphic rocks: kyanite-staurolite schist from the Solitude Range, SW Rocky Mountains (BC, Canada), and mica schist from the southern Menderes Massif (western Turkey). Garnets from both sites are growth zoned and formed during a single metamorphic event, although the Solitude Range garnets record in their zoning and inclusion textures a change from chloritoid-present to staurolite- present (chloritoid-out) reaction history. The garnet-bearing rocks from these sites formed at P-T conditions of 430-550 C, 7-8 kbar (Menderes) and 550-600 C, 6-7 kbar (BC). Less than 10% of the garnets analyzed are polycrystals, but all polycrystals detected have similar characteristics: high-angle misorientation boundaries that crosscut inclusions and inclusion trails. Most polycrystals have 2-3 domains (crystals), but one complex polycrystal was comprised of 16 distinct lattice domains. In most cases, misorientation boundaries crosscut growth zoning, but one Menderes polycrystal exhibited distinct zoning in each domain. Most polycrystals likely formed early in the garnet growth history as closely-spaced nuclei coalesced, but clustering (coalescence) continued throughout the history of garnet crystallization in these rocks.

  20. Rare earth element characteristics of pyrope garnets from the Kaavi-Kuopio kimberlites – implications for mantle metasomatism

    Directory of Open Access Journals (Sweden)

    Marjaleena Lehtonen

    2005-01-01

    Full Text Available Peridotitic garnet xenocrysts from five kimberlite pipes in the Kaavi-Kuopio area of eastern Finland have been studied using major and trace element geochemistry to obtain information on the stratigraphy, compositional variability and evolutionary history of the underlyinglithospheric mantle. Ni thermometry on garnet xenocrysts gives 650–1350°C and, when extrapolated to the geotherm determined using mantle xenoliths, indicates a sampling interval of c. 80–230 km. Three distinct mantle layers are recognized based on the xenolith/xenocryst record: (1 A shallow, 180 km, composed largely of fertile material. The chondrite-normalized REE profiles of subcalcic harzburgitic garnet xenocrysts originating from layer 2 bear evidence of an extensive ancient melt extraction event, similar to that observed in lithosphere underlying Archean cratons elsewhere. Memory of this eventhas possibly also been preserved in the REEN signatures of rare depleted garnets from layer 3 and in the CCGE pyropes from layer 1 despite their saturation in Ca. The lherzolitic and megacryst garnet varieties exhibit LREEN depletion relative to MREEN and HREEN, withthe steady enrichment from SmN to YbN typical of Ca-saturated mantle garnets. The enrichment of MREE and HREE probably derives from a metasomatic event caused by silicate melts close in composition to megacryst magma, which also imprinted a Ti-metasomatic overprint on many pyrope garnets. Harzburgitic and rare lherzolitic garnets, however, appear to have escaped this metasomatism.

  1. Are Colorado Plateau Eclogite Xenoliths Franciscan?: Oxygen Isotope Evidence From Zoned Garnet

    Science.gov (United States)

    Hoover, W. F.; Page, F. Z.; Schulze, D. J.; Kitajima, K.; Valley, J. W.

    2014-12-01

    Eclogite xenoliths from the Moses Rock diatreme, UT, USA are of controversial (Proterozoic or Phanerozoic) age. In this study, seven garnets from four Moses Rock eclogite xenoliths were analyzed for δ18O by ion microprobe. Garnet core δ18O values are 7.8-10.3‰ VSMOW. All samples have a sharp change between cores and rim values of 5.8-6.9‰. These garnets have the first reported oxygen isotope zoning from mantle xenoliths. The core values are well outside the range of garnets equilibrated with the mantle, suggesting that they began growth during subduction from an altered oceanic crustal protolith. Most rim values reach the mantle range. This decrease in δ18O from core to rim is consistent with continued subduction of the eclogites into the mantle. The failure of some garnet rims to reach mantle δ18O values may indicate that they did not equilibrate fully with the mantle, or were exposed to a mixed mantle-slab fluid. Zoning in the samples from this study record a stepped shift from an altered upper oceanic crust protolith, to a mantle-influenced environment. The preservation of zoning in some of the samples from this study suggests that these eclogites were protected within the cool subducting slab and experienced a short mantle residence time. The preservation of cation and oxygen isotope zoning is more consistent with an origin during Franciscan subduction than Proterozoic subduction, unless the zoning is a late feature that formed just prior to volcanic emplacement. This is further supported by the similar patterns of increased pyrope content and decreasing δ18O found in some Franciscan eclogite garnets (e.g., Errico et al., 2013, CMP).

  2. Rare-Earth Garnets and Perovskites for Space-Based ADR Cooling at High T and Low H

    Science.gov (United States)

    King, T. T.; Rowlett, B. A.; Ramirez, R. A.; Shirron, P. J.; Canavan, E. R.; DiPirro, M. J.; Panek, J. S.; Tuttle, J. G.; Shull, R. D.; Fry, R. A.; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    Future NASA satellite detector systems must be cooled to the 0.1 K temperature range to meet the stringent energy resolution and sensitivity requirements demanded by mid-term astronomy missions. The development of adiabatic demagnetization refrigeration (ADR) materials that can efficiently cool from the passive radiative cooling limit of approx. 30 K down to sub-Kelvin under low magnetic fields (H less than or equal to 3 T) would represent a significant improvement in space-based cooling technology. Governed by these engineering goals, our efforts have focused on quantifying the change in magnetic entropy of rare-earth garnets and perovskites. Various compositions within the gadolinium gallium iron garnet solid solution series (GGIG, Gd3Ga(5-x)Fe(x)O12, 0.00 less than or equal to X less than or equal to 5.00) and gadolinium aluminum perovskite (GAP, GdAlO3) have been synthesized via an organometallic complex approach and confirmed with powder x-ray diffraction. The magnetization of the GGIG and GAP materials has been measured as a function of composition (0.00 less than or equal to X less than or equal to 5.00), temperature (2 K less than or equal to T less than or equal to 30 K) and applied magnetic field (0 T less than or equal to H less than or equal to 3 T). The magnetic entropy change (DeltaS(sub mag)) between 0 T and 3 T was determined from the magnetization data. In the GGIG system, DeltaS(sub mag) was compositionally dependent; Fe(sup 3+) additions up to X less than or equal to 2.44 increased DeltaS(sub mag) at T > 5 K. For GAP, DeltaS(sub mag) was similar to that of GGIG, X = 0.00, both in terms of magnitude and temperature dependence at T > 10 K. However, the DeltaS(sub mag) of GAP at T < 10 K was less than the endmember GGIG composition, X = 0.00, and exhibited maximum approx. 5 K.

  3. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    Science.gov (United States)

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.

  4. High P-T Elastic Properties of OH-Bearing Majoritic Garnet

    Science.gov (United States)

    Lazarz, J. D.; Thomas, S. M.; Tkachev, S. N.; Townsend, J. P.; Bina, C. R.; Jacobsen, S. D.

    2014-12-01

    The mantle transition zone (TZ) is believed to be primarily composed of three constituents: wadsleyite, ringwoodite, and majorite garnet (Ringwood, 1975). Laboratory sound velocity measurements for wadsleyite and ringwoodite alone are too high to match TZ seismological models (Li et al., Science, 1998; Sinogeikin et al., JGR, 1998), while majorite yields significantly lower sound velocities (Sinogeikin et al., GRL, 2002; Gwanmesia et al., PEPI, 2009). Taken together, a compositional model such as pyrolite yields a good fit to seismology within uncertainties, with the major discrepancies being that pyrolite yields slightly larger velocity jumps and shallower velocity gradients than seismology (Li and Liebermann, Science, 2007; Irifune et al., Nature, 2008). Hydration of ringwoodite in the transition zone is expected to reduce seismic velocities. If the lower part of the TZ is hydrated, as some recent studies suggest (Pearson et al., Nature, 2014; Schmandt et al., Science, 2014), the proportions of ringwoodite and majoritic garnet in the TZ should be re-evaluated. Velocity gradients in the TZ are likely related to the gradual eclogite-garnetite transition. Over the TZ pressure range (~13-24 GPa), the dissolution of pyroxene into garnet gradually increases, resulting in a complex depth-varying garnet-majorite solid solution, ranging from M4Si4O12 majorite (Mj) to M3Al2Si3O12 garnet (Gt), where M is Mg, Fe, Ca0.5Mg0.5, etc. (Akaogi and Akimoto, PEPI, 1977; Bina and Wood, GRL, 1984; Gasparik, CMP, 1989). Several studies have considered the compositional dependence of majoritic garnet elastic moduli (Liu et al., PEPI, 2000; Sinogeikin et al., EPSL, 2002; Sinogeikin and Bass, GRL, 2002; Murakami et al., EPSL, 2008), but few have considered both composition and hydration state under the high-pressure and high-temperature conditions of the TZ. Here we combine in situ X-ray and Brillouin measurements to determine the elastic constants of various majoritic garnet compositions

  5. Titanium in garnets as indicator of inhomogeneous composition of lithosphere mantle

    Science.gov (United States)

    Kostrovitsky, S.; Yakovlev, D.; Spetsius, Z.

    2012-04-01

    The inhomogeniety of lithosphere mantle under platforms is the well known fact considered by numerous researchers (Sobolev, 1976; Griffin et al, 1999), who primarily dwell upon the ratio of different parageneses of rocks composing the mantle, e.g. pyroxenite, eclogite, lherzolite and dunite-harzburgite. In this paper the garnets with a high content of TiO2 (>0.2%) are discussed. The low-Tigarnets are found in many kimberlite pipes both in the northern and southern fields of the Yakutian Province. This fact agrees with assumption about high-Mg and low-Ti composition of lithosphere mantle. The garnet composition from two neighboring northern fields of the Yakutian province shows that they embrace the Ti-rich blocks of lithosphere mantle. We studied the composition of high-pressure minerals from heavy fraction of kimberlites for Chomurdakh (pipes: Chomur, Svetlaya, Snezhnaya, Druzhba, Ural'skaya, Olimp, dyke Pereval'naya) and Ogoner-Yuryah (pipes: Vasileostovskaya, Baltiyskaya, Aerogeologicheskaya) fields. The heavy fraction of kimberlites of these pipes basically consists of magnesian ilmenite; the number of garnet grains is less 1/100 parts of total number of ilmenite grains. The garnet from these pipes belongs to pyroxenite-vebsterite and eclogite associations. Garnets of diamondiferous dunite-harzburgite paragenesis are absent or occur as single grains. The remarkable feature of garnets from almost all explored pipes, but pipe Ural'skaya, is their high-Ti composition. From 50 to 100 % of all garnets from heavy fraction of kimberlites are characterized by the TiO2 content more than 0.2 % (to 1.9 %). Such unusually high content of high-Ti garnets in the kimberlites of Chomurdakh and Ogoner-Yuryah fields possibly reflects profound metasomatic transformations of separate blocks of lithosphere mantle in the north of Siberian platform. In the conclusion it should be marked that the high content of Ti is the feature of composition of most kimberlites and basic rocks

  6. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes

    OpenAIRE

    Jiyang Sun; Ning Zhao; Yiqiu Li; Xiangxin Guo; Xuefei Feng; Xiaosong Liu; Zhi Liu; Guanglei Cui; Hao Zheng; Lin Gu; Hong Li

    2017-01-01

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li6.4La3Zr1.4Ta0.6O12, LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (...

  7. How to identify garnet lherzolite melts and distinguish them from pyroxenite melts

    Science.gov (United States)

    Grove, T. L.; Holbig, E.; Barr, J. A.; Till, C.; Krawczynski, M. J.

    2013-12-01

    Liquids form in equilibrium with garnet lherzolite sources when the Earth's mantle melts at depths of greater than ~ 60 km. We present a phase equilibrium investigation of Tibetan plateau olivine leucitites from 2.2 to 2.8 GPa and 1380 to 1480 °C. The resulting liquids were multiply saturated with spinel and garnet lherzolite assemblages (olivine, orthopyroxene, clinopyroxene and spinel +/-garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data have been used to develop a new model that parameterizes the major element compositions of garnet lherzolite partial melts, allowing the prediction of melt compositions from depleted to metasomatically enriched peridotite. The model is calibrated over the pressure range of 1.9 to 6 GPa. The model also predicts the suprasolidus pressure and temperature of the spinel to garnet lherzolite phase transition for natural peridotite compositions. Combined with the recent parameterization of melting in the plagioclase- and spinel- lherzolite facies (Till et al., 2012, JGR, 117, B06206), the new model distinguishes between melts of garnet vs. spinel vs. plagioclase lherzolites, but can also be used to distinguish between melts of lherzolitic vs. pyroxenitic source regions, allowing source lithology to be uniquely identified. Pyroxenite melts fall into two compositionally distinct groups; an olivine-normative, SiO2-undersaturated group and quartz-normative, SiO2-oversaturated group. Melts of plagioclase, spinel, and garnet lherzolite plot between these two types of pyroxenitic melts in mineral normative composition space. When our model is applied to high-K lavas erupted in the Tibetan plateau, we find that these magmas are derived from both pyroxenite and lherzolite source regions. Distinctive enrichments in compatible trace elements (Ni, Cr) are observed in the lherzolite-derived magmas. Applied to Hawaiian basalts, our model suggests the transitional and weakly alkaline pre

  8. Garnet cannibalism provides clues to extensive hydration of lower crustal fragments in a subduction channel (Sesia Zone, Northwestern Alps)

    Science.gov (United States)

    Giuntoli, Francesco; Lanari, Pierre; Engi, Martin

    2015-04-01

    The extent to which granulites are transformed to eclogites is thought to impose critical limits on the subduction of continental lower crust. Although it is seldom possible to document such densification processes in detail, the transformation is believed to depend on fluid access and deformation. Remarkably complex garnet porphyroblasts are widespread in eclogite facies micaschists in central parts of the Sesia Zone (Western Italian Alps). They occur in polydeformed samples in assemblages involving phengite+quartz+rutile ±paragonite, Na-amphibole, Na-pyroxene, chloritoid. Detailed study of textural and compositional types reveals a rich inventory of growth and partial resorption zones in garnet. These reflect several stages of the polycyclic metamorphic evolution. A most critical observation is that the relict garnet cores indicate growth at 900 °C and 0.9 GPa. This part of the Eclogitic Micaschist Complex thus derived from granulite facies metapelites of Permian age. These dry rocks must have been extensively hydrated during Cretaceous subduction, and garnet records the conditions of these processes. Garnet from micaschist containing rutile, epidote, paragonite and phengite were investigated in detail. Two types of garnet crystals are found in many thin sections: mm-size porphyroclasts and smaller atoll garnets, some 100 µm in diameter. X-ray maps of the porphyroclasts show complex zoning in garnet: a late Paleozoic HT-LP porphyroclastic core is overgrown by several layers of HP-LT Alpine garnet, these show evidence of growth at the expense of earlier garnet generations. Textures indicate 1-2 stages of resorption, with garnet cores that were fractured and then sealed by garnet veins, rimmed by multiple Alpine overgrowth rims with lobate edges. Garnet rim 1 forms peninsula and embayment structures at the expense of the core. Rim 2 surrounds rim 1, both internally and externally, and seems to have grown mainly at the expense of the core. Rim 3 grew mainly at

  9. METABOLISM OF IRON STORES

    OpenAIRE

    Saito, Hiroshi

    2014-01-01

    ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since th...

  10. Mesoproterozoic syntectonic garnet within Belt Supergroup metamorphic tectonites: Evidence of Grenville-age metamorphism and deformation along northwest Laurentia

    Science.gov (United States)

    Nesheim, T.O.; Vervoort, J.D.; McClelland, W.C.; Gilotti, J.A.; Lang, H.M.

    2012-01-01

    Northern Idaho contains Belt-Purcell Supergroup equivalent metamorphic tectonites that underwent two regional deformational and metamorphic events during the Mesoproterozoic. Garnet-bearing pelitic schists from the Snow Peak area of northern Idaho yield Lu-Hf garnet-whole rock ages of 1085??2. Ma, 1198??79. Ma, 1207??8. Ma, 1255??28. Ma, and 1314??2. Ma. Garnet from one sample, collected from the Clarkia area, was micro-drilled to obtain separate core and rim material that produced ages of 1347??10. Ma and 1102??47. Ma. The core versus rim ages from the micro-drilled sample along with the textural and spatial evidence of the other Lu-Hf garnet ages indicate two metamorphic garnet growth events at ~. 1330. Ma (M1) and ~. 1080. Ma (M2) with the intermediate ages representing mixed ages. Some garnet likely nucleated and grew M1 garnet cores that were later overgrown by younger M2 garnet rims. Most garnet throughout the Clarkia and Snow Peak areas are syntectonic with a regional penetrative deformational fabric, preserved as a strong preferred orientation of metamorphic matrix minerals (e.g., muscovite and biotite). The syntectonic garnets are interpreted to represent one regional, coeval metamorphic and deformation event at ~. 1080. Ma, which overlaps in time with the Grenville Orogeny. The older ~. 1330. Ma ages may represent an extension of the East Kootenay Orogeny described in western Canada. These deformational and metamorphic events indicate that western Laurentia (North America) was tectonically active in the Mesoproterozoic and during the assembly of the supercontinent Rodinia. ?? 2011 Elsevier B.V.

  11. Iron Dextran Injection

    Science.gov (United States)

    ... allergic to iron dextran injection; any other iron injections such as ferric carboxymaltose (Injectafer), ferumoxytol (Feraheme), iron sucrose (Venofer), or sodium ferric gluconate (Ferrlecit);any other ...

  12. Garnet-bearing ultramafic rocks from the Dominican Republic: Fossil mantle plume fragments in an ultra high pressure oceanic complex?

    Science.gov (United States)

    Gazel, Esteban; Abbott, Richard N.; Draper, Grenville

    2011-07-01

    Ultra high pressure (UHP) garnet-bearing ultramafic rocks from the Dominican Republic may represent the only known example where such rocks were exhumed at an ocean-ocean convergent plate boundary, and where the protolith crystallized from a UHP magma (> 3.2 GPa, > 1500 °C). This study focuses on the petrology and geochemistry of one of the ultramafic lithologies, the pegmatitic garnet-clinopyroxenite (garnet + clinopyroxene + spinel + corundum + hornblende). Three distinct types of garnet were recognized: Type-1 garnet (low Ca, high Mg) is interpreted as near magmatic (P > 3.2 GPa, > 1500 °C). Type-1‧ garnet (high Ca, low Mg) is interpreted as having formed approximately isochemically from magmatic high-Al clinopyroxene. Type-2 garnet (intermediate Ca, high Mg, and low Fe + Mn) formed together with hornblende as a result of late, low-pressure retrograde hydration. Clinopyroxene is close to diopside-hedenbergite (Mg# ~ 88) and metasomatized by arc-related fluids. Spinel and corundum occur as microinclusions in type-1 and type-1‧ garnets in the only reported natural occurrence of coexisting garnet + spinel + corundum, indicative of very high pressure. Chondrite-normalized REEs (rare earth elements) of the garnets show humped or weakly sinusoidal patterns, typically associated with garnet inclusions in diamond and garnet in kimberlite that crystallized at UHP conditions. These humped to weakly sinusoidal REE patterns developed as the result of interaction with a light REE-enriched metasomatic fluid. Partitioning of REEs between type-1‧ and type-1 garnets is consistent with the former having inherited its REEs from a high-Al clinopyroxene predecessor. The partitioning preserves a record of near-solidus temperatures (~ 1475 °C). Petrology and phase relationships independently suggest near-solidus conditions > 1500 °C (the highest temperature conditions reported in a UHP orogenic setting), providing evidence for an origin in a mantle plume. Therefore, the

  13. Optical and magnetic properties of a transparent garnet film for atomic physics experiments

    Directory of Open Access Journals (Sweden)

    Mari Saito

    2016-12-01

    Full Text Available We investigated the optical and magnetic properties of a transparent magnetic garnet with a particular focus on its applications to atomic physics experiments. The garnet film used in this study was a magnetically soft material that was originally designed for a Faraday rotator at optical communication wavelengths in the near infrared region. The film had a thickness of 2.1 μm and a small optical loss at a wavelength of λ=780 nm resonant with Rb atoms. The Faraday effect was also small and, thus, barely affected the polarization of light at λ=780 nm. In contrast, large Faraday rotation angles at shorter wavelengths enabled us to visualize magnetic domains, which were perpendicularly magnetized in alternate directions with a period of 3.6 μm. We confirmed the generation of an evanescent wave on the garnet film, which can be used for the optical observation and manipulation of atoms on the surface of the film. Finally, we demonstrated a magnetic mirror for laser-cooled Rb atoms using the garnet film.

  14. Investigations of garnets from polymetamorphic rocks of the Lapland Granulite Belt of the Kandalaksha Region

    Directory of Open Access Journals (Sweden)

    Miłosz A. Huber

    2012-01-01

    Full Text Available Introduction: The Lapland Granulite Belt is placed on the Kandalaksha region (Kola Peninsula, Russia. The rocks of this Belt are composed mainly of amphibolites and granulites.Materials and methods: The research were focused on the garnets from the amphibolite and granulite rocks of Lapland Granulite Belt. The petrological methods like polarizing microscopy (PM, SEM-EDS, XRD for powdered samples and single crystal diffraction were used together with IR and Mössbauer spectroscopy and REE analysis by ion–microprobe.Results: It was found that the garnets from studied amphibolite and granulite rocks could be classified to pyralspite group without hydrogarnets components, so they were formed in high metamorphic facies.Conclusions: The joint geological observations and results of the performed experiments suggest that the garnets were subject of a blastesy, i.e. there were formed in long lasting metamorphic processes of low dynamics, except of those garnets from tectonic zones, found in the vicinity of mineral veins.

  15. Comparison of the excimer laser with the erbium yttrium aluminum garnet laser for applications in osteotomy

    Science.gov (United States)

    Li, Zhao-zhang; Van De Merwe, Willem P.; Reinisch, Lou

    1991-06-01

    The ablative removal of bone tissue and the accompanying acoustic wave have been studied in a liquid environment using an ultraviolet excimer laser (Argon Fluoride and Krypton Fluoride) and a mid-infrared Erbium Yttrium Aluminum Garnet (Er:YAG) laser

  16. Optical and magnetic properties of a transparent garnet film for atomic physics experiments

    Science.gov (United States)

    Saito, Mari; Tajima, Ryoichi; Kiyosawa, Ryota; Nagata, Yugo; Shimada, Hiroyuki; Ishibashi, Takayuki; Hatakeyama, Atsushi

    2016-12-01

    We investigated the optical and magnetic properties of a transparent magnetic garnet with a particular focus on its applications to atomic physics experiments. The garnet film used in this study was a magnetically soft material that was originally designed for a Faraday rotator at optical communication wavelengths in the near infrared region. The film had a thickness of 2.1 μm and a small optical loss at a wavelength of λ =780 nm resonant with Rb atoms. The Faraday effect was also small and, thus, barely affected the polarization of light at λ =780 nm. In contrast, large Faraday rotation angles at shorter wavelengths enabled us to visualize magnetic domains, which were perpendicularly magnetized in alternate directions with a period of 3.6 μm. We confirmed the generation of an evanescent wave on the garnet film, which can be used for the optical observation and manipulation of atoms on the surface of the film. Finally, we demonstrated a magnetic mirror for laser-cooled Rb atoms using the garnet film.

  17. Origin of birefringence in common silicate garnet: intergrowth of different cubic phases

    Science.gov (United States)

    Antao, S.; Klincker, A.; Round, S.

    2013-05-01

    Birefringence is unexpected in ideal high symmetry cubic minerals, such as common silicate garnets. Birefringence in cubic garnet was reported over a century ago, but the origin still remains questionable. Some grossular, spessartine, andradite, and uvarovite samples may show birefringence under cross-polarized light, which may indicate that they are not optically cubic. Several reasons were given as the cause of the birefringence, but the main one appears to be cation order that may cause symmetry reduction. The crystal structure of several birefringent garnet samples (grossular, spessartine, andradite, and uvarovite) were refined by the Rietveld method, space group Ia-3d, and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe results indicate the samples are homogeneous or non-homogenous with two or three distinct compositions. Each birefringent sample contains an assemblage of cubic phases that have slightly different unit-cell parameters. The intergrowth of different phases causes strain-induced birefringence that arises from mismatch of different cubic unit-cell parameters. These results have many implications, including garnet phase transitions from cubic to lower symmetry in the mantle, which has important geophysical consequences.

  18. Influence of neodymium-doping on structure and properties of yttrium aluminium garnet

    DEFF Research Database (Denmark)

    Zhang, X.D.; He, W.; Yue, Yuanzheng

    2013-01-01

    We study the impact of the Nd-doping on the grain formation, the crystal structure, and the fluorescence of the Yttrium Aluminum Garnet (YAG). The results show that Nd-doping leads to the YAG lattice expansion and distortion, and hence to an increase in defect concentration. This is attributed to...

  19. Spin Waves in Magnetic Thin Films: New Types of Solitons and Electrical Control

    Science.gov (United States)

    Wang, Zihui

    New types of spin-wave solitons in magnetic thin films and the methods to control spin waves electrically are studied in this thesis. In the first part, the first observation of chaotic spin-wave solitons in yttrium iron garnet (YIG) thin film-based active feedback rings is presented. At some ring gain levels, one observes the self-generation of a single spin-wave soliton pulse in the ring. When the pulse circulates in the ring, its amplitude varies chaotically with time. The excitation of dark spin-wave envelope solitons in YIG thin film strips is also described. The formation of a pair of black solitons with a phase jump of 180° is observed for the first time. The excitation of bright solitons in the case of repulsive nonlinearity is also observed and is reproduced by a numerical simulation based on a high-order nonlinear Schrodinger equation. In the second part, the control of magnetization relaxation in ferromagnetic insulators via interfacial spin scattering is presented. In the experiments nanometer-thick YIG/Pt bi-layered structures are used, with the Pt layer biased by an electric voltage. The bias voltage produces a spin current across the Pt layer thickness due to the spin Hall effect. As this current scatters off the YIG surface, it exerts a torque on the YIG surface spins. This torque can reduce or increase the damping and thereby compress or broaden the ferromagnetic resonance linewidth of the YIG film, depending on the field/current configuration. The control of spin waves in a YIG thin film via interfacial spin scattering is also presented. In the experiments a 4.6-microm-thick YIG film strip with a 20-nm-thick Pt capping layer is used. A DC current pulse is applied to the Pt layer and produced a spin current across the Pt layer. As the spin current scatters off the YIG surface, it can either amplify or attenuate spin-wave pulses that travel in the YIG strip, depending on the current/field configuration.

  20. Diffusion-controlled garnet growth in siliceous dolomites of the Adamello contact aureole, N-Italy

    Science.gov (United States)

    Muller, T.; Fiebich, E.; Foster, C. T.

    2012-12-01

    Texture forming processes are controlled by many factors, such as material transport through polycrystalline materials, surface kinetics, fluid flow, and many others. In metamorphic rocks, texture forming processes typically involve local reactions linked to net mass transfer which allows constraining the actual reaction path in more detail. In this study, we present geochemical data combined with textural modeling to constrain the conditions and reaction mechanism during contact metamorphic garnet growth in siliceous dolomites in the southern Adamello Massif, Italy. The metamorphic garnet porphyroblasts are poikiloblastic and idiomorphic in shape with a typical grain size ranging between 0.6-1 cm in diameter sitting in a matrix of calcite+diopside+anorthite+wollastonite. Inclusions in the grossular-rich garnets are almost uniquely diopside. On the hand specimen, garnets are surrounded by visible rims of about 0.6 mm indicating a diffusion-limited reaction mechanism to be responsible for the garnet formation. In the course of this study samples have been characterized by polarization microscopy, element x-ray maps using EMPA, cathodulominescence images and stable isotope analyses of carbon and oxygen of matrix carbonates. In addition, pseudosections have been calculated using the software package PerpleX (Connolly, 2005) based on the bulk chemistry of collected samples. Results indicate that the visible margin consists of a small rim (< 1 mm) purely consisting of recrystallized calcite adjacent to the garnet edge. The major part of the observed halo, however, is characterized by the absence of anorthite and wollastonite. The observed texture of garnet porphyroblasts growing and simultaneously forming an anorthite and wollastonite free margin can successfully be reproduced using the SEG program (Foster, 1993), which assumes diffusive mass transport. Therefore the model constrains the diffusive fluxes of Ca, Mg, Al and Si by mass balance and the local Gibbs

  1. Garnet - Spinel Peridotites from Potrok Aike: An insight into the Patagonian Lithospheric Mantle

    Science.gov (United States)

    Schrott, C.; Ntaflos, T.; Bjerg, E. A.; Tschegg, C.

    2009-04-01

    The mantle-xenolith bearing hyaloclastic tephra from Potrok Aike, located 68 km SW of Río Gallegos, Argentina, provide good opportunities for studying the lithospheric mantle beneath southern Patagonia. The Potrok Aike maar belongs to the Pliocene to Holocene Pali Aike volcanic field located east of the Andean volcanic arc. The studied samples are spinel-bearing and garnet + spinel-bearing lherzolites and harzburgites. The entire suite of the studied mantle-xenoliths have protogranular to protogranular-equigranular textures. The most interesting textural features are the kelyphitic rims around both garnet and spinel, that clearly demonstrate break-down of garnet in spinel bearing xenoliths. Detailed petrographic investigations showed different degrees of kelyphitisation. Another feature is the intergranular growth of clinopyroxene, representing a late metasomatic event. No hydrous minerals were so far found in the studied xenoliths. The Potrok Aike clinopyroxenes are Cr-diopsides with Al2O3 contents ranging from 3.2 to 7.1 wt %, whereas the garnets show pyrope composition (Alm16.3Py69.3Gros13.7 Spess0.7). The spinel shows broad range of compositional variation with Cr# varying between 0.1 and 0.5. The bulk chemistry points out the fertile character of the lherzolithes (Al2O3 2.6 - 3.6 wt % and CaO 2.5 - 2.9 wt %), while the harzburgites indicate a depleted character (Al2O3 0.7 - 2.5 wt % and CaO 0.33 - 2.14 wt %). According to the REE patterns, the Protok Aike peridotites can be divided into three groups: group I, non-metasomatised peridotites with Lan/Smn from 0.76 to 0.91 and Tbn/Ybn from 0.70 to 0.71; group II, slightly metasomatised peridotites with Lan/Smn from 0.95 to 1.27 and Tbn/Ybn from 0.96 to 1.18; and group 3, metasomatised peridotites with Lan/Smn from 1.36 to 3.2 and Tbn/Ybn from 1.06 to 2.12. LA-ICP-MS analyses on clinopyroxenes from spinel-peridotites have convex upward REE patterns resembling those from the spinel-garnet-bearing peridotites

  2. Iron Sucrose Injection

    Science.gov (United States)

    Iron sucrose injection is used treat iron-deficiency anemia (a lower than normal number of red blood cells due ... and may cause the kidneys to stop working). Iron sucrose injection is in a class of medications called iron ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... enough iron, your body starts using the iron it has stored. Soon, the stored iron gets used ... fewer red blood cells. The red blood cells it does make have less hemoglobin than normal. Iron- ...

  4. Stability of artificial ferrite garnets with actinides and lanthanoids in water solutions

    Science.gov (United States)

    Livshits, T. S.

    2008-12-01

    Extraction of the actinide-REE fraction and its subsequent incorporation into sparingly soluble crystalline phases (confinement matrices) is assumed in processing of spent nuclear fuel from high-level radioactive wastes (HLW). The chemical stability in the process of interaction with subsurface water governs the capability of a matrix phase to keep radionuclides from getting into the biosphere. In static experiments at 90 and 150°C, the chemical stability of ferrite garnets was investigated for three compositions with Th4+, Ce4+ and Gd3+ + serving as simulator components of the actinide fraction of HLW. Experiments were carried out in distilled water (pH 6.5), 0.01 M HCl solution (pH 2), and 0.01 M NaOH solution (pH 12). The behavior of ferrigarnet matrices depends on the acidity of the solution. In neutral and alkaline media, Th, Ce, and Gd are virtually not transferred into the liquid phase. Acid leaching promotes intense dissolution of garnet matrices. In this case, the leaching rate of Gd and Th from ceramics into the liquid phase is two orders of magnitude lower than the leaching rate of Ce because the Ce-doped phases contain less stable (relative to garnet) Ce-rich perovskite. Amorphization of the ferrigarnet structure due to 244Cm isotope decay leads to an increase in the leaching rate of Cm by no more than five times. In terms of radiation and chemical stability, ferrite garnets are not inferior to zirconolites and titanate pyrochlores. The experimental results suggest that garnet matrices can reliably immobilize actinides in subsurface repositories.

  5. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  6. Single-Crystal X-Ray Diffraction of Pyrope Garnet to 84 GPa

    Science.gov (United States)

    Finkelstein, G. J.; Dera, P. K.; Duffy, T. S.

    2012-12-01

    Garnets are characteristic minerals of many metamorphic and igneous rocks, and are also important upper-mantle constituents. Mg-rich (pyrope) garnets occur in both peridotite and eclogite compositions in the upper mantle. At high temperatures and pressures above 25 GPa, garnets transform to the perovskite structure. The post-garnet transition kinetics are sluggish, and in cold subducting slabs garnets could persist metastably at temperatures as high as 1700 K on geological timescales. These phases could add positive buoyancy to a subducting slab, inhibiting subduction. There has been minimal previous work on the 300 K compression behavior of aluminosilicate garnets at pressures higher than 10 GPa. In this work, we have collected single-crystal X-ray diffraction data on near end-member natural pyrope (Dora Maira pyrope) to 84 GPa. By extending the compression of pyrope to much higher pressures, we can better constrain the equation of state while also characterizing the structural response to such extreme pressures for the first time. Crystals were polished to ~5-10 μm in thickness, and loaded in a diamond anvil cell with gold foil and ruby balls as pressure calibrants. Helium was used as a pressure-transmitting medium. High-pressure single-crystal X-ray diffraction experiments were performed at the GSECARS 13-ID-D beamline of the Advanced Photon Source and the 12.2.2 beamline of the Advanced Light Source. Structure refinements were carried out successfully to the highest pressure using Shelx-97, extending the range over which the compression behavior of this material has been characterized by a factor of nearly three. Pyrope exhibits smooth compression behavior and no phase transitions over the investigated pressure range. A preliminary 3rd order Birch-Murnaghan equation of state was successfully fit to data up to 52 GPa. If the bulk modulus is fixed to 170 GPa, a value consistent with previous Brillouin and Ultrasonic studies, our data yields a pressure derivative

  7. Ductile deformation of garnet in mylonitic gneisses from the Münchberg Massif (Germany)

    Science.gov (United States)

    Vollbrecht, Axel; Pawlowski, Jan; Leiss, Bernd; Heinrichs, Till; Seidel, Madlen; Kronz, Andreas

    2006-12-01

    Mylonitic gneisses from the Münchberg Massif contain single grains (type I) and polycrystalline aggregates (type II) of garnet displaying a distinct elongation parallel to a macroscopic lineation which is interpreted as the result of ductile deformation. Lattice-preferred orientations of quartz (textures) symmetrical to the macroscopic foliation and lineation and the lack of rotational microfabrics indicate that the bulk deformation was pure shear at least during the latest strain increments. Garnet textures measured by EBSD together with microprobe analyses demonstrate that these two structural types of garnet can be related to two different processes of ductile deformation: (1) For the single grains stretching can be attributed to diffusion creep along grain boundary zones (Coble creep). The related mass transfer is indicated by the fact that primary growth zones are cut off at the long faces of the grains while the related strain shadow domains do not show comparable chemical zoning. Pressure solution and precipitation suitable to produce similar structures can be largely ruled out because retrogressive reactions pointing to the presence of free hydrous fluids are missing. (2) For the polycrystalline garnet aggregates consisting of cores grading into fine-grained mantles, dislocation creep and associated rotation recrystallization can be assumed. Continuous lattice rotation from the core to the outer polycrystalline rim allow a determination of the related dominant slip systems which are {100} and equivalent systems according to the cubic lattice symmetry. The same holds for garnets which appear to be completely recrystallized. For this type of fine-grained aggregates an alternative nucleation model is discussed. Due to penetrative dislocation glide in connection with short range diffusion and the resulting lattice rotation, primary growth zones are strongly disturbed. Since for the considered rock unit of the Münchberg Massif peak metamorphic temperatures

  8. Garnet formation and evolution in Cordilleran source rocks: inherited zircon trace element chemistry from the Transverse Ranges, CA

    Science.gov (United States)

    Economos, R. C.; Barth, A. P.; Wooden, J. L.; Chapman, A. D.

    2011-12-01

    Pre-magmatic (inherited) Proterozoic cores are common in Mesozoic plutons from the Transverse Ranges, southern California. These grains record chronological and compositional information that constrains the mineralogy of the source region at the time of its formation. Whole rock geochemical compositions indicate the mineralogy of the source region when re-mobilized in Mesozoic time. These constraints can be compared to yield an impression of major changes in the lower crust between these events. The behavior of garnet is of particular interest due to its role as an indicator of crystallization depth and its distinctive geochemical imprint, both on co-crystallizing zircons and magmatic chemistry as a whole. While the trace element signal of co-crystallization of garnet and zircon is well constrained for metamorphic rocks, similar signals in magmatic rocks have received less thorough treatment. We compare Yb/Gd and Th/U from zircons from garnet bearing granites and tonalites from the deeply-crystallized western Tehachapi Mountains with results for a range of metamorphic environments. A main trend in log-log Yb/Gd vs Th/U space represents the trajectory of magmatic composition in a typical granodiorite as recorded in zircons. A population of zircons from both metamorphic and igneous garnet-bearing rocks falls off this main trend towards lower Yb/Gd, interpreted as a signature of heavy REE depletion via the influence of garnet during co-crystallization. When carrying the signal of garnet co-crystallization, igneous and metamorphic zircons can be distinguished on the basis of Th/U ratio. The Yb/Gd vs. Th/U relationship is generally a better indicator than Th/U alone for discerning the formation environment of zircons, since in the main populations there is significant overlap in Th/U ratio among metamorphic and evolved magmatic zircons that make them difficult to discern. Proterozoic premagmatic zircons sampled by Mesozoic plutons in the Transverse Ranges have a

  9. LA-ICP-MS trace element mapping: insights into the crystallisation history of a metamorphic garnet population

    Science.gov (United States)

    George, Freya; Gaidies, Fred

    2017-04-01

    In comparison to our understanding of major element zoning, relatively little is known about the incorporation of trace elements into metamorphic garnet. Given their extremely slow diffusivities and sensitivity to changing mineral assemblages, the analysis of the distribution of trace elements in garnet has the potential to yield a wealth of information pertaining to interfacial attachment mechanisms during garnet crystallisation, the mobility of trace elements in both garnet and the matrix, and trace element geochronology. Due to advances in the spatial resolution and analytical precision of modern microbeam techniques, small-scale trace element variations can increasingly be documented and used to inform models of metamorphic crystallisation. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in particular, can be used to rapidly quantify a wide range of elemental masses as a series of laser rasters, producing large volumes of spatially constrained trace element data. In this study, we present LA-ICP-MS maps of trace element concentrations from numerous centrally-sectioned garnets representative of the crystal size-distribution of a single sample's population. The study sample originates from the garnet-grade Barrovian zone of the Lesser Himalayan Sequence in Sikkim, northeast India, and has been shown to have crystallised garnet within a single assemblage between 515 ˚C and 565˚C, with no evidence for accessory phase reaction over the duration of garnet growth. Previous models have indicated that the duration of garnet crystallisation was extremely rapid (documents the primary zonation generated during garnet growth. In spite of straightforward (i.e. concentrically-zoned) major element garnet zonation, trace elements maps are characterised by significant complexity and variability. Y and the heavy rare earth elements are strongly enriched in crystal cores, where there is overprinting of the observed internal fabric, and exhibit numerous

  10. Discovery of Ordovician–Silurian metamorphic monazite in garnet metapelites of the Alpine External Aiguilles Rouges Massif

    OpenAIRE

    Schulz, Bernhard; Raumer, Jürgen F. von

    2011-01-01

    The pre-Mesozoic, mainly Variscan metamorphic basement of the Col de Bérard area (Aiguilles Rouges Massif, External domain) consists of paragneisses and micaschists together with various orthogneisses and metabasites. Monazite in metapelites was analysed by the electron microprobe (EMPA-CHIME) age dating method. The monazites in garnet micaschists are dominantly of Variscan age (330–300 Ma). Garnet in these rocks displays well developed growth zonations in Fe–Mg–Ca–Mn and crystallized at maxi...

  11. Iron bioavailability from commercially available iron supplements

    OpenAIRE

    2015-01-01

    Purpose Iron deficiency anaemia (IDA) is a global public health problem. Treatment with the standard of care ferrous iron salts may be poorly tolerated, leading to non-compliance and ineffective correction of IDA. Employing supplements with higher bioavailability might permit lower doses of iron to be used with fewer side effects, thus improving treatment efficacy. Here, we compared the iron bioavailability of ferrous sulphate tablets with alternative commercial iron products, including th...

  12. Discovery of natural MgSiO3 tetragonal garnet in a shocked chondritic meteorite.

    Science.gov (United States)

    Tomioka, Naotaka; Miyahara, Masaaki; Ito, Motoo

    2016-03-01

    MgSiO3 tetragonal garnet, which is the last of the missing phases of experimentally predicted high-pressure polymorphs of pyroxene, has been discovered in a shocked meteorite. The garnet is formed from low-Ca pyroxene in the host rock through a solid-state transformation at 17 to 20 GPa and 1900° to 2000°C. On the basis of the degree of cation ordering in its crystal structure, which can be deduced from electron diffraction intensities, the cooling rate of the shock-induced melt veins from ~2000°C was estimated to be higher than 10(3)°C/s. This cooling rate sets the upper bound for the shock-temperature increase in the bulk meteorite at ~900°C.

  13. Compositional trends among Kaapvaal Craton garnet peridotite xenoliths and their effects on seismic velocity and density

    DEFF Research Database (Denmark)

    Schutt, Derek; Lesher, Charles

    2010-01-01

    garnet and clinopyroxene enrichment. Using the parameterization of Schutt and Lesher (2006) we show that at cratonic mantle temperatures and pressures, orthopyroxene enrichment results in little change in bulk density (ρbulk) and shear-wave velocity (VS), but decreases compressional wave velocities (VP...... and clinopyroxene enrichment possibly as a consequence of melt infiltration. More than half of the mineral mode variance among Kaapvaal Craton xenoliths can be accounted for by opx enrichment. Melt depletion effects can account for as much as 30% of the variance, while less than 20% of the variance is associated......) and VP/VS. In contrast, melt depletion has little effect on VP, but leads to an increase in VS and a decrease in ρbulk and VP/VS. Garnet (gt) and clinopyroxene (cpx) enrichment cause an increase in ρbulk, VP, VS, and VP/VS. The isolation of the major contributions to xenolith compositional variations...

  14. Radiation tests on erbium-doped garnet crystals for spaceborne CH4-Lidar applications

    Science.gov (United States)

    Meissner, Ansgar; Kreitler, Martin; Cubera, Miroslaw; Kucirek, Philipp; Gronloh, Bastian; Esser, Dominik; Höfer, Marco; Hoffmann, Hans-Dieter

    2015-02-01

    A test campaign for assessing the radiation hardness of different Erbium-doped garnet crystals including Er:YAG and a compositionally tuned Er:YAG/Er:LuAG mixed garnet is reported. Tests with proton and gamma radiation have been performed with parameters mimicking a 3-year low-earth-orbit satellite mission like MERLIN or ADM-Aeolus. For each test sample broadband transmission spectra in the wavelength range of 500 nm - 1700 nm and characteristic laser curves from a test laser oscillator have been measured. Radiation-induced losses have been calculated from the obtained data. The results indicate that gamma radiation is the dominant loss source with about 0.5 %/cm radiation-induced losses for the nominal dose of the chosen mission scenario.

  15. High magneto-optical characteristics of Holmium-doped terbium gallium garnet crystal.

    Science.gov (United States)

    Chen, Zhe; Yang, Lei; Wang, Xiangyong; Yin, Hang

    2016-06-01

    Magneto-optical characteristics of a new magneto-active material, (Tb(1-x)Hox)3Ga5O12 crystal, have been grown by the Czochralski (Cz) method. A high value of the Verdet constant was obtained at room temperature-namely, 214.9 and 77.8  rad·m-1 T-1 for 632.8 and 1064 nm, respectively. The Verdet constant of the Ho-doped terbium gallium garnet crystal at 1064 nm is about 2 times higher than that of terbium gallium garnet crystal. High value of magneto-optical figure-of-merit makes it an attractive next-generation magneto-optics material for high-power Faraday isolators.

  16. Synthesis, Characteristics, and Material Properties Dataset of Bi:DyIG-Oxide Garnet-Type Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Nur-E-Alam

    2015-01-01

    Full Text Available The fabrication, annealing crystallization processes, and material properties of (Bi,Dy3(Fe,Ga5O12:Bi2O3 nanocomposites are investigated and summarized. The stoichiometry of these nanocomposites is optimized for magnetooptic applications using the approach of stoichiometry adjustment (implemented by means of varying RF power densities applied to the sputtering targets used to prepare the nanocomposite thin films. The crystallization processes for all developed batches of as-deposited films are carried out by annealing runs at different temperatures and process durations. This paper describes the methodologies used to optimize the compositions (by calculating the volumetric fractions of excess bismuth oxide to be mixed with the garnet-stoichiometry species during cosputtering processes and to obtain the optical and magnetooptical properties data and presents the materials properties summary of garnet-bismuth oxide thin film composites as well.

  17. Mechanical properties and microstructure of stir casted Al/B{sub 4}C/garnet composites

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rathinam Ashok [Chendhuran College of Engineering and Technology, Tamil Nadu (India). Mechanical Engineering Dept.; Sait, Abdullah Naveen [Chendhuran College of Engineering and Technology, Tamil Nadu (India); Subramanian, Karuppazhi [Government College of Engineering, Tamil Nadu (India). Dept. of Mechanical Engineering

    2017-05-01

    Aluminum based metal matrix composites are one of the advanced engineering materials that have been developed for low weight and high strength applications in automotive industries due to high specific strength and good wear resistance. In this context, aluminum alloy boron carbide and garnet composites were fabricated by the stir casting process. The microstructural examination was done by using a scanning electron microscope to assess the distribution of particulates in the aluminum matrix. The composites were characterized by hardness and tensile tests. The wear behavior of the composites was analyzed with the help of a pin-on-disc wear test. By increasing the amount of garnet in the composite, it has been observed that the tensile strength and hardness increase. The wear test analysis proved that the addition of reinforcements reduces the wear rate behavior of composite.

  18. Majorite-Garnet Partitioning of the Highly Siderophile Elements: New Results and Application to Mars

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Waeselmann, N.; Humayun, M.

    2015-01-01

    HSE and Os isotopes are used to constrain processes such as accretion, mantle evolution, crustal recycling, and core-mantle mixing, and to constrain the timing and depth of differentiation of Mars. Although showed that the HSE contents of the martian mantle could have been established by metal-silicate equilibrium in early Mars, the role of a cooling magma ocean and associated crystallization in further fractionating the HSEs is unclear. Garnet is thought to have played an important role in controlling trace element concentrations in the martian mantle reservoirs. However, testing these models, including Os isotopes, has been hindered by a dearth of partitioning data for the HSE in deep mantle phases - majorite, wadsleyite, ringwoodite, akimotoite - that may be present in the martian mantle. We examine the partitioning behavior of HSEs between majorite garnet (gt), olivine (oliv), and silicate liquid (melt).

  19. Magneto-optical switch with amorphous silicon waveguides on magneto-optical garnet

    Science.gov (United States)

    Ishida, Eiichi; Miura, Kengo; Shoji, Yuya; Mizumoto, Tetsuya; Nishiyama, Nobuhiko; Arai, Shigehisa

    2016-08-01

    We fabricated a magneto-optical (MO) switch with a hydrogenated amorphous silicon waveguide on an MO garnet. The switch is composed of a 2 × 2 Mach-Zehnder interferometer (MZI). The switch state is controlled by an MO phase shift through a magnetic field generated by a current flowing in an electrode located on the MZI. The switching operation was successfully demonstrated with an extinction ratio of 11.7 dB at a wavelength of 1550 nm.

  20. High-spin europium and gadolinium centers in yttrium-aluminum garnet

    Science.gov (United States)

    Vazhenin, V. A.; Potapov, A. P.; Asatryan, G. R.; Uspenskaya, Yu. A.; Petrosyan, A. G.; Fokin, A. V.

    2016-08-01

    Electron-spin resonance spectra of Eu2+ and Gd3+ centers substituting Y3+ ions in single-crystal yttrium-aluminum garnet have been studied and the parameters of their rhombic spin Hamiltonian have been determined. The fine-structure parameters of the above ions have been calculated in the superposition model disregarding changes in the angular coordinates of the ligand environment of the impurity defect thus demonstrating the necessity of taking these changes into account.

  1. Experimental melting of phlogopite-peridotite in the garnet stability field

    Science.gov (United States)

    Condamine, Pierre; Médard, Etienne; Devidal, Jean-Luc

    2016-11-01

    Melting experiments have been performed at 3 GPa, between 1150 and 1450 °C, on a phlogopite-peridotite source in the garnet stability field. We succeeded to extract and determine the melt compositions of both phlogopite-bearing lherzolite and harzburgite from low to high degrees of melting (ϕ = 0.008-0.256). Accounting for the presence of small amounts of F in the mantle, we determined that phlogopite coexists with melt >150 °C above the solidus position (1150-1200 °C). Fluorine content of phlogopite continuously increases during partial melting from 0.2 to 0.9 wt% between 1000 and 1150 °C and 0.5 to 0.6 wt% between 1150 and 1300 °C at 1 and 3 GPa, respectively. The phlogopite continuous breakdown in the lherzolite follows the reaction: 0.59 phlogopite + 0.52 clinopyroxene + 0.18 garnet = 0.06 olivine + 0.23 orthopyroxene + 1.00 melt. In the phlogopite-harzburgite, the reaction is: 0.93 phlogopite + 0.46 garnet = 0.25 olivine + 0.14 orthopyroxene + 1.00 melt. Melts from phlogopite-peridotite sources at 3 GPa are silica-undersaturated and are foiditic to trachybasaltic in composition from very low (0.8 wt%) to high (25.6 wt%) degrees of melting. As observed at 1 GPa, the potassium content of primary mantle melts is buffered by the presence of phlogopite, but the buffering values are higher, from 6.0 to 8.0 wt% depending on the source fertility. We finally show that phlogopite garnet-peridotite melts are very close to the composition of the most primitive post-collisional lavas described worldwide.

  2. Transdermal iron replenishment therapy.

    Science.gov (United States)

    Modepalli, Naresh; Shivakumar, H N; Kanni, K L Paranjothy; Murthy, S Narasimha

    2015-01-01

    Iron deficiency anemia is one of the major nutritional deficiency disorders. Iron deficiency anemia occurs due to decreased absorption of iron from diet, chronic blood loss and other associated diseases. The importance of iron and deleterious effects of iron deficiency anemia are discussed briefly in this review followed by the transdermal approaches to deliver iron. Transdermal delivery of iron would be able to overcome the side effects associated with conventional oral and parenteral iron therapy and improves the patient compliance. During preliminary investigations, ferric pyrophosphate and iron dextran were selected as iron sources for transdermal delivery. Different biophysical techniques were explored to assess their efficiency in delivering iron across the skin, and in vivo studies were carried out using anemic rat model. Transdermal iron delivery is a promising approach that could make a huge positive impact on patients suffering with iron deficiency.

  3. Skarn formation and trace elements in garnet and associated minerals from Zhibula copper deposit, Gangdese Belt, southern Tibet

    Science.gov (United States)

    Xu, Jing; Ciobanu, Cristiana L.; Cook, Nigel J.; Zheng, Youye; Sun, Xiang; Wade, Benjamin P.

    2016-10-01

    Trace element concentrations in garnet and associated minerals from the mid-Miocene Zhibula Cu skarn, Gangdese Belt, Tibet reflect a diversity of local environments, evolving fluid parameters and partitioning with coexisting minerals. Exoskarn occurs as massive but narrow intervals within a Lower Jurassic volcano-sedimentary sequence containing limestone, the main skarn protolith. Endoskarn is present at the contact with mid-Miocene granodiorite dikes. Prograde skarn associations are garnet-dominant but also include diopside-dominant pyroxene in variable amounts. Garnet compositions in exoskarn change from andradite (And)- to grossular (Gr)-dominant from the massive intervals to bands/lenses within marble/tuff, but not in endoskarn. In both cases however, associations at the protolith contact include anorthite and wollastonite, both indicative of skarnoid or distal (relative to fluid source) skarn formation. Exoskarns also contain vesuvianite. Retrograde clinozoisite, actinolite and chlorite replace pre-existing skarn minerals. Garnet displays brecciation and replacement by Al-richer garnet. Depending on partitioning among coexisting minerals, chondrite-normalised REY (REE + Y) fractionation trends for garnet depict endo- to exoskarn diversity, the dominance of And- vs. Gr-rich garnet (in turn related to proximal-to-distal relationship to fluid source), as well as prograde-to-retrograde evolution in the same sample. A strong variation in Eu-anomaly, from positive to negative, in And-dominant garnet can be correlated with variation in salinity of ore-forming fluids, concordant with published fluid inclusion data. Trends depicted by And- and Gr-dominant garnets are consistent with published data from skarns elsewhere, in which the dominant substitution mechanism for REY is YAG-type. Zhibula garnets are enriched in a range of trace elements less commonly reported, including W, Sn, and As, but also Mo (as high as 730 ppm), an element seldom analysed for in silicates

  4. On the nature and origin of garnet in highly-refractory Archean lithosphere: implications for continent stabilisation

    Science.gov (United States)

    Gibson, Sally

    2014-05-01

    The nature and timescales of garnet formation in the Earth's subcontinental lithospheric mantle (SCLM) are important to our understanding of how this rigid outer shell has evolved and stabilised since the Archean. Nevertheless, the widespread occurrence of pyrope garnet in the sub-cratonic mantle remains one of the 'holy grails' of mantle petrology. The paradox is that garnet often occurs in mantle lithologies (dunites and harzburgites) which represent residues of major melting events (up to 40 %) whereas experimental studies on fertile peridotite suggest this phase should be exhausted by <20 % melting. Furthermore, garnets commonly found in mantle peridotite suites have diverse compositions that are typically in equilibrium with high-pressure, small-fraction, mantle melts suggesting they formed as a result of enrichment of the lithospheric mantle following cratonisation. This refertilisation -- which typically involves addition of Fe, incompatible trace elements and volatiles -- affects the lower 30 km of the lithosphere and potentially leads to negative buoyancy and destabilisation. Pyrope garnets found in mantle xenoliths from the eastern margin of the Tanzanian Craton (Lashaine) have diverse compositions and provide major constraints on how the underlying deep (120 to 160 km) mantle stabilised and evolved during the last 3 billion years. The garnets display systematic trends from ultra-depleted to enriched compositions that have not been recognised in peridotite suites from elsewhere (Gibson et al., 2013). Certain harzburgite members of the xenolith suite contain the first reported occurrence of pyrope garnets with rare-earth element (REE) patterns similar to hypothetical garnets proposed by Stachel et al. (2004) to have formed in the Earth's SCLM during the Archean, prior to metasomatism. These rare ultra-depleted low-Cr garnets occur in low temperature (~1050 oC) xenoliths derived from depths of ~120 km and coexist in chemical and textural equilibrium with

  5. Raman spectroscopy of detrital garnet from the (U)HP terrane of eastern Papua New Guinea

    Science.gov (United States)

    Andò, Sergio; Baldwin, Suzanne L.; Fitzgerald, Paul G.; Malusà, Marco G.; Aliatis, Irene; Vezzoli, Giovanni; Garzanti, Eduardo

    2013-04-01

    Garnet is one of the most widespread heavy minerals in sediments derived from orogenic systems. Its chemical composition varies systematically with temperature and pressure conditions, and thus provides information on the metamorphic evolution of source areas that is crucial in tectonic and geodynamic reconstructions. Garnet is easily identified in mineral grain mounts and is relatively stable during burial diagenesis. Raman spectroscopy allows rapid determination of garnet compositions in grain mounts or thin sections of sand and sandstone samples, and can be used to assess their density and chemical composition quite accurately ("MIRAGEM" method of Bersani et al., 2009; Andò et al., 2009). In the D'Entrecastreaux Islands of southeastern Papua New Guinea, the world's youngest (U)HP rocks are exposed. There, mafic rocks and their felsic host gneisses were metamorphosed under eclogite facies conditions from late Miocene to Pliocene, before being exhumed from depths of ~90 km (Baldwin et al., 2004, 2008). The eclogite preserves a peak assemblage of garnet, omphacite, rutile, phengite and Si02 (Hill and Baldwin, 1993). A coesite-eclogite has been found in one small island outcrop. In order to sample garnet populations representative of a larger geographical area, we sampled and studied a heavy-mineral-dominated placer sand (HMC 80) from a beach from SE Goodenough Island. Garnet grains in beach sand are associated with blue-green to subordinately green-brown amphibole and minor epidote, omphacitic clinopyroxene, titanite, apatite and rutile. The subordinate low-density fraction is feldspatho-quartzose with high-rank metamorphic rock fragments and biotite (Q62 F35 Lm2; MI 360). Detrital garnets are mostly classified as almandine with relatively high Mg and Ca and lacking Mn, typical of the eclogite facies (Win et al., 2007; type Ci garnets of Mange and Morton 2007; Andò et al., 2013). In well-described stratigraphic sequences within syn-and post-tectonic basins

  6. Composition engineering of single crystalline films based on the multicomponent garnet compounds

    Science.gov (United States)

    Zorenko, Yuriy; Gorbenko, Vitalii; Zorenko, Tetiana; Paprocki, Kazimierz; Bilski, Paweł; Twardak, Anna; Voznyak, Taras; Sidletskiy, Oleg; Gerasimov, Yaroslav; Gryniov, Boris; Fedorov, Alexandr

    2016-11-01

    The paper demonstrates our last achievement in development of the novel scintillating screens based on single crystalline films (SCF) of Ce doped multicomponent garnets using the Liquid Phase Epitaxy (LPE) method. We report in this work the optimized content and excellent scintillation properties of SCF of Lu3-xGdxAl5-yGayO12, Lu3-xTbxAl5-yGayO12 and TbxGdxAl5-yGayO12 garnet compounds grown by the LPE method from PbOsbnd B2O3 based melt-solution onto Gd3Al2.5Ga2.5O12 and YAG substrates. We also show that the Tb1.5Gd1.5Al2.5Ga2.5O12:Ce SCF possess the highest light yield (LY) in comparison with all ever grown garnet SCF scintillators. Namely, the LY of these SCF exceeds by 3.8 and 1.85 times the LY values of the best samples of YAG:Ce and LuAG:Ce SCF scintillators, respectively. The SCF samples of the mentioned compounds show low thermoluminescence in the above room temperature range and relatively fast scintillation decay time t1/e in the 180-200 ns range.

  7. Synthesis and optical properties of yellow emitting garnet phosphors for pcLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Katelnikovas, A. [Department of Chemical Engineering, University of Applied Sciences Münster, Stegerwaldstrasse 39, D-48565, Steinfurt (Germany); Department of General and Inorganic Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius (Lithuania); Sakirzanovas, S. [Department of Physical Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius (Lithuania); Dutczak, D.; Plewa, J.; Enseling, D. [Department of Chemical Engineering, University of Applied Sciences Münster, Stegerwaldstrasse 39, D-48565, Steinfurt (Germany); Winkler, H. [Merck KGaA, Frankfurter Street 250, D-64291, Darmstadt (Germany); Kareiva, A. [Department of General and Inorganic Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius (Lithuania); Jüstel, T., E-mail: tj@fh-muenster.de [Department of Chemical Engineering, University of Applied Sciences Münster, Stegerwaldstrasse 39, D-48565, Steinfurt (Germany)

    2013-04-15

    A series of CaY{sub 2}Al{sub 4}SiO{sub 12}:Ce{sup 3+} garnet-type luminescent materials was prepared by a sol–gel combustion technique. All samples were characterized by powder X-ray diffraction (XRD), thermal quenching (TQ), fluorescence lifetime, and photoluminescence (PL) measurements. Moreover, luminous efficacies (LE), CIE 1931 color points, and quantum efficiencies (QE) were calculated and discussed. XRD patterns indicated that sintering at 1450 °C yielded single phase garnets. Phosphors showed a broad band emission in the range 460–750 nm. The emission band maximum is blue-shifted in comparison to Y{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+} and shifts from 542 to 560 nm by increasing the Ce{sup 3+} concentration. The highest achieved QE was 86% for the sample doped with 0.25% of Ce{sup 3+}. Higher Ce{sup 3+} doping levels resulted in concentration quenching. -- Highlights: ► Incorporation of Ca{sup 2+}–Si{sup 4+} pair into garnets leads to blue shift of Ce{sup 3+} emission. ► Stronger thermal quenching is observed if Ce{sup 3+} concentration is increased. ► Quantum efficiency decreases if Ce{sup 3+} concentration increases. ► Ce{sup 3+} emission spectrum shifts to higher energies if excitation energy increases.

  8. Garnet peridotite and associated high-grade rocks from Sulawesi, Indonesia

    Science.gov (United States)

    Helmers, H.; Maaskant, P.; Hartel, T. H. D.

    1990-11-01

    The effects of collision between three major plates define the geological development of eastern Indonesia. Garnet peridotite and associated granulite-facies contact rocks are described from two sites within the valley of the active Palu-Koro left-lateral, strike-slip fault crossing central Sulawesi. Disrupted parts of a medium- to low-grade metamorphic complex intruded by Neogene granite occur on both sides of the fault. Thermobarometry on minerals and fluids in the garnet peridotite reveals a re-equilibration path from a depth of 60 km upward. Chemistry points to metasomatic effects — isolated trace-element enrichment — by a CO 2-rich liquid and fluid in a peridotite of oceanic affiliation. The granulite shows an increase in T and incipient melting at the arrival of peridotite. The sequence of fluid inclusions of an evolving CO 2CH 4(N 2)H 2O-bearing fluid defines a concave decompression path suggesting rapid uplift. Trace element chemistry of granulite with basaltic to peraluminious rhyolitic composition indicates island-arc affinity. The described history may well reflect the processes beneath a mantled gneiss dome, present as a coeval metamorphic aureole around the garnet peridotite outcrops.

  9. Raman mapping of coesite inclusions in garnet from the Kokchetav Massif (Northern Kazakhstan).

    Science.gov (United States)

    Korsakov, Andrey V; Hutsebaut, Didier; Theunissen, Karel; Vandenabeele, Peter; Stepanov, Alexander S

    2007-12-15

    Coesite inclusions occur in a wide range of lithologies and coesite is therefore a powerful ultrahigh-pressure (UHP) indicator. The transformation of coesite to quartz is evidenced by three optically well identifiable characteristics (e.g. palisade textures, radial crack patterns, polycrystalline quartz pseudomorphs). Under overpressure monomineralic coesite (on an optical basis), lacking the above transformation characteristics may survive. Raman micro-spectroscopy was applied on monomineralic coesite inclusions in garnet porphyroblasts from diamond-bearing garnet-clinozoisite-biotite gneisses of the Barchi-Kol area (Kokchetav Massif, Northern Kazakhstan). These coesite inclusions are euhedral and display a characteristic anisotropic hallo. However, Raman maps and separate spectra of these inclusions display shifted bands for coesite and quartz. Microscopically undetectable, quartz shows on the Raman map as a thin shell around coesite inclusion. Shift of the main coesite band allows to estimate their overpressure: coesite inclusions record 0-2.4 GPa in garnet and zircon. The quartz shell remains under lower pressure 0-1.6 GPa. The possible application of coesite and quartz Raman geobarometers for UHP metamorphic rocks is discussed.

  10. Effect of recording condition on the diffraction efficiency of magnetic hologram with magnetic garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Yuichi, E-mail: nakamura@ee.tut.ac.jp; Takagi, Hiroyuki; Lim, Pang Boey; Inoue, Mitsuteru [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1 Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2014-09-14

    A holographic memory has been attracting attention as recording media with high recording density and high data transfer rate. We have studied the magnetic garnets as a rewritable and long life media for magnetic holography. However, since the signal intensity of reconstructed image was relatively low, the effects of recording conditions on the diffraction efficiency of magnetic hologram were investigated with experiments and the numerical simulation using COMSOL multi-physics. The diffraction efficiency tends to decrease as increasing the spatial frequency, and the use of short pulse laser with the pulse width of 50 ps was found to be effective to achieve high diffraction efficiency. This suggests that the formation of clear magnetic fringe similar to interference pattern can be obtained by the use of short pulse laser since undesirable heat diffusion during radiation does not occur. On the other hand, the diffraction efficiency increased as increasing the film thickness up to 3.1 μm but was saturated in the garnet film thicker than 3.1 μm in the case of spatial frequency of 1500 line pair/mm. The numerical simulation showed that the effective depth of magnetic fringe was limited about 1.8 μm irrespective of the garnet film thickness because the fringes were connected by thermal diffusion near the surface of the film, and the effective depth is limited due to this connection of the magnetic fringe. Avoiding this fringe connection, much higher diffraction efficiency will be achieved.

  11. Atomic Layer Deposition of the Solid Electrolyte Garnet Li7La3Zr2O12

    Energy Technology Data Exchange (ETDEWEB)

    Kazyak, Eric; Chen, Kuan-Hung; Wood, Kevin N.; Davis, Andrew L.; Thompson, Travis; Bielinski, Ashley R.; Sanchez, Adrian; Wang, Xiang; Wang, Chongmin; Sakamoto, Jeff S.; Dasgupta, Neil P.

    2017-04-25

    Lithium solid electrolytes are a promising platform for achieving high energy density, long-lasting, and safe rechargeable batteries, which could have widespread societal impact. In particular, the ceramic oxide garnet Li7La3Zr2O12 (LLZO) has been shown to be a promising electrolyte due to its stability and high ionic conductivity. Two major challenges for commercialization are manufacturing of thin layers and creating stable, low-impedance, interfaces with both anode and cathode materials. Atomic Layer Deposition (ALD) has recently been shown as a potential method for depositing both solid electrolytes and interfacial layers to improve the stability and performance at electrode-electrolyte interfaces in battery systems. Herein we present the first reported ALD process for LLZO, demonstrating the ability to tune composition within the amorphous film and anneal to achieve the desired cubic garnet phase. Formation of the cubic phase was observed at temperatures as low as 555°C, significantly lower than is required for bulk processing. Additionally, challenges associated with achieving a dense garnet phase due to substrate reactivity, morphology changes and Li loss under the necessary high temperature annealing are quantified via in situ synchrotron diffraction.

  12. Iron and iron derived radicals

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fastexclamation Think smallexclamation In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab.

  13. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.

    2014-01-01

    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...

  14. Single crystal elasticity of majoritic garnet at high pressure and temperature

    Science.gov (United States)

    Pamato, M. G.; Kurnosov, A.; Boffa Ballaran, T.; Frost, D. J.; Ziberna, L.; Giannini, M.; Trots, D. M.; Tkachev, S. N.; Zhuravlev, K. K.; Prakapenka, V.

    2013-12-01

    Seismological observations are fundamental for understanding the chemistry and structure of the Earth's interior, providing a tangible method for tracing the chemical anomalies caused by the subduction of oceanic lithosphere. The mineral garnet is a dominant component of subducted mid ocean ridge basalts (MORB) in the upper mantle and transition zone and as such can influence its physical-chemical properties. Among garnet minerals, the high pressure structured majoritic garnet, is stable throughout the entire transition zone, being volumetrically the most abundant mineral phase in this region. In order to constrain the seismic appearance and buoyancy of subducting slabs into the Earth's transition zone, the knowledge of the elastic properties and density of majoritic garnet at high pressures and temperatures is of crucial importance. Here, we report for the first time the P-V-T equation of state and Vs and Vp sound velocities of single crystals of majoritic garnet (Mg3.24Al1.53Si3.23O12) simultaneously determined by means of Brillouin spectroscopy and X ray diffraction, up to 30 GPa and 880 K. Measurements were performed on single-crystals synthesized in a multianvil apparatus at 17 GPa and 1900 °C and loaded in a diamond anvil cell with Ne as a pressure transmitting medium. A single crystal of Sm:YAG, whose fluorescence has been calibrated against an absolute pressure determination, was used as a pressure calibrant. In addition, ruby chips were used to accurately derive the temperature inside the cell. A specially designed internal resistive heater was placed around the diamonds for achieving high temperatures. An accurate pressure scale is a major issue in the investigation of physical properties of mantle minerals at the depth and temperature required to understand the Earth's interior. In this study, simultaneous measurements of density and sound velocities at the same conditions, allowed accurate determinations of the absolute pressure. We combine our

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... or an inability to absorb enough iron from food. Overview Iron-deficiency anemia is a common type ... of the condition. Treatments may include dietary changes, medicines, and surgery. Severe iron-deficiency anemia may require ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... or an inability to absorb enough iron from food. Overview Iron-deficiency anemia is a common type ... condition. Treatments may include dietary changes, medicines, and surgery. Severe iron-deficiency anemia may require treatment in ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... at highest risk for iron-deficiency anemia. Outlook Doctors usually can successfully treat iron-deficiency anemia. Treatment ... poor skin tone, dizziness, and depression. After her doctor diagnosed her with iron-deficiency anemia, Susan got ...

  18. Iron and Your Child

    Science.gov (United States)

    ... extra iron in their diets. People following a vegetarian diet might also need additional iron. What's Iron ... as Whole Milk? About Anemia Minerals What's a Vegetarian? Word! Anemia Anemia Food Labels Vitamins and Minerals ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Intramural Research Research Resources Research Meeting Summaries Technology Transfer Clinical Trials What Are Clinical Trials? Children & Clinical ... iron-deficiency anemia may require treatment in a hospital, blood transfusions , iron injections, or intravenous iron therapy. ...

  20. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface.

    Science.gov (United States)

    Fu, Kun Kelvin; Gong, Yunhui; Liu, Boyang; Zhu, Yizhou; Xu, Shaomao; Yao, Yonggang; Luo, Wei; Wang, Chengwei; Lacey, Steven D; Dai, Jiaqi; Chen, Yanan; Mo, Yifei; Wachsman, Eric; Hu, Liangbing

    2017-04-01

    Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet-type Li7La3Zr2O12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10(-3) to 10(-4) S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnet solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm(2) for the pristine garnet/Li and 75 ohm·cm(2) for the surface-engineered garnet/Li. Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries.

  1. Experiments to constrain the garnet-talc join for metapelitic material at eclogite-facies conditions

    Science.gov (United States)

    Chmielowski, Reia M.; Poli, Stefano; Fumagalli, Patrizia

    2010-05-01

    Increasing pressure due to the subduction of mica-dominated sediments results in a loss of biotite as garnet-talc becomes a stable assemblage. While this transition is observed in natural samples, it has not yet been well constrained experimentally. Previous experimental investigations into metapelitic compositions at the University of Milan (Poli and Schmidt 2002, Ferri et al., 2009) indicated that further work in the range of 600-700° C, 2-3 GPa was required to elucidate this tie-line transition. The assemblages leading to garnet-talc stability through tie-line flip reactions include biotite-chlorite, biotite-chloritoid, and biotite-kyanite. Furthermore the mutual stability of garnet-chlorite and chloritoid-biotite at relatively high pressure conditions below the garnet-talc field is reevaluated. Current investigations on two synthetic compositions (NM, NP) in the model metapelitic system CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O are carried out in a piston cylinder apparatus at pressures and temperatures up to 2.7 GPa and to 740°C. Experiments are buffered with graphite, and are generally run under fluid saturated conditions. Two capsules, one of each composition, are included within the pressure chamber for each experiment. The NM composition is representative of metapelites and the NP composition is representative of metagreywackes. Experiments are characterized by XRD, BSE images and EMPA. The following summary includes both current investigations and the above mentioned previous work, undertaken on the same chemical compositions. All assemblages also contain quartz, white mica, fluid ± zoisite or lawsonite. The assemblage garnet-chlorite-chloritoid ± staurolite is present at 500° C at pressures of 1.4 and 1.6 GPa. The assemblage biotite-staurolite-chlorite is present at 600° C, 1.2 GPa and at 625° C, 1.4 GPa. The assemblage biotite-chloritoid-chlorite is present at 600° C for pressures ≥ 1.3 GPa and ≤ 1.7 GPa. The assemblage garnet-chloritoid-biotite is

  2. Strain-dependent evolution of garnets in a high pressure ductile shear zone using Synchroton x-ray microtomography

    Science.gov (United States)

    Macente, Alice; Fusseis, Florian; Menegon, Luca; John, Timm

    2016-04-01

    Synkinematic reaction microfabrics carry important information on the kinetics, timing and rheology of tectonometamorphic processes. Despite being routinely interpreted in metamorphic and structural studies, reaction and deformation microfabrics are usually described in two dimensions. We applied Synchrotron-based x-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in 3D. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway) previously described by John et al., (2009), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets. Our microtomographic data allowed us to quantify changes to the garnet volume, their shapes and their spatial arrangement. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analyses to correlate mineral composition and orientation data with the x-ray absorption signal of the same mineral grains. This allowed us to extrapolate our interpretation of the metamorphic microfabric evolution to the third dimension, effectively yielding a 4-dimensional dataset. We found that: - The x-ray absorption contrast between individual mineral phases in our microtomographic data is sufficient to allow the same petrographic observations than in light- and electron microscopy, but extended to 3D. - Amongst the major constituents of the synkinematic reactions, garnet is the only phase that can be segmented confidently from the microtomographic data. - With increasing deformation, the garnet volume increases from about 9% to 25%. - Garnet coronas in the gabbros never completely encapsulate olivine grains. This may indicate that the reaction progressed preferentially in some directions, but also leaves pathways for element transport to and from the olivines that are

  3. Genetics Home Reference: iron-refractory iron deficiency anemia

    Science.gov (United States)

    ... refractory iron deficiency anemia iron-refractory iron deficiency anemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  4. Determining age of Pan African metamorphism using Sm-Nd garnet-whole rock geochronology and phase equilibria modeling in the Tasriwine ophiolite, Sirwa, Anti-Atlas Morocco

    Science.gov (United States)

    Inglis, Jeremy D.; Hefferan, Kevin; Samson, Scott D.; Admou, Hassan; Saquaque, Ali

    2017-03-01

    Sm-Nd garnet-whole rock geochronology and phase equilibria modeling have been used to determine the age and conditions of regional metamorphism within the Tasriwine ophiolite complex, Sirwa, Morocco. Pressure and temperature estimates obtained using a NaCaKFMASHT phase diagram (pseudosection) and garnet core and rim compositions predict that garnet growth began at ∼0.72 GPa and ∼615 °C and ended at ∼0.8 GPa and ∼640 °C. A bulk garnet Sm-Nd age of 647.2 ± 1.7 Ma, calculated from a four point isochron that combines whole rock, garnet full dissolution and two successively more aggressive partial dissolutions, provides a precise date for garnet formation and regional metamorphism. The age is over 15 million years younger than a previous age estimate of regional metamorphism of 663 ± 13 Ma based upon a SHRIMP U-Pb date from rims on zircon from the Iriri migmatite. The new data provide further constraints on the age and nature of regional metamorphism in the Anti-Atlas mountains and emphasizes that garnet growth during regional metamorphism may not necessarily coincide with magmatism/anatexis which predominate the signature witnessed by previous U-Pb studies. The ability to couple PT estimates for garnet formation with high precision Sm-Nd geochronology highlights the utility of garnet studies for uncovering the detailed metamorphic history of the Anti-Atlas mountain belt.

  5. Lu-Hf geochronology and trace element distribution in garnet: implications for uplift and exhumation of ultra-high pressure granulites in the Sudetes, SW Poland.

    OpenAIRE

    Anczkiewicz, R.; Szczepanski, J.; Mazur, S.; Storey, C.; Crowley, Quentin; Villa, IM; Thirlwall, M; Jeffries, TE

    2007-01-01

    Combining Lu–Hf garnet geochronology with in situ trace element analyses in garnet allowed us to gain new insight into the metamorphic evolution of UHP–UHT rocks in the Stary Gierałtów region, in the Polish Sudetes. Prograde garnet growth recorded by Rayleigh-type heavy REE (HREE) zoning in the felsic granulites indicates that the obtained 386.6±4.9 Ma Lu–Hf age represents the time of garnet crystallization on a prograde UHP metamorphic path. The surrounding rocks were metamorphosed at the sa...

  6. Rigorous numerical study of strong microwave photon-magnon coupling in all-dielectric magnetic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Maksymov, Ivan S., E-mail: ivan.maksymov@uwa.edu.au [School of Physics M013, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); ARC Centre of Excellence for Nanoscale BioPhotonics, School of Applied Sciences, RMIT University, Melbourne, VIC 3001 (Australia); Hutomo, Jessica; Nam, Donghee; Kostylev, Mikhail [School of Physics M013, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2015-05-21

    We demonstrate theoretically a ∼350-fold local enhancement of the intensity of the in-plane microwave magnetic field in multilayered structures made from a magneto-insulating yttrium iron garnet (YIG) layer sandwiched between two non-magnetic layers with a high dielectric constant matching that of YIG. The enhancement is predicted for the excitation regime when the microwave magnetic field is induced inside the multilayer by the transducer of a stripline Broadband Ferromagnetic Resonance (BFMR) setup. By means of a rigorous numerical solution of the Landau-Lifshitz-Gilbert equation consistently with the Maxwell's equations, we investigate the magnetisation dynamics in the multilayer. We reveal a strong photon-magnon coupling, which manifests itself as anti-crossing of the ferromagnetic resonance magnon mode supported by the YIG layer and the electromagnetic resonance mode supported by the whole multilayered structure. The frequency of the magnon mode depends on the external static magnetic field, which in our case is applied tangentially to the multilayer in the direction perpendicular to the microwave magnetic field induced by the stripline of the BFMR setup. The frequency of the electromagnetic mode is independent of the static magnetic field. Consequently, the predicted photon-magnon coupling is sensitive to the applied magnetic field and thus can be used in magnetically tuneable metamaterials based on simultaneously negative permittivity and permeability achievable thanks to the YIG layer. We also suggest that the predicted photon-magnon coupling may find applications in microwave quantum information systems.

  7. A novel approach to design microwave medium of negative refractive index and simulation verification

    Institute of Scientific and Technical Information of China (English)

    CAO YunJian; WEN GuangJun; WU KaiMin; XU XinHe

    2007-01-01

    In this paper, a novel approach is presented to synthesize microwave medium of negative refractive index by incorporating metallic wire array with negative effective permittivity into the host media such as ferrimagnet-YIG (yttrium iron garnet) applied by external magnetic field whose permeability is negative. We have designed the composite medium having negative refractive index in C/X band frequencies, analyzed and simulated its electromagnetic (EM) properties by use of EM EDA package based on time-domain finite integration method. The simulation results show that: ① the effective permittivity of the designed metallic wire array is negative in the frequency range from 7.02 GHz to 9.80 GHz; ② the permeability of YIG substrate immersed into an external magnetic field is negative in the frequency range from 5.22 GHz to 8.14 GHz; ③ EM wave can pass through the composite medium synthesized by the above designed metallic wire array and YIG substrate, and ④ the negative refraction behavior occurs on the interface between the composite medium and the normal material with positive refractive index in 7.51-8.13 GHz frequency range, in which the effective permittivity of the metallic wire array and the permeability of YIG substrate are negative simultaneously. The full wave simulation has demonstrated that the effective refractive index of the designed composite medium is indeed negative and ascertained that the proposed approach to design microwave medium with negative refractive index is viable.

  8. Garnets in porphyry-skarn systems: A LA-ICP-MS, fluid inclusion, and stable isotope study of garnets from the Hongniu-Hongshan copper deposit, Zhongdian area, NW Yunnan Province, China

    Science.gov (United States)

    Peng, Hui-juan; Zhang, Chang-qing; Mao, Jing-wen; Santosh, M.; Zhou, Yun-man; Hou, Lin

    2015-05-01

    The Late Cretaceous Hongniu-Hongshan porphyry-skarn copper deposit is located in the Zhongdian area of northwestern Yunnan Province, China. Garnets from the deposit have compositions that range from Adr14Grs86 to almost pure andradite (Adr98Grs2) and display two different styles of zoning. The garnets are predominantly of magmatic-hydrothermal origin, as is evidenced by their 18Ofluid (5.4-6.9‰) and low Dfluid (-142‰ to -100‰) values, both of which likely result from late-stage magmatic open-system degassing. Three generations of garnet have been identified in this deposit: (1) Al-rich garnets (Grt I; Adr22-57Grs78-43) are anisotropic, have sector dodecahedral twinning, are slightly enriched in light rare earth elements (LREEs) compared with the heavy rare earth elements (HREEs), have negative or negligible Eu anomalies, and contain high concentrations of F. Fluid inclusions within these Al-rich garnets generally have salinities of 12-39 wt.% NaCl eq. and have liquid-vapor homogenization temperatures (Th) of 272-331 °C. The Grt I are most likely associated with low- to medium-salinity fluids that were generated by the contraction of an ascending vapor phase and that formed during diffusive metasomatism caused by pore fluids equilibrating with the host rocks at low W/R (water/rock) ratios. These garnets formed as a result of the high F activity of the system, which increased the solubility of Al within the magmato-hydrothermal fluids in the system. (2) Fe-rich garnets (Adr75-98Grs25-2) have trapezohedral faces, and are both anisotropic with oscillatory zoning and isotropic. These second-generation Fe-rich garnets (Grt II) have high ΣREE concentrations, are LREE-enriched and HREE-depleted, and generally have positive but variable Eu anomalies. All of the Fe-rich garnets contain high-salinity fluid inclusions with multiple daughter minerals with salinities of 33-80 wt.% NaCl eq. Some of them show higher temperatures of halite dissolution (465-591 °C) than

  9. Investigation of non-reciprocal magnon propagation using lock-in thermography

    Science.gov (United States)

    Wid, Olga; Bauer, Jan; Müller, Alexander; Breitenstein, Otwin; Parkin, Stuart S. P.; Schmidt, Georg

    2017-04-01

    We have investigated the unidirectional spin wave heat conveyer effect in a 200 nm thin yttrium iron garnet (YIG) film using lock-in thermography (LIT). This originates from the non-reciprocal propagation of magnons, which leads to an asymmetric heat transport. To excite the spin waves we use two different respective antenna geometries: a coplanar waveguide (CPW) or a ‘microstrip’-like antenna on top of the YIG. By using the CPW and comparing the results for the Damon–Eshbach and the backward volume modes we are able to show that the origin of the asymmetric heat profile are indeed the non-reciprocal spin waves. Using the ‘microstrip’-like geometry we can confirm these results and we can even observe a distinct excitation profile along the antenna due to small field inhomogeneities.

  10. Dual percolation behaviors of electrical and thermal conductivity in metal-ceramic composites

    Science.gov (United States)

    Sun, K.; Zhang, Z. D.; Qian, L.; Dang, F.; Zhang, X. H.; Fan, R. H.

    2016-02-01

    The thermal and electrical properties including the permittivity spectra in radio frequency region were investigated for copper/yttrium iron garnet (Cu/YIG) composites. Interestingly, the percolation behaviors in electrical and thermal conductivity were obtained due to the formation of copper particles' networks. Beyond the electrical percolation threshold, negative permittivity was observed and plasmon frequency was reduced by several orders of magnitude. With the increase in copper content, the thermal conductivity was gradually increased; meanwhile, the phonon scattering effect and thermal resistance get enhanced, so the rate of increase in thermal conductivity gradually slows down. Hopefully, Cu/YIG composites with tunable electrical and thermal properties have great potentials for electromagnetic interference shielding and electromagnetic wave attenuation.

  11. Length Scale of the Spin Seebeck Effect

    Science.gov (United States)

    Kehlberger, Andreas; Ritzmann, Ulrike; Hinzke, Denise; Guo, Er-Jia; Cramer, Joel; Jakob, Gerhard; Onbasli, Mehmet C.; Kim, Dong Hun; Ross, Caroline A.; Jungfleisch, Matthias B.; Hillebrands, Burkard; Nowak, Ulrich; Kläui, Mathias

    2015-08-01

    We investigate the origin of the spin Seebeck effect in yttrium iron garnet (YIG) samples for film thicknesses from 20 nm to 50 μ m at room temperature and 50 K. Our results reveal a characteristic increase of the longitudinal spin Seebeck effect amplitude with the thickness of the insulating ferrimagnetic YIG, which levels off at a critical thickness that increases with decreasing temperature. The observed behavior cannot be explained as an interface effect or by variations of the material parameters. Comparison to numerical simulations of thermal magnonic spin currents yields qualitative agreement for the thickness dependence resulting from the finite magnon propagation length. This allows us to trace the origin of the observed signals to genuine bulk magnonic spin currents due to the spin Seebeck effect ruling out an interface origin and allowing us to gauge the reach of thermally excited magnons in this system for different temperatures. At low temperature, even quantitative agreement with the simulations is found.

  12. Dual percolation behaviors of electrical and thermal conductivity in metal-ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K.; Zhang, Z. D.; Qian, L.; Dang, F.; Zhang, X. H., E-mail: zhangxh@sdu.edu.cn, E-mail: fan@sdu.edu.cn; Fan, R. H., E-mail: zhangxh@sdu.edu.cn, E-mail: fan@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China)

    2016-02-08

    The thermal and electrical properties including the permittivity spectra in radio frequency region were investigated for copper/yttrium iron garnet (Cu/YIG) composites. Interestingly, the percolation behaviors in electrical and thermal conductivity were obtained due to the formation of copper particles' networks. Beyond the electrical percolation threshold, negative permittivity was observed and plasmon frequency was reduced by several orders of magnitude. With the increase in copper content, the thermal conductivity was gradually increased; meanwhile, the phonon scattering effect and thermal resistance get enhanced, so the rate of increase in thermal conductivity gradually slows down. Hopefully, Cu/YIG composites with tunable electrical and thermal properties have great potentials for electromagnetic interference shielding and electromagnetic wave attenuation.

  13. Magneto-optical switching of Bloch surface waves in magnetophotonic crystals

    Science.gov (United States)

    Romodina, M. N.; Soboleva, I. V.; Fedyanin, A. A.

    2016-10-01

    Bloch-surface-wave (BSW) excitation controlled by Faraday rotation in one-dimensional magnetophotonic crystals is presented. Dispersion curves of the Bloch surface wave and waveguide modes of magnetophotonic crystals consisting of silicon dioxide and bismuth-substituted yttrium-iron-garnet (Bi:YIG) quarter-wavelength-thick layers are calculated using Berreman's 4×4 transfer matrix method. Enhanced Faraday rotation observed in the magnetophotonic crystals in the spectral vicinity of the BSW resonance enables the magneto-optical switching of BSWs. The excitation of the BSWs at the magnetophotonic crystal surface for p-polarized incident light is induced by magneto-optical activity in the Bi:YIG layers.

  14. Magnetic spectra and Richter aftereffect relaxation in CexY3−xFe5O12 ferrites

    Directory of Open Access Journals (Sweden)

    Fu Chen

    2016-05-01

    Full Text Available The static and dynamic magnetic properties of cerium (Ce doped yttrium iron garnet CexY3−xFe5O12 (x=0, 0.05, 0.1, 0.15, 0.2 ferrites (YIG have been reported in this work. The ferrites were fabricated by the traditional solid-state reaction method. All ferrite samples reveal pure garnet structure identified by x-ray diffraction (XRD. The substitution of cerium not only enhances the saturation magnetization of the samples, but also regulates the magnetocrystalline anisotropy constant K1. Obvious differences in permeability spectra over a frequency of 1 MHz - 1 GHz can be observed. It is verified that the permeability dispersion and magnetic losses of Ce-doped YIG ferrite contain the contribution of Richter aftereffect relaxation due to the existence of Fe2+ ions. The fitting results of the permeability spectra applied three-mechanism model is in good agreement with experimental data, which successfully explains the mechanisms of magnetic losses observed at 1 MHz to 1 GHz for Ce-doped YIG ferrite. In addition, the frequency shift of Richter aftereffect has also been discussed.

  15. Iron from Zealandic bog iron ore -

    DEFF Research Database (Denmark)

    Lyngstrøm, Henriette Syrach

    2011-01-01

    og geologiske materiale, metallurgiske analyser og eksperimentel arkæologiske forsøg - konturerne af en jernproduktion med udgangspunkt i den sjællandske myremalm. The frequent application by archaeologists of Werner Christensen’s distribution map for the occurrence of bog iron ore in Denmark (1966...... are sketched of iron production based on bog iron ore from Zealand....

  16. Iron-refractory iron deficiency anemia.

    Science.gov (United States)

    Yılmaz Keskin, Ebru; Yenicesu, İdil

    2015-03-05

    Iron is essential for life because it is indispensable for several biological reactions, such as oxygen transport, DNA synthesis, and cell proliferation. Over the past few years, our understanding of iron metabolism and its regulation has changed dramatically. New disorders of iron metabolism have emerged, and the role of iron as a cofactor in other disorders has begun to be recognized. The study of genetic conditions such as hemochromatosis and iron-refractory iron deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited to improve treatment of both genetic and acquired iron disorders. IRIDA is caused by mutations in TMPRSS6, the gene encoding matriptase-2, which downregulates hepcidin expression under conditions of iron deficiency. The typical features of this disorder are hypochromic, microcytic anemia with a very low mean corpuscular volume of erythrocytes, low transferrin saturation, no (or inadequate) response to oral iron, and only a partial response to parenteral iron. In contrast to classic iron deficiency anemia, serum ferritin levels are usually low-normal, and serum or urinary hepcidin levels are inappropriately high for the degree of anemia. Although the number of cases reported thus far in the literature does not exceed 100, this disorder is considered the most common of the "atypical" microcytic anemias. The aim of this review is to share the current knowledge on IRIDA and increase awareness in this field.

  17. Iron-Refractory Iron Deficiency Anemia

    Science.gov (United States)

    Yılmaz Keskin, Ebru; Yenicesu, İdil

    2015-01-01

    Iron is essential for life because it is indispensable for several biological reactions, such as oxygen transport, DNA synthesis, and cell proliferation. Over the past few years, our understanding of iron metabolism and its regulation has changed dramatically. New disorders of iron metabolism have emerged, and the role of iron as a cofactor in other disorders has begun to be recognized. The study of genetic conditions such as hemochromatosis and iron-refractory iron deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited to improve treatment of both genetic and acquired iron disorders. IRIDA is caused by mutations in TMPRSS6, the gene encoding matriptase-2, which downregulates hepcidin expression under conditions of iron deficiency. The typical features of this disorder are hypochromic, microcytic anemia with a very low mean corpuscular volume of erythrocytes, low transferrin saturation, no (or inadequate) response to oral iron, and only a partial response to parenteral iron. In contrast to classic iron deficiency anemia, serum ferritin levels are usually low-normal, and serum or urinary hepcidin levels are inappropriately high for the degree of anemia. Although the number of cases reported thus far in the literature does not exceed 100, this disorder is considered the most common of the “atypical” microcytic anemias. The aim of this review is to share the current knowledge on IRIDA and increase awareness in this field. PMID:25805669

  18. Liver iron transport

    Institute of Scientific and Technical Information of China (English)

    Ross M Graham; Anita CG Chua; Carly E Herbison; John K Olynyk; Debbie Trinder

    2007-01-01

    The liver plays a central role in iron metabolism. It is the major storage site for iron and also expresses a complex range of molecules which are involved in iron transport and regulation of iron homeostasis. An increasing number of genes associated with hepatic iron transport or regulation have been identified. These include transferrin receptors (TFR1 and 2), a ferrireductase (STEAP3), the transporters divalent metal transporter-1 (DMT1) and ferroportin (FPN) as well as the haemochromatosis protein, HFE and haemojuvelin (HJV),which are signalling molecules. Many of these genes also participate in iron regulatory pathways which focus on the hepatic peptide hepcidin. However, we are still only beginning to understand the complex interactions between liver iron transport and iron homeostasis. This review outlines our current knowledge of molecules of iron metabolism and their roles in iron transport and regulation of iron homeostasis.

  19. Tectonic history of continental crustal wedge constrained by EBSD measurements of garnet inclusion trails and thermodynamic modeling

    Science.gov (United States)

    Skrzypek, E.; Schulmann, K.; Lexa, O.; Haloda, J.

    2009-04-01

    Inclusion trails in garnets represent an important but underused tool of structural geology to examine non-coaxial or polyphase coaxial deformation histories of orogens. Garnet growth with respect to deformation during prograde and retrograde orogenic evolution of a continental crustal wedge was constrained by EBSD measurements of internal garnet fabrics and petrological record from mid-crustal rocks of the Śnieżnik Massif (Western Sudetes). Textural position of metamorphic minerals and thermodynamic modeling document three main stages in the tectonic evolution. Few garnet cores show prograde MnO zoning and growth coeval with the formation of the earliest metamorphic foliation which is only rarely observed in the field. The major garnet growth occurs synchronously with the second steep S2 fabric under still prograde conditions as shown by garnet zoning and appearance of staurolite and kyanite (peak at 6,5kbar/600°C). Oppositely, garnet retrogression associated to the development of sillimanite and later andalusite indicates pressure decrease of ca. 3 kbar for the late flat and pervasive S3 fabric associated with macroscopic recumbent folding of steep S2 foliation. Electron back-scatter diffraction measurements on ilmenites platelets included in garnets help determining their crystallographic preferred orientation. Ilmenites a[100] axes define planar structures that are interpreted as included foliations. Consequently, microscopic observations and foliation intersection axes (FIA) allow to distinguish between two different records. Only few (prograde) garnet cores yield information on the orientation of the presumed first metamorphic fabric whereas most of the internal garnet foliations are straight, steep and correspond to relics of originally steep S2 fabric. Importantly, this steep attitude of internal garnet foliations is persistent in both F3 fold hinge and limb zones as well as in zones of complete transposition of S2 into flat S3. Therefore, these

  20. Comment on "Limit on the Electron Electric Dipole Moment in Gadolinium-Iron Garnet" [arXiv:physics/0509106

    CERN Document Server

    Ivezic, Tomislav

    2010-01-01

    In the paper being commented on it is proposed a new method for the detection of the electron EDM using the solid GdIG. There, it is argued that a sample electric polarization appears when the sample is magnetized; the common belief is that the electron EDM must be collinear with its magnetic moment. All this is objected and it is suggested that the polarization of the sample can be explained by the direct, Lorentz covariant, interaction between B^{a} and an EDM d^{a}.

  1. Mantle refertilization by melts of crustal-derived garnet pyroxenite: Evidence from the Ronda peridotite massif, southern Spain

    Science.gov (United States)

    Marchesi, Claudio; Garrido, Carlos J.; Bosch, Delphine; Bodinier, Jean-Louis; Gervilla, Fernando; Hidas, Károly

    2013-01-01

    Geochemical studies of primitive basalts have documented the presence of crustal-derived garnet pyroxenite in their mantle sources. The processes whereby melts with the signature of garnet pyroxenite are produced in the mantle are, however, poorly understood and somewhat controversial. Here we investigate a natural example of the interaction between melts of garnet pyroxenite derived from recycled plagioclase-rich crust and surrounding mantle in the Ronda peridotite massif. Melting of garnet pyroxenite at ˜1.5 GPa generated spinel websterite residues with MREE/HREE fractionation and preserved the positive Eu anomaly of their garnet pyroxenite precursor in whole-rock and clinopyroxene. Reaction of melts from garnet pyroxenite with depleted surrounding peridotite generated secondary fertile spinel lherzolite. These secondary lherzolites differ from common spinel lherzolite from Ronda and elsewhere by their lower-Mg# in clinopyroxene, orthopyroxene and olivine, lower-Cr# in spinel and higher whole-rock Al2O3, CaO, Sm/Yb and FeO* at a given SiO2. Remarkably, secondary spinel lherzolite shows the geochemical signature of ghost plagioclase in the form of positive Eu and Sr anomalies in whole-rock and clinopyroxene, reflecting the transfer of a low-pressure crustal imprint from recycled pyroxenite to hybridized peridotite. Garnet pyroxenite melting and melt-peridotite interaction, as shown in the Ronda massif, may explain how the signature of subducted or delaminated crust is transferred to the mantle and how a garnet pyroxenite component is introduced into the source region of basalts. The efficiency of these processes in conveying the geochemical imprint of crustal-derived garnet pyroxenite to extruded lavas depends on the reactivity of pyroxenite melt with peridotite and the mantle permeability, which may be controlled by prior refertilization reactions similar to those documented in the Ronda massif. Highly fertile heterogeneities produced by pyroxenite

  2. Garnet Sm-Nd and U-Pb systems: A case study of a granulite from the European Variscan belt

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This study presents zircon and garnet ages of a mafic granulite from the high-grade Variscan basement of the Black Forest, Germany and discuss isotope closure temperature of garnet Sm-Nd and U-Pb systems. Zircon grains yield 207Pb/206Pb ages between ~340 and ~414 Ma by the U-Pb and evaporation methods. In contract, garnet dating gives Sm-Nd and Pb-Pb isochron ages of (398±3) Ma and (411±14) Ma, respectively, which are older than most of zircon ages. These data imply that most of zircons lost radiogenic Pb, probably due to metamictization or recrystallisation during the granulite-facies metamorphism (~800℃) at ~340 Ma. Garnet Sm-Nd and U-Pb systems preserve chronological information of pro-grade metamorphism, probably profiting from a fluid-absence metamorphic environment. These results demonstrate that garnet mineral can be a better candidate than zircon mineral to date high-grade metamorphism by the U-Pb and Sm-Nd methods in some cases.

  3. Compositional controls on spinel clouding and garnet formation in plagioclase of olivine metagabbros, Adirondack Mountains, New York

    Science.gov (United States)

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    Olivine metagabbros from the Adirondacks usually contain both clear and spinel-clouded plagioclase, as well as garnet. The latter occurs primarily as the outer rim of coronas surrounding olivine and pyroxene, and less commonly as lamellae or isolated grains within plagioclase. The formation of garnet and metamorphic spinel is dependent upon the anorthite content of the plagioclase. Plagioclase more sodic than An38??2 does not exhibit spinel clouding, and garnet rarely occurs in contact with plagioclase more albitic than An36??4. As a result of these compositional controls, the distribution of spinel and garnet mimics and visually enhances original igneous zoning in plagioclase. Most features of the arrangement of clear (unclouded) plagioclase, including the shells or moats of clear plagioclase which frequently occur inside the garnet rims of coronas, can be explained on the basis of igneous zoning. The form and distribution of the clear zones may also be affected by the metamorphic reactions which have produced the coronas, and by redistribution of plagioclase in response to local volume changes during metamorphism. ?? 1980 Springer-Verlag.

  4. Origin of biotite-hornblende-garnet coronas between oxides and plagioclase in olivine metagabbros, Adirondack region, New York

    Science.gov (United States)

    Whitney, P.R.; McLelland, J.M.

    1982-01-01

    Complex multivariant reactions involving Fe-Ti oxide minerals, plagioclase and olivine have produced coronas of biotite, hornblende and garnet between ilmenite and plagioclase in Adirondack olivine metagabbros. Both the biotite (6-10% TiO2) and the hornblende (3-6% TiO2) are exceptionally Titanium-rich. The garnet is nearly identical in composition to the garnet in coronas around olivine in the same rocks. The coronas form in two stages: (a) Plagioclase+Fe-Ti Oxides+Olivine+water =Hornblende+Spinel+Orthopyroxene??Biotite +more-sodic Plagioclase (b) Hornblende+Orthopyroxene??Spinel+Plagioclase =Garnet+Clinopyroxene+more-sodic Plagioclase The Orthopyroxene and part of the clinopyroxene form adjacent to olivine. Both reactions are linked by exchange of Mg2+ and Fe2+ with the reactions forming pyroxene and garnet coronas around olivine in the same rocks. The reactions occur under granulite fades metamorphic conditions, either during isobaric cooling or with increasing pressure at high temperature. ?? 1983 Springer-Verlag.

  5. Anomalous resonances in 29Si and 27Al NMR spectra of pyrope ([Mg,Fe]3Al2Si3O12) garnets: effects of paramagnetic cations.

    Science.gov (United States)

    Stebbins, Jonathan F; Kelsey, Kimberly E

    2009-08-28

    In oxide and silicate materials, particularly naturally-occurring minerals with contents of iron oxides greater than a few percent, paramagnetic impurities are well-known to broaden MAS NMR peaks, decrease relaxation times, and even cause overall loss of signal intensity. However, detection of resolved, discrete peaks that are shifted in frequency by nearby unpaired electron spins is rare in such systems. We report here high-resolution (27)Al and (29)Si spectra for synthetic and natural samples of pyrope garnet ([Mg,Fe](3)Al(2)Si(3)O(12)), the latter containing up to 3.5 wt% FeO. For both nuclides, spectra contain anomalous NMR peaks at frequencies that are 25 to 200 ppm from normal ranges, possibly through pseudocontact shifts induced by paramagnetic cations. Quantitation of peak areas suggests that signals from nuclides with such cations in their first shell may be broadened enough to be unobservable, while those with paramagnetics in their second cation shells may be substantially shifted. Overall spin-lattice relaxation rates are greatly enhanced by such impurities, and shifted resonances relax much faster than the unshifted main peaks. A high symmetry crystal structure (in this case cubic), which limits the number of different cation-cation distances in each shell, combined with a relatively low (non-cubic) symmetry for the sites hosting the magnetic cations, may be needed to readily detect such features.

  6. Retrograde isochemical phase transformations of majoritic garnets included in diamonds: A case study of subcalcic Cr-rich majoritic pyrope from a Snap Lake diamond, Canada

    Science.gov (United States)

    Sobolev, N. V.; Wirth, R.; Logvinova, A. M.; Yelisseyev, A. P.; Kuzmin, D. V.

    2016-11-01

    Homogeneity of a peridotitic garnet inclusion in diamond demonstrating excess in Si concentration (i.e. presence of majorite component) was investigated by TEM using FIB prepared foils. The host diamond is a low-nitrogen brown stone, which can be related to type IIa with features of strong plastic deformation. The studied sample is represented by Ca-poor Cr-pyrope of harzburgitic (H) paragenesis from Snap Lake dyke, Canada The garnet had been previously reported to contain Si = 3.16 apfu. The revised examination of the sample, resulted in detection of extremely fine-grained symplectite consisting of low Ca-orthopyroxene, clinopyroxene, Cr-spinel and coesite completely located and isolated in the inner part of the garnet crystal, which forms a sharp interface with the surrounding homogeneous garnet. XRD study confirmed the presence of the minerals constituting the symplectite. EPMA showed an identical bulk chemistry of the nanometer-sized symplectite and garnet. Further polishing of the garnet inclusion on the same surface with diamond removed the symplectite, which possibly was present as a thin lens within garnet. The remaining garnet is completely homogeneous as checked by two profiles, and contains unusually high Ni (118.2 ppm) and depleted REE patterns. Estimated PT formation conditions of this garnet are 10.8 GPa and 1450 °C within asthenosphere. Symplectite testifies partial retrograde isochemical phase transformation of the examined garnet which is suggested to be caused by decompression along with plastic deformation of diamond within the coesite stability field at T > 1000 °C and depth no less than 100 km. Because previously published studies of rare majoritic garnets composition were performed by EPMA only, it is possible that the traces of partial phase transformation (symplectite formation) could have been overlooked without additional XRD and/or TEM/AEM studies.

  7. Compositional evolution of grossular garnet from leucotonalitic pegmatite at Ruda nad Moravou, Czech Republic; a complex EMPA, LA-ICP-MS, IR and CL study

    Science.gov (United States)

    Gadas, Petr; Novák, Milan; Talla, Dominik; Vašinová Galiová, Michaela

    2013-04-01

    Five distinct paragenetic, morphological and compositional types of grossular garnet (G1, G2, G3, G4, G5) were distinguished within the individual (sub)units of the zoned leucotonalitic pegmatite cutting serpentinized lherzolite with rodingite dikes at Žďár near Ruda nad Moravou, Staré Město Unit, Northern Moravia. Detailed study using Electron Microprobe Analysis, Laser Ablation Inductively Coupled Plasma Mass Spectrometry, Cathodoluminiscence and Infrared Spectroscopy revealed distinct compositional trends in major, minor and trace elements. The contents of Fe3+, Mn, Mg and Ti increase from early garnet (G1) in the outermost grossular subunit through the interstitial garnet (G2) in the leucocratic subunit to graphic intergrowths of quartz+garnet (G3) in the coarse-grained unit. Then these constituents decrease in inclusions of garnet (G4) from the blocky unit and large crystals of garnet (G5) from the quartz core. Some trace elements (V, Ni, Y) exhibit the same trends, only Be evidently increases in garnet from border zone to the centre. Fluorine has negative correlation with Fe3+ as well as some trace elements (Ta, Pb). Concentrations of H2O in garnets, up to 0.22 wt.% H2O, are comparable with spessartine-almandine garnets from the Rutherford No. 2 pegmatite, Virginia, and grossular garnets from high-temperature calc-silicate rocks (skarns). Water contents correlate positively with Fe3+, but inversely with F. The use of water contents in garnet to elucidate the fluctuations of activity of H2O during the pegmatite formation is only limited; the incorporation of hydrous defects seems to be controlled instead by crystal-structural constraints. However, the sum of all volatile components (H2O + F) increases about twice from the outermost subunit to the centre of the pegmatite body.

  8. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

    Science.gov (United States)

    Fu, Kun (Kelvin); Gong, Yunhui; Liu, Boyang; Zhu, Yizhou; Xu, Shaomao; Yao, Yonggang; Luo, Wei; Wang, Chengwei; Lacey, Steven D.; Dai, Jiaqi; Chen, Yanan; Mo, Yifei; Wachsman, Eric; Hu, Liangbing

    2017-01-01

    Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li7La3Zr2O12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10−3 to 10−4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnet solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm2 for the surface-engineered garnet/Li. Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries. PMID:28435874

  9. [Iron-refractory iron deficiency anemia].

    Science.gov (United States)

    Kawabata, Hiroshi

    2016-02-01

    The major causes of iron deficiency anemia (IDA) include iron loss due to bleeding, increased iron requirements, and decreased iron absorption by the intestine. The most common cause of IDA in Japanese women is iron loss during menstruation. Autoimmune atrophic gastritis and Helicobacter pylori infection can also cause IDA by reducing intestinal iron absorption. In addition to these common etiologies, germline mutations of TMPRSS6 can cause iron-refractory IDA (IRIDA). TMPRSS6 encodes matriptase-2, a membrane-bound serine protease primarily expressed in the liver. Functional loss of matriptase-2 due to homozygous mutations results in an increase in the expression of hepcidin, which is the key regulator of systemic iron homeostasis. The serum hepcidin increase in turn leads to a decrease in iron supply from the intestine and macrophages to erythropoietic cells. IRIDA is microcytic and hypochromic, but decreased serum ferritin is not observed as in IDA. IRIDA is refractory to oral iron supplementation, but does respond to intravenous iron supplementation to some extent. Because genetic testing is required for the diagnoses of IRIDA, a considerable number of cases may go undiagnosed and may thus be overlooked.

  10. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  11. Iron deficiency anemia

    Science.gov (United States)

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  12. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  13. Serum iron test

    Science.gov (United States)

    Fe+2; Ferric ion; Fe++; Ferrous ion; Iron - serum; Anemia - serum iron; Hemochromatosis - serum iron ... A blood sample is needed. Iron levels are highest in the morning. Your health care provider will likely have you do this test in the morning.

  14. Iron stress in plants.

    Science.gov (United States)

    Connolly, Erin L; Guerinot, Mary

    2002-07-30

    Although iron is an essential nutrient for plants, its accumulation within cells can be toxic. Plants, therefore, respond to both iron deficiency and iron excess by inducing expression of different gene sets. Here, we review recent advances in the understanding of iron homeostasis in plants gained through functional genomic approaches

  15. Iron stress in plants

    OpenAIRE

    Connolly, Erin L.; Guerinot, Mary Lou

    2002-01-01

    Although iron is an essential nutrient for plants, its accumulation within cells can be toxic. Plants, therefore, respond to both iron deficiency and iron excess by inducing expression of different gene sets. Here, we review recent advances in the understanding of iron homeostasis in plants gained through functional genomic approaches.

  16. Timing capabilities of garnet crystals for detection of high energy charged particles

    Science.gov (United States)

    Lucchini, M. T.; Gundacker, S.; Lecoq, P.; Benaglia, A.; Nikl, M.; Kamada, K.; Yoshikawa, A.; Auffray, E.

    2017-04-01

    Particle detectors at future collider experiments will operate at high collision rates and thus will have to face high pile up and a harsh radiation environment. Precision timing capabilities can help in the reconstruction of physics events by mitigating pile up effects. In this context, radiation tolerant, scintillating crystals coupled to silicon photomultipliers (SiPMs) can provide a flexible and compact option for the implementation of a precision timing layer inside large particle detectors. In this paper, we compare the timing performance of aluminum garnet crystals (YAG: Ce, LuAG: Ce, GAGG: Ce) and the improvements of their time resolution by means of codoping with Mg2+ ions. The crystals were read out using SiPMs from Hamamatsu glued to the rear end of the scintillator and their timing performance was evaluated by measuring the coincidence time resolution (CTR) of 150 GeV charged pions traversing a pair of crystals. The influence of crystal properties, such as density, light yield and decay kinetics on the timing performance is discussed. The best single detector time resolutions are in the range of 23-30 ps (sigma) and only achieved by codoping the garnet crystals with divalent ions, such as Mg2+. The much faster scintillation decay in the co-doped samples as compared to non co-doped garnets explains the higher timing performance. Samples of LSO: Ce, Ca and LYSO:Ce crystals have also been used as reference time device and showed a time resolution at the level of 17 ps, in agreement with previous results.

  17. Garnet effect on Nd-Hf isotope decoupling: Evidence from the Jinfosi batholith, Northern Tibetan Plateau

    Science.gov (United States)

    Huang, Hui; Niu, Yaoling; Mo, Xuanxue

    2017-03-01

    The initial Nd and Hf isotope ratios of a 420 Ma post-collisional dioritic-granitic batholith from the Northern Tibetan plateau define a negative trend above and orthogonal to the ԐHf(t)-ԐNd(t) terrestrial array. This uncommon trend offers an insight into the origin of the puzzling Nd-Hf isotope decoupling in the crustal rocks. On this trend, samples depleted in heavy rare earth elements (HREEs, i.e., [Dy/Yb]N ≫ 1) deviate most from the terrestrial array whereas samples with flat HREEs (i.e., [Dy/Yb]N ≥ 1) deviate less or plot within the terrestrial array, pointing to the controlling effect of garnet in the magma source. Ancient garnet-bearing residues after melt extraction will have elevated Lu/Hf ratios and can evolve with time to produce high ԐHf(t) at a low ԐNd(t) value. Mixing of melts derived from such source lithologies (high Lu/Hf) with melts possessing a within-terrestrial array Nd-Hf isotopic composition (low Lu/Hf) best explains the observed trend orthogonal to the terrestrial array. The samples from the Jinfosi batholith with the most decoupled Nd-Hf isotope compositions require a larger degree (> 40%) and ancient (i.e., ≥ 1.8 Gyr) previous melt extraction from their source. It follows that the ancient melts with depleted HREEs complementary to those garnet-bearing residues should have low ԐHf values and plot below the terrestrial array, which is indeed shown by some Archean/Paleoproterozic TTGs.

  18. Rapid Thermal Annealing of Cathode-Garnet Interface toward High-Temperature Solid State Batteries.

    Science.gov (United States)

    Liu, Boyang; Fu, Kun; Gong, Yunhui; Yang, Chunpeng; Yao, Yonggang; Wang, Yanbin; Wang, Chengwei; Kuang, Yudi; Pastel, Glenn; Xie, Hua; Wachsman, Eric D; Hu, Liangbing

    2017-08-09

    High-temperature batteries require the battery components to be thermally stable and function properly at high temperatures. Conventional batteries have high-temperature safety issues such as thermal runaway, which are mainly attributed to the properties of liquid organic electrolytes such as low boiling points and high flammability. In this work, we demonstrate a truly all-solid-state high-temperature battery using a thermally stable garnet solid-state electrolyte, a lithium metal anode, and a V2O5 cathode, which can operate well at 100 °C. To address the high interfacial resistance between the solid electrolyte and cathode, a rapid thermal annealing method was developed to melt the cathode and form a continuous contact. The resulting interfacial resistance of the solid electrolyte and V2O5 cathode was significantly decreased from 2.5 × 10(4) to 71 Ω·cm(2) at room temperature and from 170 to 31 Ω·cm(2) at 100 °C. Additionally, the diffusion resistance in the V2O5 cathode significantly decreased as well. The demonstrated high-temperature solid-state full cell has an interfacial resistance of 45 Ω·cm(2) and 97% Coulombic efficiency cycling at 100 °C. This work provides a strategy to develop high-temperature all-solid-state batteries using garnet solid electrolytes and successfully addresses the high contact resistance between the V2O5 cathode and garnet solid electrolyte without compromising battery safety or performance.

  19. Urinary iron excretion test in iron deficiency anemia.

    Directory of Open Access Journals (Sweden)

    Kimura,Ikuro

    1980-02-01

    Full Text Available A urinary iron excretion test was carried out in 22 patients with iron deficiency anemia. The iron excretion index was significantly higher in patients with intractable iron deficiency anemia compared with normal subjects and anemic patients who were responsive to iron therapy. The findings suggest that iron excretion may be a factor that modulates the response of patients to iron therapy.

  20. Fractal Study of Multi-branched Domains in Garnet Bubble Films

    Institute of Scientific and Technical Information of China (English)

    李丹; 郑德娟; 周雁; 韩宝善

    2002-01-01

    The line-measuring dimension Dlinc has been developed and selected to describe the curved and branched patterns of multi-branched domains (MBDs) formed by using the "low-bias-field method" in magnetic garnet bubble films.The definition of Dline is given. The domain pattern processing and the "double boundary description" of MBDs are introduced. It has been verified that the MBD patterns truly possess the characteristic of fractal structure over a certain range. The meaningful Dline seems to be a better parameter to quantitatively describe the curved and branched structure of MBDs, and can be related to the nucleation of vertical Bloch lines in their walls.

  1. An Occurrence of Metastable Cristobalite in High-Pressure Garnet Granulite

    Science.gov (United States)

    Darling; Chou; Bodnar

    1997-04-04

    High-pressure (0.8 gigapascals) granulite facies garnet from Gore Mountain, New York, hosts multiple solid inclusions containing the low-pressure silica polymorph cristobalite along with albite and minor ilmenite. Identification of cristobalite is based on Raman spectra, electron microprobe analysis, and microthermometric measurements on the alpha/beta phase transformation. The cristobalite plus albite inclusions may have originated as small, trapped samples of hydrous sodium-aluminum-siliceous melt. Diffusive loss of water from these inclusions under isothermal, isochoric conditions may have resulted in a large enough internal pressure decrease to promote the metastable crystallization of cristobalite.

  2. Nanostructured yttrium aluminum garnet powders synthesized by co-precipitation method using tetraethylenepentamine

    Institute of Scientific and Technical Information of China (English)

    李先学; 王文菊

    2009-01-01

    Tetraethylenepentamine(C8H23N5,TEPA) has been used as a novel precipitant to synthesize yttrium aluminum garnet(Y3Al5O12,YAG) precursor from a mixed solution of aluminum and yttrium nitrates via a normal-strike co-precipitation method without controlling the pH value during precipitation process.The original precursor was analyzed by thermogravimetry/differential scanning calorimetry(TG/DSC).The evolution of phase composition and micro-structure of the as-synthesized YAG powders were characterized by X-ray ...

  3. The Assembly of Eastern North America: Using Garnet Zoning to Decipher the Potomac Terrane

    Science.gov (United States)

    Stodden, D.; Melson, W. G.

    2001-12-01

    The Sykesville Formation, the focus of this study, is in the easternmost Potomac Terrain between Roosevelt Island and Chain Bridge in the Potomac River Gorge on the Virginia side. The Potomac is one of many as yet poorly understood terranes speculatively added to the late Precambrian margin of North America. The remarkably voluminous Sykesville formation extends 125 km and is typically at least 3 km thick. Hopson (1964) recognized it as a gigantic slump deposit that grades westward into the turbidites of the Wissahickon Formation. The work of Hopson has been expanded upon in the many publications of A. A. Drake, Jr. with additional mapping in northern Virginia. The age of the Sykesville protolith is probably over 500 ma and was obducted on to the North American continent probably over 400 million years ago by collision with a deep-sea trench marginal to a mountainous continent or microcontinent. The source area for the protolith in our study area is overwhelmingly continental. Quartz veins and what appear to be metaorthoquartzite bed are common in the Sykesville. The presumed metaorthoquartzite beds was examined by cathodoluminescence. With this analysis, we discovered relict sand grains preserved in a quartz sample. This presents an enigma: the presence of a pure, mature quartz sediment interbedded in an immature feldspathic sandy slump deposit. Were there two quite different source areas feeding into the protolith? We examined garnets using electron microprobe analysis to examine the P-T history of the Sykesville. The garnets show simple zoning patterns, most clearly, as usual, in MnO. Compositional profiles suggest a single episode of metamorphism followed by retrogression, presumably during uplift and erosion after obduction. The age interval of this metamorphism is uncertain but was latest Precambrian or early Cambrian (Penobscot Orogeny). Future analysis of the chemical composition of the garnets will tell us more about the pressures and temperatures that the

  4. An occurrence of metastable cristobalite in high-pressure garnet Granulite

    Science.gov (United States)

    Darling, R.S.; Chou, I.-Ming; Bodnar, R.J.

    1997-01-01

    High-pressure (0.8 gigapascals) granulite facies garnet from Gore Mountain, New York, hosts multiple solid inclusions containing the low- pressure silica polymorph cristobalite along with albite and minor ilmenite. Identification of cristobalite is based on Raman spectra, electron microprobe analysis, and microthermometric measurements on the ??/?? phase transformation. The cristobalite plus albite inclusions may have originated as small, trapped samples of hydrous sodium-aluminum-siliceous melt. Diffusive loss of water from these inclusions under isothermal, isochoric conditions may have resulted in a large enough internal pressure decrease to promote the metastable crystallization of cristobalite.

  5. Garnet peridotites from the Sulu UHP terrane, China: A window insights into mantle and subduction processes

    Science.gov (United States)

    Zhang, R.; Liou, J.; Yang, J.; Tainfu, L.

    2004-12-01

    Garnet peridotites from the Sulu UHP terrane of China occur as block and lens within granulite-amphibolite facies gneiss and contain lenses of clinopyroxenite and coesite-bearing eclogite. In addition to the assemblage Ol + Opx + Cpx + Grt, some peridotites contain additional hydrous phases (e.g., phlogopite, Ti-clinohumite and pargasite) and magnesite. The abundances of "fertile elements" (TiO2, Al2O3, CaO and FeO) of the Sulu peridotites are lower than those of the primitive mantle and show negative correlation with MgO content. The garnet peridotites and pyroxenites preserved mantle δ 18O values: +4.8 to +5.7 for Grt, +4.7 to +5.4 for Ol, +4.5 to 5.6 for Cpx and +5.7 to +5.8 ‰ for Opx. These characteristics suggest that the Sulu peridotites represent pieces of a depleted, residual mantle. Most peridotites with LREE-enrichment patterns, high 87Sr/86Sr (0.7071-0.7100) and low 143Nd/144Nd ratios (0.5122-0.5128) have been subjected to the effects of mantle metasomatism and crustal contamination. In Donghai, the site area of the Chinese Continental Scientific Drelling (CCSD), peridotites with or without magnesite are enriched in Th, U, Sr, Ba and LREE, and show Hf and Ti negative anomalies; these may be attributed to carbonatitic metasomatism. Zircon separates from peridotitic cores of the PP1 drill hole show concentric zoning without inherited cores indicating a metamorphic origin; they yield SHRIMP U-Pb age of 221 ± 3 Ma (weighted mean), consistent with the Dabie-Sulu regional UHP metamorphism. Polymorph transformation (OREN to CLEN) of orthopyroxene and exsolution microstructures in peridotitic minerals are common; these include Ilm in olivine, Qtz, Ilm, Phl and Grt + Ilm ± Amp in diopside, and Rt ± Cpx + Ap in garnet. These petrochemical and age data, microstructures and P-T estimates conclude the mantle-derived Sulu garnet peridotites were inserted into a Triassic continental subduction zone and experienced in situ UHP metamorphism together with subducted

  6. Fabrication and characterization of cerium-doped terbium gallium garnet with high magneto-optical properties.

    Science.gov (United States)

    Chen, Zhe; Hang, Yin; Yang, Lei; Wang, Jun; Wang, Xiangyong; Hong, Jiaqi; Zhang, Peixiong; Shi, Chunjun; Wang, Yaqi

    2015-03-01

    High optical quality (Tb((1-x))Ce(x))₃Ga₅O₁₂ (TCGG) single crystal has been grown by the Czochralski method. The optical and magneto-optical properties of the TCGG are analyzed in detail and the Verdet constant (V) of TCGG is compared with that of undoped terbium gallium garnet (TGG) crystal. TCGG presents a very high transmittance, particularly in the visible-near infrared (VIS-NIR) region, and its V is obviously larger than that of TGG in the VIS-NIR region. The figure of merit and optical features point out the superior characteristics of TCGG with respect to TGG.

  7. Erbium-doped yttrium aluminium garnet ablative laser treatment for endogenous ochronosis.

    Science.gov (United States)

    Chaptini, Cassandra; Huilgol, Shyamala C

    2015-08-01

    Ochronosis is a rare disease characterised clinically by bluish-grey skin discolouration and histologically by yellow-brown pigment deposits in the dermis. It occurs in endogenous and exogenous forms. Endogenous ochronosis, also known as alkaptonuria, is an autosomal recessive disease of tyrosine metabolism, resulting in the accumulation and deposition of homogentisic acid in connective tissue. We report a case of facial endogenous ochronosis and coexistent photodamage, which was successfully treated with erbium-doped yttrium aluminium garnet laser resurfacing and deep focal point treatment to remove areas of residual deep pigment.

  8. KINETICS OF GRAIN-GROWTH OF YTTRIUM ALUMINUM GARNET FIBERS PREPARED BY SOL-GEL METHOD

    Directory of Open Access Journals (Sweden)

    Tan H.

    2013-12-01

    Full Text Available The yttrium aluminum garnet (YAG long fibers were prepared by the sol-gel method using aluminum chloride, aluminum powder, yttrium oxide and acetic acid as raw materials. The grain growth law is given by Dn – D0n = Kt (D0 = initial grain size, D = average grain size at time t, n = grain growth exponent and K = reaction constant. The grain growth exponent and activation energy of YAG fibers are ≈ 3 and 200 kJ/mol, respectively. The grain-growth behaviors of YAG were influenced by experimental conditions such as raw materials, initial particle size, initial particle distribution, etc.

  9. Crystal field and magnetism with Wannier functions:rare-earth doped aluminum garnets

    Institute of Scientific and Technical Information of China (English)

    Eva Mihóková; Pavel Novák; Valentin V. Laguta

    2015-01-01

    Using the recently developed method we calculated the crystal field parameters in yttrium and lutetium aluminum garnets doped with seven trivalent Kramers rare-earth ions. We then inserted calculated parameters into the atomic-like Hamiltonian taking into account the electron-electron, spin-orbit and Zeeman interactions and determined the multiplet splitting by the crystal field as well as magneticĝ tensors. We compared calculated results with available experimental data. Very good agreement with the spectro-scopic data and qualitative agreement with experimentalĝ tensors was found.

  10. Sanidine—olivine—diopside Association in a Metasomatized Garnet Lherzolite Xenolith from Southeastern China

    Institute of Scientific and Technical Information of China (English)

    曹荣龙; K.AOKI; 等

    1992-01-01

    A garnet lherzolite xenolith hosted in olivine nephelinite from Xilong,Zhejiang Province ,southeastern China, shows clear evidence of modal metasomatism involving a special sanidine-olivine-diopside(SOD) association which was produced by replacement of primary orthopyroxene.The fluid responsible for the measomatism was a silica-undersaturated vapour,rich in K,Ba,Sr and Ti.It is suggested that the SOD assemblage is the product of metasomatism of a depleted lherzolite precursor,and formed in the upper mantle prior to entrainment and eruption.

  11. SPECTROSCOPIC PROPERTIES OF Ca-SUBSTITUTED GADOLINIUM GALLIUM GARNET DOPED WITH V4+

    OpenAIRE

    Suchocki, A.; BRENIER, A.; PEDRINI, C.; BOULON, G.

    1991-01-01

    The results of absorption, luminescence and luminescence excitation, fluorescence decay kinetics and photoconductivity measurements of Gd3Ga5O12 : V4+, Ca2+ (0.5% mol.) garnet are reported in detail. A strong quenching of the luminescence of V4+ ions in octahedral sites by the energy transfer to V4+ ions in tetrahedral sites is observed. Broad, strong bands observed in absorption and luminescence excitation spectra of octahedral V4+ ions in the ultraviolet region are assigned to small polaron...

  12. Finds decorated with garnets from Early Avar contexts in the light of their cell techniques

    OpenAIRE

    Heinrich-Tamáska, Orsolya

    2016-01-01

    The present contribution concerns the Early Avar (late 6th and first half of the 7th century AD) metal objects ornamented with garnets from the perspective of the inlay techniques employed. Such inlays occur exclusively on objects made of precious metals, indicating the high value placed on these stones. Besides standard cloisonné, it has been possible to identify techniques such as soldered band settings of single and multiple cells and open-work cellwork (pseudo cloisonné, champlevé à jour)...

  13. Transfer matrix method-based approach to study the bi-gyrotropic magnetic materials

    Science.gov (United States)

    Zamani, Mehdi; Hajesmaeili, Hamidreza Nezhad; Zandi, Mohammad Hossein

    2016-08-01

    Optical and magneto-optical (MO) responses in magnetic multilayer systems are calculated by transfer matrix method (TMM). In a bi-gyrotropic medium, electric permittivity (ε) and magnetic permeability (μ) coefficients are in the form of non-diagonal tensors, synchronously, which their non-diagonal elements refer to the existence of anisotropy in such medium. In the present study, in addition to present a TMM based-approach for bi-gyrotropic medium, numerical simulations for studying the amount of optical and MO parameters of the bi-gyrotropic Yttrium Iron Garnet (YIG) material, in both transmission and reflection configurations, have been done.

  14. Partículas nanométricas de ferritas de ítrio

    Directory of Open Access Journals (Sweden)

    Godoi Ricardo H. M.

    1999-01-01

    Full Text Available Nanoparticles of yttrium iron garnet (YIG were obtained by coprecipitation. The particles were prepared by hydrolysis in acid medium with addition of ammonia or urea, for homogeneous nucleation, at 90ºC. Different compositions and spherical morphologies were achieved by changing reactants concentrations and precipitation agent. X-ray diffractometry, transmission electron microscopy, differential thermal analysis and electrophoretic mobility were carried out on these particles to investigate the obtained phase, phase transition temperature, morphology, particle size and zeta potential, respectively.

  15. Indirect Coupling between Two Cavity Photon Systems via Ferromagnetic Resonance

    CERN Document Server

    Hyde, Paul; Harder, Michael; Match, Christophe; Hu, Can-Ming

    2016-01-01

    We experimentally realize indirect coupling between two cavity modes via strong coupling with the ferromagnetic resonance in Yttrium Iron Garnet (YIG). We find that some indirectly coupled modes of our system can have a higher microwave transmission than the individual uncoupled modes. Using a coupled harmonic oscillator model, the influence of the oscillation phase difference between the two cavity modes on the nature of the indirect coupling is revealed. These indirectly coupled microwave modes can be controlled using an external magnetic field or by tuning the cavity height. This work has potential for use in controllable optical devices and information processing technologies.

  16. Early Cooling History of Eclogites from the Dabie-Sulu Orogen:Constraints from Diffusion Kinetics of Garnet

    Institute of Scientific and Technical Information of China (English)

    CHEN Daogong; CHENG Hao

    2004-01-01

    For the first time, we apply different geospeedometric models to garnet zoning patterns that were obtained in this study from detailed EMP analyses for garnets from eclogites and granulite in the Dabie-Sulu orogen. Various zonings of cation diffusion were preserved in the garnets, enabling the acquirement of average cooling rates for the highto ultrahigh-pressure rocks without using geochronological approaches. The coesite-bearing hot eclogites yield fast cooling rates of about 20 to 30℃/Ma subsequent to peak metamorphic temperatures, whereas the cold eclogite gives a relatively slow cooling rate of 8℃/Ma at its initial exhumation. A very slow cooling rate of <0.3℃/Ma is obtained for the granulite at Huangtuling, suggesting that the granulite may not be involved in the continental deep subduction.

  17. Melanite garnet-bearing nepheline syenite minor intrusion in Mawpyut ultramafic–mafic complex, Jaintia Hills, Meghalaya

    Indian Academy of Sciences (India)

    Monoj Maitra; J S David; S Bhaduri

    2011-12-01

    Mawpyut igneous suite in Jaintia Hills of Meghalaya plateau comprises differentiated suite of ultramafic–mafic rocks. The complex differs from other ultramafic–alkaline–carbonatite igneous emplacements of Shillong plateau and Mikir Hills like Jesra, Sung, Samchampi complexes, by the absence of alkaline–carbonatite rocks as major litho-units. Melanite garnet-bearing nepheline syenite, occurs as late phase minor intrusion in Mawpyut igneous complex, posseses alkaline character and shows inubiquitous relation with the host ultramafic–mafic rocks. On the other hand, this alkaline intrusive bodies of the Mawpyut igneous complex shows chemico-mineralogical resemblance with garnet-bearing nepheline syenite, ijolite litho-members of Jesra, Sung, Samchampi complexes of the region. It is interpreted that melanite garnet-bearing nepheline syenite intrusion in Mawpyut is contemporaneous with Jesra, Sung, Samchampi ultramafic–alkaline–carbonatite complexes and the host rocks of Mawpyut complex is an earlier magmatic activity possibly from a comparatively least enriched source.

  18. Neoarchean metamorphism recorded in high-precision Sm-Nd isotope systematics of garnets from the Jack Hills (Western Australia)

    Science.gov (United States)

    Eccles, K. A.; Baxter, E. F.; Mojzsis, S. J.; Marschall, H.; Williams, M. L.; Jercinovic, M. J.

    2013-12-01

    Studies of metasedimentary rocks from the Jack Hills, which host Earth's oldest known detrital minerals, have focused on zircon and occasionally monazite or xenotime, but no attention has been directed toward one of the most common mineral markers of metamorphism: garnet. Garnet can provide a record of the post-depositional, prograde metamorphic history of Archean metasedimentary rocks. Additionally, the use of a newly developed detrital garnet dating technique [1,2] may reveal information about pre-depositional metamorphism that could address lingering questions about the nature and timing of Earth's earliest tectonometamorphic events. Here we investigate garnet from the Jack Hills metasedimentary rocks to test whether they record in situ metamorphism or are a detrital relict of even older metamorphic events. We identified garnet in two bulk quartz-pebble conglomerate samples collected from the 'discovery' outcrop at Eranondoo Hill in the Jack Hills of Western Australia. Electron microprobe analyses of polished grains and SEM measurements of unpolished grain surfaces are consistent, revealing garnet composition indicative of a single generation/population of predominantly almandine-spessartine solid solution (~10-35% mole fraction spessartine). Compositional maps of garnet grains reveal little zoning and no discontinuities, most consistent with a single growth event. Dating Jack Hills' garnet via the Sm-Nd system is possible due to continued development of small sample analysis techniques, including running NdO+ TIMS analyses with Ta2O5 activator [3] permitting nondestructive chemical prescreening technique (tabletop SEM) allows for grouping of multiple grains based on chemical similarity. Final Nd loads in the 450-750pg range routinely yield dates with precisions <×10Ma for two point isochrons between clean garnet (Sm/Nd ≥ 1.0) and their leached inclusion populations [2]. Four grouped garnet grain separates from one sample yield preliminary dates of 2703.6×6

  19. The Elasticity of Synthetic Polycrystalline Complex Garnet to 9.5 GPa and 1000K Determined Using Ultrasonic Interferometry

    Science.gov (United States)

    Triplett, R.; Gwanmesia, G. D.; Wang, L.

    2015-12-01

    Petrological studies show that the transition zone of the Earth's mantle (depth of 410-660 km) is composed of 40-70% garnet by volume. Extensive knowledge of the elastic properties of complex garnet, of chemical composition pertinent to the region and at relevant high pressures and temperatures, is necessary to constrain the composition of the region and to explain the steep compressional wave (P-wave) and shear wave (S-wave) velocity gradients observed from seismic studies. We have measured the acoustic wave velocities of synthetic polycrystalline complex garnet of a suitable pyroxene composition (Mg1.875Ca0.75Fe0.375 Na0.5Al0.5Si4O12) at simultaneous pressures (P) up to 9.5 GPa and temperatures (T) up to 1000 K in a DIA-type apparatus using ultrasonic interferometry in conjunction with energy-dispersive synchrotron X-ray diffraction and X-ray imaging. Travel times of the P- and S-waves, X-ray image data, and X-ray diffraction data were collected during cooling cycles to minimize the effect of non-hydrostatic stress on the specimen. Elastic adiabatic bulk (KS) and shear (G) moduli data were fit to polynomial equations in P and T, yielding (∂KS/∂P)T = 4.6 (1) and (∂G/∂P)T = 1.27 (3) for the pressure derivatives of the elastic KS and G, respectively, and (∂KS/∂T)p = -15.0 (7) MPa/K and (∂G/∂T)P = -10.4 (2) MPa/K for the temperature derivatives of KS and G, respectively. The results are consistent with those of previous studies on garnets of varying compositions, and in general suggest that the pressure and temperature dependence of the elastic bulk and shear moduli of garnet may be insensitive to the garnet composition.

  20. Microstrain and short-range ordering of Ca and Mg cations in pyrope-grossular garnet system

    Science.gov (United States)

    DU, W.; Clark, S. M.; Walker, D.

    2016-12-01

    Synchrotron X-ray diffraction (XRD) was used to measure the unit cell parameters of synthetic pyrope (Mg3Al2Si3O12), grossular (Ca3Al2Si3O12) and four intermediate garnet solid solutions at the Advanced Light Source, Lawrence Berkeley National Laboratory (ALS on beamline 12.2.2 at room temperature and pressure). Analysis of X-ray diffraction profiles by using Williamson-Hall plots shows that XRD peak width getting broadened with diffraction angle and the degree of the XRD peak broadening changes with garnet composition. Microstrain in the garnet structure, rather than grain size variation, is the principal reason for the observed XRD peak broadening. Garnets with compositions Py80Gr20 and Py20Gr80, close to the negligibly strained end members pyrope (Py100) and grossular (Gr100), have large microstrains, which is contrast to garnet with intermediate composition Py40Gr60, which almost has no microstrain. This compositional dependent elastic structural strain shows a complex correlation with other nonideal mixing properties along the pyrope-grossular binary, for example, excess volume, mixing enthalpy, thermal expansion etc. The observation that the two end member garnets carry almost zero microstrain indicates that the microstrain calculated from XRD peak broadening is related to the Mg-Ca substitution. A different degree of short-range ordering of Ca-Mg in dodecahedral site that develops during annealing after MA crystallization may be partly responsible for these nonideal-mixing phenomena along the pyrope-grossular join.

  1. Direct Comparison of Detrital Garnet, Monazite, and Zircon Ages from a Southern Appalachian Tributary System for the French Broad River, North Carolina, USA

    Science.gov (United States)

    Maneiro, K. A.; Baxter, E. F.; Samson, S. D.; Marschall, H.

    2016-12-01

    Nineteen detrital garnet ages from a tributary draining into the French Broad River of North Carolina represent the first full-scale deployment of a new detrital garnet geochronometer. Under the new geochronometer, inclusions within the garnet serve as a proxy for the original source rock and eliminate required assumption of a single source for detritus. Additionally, method development has advanced techniques for small sample Nd and Sm analysis by thermal ionization mass spectrometry (TIMS), allowing for Sm-Nd analysis of single detrital garnet grains for the first time. This is also the first dataset allowing direct comparison of detrital garnet, monazite, and zircon. The three proximate tributaries sampled drain a limited source lithology, and prior studies provide detrital monazite and zircon ages (e.g. Hietpas et al., 2010, Geology; Moecher et al., 2011, Geosphere). The weighted average age for tributary detrital monazite is 460.9 ± 2.5 Ma (95% confidence). Zircon cores failed to record Paleozoic metamorphism, while zircon rims gave a weighted average age of 443.5 ± 8.7 Ma (95% confidence). The tributary system is garnet-bearing, with garnet grains exceeding the current minimum volume required for single grain analysis (≥ 0.4 mm max. diameter). Previously reported initial ages from the garnet grains (Maneiro-Eccles, 2015, Goldschmidt) have been updated to include blank correction accounting for extremely small Nd loads; clean garnet analyses contain 17-445 pg Nd and repeat blanks indicate contribution of 4.31 ± 0.59 pg Nd. The resulting weighted average age for garnet is 438.8 ± 8.1 Ma (95% confidence). The weighted average ages for zircon rims and garnet overlap within error, while the monazite age is older (22.1 ± 8.5 Myr older than garnet, 17.4 ± 9.1 Myr older than zircon). Age variance between minerals could be attributed to monazite sampling bias, limited sample size, and either influence by a secondary tectonic event (e.g. the Cherokee Orogeny

  2. IBA investigations of loose garnets from Pietroasa, Apahida and Cluj-Someşeni treasures (5th century AD)

    Energy Technology Data Exchange (ETDEWEB)

    Bugoi, R., E-mail: bugoi@nipne.ro [Horia Hulubei National Institute for Nuclear Physics and Engineering, Măgurele 077125 (Romania); Oanţă-Marghitu, R., E-mail: rodicamarghitu@yahoo.com [Muzeul Naţional de Istorie a României, Bucureşti 030026 (Romania); Calligaro, T., E-mail: thomas.calligaro@culture.gouv.fr [Centre de Recherche et de Restauration des Musées de France, C2RMF, Palais du Louvre – Porte des Lions, 75001 Paris (France); PSL Research University, Chimie ParisTech – CNRS, Institut de Recherche Chimie Paris, UMR8247, 75005 Paris (France)

    2016-03-15

    This paper reports the archaeometric investigations of 418 loose garnets from Pietroasa and Cluj-Someşeni treasures and Apahida II and III princely grave inventories (5th century AD). The chemical composition of the gems was determined by external beam micro-PIXE technique at the AGLAE accelerator of C2RMF, Paris, France. Complementary observations made by Optical Microscopy revealed details on the gemstones cutting and polishing and permitted to identify certain mineral inclusions. The compositional results evidenced several types of garnets from the pyralspite series, suggesting distinct provenances for these Early Medieval gems.

  3. IBA investigations of loose garnets from Pietroasa, Apahida and Cluj-Someşeni treasures (5th century AD)

    Science.gov (United States)

    Bugoi, R.; Oanţă-Marghitu, R.; Calligaro, T.

    2016-03-01

    This paper reports the archaeometric investigations of 418 loose garnets from Pietroasa and Cluj-Someşeni treasures and Apahida II and III princely grave inventories (5th century AD). The chemical composition of the gems was determined by external beam micro-PIXE technique at the AGLAE accelerator of C2RMF, Paris, France. Complementary observations made by Optical Microscopy revealed details on the gemstones cutting and polishing and permitted to identify certain mineral inclusions. The compositional results evidenced several types of garnets from the pyralspite series, suggesting distinct provenances for these Early Medieval gems.

  4. Subduction of shallowly formed arc cumulates: Evidence from clinopyroxene compositions of garnet peridotites in the Rio San Juan Complex, northern Dominican Republic

    Science.gov (United States)

    Hattori, K.; Tubrett, M.; Saumur, B.-M.; Guillot, S.

    2009-04-01

    Garnet peridotites are very rare in oceanic subduction complexes, with only two reported occurrences. One is in the Sambagawa metamorphic belt in Shikoku, Japan, and the other example is in the southern part of the Rio Juan Complex, northern Dominican Republic. In both locations, garnet peridotite occurs in close association with eclogites in high metamorphic grade of the terranes. The Rio Juan Complex represents rocks formed during the southwestern subduction of the Proto-Caribbean oceanic plate below the Carribean Plate during late Cretaceous to early Eocene. Garnet peridotites (clinopyroxene[Cpx]-bearing dunite, wehrlite, olivine clinopyroxenite) occur as large (garnet formation under high pressures. The geochemical data suggest that Cpx-rich cumulates formed at a relatively shallow level in the mantle wedge, and subsequently drug towards the subduction plane by mantle flow, followed by metamorphism that formed garnet in the subduction channel

  5. Growth-induced optical anisotropy of epitaxial garnet films grown on (110)-oriented substrates

    Science.gov (United States)

    Kitamura, K.; Iyi, N.; Kimura, S.; Chevrier, F.; Devignes, J. M.; Le Gall, H.

    1986-08-01

    Garnet films of nominal composition (Y,Nd)3Ga5O12, were grown on (110) 1°-off Gd3Ga5O12 substrates for investigation of their growth-induced optical anisotropy. Optical birefringence and directions of the electric vectors of polarized rays passing through the films were measured under a polarizing microscope using a Brace-Köhler compensator. The growth-induced anisotropy of these films optically exhibited orthorhombic characteristics with the X, Y, and Z optic elasticity axes coinciding with the [001], [110], and [1¯10] directions, respectively. The crystallographic data obtained by means of single-crystal diffractometry suggested that the cubic crystal system of the garnet film was distorted, though very slightly, to an orthorhombic one with a,b, and c axes that coincided, respectively, with the [1¯10],[001], and [110] of the original cubic cell. In addition, by annealing at 1150 °C, this distortion disappeared and the crystal system reverted to cubic.

  6. Faraday effect improvement by Dy{sup 3+}-doping of terbium gallium garnet single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhe, E-mail: zhenzhe1201@sina.com; Yang, Lei; Hang, Yin; Wang, Xiangyong

    2016-01-15

    Highly transparent Dy{sup 3+}-doped terbium gallium garnet (TGG) single crystal was grown by Czochralski (Cz) method. Phase composition of the crystal was tested by XRD measurements. The distribution coefficient of Dy{sup 3+} in the crystal was obtained. The optical and magneto-optical properties were analyzed in detail, and magnetic properties of the Dy{sup 3+}-TGG crystal were studied. The paramagnetic behavior is observed down to 10 K. The as-grown crystal exhibited high optical transmittance, particularly in the visible region. The Faraday rotation was investigated over visible and near-infrared regions (VIS–NIR) at room temperature. The Verdet constants increase at measured wavelengths and high thermal stability was found in Dy{sup 3+}-doped TGG, as compared to the properties of pure TGG, indicating that Dy{sup 3+}-doped crystals are preferable for magneto-active materials used in Faraday devices at VIS–NIR wavelengths. - Graphical abstract: Highly transparent Dy{sup 3+}-doped terbium gallium garnet (TGG) and pure TGG single crystals were grown by Czochralski method. The Dy{sup 3+}-doped TGG possesses 20–30% higher Verdet values in reference to TGG independently on wavelength.

  7. Exsolution of ilmenite and Cr-Ti magnetite from olivine of garnet-wehrlite

    Institute of Scientific and Technical Information of China (English)

    LIU; Xiangwen; JIN; Zhenmin; QU; Jing

    2005-01-01

    Exsolution of rod-like ilmenite (Ilm) and Cr-Ti magnetite (Mt) have been found in olivine of garnet-wehrlite from the core of Chinese Continental Sciences Drilling (CCSD). Their composition, morphology, crystal structure and their topotaxies with host olivine have been studied in detail by the transmission electron microscopy (TEM) and electron probe microanalysis (EPMA) technique. It shows that rod-like Ilm exsolution reported in this paper has similar characteristic with that of Alpe Arami olivine, while Cr-Ti magnetite exsolution mentioned in this paper has large discrepancy with chromite exsolution in Alpe Arami olivine. These observations suggest that both of the exsolutions found in this paper should be solid solution phases in β-olivine at their first period, then experiencing decomposition of solid solution and therefore forming Ilm and Cr-Ti magnetite exsolution with the pressure decreasing. So, this garnet-wehrlite perhaps had been ever located in mantle transition zone with a minimum depth of 300 km.

  8. Garnet-sillimanite bearing gneisses from Darjeeling, eastern Himalaya: Textural relationship and P–T conditions

    Indian Academy of Sciences (India)

    Divya Prakash; Suparna Tewari

    2015-08-01

    The area around Darjeeling consists of medium grade metamorphic rocks and provides a classic example of inverted Himalayan metamorphism. The area under investigation shows upper amphibolite facies metamorphism (sillimanite-muscovite subfacies), rocks are intimately associated with the migmatites and granites. The presence of quartzite, calc-silicate rocks, graphitic schist and abundance of aluminous minerals like kyanite or sillimanite in these rocks indicate their metasedimentary character. Granetsillimanite bearing gneisses occupy most of the area of Darjeeling but not persistent throughout. Textural relationship suggests sequential growth of progressively higher-grade metamorphic minerals during D1 and D2 deformation. The relative XMg in the minerals varies in the order: biotite>staurolite>garnet, and the XMn decreases in the order: garnet>staurolite>biotite. The P–T evolution of these garnetsillimanite gneiss has been constrained through the use of conventional geothermobarometry, internally consistent TWEEQU programme and Perple_X software in the KFMASH model system, the combination of these three approaches demonstrates that the Darjeeling gneisses experienced peak pressure and temperature at 7.0 ± 0.3 kbar and 700 ± 30°C. The observation in this study has important bearing on the inverted metamorphism in the Himalayan metamorphic belt.

  9. Pressure-induced nano-crystallization of silicate garnets from glass

    Science.gov (United States)

    Irifune, T.; Kawakami, K.; Arimoto, T.; Ohfuji, H.; Kunimoto, T.; Shinmei, T.

    2016-12-01

    Transparent ceramics are important for scientific and industrial applications because of the superior optical and mechanical properties. It has been suggested that optical transparency and mechanical strength are substantially enhanced if transparent ceramics with nano-crystals are available. However, synthesis of the highly transparent nano-crystalline ceramics has been difficult using conventional sintering techniques at relatively low pressures. Here we show direct conversion from bulk glass starting material in mutianvil high-pressure apparatus leads to pore-free nano-polycrystalline silicate garnet at pressures above ~10 GPa in a limited temperature range around 1,400 °C. The synthesized nano-polycrystalline garnet is optically as transparent as the single crystal for almost the entire visible light range and harder than the single crystal by ~30%. The ultrahigh-pressure conversion technique should provide novel functional ceramics having various crystal structures, including those of high-pressure phases, as well as ideal specimens for some mineral physics applications.

  10. Yttrium aluminium garnet under pressure: Structural, elastic, and vibrational properties from ab initio studies

    Energy Technology Data Exchange (ETDEWEB)

    Monteseguro, V. [Departamento de Física and MALTA Consolider Team, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Rodríguez-Hernández, P.; Muñoz, A., E-mail: amunoz@ull.es [Departamento de Física and MALTA Consolider Team, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain); Instituto de Materiales y Nanotecnología. Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife (Spain)

    2015-12-28

    The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet is mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.

  11. Garnet-free optical circulators monolithically integrated on spatially modified III-V quantum wells

    CERN Document Server

    Aleahmad, Parinaz; Christodoulides, Demetrios; LiKamWa, Patrick

    2016-01-01

    Optical circulators are indispensable components in photonic networks that are aimed to route information in a unidirectional way among their N-ports1,2. In general, these devices rely on magneto-optical garnets3 with appreciable Verdet constants that are utilized in conjunction with other elements like permanent magnets, wave-plates, birefringent crystals and/or beam splitters. Consequently, these arrangements are typically bulky and hence not conducive to on-chip photonic integration4-6. Of interest would be to devise strategies through which miniaturized optical circulators can be monolithically fabricated on light-emitting semiconductor platforms by solely relying on physical properties that are indigenous to the material itself. By exploiting the interplay between non-Hermiticity and nonlinearity, here we demonstrate a new class of chip-scale circulators on spatially modified III-V quantum well systems. These garnet-free unidirectional structures are broadband (over 2.5 THz) at 1550 nm, effectively loss-...

  12. Garnet peridotite xenoliths in a Montana, U.S.A., kimberlite

    Science.gov (United States)

    Carter, Hearn B.; Boyd, F.R.

    1975-01-01

    Within a swarm of late middle Eocene subsilicic-alkalic diatremes, one diatreme 270 by 370 m and an associated dike contain common xenoliths of granulite and rare xenoliths of spinel peridotite and garnet peridotite. Six garnet lherzolite xenoliths have been found and these show a range of textures. Four are granular, and two are intensely sheared. Phlogopite is absent from the intensely sheared xenoliths and is thought to be primary in part in the granular xenoliths. Estimated temperatures and depths of equilibration of xenolith pyroxenes range from 920??C, 106 km (32 kbar) to 1315??C, 148 km (47 kbar). The xenoliths show increasing amounts of deformation with greater inferred depths of origin. The temperature-depth points suggest a segment of an Eocene geotherm for Montana which is similar in slope to the steep portion of the pyroxene-determined Lesotho geotherm (Boyd and Nixon, this volume) and is considerably steeper than typical calculated shield and continental geotherms at present. The steep trend could be a result of plate-tectonic shearing and magma ascension within an Eocene low-velocity zone. Preservation of intensely sheared textures requires rapid transport of material from about 150 km depth during active deformation of relatively dry rock. The occurrence of monticellite peridotite in this kimberlite diatreme suggests that magmas which crystallized to monticellite peridotite at relatively shallow depth could be one of the primitive types of kimberlite magma. ?? 1975.

  13. Garnet-type Mn3Cr2(GeO43

    Directory of Open Access Journals (Sweden)

    Christian Lipp

    2012-05-01

    Full Text Available Single crystals of garnet-type trimanganese(II dichromium(III tris[orthogermanate(IV], MnII3CrIII2(GeO43, were obtained by utilizing a chemical transport reaction. Corresponding to the mineral garnet with the general formula AII3BIII2(SiO43, each of the four elements occupies only one crystallographically distinct position. Mn2+ occupies the respective A position (Wyckoff site 24c, site symmetry 2.22, being surrounded by eight O atoms that form a distorted cube [d(Mn—O = 2.291 (2 and 2.422 (2 Å, 4× each], while Cr3+ on the B position (Wyckoff site 16a, site symmetry .-3. is situated in a slightly distorted octahedron of six O2− anions [d(Cr—O = 1.972 (2 Å, 6×]. In addition, the O atoms on general site 96h form isolated [GeO4]4− tetrahedra with Ge4+ on site 24d [site symmetry -4..; d(Ge—O = 1.744 (2 Å, 4×].

  14. Classical Heisenberg antiferromagnet on a garnet lattice: A Monte Carlo simulation

    Science.gov (United States)

    Petrenko, O. A.; Paul, D. McK.

    2001-01-01

    We have studied a classical antiferromagnet on a garnet lattice by means of Monte Carlo simulations in an attempt to examine the role of geometrical frustration in gadolinium gallium garnet Gd3Ga5O12 (GGG). Low-temperature specific heat, magnetization, susceptibility, the autocorrelation function A(t), and the neutron scattering function S(Q) have been calculated for several models including different types of magnetic interactions and with the presence of an external magnetic field applied along the principal symmetry axes. A model, which includes only nearest-neighbor exchange J1, neither orders down to the lowest temperature nor does it show any tendency towards forming a short-range coplanar spin structure. This model, however, does demonstrate a magnetic field induced ordering below T~0.01J1. In order to reproduce the experimentally observed properties of GGG, the simulated model must include nearest-neighbor exchange interactions and also dipolar forces. The presence of weak next-to-nearest exchange interactions is found to be insignificant. In zero field S(Q) exhibits diffuse magnetic scattering around positions in reciprocal space where antiferromagnetic Bragg peaks appear in an applied magnetic field.

  15. Local stress distribution around garnet inclusions during hydration of granulite in the Bergen Arcs, Norway

    Science.gov (United States)

    Centrella, Stephen; Vrijmoed, Johannes C.; Putnis, Andrew; Austrheim, Håkon

    2017-04-01

    The importance of heterogeneous stress and pressure distribution within a rock has been established over the last decades (see review in Tajčmanová et al., 2015). During a hydration reaction, depending on whether the system is open to mass transfer, the volume changes of the reaction may be accommodated by removing material into the fluid phase that leaves the system (Centrella et al., 2015; Centrella et al., 2016). The magnitudes and the spatial distribution of stress and pressure that evolve during such processes is largely unknown. We present here a natural example where a granulite is hydrated at amphibolite facies conditions from the Bergen Arcs in Norway. Granulitic garnet is associated with kyanite and quartz on one side, and amphibole-biotite on the other side. The first couple replaces the plagioclase of the granulite matrix whereas the second replaces the garnet. We use electron probe microanalysis (EPMA) and X-ray mapping to investigate the spatial and possible temporal relationships between these two parageneses. Gresens' analysis has been used to determine the mass balance and the local volume changes associated with the two reactions. The reaction to kyanite+quartz induces a loss in volume compared to the original plagioclase whereas the second reaction amphibole+biotite gains volume compared to the original garnet. The specific mass evolution associated with both reactions suggests a local mass balance probably associated with a single hydration event. Using the methodology of Vrijmoed & Podladchikov (2015) we test whether the microstructure may be partly related to the local stress heterogeneity around the garnet inclusion. We evaluate the phase assemblage and distribution at chemical equilibrium under a given input pressure field that can be computed with the Thermolab software. By varying the input pressure field using the Finite Element Method and comparing the resulting equilibrium assemblage to the real data an estimate of the local stress

  16. Ocean iron cycle

    Science.gov (United States)

    Boyd, Philip W.

    Interest in the biogeochemical cycle of iron has grown rapidly over the last two decades, due to the potential role of this element in modulating global climate in the geological past and ocean productivity in the present day. This trace metal has a disproportionately large effect (1 × 105 C:Fe) on photosynthetic carbon fixation by phytoplankton. In around one third of the open ocean, so-called high-nitrate low-chlorophyll (HNLC) regions, the resident phytoplankton have low growth rates despite an abundance of plant nutrients. This is due to the low supply of iron. Iron is present in the ocean in three phases, dissolved, colloidal, and particulate (biogenic and lithogenic). However, iron chemistry is complex with interactions between chemistry and biology such as the production of iron-binding siderophores by oceanic bacteria. This results in the interplay of inorganic chemistry, photochemistry, and organic complexation. Sources of new iron include dust deposition, upwelling of iron-rich deep waters, and the resuspension and lateral transport of sediments. Sinks for iron are mainly biological as evidenced by the vertical nutrient-like profile for dissolved iron in the ocean. Iron is rapidly recycled by the upper ocean biota within a so-called "ferrous wheel." The fe ratio [(new iron)/(new + regenerated iron)] provides an index of the relative supply of iron to the biota by new versus recycled iron. Over the last 15 years, interest in the potential role of iron in shaping climate in the geological past resulted in some of the most ambitious experiments in oceanography: large-scale (i.e., 50-1000 km2) iron enrichment of HNLC waters. They have provided valuable insights into how iron supply influences the biogeochemical cycles of elements such as carbon, sulfur, silicon, nitrogen, and phosphate.

  17. Polymetamorphism of the Variscan Basement of the Moldanubian Black Forest (Germany) Documented in Zircon and Garnet Minerals from Gneisses

    Institute of Scientific and Technical Information of China (English)

    陈福坤

    2002-01-01

    High-grade metamorphic Variscan basement is exposed in the Moldanubian zone of the Black Forest (BF), being the internal zone of the European Variscan belt. Zircon grains from K-rich felsic orthogneisses and an anatectic paragneiss in the Moldanubian Black Forest demonstrate a multi-stage crystallization at ~ 600 Ma, ~ 480 Ma, ~ 400 - 380 Ma, and ~350 Ma. The last three stages of crystallization probably represent metamorphic overprint during pre-Variscan and Variscan metamorphism.Using stepwise leaching procedures, garnet minerals from felsic orthogneisses as well as paragneisses in the Moldanubian Black Forest yielded Early Carboniferous Sm-Nd ages (~ 330- 340 Ma), which are consistent with the well-constrained Variscan HT metamorphic event,and Early Palaeozoic ( ~480 Ma) to Devonian ( ~400 - 370 Ma) Pb-Pb ages. The coincidence of growth time for zircon and garnet minerals at Early Palaeozoic is interpreted as dating a metamorphic event. These garnet data demonstrate that the Moldanubian BF basement underwent at least two metamorphic events during the Early Palaeozoic and Early Carboniferous.During the Variscan HT metamorphism, the Sm-Nd system of garnet was disturbed, but not the U-Pb system, implying the peak metamorphic temperature was lower than ~800℃.

  18. Daughter minerals in fluid inclusions of garnet and diopside from Tongguanshan Copper Deposit by SEM/EDS and LRM

    Institute of Scientific and Technical Information of China (English)

    Yuling Xie; Jiuhua Xu; Zengqian Hou; Zhusen Yang; Wenyi Xu; Yifeng Meng; Baohua Wang

    2004-01-01

    Tongguanshan copper deposit of Tongling large ore belt is one of the typical skarn copper deposits. Based on careful observation under microscope many daughter minerals including transparent ones and opaque ones have been distinguished in the fluid inclusions of garnet and diopside. The results of SEM/EDS (scanning electron microscope/energy dispersive spectrometer) and LRM (laser Raman microprobe) analysis show that these daughter minerals in garnet are sylvite, halite, sphalerite, chalcopyrite and carbonate. Sylvite daughter mineral is very popular in garnet and diopside. The existence of so much sylvite daughter mineral and other daughter minerals in the fluid inclusions indicates that the ore-forming fluid is of supper-high salinity and high potassium concentration. High potassium concentration in the fluid inclusions agrees with K-rich mesotype-acid rock and K-silicate alteration that occurred widely in this area. The daughter mineral assemblage in garnet and diopside is similar to the mineral assemblage of oreforming stage that followed skarn stage.

  19. An experimental investigation of the stability of majoritic garnet in the Earth's mantle and an improved majorite geobarometer

    Science.gov (United States)

    Wijbrans, C. H.; Rohrbach, A.; Klemme, S.

    2016-05-01

    The stability of the majorite component in garnet has been experimentally investigated at high pressure and high temperature, focusing on the effect of bulk composition and temperature. High-pressure experiments were performed in a multi-anvil apparatus, at pressures ranging from 6 to 14.5 GPa, and temperatures between 1400 and 1700 °C. Experiments were performed in a range of bulk compositions in the system SiO2-Al2O3-Cr2O3-CaO-MgO with varying Cr/(Cr + Al) ratios. The majorite content of garnet gradually increases with pressure, and the composition of the garnet, specifically the Cr/(Cr + Al) ratio, exerts a significant effect on the majorite substitution. We found no significant effect of temperature. We use the experimental results in combination with the literature data to derive two empirical geobarometers, which can be used to determine the equilibration pressure of natural majoritic garnets of peridotitic and eclogitic bulk compositions. The barometer for peridotitic compositions is {{P}} = - 77.1 + 27.6 × {{Si}} + 1.67 × {{Cr}} And the barometer for eclogitic compositions is {{P}} = - 29.6 + 11.8 × {{Si}} + 7.81 × {{Na}} + 4.49 × {{Ca}}.

  20. Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes.

    Science.gov (United States)

    Wang, Chengwei; Gong, Yunhui; Liu, Boyang; Fu, Kun; Yao, Yonggang; Hitz, Emily; Li, Yiju; Dai, Jiaqi; Xu, Shaomao; Luo, Wei; Wachsman, Eric D; Hu, Liangbing

    2017-01-11

    Solid-state electrolytes are known for nonflammability, dendrite blocking, and stability over large potential windows. Garnet-based solid-state electrolytes have attracted much attention for their high ionic conductivities and stability with lithium metal anodes. However, high-interface resistance with lithium anodes hinders their application to lithium metal batteries. Here, we demonstrate an ultrathin, conformal ZnO surface coating by atomic layer deposition for improved wettability of garnet solid-state electrolytes to molten lithium that significantly decreases the interface resistance to as low as ∼20 Ω·cm(2). The ZnO coating demonstrates a high reactivity with lithium metal, which is systematically characterized. As a proof-of-concept, we successfully infiltrated lithium metal into porous garnet electrolyte, which can potentially serve as a self-supported lithium metal composite anode having both high ionic and electrical conductivity for solid-state lithium metal batteries. The facile surface treatment method offers a simple strategy to solve the interface problem in solid-state lithium metal batteries with garnet solid electrolytes.

  1. Erbium-doped yttrium aluminum garnet as a magnetic refrigerant for low temperature x-ray detectors

    Science.gov (United States)

    Kushino, Akihiro; Aoki, Yuji; Yamasaki, Noriko Y.; Namiki, Takahiro; Ishisaki, Yoshitaka; Matsuda, Tatsuma D.; Ohashi, Takaya; Mitsuda, Kazuhisa; Yazawa, Takashi

    2001-12-01

    Garnets doped with rare-earth elements can be used in adiabatic demagnetization refrigerators. We have measured the specific heat and magnetization of a single crystal yttrium aluminum garnet (YAG) doped with 30% Er3+ ion at temperatures between 93 mK and 8 K under magnetic fields up to 8.0 T along the crystal axis. From the specific heat and magnetization, we derived consistent temperature and magnetic-field dependence of the magnetic entropy. Under zero magnetic field, the magnetic entropy begins to decrease below 2 K and becomes half of R ln 2 at ˜160 mK. This decrease is considered to be due to an antiferromagnetic short-range ordering among Er3+ ions. This behavior of the specific heat in the measured temperature range can be explained by a model in which both the crystalline-electric-field ground state and the first excited state are included. The operating temperature of the Er3+-doped YAG as a magnetic coolant is estimated to extend down to ˜100 mK, which is lower than those with nonsubstituted garnets such as gallium-gadolinium-garnet used in the range ˜4.2-15 K. With a doping level of 30%, we estimate that ˜6 kg of Er3+-doped YAG exhibits the same cooling performance at 60 mK as the 916 g of ferric-ammonium-alum salt used for the x-ray spectrometer (microcalorimeter detectors) on the Astro-E satellite.

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... This Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video— ... treatment. For more information about living with and managing iron-deficiency anemia, go to the Health Topics ...

  3. Iron in diet

    Science.gov (United States)

    ... meat (especially beef) Oysters Poultry, dark red meat Salmon Tuna Whole grains Reasonable amounts of iron are ... iron up to three times. Foods rich in vitamin C ( such as citrus, strawberries, tomatoes, and potatoes) ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich protein that carries oxygen from the lungs to the rest of the body. Iron-deficiency ... 2011 This video—presented by the National Heart, Lung, and Blood Institute, part of the National Institutes ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... deficiency anemia may require treatment in a hospital, blood transfusions , iron injections, or intravenous iron therapy. Rate This ... video—presented by the National Heart, Lung, and Blood Institute, part of the National ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... easily treated condition that occurs if you don't have enough iron in your body. Low iron ... can occur if your red blood cells don't contain enough hemoglobin (HEE-muh-glow-bin). Hemoglobin ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... muh-glow-bin). Hemoglobin is an iron-rich protein that carries oxygen from the lungs to the ... other complications. Infants and young children and women are the two groups at highest risk for iron- ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... severity of the condition. Treatments may include dietary changes, medicines, and surgery. Severe iron-deficiency anemia may require treatment in a hospital, blood ... With and Managing Iron-Deficiency Anemia 05/18/2011 This video— ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Events Spokespeople Email Alerts E-Newsletters About NHLBI Organization NHLBI Director Budget, Planning, & Legislative Advisory Committees Jobs ... the body. Iron-deficiency anemia usually develops over time if your body doesn't have enough iron ...

  10. Iron supplements (image)

    Science.gov (United States)

    The mineral iron is an essential nutrient for humans because it is part of blood cells, which carry oxygen to all body cells. There is no conclusive evidence that iron supplements contribute to heart attacks.

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... easily treated condition that occurs if you don't have enough iron in your body. Low iron ... can occur if your red blood cells don't contain enough hemoglobin (HEE-muh-glow-bin). Hemoglobin ...

  12. Metamorphic constraints on the Caledonian Upper Allochthon of Central Norway - the Gula Complex staurolite-garnet-kyanite mica schist

    Science.gov (United States)

    Engvik, A. K.; Grenne, T.; Lutro, O.; Meyer, G. B.

    2012-04-01

    Petrological studies of staurolite-garnet-kyanite-biotite schist and garnet-muscovite schist of the Gula Complex provide constraints on the metamorphic evolution of the Caledonian Upper Allochthon in the eastern Trondheim Region, Central Norway. The biotite schist contains conspicuous porphyroblasts of Fe-rich staurolite (Mg#=0.21-0.24), garnet (Alm64-71Prp13-19Grs3-11Sps7-20) and kyanite, set in a fine-grained, well foliated matrix of biotite (Mg#=0.57- 0.62), quartz, minor plagioclase (An19-31) and locally muscovite. The muscovite schist is fine to medium grained with a muscovite-quartz dominated matrix, including garnet (Alm54-70Prp10-14Grs12-25Sps1-11), biotite (Mg#=0.56-0.57), minor plagioclase (An31-45) and clinozoisite. P-T modeling based on thermobarometric calculations and construction of P-T pseudosections illustrates that significant mineralogical heterogeneity in the high grade mica schists arise from only modest geochemical heterogeneities in the original pelitic rocks. Based on garnet ±staurolite ±kyanite ±muscovite +biotite +plagioclase +quartz-assemblages, peak metamorphism reached 680 °C with pressures estimated to 1.01 ±0.11 GPa for the garnet-muscovite schist, and 0.86 ±0.12 GPa for the staurolite-garnet-kyanite-biotite schist. A clockwise P-T path is constrained by secondary mineral reactions; the replacement of kyanite to fibrous sillimanite indicates decompression below 0.65 GPa at elevated temperatures. Growth of foliation-parallel chlorite reflects cooling below 640 °C. Chlorite formation proceeded during cooling and decompression towards 550 °C and 0.4 GPa. Peak metamorphic conditions are associated with a strong N-S trending regional foliation, and the initial uplift continued within the same strain regime. The documented high grade metamorphism and subsequent decompression and retrogression of the Gula Complex metapelites prevailed during the mid-Silurian continent-continent collision and Caledonian burial and exhumation of the

  13. High-perfomance Ce-doped multicomponent garnet single crystalline film scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Zorenko, Yu.; Gorbenko, V.; Zorenko, T. [Institute of Physics, Kazimierz Wielki, University in Bydgoszcz, Powstancow, Wielkopolskich str., 2, 85090, Bydgoszcz (Poland); Department of Electronics of Ivan Franko, National University of Lviv, Gen. Tarnavskiy str. 17, 79017, Lviv (Ukraine); Sidletskiy, O. [Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenina str., 60, 61001, Kharkiv (Ukraine); Fedorov, A. [SSI Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenina str., 60, 61178, Kharkiv (Ukraine); Bilski, P.; Twardak, A. [Institute of Nuclear Physic, Polish Academy of Sciences, Radzikowskiego str., 176, 31-342, Krakow (Poland)

    2015-08-15

    We report for the first time the optimized content and excellent scintillation properties of single crystalline film (SCF) scintillators of multicomponent Gd{sub 3-x}Lu{sub x} Al{sub 5-y}Ga{sub y} O{sub 12}:Ce garnet compounds grown by liquid phase epitaxy (LPE) method. The Gd{sub 1.5}Lu{sub 1.5}Al{sub 2.75}Ga{sub 2.25}O{sub 12}:Ce and Gd{sub 3}Al{sub 2.75-2}Ga{sub 2.25-3}O{sub 12}:Ce SCF show the light yield (LY) comparable with that of high-quality bulk crystal analogues of these garnets but faster scintillation decay and very low thermoluminescence in the above room temperature range. To our knowledge, these SCF possess the highest LY values ever obtained in LPE grown garnet SCF scintillators exceeding by at least 1.5-1.6 times the values previously reported for SCF scintillators. Left figure: image of Gd{sub 1.5}Lu{sub 1.5}Al{sub 2.75}Ga{sub 2.25}O{sub 12}:Ce (PbO) (inset, left) and Gd{sub 3}Al{sub 2.35}Ga{sub 2.65}O{sub 12}:Ce (BaO) (inset, right) SCF scintillators, grown by LPE method onto Gd{sub 3}Al{sub 2.5}Ga{sub 2.5}O{sub 12} (GAGG) substrate; in the middle, green-yellow light emitting by Gd{sub 1.5}Lu{sub 1.5}Al{sub 2.75}Ga{sub 2.25}O{sub 12}:Ce (BaO) SCF under 350 nm laser illumination. Right figure: XRD pattern of (1200) planes of the Gd{sub 1.5}Lu{sub 1.5}Al{sub 2.75}Ga{sub 2.25}O{sub 12}:Ce (PbO) (black) and Gd{sub 3}Al{sub 2.75}Ga{sub 2.25}O{sub 12}:Ce (BaO) (red) SCFs, grown onto GAGG substrates. The film/substrate lattice misfit is -0.73% and -0.3%, respectively. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Iron age: novel targets for iron overload.

    Science.gov (United States)

    Casu, Carla; Rivella, Stefano

    2014-12-05

    Excess iron deposition in vital organs is the main cause of morbidity and mortality in patients affected by β-thalassemia and hereditary hemochromatosis. In both disorders, inappropriately low levels of the liver hormone hepcidin are responsible for the increased iron absorption, leading to toxic iron accumulation in many organs. Several studies have shown that targeting iron absorption could be beneficial in reducing or preventing iron overload in these 2 disorders, with promising preclinical data. New approaches target Tmprss6, the main suppressor of hepcidin expression, or use minihepcidins, small peptide hepcidin agonists. Additional strategies in β-thalassemia are showing beneficial effects in ameliorating ineffective erythropoiesis and anemia. Due to the suppressive nature of the erythropoiesis on hepcidin expression, these approaches are also showing beneficial effects on iron metabolism. The goal of this review is to discuss the major factors controlling iron metabolism and erythropoiesis and to discuss potential novel therapeutic approaches to reduce or prevent iron overload in these 2 disorders and ameliorate anemia in β-thalassemia.

  15. Iron deficiency anemia

    OpenAIRE

    Naigamwalla, Dinaz Z.; Webb, Jinelle A.; Giger, Urs

    2012-01-01

    Iron is essential to virtually all living organisms and is integral to multiple metabolic functions. The most important function is oxygen transport in hemoglobin. Iron deficiency anemia in dogs and cats is usually caused by chronic blood loss and can be discovered incidentally as animals may have adapted to the anemia. Severe iron deficiency is characterized by a microcytic, hypochromic, potentially severe anemia with a variable regenerative response. Iron metabolism and homeostasis will be ...

  16. Polyphase deformation and garnet growth in politic schists of Sausar Group in Ramtek area, Maharashtra, India: A study of porphyroblast–matrix relationship

    Indian Academy of Sciences (India)

    A Chattopadhyay; N Ghosh

    2007-10-01

    Polyphase deformation and metamorphism of pelitic schists of Chorbaoli Formation of Sausar Group in and around Ramtek area,Nagpur district,Maharashtra,India has led to the development of garnet and staurolite porphyroblasts in a predominantly quartz –mica matrix.Microstructural study of oriented thin sections of these rocks shows that garnet and staurolite have different growth histories and these porphyroblasts share a complex relationship with the matrix.Garnet shows at least two phases of growth –first intertectonic between D1 and D2 (pre-D2 phase)and then syn-tectonic to post-tectonic with respect to D2 deformation.Growth of later phase of garnet on the earlier (pre-D2 garnet grains has led to the discordance of quartz inclusion trails between core and rim portion of the same garnet grain.Staurolite develops only syn-D2 and shows close association with garnet of the later phase.The peak metamorphic temperature thus coincided with D2 deformation,which developed the dominant crenulation schistosity (S2 ,regionally persistent in the terrain.The metamorphic grade reached up to middle amphibolite facies in the study area, which is higher than the adjoining southern parts of Sausar Fold Belt.

  17. Iron-Deficiency Anemia

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, ... Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by ...

  18. Iron-Deficiency Anemia

    Science.gov (United States)

    ... the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily ... Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily ... Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily ... Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... blood transfusions , iron injections, or intravenous iron therapy. Rate This Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the National Heart, Lung, and Blood Institute, part of the National ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... blood transfusions , iron injections, or intravenous iron therapy. Rate This Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the National Heart, Lung, and Blood Institute, part of the National ...

  3. Garnet-bearing Granulite Facies Rock Xenoliths from Late Mesozoic Volcaniclastic Breccia, Xinyang, Henan Province

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents the primary results of petrologic,mineralogical and petrochemical studies of garnet beating granulite facies rock xenoliths from Xinyang, Henan Province. These xenoliths, which are found in a pipe of late Mesozoic volcaniclastic breccia, are of high density (3.13-3.30 g/cm3) and high seismic velocity (Vp = 7.04-7.31 km/s), being products of underplating of basaltic magmas and had experienced granulite facies metamorphism. The underplating and metamorphism took place before the eruption of the host rock. Petrographical studies and equilibrium T-P calculations show that these xenoliths were captured at a 49 km depth and experienced at least a 16 km uplift before they were captured. The dynamics of the uplift could be related to the continent-continent collision between the North China plate and the Yangtze plate during the Triassic.

  4. Sol-gel Synthesis and Characterisation of NanocrystallineYttrium Aluminum Garnet Nanopowder

    Directory of Open Access Journals (Sweden)

    Kiranmala Devi

    2008-07-01

    Full Text Available The synthesis of  yttrium aluminum garnet (YAG (Y3 Al5O12 nanopowder was carried outby sol-gel method. Y(NO33.6H2O, Al(NO33.9H2O in the presence of citric acid as complexing agent were used as starting materials. YAG nanopowder was characterised by FTIR, TGA, andXRD. To get phase-pure nanocrystalline YAG powder at relatively lower temperature, calcinationat various temperatures was studied and calcination temperature was optimised. Particle size,estimated by XRD using Scherrer's equation, was found to be 28Œ35 nm which was further confirmed by transmission electron microscopy. The particle morphology was studied by SEM.Defence Science Journal, 2008, 58(4, pp.545-549, DOI:http://dx.doi.org/10.14429/dsj.58.1675

  5. Garnet and clinopyroxene pseudomorphs: example of local mass balance in the Caledonides of western Norway.

    Science.gov (United States)

    Centrella, Stephen; Austrheim, Håkon; Putnis, Andrew

    2015-04-01

    The Precambrian granulite facies rocks of Lindås Nappe, Bergen Arcs, Caledonides of W.Norway are partially hydrated at amphibolites and eclogite facies conditions. The Lindås Nappe outcrop over an area of ca 1000 km2 where relict granulite facies lenses make up only ca 10%. At Hillandsvatnet, garnetite displays sharp hydration fronts across which the granulite facies assemblage composed of garnet (70%) and clinopyroxene (30%) is replaced by an amphibolite facies mineralogy defined by chlorite, epidote and amphibole. This setting allows us to assess the mechanism of fluid transport through an initially low permeability rock and how this induces changes of texture and element transport. The replacement of garnet and clinopyroxene is pseudomorphic so that the grain shapes of the garnet and clinopyroxene are preserved even if when they are completely replaced. This requires that the reactive fluids must pass through the solid crystal grains and this can be achieved by an interface coupled dissolution-precipitation mechanism. Porosity generation is a key feature of this mechanism (Putnis and Austrheim 2012). The porosity is not only a consequence of reduction in solid molar volume but depends on the relative solubilities of parent and product phases in the reactive fluid. Putnis et al. 2007 and Xia et al. 2009 have shown that even in pseudomorphic reactions where the molar volume increases, porosity may still be generated by the reaction. This is fundamental in understanding the element mobility and the mass transfer in a low permeability rock even more when the bulk rock composition of these two rocks stay unchanged; except a gain in water during amphibolitisation. The textural evolution during the replacement of garnet by pargasite, epidote and chlorite and pyroxene by hornblende and quartz in our rock sample conforms to that expected by a coupled dissolution-precipitation mechanism. SEM and Microprobe analysis coupled with the software XMapTools V 1.06.1 .(Lanari

  6. Uphill diffusion, zero-flux planes and transient chemical solitary waves in garnet

    Science.gov (United States)

    Vielzeuf, D.; Saúl, A.

    2011-05-01

    Diffusion profiles in minerals are increasingly used to determine the duration of geological events. For this purpose, the distinction between growth and diffusion zoning is critical; it requires the understanding of complex features associated with multicomponent diffusion. Seed-overgrowth interdiffusion experiments carried out in the range 1,050-1,250°C at 1.3 GPa have been designed to quantify and better understand Fe-Mg-Ca interdiffusion in garnet. Some of the diffusion profiles measured by analytical transmission electron microscope show characteristic features of multicomponent diffusion such as uphill diffusion, chemical solitary waves, zero-flux planes and complex diffusion paths. We implemented three different methods to calculate the interdiffusion coefficients of the D matrix from the experimental penetration curves and determined that with Ca as the dependent component, the crossed coefficients of the D matrix are negative. Experiments and numerical simulations indicate that: (1) uphill diffusion in garnet can be observed indifferently on the three components Fe, Mg and Ca, (2) it takes the form of complementary depletion/repletion waves and (3) chemical waves occur preferentially on initially flat concentration profiles. Derived D matrices are used to simulate the fate of chemical waves in time, in finite crystals. These examples show that the flow of atoms in multicomponent systems is not necessarily unidirectional for all components; it can change both in space along the diffusion profile and in time. Moving zero-flux planes in finite crystals are transitory features that allow flux reversals of atoms in the diffusion zone. Interdiffusion coefficients of the D matrices are also analyzed in terms of eigenvalues and eigenvectors. This analysis and the experimental results show that depending on the composition of the diffusion couple, (1) the shape of chemical waves and diffusion paths changes; (2) the width of the diffusion zone for each component

  7. Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guojian; Lou, Chaogang; Kang, Jian; Zhang, Hao [School of Electronic Science and Engineering, Southeast University, Nanjing 210096, Jiangsu Province (China)

    2015-12-21

    Ce-doped yttrium aluminum garnet (YAG:Ce) thin films as luminescent down shifting (LDS) materials are introduced into the module of crystalline silicon solar cells. The films are deposited by RF magnetron sputtering on the lower surface of the quartz glass. They convert ultraviolet and blue light into yellow light. Experiments show that the introduction of YAG:Ce films improves the conversion efficiency from 18.45% of the cells to 19.27% of the module. The increasing efficiency is attributed to LDS effect of YAG:Ce films and the reduced reflection of short wavelength photons. Two intentionally selected samples with similar reflectivities are used to evaluate roughly the effect of LDS alone on the solar cells, which leads to a relative increase by 2.68% in the conversion efficiency.

  8. Luminescence Properties of Ce3 +-Doped Terbium Aluminum Garnet Phosphor Prepared with Use of Nanostructured Reagents

    Directory of Open Access Journals (Sweden)

    I.V. Berezovskaya

    2013-03-01

    Full Text Available The paper describes the synthesis of Ce3 +-doped terbium aluminum garnet (TAG phosphors with use of nanostructured oxides of aluminum and rare earths. Aluminum oxide nanoparticles were obtained by gaseous-disperse synthesis and characterized by X-ray diffraction, differential thermal analysis and scanning electron microscopy. It was shown that the Ce3 + ions in TAG exhibit the intense broad band emission with a maximum at about 563 nm and the quantum efficiency of luminescence of the Тb3(1 – xCe3xAl5O12 (х = 0.03 phosphor was found as high as 0.83.

  9. Transverse magneto-optical Kerr effect in 2D gold–garnet nanogratings

    Energy Technology Data Exchange (ETDEWEB)

    Chetvertukhin, A.V., E-mail: chetvertukhin@gmail.com [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Musorin, A.I.; Dolgova, T.V. [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Uchida, H. [Tohoku Institute of Technology, Sendai, Miyagi 982-8577 (Japan); Inoue, M. [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Fedyanin, A.A., E-mail: fedyanin@nanolab.phys.msu.ru [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2015-06-01

    Planar magnetoplasmonic nanogratings composed of a two-dimensional square array of gold nanoparticles embedded into thin magnetic garnet films are proposed for enhancement of the transverse magneto-optical Kerr effect due to excitation of a quasi-waveguiding mode with light concentrated mostly inside the magnetic film. A proper optimisation of the size and periodicity of plasmonic nanoparticles as well as the thickness of magnetic dielectrics allows spectral tuning of the waveguiding mode leading to the sharp asymmetric resonance in the magneto-optical response in the desired spectral region. - Highlights: • TMOKE in hybrid 2D magnetoplasmonic nanogratings is studied experimentally. • The enhancement of TMOKE is attributed to excitation of a quasi-waveguiding mode. • Quasi-waveguiding mode provides sharp asymmetric resonance of the TMOKE.

  10. Evidence of dilute ferromagnetism in rare-earth doped yttrium aluminium garnet

    Energy Technology Data Exchange (ETDEWEB)

    Farr, Warrick G.; Goryachev, Maxim; Le Floch, Jean-Michel; Tobar, Michael E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 (Australia); Bushev, Pavel [Experimentalphysik, Universität des Saarlandes, D-66123 Saarbrücken (Germany)

    2015-09-21

    This work demonstrates strong coupling regime between an erbium ion spin ensemble and microwave hybrid cavity-whispering gallery modes in a yttrium aluminium garnet dielectric crystal. Coupling strengths of 220 MHz and mode quality factors in excess of 10{sup 6} are demonstrated. Moreover, the magnetic response of high-Q modes demonstrates behaviour which is unusual for paramagnetic systems. This behaviour includes hysteresis and memory effects. Such qualitative change of the system's magnetic field response is interpreted as a phase transition of rare earth ion impurities. This phenomenon is similar to the phenomenon of dilute ferromagnetism in semiconductors. The clear temperature dependence of the phenomenon is demonstrated.

  11. Low temperature properties of the gadolinium gallium garnet: Monte Carlo versus experiments

    Science.gov (United States)

    Gingras, Michel; Yavors'kii, Taras

    2004-03-01

    Due to an arrangement of magnetic ions on triangular lattices and a negligible single-ion anisotropy, the gadolinium gallium garnet Gd_3Ga_5O_12 (GGG) is an example of a magnet with a very high geometrical frustration. The frustration is believed to be responsible for its unique magnetic properties at low temperatures by amplifying the competition between different microscopic mechanisms. These properties include extended short-range order in GGG, unusual features in its magnetic and thermal characteristics, as well as spin dynamics down to the lowest temperature. We use classical Monte Carlo simulations to investigate the low temperature properties of the system and make comparison with experiments. In particular, we study the nature of the spin-spin correlations developing at low temperatures and compare our results with the data from elastic neutron scattering experiments on isotopically enriched GGG samples.

  12. Synthesis, magnetic properties, surface modification and cytotoxicity evaluation of Y{sub 3}Fe{sub 5-x}Al{sub x}O{sub 12} (0{<=}x{<=}2) garnet submicron particles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Grasset, Fabien; Mornet, S.Stephane; Demourgues, Alain; Portier, Josik; Bonnet, Jacques; Vekris, Antoine; Duguet, Etienne E-mail: duguet@icmcb.u-bordeaux.fr

    2001-09-01

    Yttrium aluminum iron garnet Y{sub 3}Fe{sub 5-x}Al{sub x}O{sub 12} compounds were produced by the citrate gel process by varying the aluminum content x from 0 to 2. Particles with an average size of about 100 nm and a specific surface area ranging from 6 to 28 m{sup 2}/g were obtained. Curie temperatures (T{sub C}) were determined from the temperature dependence of the field-cooled magnetization (FCM) and the remnant magnetization (REM) and range from -40 deg. C to 280 deg. C. According to the magnetic moment variation, the aluminum cation seems to replace the iron cation in the tetrahedral site for compounds with x<0.7. 3-Aminopropyltrimethoxysilane ({gamma}-APS) was grafted onto the particles surface and its presence confirmed by infra-red spectroscopy. Cytotoxicity assays were carried out during a period of 13 days using human microglia and rat glioblastoma cell lines. The presence of the amine-functionalized particles did not affect the cell viability or the culture growth rate. Finally, amine-functionalized particles were successfully labeled with covalently linked fluorescing molecules.

  13. Genesis and tectono-magmatic setting of Sadrabad iron Skarn (west of Yazd

    Directory of Open Access Journals (Sweden)

    Saeid Moshtagh

    2016-12-01

    Full Text Available The Sadrabad iron deposit is located 28 km west of Sadrabad village (west of Yazd at the Urumieh-Dokhtar magmatic arc. The Upper Triassic-lower Jurassic sedimentary rocks (dolomitic limestone, sandstone, shale and marl, the Cenozoic granite to dioritic intrusive bodies and the Quaternary unconsolidated deposits outcrop in the study area. The intrusive bodies are of I-type calc-alkaline series formed in syn-collision to post collision settings of continental margin subduction zone. The later quartz monzodiorite intrusions played a significant role in iron mineralization. The location of mineralization controlled by NW-SE and NE-SW fault systems. Olivine, clinopyroxene, garnet, tremolite-actinolite, epidote, serpentine, talc, phlogopite, calcite, dolomite, brucite and hydromagnesite are the main skarn minerals. The ore bodies consist mainly of magnetite with minor pyrite, chalcopyrite and pyrhotite which occur as massive, vein-veinlets, brecciate and disseminated magnetite. Skarn formation occurs in two prograde and retrograde stages. Olivine, clinopyroxene and garnet formed in prograde and the remaining minerals in retrograde stages. The temperature and salinity of fluid inclusions in quartz veins associated with serpentine (in retrograde stage range from 217 to 280˚c and 8 to 16 (wt % NaCl respectively, indicating the mixing of magmatic and meteoric water in retrograde stage. The Mg-bearing silicates such as serpentine, phlogopite, diopside and talc in the Sadrabad skarn, point to the mineralization of magnesian type.

  14. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes

    Science.gov (United States)

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-01

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li6.4La3Zr1.4Ta0.6O12, LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li2CO3. Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g−1carbon at 20 μA cm−2. Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g−1carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g−1carbon at 20 μA cm−2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage. PMID:28117359

  15. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes

    Science.gov (United States)

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-01

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li6.4La3Zr1.4Ta0.6O12, LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li2CO3. Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g‑1carbon at 20 μA cm‑2. Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g‑1carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g‑1carbon at 20 μA cm‑2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage.

  16. X-ray color maps of the zoned garnets from Silgará Formation metamorphic rocks,SantanderMassif, Eastern Cordillera (Colombia

    Directory of Open Access Journals (Sweden)

    Takasu Akira

    2010-12-01

    Full Text Available

    The metamorphic rocks of the Lower Paleozoic Silgará Formation of the Santander Massif, Eastern Cordillera (Colombia, were affected by a Barrovian-type metamorphism under low to high temperature and medium pressure conditions. These rocks contain garnet porphyroblasts, which show several kinds of chemical zoning patterns. The garnet grains behave as closed systems with respect to the rock matrix. Most of the observed zoning patterns are due to gradual changes in physicochemical conditions during growth. However, some garnet grains show complex zoning patterns during multiple deformation and metamorphic events.

  17. Macrophages and Iron Metabolism.

    Science.gov (United States)

    Soares, Miguel P; Hamza, Iqbal

    2016-03-15

    Iron is a transition metal that due to its inherent ability to exchange electrons with a variety of molecules is essential to support life. In mammals, iron exists mostly in the form of heme, enclosed within an organic protoporphyrin ring and functioning primarily as a prosthetic group in proteins. Paradoxically, free iron also has the potential to become cytotoxic when electron exchange with oxygen is unrestricted and catalyzes the production of reactive oxygen species. These biological properties demand that iron metabolism is tightly regulated such that iron is available for core biological functions while preventing its cytotoxic effects. Macrophages play a central role in establishing this delicate balance. Here, we review the impact of macrophages on heme-iron metabolism and, reciprocally, how heme-iron modulates macrophage function.

  18. [Iron function and carcinogenesis].

    Science.gov (United States)

    Akatsuka, Shinya; Toyokuni, Shinya

    2016-07-01

    Though iron is an essential micronutrient for humans, the excess state is acknowledged to be associated with oncogenesis. For example, iron overload in the liver of the patients with hereditary hemocromatosis highly increases the risk of hepatocellular carcinoma. Also, as to asbestos-related mesothelioma, such kinds of asbestos with a higher iron content are considered to be more carcinogenic. Iron is a useful element, which enables fundamental functions for life such as oxygen carrying and electron transport. However, in the situation where organisms are unable to have good control of it, iron turns into a dangerous element which catalyzes generation of reactive oxygen. In this review, I first outline the relationships between iron and cancer in general, then give an explanation about iron-related animal carcinogenesis models.

  19. New rat models of iron sucrose-induced iron overload.

    Science.gov (United States)

    Vu'o'ng Lê, Bá; Khorsi-Cauet, Hafida; Villegier, Anne-Sophie; Bach, Véronique; Gay-Quéheillard, Jérôme

    2011-07-01

    The majority of murine models of iron sucrose-induced iron overload were carried out in adult subjects. This cannot reflect the high risk of iron overload in children who have an increased need for iron. In this study, we developed four experimental iron overload models in young rats using iron sucrose and evaluated different markers of iron overload, tissue oxidative stress and inflammation as its consequences. Iron overload was observed in all iron-treated rats, as evidenced by significant increases in serum iron indices, expression of liver hepcidin gene and total tissue iron content compared with control rats. We also showed that total tissue iron content was mainly associated with the dose of iron whereas serum iron indices depended essentially on the duration of iron administration. However, no differences in tissue inflammatory and antioxidant parameters from controls were observed. Furthermore, only rats exposed to daily iron injection at a dose of 75 mg/kg body weight for one week revealed a significant increase in lipid peroxidation in iron-treated rats compared with their controls. The present results suggest a correlation between iron overload levels and the dose of iron, as well as the duration and frequency of iron injection and confirm that iron sucrose may not play a crucial role in inflammation and oxidative stress. This study provides important information about iron sucrose-induced iron overload in rats and may be useful for iron sucrose therapy for iron deficiency anemia as well as for the prevention and diagnosis of iron sucrose-induced iron overload in pediatric patients.

  20. Unraveling the polymetamorphic history of garnet-bearing metabasites: Insights from the North Motagua Mélange (Guatemala Suture Zone)

    Science.gov (United States)

    Bonnet, G.; Flores, K. E.; Martin, C.; Harlow, G. E.

    2014-12-01

    The Guatemala Suture Zone is the fault-bound region in central Guatemala that contains the present North American-Caribbean plate boundary. This major composite geotectonic unit contains a variety of ophiolites, serpentinite mélanges, and metavolcano-sedimentary sequences along with high-grade schists, gneisses, low-grade metasediments and metagranites thrusted north and south of the active Motagua fault system (MFS). The North Motagua Mélange (NMM) outcrops north of the MFS and testifies the emplacement of exhumed subduction assemblages along a collisional tectonic setting. The NMM is composed of a serpentinite-matrix mélange that contains blocks of metabasites (subgreenschist facies metabasalt, grt-blueschist, eclogite, grt-amphibolite), vein-related rocks (jadeitite, omphacitite, albitite, mica-rock), and metatrondhjemites. Our new detailed petrographic and thermobarometric study on the garnet-bearing metabasites reveals a complex polymetamorphic history with multiple tectonic events. Eclogites show a classical clockwise PT path composed of (a) prograde blueschist/eclogite facies within garnet cores, (b) eclogite facies metamorphic peak at ~1.7 GPa and 620°C, (c) post-peak blueschist facies, (d) amphibolite facies overprint, and (e) late stage greenschist facies. Two types of garnet amphibolite blocks can be found, the first consist of (a) a relict eclogite facies peak at ~1.3 GPa and 550°C only preserved within anhedral garnet cores, and (b) surrounded by a post-peak amphibolite facies. In contrast, the second type displays a prograde amphibolite facies at 0.6-1.1 GPa and 400-650°C. The eclogites metamorphic peak suggests formation in a normal subduction zone at ~60 km depth, a subsequent exhumation to the middle section of the subduction channel (~35 km), and a later metamorphic reworking at lower P and higher T before its final exhumation. The first type of garnet amphibolite shows a similar trajectory as the eclogites but at warmer conditions. In

  1. Malabsorption of iron in children with iron deficiency.

    Science.gov (United States)

    Gross, S J; Stuart, M J; Swender, P T; Oski, F A

    1976-05-01

    Inability to absorb oral iron is believed to be an extremely rare cause of therapeutic failure in the treatment of iron deficiency anemia. Six patients who had failed to respond to oral iron therapy were studied by a simple oral absorption test and contrasted with 25 patients with untreated iron deficiency anemia and 10 normal subjects. All six of the patients who were therapeutic failures demonstrated impaired iron absorption in the absence of other clinical evidence of gastrointestinal disease. In the 25 newly diagnosed patients with iron deficiency. 24 demonstrated elevated iron absorptions while 10 ironreplete normal subjects had minimal elevations in their serum iron values following the administration of the test dose of 1 mg of elemental iron per kilogram. When the therapeutic failures were treated with parenteral iron, all had a therapeutic response. In addition, after treatment the impaired absorption of iron improved transiently. All children who absorbed iron readily responded to oral iron therapy.

  2. Iron chelating agents for iron overload diseases

    Directory of Open Access Journals (Sweden)

    Guido Crisponi

    2014-09-01

    Full Text Available Although iron is an essential element for life, an excessive amount may become extremely toxic both for its ability to generate reactive oxygen species, and for the lack in humans of regulatory mechanisms for iron excretion. Chelation therapy has been introduced in clinical practice in the seventies of last century to defend thalassemic patients from the effects of iron overload and, in spite of all its limitations, it has dramatically changed both life expectancy and quality of life of patients. It has to be considered that the drugs in clinical use present some disadvantages too, this makes urgent new more suitable chelating agents. The requirements of an iron chelator have been better and better defined over the years and in this paper they will be discussed in detail. As a final point the most interesting ligands studied in the last years will be presented.

  3. Early Triassic change in the erosional level in the eastern part of the Bohemian Massif revealed by detrital garnet assemblages from the Buntsandstein siliciclastics of southern Poland

    Science.gov (United States)

    Kowal-Linka, Monika; Walczak, Klaudia

    2017-04-01

    Garnets, as constituents of various magmatic and metamorphic rocks, show different chemical compositions depending on the type of magma or primary rock, the temperature, and the pressure. This diversity of chemical compositions makes detrital garnets a very useful tool for provenance analysis and deciphering changes in erosional levels of source areas. Preliminary works reveal that the Lower and Middle Buntsandstein terrigenous and marine sandstones cropping out in southern Poland (50˚ 28'20"N, 18˚ 04'33"E and 50˚ 27'35"N, 18˚ 07'23"E) are characterized by very different heavy mineral assemblages (HMA) and types of detrital garnets. The aim of the research is to recognize the source areas and causes of these distinct variations using petrographic analysis, heavy mineral analysis, and electron probe microanalysis. During the Early Triassic, the area under study was located between two landmasses: the eastern margin of the Bohemian Massif (BM) to the west and Pre-Carpathian Land (PCL) to the east. Presently, the sampled area is situated ˜50 km from the NE margin of the BM, which consists of many garnet-bearing rocks and is a presumable source area for the examined grains. The PCL was hidden under the Carpathians during the Alpine orogeny and knowledge of its composition is very limited. Petrographic analysis shows that the older sandstones are red to rusty quartz arenites with a hematite-rich matrix and well-rounded grains (aeolian deposits). The younger sandstones are bicolored quartz wackes (dirty pink with grey patches) with a calcite matrix and angular to rounded grains (shallow marine deposits). The arenites contain zircon, tourmaline, and rutile grains accompanied by garnet, staurolite, apatite, and topaz. The opaque heavy minerals include ilmenite, ilmenite-rutile aggregates, magnetite and rarely chromian spinel. In contrast, the HMA from the wackes consist mostly of garnets, while the minerals listed above occur in subordinate amounts. The garnets from

  4. Partition coefficients for REE between garnets and liquids - Implications of non-Henry's Law behaviour for models of basalt origin and evolution

    Science.gov (United States)

    Harrison, W. J.

    1981-01-01

    An experimental investigation of Ce, Sm and Tm rare earth element (REE) partition coefficients between coexisting garnets (both natural and synthetic) and hydrous liquids shows that Henry's Law may not be obeyed over a range of REE concentrations of geological relevance. Systematic differences between the three REE and the two garnet compositions may be explained in terms of the differences between REE ionic radii and those of the dodecahedral site into which they substitute, substantiating the Harrison and Wood (1980) model of altervalent substitution. Model calculations demonstrate that significant variation can occur in the rare earth contents of melts produced from a garnet lherzolite, if Henry's Law partition coefficients do not apply for the garnet phase.

  5. A Previously Unrecognized Example of the Shock-Induced Breakdown of Biotite to Garnet from the Steen River Impact Structure, Canada

    Science.gov (United States)

    Walton, E. L.; Sharp, T. G.; Hu, J.; Tschauner, O.

    2016-08-01

    The novel shock-induced transformation of biotite to almandine garnet accompanied by fluid release and Fe-oxidation is reported from those grains adjacent to shock veins in crystalline basement rocks of the Steen River impact structure.

  6. Partition coefficients for REE between garnets and liquids - Implications of non-Henry's Law behaviour for models of basalt origin and evolution

    Science.gov (United States)

    Harrison, W. J.

    1981-01-01

    An experimental investigation of Ce, Sm and Tm rare earth element (REE) partition coefficients between coexisting garnets (both natural and synthetic) and hydrous liquids shows that Henry's Law may not be obeyed over a range of REE concentrations of geological relevance. Systematic differences between the three REE and the two garnet compositions may be explained in terms of the differences between REE ionic radii and those of the dodecahedral site into which they substitute, substantiating the Harrison and Wood (1980) model of altervalent substitution. Model calculations demonstrate that significant variation can occur in the rare earth contents of melts produced from a garnet lherzolite, if Henry's Law partition coefficients do not apply for the garnet phase.

  7. Iron deficiency anaemia.

    Science.gov (United States)

    Lopez, Anthony; Cacoub, Patrice; Macdougall, Iain C; Peyrin-Biroulet, Laurent

    2016-02-27

    Anaemia affects roughly a third of the world's population; half the cases are due to iron deficiency. It is a major and global public health problem that affects maternal and child mortality, physical performance, and referral to health-care professionals. Children aged 0-5 years, women of childbearing age, and pregnant women are particularly at risk. Several chronic diseases are frequently associated with iron deficiency anaemia--notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease. Measurement of serum ferritin, transferrin saturation, serum soluble transferrin receptors, and the serum soluble transferrin receptors-ferritin index are more accurate than classic red cell indices in the diagnosis of iron deficiency anaemia. In addition to the search for and treatment of the cause of iron deficiency, treatment strategies encompass prevention, including food fortification and iron supplementation. Oral iron is usually recommended as first-line therapy, but the most recent intravenous iron formulations, which have been available for nearly a decade, seem to replenish iron stores safely and effectively. Hepcidin has a key role in iron homoeostasis and could be a future diagnostic and therapeutic target. In this Seminar, we discuss the clinical presentation, epidemiology, pathophysiology, diagnosis, and acute management of iron deficiency anaemia, and outstanding research questions for treatment.

  8. The ubiquity of iron.

    Science.gov (United States)

    Frey, Perry A; Reed, George H

    2012-09-21

    The importance of iron in living systems can be traced to the many complexes within which it is found, to its chemical mobility in undergoing oxidation-reduction reactions, and to the abundance of iron in Earth's crust. Iron is the most abundant element, by mass, in the Earth, constituting about 80% of the inner and outer cores of Earth. The molten outer core is about 8000 km in diameter, and the solid inner core is about 2400 km in diameter. Iron is the fourth most abundant element in Earth's crust. It is the chemically functional component of mononuclear iron complexes, dinuclear iron complexes, [2Fe-2S] and [4Fe-4S] clusters, [Fe-Ni-S] clusters, iron protophorphyrin IX, and many other complexes in protein biochemistry. Metals such as nickel, cobalt, copper, and manganese are present in the crust and could in principle function chemically in place of iron, but they are scarce in Earth's crust. Iron is plentiful because of its nuclear stability in stellar nuclear fusion reactions. It seems likely that other solid planets, formed by the same processes as Earth, would also foster the evolution of life and that iron would be similarly important to life on those planets as it is on Earth.

  9. The formation and the geochemical and thermal evolution of the lithospheric mantle beneath the Kaapvaal craton recorded by subcalcic garnets from harzburgites and by pristine eclogites and garnet-pyroxenites

    OpenAIRE

    Shu, Qiao

    2013-01-01

    The mantle xenoliths collected by kimberlites indicate that the subcratonic mantle underneath the Archean crust is mostly a residue of high degrees of partial melting which was subsequently reenriched. The majority of the xenoliths show cryptic metasomatism and only few modal metasomatism. Much effort has been put into deciphering different kinds of enrichment processes within the mantle. Here, we take the approach to look into the inventory of subcalcic garnets which stem from cpx-free ha...

  10. Brain iron homeostasis.

    Science.gov (United States)

    Moos, Torben

    2002-11-01

    Iron is essential for virtually all types of cells and organisms. The significance of the iron for brain function is reflected by the presence of receptors for transferrin on brain capillary endothelial cells. The transport of iron into the brain from the circulation is regulated so that the extraction of iron by brain capillary endothelial cells is low in iron-replete conditions and the reverse when the iron need of the brain is high as in conditions with iron deficiency and during development of the brain. Whereas there is good agreement that iron is taken up by means of receptor-mediated uptake of iron-transferrin at the brain barriers, there are contradictory views on how iron is transported further on from the brain barriers and into the brain extracellular space. The prevailing hypothesis for transport of iron across the BBB suggests a mechanism that involves detachment of iron from transferrin within barrier cells followed by recycling of apo-transferrin to blood plasma and release of iron as non-transferrin-bound iron into the brain interstitium from where the iron is taken up by neurons and glial cells. Another hypothesis claims that iron-transferrin is transported into the brain by means of transcytosis through the BBB. This thesis deals with the topic "brain iron homeostasis" defined as the attempts to maintain constant concentrations of iron in the brain internal environment via regulation of iron transport through brain barriers, cellular iron uptake by neurons and glia, and export of iron from brain to blood. The first part deals with transport of iron-transferrin complexes from blood to brain either by transport across the brain barriers or by uptake and retrograde axonal transport in motor neurons projecting beyond the blood-brain barrier. The transport of iron and transport into the brain was examined using radiolabeled iron-transferrin. Intravenous injection of [59Fe-125]transferrin led to an almost two-fold higher accumulation of 59Fe than of

  11. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2010-01-01

    @@ Chapter 3 Spheroidal Graphite Cast Iron(I) Spheroidal Graphite Cast Iron, SG iron in short, refers to the cast iron in which graphite precipitates as spheroidal shape during solidification of liquid iron. The graphite in common commercial cast iron can only be changed from flake to spheroidal shape by spheroidising treatment. Since spheroidal graphite reduces the cutting effect of stress concentration, the metal matrix strength of SG iron can be applied around 70%-90%, thus the mechanical property of SG iron is significantly superior to other cast irons;even the tensile strength of SG iron is higher than that carbon steel.

  12. Iron and Stony-iron Meteorites

    Science.gov (United States)

    Haack, H.; McCoy, T. J.

    2003-12-01

    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich sampling of the deep interiors of differentiated asteroids.Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar to that continuing on Earth - although on much smaller length- and timescales - with melting of the metal and silicates, differentiation into core, mantle, and crust, and probably extensive volcanism. Iron and stony-iron meteorites are our only available analogues to materials found in the deep interiors of Earth and other terrestrial planets. This fact has been recognized since the work of Chladni (1794), who argued that stony-iron meteorites must have originated in outer space and fallen during fireballs and that they provide our closest analogue to the material that comprises our own planet's core. This chapter deals with our current knowledge of these meteorites. How did they form? What can they tell us about the early evolution of the solar system and its solid bodies? How closely do they resemble the materials from planetary interiors? What do we know and don't we know?Iron and stony-iron meteorites constitute ˜6% of meteorite falls (Grady, 2000). Despite their scarcity among falls, iron meteorites are our only samples of ˜75 of the ˜135 asteroids from which meteorites originate ( Keil et al., 1994; Scott, 1979; Meibom and Clark, 1999; see also Chapter 1.05), suggesting that both differentiated asteroids and the geologic processes that produced them were common.Despite the highly evolved nature of iron and stony-iron meteorites, their chemistry provides important

  13. Synthesis and characterization of yttrium-aluminum-iron and yttrium-cerium-iron citric complexes

    Institute of Scientific and Technical Information of China (English)

    N. Petrova; D. Todorovsky; I. Mitov; Tyuliev

    2008-01-01

    Fe-, Y-Fe-Al- and Y-Ce-Fe- citrates were synthesized in ethylene glycol (EG) medium under conditions similar to those used in the polymerized complex method. Their elemental composition, IR, 13C and 1H NMR, X-ray photoelectron and Mossbauer spectra were studied, and formulae describing their composition were proposed. The complexes contained EG bonded as adduct and ester with citric acid ligand and did not contain ligands with deprotonated alcoholic groups. The complexes consisted of agglomerated spheres, 0.7-3μm in diameter. The local composition of the products was established by energy dispersive X-ray microanalysis. The comparison of the number of the ligands, their average electrical charge and the esterification degree of mono-, di- and trimetallic complexes proved the mixed-metal nature of the species studied. The thermal decomposition of the complexes was studied and a general scheme of the processes taking place was proposed. Highly crystalline, phase homogeneous Y3Fe4AlO12 was produced after heating the respective complex at 1000℃. Ce-doped yttrium-iron garnet, similarly prepared, contained traces of CeO2.

  14. Manipulation of Magnetic Insulators Using Spin Torque from the Spin Hall Effect

    Science.gov (United States)

    Jermain, Colin; Rosenberg, Aaron; Paik, Hanjong; Aradhya, Sriharsha; Wang, Hailong; Heron, John; Nowack, Katja; Kirtley, John; Schlom, Darrell; Moler, Kathryn; Yang, Fengyuan; Ralph, Dan

    2015-03-01

    We are exploring the possibility of current-induced switching driven by spin torque from the spin Hall effect for micron and nanoscale devices made from the magnetic insulators yttrium iron garnet (YIG) and lutetium iron garnet (LuIG). We will report on the fabrication of devices incorporating thin films of YIG or LuIG with thickness less than 20 nm and in-plane magnetization. We use electron beam lithography and ion milling to pattern the films into device structures with sizes ranging from 50 nm to 4 microns, integrated with a Ta or Pt layer so that we can use the spin Hall effect to apply spin-transfer torque to the magnetic materials. With scanning SQUID magnetometry we measure the in-plane dipole orientation of the device magnetic moment at 4 K. By examining the magnetic orientation as a function of applied current we investigate whether the spin Hall torque can be used to drive reliable magnetic switching at low current levels.

  15. Colour Metallography of Cast Iron

    Institute of Scientific and Technical Information of China (English)

    Zhou Jiyang; Liu Jincheng

    2010-01-01

    @@ Spheroidal Graphite Cast Iron(Ⅳ) 3.7 Segregation of SG iron The non-uniform distribution of solute elements during solidification results in the micro segregation of SG iron.As for the redistribution of elements in the phases of the solidification structure,there is no intrinsic difference between SG iron and grey iron[132].

  16. Cellular iron transport.

    Science.gov (United States)

    Garrick, Michael D; Garrick, Laura M

    2009-05-01

    Iron has a split personality as an essential nutrient that also has the potential to generate reactive oxygen species. We discuss how different cell types within specific tissues manage this schizophrenia. The emphasis in enterocytes is on regulating the body's supply of iron by regulating transport into the blood stream. In developing red blood cells, adaptations in transport manage the body's highest flux of iron. Hepatocytes buffer the body's stock of iron. Macrophage recycle the iron from effete red cells among other iron management tasks. Pneumocytes provide a barrier to prevent illicit entry that, when at risk of breaching, leads to a need to handle the dangers in a fashion essentially shared with macrophage. We also discuss or introduce cell types including renal cells, neurons, other brain cells, and more where our ignorance, currently still vast, needs to be removed by future research.

  17. Dramatic impact of the giant local magnetic fields on spin-dependent recombination processes in gadolinium based garnets

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, N. G., E-mail: nikolai.romanov@mail.ioffe.ru; Tolmachev, D. O.; Gurin, A. S.; Uspenskaya, Yu. A.; Asatryan, H. R.; Badalyan, A. G. [Ioffe Institute, St. Petersburg 194021 (Russian Federation); Baranov, P. G. [Ioffe Institute, St. Petersburg 194021 (Russian Federation); Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251 (Russian Federation); Wieczorek, H.; Ronda, C. [Philips Research, High Tech Campus 34, 5656 AE Eindhoven (Netherlands)

    2015-06-29

    A giant magnetic field effect on spin-dependent recombination of the radiation-induced defects has been found in cerium doped gadolinium based garnet crystals and ceramics, promising materials for scintillator applications. A sharp and strong increase in the afterglow intensity stimulated by external magnetic field and an evidence of the magnetic field memory have been discovered. The effect was ascribed to huge Gd-induced internal magnetic fields, which suppress the recombination, and cross-relaxation with Gd{sup 3+} ions leading to reorientation of the spins of the electron and hole centers. Thus, the spin system of radiation-induced defects in gadolinium garnet based scintillator materials was shown to accumulate significant energy which can be released in external magnetic fields.

  18. Dramatic impact of the giant local magnetic fields on spin-dependent recombination processes in gadolinium based garnets

    Science.gov (United States)

    Romanov, N. G.; Tolmachev, D. O.; Gurin, A. S.; Uspenskaya, Yu. A.; Asatryan, H. R.; Badalyan, A. G.; Baranov, P. G.; Wieczorek, H.; Ronda, C.

    2015-06-01

    A giant magnetic field effect on spin-dependent recombination of the radiation-induced defects has been found in cerium doped gadolinium based garnet crystals and ceramics, promising materials for scintillator applications. A sharp and strong increase in the afterglow intensity stimulated by external magnetic field and an evidence of the magnetic field memory have been discovered. The effect was ascribed to huge Gd-induced internal magnetic fields, which suppress the recombination, and cross-relaxation with Gd3+ ions leading to reorientation of the spins of the electron and hole centers. Thus, the spin system of radiation-induced defects in gadolinium garnet based scintillator materials was shown to accumulate significant energy which can be released in external magnetic fields.

  19. Amorphous-Si waveguide on a garnet magneto-optical isolator with a TE mode nonreciprocal phase shift.

    Science.gov (United States)

    Ishida, Eiichi; Miura, Kengo; Shoji, Yuya; Yokoi, Hideki; Mizumoto, Tetsuya; Nishiyama, Nobuhiko; Arai, Shigehisa

    2017-01-09

    We fabricated a magneto-optical (MO) isolator with a TE mode nonreciprocal phase shift. The isolator is based on a Mach-Zehnder interferometer composed of 3-dB directional couplers, a reciprocal phase shifter, and a nonreciprocal phase shifter. To realize TE mode operation in the optical isolator, we designed a novel waveguide structure composed of a hydrogenated amorphous silicon waveguide with an asymmetric MO garnet lateral clad on a garnet substrate. The isolator operation is successfully demonstrated in a fabricated device showing the different transmittances between forward and backward directions. The maximum isolation of the fabricated isolator is 17.9 dB at a wavelength of 1561 nm for the TE mode.

  20. Austempered Ductile Iron Machining

    Science.gov (United States)

    Pilc, Jozef; Šajgalík, Michal; Holubják, Jozef; Piešová, Marianna; Zaušková, Lucia; Babík, Ondrej; Kuždák, Viktor; Rákoci, Jozef

    2015-12-01

    This article deals with the machining of cast iron. In industrial practice, Austempered Ductile Iron began to be used relatively recently. ADI is ductile iron that has gone through austempering to get improved properties, among which we can include strength, wear resistance or noise damping. This specific material is defined also by other properties, such as high elasticity, ductility and endurance against tenigue, which are the properties, that considerably make the tooling characteristic worse.